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Néron models of Jacobians over bases
of arbitrary dimension
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Abstract. We work with a smooth relative curve XU /U with nodal reduction over an excellent
and locally factorial scheme S . We show that blowing up a nodal model of XU in the ideal sheaf
of a section yields a new nodal model and describe how these models relate to each other. We
construct a Néron model for the Jacobian of XU and describe it locally on S as a quotient of the
Picard space of a well-chosen nodal model. We provide a combinatorial criterion for the Néron
model to be separated.
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1. Introduction

1.1. Néron models

Given a scheme S and a dense open U ⊂ S, proper and smooth schemes over U often have no proper
and smooth model over S . Even so, they may still have a canonical smooth S-model, the Néron model, first
introduced in [Nér64]. The Néron model of XU /U is defined as a smooth S-model satisfying the Néron
mapping property: for every smooth S-scheme T and every U -morphism φU : TU → XU , there exists a
unique morphism φ : T → N extending φU . Néron models are unique up to a unique isomorphism and
inherit a group structure from XU when it has one.

Néron proved in the original article [Nér64] that abelian varieties over a dense open of a Dedekind scheme
always have Néron models. Recently, people have taken interest in constructing Néron models in different
settings. It was proved by Qing Liu and Jilong Tong in [LT13] that smooth and proper curves of positive
genus over a dense open of a Dedekind scheme always have Néron models. This does not apply to genus 0:
if S is the spectrum of a discrete valuation ring with fraction field K , then P

1
K does not have a Néron model.

Indeed, the Néron model, if it existed, would be the smooth and proper model P1
S . But P

1
S does not have

the Néron mapping property since many automorphisms of P1
K do not extend to automorphisms of P1

S (e.g.
multiplication by a uniformizer).

Among the concrete applications of the theory of Néron models, we can cite the semi-stable reduction
theorem (an abelian variety over the fraction field of a discrete valuation ring acquires semi-abelian reduction
after a finite extension of the base field), the Néron–Ogg–Shafarevich criterion for good reduction of abelian
varieties, the computation of canonical heights on Jacobians, as well as the linear and quadratic Chabauty
methods to determine whether or not a list of rational points on a curve is exhaustive. For a geometric
description of the quadratic Chabauty method, see [EL19]. Parallels can also be drawn to some problems
in which Néron models do not explicitly intervene, such as extending the double ramification cycle on
the moduli stack of smooth curves to the whole moduli stack of stable curves as in [Hol21]. Here, one is
interested in models in which one given section extends, instead of all sections simultaneously, but the two
problems are closely related.
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1.2. Models of Jacobians

Some constructions have already been made relating to Néron models of Jacobians over higher-dimensional
bases. When S is a regular scheme of arbitrary dimension and X/S is a nodal curve(1) smooth over U , David
Holmes exhibited in [Hol19] a combinatorial criterion on X/S called alignment, necessary for the Jacobian of
XU to have a separated Néron model and sufficient when X is regular. In [Ore18], Giulio Orecchia introduces
the toric-additivity criterion. Consider an abelian scheme A/U with semi-abelian reduction A/S , where S is
a regular base and U the complement in S of a strict normal crossings divisor. Toric-additivity is a condition
on the Tate module of A. When A is the generic Jacobian of an S-curve with a nodal model, toric-additivity
is sufficient for a separated Néron model of A to exist. It is also necessary up to some restrictions on the
base characteristic. For general abelian varieties, it is proven in [Ore19] that toric-additivity is still sufficient
when S has equicharacteristic 0, and a partial converse holds; i.e. the existence of a separated Néron model
implies a weaker version of toric-additivity. When S is a toroidal variety and X/S a nodal curve, smooth
over the complement U of the boundary divisor, a construction of the Néron model of the Jacobian of XU is
given in [HMO+20], together with a moduli interpretation for it.

Let g ≥ 3 be an integer. In [Cap08], Lucia Caporaso constructs a "balanced Picard stack" P dg , naturally
mapping to the moduli stackMg of stable curves of genus g . This stack acts as a universal Néron model of

the degree d Jacobian for test curves corresponding to regular stable curves, i.e. if T →Mg is a morphism
from a trait(2) such that the corresponding stable curve X/T is regular, then P dg ×Mg

T is canonically

isomorphic to the Néron model of the degree d Jacobian of the generic fibre of X. The balanced Picard
stack does not admit a group structure compatible with that of the Jacobian. In [Hol15], Holmes exhibits an
algebraic space M̃g overMg which is regular, in whichMg is dense, over which the universal Jacobian has
a separated Néron model, and which is universal with respect to these properties.

1.3. Notation

We will adopt the following conventions:

• If f : X→ S is a morphism of algebraic spaces locally of finite type, we call smooth locus of f , and
denote by (X/S)smooth (or Xsmooth if there is no ambiguity), the open subspace of X at which f is
smooth. Likewise, the étale locus (X/S)étale (or just X étale) of f is the open subspace of X at which f
is étale.
• If f : X→ S is a morphism of schemes which is locally of finite presentation and has geometric fibres
of pure dimension 1, we call singular locus of f , and denote by Sing(X/S), the closed subscheme
of X cut out by the first Fitting ideal of the sheaf of relative 1-forms of X/S . The set-theoretical
complement of Sing(X/S) in X is precisely (X/S)smooth.
• Unless specified otherwise, if A is a local ring, we write mA for its maximal ideal, kA for the its
residue field and Â for its mA-adic completion.
• When M is a monoid, or sheaf of monoids, we write M for the quotient of M by its units.

1.4. Structure of the paper, main results

In this article, we work with a nodal curve X/S , smooth over a dense open U ⊂ S , where S is an excellent
scheme satisfying certain conditions of local factoriality. We are interested in constructing a Néron model
for the Jacobian of XU .

In Section 2, we start with a general discussion about the base change properties of Néron models, and
we show the following result.

(1)A nodal curve is a proper, flat, finitely presented morphism with geometric fibres of pure dimension 1 and at worst ordinary
double point singularities.

(2)A trait is the spectrum of a discrete valuation ring.
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Corollary 1.1 (cf. Corollary 2.10). Let S be a scheme, U ⊂ S a scheme-theoretically dense open subscheme,
NU →U a smooth, separated U -group algebraic space and f : N → S a smooth S-group model of NU . Denote by
E the scheme-theoretic closure of the unit section in N and by Eétale the étale locus of E/S . Then, for any smooth
S-scheme Y , the sequence of abelian groups

0→Hom(Y ,Eétale)→Hom(Y ,N )→Hom(YU ,NU )

is exact. In particular, the quotient space N/Eétale is a smooth S-group model of NU with uniqueness in the Néron
mapping property.

In Section 3, we present some generalities about nodal curves, their local structure and their dual graphs.
In Section 4, we are interested in smooth-factorial schemes, i.e. those schemes S such that any smooth

S-scheme is locally factorial. We give conditions under which a prime divisor in a smooth-factorial scheme
S remains prime in Y for various kinds of morphisms Y → S .

In Section 5, we work with a section σ : S→ X. We introduce a combinatorial invariant, the type of σ at
a point s ∈ S . We discuss some properties of this invariant, and we show that there are étale quasisections of
every possible type through any singular point of X/S .

In Section 6, we study blow-ups X ′→ X in the ideal sheaves of S-sections. We show that X ′/S is a nodal
curve and that, locally on S, it is characterized by the type of the section. We compute the smoothing
parameters of the nodes of X ′/S in terms of those of X/S . We show that, étale-locally on S, we can
always obtain a model of XU satisfying strong conditions of local factoriality by repeatedly blowing up X in
S-sections. This can be seen as a higher-dimensional variant of the smoothening process of [BLR90]. The
reader familiar with logarithmic geometry can establish a parallel between these blow-ups and logarithmic
modifications of a log curve inducing a given subdivision of its tropicalization (although one should be
careful with this analogy; see Remark 7.8).

In Section 7, we construct the Néron model of the Jacobian. We describe how blowing up a nodal curve
in a S-section affects its relative Picard scheme, giving us a "bigger" model of the Jacobian (cf. Lemma 7.2).
Then, we show that one obtains a Néron model by appropriately quotienting a union of such models. The
main result is as follows.

Theorem 1.2 (cf. Theorem 7.6). Let S be a smooth-factorial (e.g. regular) and excellent scheme, and let U ⊂ S be
a dense open subscheme. Let XU /U be a smooth curve that admits a nodal model over S . Then:

(1) The Jacobian J = Pic0XU /U of XU /U admits a Néron model N over S .

(2) For any nodal model X/S of XU /U , the map Pic
tot0
X/S /E

étale→N extending the identity over U is an open
immersion, where E is the scheme-theoretic closure of the unit section in Pictot0X/S .

(3) For any étale morphism V → S and nodal V -model X of XU×SV , if s̄→ V is a geometric point such
that the singularities of Xs̄ have prime thicknesses, then the canonical map Pic

tot0
X/V →N is surjective on

Spec(O ét
S,s̄)-points.

When X/S comes from a vertical logarithmic curve over a logarithmically regular base (e.g. S is regular
and X smooth over the complement of a normal crossings divisor, or S is a toroidal variety and X smooth
over the complement of the boundary divisor), the Néron model exists and has a moduli interpretation
by [HMO+20, Corollary 6.13]. The difference is that we require S to be smooth-factorial but allow the
discriminant locus to be arbitrary.

We give a local description of the Néron model in terms of Picard spaces in Remark 7.7. Finally, we give a
simple way to determine whether or not the Néron model is separated. Following the ideas of [Hol19], we say
X/S is strictly aligned when the smoothing parameters of its singularities satisfy a certain combinatorial
condition (cf. Definition 7.9), and we prove the following result.
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Theorem 1.3 (cf. Theorem 7.13). Let S be a regular and excellent scheme, U ⊂ S a dense open subscheme and
X/S a nodal curve, smooth over U . Denote by J the Jacobian of XU /U . Then, the S-Néron model N of J exhibited
in Theorem 7.6 is separated if and only if X/S is strictly aligned.

With the notation of Theorem 1.3, when X/S is strictly aligned, the Néron model was already constructed
in [Hol19] (see Proposition 3.6 of loc. cit.) under the additional assumption that U is the complement of a
normal crossings divisor in S . This additional assumption guarantees the existence of a global nodal model
X ′/S whose total space is regular, in which case the Néron model of the Jacobian is the quotient of Pictot0X ′/S
by the closure of its unit section. In our setting, the phenomenon illustrated by Example 5.14 prevents the
existence of such an X ′ in general, but a separated Néron model of the Jacobian still exists.
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2. Generalities about Néron models

2.1. Definitions

Definition 2.1. Let S be a scheme and U a scheme-theoretically dense open subscheme of S . Let Z/U be
a U -algebraic space. An S-model of Z (or just model if there is no ambiguity) is an S-algebraic space X
together with an isomorphism XU = Z . A morphism of S-models between two models X and Y of Z is an
S-morphism X→ Y that commutes over U with the given isomorphisms XU = Z and YU = Z .

Definition 2.2. Let S be a scheme and U a scheme-theoretically dense open subscheme of S . Let Z/U be
a smooth U -scheme and N an S-model of Z . We say that S has the Néron mapping property (resp. existence
in the Néron mapping property, uniqueness in the Néron mapping property) if for each smooth S-algebraic space
Y , the restriction map

HomS(Y ,N )→HomU (YU ,Z)

is bijective (resp. surjective, injective). If N is S-smooth and has the Néron mapping property, we say that it
is an S-Néron model of Z (or just Néron model if there is no ambiguity).

Remark 2.3. Various authors require Néron models to be separated and of finite type over the base. Néron
models without a quasicompactness condition are sometimes referred to as Néron-lft models, where "lft"
stands for "locally of finite type". We justify the definition above by observing that our Néron models are
still unique up to a unique isomorphism by virtue of the universal property: we can always discuss their
separatedness or quasicompactness a posteriori.

Remark 2.4. Let S , U , Z be as in Definition 2.2, and let N be a smooth, separated S-model of Z . Consider a
smooth S-algebraic space Y /S and two morphisms f1, f2 : Y →N that coincide over U . The separatedness
of N/S implies that the equalizer of f1 and f2 is a closed subspace of Y containing YU , and the latter is
scheme-theoretically dense in Y by [GD66, théorème 11.10.5]. Thus, N automatically has uniqueness in the
Néron mapping property.

Remark 2.5. By descent, the definition of Néron models is unchanged if we only require the Néron mapping
property to hold when Y /S is a scheme. Therefore, when we ask if a Néron model exists for XU /U , we are
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asking if the functor Y 7→ XU (YU ) on the small smooth site of S is representable by a smooth algebraic
space. Similarly, we would get a looser (but still universal) definition of Néron models by asking for them to
be smooth algebraic stacks.

2.2. Base change and descent properties

Proposition 2.6 (The formation of Néron models is compatible with smooth base change). Consider a smooth
morphism S ′→ S, a scheme-theoretically dense open U ⊂ S and a smooth S-model X of XU with uniqueness in
the Néron mapping property. Then, the base change XS ′ is a smooth S

′-model of XU ′ with uniqueness in the Néron
mapping property. If X is the Néron model of XU , then X

′ is the Néron model of XU ′ .

Proof. First, note that XS ′ /S
′ is smooth since X/S is and that U ′ is scheme-theoretically dense in S ′

by [GD66, théorème 11.10.5]. Thus, we only need to check that X ′/S ′ has uniqueness in the Néron mapping
property and that it has existence if X/S does.

Let Y ′ be a smooth S ′-scheme. A morphism Y ′ → X ′ is uniquely determined by the two projections
Y ′ → S ′ and Y ′ → X. Since Y ′ → S is smooth, it follows that X ′ has uniqueness in the Néron mapping
property. Now, suppose that X is the Néron model of XU , and consider a U ′-morphism u′ : Y ′U ′ → XU ′ .
Composing with the projection: XU ′ → XU , we get a U -morphism Y ′U ′ → XU , which extends to a unique
S-morphism Y ′→ X by the Néron mapping property since Y ′/S is smooth. Then the induced morphism
Y ′→ X ′ extends u′ . �

Corollary 2.7. If S ′/S is a cofiltered limit of smooth S-schemes (indexed by a cofiltered partially ordered set, e.g.
a localization, a henselization when S is local,. . . ) and X is the S-Néron model of XU , then XS ′ is the S

′-Néron
model of XU ′ .

Proposition 2.8 (Néron models descend along smooth covers). Let S be a scheme and U a scheme-theoretically
dense open of S . Let S ′→ S be a smooth surjective morphism and U ′ =U ×S S ′ . Let XU be a smooth U -algebraic
space, and suppose XU ′ has a S

′-Néron model X ′ . Then X ′ comes via base change from an S-space X, which is the
Néron model of XU .

Proof. Denote by p1,p2 the two projections S ′′ := S ′ ×S S ′ → S ′ . They are smooth morphisms, so by
Proposition 2.6, there is a canonical isomorphism p∗1X

′ = p∗2X
′ satisfying the cocycle condition. By the

effectiveness of fppf descent for algebraic spaces (cf. [Stacks, Tag 0ADV]), X ′ comes via base change from an
S-algebraic space X/S . The morphism X→ S is smooth since X ′/S ′ is (smoothness is even fpqc local on the
base; see [Stacks, Tag 02VL]). Therefore, we only need to prove that X/S has the Néron mapping property.
Let Y be a smooth S-algebraic space and fU be in Hom(YU ,XU ). The corresponding map Y ′U → X ′U
extends uniquely to some f ′ : Y ′→ X ′ . The two pull-backs of f ′ to S ′′ := S ′ ×S S ′ coincide over U ; hence
they coincide (since XS ′′ has the Néron mapping property by Proposition 2.6). Hence f ′ comes from a
morphism f : Y → X, which is the only one extending fU . �

2.3. Group models with injective restriction map

In this subsection, we show that any smooth group model of a group algebraic space has a biggest quotient
with uniqueness in the Néron mapping property, namely the quotient by the étale locus over the base of its
unit section (cf. Corollary 2.10). Given a scheme S , we will write Ssm (resp. (Sch /S)sm) for the small smooth
site (resp. big smooth site) of S .

We write Ab for the category of abelian groups. We will use without further mention the fact that a
smooth S-group algebraic space is determined up to a unique isomorphism by the corresponding functor
(Ssm)op→ Ab (by combining the Yoneda lemma with a descent argument). Recall from Subsection 1.3 that
if f : E→ S is a morphism, then (E/S)étale (or just Eétale) denotes the étale locus of f .

https://stacks.math.columbia.edu/tag/0ADV
http://stacks.math.columbia.edu/tag/02VL


Néron models of Jacobians over bases of arbitrary dimension 7Néron models of Jacobians over bases of arbitrary dimension 7

Lemma 2.9 (cf. [Hol19, Lemma 5.18]). Let S be a scheme, U ⊂ S a scheme-theoretically dense open and f : E→ S
an S-algebraic space. Suppose that f restricts to an isomorphism over U and that U ×S E is scheme-theoretically
dense in E. Then any section of f factors through Eétale.

Proof. The claim is étale-local on S and E, so we may assume that f is a morphism of affine schemes.
In particular, f is separated. Then S → E is a closed immersion through which U factors, hence an
isomorphism. A fortiori, f is étale. �

Corollary 2.10. Let S be a scheme, U ⊂ S a scheme-theoretically dense open subscheme, NU → U a smooth,
separated U -group algebraic space and f : N → S a smooth S-group model of NU . Denote by E the scheme-theoretic
closure of the unit section in N . Then, for any smooth S-scheme Y , the sequence of abelian groups

0→Hom(Y ,Eétale)→Hom(Y ,N )→Hom(YU ,NU )

is exact. In particular, the quotient space N/Eétale is a smooth S-group model of NU with uniqueness in the Néron
mapping property.

Remark 2.11. In the setting of Corollary 2.10, if N has existence in the Néron mapping property, it follows
that N/Eétale is the Néron model of NU .

3. Nodal curves and dual graphs

3.1. First definitions

The results of this subsection mostly either are well-known facts about nodal curves or come from [Hol19].
When the proofs are short enough, we reproduce them for convenience.

Definition 3.1. A graph G is an ordered pair of finite sets (V ,E), together with a map f : E→ (V ×V )/S2.
We denote by V the set of vertices of G and by E its set of edges. We think of f as the map sending an edge
to its endpoints. We call loop any edge in the preimage of the diagonal of (V ×V )/S2. We will often omit f
in the notation and write G = (V ,E).

Let v,v′ be two vertices of G. A path between v and v′ in G is a finite sequence (e1, . . . , en) of edges such
that there are vertices v0 = v,v1, . . . , vn = v′ satisfying f (ei) = (vi−1,vi) for all 1 ≤ i ≤ n. We denote by n
the length of the path. A chain is a path as above, with positive n, where the only repetition allowed in the
vertices (vi)0≤i≤n is v0 = vn. A cycle is a chain from a vertex to itself. The cycles of length 1 of G are its
loops.

Let M be a monoid. A labelled graph over M (or labelled graph if there is no ambiguity) is the data of
a graph G = (V ,E) and a map l : E→M\{0}, called edge-labelling. The image of an edge by this map is
called the label of that edge.

Definition 3.2. Let X be an algebraic space. We call geometric point of X a morphism Spec k̄→ X where
the image of Spec k̄ is a point with residue field k, and k̄ is a separable closure of k. Given two geometric
points s, t of X, we say that t is an étale generization of s (or that s is an étale specialization of t) when the
image of t→ X is a generization of the image of s→ X. We will often omit the word "étale" and just call
them specializations and generizations.

Definition 3.3. A curve over a separably closed field k is a proper, finitely presented morphism X→ Speck
with X of pure dimension 1. It is called nodal if it is connected and for every point x of X, either X/k
is smooth at x, or x is an ordinary double point (i.e. the completed local ring of X at x is isomorphic to
k[[u,v]]/(uv)).

A curve (resp. nodal curve) over a scheme S is a proper, flat, finitely presented morphism X→ S whose
geometric fibres are curves (resp. nodal curves).
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Remark 3.4. By [Liu02, Proposition 10.3.7], our definition of nodal curves is unchanged if one defines
geometric points with algebraic closures instead of separable closures.

Definition 3.5. Let S be a scheme, s a point of S and s̄ a geometric point mapping to s. We will call étale
neighbourhood of s̄ in S the data of an étale morphism of schemes V → S , a point v of V and a factorization
s̄→ v→ s of s̄→ s. Étale neighbourhoods naturally form a codirected system, and we call étale stalk of S at
s the limit of this system. The étale stalk of S at s is an affine scheme, and we call étale local ring at s, and
denote by O ét

S,s, its ring of global sections. We will sometimes keep the choice of geometric point s̄ implicit
and abusively write (V ,v), or even V , for an étale neighbourhood of s in S .

Remark 3.6. The étale local ring of S at s̄ is the strict henselization of the local ring (in the Zariski topology)
OS,s determined by the separable closure k(s)→ k(s̄).

3.2. The local structure

Proposition 3.7. Let S be a locally Noetherian scheme and X/S be a nodal curve. Let s be a geometric point of S
and x be a non-smooth point of Xs. There exists a unique principal ideal T = (∆) of the étale local ring O ét

S,s such
that �O ét

X,x ' Ô
ét
S,s[[u,v]]/(uv −∆).

We call T the thickness of x. It can be seen as an element of the (multiplicative) monoid O ét
S,s = O

ét
S,s/(O

ét
S,s)
×.

Proof. This is [Hol19, Proposition 2.5]. �

Remark 3.8. The element ∆ of O ét
S,s is a nonzerodivisor if and only if X/S is generically smooth in a

neighbourhood of x.

3.3. The dual graph at a geometric point

We discuss an important combinatorial object, the dual graph of a nodal curve at a geometric point.
Throughout the literature, one can find many definitions of dual graphs (or tropicalizations of logarithmic
curves), depending on how much information the authors need this object to carry. With a definition slightly
heavier than ours, one can construct them functorially in families (see [HMO+20, Section 3]).

Definition 3.9. Let X/S be a nodal curve with S locally Noetherian, and let s be a geometric point of S .
We define the dual graph of X at s as follows:

• Its vertices are the irreducible components of Xs.
• It has an edge for every singular point x of Xs, whose endpoints are the two (possibly equal) irreducible
components containing the two preimages of x in the normalization of Xs.

• It has an edge-labelling by the multiplicative monoid O ét
S,s, mapping a singular point to its thickness.

When S is strictly local, we will sometimes refer to the dual graph of X at the closed point as simply "the
dual graph of X".

Proposition 3.10. Let S ′ → S be a morphism between locally Noetherian schemes, X/S a nodal curve, s a
geometric point of S and s′ a geometric point of S ′ mapping to a generization of s. Let X ′ be the base change of X
to S ′ . Let Γ (resp. Γ ′) be the dual graph of X at s (resp. of X ′ at s′).

Then, Γ ′ is obtained from Γ by contracting the edges whose labels map to 1 in M := O ét
S ′ ,s′ and replacing the

labels of the other edges by their images in M .
In particular, if s′ has image s, then Γ and Γ ′ are isomorphic as non-labelled graphs, and the labels of Γ ′ are

the images in M of those of Γ .
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Proof. This is [Hol19, Remark 2.12]. We re-prove it here.
We can reduce to S = SpecR and S ′ = SpecR′ affine and strictly local,(3) with respective closed points s

and s′ .
Let x be a singular point of X with image s and ∆ ∈ R be a lift of its thickness. Then we can choose an

isomorphism �OX,x = R̂[[u,v]]/(uv −∆).
This yields �OX,x ⊗R R′ = R̂⊗R R′[[u,v]]/(uv −∆). The ring R̂⊗R R′ is local, with completion R̂′ with

respect to the maximal ideal: as desired, if ∆ is invertible in R′ , then X ′ is smooth above a neighbourhood
of x, and otherwise, X ′ has exactly one singular closed point of image x, with thickness ∆R′ . �

Example 3.11. With the same notation as above, in the case S = S ′ , we have defined the specialization maps
of dual graphs: if s,ξ are geometric points of S with s specializing ξ, we have a canonical map from the
dual graph at s to the dual graph at ξ, contracting an edge if and only if its label becomes the trivial ideal
in O ét

S,ξ .

It can be somewhat inconvenient to always have to look at geometric points. We can often avoid it as
in [Hol15], by reducing to a case in which the dual graphs already make sense without working étale-locally
on the base.

3.4. Quasisplitness, dual graphs at non-geometric points

Definition 3.12 (see [Hol15, Definition 4.1]). We say that a nodal curve X → S is quasisplit if the two
following conditions are met:

(1) For any point s ∈ S and any irreducible component E of Xs, there is a smooth section S→ (X/S)smooth

intersecting E.
(2) The singular locus Sing(X/S)→ S is of the form∐

i∈I
Fi → S,

where the Fi → S are closed immersions.

Example 3.13. Consider the real conic

X = Proj(R[x,y,z]/(x2 + y2)).

It is an irreducible nodal curve over SpecR, but the base change X
C
has two irreducible components: X is

not quasisplit over SpecR.
On the other hand, consider the real projective curve

Y = Proj(R[x,y,z]/(x3 + xy2 + xz2)).

It has two irreducible components (respectively cut out by x and by x2 + y2 + z2), both geometrically
irreducible. The singular locus of Y /R consists of two C-rational points, with projective coordinates (0 : i : 1)
and (0 : −i : 1), at which Y

C
is nodal. Since Sing(Y /R) is not a disjoint union of R-rational points, Y is not

quasisplit over SpecR. However, both X and Y become quasisplit after base change to SpecC.

Remark 3.14. Our definition of quasisplitness is slightly more restrictive than that of [Hol15].

Remark 3.15. Let X/S be a quasisplit nodal curve, s a point of S and s̄→ S a geometric point above s.
The irreducible components of Xs̄ are in canonical bijection with those of Xs by the first condition defining
quasisplitness, and the thicknesses of X at s̄ come from principal ideals of the local ring (in the Zariski
topology) OS,s by the second condition. Therefore, we can define without ambiguity the dual graph of X
at s: its vertices are the irreducible components of Xs, its edges are the non-smooth points x ∈ Xs, with

(3)In other words, S and S ′ are isomorphic to spectra of strictly henselian local rings.
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endpoints the two components meeting at x, and the label of x is the preimage in OS,s of the thickness of
some (equivalently, any) point above x in a geometric fibre of X/S .

From now on, we will call the label of x defined as above the thickness of X at x and talk freely about the
dual graphs of quasisplit curves at (not necessarily geometric) field-valued points of S . This can clash with
Definition 3.9 when x is a singular point of a geometric fibre of X/S . Unless specified otherwise, when there
is an ambiguity, we will always privilege Definition 3.9.

Lemma 3.16. Quasisplit curves are stable under arbitrary base change.

Proof. The two conditions forming quasisplitness are preserved by base change. �

Lemma 3.17. Let S be a Noetherian strictly local scheme and X/S a nodal curve. Then X/S is quasisplit.

Proof. There is a section through every closed point in the smooth locus of X/S , so in particular there is a
smooth section through every irreducible component of every fibre. Proposition 3.7 implies that the map
Sing(X/S)→ S is a disjoint union of closed immersions. �

Corollary 3.18. Let S be a locally Noetherian scheme and X/S a nodal curve. Then there is an étale cover V → S
such that XV /V is quasisplit.

Lemma 3.19. Let S be a locally Noetherian scheme, X/S a quasisplit nodal curve, s a point of S and x a singular
point of Xs. Quasisplitness of X/S gives a factorization

x→ F→ Sing(X/S)→ X→ S,

where F→ S is a closed immersion and F→ Sing(X/S) is the connected component containing x. Then, there
exist an étale neighbourhood (V ,y) of x in X, two effective Cartier divisors C,D on V and an isomorphism
V ×X F = C ×V D such that V ×S F is the union of C and D .

Proof. Let s̄ be a geometric point of S mapping to s, and x̄ = x ×s s̄. By Proposition 3.7, we have an

isomorphism �O ét
X,x̄ = Ô

ét
S,s̄[[u,v]]/(uv −∆), where ∆ is a lift to O ét

S,s̄ of the thickness of x. The base change of

F/S to SpecO ét
S,s̄ is cut out by ∆, and the zero loci Cu of u and Cv of v are effective Cartier divisors on�O ét

X,x̄, intersecting in �O ét
X,x̄/(u,v) = F ×X Spec�O ét

X,x̄. The union of Cu and Cv is Ô ét
S,s̄[[u,v]]/(∆,uv), so the

proposition follows by a limit argument. �

4. Primality, local factoriality and base change

4.1. Smooth-factorial schemes

The main results of this article hold when the base scheme S is quasiexcellent, locally Noetherian and
smooth-factorial (cf. Definition 4.2). In this subsection, we discuss smooth-factoriality and try to give some
intuition for it.

Lemma 4.1 (Popescu’s theorem). Let R be a Noetherian and excellent local ring; then R̂ is a directed colimit of
smooth R-algebras.

Proof. This is a special case of [Stacks, Tag 07GC]. �

Definition 4.2. Let S be a scheme. We say that S is smooth-factorial (resp. étale-factorial) if any smooth
(resp. étale) S-scheme is locally factorial.

Remark 4.3. Any regular scheme S is smooth-factorial.

Lemma 4.4 (cf. [Dan70, Proposition 1]). Let R→ R′ be a faithfully flat morphism of Noetherian, integrally
closed local rings. Then any ideal p ⊂ R is principal if p⊗R R′ is. In particular, if R′ is a unique factorization
domain, then R is a unique factorization domain.

https://stacks.math.columbia.edu/tag/07GC
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Proof. By faithfully flat descent, p is a finitely generated projective R-module of rank 1, so it is principal. �

Corollary 4.5. Let S be a normal and locally Noetherian scheme. Then S is étale-factorial if and only if all of
its étale local rings are unique factorization domains.

Remark 4.6. In view of Corollary 4.5, étale-factoriality is a relatively easy condition to understand and verify,
but smooth-factoriality is a priori harder to grasp. It seems reasonable to hope that they are equivalent under
mild assumptions (e.g. local Noetherianity). By Lemma 4.7, proving this reduces to showing that given a
Noetherian, strictly henselian, local unique factorization domain R, the strict localizations of R[X] at mR and
at q := (mR,T ) are unique factorization domains. In [Dan70], Vladimir Danilov states the related conjecture
that R[[X]] must be a unique factorization domain. When R is excellent, the equivalent claims in Lemma 4.7
imply Danilov’s conjecture by Lemma 4.1. Conversely, Danilov’s conjecture implies that (R[X]q)sh = (R[X]q)h

is a unique factorization domain by Lemma 4.4.

Lemma 4.7. The following three claims are equivalent:

(1) A locally Noetherian scheme S is smooth-factorial if and only if it is étale-factorial.
(2) If S is a locally Noetherian étale-factorial scheme, then A

1
S is étale-factorial.

(3) If R is a strictly henselian, Noetherian local ring with SpecR étale-factorial, then the strict localizations
of R[X] at the prime ideals mR and at (mR,T ) are unique factorization domains.

Proof. We clearly have (1) =⇒ (2) and (2) =⇒ (3). Any smooth morphism of schemes Y → S factors locally
as Y →A

n
S → S, where Y →A

n
S is étale, so by induction we have (2) =⇒ (1). For (3) =⇒ (2), suppose that

(3) holds, and consider a locally Noetherian, étale-factorial scheme S . It suffices to show that the étale
local ring of A1

S at an arbitrary point y is a unique factorization domain. Denote by s the image of y in
S . By Lemma 4.4, we may assume that S = SpecR is strictly local, with closed point s. Translating by a
S-section of A1

S if necessary, we may assume that the image of y in A
1
s is either the generic point or the

origin. Therefore, y corresponds to one of the ideals mR and (mR,T ) of R[T ], and we are done. �

Remark 4.8. The claims of Lemma 4.7 remain equivalent if one removes the Noetherianity assumptions in
all three of them.

4.2. Permanence of primality under certain morphisms of local rings

Let R be a strictly henselian local ring such that R̂ is a unique factorization domain, let X/ SpecR be
a nodal curve, and let x be a singular closed point of X whose thickness is prime in R̂. We will see in
Lemma 6.2 that X is locally factorial at x. Since a generic line bundle on a locally factorial scheme always
extends to a line bundle, it follows that, in order to construct Néron models of Jacobians, we are interested
in questions of permanence of primality (of an element of a smooth-factorial ring) under smooth maps, étale
maps and completions. We discuss these matters in this section.

An element ∆ of an integral local ring R is prime in Rsh when the quotient R/(∆) is geometrically
unibranch (i.e. its strict henselization is integral, or, equivalently, its normalization is local with purely
inseparable residue extension), so we are interested in questions of permanence of geometrically unibranch
rings under tensor product. For a more detailed discussion on unibranch rings or counting branches in
general, see [Ray70, chapitre IX] or [GD64, section 23.2].

In [Swe75], Moss Eisenberg Sweedler gives a necessary and sufficient condition for the tensor product of
two local algebras over a field to be local. We are interested in a sufficient condition for algebras over a
strictly local ring. The proof of [Swe75] carries over without much change: we reproduce it here.

Lemma 4.9. Let R be a strictly henselian local ring, R→ A an integral morphism of local rings with purely
inseparable residue extension and R→ B any morphism of local rings. Then A⊗R B is local, and its residue field
is purely inseparable over that of B.
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Proof. Let m be a maximal ideal of A⊗RB. The map B→ A⊗RB is integral, so it has the going-up property
(cf. [Stacks, Tag 00GU]); therefore, the inverse image of m in B is a maximal ideal: it must be mB. Thus m
contains A⊗RmB.

In particular, m also contains the image of mR in A ⊗R B: it corresponds to a maximal ideal of
(A⊗R B)/(mRA⊗R B), which we will still call m. We have a commutative diagram

kR //

��

B/mRB

��
A/mRA // (A⊗R B)/(mRA⊗R B).

Since A/mRA is local and integral over the field kR, its maximal ideal mA is nilpotent and is its only prime
ideal. The inverse image of m in A/mRA is a prime ideal, so it can only be mA. This shows that, as an ideal
of A⊗R B, m also contains mA ⊗R B.

Every maximal ideal of A⊗R B contains both mA⊗R B and A⊗RmB, so the maximal ideals of A⊗R B are
in bijective correspondence with those of kA ⊗kR kB = A⊗R B/(mA ⊗R B+A⊗RmB). We will now show that
the latter is local, with purely inseparable residue extension over kB.

By hypothesis, the extension kA/kR is purely inseparable. If kR has characteristic 0, then kA = kR, and
we are done. Suppose kR has characteristic p > 0. For any x ∈ kA ⊗kR kB, we can write x as a finite sum∑
i∈I λi ⊗µi with the λi ,µi in kA, kB, respectively. There is an integer N > 0 such that for all i, λ

pN

i is in kR.

Therefore, xp
N
=
∑
i∈I λ

pN

i µ
pN

i is in kB, so x is either nilpotent or invertible. It follows that kA⊗kR kB is local,
with maximal ideal its nilradical, and that its residue field is purely inseparable over kB, as claimed. �

Lemma 4.10. Let (R,m) be an integral and strictly local Noetherian ring. Let R→ R′ be a smooth ring map, let
p be a prime ideal of R′ containing mR′ , and let (R′p)

sh be a strict henselization of R′p. Then R
′
p is geometrically

unibranch; i.e. (R′p)
sh is an integral domain.

Proof. We know (R′p)
sh is reduced since it is a filtered colimit of smooth R-algebras. Let B,B′ be the integral

closures of R,R′p in their respective fraction fields. The ring R′p is integral, so by [Ray70, corollaire IX.1],
(R′p)

sh is an integral domain if and only if B′ is local and the extension of residue fields of R′p→ B′ is purely
inseparable. But any smooth base change of B/R remains normal (see [Liu02, Corollary 8.2.25]), so B⊗R R′p
is normal as a filtered colimit of normal B-algebras. Moreover, any normal algebra over R′p must factor
through B⊗R R′p, so we have B′ = B⊗R R′p. Applying Lemma 4.9, we find that B′ is local and the extension
of residue fields of R′p→ B′ is purely inseparable, which concludes the proof. �

Corollary 4.11. Let S be a smooth-factorial scheme and Y → S a smooth morphism, and consider a commutative
square

y //

��

s

��
Y // S ,

where s→ S and y→ Y are geometric points. Then for any prime element ∆ of O ét
S,s, the image of ∆ in O

ét
Y ,y is

prime.

Proof. Base change to SpecO ét
S,s/(∆), replace Y by an affine neighbourhood of y in Y , and apply Lemma 4.10.

�

Lemma 4.12. Let R be a strictly henselian and excellent local ring. Then an element ∆ of R is prime in R if and
only if it is prime in R̂.

https://stacks.math.columbia.edu/tag/00GU
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Proof. The nontrivial implication is the "only if" part. Suppose ∆ is prime in R. By Lemma 4.1, R̂ is a
directed colimit of smooth R-algebras. Therefore, R/(∆)→ R̂/(∆) is a colimit of smooth R/(∆)-algebras,
and we conclude by Lemma 4.10. �

Lemma 4.13. Let S be an excellent and smooth-factorial scheme, X/S a S-scheme of finite presentation, s̄ a

geometric point of S and x a closed point of Xs̄ with an isomorphism
�O ét
X,x = Ô

ét
S,s̄[[u,v]]/(uv −∆) for some

∆ ∈ ms̄ ⊂ O ét
S,s̄. For every t1, t2 ∈ ms̄ such that t1t2 = ∆, there exist an étale neighbourhood S ′ → S of s̄ and

a section S ′ → X through x such that the induced map �O ét
X,x →

�O ét
S ′ ,s̄ sends u,v to generators of (t1) and (t2),

respectively.

Proof. Put R = O ét
S,s̄. Then R̂ is a unique factorization domain by Lemma 4.1. Consider the map �O ét

X,x→ R̂

that sends u,v to t1, t2, respectively. Compose it with O ét
X,x→

�O ét
X,x to get a map f0 : O ét

X,x→ R̂.
For Noetherian local rings, quotients commute with completion with respect to the maximal ideal, so two

distinct ideals are already distinct modulo some power of the maximal ideal. Let
∏n
i=1∆

νi
i be the prime

factor decomposition of ∆ in R. Principal ideals of R of the form (∆
µi
i ) with 0 ≤ µi ≤ νi are pairwise distinct

and in finite number, so there exists some N ∈N such that their images in R/mN
R are pairwise distinct.

Since R is henselian and excellent, it has the Artin approximation property (cf. [Stacks, Tag 07QY]), so

there exists a map f : O ét
X,x→ R which coincides with f0 modulo mNR . This f induces a map f̂ :�O ét

X,x→ R̂.

Denote by a,b the respective images of u,v by f̂ ; we have a = t1 and b = t2 in R/mN
R . But ab = ∆ in R̂ and,

by Lemma 4.12, ∆ has the same prime factor decomposition in R and R̂, so the only principal ideals of R̂
containing ∆ are of the form (∆

µi
i ) with 0 ≤ µi ≤ νi . By the definition of N , we get aR̂ = t1R̂ and bR̂ = t2R̂.

Since X/S is finitely presented, f comes from an S-morphism S ′→ X, where S ′ is an étale neighbourhood
of s̄ in S . �

5. Sections of nodal curves

We present some technicalities regarding sections of nodal curves, with a view towards studying those
morphisms that are locally the blow-up in the ideal sheaf of a section. The basis for this formalism was
thought of together with Giulio Orecchia.

5.1. Type of a section

We will define a combinatorial invariant, the type of a section, summarizing information about the
behaviour of the said section around the singular locus of a nodal curve X/S . Later on, we will show that
sections of all types exist étale-locally on the base (cf. Proposition 5.12) and that the type of a section locally
characterizes the blow-up of X in the ideal sheaf of that section (Corollary 6.6).

Definition 5.1. Let S be a locally Noetherian scheme, X/S a quasisplit nodal curve, s a point of S and
x a singular point of Xs. Let F be the connected component of Sing(X/S) containing x. Then the set of
connected components of (X\F)×X SpecO ét

X,x ×S F is a pair {C,D} (see Proposition 3.7 and Lemma 3.19), on

which the Galois group AutOS (O
ét
S,s) = Gal(k(s)sep/k(s)) acts. If this action is trivial, we say X/S is orientable

at x, and we call orientations of X/S at x the ordered pairs (C,D) and (D,C). The scheme-theoretic closures
of C and D in SpecO ét

X,x are effective Cartier divisors, and we will often also call them C and D .
If X/S is orientable at a singular point x, and if x′ is a singular point specializing to x, then X/S is

orientable at x′ and there is a canonical bijection between orientations at x and at x′ . Given an orientation
(C1,C2) at x, we will often still write (C1,C2) for the induced orientation at x′ .

We say X/S is orientable if it admits orientations at all points, compatible with the generization isomor-
phisms between orientations. In that case, we call global orientation (or just orientation) of X/S a compatible

https://stacks.math.columbia.edu/tag/07QY
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family (C1,x,C2,x)x∈Sing(X/S), where (C1,x,C2,x) is an orientation at x. We will often abusively write global
orientations as ordered pairs (C1,C2) and confuse them with the induced orientation at any given point
x ∈ Sing(X/S).

Remark 5.2. If X/S is orientable, then it is orientable at every point, but the converse is not true in general.

Remark 5.3. The curve X/S is orientable at x if and only if the preimage of x in the normalization of Xs
consists of two k(s)-rational points, in which case an orientation is the choice of one of these points. Roughly
speaking, this also corresponds to picking an orientation of the edge corresponding to x in the dual graph of
X at s. The "roughly speaking" is due to the case of loops: there is an ambiguity on how to orient them. We
could get rid of this ambiguity by using a heavier notion of dual graphs (such as the tropical curves often
used in log geometry), but this work does not require it.

Lemma 5.4. Let S be a locally Noetherian scheme and X/S a quasisplit nodal curve. Then, there exists an étale
cover V → S such that XV /V is orientable.

Proof. It suffices to show that any s ∈ S has an étale neighbourhood over which X is orientable, which
follows from observing that X/S is finitely presented and that a nodal curve over a strictly local scheme is
orientable. �

Lemma 5.5. Let S ′→ S be a morphism between locally Noetherian schemes. Let X/S be a quasisplit nodal curve.
If X/S is orientable at a point x ∈ X, then X ′ := X ×S S ′ is orientable at any singular point x′ above x, and
orientations of X at x naturally pull back to orientations of X ′ at x′ . In particular, if X/S is orientable, then
X ′/S ′ is orientable.

Proof. This follows from Remark 5.3. �

Definition 5.6 (Type of a section). Let X/S be a quasisplit nodal curve with S smooth-factorial. Suppose X
is smooth over a dense open subscheme U of S . Let s be a point of S and x a singular point of Xs. We call

type at x any element of the monoid O ét
S,s strictly comprised between 1 and the thickness of x (for the order

induced by divisibility). There are only finitely many types at x.
Suppose that X/S admits a global orientation (C1,C2). Pick an isomorphism�O ét

X,x = Ô
ét
S,s[[u,v]]/(uv −∆x),

where C1 corresponds to u = 0 and ∆x ∈ O ét
S,s maps to the thickness of x in O ét

S,s. Let σ be a section of X/S
through x. It induces a morphism

σ̂# : Ô ét
S,s[[u,v]]/(uv −∆x)→ Ô

ét
S,s.

By Lemma 4.12, ∆x has the same prime factor decomposition in O ét
S,s and in Ô ét

S,s, so there is a canonical

embedding of the submonoid of Ô ét
S,s/(Ô

ét
S,s)
∗ generated by the factors of ∆x into O ét

S,s. We call type of σ

at x relative to (C1,C2) the image of u in O ét
S,s. It is a type at x and does not depend on our choice of

isomorphism �O ét
X,x = Ô

ét
S,s[[u,v]]/(uv −∆x) as long as C1 is given by u = 0. When they are clear from

context, we will omit x and (C1,C2) from the notation and just call it the type of σ . In general, given a
type T at x, there need not exist a section of type T .

Lemma 5.7. Let X/S, s, x, (C1,C2) and U be as in Definition 5.6 and σ be a section S → X of type T at x.
Let s′ be a generization of s. Then there is a singular point of Xs′ specializing to x if and only if the thickness of x

does not map to 1 in O ét
S,s′ . Suppose it is the case, and write x

′ for this singular point. Then:

• If the image of T in O ét
S,s′ is either 1 or the thickness of x

′ , then σ (s′) is a smooth point of Xs′ .
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• Otherwise, the image of T is a type at s′ , which we still denote by T , and σ is of type T at x′ relative to
(C1,C2).

Proof. By Proposition 3.7, the set of non-smooth points of Xs′ /s
′ specializing to x is empty if the thickness of

x maps to 1 in O ét
S,s′ , and it is a singleton {x′} otherwise. Suppose the latter holds; then we conclude using

Proposition 3.7 and the definition of the type of a section. �

Remark 5.8. One can think of the thickness of x as the relative version of a length, and of the type of
a section σ relative to an orientation (C1,C2) as a measure of the intersection of σ with C1, seen as an
effective Cartier divisor locally around x as in Lemma 3.19. In other words, the type is a measure of "how
close to C1" the section is.

Proposition 5.9. Let S be a smooth-factorial and excellent scheme, and let X/S be a quasisplit nodal curve,
smooth over some dense open subscheme U of S . Let σ and σ ′ be two S-sections of X. Then the union of
(X/S)smooth with the set of singular points x of X/S at which σ and σ ′ have the same type is an open subscheme
of X, which we call the same type locus of σ and σ ′ .

Proof. Since the smooth locus of X/S is open in X, the proposition reduces to showing that if σ and σ ′ have
the same type at a singular point x of X, then they have the same type at every singular point in an open
neighbourhood of x. Let s be the image of x in S . Pick an isomorphism�O ét

X,x = Ô
ét
S,s[[u,v]]/(uv −∆x),

where ∆x ∈ OS,s is a lift of the thickness of x. By hypothesis, the images ∆,∆′ of u under the two morphisms�O ét
X,x → Ô

ét
S,s given by σ and σ ′ are the same up to a unit λ ∈ Ô ét

S,s

×
. By Lemma 4.1, base changing to a

smooth neighbourhood of s in S , we may assume that ∆,∆′ ,∆x come from global sections of OS and λ from
a global section of O×S . Pick a smooth neighbourhood W of x in X such that u,v come from global sections
of W . Shrinking S, we may assume that σ,σ ′ factor through W and that their comorphisms map u to ∆
and ∆′ , respectively. Shrinking further, we may assume that the non-smooth locus of W/S is cut out by
(u,v,∆x). Then, the image of W in X is a Zariski open neighbourhood of x contained in the same type
locus of σ and σ ′ . �

5.2. Admissible neighbourhoods

Here we show that when one works étale-locally on the base (in a sense that we will make precise), one
can always assume that sections of all types exist.

Definition 5.10. Let S be a smooth-factorial scheme and X/S a nodal curve, smooth over a dense open U
of S . Let s be a point of S and (V ,v) an étale neighbourhood of s in S . We say that (V ,v) is an admissible
neighbourhood of s (relative to X/S) when the following conditions are met:

(1) The curve XV /V is quasisplit and orientable.

(2) For any singular point x of Xv , every prime factor in O ét
S,s of the thickness of x lifts to a global section

of OV .
(3) For every singular point x of Xv (however oriented), there are sections V → XV of all types at x.

When s̄ → S is a geometric point with image s and (V ,v) an admissible neighbourhood of s with a
factorization s̄→ v, we will also sometimes call V an admissible neighbourhood of s̄.

Remark 5.11. In the situation of Definition 5.10, if S is strictly local, then it is an admissible neighbourhood
of its closed point.

Proposition 5.12. Let X/S be a nodal curve, where S is a smooth-factorial and excellent scheme. Then any point
s ∈ S has an admissible neighbourhood.
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Proof. All three conditions in the definition of admissibility are stable under base change to an étale
neighbourhood of s. We can assume that X/S is quasisplit by Corollary 3.18 and that it is orientable by
Lemma 5.4. Let x1, . . . ,xn be the singular points of Xs. The thickness of each xi has only finitely many prime

factors in O ét
S,s, so we can shrink S again into a neighbourhood satisfying condition (2) of the definition

of admissibility. The fact that this V can be shrunk again until it meets all three conditions follows from
Lemma 4.13. �

Remark 5.13. If (V ,v) is an admissible neighbourhood of a point s of S , then V is not necessarily admissible
even at generizations of v (see Example 5.14). Thus, it is not easy a priori to find a good global notion of
admissible cover.

Example 5.14. Let R = SpecC[[u,v,w]]. Then R is regular (hence smooth-factorial), local and strictly
henselian. The element ∆ := u2(v − w) − v2(u + w) is prime in R. Let XK be the elliptic curve over
K := FracR cut out in P

2
K by the equation y2 = (x − 1)(x2 −∆) (in affine coordinates x,y). The minimal

Weierstrass model of XK is a nodal curve X over SpecR, whose closed fibre has exactly one singular point
with label ∆. Let t be the point of S := SpecR corresponding to the prime ideal (u,v) of R. Then ∆ has two
prime factors in the étale local ring of S at t (because the invertible elements v −w and u +w of this étale
local ring admit square roots). Hence, S is an admissible neighbourhood of its closed point but not of t
(relative to X/S).

The next proposition states that admissible neighbourhoods behave well with respect to the smooth
topology.

Proposition 5.15. Let S be a smooth-factorial scheme and X/S a quasisplit nodal curve, smooth over some dense
open subscheme U of S . Let π : Y → S be a smooth morphism, y a point of Y and s = π(y). Let V be an
admissible neighbourhood of s in S; then V ×S Y is an admissible neighbourhood of y in Y .

Proof. This follows from Corollary 4.11 and the definition of admissible neighbourhoods. �

6. Relating different nodal models

This section is dedicated to constructing inductively nodal models of a smooth curve with prime
thicknesses, starting from any nodal model.

6.1. Arithmetic complexity and motivation for refinements

Definition 6.1. Let M be the free commutative monoid over a set of generators G. We call arithmetic
complexity of m ∈M\{0} the integer n−1, where n is the (unique) n ∈N∗ such that we can write m =

∏n
i=1 gi

with all the gi in G. Given a graph Γ labelled by M, we define the arithmetic complexity of an edge to
be that of its label, and the arithmetic complexity of Γ to be the sum of the arithmetic complexities of its
edges. Given a nodal curve X/S, where S = SpecR is a local unique factorization domain, the monoid
R of principal ideals of R is freely generated by the prime principal ideals. From now on, when we talk
about arithmetic complexities of edges of dual graphs, we will always be referring to this set of generators.
We define the arithmetic complexity of X at a geometric point s→ S as that of its dual graph at s and
the arithmetic complexity of a singular point x ∈ Xs as that of the corresponding edge. We give similar
definitions when X/S is quasisplit and s ∈ S is a point.

Note that X has arithmetic complexity 0 if and only if every point has prime thickness: it is an integer
measuring "how far away from being prime" the thicknesses are.

The following lemma essentially shows that nodal curves are locally factorial around their singular points
that have prime thicknesses. In particular, any generic line bundle extends locally around such a point.
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Lemma 6.2. Let R be a complete and local unique factorization domain and ∆ be an element of mR. Then
Â := R[[u,v]]/ (uv −∆) is a unique factorization domain if and only if ∆ is prime in R.

Proof. Suppose that Â is a unique factorization domain, and let d be a prime factor of ∆ in R. Denote by S
the complement of the prime ideal (u,d) in Â. Let p be a nonzero prime ideal of S−1Â. Then, p contains a
nonzero element x = uxu + xv , with xu and xv in R[[u]] and R[[v]], respectively. Since p , S−1Â, we have
d|xv . Let n and m be the maximal elements of N∗ ∪ {+∞} such that un|uxu and dm|xv . Since x is nonzero,
we know that either n or m is finite. If n ≤m, then vnx = ∆n xu

un−1 + d
n vnxv
dn is in p and is associated to dn

in S−1Â, so we obtain d ∈ p, from which it follows that p = (u,d). If m < n, a similar argument shows that
p contains um and thus equals (u,d). Therefore, S−1Â has Krull dimension 1, i.e. (u,d) has height 1 in
Â. Since Â is a unique factorization domain, it follows that (u,d) is principal in it, from which we deduce
that ∆ and d are associated in Â. In particular, ∆ is prime in R.

The interesting part is the converse: let us assume that ∆ is prime in R. We want to show that Â is a
unique factorization domain. We first prove that A := R[u,v]/(uv −∆) is a unique factorization domain: let
p be a prime ideal of A of height 1; we have to show that p is principal in A. We observe that u is a prime
element of A since the quotient A/(u) = R/(∆)[v] is an integral domain. Therefore, if p contains u, then
p = (u) is principal. Otherwise, p gives rise to a prime ideal of height 1 in Au := A[u−1], which is principal
since A[u−1] = R[u,u−1] is a unique factorization domain. In that case, write pAu = f Au for some f ∈ Au .
Multiplying by a power of the invertible element u of Au , we can choose the generator f to be in A\uA.
Since p is a prime ideal of A not containing u, we know p contains f and thus f A. We will now prove the
reverse inclusion. Let x be an element of p. The localization pAu = f Au contains x, so x satisfies a relation
of the form unx = f y for some n ∈N and some y ∈ A. But since u is prime in A, we know that un divides
y and x is in f A.

Now, we will deduce the factoriality of Â from that of A. The author would like to thank Ofer Gabber
for providing the following proof. Let q be a prime ideal of Â of height 1; we will show that q is principal.
We put S = SpecR, X = SpecA, X̂ = Spec Â and Z = Spec(Â/q), so that Z is a prime Weil divisor on X̂.
Let η,η′ be the generic points of the respective zero loci of u,v in the closed fibre SpeckR[[u,v]]/(uv) of
X̂→ S . Since u and v are prime elements of Â, we can once again assume that Z contains neither η nor η′ .
It follows that the closed fibre of Z→ S is of dimension 0: the morphism Z→ S is quasifinite, hence finite
by [GD60, section 0.7.4]. A fortiori, Â/q is finite over A, so by Nakayama’s lemma, the morphism A→ Â/q
is surjective. Denote by p its kernel. Then A/p = Â/q is mA-adically complete and separated, so it maps
isomorphically to its completion Â/pÂ. The prime ideal p of A is of height 1 since X̂→ X is a flat map of
normal Noetherian schemes. Therefore, p is principal in A, and q = pÂ is principal in Â. �

6.2. Refinements of graphs

In order to reap the benefits from the properties of nodal models with prime labels, all we need is an
algorithm that takes an arbitrary nodal model as an input and returns another one with strictly lower
arithmetic complexity.

Definition 6.3. As in [Hol19, Definition 3.2], for a graph Γ = (V ,E, l) with edges labelled by elements of a
monoid M , we call refinement of Γ the data of another labelled graph Γ ′ = (V ′ ,E′ , l′) labelled by M and two
maps

E′→ E,

V ′→ E
∐

V

such that:

• Every vertex v in V has a unique preimage v′ in V ′ ;
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• For every edge e ∈ E with endpoints v1,v2 ∈ V , there is a chain C(e) from v′1,v
′
2 in Γ ′ such that the

preimage of {e} in V ′
∐
E′ consists of all edges and intermediate vertices of C(e);

• For all e ∈ E, the length of e is the sum of the lengths of all edges of C(e).

We will often keep the maps implicit in the notation, in which case we call Γ ′ a refinement of Γ and write
Γ ′ � Γ . We say Γ ′ is a strict refinement of Γ and write Γ ′ ≺ Γ if, in addition, the map E′→ E is not bijective.

Remark 6.4. Informally, a refinement of a graph is obtained by "replacing every edge by a chain of edges of
the same total length". Suppose Γ ′ � Γ ; then Γ ′ ≺ Γ if and only if at least one of the chains C(e) is of length
at least 2, i.e. if and only if Γ ′ has strictly more edges than Γ .

Now we want to blow up X in a way that does not affect XU but refines the dual graph. We will define
refinements of curves (cf. Definition 6.7). We will show that, étale-locally on the base, any refinement of a
dual graph of X comes from a refinement of curves.

6.3. Refinements of curves

Lemma 6.5. Let f : X → S be a quasisplit nodal curve with S smooth-factorial and excellent. Suppose X is
smooth over some dense open U ⊂ S . Let σ : S→ X be a section and φ : X ′→ X be the blow-up in the ideal sheaf
of σ .
Then φ is an isomorphism above the complement in X of Sing(X/S)∩σ (S). In particular, it is an isomorphism

above the smooth locus of X/S , which contains XU , so X
′ is a model of XU .

Moreover, X ′/S is a nodal curve, and its dual graphs are refinements of those of X. More precisely, let s be a
point of S , and suppose σ (s) is a singular point x of Xs. Choose an orientation (C,D) of XO ét

S,s
at x. Let Tx be the

thickness of x. In O ét
S,s, write

Tx = T T
′ ,

where T is the type of σ at x relative to (C,D). Let Γ ,Γ ′ be the respective dual graphs of X and X ′ at s, and let e
be the edge of Γ corresponding to x. Then e has label Tx, and one obtains Γ

′ from Γ as follows:

• If e is not a loop, then C and D come from two distinct irreducible components of Xs (that we still call C
and D). In that case, Γ ′ is obtained from Γ by replacing e by a chain

EC D
T ′ T

where the strict transforms of C and D are still called C and D , and where E is the inverse image of x.
• If e is a loop, i.e. x belongs to only one irreducible component L of Xs, then Γ ′ is obtained from Γ by
replacing e by a cycle

L E
T ′

T

where the strict transform of L is still called L and E is the inverse image of x.

Proof. The ideal sheaf of σ is already Cartier above the smooth locus of X/S and outside the image of σ ,
so by the universal property of blow-ups (cf. [Stacks, Tag 0806]), we only need to describe φ above the
étale localizations SpecO ét

X,x, where x,s, (C,D) are as in the statement of the lemma. We can assume that
S = SpecR is strictly local, with closed point s. Lift T and T ′ to global sections ∆,∆′ of S, and pick an
isomorphism �O ét

X,x = R̂[[u,v]]/(uv −∆∆
′)

https://stacks.math.columbia.edu/tag/0806
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such that C is locally given by u = 0. The map

σ̂ : �O ét
X,x→ R̂

induced by σ sends u to a generator of ∆R̂ and v to a generator of ∆′R̂. Scaling u and v by a unit of R̂ if
necessary, we can assume σ̂ (u) = ∆ and σ̂ (v) = ∆′ .

The completed local rings of SpecO ét
X,x ×X X

′ can be computed using the blow-up of the algebra

B := R[u,v]/(uv −∆∆′) in the ideal (u −∆,v −∆′) (since the completion of B at (u,v,mR) is �OX,x).
The ideal (u −∆,v −∆′) is covered by two affine patches (with the obvious gluing maps):

• The patch where u −∆ is a generator, given by the spectrum of

R[u,v,α]/((v −∆′)−α(u −∆),uα +∆′) ' R[u,α]/(uα +∆′)

since, in the ring R[u,v,α]/((v −∆′)−α(u −∆)), the element uv −∆∆′ is equal to (u −∆)(uα +∆′);
• The patch where v −∆′ is a generator, where we obtain analogously the spectrum of

R[v,β]/(vβ +∆).

Thus we see that X ′ remains nodal and that the edge e of Γ (of label (∆∆′)) is replaced in Γ ′ by a chain
of two edges, one labelled (∆) and one labelled (∆′). It also follows from this description that the strict

transform of C (resp. D) in X ′ ×X Spec�O ét
X,x contains the singularity of label (∆′) (resp. (∆)). �

Corollary 6.6. With the same hypotheses and notation as in Lemma 6.5, for any two sections σ,σ ′ of X/S , denote
by Y → X and Y ′→ X the blow-ups in the respective ideal sheaves of σ and σ ′ . Then, Y and Y ′ are canonically
isomorphic above the same type locus Xσ,σ ′ of σ and σ

′ in X. Conversely, if x is in X\Xσ,σ ′ , then Y and Y ′ are
not isomorphic above OX,x.

Proof. The "conversely" part is immediate from Lemma 6.5. Pick a point s → S and a singular point
x of Xs such that σ (s) = σ ′(s) = x and σ,σ ′ have the same type T at x. It suffices to exhibit a Zariski
neighbourhood V of x in X and an isomorphism Y ×X V → Y ′ ×X V compatible with the canonical
isomorphisms Y ×X Xsmooth = Xsmooth = Y ′ ×X Xsmooth. Since X,Y ,Y ′ are finitely presented over S, this
can be done assuming S = SpecR is strictly local, with closed point s. Using the universal property of
blow-ups (cf. [Stacks, Tag 0806]), we reduce to proving that the pull-back of the ideal sheaf of σ ′ (resp. σ ) to
Y (resp. Y ′) is Cartier. The proofs are analogous, so we will only show that the pull-back to Y of the ideal

sheaf of σ ′ is Cartier. This, in turn, reduces to proving that the ideal sheaf of σ ′ in Spec�O ét
X,x becomes

Cartier in Y ×X Spec�O ét
X,x. Pick an isomorphism

Â := R̂[[u,v]]/(uv −∆x) '�O ét
X,x ,

where ∆x ∈ R is a lift of the thickness of x. The map

Â→ R̂

corresponding to σ sends u,v to elements ∆,∆′ of R̂ with ∆∆′ = ∆x. Since σ and σ ′ have the same type
at x, there is a unit λ ∈ R̂× such that the map

Â→ R̂

corresponding to σ ′ sends u and v to λ∆ and λ−1∆′ , respectively. We have reduced to proving that the
sheaf given by the ideal (u −λ∆,v −λ−1∆′) of Â becomes Cartier in the blow-up of Â in (u −∆,v −∆′). Put

A = R̂[u,v]/(uv −∆∆′);

https://stacks.math.columbia.edu/tag/0806
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then it is enough to prove that the ideal I = (u −λ∆,v −λ−1∆′) of A becomes invertible in the two affine
patches (as described in the proof of Lemma 6.5) forming the blow-up of A in (u −∆,v −∆′). By analogy, we
only check it in the patch where u −∆ is a generator, which is the spectrum of

A1 = R̂[u,α]/(uα +∆′),

where v maps to ∆′ +α(u −∆). We have I = (u −λ∆,λv −∆′), and in A1 we can write

λv −∆′ = λ(∆′ +α(u −∆)) +uα
= −λα∆+uα

= α(u −λ∆).

Thus, the preimage of I in A1 is the invertible ideal (u −λ∆), and we are done. �

Definition 6.7. Let S be a smooth-factorial scheme and X/S a quasisplit nodal curve, smooth over a dense
open subscheme U of S . We call basic refinement of X/S any morphism f : X ′ → X isomorphic to the
blow-up of X in the ideal sheaf of a section σ : S → X. If X/S is orientable at a point x above which f
is not an isomorphism, it follows from Corollary 6.6 that the type T of σ at x relative to an orientation
(C,D) is independent of the choice of σ : we say that T is the type of X ′→ X at x, or that X ′→ X is a basic
T-refinement (at x, relative to (C,D)).

We call refinement of X/S any morphism f : X ′→ X which, Zariski locally on S , is a composition of basic
refinements.

Remark 6.8.

• If S is excellent, then any geometric point s ∈ S has an admissible neighbourhood V by Proposition
5.12, so XV /V has a basic T-refinement for any type T at any singular point of Xs.
• Consider any morphism S ′→ S , where S ′ is still smooth-factorial (e.g. any smooth map S ′→ S). Let
x be a singular point of X and x′ a singular point of X ′ of image x. Then any type T at x pulls
back to a type T ′ at x′ , and the base change to S ′ of a basic refinement of type T at x is a basic
refinement of type T ′ at x′ .
• Let f : X ′→ X be a basic refinement, let x ∈ X be a singular point at which X/S is orientable and
above which f is not an isomorphism, and let y be a generization of x. Let T be the type of f at x.
By Lemma 5.7, either T corresponds to a type (still denoted by T ) at y, in which case X ′→ X has
type T at y, or T becomes trivial at y, in which case f restricts to an isomorphism above a Zariski
neighbourhood of y.

Proposition 6.9. Let S be a smooth-factorial and excellent scheme and U ⊂ S a dense open subscheme. Let X/S
be a nodal curve, smooth over U . Suppose that S is an admissible neighbourhood of some point s ∈ S . Then, there
exists a refinement X ′→ X such that all the singularities of X ′s have prime thicknesses.

Proof. By the definition of admissibility, S remains an admissible neighbourhood of s if we replace X with a
basic refinement. If X ′→ X is a basic refinement which is not an isomorphism above s, then by Lemma 6.5,
the arithmetic complexity of X ′ at s is strictly lower than that of X, so we obtain the proposition by
induction. �

Lemma 6.10. Let S be a smooth-factorial and excellent scheme and U ⊂ S a dense open subscheme. Let X/S
be a quasisplit nodal curve, smooth over U . Let x be a singular point of x with prime thickness. Then X is
locally factorial at x. In particular, if s ∈ S is such that all the singular points of Xs have prime thicknesses, then
X ×S SpecOS,s is locally factorial.

Proof. Let t be the image of x in S . Then ÔS,t is a unique factorization domain by Lemma 4.1. Thus, �O ét
X,x

is a unique factorization domain by Lemmas 4.12 and 6.2. Therefore, OX,x itself is a unique factorization
domain by Lemma 4.4. �



Néron models of Jacobians over bases of arbitrary dimension 21Néron models of Jacobians over bases of arbitrary dimension 21

7. Néron models of Jacobians

If X → S is a morphism of schemes, its relative Picard functor is the fppf sheafification of the functor
sending an S-scheme T to the group of isomorphism classes of line bundles on XT . When X/S is a nodal
curve, by [BLR90, Theorems 8.3.1 and 9.4.1], the Picard functor is representable by a smooth, quasiseparated
S-group algebraic space PicX/S , the Picard space. We write Pictot0X/S for the kernel of the degree map from
PicX/S to the constant sheaf Z on S and Pic0X/S for the fibrewise-connected component of identity of PicX/S ,
parametrizing line bundles of degree 0 on every irreducible component of every fibre.

A classical way of obtaining a Néron model for the Jacobian J of a proper smooth curve XU /U with a
nodal model X/S , when X is "nice enough", is to consider the quotient P /E, where P = Pictot0X/S and E is the
closure of the unit section in P , so that P /E is the biggest separated quotient of P (see, for example, [BLR90,
Section 9.5]). This works well when three conditions are met: P is representable by an S-algebraic space,
E is flat over S (so that the quotient is also representable), and Pictot0X/S satisfies existence in the Néron
mapping property (e.g. X is regular). However, this approach fails most of the time when S is of arbitrary
dimension since E is rarely S-flat (cf. [Hol19, Theorem 5.17]). The reason is that this method is designed
to produce separated Néron models, and most Néron models over higher-dimensional bases turn out to be
non-separated.

In this section, we will work assuming S is a smooth-factorial scheme and U ⊂ S a dense open subscheme.
In view of Corollary 2.10, it is tempting to try to construct the Néron model as the quotient of P by the étale
locus of E/S . This works when P has existence in the Néron mapping property, i.e. when X is parafactorial
along XU after any smooth base change (e.g. regular). However, even if XU has nodal models, it may be
that none of them remains parafactorial after every smooth base change. We will construct a Néron model
N for J when X/S is arbitrary and give a local description of N in terms of Picard spaces of local nodal
models of XU . Then, we will give a simple combinatorial criterion for N to be separated, related to the
alignment condition of [Hol19].

7.1. Construction of the Néron model

Remark 7.1. Let S be a smooth-factorial and excellent scheme, U ⊂ S a dense open subscheme and X/S
a quasisplit nodal curve, smooth over U . Suppose that every singular point of X/S has prime thickness.
Then X/S is locally factorial by Lemma 6.10, so any U -point of P := Pictot0X/S extends to an S-section. By
Corollary 4.11, this remains true after base change to any smooth S-scheme, so P satisfies existence in the
Néron mapping property. Thus, by Corollary 2.10, the quotient of P by the étale locus of the closure of its
unit section is the Néron model of the Jacobian of XU . However, we cannot always use Lemma 5.12 and
Proposition 6.9 to reduce locally to this situation since some singular points of X/S with prime thickness
may have singular generizations whose thickness is not prime (see Example 5.14).

Lemma 7.2. Let S be a smooth-factorial excellent scheme and U ⊂ S a dense open subscheme. Let X/S be a
nodal curve smooth over U , and let f be a refinement X ′→ X. Write P = Pictot0X/S and P

′ = Pictot0X ′/S . Denote by E
(resp. E′) the scheme-theoretic closure of the unit section in P (resp. P ′). Then, the canonical morphisms P → P ′ ,
P /E → P ′/E′ and P /Eétale → P ′/E′ étale are open immersions. In addition, if X/S is quasisplit and f is an
isomorphism above every singular point of X/S which is not disconnecting in its fibre, then P /E→ P ′/E′ is an
isomorphism.

Proof. When X/S is quasisplit, Sing(X/S) is the disjoint union of its open and closed subschemes consisting
of points that are, respectively, disconnecting in their fibre and non-disconnecting in their fibre. This partition
is compatible with base change and refinements, by Lemma 6.5 and Proposition 3.10. By Corollary 3.18, we
may assume that X/S and X ′/S are quasisplit. By induction, we may assume that f is a basic refinement.
By the proof of Lemma 6.5, we may therefore assume that there exists a closed subscheme F of Sing(X/S)
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such that f is an isomorphism above X\F and such that X ′ ×X F ' P
1
F . Hence, the pull-back along f

induces an equivalence of categories between line bundles on X and line bundles on X ′ having degree 0 on
every irreducible component of every fibre of X ′ ×X F→ F. In particular, we have a canonical isomorphism
Pic0X/S = Pic0X ′/S . As Pic

0
X/S is an open neighbourhood of the unit section in P (and similarly for P ′), it

follows that P → P ′ is a local isomorphism. Since it is also injective, it is an open immersion. It follows that
all squares are cartesian in the commutative diagram

Eétale //

��

E′étale

��
E //

��

E′

��
P // P ′ .

Therefore, P /E→ P ′/E′ and P /Eétale→ P ′/E′étale are open immersions as well.
We now prove that P /E → P ′/E′ is surjective, assuming that every point of F is disconnecting in its

fibre over S . This may be checked at the level of étale stalks over S : it suffices to show that P (S) surjects
onto P ′/E′(S), assuming that S = SpecR is strictly local with closed point s. If F is empty, we are done.
Otherwise, Fs is a disconnecting singular point x of Xs, and a line bundle on X ′ is in the image of P (S) if
and only if its restriction to X ′ ×X F is trivial, i.e. if and only if it has degree 0 on X ′ ×X x ' P

1
x . Therefore, it

suffices to show that E′ contains a line bundle L of degree 1 on X ′ ×X x ' P
1
x . Let x

′ be a singular point of
X ′x, and let ∆ ∈ R be a lift of its thickness. Let E be the connected component of Sing(X ′/S) containing x′ .
The map E → S is a closed immersion cut out by ∆, and (X ′ ×S E))\E has two connected components.
Denote by C the one whose fibre over x is nonempty and D the other one. The scheme-theoretic closures
of C and D in X ′ are effective Cartier divisors, which we still call C and D (to see that they are Cartier at
x′ , notice that they coincide locally with an orientation at x′ as in Definition 5.1). Let L be the line bundle
corresponding to D . Then L has degree 1 on X ′ ×X x since C and D meet transversally at x′ , and the
S-point of P ′ corresponding to L is in E′ since L is trivial over U , so we are done. �

Lemma 7.3. Let X → S be a proper and finitely presented morphism of schemes, s be a point of S and L be a
line bundle on Xs := X ×S Spec(OS,s). Then there exists a Zariski open neighbourhood S ′ of s in S such that L
extends to a line bundle on X ×S S ′ .

Proof. Pick a Cartier divisor D = {(Ui , fi)}i∈I representing Lt . Since Xs is quasicompact, we may assume
that the index set I is finite. For each i ∈ I , pick an open subscheme V i of X containing Ui and a Vi-section
gi of KX := FracOX restricting to fi . Shrinking Vi if necessary, we may assume that gi/gj is in O×X(Vi ∩Vj ).
The union of the Vi is an open subset V of X containing Xt . Therefore, since X/S is proper, the image of
X\V in S is a closed subset not containing t, and its complement S ′ is an open neighbourhood of t in S .
The Vi cover XS ′ , so {(Vi , gi)} is a Cartier divisor on XS ′ which restricts to D, and the corresponding line
bundle extends L. �

Lemma 7.4. Let S be a smooth-factorial and excellent scheme, U ⊂ S a dense open subscheme and X/S a nodal
curve, smooth over U . For any geometric point s̄→ S , write Js̄ for the set of prime factors of thicknesses of singular

points of Xs̄ andM s̄ for the submonoid of O
ét
S,s̄ spanned by Js̄. Consider the relation R on S given by sRt whenever

t specializes s and for some (equivalently, any) étale specialization t̄ of s̄, where t̄, s̄ are geometric points above s
and t, the restriction map of étale stalks induces a canonical isomorphism between Jt̄ and Js̄. Denote by ∼S the
transitive closure of R. Then, the equivalence classes for ∼S are locally constructible subsets of S .

Proof. We immediately reduce to the following claim: given a point s ∈ S , if we denote by Cs its equivalence
class for ∼S , then the intersection of Cs with a small enough Zariski neighbourhood of s in S is locally
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constructible in S . We will now prove the claim. For any étale neighbourhood (V ,v) of s, the preimage of
Cs in XV has a locally finite number of connected components, all of which are classes for ∼V (where ∼V is
defined as ∼S , but after replacing X/S by XV /V ). Therefore, there exists a Zariski neighbourhood (W,w) of
v in V such that the preimage of Cs in W is the class Cw of w for ∼W . It follows that the image of Cw in S
is the intersection of Cs with an open of S (namely, the image of W ). Thus, the claim may be proved after
replacing (X/S,s) by (XW /W ,w). In particular, we may assume that S is an admissible neighbourhood of s
(since admissibility is preserved by étale localization).

Pick a geometric point s̄ above s. The singular locus of X/S has finitely many connected components
(F1, . . . ,Fr ), and each Fi → S is cut out by a global section ai of OS . Since S is an admissible neighbourhood
of s, the elements of Js̄ lift to global sections ∆1, . . . ,∆n of OS . Shrinking S further if necessary, we may
assume that every ∆i divides some aj in OS(S) (and not just in O ét

S,s). Recall that an integral scheme Y is
called geometrically unibranch at a point y ∈ Y if the strict henselization of OY ,y is integral or, equivalently
by [Ray70, corollaire IX.1], if the integral closure of OY ,y is local with purely inseparable residue extension
over OY ,y . Denote by Zi the closed subscheme of S cut out by ∆i . The set of points Zuni

i at which Zi is
geometrically unibranch is locally constructible in Zi by [GD66, corollaire 9.7.10]. Therefore, the intersection
in S of the images of the Zuni

i for all i is locally constructible in S . This intersection is precisely Cs, so we
are done. �

Remark 7.5. With the hypotheses and notation of Lemma 7.4, the equivalence classes for ∼S form a partition
of S into locally constructible subsets. In particular, locally on S , there are only finitely many such classes.
Since ∼S only depends on X via the sets Js̄, it remains unchanged if we replace X with a refinement.

Theorem 7.6. Let S be a smooth-factorial and excellent scheme, and let U ⊂ S be a dense open subscheme. Let
XU /U be a smooth curve that admits a nodal model over S . Then:

(1) The Jacobian J = Pic0XU /U of XU /U admits a Néron model N over S .

(2) For any nodal model X/S of XU /U , the map Pic
tot0
X/S /E

étale → N extending the identity over U is an
open immersion, where E is the scheme-theoretic closure of the unit section in Pictot0X/S .

(3) For any étale morphism V → S and nodal V -model X of XU×SV , if s̄→ V is a geometric point such
that the singularities of Xs̄ have prime thicknesses, then the canonical map Pic

tot0
X/V →N is surjective on

Spec(O ét
S,s̄)-points.

Remark 7.7. In the setting of Theorem 7.6, if X0 is any nodal model of XU , by Propositions 5.12 and 6.9,
there exist an étale cover V → S and a refinement X → X0

V with the following property: for any s ∈ S,
there is some geometric point v→ V above s such that the singularities of Xv have prime thicknesses. In
particular, it follows from Theorem 7.6 that the canonical map Pictot0X/V →N is an étale cover.

Proof of Theorem 7.6. Recall that the formation of Néron models is smooth local on the base (cf. Proposi-
tions 2.6 and 2.8), that the properties of morphisms "being étale" and "being an open immersion" are fpqc
local on the target (cf. [Stacks, Tags 02L3 and 02VN]) and that for a nodal curve X/S, the formation of
Pictot0X/S and of the closure of its unit section commute with flat base change. In particular, claims (1), (2) and
(3) of the theorem hold if and only if they hold étale-locally on S .

First, let us assume (1) and (2) and prove (3). Let X,V , s̄ be as in (3), and put P = Pictot0X/V and T = SpecO ét
S,s̄.

It follows from (2) that P → N is étale, and we only need to show that it is surjective on T -points. Pick
fU ∈ N (T ). Then, fU corresponds to a line bundle LU on XTU . The curve XT is locally factorial by
Lemma 6.10. Pick a Weil divisor D on XU representing LU . Its closure D in XT is Cartier by local
factoriality, hence defines a line bundle L extending LU , i.e. a T -point of P mapping to fU .

Now, it suffices to prove that (1) and (2) hold. Fix a nodal S-model X of XU . We say that a smooth
S-scheme V is good if the following two conditions are met:

https://stacks.math.columbia.edu/tag/02L3
https://stacks.math.columbia.edu/tag/02VN
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• There exists a V -Néron model NV for JU×SV . (The notation is unambiguous since if XU has a Néron
model N , then N ×S V is the V -Néron model of XU×SV .)
• For any étale map V ′→ V and any refinement X ′→ XV ′ , the canonical map Pictot0X ′/V ′ /E

′ étale→NV ′

is an open immersion, where E′ is the closure of the unit section in Pictot0X ′/V ′ .

We say that V has the property P if there exists a good open subschemeW of V such that V is an admissible
neighbourhood of every point of V \W . If s is a point of S , we say that s is good (resp. has P ) if some étale
neighbourhood of s is good (resp. has P ). Goodness and P can both be checked locally on S for the étale
topology. Therefore, the theorem reduces to the following two claims: goodness and P are equivalent, and
any point of S has P . We will now prove these claims, in order. Throughout the rest of the proof, when V is
a smooth S-scheme, we will write ∼V for the equivalence relation on V defined as in Lemma 7.4 (relative to
XV /V or, equivalently, to any refinement of it).

Clearly goodness implies P . We will show that S is good, assuming it has P . Goodness and P are
local, so it suffices to pick a point s ∈ S and show that, after shrinking S at will to an arbitrarily small
étale neighbourhood of s, J has a Néron model N and for any refinement X ′ → X, the canonical map
P /Eétale→N is an open immersion, where P = Pictot0X ′/S and E is the closure of the unit section in P .

Let W be a good open subscheme of S such that S is an admissible neighbourhood of every point of
F := S\W . Shrinking S , we may assume that there are only finitely many equivalence classes (Ci)i∈I for ∼S .
By Proposition 7.2, we may replace X ′ with a refinement. Pick an index j ∈ I such that Cj meets F, and
let s′ be a point of F ∩Cj . By Proposition 6.9, we may assume that the singular points of X ′ above s′ have
prime thicknesses, which implies that the singular points of X ′ mapping to Cj have prime thicknesses by
the definition of ∼S . Iterating the process, we may assume that the thicknesses of all the singularities of X ′

above F are prime. Denote by NW the W -Néron model of JU×SW . The canonical map

(P /Eétale)×SW →NW

is an open immersion since W is good. Denote by N the gluing of P /Eétale and NW along (P /Eétale)×SW
(the notation NW is unambiguous since N ×SW =NW ). Then N is a smooth S-model of J with uniqueness
in the Néron mapping property and with an open immersion P /Eétale→N restricting to the identity over U .
Therefore, in order to prove that S is good, it suffices to show that for any smooth S-scheme Y , the restriction
map

HomS(Y ,N )→HomU (YU ,NU )

is surjective. Pick some fU ∈HomU (YU ,NU ). By uniqueness in the mapping property, it suffices to show that
fU extends to an S-map Y ′→N for a Zariski neighbourhood Y ′ of a given point y ∈ Y . If y is in YW , this
is clear. Otherwise, y lands in F so the singularities of XY above y have prime thicknesses by Corollary 4.11.
In particular, the base change Xy of XY to Spec(OY ,y) is locally factorial by Lemma 6.10, so the line bundle
on Xy ×S U corresponding to fU extends to a line bundle L on Xy . Then, Lemma 7.3 provides an open
neighbourhood Y ′ of y in Y and a line bundle on XY ′ extending L, i.e. a morphism Y ′→ P extending fU .
We conclude by composing with P →N .

We have shown that goodness and P are equivalent. Now, let s be a point of S ; we will prove that s
has P . For any étale morphism V → S, the locally closed pieces of the equivalence classes of ∼V form a
partition of V into locally closed subsets. We write n(V ) for the number of pieces of this partition and
n(s) for the minimum of the n(V ) where V ranges through the étale neighbourhoods of s in S . By the
local constructibility of the classes for ∼S , we know that n := n(s) is finite. We will show that s has P by
induction on n. Shrinking S , we may assume that n(S) = n. If n = 1, then X/S is smooth, so S is good and
we are done. Otherwise, denote by F0 the equivalence class of s for ∼S , and let F be the locally closed piece
of F0 containing s. By the minimality of n(S), F is closed in S . Therefore, the open subscheme W = S\F
of S is such that n(W ) = n(S)− 1, and by induction W has P ; i.e. W is good. Let (V ,v) be an admissible
neighbourhood of s in S . Shrinking V , we may assume that all the points of V \WV are ∼V -equivalent, from
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which it follows that V is an admissible neighbourhood of all of them. Then V has P , which concludes the
proof. �

Remark 7.8. In [HMO+20], the authors describe the strict logarithmic Jacobian of a logarithmic curve. They
show that when X/S is a nodal curve over a toroidal variety, smooth over the complement U of the boundary
divisor, there are canonical log structures on X and S such that the strict logarithmic Jacobian is the Néron
model of XU . This gives a moduli interpretation in logarithmic geometry for the Néron model constructed in
Theorem 7.6 when U is the complement in S of a divisor with normal crossings. A similar interpretation can
be given when the discriminant locus of X/S is arbitrary. Indeed, let MS be the étale subsheaf of monoids
of OS whose étale stalks are generated by the units and by the prime factors of the singular ideals of X. Let
MX be the submonoid of OX whose étale stalk at a geometric point x→ X above a geometric point s→ S
is:

• The submonoid of O ét
X,x spanned by (O ét

X,x)
× and MS,s if x is smooth over S ;

• The submonoid of O ét
X,x spanned by (O ét

X,x)
×, MS,s and local parameters for the two branches of X/S

at x if x is singular.

Then, MS → OS and MX → OX are logarithmic structures in the sense of [Kat89], but they do not
necessarily admit étale-local charts (cf. Example 5.14). Therefore, (X,MX) and (S,MS ) are not logarithmic
schemes in the usual sense, and we cannot apply directly the results of [HMO+20] (although many of the
arguments remain valid in our context). However, replacing U with the maximal open subscheme of S over
which X is smooth, i.e. on which MS = O×S , we find that the groupification M

gp
X coincides with the direct

image of O×XU in X. Hence, two isomorphism classes of M
gp
X -torsors which coincide over XU are equal.

Write H1(X,Mgp
X )† for the subgroup of H1(X,Mgp

X ) consisting of torsors which, locally on S , come from a
line bundle on a refinement of X. Then it follows that H1(X,Mgp

X )† = Hom(U,Pic0XU /U ). Combining this
with the fact that the formation of MS and MX commutes with smooth base change by Corollary 4.11, we
find that

(Sch /S)op→ Set

T 7→H1(XT ,M
gp
XT

)†

is the Hom functor of the Néron model of Pic0XU /U . As in [MW18] or [HMO+20], we can describe explicitly

H1(X,Mgp
X )† as the subgroup of H1(X,Mgp

X ) consisting of torsors satisfying a certain condition that can be
expressed in terms of dual graphs, the condition of bounded monodromy.

7.2. A criterion for separatedness

In this subsection, we exhibit a necessary and sufficient combinatorial condition for the Néron model of
Theorem 7.6 to be separated, closely related to the alignment condition of [Hol19].

Definition 7.9. Let Γ be a graph labelled by a monoid M, written multiplicatively. Following [Hol19,
Definition 2.11], we say that Γ is aligned when for every cycle Γ 0 in Γ , all the labels figuring in Γ 0 are positive
powers of the same element l of M . When S is a smooth-factorial scheme and s→ S a geometric point, we
say that a nodal curve X/S is aligned at s when its dual graph Γs at s is aligned. We say X/S is aligned if it
is aligned at every geometric point of S .

If M is the free commutative monoid over a set of generators G, we say that Γ is strictly aligned if l can
be chosen in G. We say that X/S is strictly aligned at s if Γs is strictly aligned (here G is the set of principal
prime ideals of Oét

S,s). We say that X/S is strictly aligned if it is strictly aligned at every geometric point of S .

Example 7.10. Over S = SpecC[[u,v]], at the closed point, among the following three dual graphs, the first
is not aligned, the second is aligned but not strictly, and the third is strictly aligned.
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Example 7.11. In the setting of Example 5.14, the curve X/S is strictly aligned at the closed point s of S
(since S is strictly local and the dual graph at s is a loop with prime label), but X/S is not aligned.

Proposition 7.12. Let S be a regular scheme, U ⊂ S a dense open and X/S a nodal curve, smooth over U . Let
P = Pictot0X/S , and let E be the scheme-theoretic closure in P of its unit section. Then the following conditions are
equivalent:

(1) E/S is flat.
(2) E/S is étale.
(3) X/S is aligned.

Proof. This is [Hol19, Theorem 5.17]. �

Theorem 7.13. Let S be a regular and excellent scheme, U ⊂ S a dense open subscheme and X/S a nodal curve,
smooth over U . Denote by J the Jacobian of XU /U . Then, the S-Néron model N of J exhibited in Theorem 7.6 is
separated if and only if X/S is strictly aligned.

Proof. First, suppose that N is separated. Let s → S be a geometric point; we will show that X/S is
aligned at s. By Corollary 2.7, this may be checked assuming that S is strictly local with closed point s.
Proposition 6.9 provides a refinement X ′ → X such that every singularity in the closed fibre of X ′/S has
prime thickness. Let Γ ,Γ ′ be the dual graphs at s of X and X ′ , respectively. The closure of the unit section
in Pictot0X ′/S is étale over S by [Hol19, Theorem 6.2]. Hence, Γ ′ is aligned at s by Proposition 7.12, and even
strictly aligned since its labels are prime. Since Γ ′ refines Γ (cf. Lemma 6.5), it follows that Γ is strictly
aligned as well.

Conversely, suppose that X is strictly aligned. We will show that N → S is separated. This may be
done assuming that S = SpecR is strictly local with closed point s. Replacing X with a refinement, we
may assume that every singular point of Xs has prime thickness by Proposition 6.9. Put P = Pictot0X/S , and
let E be the scheme-theoretic closure of the unit section in P . Then E is étale over S by Proposition 7.12,
and there is a canonical open immersion P /E → N by Theorem 7.6. Since P /E is separated, it suffices
to show that this open immersion is surjective. This can be checked on étale stalks over S : let t→ S be
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a geometric point and T = SpecR′ , where R′ = O ét
S,t ; it suffices to show that P /E → N is surjective on

T -points. Proposition 6.9 provides a refinement X ′→ XT such that the singular points of X ′ above t have
prime thicknesses. Put P ′ = Pictot0X ′/T . By part (3) of Theorem 7.6, the map P ′(T )→ N (T ) is surjective.
Therefore, by the "in addition" part of Proposition 7.2, it suffices to show that X ′→ XT is an isomorphism
above every singular point of Xt which is non-disconnecting in Xt . Let x be such a point. By Lemma 6.5, it
is enough to prove that the thickness T ∈ R′ of x is prime. Let y be the singular point of Xs specializing x.
Let ∆ ∈ R be a lift of the thickness of y. Then T is the principal ideal of R′ spanned by ∆. The ring R′/(∆)
is reduced as a filtered colimit of étale R/(∆)-algebras, so ∆ is square-free in R′ . But ∆ is a prime power
in R′ since X is strictly aligned at t, so it is prime and we are done. �

Remark 7.14. As mentioned in the proof of [Hol19, Theorem 5.17], Proposition 7.12 should still hold if we only
require S to be smooth-factorial instead of regular. If so, our proof of Theorem 7.13 remains valid when S is
just an excellent and smooth-factorial scheme.
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