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Abstract. In this paper, we develop a theory of pseudo-effective sheaves on normal projective
varieties. As an application, by running the minimal model program, we show that projective klt
varieties with pseudo-effective tangent sheaf can be decomposed into Fano varieties and Q-abelian
varieties.
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1. Introduction

1.1. Motivation

This paper aims to reveal the outcomes of the minimal model program (MMP) for projective klt varieties
with pseudo-effective tangent sheaf. The motivation of this paper lies in understanding the structure of
projective varieties with certain non-negative curvature from the MMP viewpoint.

A smooth projective variety X with pseudo-effective tangent bundle admits a smooth fibration X→ Y onto
an abelian variety Y with rationally connected fibers (up to finite étale covers) by the main result of [HIM22],
which can be regarded as an extension of the main result of [DPS94] formulated for nef tangent bundles. The
proofs of [DPS94] and [HIM22] do not need the results of the MMP, but we can give another proof for the
main result of [DPS94] by using the MMP. Indeed, [CP91, Proposition 2.1] and [DPS94, Section 5] assert that
a smooth projective variety X := X0 with nef tangent bundle admits neither divisorial contractions nor flips.
Furthermore, a Mori fiber space X = X0→ X1 is a smooth fibration onto a smooth projective variety X1
with nef tangent bundle. Repeating this procedure for Xk , we obtain a sequence X = X0→ X1→ ·· · → XN
of Mori fiber spaces such that XN is one point or an étale quotient of an abelian variety. The composite map
X = X0→ XN is also a Fano fibration by [KW20, Theorem 5.3], which re-proves the main result of [DPS94]
in the case where X is projective. Meanwhile, the MMP for projective varieties with pseudo-effective tangent
bundle has not yet been studied. More generally, although some structure theorems of varieties with certain
non-negative curvature have recently been studied (for example, see [CCM21, CH19, Mat20, Mat22, Wan22]),
their relation with the MMP is still open for investigation. As a first step, we reveal the MMP of projective
varieties with pseudo-effective tangent bundle, which is the main motivation of this paper.

This paper has two specific purposes: The first purpose is to investigate what happens compared to the
case of nef tangent bundles when we run the MMP for projective varieties with pseudo-effective tangent
bundle. This seems to be the first step toward understanding certain non-negative curvatures in the MMP.
The second purpose is to develop a basic theory of pseudo-effective torsion-free sheaves on normal projective
varieties. In our situation, the varieties appearing in the MMP can have singularities; therefore, the basic
theory of pseudo-effective sheaves is actually needed.

1.2. Main result

The tangent sheaf TX of a normal projective variety X is defined by the reflexive extension of the tangent
bundle on the non-singular locus of X (see Section 3.1 for the precise definition), and the pseudo-effectivity
of TX is defined in Definition 2.1 (see Proposition 2.4 for characterizations of the pseudo-effectivity). The
following main result reveals the outcomes of the MMP for projective varieties with pseudo-effective tangent
sheaf.
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Theorem 1.1. Let X be a projective klt variety with pseudo-effective tangent sheaf. Then, there exist finitely many
projective varieties {Xk}Nk=0 and {X ′k}

N
k=0 with

X := X0
π09999K X ′0

f0−→ X1
π19999K X ′1

f1−→ ·· · · · ·
fN−2−−−−→ XN−1

πN−1999999K X ′N−1
fN−1−−−−→ XN

satisfying the following conditions:

(1) Xk and X ′k are projective klt varieties with pseudo-effective tangent sheaf;
(2) πk : Xkd X ′k is a birational map obtained from the composite of divisorial contractions and flips;
(3) fk : Xk→ Xk+1 is a Mori fiber space; and
(4) XN is one point or a Q-abelian variety (i.e., a quasi-étale quotient of an abelian variety).

Theorem 1.1 is a structure theorem for a projective variety X with pseudo-effective tangent sheaf, which
says that the basic building blocks of X are Fano varieties and Q-abelian varieties. The theorem works not
only for smooth varieties but also for klt varieties, which is an advantage compared to [HIM22]. Note that
X can admit a divisorial contraction or a flip, although divisorial contractions or flips never appear in the
case of nef tangent bundles. Indeed, the blow-up X := Bl1pt(Y )→ Y of a Hirzebruch surface Y at a general
point is a divisorial contraction, and the tangent bundle TX is pseudo-effective (see [HIM22, Section 4]); also,
smooth projective toric varieties, which always have pseudo-effective tangent bundle, can admit a flip (see
[Fuj03, FS04]).

The strategy of the proof of Theorem 1.1 is as follows: We first run the MMP for X using [BCHM10,
Corollary 1.3.3] and then obtain a birational map Xd X ′ and a Mori fiber space X ′→ Y . A key observation
is that the pseudo-effectivity of the tangent sheaves is preserved by Propositions 3.1 and 3.2 (i.e., TX ′ and TY
are still pseudo-effective). This follows from characterizations of the pseudo-effectivity (see Proposition 2.4).
This observation enables us to repeat this procedure for Y , leading us to obtain {Xk}Nk=0 and {X ′k}

N
k=0 in

Theorem 1.1 so that TXN is pseudo-effective and KXN is nef. We finally conclude that XN is actually (one
point or) a Q-abelian variety by [Gac22, Theorem 1.2].

The remainder of this paper is organized as follows: In Section 2, we develop a basic theory of pseudo-
effective torsion-free sheaves on normal projective varieties, which is harder than we expected. In Section 3,
we study the MMP for projective varieties with pseudo-effective tangent sheaves to prove Theorem 1.1.

Notation

Throughout this paper, we interchangeably use the terms “Cartier divisors,” “invertible sheaves,” and “line
bundles.” We also use the additive notation for tensor products (e.g., L+M := L⊗M for line bundles L and M).
Furthermore, we interchangeably use the terms “locally free sheaves” and “vector bundles,” and often simply
abbreviate possibly singular Hermitian metrics to “metrics.” All sheaves in this paper are coherent; thus, we
omit the term “coherent.” Fibrations refer to proper surjective holomorphic maps with connected fibers. We
use the basic properties of the non-nef loci and the non-ample loci in [BKK+15, Bou04, ELM+06, ELM+09].
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2. Pseudo-effective sheaves on normal projective varieties

In this section, we develop a basic theory for the pseudo-effective torsion-free sheaves on normal projective
varieties; specifically, we provide the definition of pseudo-effective sheaves and their fundamental properties.
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2.1. Singular Hermitian metrics on torsion-free sheaves

In this subsection, following [MW21], we review singular Hermitian metrics on torsion-free sheaves, taking
them on vector bundles as known (see [Rau15, HPS18, PT18]).

Let E be a torsion-free (coherent) sheaf on a normal variety X. Set X0 := Xreg ∩XE , where Xreg is the
non-singular locus of X and XE is the maximal subset where E is locally free. Note that X0 ⊂ X is a Zariski
open set with codim(X \X0) ≥ 2 since X is normal and E is torsion-free. Let h be a singular Hermitian
metric on E , by which we mean a possibly singular Hermitian metric h on the vector bundle E|X0

, where
E|X0

is the restriction of E to X0. Note that h is a metric on the vector bundle E|X0
, but h is not defined on

X \X0. Let θ be a smooth (1,1)-form on X with local potential; that is, it can be written as θ = ddcf on a
neighborhood of every point in X. We then write

√
−1Θh ≥ θ ⊗ id on X

if for any local section e ∈H0(U,E∗) on an open set U ⊂ X, the function log |e|h∗−f is plurisubharmonic (psh)
on U∩X0, where f is a local potential of θ and h∗ is the induced metric on the dual sheaf E∗ := Hom(E ,OX).
The psh function log |e|h∗ − f is defined a priori only on U ∩X0, but it is automatically extended to a psh
function on U since codim(X \X0) ≥ 2. The condition

√
−1Θh ≥ 0⊗ id, simply written as

√
−1Θh ≥ 0 here,

corresponds to the Griffiths semi-positivity of (E ,h) when E is a vector bundle and h is a smooth Hermitian
metric. We often write the condition as

√
−1Θh > 0 if X is compact and

√
−1Θh ≥ωX ⊗ id holds for some

Kähler form ωX on X with local potential.
The following definition extends the notation of the pseudo-effectivity on vector bundles to torsion-free

sheaves.

Definition 2.1. Let X be a compact Kähler space and ωX be a Kähler form on X with local potential. A
torsion-free sheaf E on X is said to be pseudo-effective if for every m ∈Z+, there exists a singular Hermitian
metric hm on the mth symmetric power SmE|X0

such that
√
−1Θhm ≥ −ωX ⊗ id.

Remark 2.2. Let E be a vector bundle on a smooth projective variety X, and consider the hyperplane bundle
O
P(E)(1) of the projective space bundle P(E)→ X. Even in this case, our definition of the pseudo-effectivity

is stronger than the condition that O
P(E)(1) is a pseudo-effective line bundle, which is often adopted as

the definition of the pseudo-effectivity of E . Our definition requires that the image of the non-nef locus of
O
P(E)(1) is properly contained in X.

Note that hm is a metric defined a priori on SmE|X0
, but it can be extended to a metric on SmE|Xreg∩XSmE

since ωX is defined on X (not only on X0). The above-mentioned definition does not change even if we
replace SmE|X0

with the reflexive hull S[m]E := (SmE)∗∗. Pseudo-effectivity can be defined in several other
ways. These definitions are compared in Section 2.3.

2.2. Characterizations of pseudo-effective sheaves

In this subsection, we provide some characterizations of the pseudo-effectivity of torsion-free sheaves. We
first begin with fixing the notation.

Setting 2.3. Let E be a torsion-free sheaf on a normal projective variety X. Let πE : P(E)→ X be the
main component of the projectivization Proj(⊕∞m=0S

mE) of the graded sheaf ⊕∞m=0S
mE with the hyperplane

bundle O
P(E)(1), and let π : P → P(E) be a resolution of singularities of P(E) via the normalization. We

have the following commutative diagram:

P(E)
πE
��

P
πoo

pnnX.
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Set X0 := Xreg ∩XE and P0 := p−1(X0), where XE is the maximal subset where E is locally free. Assume
that π : P → P(E) is an isomorphism on P0 = p−1(X0) and that both the π-exceptional locus and P \ P0 are
divisorial.

The notation below is frequently used in this section:

• L := π∗O
P(E)(1);

• A: an ample line bundle on X;
• ωP : a Kähler form on P ;
• ωX : a Kähler form on X with local potential;
• Λ: an effective p-exceptional divisor such that p∗(m(L+Λ)) is reflexive for any m ∈Z+.

The existence of the divisor Λ is guaranteed by [Nak04, Lemma III.5.10]. As stated in Section 1, the notation
p∗(M) refers to the direct image sheaf of the invertible sheaf OP (M) associated to a divisor M .

The following proposition characterizes the pseudo-effectivity of torsion-free sheaves.

Proposition 2.4. We consider Setting 2.3 and use the notation in Setting 2.3 without explicit mention. Then, the
following conditions are equivalent:

(1) There exists an ample line bundle A on X such that the reflexive hull S[m]E ⊗A is globally generated at a
general point in X for every m ∈Z+.

(2) There exists a Kähler form ωX on X with local potential satisfying the following: For every m ∈Z+, there
exists a singular Hermitian metric hm on S[m]E such that

√
−1Θhm ≥ −ωX ⊗ id on X (i.e., the sheaf E is

pseudo-effective in the sense of Definition 2.1 ).
(3) The non-nef locus of L|P0 is not dominant over X0 in the following sense: For every ε, there exists a singular

Hermitian metric gε on L|P0 with the following:
•
√
−1Θgε ≥ −εωP holds on P0;

• {x ∈ P0 |ν(gε,x) > 0} is not dominant over X0; here ν(gε,x) denotes the Lelong number of the weight
of gε.

(4) Let Λ be an effective p-exceptional divisor such that p∗(m(L+Λ)) is reflexive for any m ∈Z+. The non-nef
locus of L+Λ is not dominant over X.

(5) Let Λ be an effective p-exceptional divisor such that p∗(m(L+Λ)) is reflexive for any m ∈Z+. There exists
an ample line bundle A on X such that the non-ample locus of m(L+Λ) +p∗A is not dominant over X for
every m ∈Z+.

(6) For an ample line bundle A on X and an integer a ∈ Z+, there exists an integer b ∈ Z+ such that the
reflexive hull S[ab]E ⊗ (bA) is globally generated at a general point in X.

Proof. (1) ⇒ (2). By assumption, the sections of S[m]E ⊗A determine a singular Hermitian metric Hm on
S[m]E ⊗A with

√
−1ΘHm ≥ 0⊗ id on X. Since A is ample, we can take a smooth Hermitian metric g on A

such that ωX :=
√
−1Θg is a Kähler form with local potential. We can then easily check that the metric

hm :=Hm ⊗ g−1 on S[m]E satisfies that
√
−1Θhm ≥ −ωX ⊗ id on X.

(2)⇒ (3). Take a smooth Hermitian metric g on A such that
√
−1Θg is a Kähler form with local potential.

By replacing (A,g) with (kA,gk) for k≫ 1, we may assume that the metric hmg on S[m]E ⊗A satisfies that√
−1Θhmg ≥ 0⊗ id on X by assumption.
The fibration p : P → X over X0 coincides with the projective space bundle P(E)→ X of the locally free

sheaf E|X0
. In particular, the line bundle L corresponds to O

P(E)(1) over X0; thus L is relatively p-ample

over X0 and satisfies that p∗(mL) = SmE = S[m]E on X0. This implies that the natural morphism

p∗
(
S[m]E ⊗A

)
= p∗p∗ (mL+ p

∗A) −→mL+ p∗A

is surjective over X0 for any m≫ 1. The metric p∗(hmg) defined on p∗(S[m]E ⊗A)|P0 satisfies that
√
−1Θp∗(hmg) ≥ 0⊗ id on P0.
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Note that P \ P0 may be divisorial; thus p∗(hmg) does not necessarily determine a metric on X. Let us
consider the singular Hermitian metric Gm on (mL+ p∗A)|P0 induced by p∗(hmg) and the above surjective
morphism. By construction, we see that

√
−1ΘGm ≥ 0 holds and the upper level set of Lelong numbers is

not dominant over X0. The metric gm := (Gmp∗g)1/m on L|P0 satisfies that
√
−1Θgm ≥ −(1/m)p∗ωX . We can

then easily see that the metrics {gm}∞m=1 on L|P0 for m≫ 1 provide the desired metrics {gε}ε>0.
(3)⇒ (4). Fix an effective p-exceptional divisor Λ such that p∗(m(L+Λ)) is reflexive. Almost all points

y ∈ Y0 satisfy that

I
(
gmε |Xy

)
= I (gmε ) |Xy = OPy holds for any m ∈Z+

by Fubini’s theorem and the restriction formula (see [Mat18, the argument of Claim 2.1] for the precise
argument). Here I (gε) is the multiplier ideal sheaf, and Py is the fiber of p : P → X at y ∈ X. Note
that the last equality follows from the assumption on Lelong numbers. We fix such a point y with the
above property. The fiber Py does not intersect with the p-exceptional divisor Λ; in particular, we obtain
(m(L+Λ) + p∗A)|Py =mL|Py .

For a sufficiently ample line bundle A, we will prove that the restriction map

H0(P ,m(L+Λ) + p∗A) −→H0
(
Py , (m(L+Λ) + p∗A)|Py

)
=H0

(
Py ,mL|Py

)
(2.1)

is surjective for m ≫ 1. We now check that condition (4) follows from this surjectivity. To this end,
we consider the singular Hermitian metric Gm on m(L +Λ) + p∗A induced by extensions of a basis of
H0(Py ,mL|Py ). The fibration p : P → X coincides with the projective space bundle P(E)→ X over X0; hence
mL|Py is very ample. Thus the metric Gm is smooth on a neighborhood of Py . This indicates that for a

smooth metric g on A, the metrics gm := (Gmp∗g)1/m provide the desired metrics on L+Λ; therefore, the
non-nef locus of L+Λ is not dominant over X (see [Bou04, Definition 3.3]).

To extend sections on the fiber Py , we first extend them to the Zariski open set P0 = p−1(X0) by using a
version of the Ohsawa–Takegoshi L2-extension theorem (see Lemma 2.5). Lemma 2.5 will be proved later.
For a sufficiently ample line bundle A on X, the line bundle OP (E)(1) +π∗EA is ample on P (E) since OP (E)(1)
is relatively πE-ample. This implies that the non-ample locus of the line bundle

L+ p∗A = π∗
(
OP (E)(1) +π∗EA

)
is contained in the π-exceptional locus. Hence, we find an ample line bundle AP on P and an effective
π-exceptional divisor E such that k0(L+ p∗A) = AP +E holds and AP −KP is ample. We will show that the
restriction map

H0 (P0,m(L+Λ) + k0p
∗A) −→H0

(
Py , (m(L+Λ) + k0p

∗A)|Py
)
=H0

(
Py ,mL|Py

)
(2.2)

is surjective for any m≫ 1. We define the line bundle M by

M := (m− k0)L+ (AP −KP ) +E +mΛ so that m(L+Λ) + k0p
∗A = KP +M

and equip M with the metric G := gm−k0ε ggE+mΛ, where gε is the metric in condition (3), g is a smooth
Hermitian metric on AP −KP with

√
−1Θg > 0, and gE+mΛ is the singular Hermitian metric induced by the

natural section of the effective divisor E +mΛ. By construction, we see that
√
−1ΘG > 0 for any 1≫ ε > 0.

Let ψ be a quasi-psh function on P with neat analytic singularities such that the subvariety V defined by
OP /I (ψ) is Py (see [Dem16, Definition (2.2)] for neat analytic singularities). We ensure that the curvature√
−1ΘG satisfies assumption (2) in Lemma 2.5 by taking AP to be sufficiently ample. Furthermore, we obtain
I (G|Xy ) = OPy by the choice of y and Py ∩Supp(E +Λ) = ∅. Hence, by Lemma 2.5, the restriction map (2.2)
is surjective.
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We finally extend sections on P0 to P . Since codim(X \X0) ≥ 2, we obtain

H0(P0,m(L+Λ) + k0p
∗A) = H0(X0,p∗(m(L+Λ)⊗ k0A)

� H0(X,p∗(m(L+Λ)⊗ k0A)

= H0(P ,m(L+Λ) + k0p
∗A).

Here we use the reflexivity of p∗(m(L+Λ)) to obtain the above isomorphism. Therefore, the restriction map
(2.1) is surjective, finishing the proof.

(4) ⇒ (5). By the same way as in the proof of (3) ⇒ (4), we find an ample line bundle AP on P
and an effective π-exceptional divisor E such that k0(L + p∗A) = AP + E holds. The non-ample locus
(m− k0)(L+Λ) +AP is not dominant over X by assumption. Hence, condition (5) follows from

m(L+Λ) + k0p
∗A = (m− k0)(L+Λ) +AP + k0Λ+E.

(5) ⇒ (1). Let y be a general point in X. The fiber Py does not intersect with the non-ample locus of
m(L+Λ) +p∗A since the non-ample locus is a Zariski closed set that is not dominant over X by assumption.
Therefore, we can take a singular Hermitian metric g such that

√
−1Θg > 0 holds and g is smooth on a

neighborhood of the fiber Py . By considering the multiple of m(L+Λ) +p∗A, we may assume that
√
−1Θg is

sufficiently positive such that the restriction map

H0 (P ,m(L+Λ) + p∗A) −→H0
(
Py ,m(L+Λ)|Py

)
is surjective, by the standard extension theorem (for example, see [CDM17, Theorem 1.1] and the proof of
[CCM21, Proposition 4.1]). This implies that

p∗(m(L+Λ) + p∗A) = S[m]E ⊗A

is globally generated at y, finishing the proof.
(1)⇒ (6). This implication is obvious.
(6)⇒ (3). The proof is almost the same as in that for (2)⇒ (3). The natural morphism

p∗
(
S[ab]E ⊗ (bA)

)
−→ abL+ p∗(bA)

is surjective over X0. By assumption, for an integer a ∈ Z+, we can take an integer b ∈ Z+ such that
S[ab]E ⊗ (bA) is globally generated at a general point. In the same way as in the proof for (2)⇒ (3), we see
that the induced singular Hermitian metric Ga on abL+ p∗(bA)|P0 is smooth along the fiber at a general
point and satisfies that

√
−1ΘGa ≥ 0. Take a smooth Hermitian metric g on A such that

√
−1Θg is a Kähler

form with local potential. Then, the metrics {(Ga)1/ab(p∗g)−1/a}a∈Z+
provide the desired metrics. □

The following lemma, known to experts, easily follows from the Ohsawa–Takegoshi L2-extension theorem
(see [OT87, Man93]). We give an outline of the proof for the convenience of the reader.

Lemma 2.5. Let M be a line bundle on a smooth projective variety P , and let Z ⊂ P be a Zariski closed subset of
P . Set P0 := P \Z . Let h be a singular Hermitian metric on M |P0 and ψ be a quasi-psh function on P with neat
analytic singularities. We assume the following conditions:

(1) The subvariety V defined by OP /I (ψ) is smooth and satisfies that V ⊂ P0.
(2) The inequality

√
−1Θh + (1+ δ)

√
−1∂∂ψ ≥ 0 holds on P0 for any 1≫ δ > 0.

Then, for a section f ∈H0(V , (KP +M)|V ⊗I (h|V )), there exists a section F ∈H0(P0, (KP +M)|P0) such that
F|V = f .

Proof. In the case where P0 is weakly pseudoconvex, this theorem directly follows from the Ohsawa–Takegoshi
L2-extension theorem. For example, see [Dem16, (2.8) Theorem] (cf. [CDM17, ZZ20]) for a formulation similar
to this theorem.
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The Zariski open set P0 is not necessarily weakly pseudoconvex, but we can reduce the proof to this case
by the projectivity of P . Indeed, by the projectivity, we can find a smooth hypersurface H ⊂ P such that
P \H is Stein and that Z ⊂H and V 1H hold. Note that P0 \H = P \H is weakly pseudoconvex. Hence,
the section f |V \H ∈H0(V \H, (KP +M)|V ⊗I (h|V )) is extended to a section F ∈H0(P0 \H, (KP +M)|P0\H )
whose L2-norm of F with respect to h on P0 \H converges. Fixing a local frame of KP +M, we regard F as
a holomorphic function locally defined on P0 \H . For every point p ∈H \Z, since the local weigh of h is
quasi-psh, the metric h is bounded below on an neighborhood of p; thus, the L2-norm of the holomorphic
function F converges. This indicates that F is extended through H \Z by the L2-boundedness. (Note that F
is not necessarily extended through Z since h may not be bounded below on a neighborhood of a point
in Z .) □

2.3. Fundamental properties of pseudo-effective sheaves

In this subsection, we provide fundamental properties of pseudo-effective sheaves and compare Defini-
tion 2.1 to other possible ways to define the pseudo-effectivity.

We first examine the behavior of the pseudo-effectivity for the pull-back. Let f : X→ Y be a fibration
between normal projective varieties. A vector bundle E on Y is nef (resp. pseudo-effective) if and only if
f ∗E is nef (resp. pseudo-effective). Let E be a pseudo-effective torsion-free sheaf on Y . Then, the pull-back
f ∗E is not necessarily torsion-free. Even if we consider the quotient (f ∗E/ tor) by the torsion subsheaf of
f ∗E , it is not pseudo-effective in general (see Example 2.8 below). However, Proposition 2.6 below shows
that the converse implication is true; that is, the sheaf E is pseudo-effective if (f ∗E/ tor) is pseudo-effective.
Proposition 2.6 is applied when we prove Theorem 1.1 or compare Definition 2.1 to other definitions of the
pseudo-effectivity.

Proposition 2.6. Let f : Xd Y be an almost holomorphic map between normal projective varieties, and let E
and F be torsion-free sheaves on X and Y , respectively. Assume that there exists a Zariski open set Y0 ⊂ Y with
codim(Y \Y0) ≥ 2 such that

• f : Xd Y is an (everywhere defined ) fibration over Y0 and
• f ∗F = E holds over Y0.

Then, the sheaf F is pseudo-effective if E is pseudo-effective.

Proof. We assume that F is locally free on Y0 by replacing Y0 with Y0∩YF , where YF is the maximal locally
free locus of F .

Let y be a general point in Y0. Let A and B be ample Cartier divisors on X and Y , respectively. By
assumption, for an integer a ∈Z+, there exists an integer b ∈Z+ such that

Bs(a,b)(E) :=
{
x ∈ X | the stalk of S[ab]E ⊗ (bA) at x is not globally generated

}
is a proper Zariski closed set in X. From this condition, we will show that for any a ∈Z+, there exists an
integer b ∈Z+ such that the stalk of S[ab]F ⊗(bB) at y ∈ Y is generated by a section in H0(Y0,S[ab]F ⊗(bB)).
This finishes the proof by condition (6) in Proposition 2.4 since such a section is automatically extended to
Y by the reflexivity and since codim(Y \Y0) ≥ 2. To this end, following [EIM23, Lemma 2.2], we will reduce
our situation to the case where f : Xd Y is an everywhere defined and generically finite morphism such
that Xy := f −1(y) does not intersect with Bs(a,b)(E).

We may assume that f is an everywhere defined fibration by replacing f : Xd Y with f : X0 := f −1(Y0)→
Y0. Note that Bs(a,b)(E) is still a proper Zariski closed set in X since Bs(a,b)(E|X0

) ⊂ Bs(a,b)(E)∩X0. Both X
and Y are non-compact, but this does not affect in the argument below.

We now check that we may assume that f : X→ Y is a generically finite morphism. Let k be the fiber
dimension of f : X→ Y . Since y is a general point, we see that dim(Bs(a,b)(E)∩Xy) < k and the fibration

f : X→ Y is flat over y. For general hypersurfaces {Hi}ki=1 on X, we replace X with the complete intersection
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X ′ := X∩H1∩· · ·∩Hk . Then, since k is the fiber dimension of f : X→ Y , the replaced fibration f : X→ Y
is a generically finite morphism. Note that f : X → Y is flat over y; furthermore, the fiber Xy does not
intersect with Bs(a,b)(E) since Bs(a,b)(E|X ′ ) ⊂ Bs(a,b)(E)∩X ′ and dim(Bs(a,b)(E)∩Xy) < k.

The generically finite morphism f : X→ Y is finite at y; hence we may assume that A and B are effective
divisors and Xy ∩ Supp(g∗B−A) = ∅ by replacing the ample Cartier divisors A and B if necessary. By the

definition of Bs(a,b)(E) and the relation Xy ∩Bs(a,b)(E) = ∅, the sheaf S[ab]E ⊗ (bA) is globally generated at

any points in Xy ; hence so is S[ab]E ⊗ (bf ∗B) since Xy ∩ Supp(g∗B−A) = ∅. Thus, we obtain a morphism
that is surjective on Xy :

α :
⊕
OX −→ S[ab]E ⊗ (bf ∗B).

Since f : X→ Y is affine over a neighborhood of y, the morphism induced by the push-forward

β :
⊕

f∗OX
f∗(α)−−−−→ f∗OX

(
S[ab]E ⊗ (bf ∗B)

)
� (f∗OX)⊗OY

(
S[ab]F ⊗ (bB)

)
is surjective at y. Here, the isomorphism on the right-hand side follows from the projection formula and
S[ab]E = f ∗SabF by noting that we have already replaced the original variety Y with Y0. Furthermore, since
f∗OX is locally free at y, the natural pairing

γ : (f∗OX)∗ ⊗ f∗OX −→OY
is surjective at y. Take n ∈Z+ such that ((f∗OX)∗ ⊗ f∗OX)⊗ (nB) is globally generated. The above argument
implies that the following morphism is surjective at y:⊕

((f∗OX)∗ ⊗ f∗OX)⊗ (nB) � (f∗OX)∗ ⊗
(⊕

f∗OX
)
⊗ (nB)

induced by β
−−−−−−−−−−→ ((f∗OX)∗ ⊗ f∗OX)⊗

(
S[ab]F ⊗ ((b+n)B))

)
induced by γ
−−−−−−−−−−−→ S[ab]F ⊗ ((b+n)B) .

Hence, the stalk of S[ab]F ⊗ ((b+n)B) at y is generated by global sections, finishing the proof. □

In the remainder of this subsection, we observe other possible ways to define the pseudo-effectivity.
One approach of defining the pseudo-effectivity of a torsion-free sheaf E is to use a birational morphism
α : X̃ → X such that the quotient (α∗E/ tor) by the torsion subsheaf of the pull-back α∗E is locally free.
Another approach is to use L = π∗O

P(E)(1) instead of L+Λ in Setting 2.3. The following proposition shows
that these definitions are stronger than Definition 2.1.

Proposition 2.7. Let E be a torsion-free sheaf on a normal projective variety X.

(1) If the non-nef locus of L is not dominant over X, then E is pseudo-effective.
(2) Let α : X̃→ X be a birational morphism such that the quotient (α∗E/ tor) by the torsion subsheaf of the

pull-back α∗E is locally free. If (α∗E/ tor) is pseudo-effective, then E is pseudo-effective.

Proof. Conclusion (1) follows from B−(L+Λ) ⊂B−(L)∪Λ and condition (4) in Proposition 2.4. Conclusion (2)
is a direct consequence of Proposition 2.6. □

The following examples show that the converse implications of Proposition 2.7 are not true in general.

Example 2.8.

(1) Let X be a smooth projective variety. We consider the ideal sheaf E := IZ defined by a smooth
subvariety Z ⊂ X of codimension at least 2 and the blow-up α : X̃ → X along Z . Then, the
quotient (f ∗E/ tor) by the torsion subsheaf is the invertible sheaf OX̃(−E) associated to an effective
α-exceptional divisor E. The sheaf E := IZ is obviously pseudo-effective since S[ab](IZ ) = OX , but
OX̃(−E) is not pseudo-effective. The blow-up α : X̃→ X along Z coincides with P(E)→ X; hence P
in Setting 2.3 can be chosen to be P = X̃ = P(E). Furthermore, we see that O

P(E)(1) = OP(E)(−E) and
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Λ = E. Then the line bundle L+Λ is trivial (and thus pseudo-effective), but O
P(E)(1) = OP(E)(−E) is

not pseudo-effective.
(2) This example is due to [Gac22, Remark 2.7]: Let E be the tangent sheaf TX of a singular Kummer

surface X in [Gac22, Remark 2.7]. Then, there exists a sheaf F on X such that E = F ⊕ F and
F ⊗2 = IXsing

; hence, the reflexive hull S[2a](E) is a trivial vector bundle, which indicates that E is

pseudo-effective. Nevertheless, since F ⊗2 = IXsing
and by the same argument as in (1), we see that

neither (α∗E/ tor) nor L is pseudo-effective.

We finally consider the pseudo-effectivity of Q-Cartier divisors on normal projective varieties.

Proposition 2.9. Let D be a Weil divisor on a normal projective variety X and E be the sheaf associated to the
Weil divisor D . Assume that D is Q-Cartier. Then, the sheaf E is pseudo-effective in the sense of Definition 2.1 if
and only if D is pseudo-effective as a Q-Cartier divisor.

Proof. Recall that D is said to be pseudo-effective (as a Q-Cartier divisor) if there exist an ample line bundle
A and an integer m0 ∈Z+ with m0D Cartier such that km0D +A has a non-zero section for any k ∈Z+.

Fix an integer m0 ∈Z+ with m0D Cartier. Then, we have S[km0]E � OX(km0D). Hence, condition (1) in
Proposition 2.4 implies that D is pseudo-effective as a Q-Cartier divisor.

To prove the converse implication, we take an ample line bundle A such that km0D +A has a non-zero
section for any k ∈Z+. We may assume that S[r]E ⊗A is globally generated for any 0 ≤ r < m0. For a given
integer m ∈Z+, after taking q and r such that m = qm0 + r and 0 ≤ r < m0, we obtain

S[m]E = OX(qm0D)⊗ S[r]E .

Therefore, the sheaf S[m]E ⊗ 2A has a non-zero section; thus it is generically globally generated. □

3. MMP for varieties with pseudo-effective tangent sheaf

3.1. Fibrations and pseudo-effective tangent sheaves

In this subsection, we consider the behavior of the pseudo-effectivity of tangent sheaves under birational
maps or fibrations. The tangent sheaf TX of a normal variety X is defined by the reflexive hull:

TX :=
(
j∗TXreg

)∗∗
:=

(
j∗OXreg

(TXreg
)
)∗∗
,

where TXreg
is the tangent bundle on the non-singular locus Xreg and j : Xreg→ X is the natural inclusion.

Note that (π∗TX̃)
∗∗ = TX holds for any resolution α : X̃→ X of singularities of X.

The following propositions essentially follow from Proposition 2.6.

Proposition 3.1. Let Xd Y be a birational map between normal projective varieties. Then, if the tangent sheaf
TX of X is pseudo-effective, so is the tangent sheaf TY of Y .

Proposition 3.2. Let f : X→ Y be a fibration between normal projective varieties. If the tangent sheaf TX of X
is pseudo-effective, so is the tangent sheaf TY of Y .

Proofs of Propositions 3.1 and 3.2. Proposition 2.6 is formulated for almost holomorphic maps; thus Proposi-
tions 3.1 is a direct consequence of Proposition 2.6.

For the proof of Proposition 3.2, we take resolutions X̃→ X and Ỹ → Y of singularities of X and Y with
the following commutative diagram:

X̃
α //

f̃
��

X

f
��

Ỹ
β
// Y .
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Set Y0 := Y \ β(E), where E is the β-exceptional locus. Then, we obtain f ∗TY = α∗f̃ ∗TỸ on X0 := f −1(Y0)
from

α∗f ∗TY = f̃ ∗β∗TY = f̃ ∗TỸ on X0.

Meanwhile, the natural sheaf morphism TX̃ → f̃ ∗TỸ is generically surjective; hence so is the induced
morphism

TX = (α∗TX̃)
∗∗ −→

(
α∗f̃

∗TỸ
)∗∗
.

The quotient of pseudo-effective sheaves by generically surjective morphisms is also pseudo-effective; thus
(α∗f̃ ∗TỸ )

∗∗ is a pseudo-effective sheaf, and it coincides with f ∗TY on X0 = f −1(Y0). Hence the conclusion
follows from Proposition 2.6. □

3.2. Outcomes of the MMP for varieties with pseudo-effective tangent sheaf

We finally prove Theorem 1.1 after checking the following propositions.

Proposition 3.3 (cf. [Gac22, Theorem 1.2]). Let X be a projective klt variety. If the tangent sheaf TX is
pseudo-effective and the canonical divisor KX is numerically trivial, then X is a Q-abelian variety.

Proof. Condition (1) in Proposition 2.4 shows that our definition of pseudo-effective sheaves is stronger than
[Gac22, Definition 2.10]. Hence, by [Gac22, Theorem 1.2], there exists a finite quasi-étale cover X ′→ X such
that X ′ is the product A×Y of an abelian variety A and a projective variety Y . Since X ′→ X is quasi-étale,
the tangent sheaf TX ′ is pseudo-effective, and so is TY . This part is valid for the pseudo-effectivity in the
sense of Definition 2.1, but not in the sense of [Gac22, Definition 2.10]. Furthermore, we can easily see that
Y is a projective klt variety with numerically trivial canonical divisor. Therefore, by using the induction
hypothesis on the dimension, we see that the variety Y is Q-abelian, and so is X. □

Proposition 3.4. Let E be a pseudo-effective sheaf on a compact Kähler space X. Then, the sheaf detE := (ΛrE)∗∗
is pseudo-effective. Here r is the rank of E . In particular, when the sheaf detE is Q-Cartier, it is pseudo-effective
as a Q-Cartier divisor.

Proof. It is sufficient to construct singular Hermitian metrics hm on detE such that
√
−1Θhm ≥ −(1/m)ωX

after replacing X with X0 := Xreg ∩XE . We replace X with X0 = Xreg ∩XE . We consider

p := πE : P := P(E) −→ X and L := O
P(E)(1)

and then apply the result of the positivity of direct images in [CP17, Lemma 5.4] (see [Wan21] for the Kähler
cases).

From the surjective morphism p∗S[m]E →mL and Definition 2.1, we obtain singular Hermitian metrics
gm on L such that

√
−1Θgm ≥ −(1/m)p∗ωX and {x |ν(gm,x) > 0} is not dominant over X (see the proof

of (2)⇒ (3) in Proposition 2.4 for the details). For a local potential f with ωX = ddcf , we consider the
metric gme

−(1/m)p∗f on L locally defined over Y . Note that the curvature of gme
−(1/m)p∗f is non-negative. We

apply the result of the positivity of direct images for rL equipped with (gme−(1/m)p∗f )r . Then, the induced
L2-metric on

p∗(KP /X + rL) = det E
is positively curved and coincides with the determinant metric det(gme−(1/m)f ). Hence, we see that√
−1Θdetgm ≥ −(r/m)ωX holds since det(gme−(1/m)f ) = (detgm) · e−(r/m)f . Note that detgm is a metric on

detE globally defined on Y . This finishes the first conclusion. The second conclusion directly follows from
Proposition 2.9. □

Proof of Theorem 1.1. Let X be a projective klt variety with pseudo-effective tangent sheaf. Then, the anti-
canonical divisor −KX is pseudo-effective as a Q-Cartier divisor by Proposition 3.4. If KX is pseudo-effective,
then KX is numerically trivial; thus X is a Q-abelian variety by Proposition 3.3, which finishes the proof.
Hence, we may assume that KX is not pseudo-effective.
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By [BCHM10, Corollary 1.3.3], we can find a composite π0 : X := X0 d X ′0 of divisorial contractions
and flips, and a Mori fiber space f0 : X ′0→ X1. The tangent sheaves of X ′0 and X1 are pseudo-effective by
Propositions 3.1 and 3.2. If X1 is one point or KX is pseudo-effective, then we complete the proof by using
Proposition 3.3; otherwise, we repeat the same argument as above for X1. By repeating this procedure, we
obtain the conclusion. □
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