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The behavior of essential dimension under specialization

Zinovy Reichstein and Federico Scavia

Abstract. Let A be a discrete valuation ring with generic point η and closed point s. We show
that in a family of torsors over Spec(A), the essential dimension of the torsor above s is less than
or equal to the essential dimension of the torsor above η. We give two applications of this result,
one in mixed characteristic, the other in equal characteristic.
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1. Introduction

Let k be a field, G be a linear algebraic group over k, K/k be a field extension and τ : T → Spec(K) be a
G-torsor. We say that τ (or T ) descends to an intermediate subfield k ⊂ K0 ⊂ K if there exists a G-torsor
τ0 : T0→ Spec(K0) such that τ0 is obtained from τ by a pull-back diagram

(1.1)

T

τ
��

// T0
τ0
��

Spec(K) // Spec(K0).

The essential dimension edk(τ) is the minimal transcendence degree trdegk(K0) such that τ descends to K0.
Essential dimension of torsors has been much studied; for an overview see [Rei10] or [Mer13]. In this paper
we will investigate how edk(τ) behaves as we deform τ . Our main theorem shows that under relatively mild
assumptions, edk(τ) does not increase under specialization. We will sometimes write edk(T ) or edk([τ]) in
place of edk(τ), where [τ] is the class of τ in H1(K,G).

Following [BRV18], we will refer to a finite group S as being “tame” at a prime p if |S | is not divisible by p
and “weakly tame” at p if S does not have a non-trivial normal p-subgroup. By definition every finite group
is tame at p = 0.

Theorem 1.2. Let A be a complete discrete valuation ring with maximal ideal m, fraction field k and residue
field k0. Set p := char(k0) > 0 and let G be a smooth affine group scheme over A, satisfying one of the conditions
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(i), (ii) or (iii) below. Let R ⊃ A be a complete discrete valuation ring with fraction field K ⊃ k and residue field
K0 ⊃ k0, and assume that m is contained in the maximal ideal of R. Then for every α ∈H1(R,G) we have

edk0(αK0
) 6 edk(αK ).

Furthermore, if A = k0[[t]] and GA is defined over k0, then the above inequality is an equality.

(i) p = 0, and there exist a section σ : k0 → A of the projection A → k0, and a k0-group H such that
G ' σ ∗H .

(ii) The neutral component G◦ is reductive, G/G◦ is A-finite, and there exists a finite subgroup S ⊂ G(A) such
that S is tame at p and for every field L containing k the natural map H1(L,S)→H1(L,G) is surjective.

(iii) G = SA, where S is an abstract finite group which is weakly tame at p.

The assumption that A and R are complete may be dropped; see Theorem 6.4. In the case, where G is a
finite group and p = 0, the inequality edk0(αK0

) 6 edk(αK ) was noted in [FS21, Remark 6.3]. A version of
Theorem 1.2 for essential dimension at a prime will be proved in the Appendix; see Theorem A.1.

It is natural to ask whether or not conditions (ii) and (iii) can be replaced by a single (weaker) assumption.

Question 1.3. Does Theorem 1.2 remain valid if the finite group S in part (ii) is only assumed to be weakly
tame, rather than tame?

We have not been able to answer this question; our proof of Theorem 1.2 uses an entirely different
argument in case (iii), compared to cases (i) and (ii). Note however, that Theorem 1.2(ii) and (iii) both fail
in the case where p > 0 and G is a finite discrete p-group; see Lemma 9.1. Some assumptions on char(k0)
are thus necessary. Note also that Question 1.3 has a positive answer if essential dimension is replaced by
essential dimension at a prime q, different from p; see Theorem A.1.

We will give two applications of Theorem 1.2. Additional applications of Theorem 1.2 can be found in the
companion paper [RS21a].

For our first application, recall that the essential dimension edk(G) of an algebraic group G defined over
k is the supremum of edk(α), as K ranges over field extensions of k and α ranges over H1(K,G). It is
shown in [BRV18] that if G is an abstract finite group which is weakly tame at a prime p > 0, then

(1.4) edk(G) > edk0(G),

where k is any field of characteristic 0 and k0 is any field of characteristic p containing the algebraic closure
of the prime field Fp. Theorem 1.5 below partially extends this inequality to split reductive groups. (1)

Theorem 1.5. Let G be a split reductive group scheme (not necessarily connected) of rank r > 0 defined over Z.
Denote the Weyl group of G by W . Then

edk(Gk) > edk0(Gk0)

for any field k of characteristic zero and any field k0 of characteristic p > 0, as long p does not divide 2r |W | and
k0 contains the algebraic closure of Fp.

Note that in the case where G is a finite constant group (and thus r = 0 and W = G), we only recover
Inequality (1.4) in the case where G is tame at p. A positive answer to Question 1.3 would imply that
Theorem 1.5 remains valid when W is only assumed to be weakly tame at p = char(k0), as long as p is odd.

For our second application of Theorem 1.2, we briefly recall the definition of essential dimension of
a G-variety. Once again, let G be an algebraic group defined over k. By a G-variety we shall mean a
separated reduced k-scheme of finite type endowed with a G-action over k. We will say that the G-variety
Y is primitive if Y , ∅ and G(k) transitively permutes the irreducible components of Yk := Y ×k k. We will
say that the G-variety Y (or equivalently, the G-action on Y ) is generically free if there exists a dense open
subscheme U ⊂ Y such that for every u ∈U the scheme-theoretic stabilizer Gu of u is trivial.

(1)For a recent generalization of the inequality (1.4) in a different (stack-theoretic) direction, see [BV22].
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Now suppose that Y is a generically free primitive G-variety defined over k. By a G-compression of Y
we will mean a dominant G-equivariant rational map Y d X, defined over k, where the G-action on X is
again generically free and primitive. The essential dimension of Y , denoted by edk(Y ;G), is defined as the
minimal value of dim(X) − dim(G), where the minimum is taken over all G-compressions Y d X. This
notion is closely related to that of essential dimension of a torsor; see Section 2.2. If the reference to G is
clear from the context, we will often write edk(Y ) in place of edk(Y ;G).

Theorem 1.6. Let k be a field of characteristic p > 0, G be a linear algebraic group defined over k, satisfying one
of the conditions (1) – (4) below. Let X, Y be primitive generically free G-varieties defined over k. Assume that X is
smooth. If there exists a G-equivariant rational map f : Y d X, then edk(X) > edk(Y ).

(1) p = 0.
(2) p > 0, G is split reductive, and k contains a primitive root of unity of degree 2n2.
(3) p > 0, G is connected reductive, and there exists a maximal torus T of G such that T [n2] is discrete.
(4) G is a finite discrete group, weakly tame at p.

Here in parts (2) and (3), n = |W | denotes the order of the Weyl group W of Gk .

If f is dominant, then Theorem 1.6 is obvious from the definition, since any compression of X can be
composed with f . The key point here is that f is allowed to be arbitrary. In particular, we do not assume
that the G-action on the image of f is generically free. The idea of the proof is to use Theorem 1.2 to deform
f . The assumption that X be smooth may not be dropped; see Remark 9.5.
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2. Preliminaries

2.1. Dependence on the base field

Lemma 2.1. Let G be a linear algebraic group over k, K/k be a field extension, and τ : T → Spec(K) be a
G-torsor.

(a) If K ′/K is a field extension, then edk(τ) > edk(τK ′ ). Here τK ′ : TK ′ → Spec(K ′) is the G-torsor obtained
from τ by base-change via the natural map Spec(K ′)→ Spec(K).

(b) If k ⊂ l ⊂ K , then edk(τ) > edl(τ).

Proof. Consider Diagram (1.1) with smallest possible value of trdegk(K0), that is, trdegk(K0) = edk(τ).
(a) Composing with the natural projection TK ′ →T , we obtain a Cartesian diagram of G-torsors

TK ′

τK ′
��

// T

τ
��

// T0
τ0
��

Spec(K ′) // Spec(K) // Spec(K0),

which shows that edk(τK ′ ) 6 trdegk(K0) = edk(τ).
(b) Choose an intermediate field k ⊂ K0 ⊂ K such that trdegk(K0) = edk(τ). Let K1 be the subfield of K

generated by l and K0. Then τ also descends to K1. Thus

edl(τ) 6 trdegl(K1) 6 trdegk(K0) = edk(τ). �
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2.2. Essential dimension of a G-variety

Let G be an algebraic group defined over k and let Y be a generically free primitive G-variety. These
terms are defined in the paragraph preceding Theorem 1.6, where one can also find the definition of a
compression Y d X and of edk(Y ).

Lemma 2.2. Let Y be a generically free primitive G-variety defined over k, and k′/k be a field extension. Then

(a) edk(Y ) > edk′ (Yk′ ).
(b) There exists an intermediate field k ⊂ l ⊂ k′ such that l is finitely generated over k and edl(Yl) = edk′ (Yk′ ).
(c) If k is algebraically closed, then edk(Y ) = edk′ (Yk′ ).

Note that if Y is a generically free primitive G-variety, then Yk′ is a generically free primitive Gk′ -variety.

Proof. (a) The inequality edk(Y ) > edk′ (Yk′ ) follows directly from the definition of essential dimension, since
every G-compression Y d X gives rise to a Gk′ -compression Yk′ d Xk′ by base-change.

(b) By (a), it suffices to find l so that edl(Yl) 6 edk′ (Yk′ ). Let f ′ : Yk′ d X ′ be a Gk′ -compression over
k′ such that X ′ is a generically free primitive Gk′ -variety and dimk′ (X ′) = edk′ (Yk′ ). Then there exists an
intermediate field k ⊂ l ⊂ k′ such that l is finitely generated over k and f ′ descends to a Gl-compression
f : Yl → X, where X is a generically free Gl-variety and X is a generically free primitive Gl . Therefore

edl(Yl) 6 diml(X) = dimk′ (X
′) = edk′ (Yk′ ),

as desired.
(c) In view of part (b), we may assume without loss of generality that k′ is finitely generated over k. By

part (a), it suffices to show that edk(Y ) 6 edk′ (Yk′ ). Let f : Yk′ d X be a G-compression over l such that
dim(X) = dim(G) + edk′ (Yk′ ). Then f is actually defined over some k-variety U whose function field is k′ :

Y ×k U

pr2 ##

F // X

π~~
U.

In other words, there exists a surjective G-equivariant morphism π : X → U whose generic fiber is X,
and a G-equivariant dominant rational map F : Y ×k U d X over U whose generic fiber is f . Since k
is algebraically closed, U (k) is dense in U . If u ∈ U (k) is a k-point in general position in U , then the
morphism Fu : Y d Xu is a G-compression of Y , and dim(Xu) = dim(X). We conclude that

edk(Y ) 6 dim(Xu)−dim(G) = dim(X)−dimG = edk′ (Yk′ ),

as desired. �

Recall that in the Introduction we defined the essential dimension for both G-torsors and G-varieties.
These two notions are closely related in the following way. Let Y be a generically free primitive G-variety.
After passing to a G-invariant open subvariety of Y , we may assume that Y is the total space of a G-torsor
τ : Y → B, where B is irreducible with function field K = k(B) = k(Y )G; see [BF03, Theorem 4.7]. Note
that k(Y ) is a field if Y is irreducible and a direct product of fields in general; however, K is always a
field, as long as Y is primitive. Pulling back to the generic point Spec(K)→ B of B, we obtain a G-torsor
τY : TY → Spec(K). Now an easy spreading out argument shows that

(2.3) edk(Y ) = edk(τY );

see [Mer13, Lemma 3.9].
Recall from the Introduction that edk(G) is defined as the maximal value of edk(τ), where the maximum

is taken over all field extensions of K/k and all G-torsors τ : T → Spec(K).

Lemma 2.4. Let G be a linear algebraic group defined over a field k and k′/k be a field extension.
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(a) Let V be a generically free linear representation of G defined over k. Then edk(V ) = edk(G).
(b) edk(G) is the maximal value of edk(Y ), where Y ranges over generically free primitive G-varieties.
(c) edk(G) > edk′ (Gk′ ).
(d) ([BRV07, Proposition 2.14], [Tos17, Example 4.10]) Moreover, edk(G) = edk′ (Gk′ ) if k is algebraically

closed.
(e) ([Tos17, Lemma 4.8]) There exists an intermediate field k ⊂ l ⊂ k′ such that l is finitely generated over k
and edl(Gl) = edk′ (Gk′ ).

Proof. (a) This follows from the fact that the G-action on V is versal, which is, in turn, a consequence of
Hilbert’s Theorem 90. See [Mer13, Propositions 3.10 and 3.11] for details.

(b) For any generically free primitive G-variety Y , edk(Y ) = edk(τY ) 6 edk(G). On the other hand, note
that since G is a linear algebraic group, there exists a closed embedding G ↪→GLn for some n > 1. Let G
act on the space V =Mn of n×n matrices by left multiplication via this embedding. Now part (a) tells us
that edk(V ) = edk(G), and part (b) follows.

(c–d) By Lemma 2.2, ed(V ;G) > ed(Vk′ ;Gk′ ); moreover, equality holds if k is algebraically closed. The
desired conclusions now follows from part (a).

(e) Let V be a generically free linear representation of G defined over k. By Lemma 2.2(b), there exists an
intermediate extension k ⊂ l ⊂ k′ such that l is finitely generated over k and edl(Vl) = edk′ (Vk′ ). By part (a),
the left hand side of this equality is edl(Gl) and the right hand side is edk′ (Gk′ ). �

2.3. Essential dimension at a prime

Let G be a linear algebraic group defined over a field k and let q be a prime integer. Essential dimension
at q for G-torsors, G-varieties, and G itself, is defined in a way that parallels the definitions of essential
dimension for these objects. We recall these definitions below.

A field K is called q-closed if every finite field extension L/K is of degree [L : K] = qr for some integer
r > 0. For every field K , there exists a unique algebraic extension K (q)/K such that K (q) is q-closed and
the degree [L : K] of every every finite subextension K ⊂ L ⊂ K (q) is prime to q. The field K (q) is called a
q-closure of K . It is the fixed field of a q-Sylow subgroup of the absolute Galois group of K .

Let k be a field, and let G be an algebraic k-group. If K/k is a field extension and τ : T → Spec(K) is a
G-torsor, then edk,q(τ) is the minimal value of edk(τL), where L ranges over the finite field extensions of K
whose degree [L : K] is prime to q. Equivalently,

(2.5) edk,q(τ) = edk(τK (q)),

where K (q) is the q-closure of K .
Recall that a correspondence X  Z between G-varieties X and Z of degree d is a diagram of

G-equivariant rational maps of G-varieties the form

(2.6) X ′

degree d

�� !!
X Z ,

where the vertical map is dominant of degree d. We say that X Z is dominant if the rational map X ′d Z
in the above diagram is so. Dominant correspondences may be composed in an evident way. Note that
sometimes the term “rational correspondence” is used in place of correspondence, to indicate that the maps
in Diagram (2.6) are rational maps. All correspondences used in this paper will be rational in this sense. For
notational simplicity we will use the term “correspondence” throughout.

Now let X be a generically free primitive G-variety over k. The essential dimension of edk,q(X) of X at q
is the minimal value of dim(Z)− dim(G), where the minimum is taken over all G-equivariant dominant
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correspondences X Z of degree prime to q. Equivalently,

edk,q(X) = maximal value of edk,q(X
′), where the maximum is taken over all G-equivariant

dominant rational covers X ′d X of degree prime to q.
(2.7)

If τX is the G-torsor over k(X)G associated to X, as in the previous section, then one readily checks that

(2.8) edk,q(X) = edk,q(τX).

The essential dimension edk,q(G) of G at q is the maximal value of edk,q(τ), as K ranges over fields
containing k and T → Spec(K) ranges over G-torsors over Spec(K). Equivalently, edk,q(G) is the maximal
value of edk,q(X), as X ranges over the generically free primitive G-varieties.

3. Torsors over complete discrete valuation rings

Let R be a complete discrete valuation ring, F its fraction field, F0 its residue field, and s and η geometric
points lying over the closed and generic point of SpecR, respectively. We have a group homomorphism

sp : Gal(F)→Gal(F0),

called specialization homomorphism. Under the identifications Gal(F) = π1(SpecF,η) and Gal(F0) =
π1(SpecF0, s), the homomorphism sp is the composition

(3.1) π1(SpecF,η)→ π1(SpecR,η)
∼−→ π1(SpecF0, s),

where the map on the left is induced by the inclusion SpecF ↪→ SpecR, and the isomorphism on the right
by specialization of finite étale covers; see e.g. [Stacks, Tag 0BUP]. The homomorphism sp may also be
defined Galois-theoretically; see [Ser03, Section 7.1].

Lemma 3.2. Let K be a field, π ∈ K×, and fix an algebraic closure K of K . Then
(a) there exists a system

{
π1/m

}
m>1

of roots of π in K such that (π1/m1m2)m2 = π1/m1 for any m1,m2 > 1.

(b) Moreover, suppose α ∈ K satisfies αn = π for some n > 1. Then the system
{
π1/m

}
m>1

in part (a) can be

chosen so that π1/n = α.

Proof. It suffices to prove part (b). Once (b) is established, we deduce (a) by setting n = 1 and α = π.
To prove (b), choose β ∈ K such that β(n−1)! = α. In particular, βn! = π. For every integer e > d, we define

π1/e! ∈ K recursively as follows: π1/n! := β, and if e > n then π1/e! is defined as an arbitrary eth root of
π1/(e−1)!. Now we define π1/m for an arbitrary integer m > 1 as follows. Choose e > n such that m divides
e!, and set π1/m := (π1/e!)e!/m. It is immediate to check that π1/m does not depend on the choice of e, that
(π1/m1m2)m2 = π1/m1 for any m1,m2 > 1 and that π1/n = (π1/n!)(n−1)! = β(n−1)! = α. �

Lemma 3.3. Let R be a complete discrete valuation ring with fraction field F and residue field F0. Set
p = char(F0) > 0. Choose a uniformizing parameter π for R and a system

{
π1/n

}
n>1

of roots of π in F such that

(π1/mn)m = π1/n for all m,n > 1. Let F(π1/∞) be the subfield of F obtained by adjoining all the π1/n to F. Then
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we have a commutative diagram

1

1 P Gal
(
F(π1/∞)

)
Gal(F0) 1

1 Gal(Fnr) Gal(F) Gal(F0) 1,

Q/Z[1/p]

1

sp′

sp

where the rows and columns are exact and P is a pro-p-group. (If p = 0, then P is trivial and Q/Z[1/p] should
be interpreted as Q/Z.) Moreover, the surjective homomorphism sp′ admits a section.

Proof. The bottom horizontal exact sequence comes from the definition of the maximal unramified extension
Fnr; see [Ser97, § II.4.3, Exercise 2(c)].

Define P := Gal(Fmod), where Fmod = ∪(n,p)=1Fnr(π1/n) is the maximal tamely ramified extension of F;
see [Ser97, § II.4.3, Exercise 2(a)], where it is asserted that Fmod/Fnr is Galois with Galois group isomorphic
to Q/Z[1/p]. The profinite group P is a pro-p-group by [Ser97, § II.4.3, Exercise 2(b)]. This yields the
vertical short exact sequence.

Let F(π1/∞)′ :=
⋃

(n,p)=1F(π
1/n). Then F(π1/∞)/F(π1/∞)′ is purely inseparable (in particular, F(π1/∞) =

F(π1/∞)′ if p = 0) and F(π1/∞)′/F is Galois with Galois group Q/Z[1/p] (if p > 0) or Q/Z (if p = 0).
It remains to construct the top horizontal exact sequence. The map sp′ is defined as the restriction

of sp. We claim that sp′ is surjective. Let γ ∈ Gal(F0): we will show that γ belongs to the image of sp′ .
Let L0/F0 be a finite Galois extension such that L0 is invariant under γ , and γ restricts to an element of
Gal(L0/F0). Let F ⊂ L ⊂ F, where L/F is the unramified extension corresponding to L0/F0. By construction
L/F induces L0/F0 by passing to residue fields, and the homomorphism spL/F : Gal(L/F)→ Gal(L0/F0)
induced by sp is an isomorphism. Let L(π1/∞) be the subfield of F generated by L and

{
π1/n

}
n>1

. We have

an F(π1/∞)-algebra homomorphism f : L⊗F F(π1/∞)→ L(π1/∞) given by λ⊗ z 7→ λz.
We would like to show that f is an F(π1/∞)-algebra isomorphism. First we note that the image of f

contains both L and π1/n for every n > 1. Hence, f is surjective.
It remains to show that f is injective, i.e., that f : L⊗F F(π1/n)→ L(π1/n) is injective for every n. To

prove this, it suffices to show that 1,π1/n, . . . ,π(n−1)/n are linearly independent over L. Indeed, suppose

(3.4) l0 + l1π
1/n + . . .+ ln−1π

(n−1)/n = 0

for some l0, l1, . . . , ln−1 ∈ L. Since L/F is unramified, the given valuation ν : F∗ → Z lifts to valuations

L∗→Z and L(π1/n)∗→ 1
n
Z which, by abuse of notation, we will also denote by ν. Now observe that the

terms on the left hand side of (3.4) all have different valuations, as ν(liπi/n) is of the form i/n plus an integer.
Thus the only way the sum in (3.4) can be 0 is if each term is 0. In other words, l0 = l1 = . . . ln−1 = 0, as
desired. This shows that f is injective and hence, an isomorphism.

As a consequence, we have a group isomorphism Gal(L/F) → Gal
(
L(π1/∞)/F(π1/∞)

)
such that the

composition

Gal(L/F) −→Gal
(
L(π1/∞)/F(π1/∞)

) sp′
−−−→Gal(L0/F0)
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is spL/F . This implies that γ belongs to the image of sp′ . We conclude that sp′ is surjective, as claimed.
Let Q be the kernel of sp′ . Then Q is the intersection of Gal(Fnr) with Gal(F(π1/∞)) = Gal(F(π1/∞)′).

In other words, Q is the absolute Galois group of the composite field Fcomp of Fnr and F(π1/∞)′ . The
field Fcomp is obtained from Fnr by adjoining all the π1/n for n not divisible by p, and so Fcomp = Fmod.
Therefore Q = Gal(Fmod) = P . This proves the exactness of the top horizontal row, and thus completes the
construction of the diagram.

The existence of a section of sp′ follows from the fact that P is a pro-p-group and that Gal(F0) has
p-cohomological dimension equal to 1; see [Ser97, § II.4.3, Exercise 2(c)]. �

Lemma 3.5. Let R be a complete discrete valuation ring, F and F0 be the fraction field and residue field of R,
respectively, and π ∈ R be a uniformizer. Fix an algebraic closure F of F, choose a system

{
π1/n

}
n>1

of roots of π

inside F such that (π1/mn)m = π1/n for all m,n > 1, and let F(π1/∞) := ∪n>1F(π1/n). Let G be a smooth affine
group scheme over R such that G/G◦ is R-finite. In parts (b) - (d), assume that G◦ is reductive. Then

(a) The map H1(R,G)→H1(F0,G) is bijective.

(b) The map H1(R,G)→H1(F,G) is injective.

(c) The map H1(R,G)→H1(F(π1/∞),G) is injective.

(d) Assume further that at least one of the following conditions holds.

(i) char(F0) = 0, R = F0[[π]] and G is defined over F0.
(ii) There exists a finite abstract group S of order invertible in F0 and an R-subgroup embedding SR ↪→ G such

that the induced map
H1(F(π1/∞),S)→H1(F(π1/∞),G)

is surjective.

Then the map H1(R,G)→H1(F(π1/∞),G) is bijective.

Proof. (a) See [GP11a, Chapter XXIV, Proposition 8.1]. Only smoothness of G is needed here.
(b) First we will show that the map H1(R,G)→ H1(F,G) has trivial kernel. Consider the short exact

sequence of group R-schemes
0→ G◦→ G→ G0→ 0

where G◦ is a smooth, connected and reductive groups scheme and G0 is a finite group scheme over R.
Passing to non-Abelian cohomology, we obtain a commutative diagram

(3.6)

G0(R) H1(R,G◦) H1(R,G) H1(R,G0)

G0(F) H1(F,G◦) H1(F,G) H1(F,G0).

Since G0 is finite over R, by the valuative criterion for properness G0(F) = G0(R). If T → SpecR is
a G0-torsor over R, then T is also finite over R, hence T (F) = T (R). This shows that the pullback
H1(R,G0)→H1(F,G0) has trivial kernel. By the Grothendieck–Serre Conjecture over Henselian discrete
valuation rings, due to Nisnevich [Nis84, Théorème 4.5], the pullback map H1(R,G◦)→H1(F,G◦) also has
trivial kernel. An easy diagram chase now shows that the vertical map H1(R,G)→ H1(F,G) has trivial
kernel as well.

We will now show that the map H1(R,G)→H1(F,G) is actually injective. Let α,β ∈H1(R,G) be such
that αF = βF . We want to show that α = β. Let a be a cocycle representing α, and let aG be the R-group
scheme obtained by twisting G by a. The fiber of the map H1(R,G) → H1(F,G) over αF is naturally
identified with the kernel of the map H1(R,aG)→ H1(F,aG). Now the same argument as above, with G
replaced by its twist aG, shows that the map H1(R,aG)→H1(F,aG) has trivial kernel. Consequently, the
fiber of the map H1(R,G)→H1(F,G) over αF is trivial. We conclude that α = β, as desired.
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(c) Let α,β ∈ H1(R,G) be such that αF(π1/∞) = βF(π1/∞). Our goal is to show that α = β. We have
αF(π1/n) = βF(π1/n) for some n > 1. Let Rn ⊂ F(π1/n) be the integral closure of R in F(π1/n). Then Rn is a
discrete valuation ring with fraction field F(π1/n), residue field F0, and uniformizer π1/n ∈ Rn. By (b) the
map H1(Rn,G)→H1(F(π1/n),G) is injective, hence αRn = βRn . We have a commutative diagram

H1(R,G) H1(Rn,G)

H1(F0,G) H1(Rn/(π1/n),G),

o o

where the left and right vertical arrows are induced by reduction modulo π and π1/n, respectively. Both are
isomorphisms by part (a). We conclude that αRn = βRn and consequently, α = β, as desired.

(d) In view of part (c), it suffices to show that the map H1(R,G)→ H1(F(π1/∞),G) is surjective. If (i)
holds, then the surjectivity of this map follows from [Flo06, Proposition 5.4].

From now on we will assume that condition (ii) of part (d) holds. We will break up the proof into several
steps given by the claims below. Recall that the homomorphism sp′ : Gal(F(π1/∞))→Gal(F0) has a section
by Lemma 3.3. Denote a section of sp′ by σ : Gal(F0)→Gal(F(π1/∞)), and let Γ be its image.

Claim 3.7. The pullback map σ ∗ : H1(F(π1/∞),S)→H1(F
Γ
,S) is injective for every finite discrete group S of

order invertible in F0.

Proof of Claim 3.7. Given that S is a finite discrete group, we may identify H1(F(π1/∞),S) with

Hom
(
Gal(F(π1/∞)),S

)
/ ∼ , H1

(
F
Γ
,S

)
with Hom(Γ ,S)/ ∼ , and σ ∗ with the map

Hom(Gal
(
F(π1/∞)),S

)/
∼ −→Hom(Γ ,S)/∼

induced by the restriction Γ = Gal
(
F
Γ
)
→ Gal

(
F(π1/∞)

)
. Here the symbol ∼ stands for the equivalence

relation given by conjugation by an element of S .
Let

a,b : Gal
(
F(π1/∞)

)
−→ S

be group homomorphisms such that a|Γ ∼ b|Γ . After replacing b by an S-conjugate, we may assume that
a|Γ = b|Γ . Our goal is to prove that a = b. Let

H :=
{
γ ∈Gal

(
F(π1/∞)

) ∣∣∣ a(γ) = b(γ)}
be the equalizer of a and b. Since a|Γ = b|Γ , we know that Γ ⊂ H . By Lemma 3.3, Gal(F(π1/∞)) is a
semi-direct product of P and Γ , where P is a pro-p group. Hence, Gal(F(π1/∞)) = P ·H and consequently,

(3.8) [Gal(F(π1/∞)) :H] = [P : (H ∩ P )] is a power of p.

On the other hand, consider the group homomorphism

φ : Gal(F(π1/∞))→ S × S given by φ(γ) = (a(γ),b(γ)),

and let
Ha,b := kerφ = kera∩kerb.

Then φ factors through an injective homomorphism of finite groups

Gal
(
F(π1/∞)

)
/Ha,b ↪−→ S × S.

Since S has order prime to p, the index [Gal(F(π1/∞) : Ha,b] is not divisible by p. Since Ha,b ⊂ H , we
deduce that

(3.9) [Gal(F(π1/∞)) :H] is not divisible by p.
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It follows from (3.8) and (3.9) that H = Gal(F(π1/∞)), that is, a = b. �

Claim 3.10. For every finite discrete group S , the pullback map H1(R,S)→H1
(
F
Γ
,S

)
is bijective.

Proof of Claim 3.10. Consider the composition

φ : Γ ↪−→Gal(F) −→ π1(SpecR,η),

where η is a geometric point lying above the generic point of SpecR. The pullback map H1(R,S) →
H1(F

Γ
,S) may be identified with the map

Hom(π1(SpecR,η),S)
/
∼ −→Hom(Γ ,S)/∼

induced by precomposition with φ. Here once again, ∼ denotes the equivalence relation given by conjugation
by an element of S . By construction, the composition

Γ
φ
−−−→ π1(SpecR,η)

∼−−−→Gal(F0)

is the restriction of sp to Γ , and so it is an isomorphism, with inverse σ . We conclude that φ is also an
isomorphism. �

Claim 3.11. The map H1(R,S)→H1
(
F(π1/∞),S

)
is bijective for every finite discrete group S of order invertible

in F0.

Proof of Claim 3.11. Injectivity follows from (c), and surjectivity from the commutativity of the triangle

H1(R,S) H1
(
F(π1/∞),S

)

H1
(
F
Γ
,S

)
.

∼

Here the vertical map is injective by Claim 3.7 and the diagonal map is bijective by Claim 3.10 applied
to S . �

We are now ready to complete the proof of Lemma 3.5(d) under assumption (ii). Injectivity follows
from (c). Let S is the finite group provided by assumption (ii), such that the natural map H1(F(π1/∞),S)→
H1(F(π1/∞),G) is surjective. By Claim 3.11 the map H1(R,S)→H1(F(π1/∞),S) is also surjective, and part
(d) follows. �

4. Proof of Theorem 1.2 (i) and (ii)

Lemma 4.1. Let A ⊂ R be an inclusion of discrete valuation rings. Let mA and mR be the maximal ideals of
A and R, respectively, and assume that mA ⊂mR. Then there exists a discrete valuation ring A ⊂ B ⊂ R with
maximal ideal mB such that mBR =mR and such that the induced map A/mA→ B/mB is an isomorphism.

Proof. Let π ∈ mR −m2
R be a uniformizer, and set B := A[π](π) ⊂ R. Since A is noetherian and B is a

localization of a finitely generated A-algebra, B is also noetherian. Thus B is a local noetherian domain
whose maximal ideal is principal, and consequently, a discrete valuation ring.

Since π is a generator of mR, it is clear that mBR =mR. The map A/mA→ B/mB is surjective because π
goes to zero in B/mB, and is injective because A/mA is a field. �

Proof of Theorem 1.2 assuming (i) or (ii). Choose a discrete valuation ring B between A and R as in Lemma 4.1,
so that mBR =mR and the induced map k0 = A/mA→ B/mB is an isomorphism. Let B̂ be the completion of
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B. Since R is complete, the universal property of the completion gives rise to an embedding B̂ ↪→ R. Denote
the fraction field of B̂ by l. By Lemma 2.1(b), edk(αK ) > edl(αK ). Thus in order to prove the inequality

(4.2) edk0(αK0
) 6 edk(αK ),

of Theorem 1.2, it suffices to show that edl(αK0
) 6 edl(αK ). Thus for the purpose of proving Inequality (4.2),

we may replace A by B̂. In other words, we may assume we may assume that mR =mR is the maximal ideal
of R.

Once again, let π ∈ mR −m2
R be a uniformizing parameter. By definition of edk(αK ), there exists an

intermediate field k ⊂ F ⊂ K such that

(4.3) edk(αK ) = trdegk(F)

and α descends to F. Let v : K× → Z be the valuation determined by π. Since F contains k, v|F× is
surjective. Let O ⊂ F be the valuation ring of v|F× , and F0 be the residue field of the restriction of v to F.
The inclusion A ⊂O induces an inclusion k0 ⊂ F0. Moreover, by [RS21b, Lemma 7.1] we have

(4.4) trdegk F > trdegk0 F0.

Let Ô be the completion of O, and let F̂ be the fraction field of Ô, that is, the completion of F as a valued
field. Since K is complete, the universal property of the completion gives a unique field embedding F̂ ↪→ K
extending the inclusion F ⊂ K . We view F̂ as a subfield of K via this embedding, so that F ⊂ F̂ ⊂ K ,
O ⊂ Ô ⊂ R, and the residue field of F̂ is F0.

Since π is a uniformizer in R, it is also a uniformizer in O and in Ô. Let K be an algebraic closure of K ,
and fix a system

{
π1/m

}
m>1

of roots of π in K such that (π1/mn)n = π1/m for all m,n > 1. Such a system of

roots exists by Lemma 3.2(a). We then define the following subfields of K :

K(π1/∞) :=
⋃
n>1

K(π1/n) and F(π1/∞) :=
⋃
n>1

F(π1/n).

Thus we have a commutative diagram

F0 Ô F̂ F̂(π1/∞)

K0 R K K(π1/∞).

Passing to Galois cohomology, we obtain the following commutative diagram

H1(F0,G) H1(Ô,G) H1
(
F̂(π1/∞),G

)

H1(K0,G) H1(R,G) H1
(
K(π1/∞),G

)
∼ ∼

∼ ∼

where the horizontal maps on the left are isomorphisms by Lemma 3.5(a), and those on the right are
isomorphisms by Lemma 3.5(d). (This is where assumptions (i) and (ii) are used.) We deduce that αK0

descends to F0, and thus
trdegk0 F0 > edk0 αK0

.

By (4.3) and (4.4), we conclude that

edk αK = trdegk F > trdegk0 F0 > edk0 αK0
.

This completes the proof of the Inequality (4.2).
In the case, where A = k0[[t]] and GA is defined over k0, Lemma 2.1(a) implies that the reverse inequality

is also true and thus edk αK = edk0 αK0
. This completes the proof of Theorem 1.2 under assumptions (i) and
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(ii). (Note that at the beginning of the proof of (4.2) we replaced A by B̂. For the reverse inequality we work
with A = k0[[t]] directly, here we do not need B̂.) �

We conclude this section with the following remarks on conditions (i) and (ii) of Theorem 1.2.

Remarks 4.5.

(1) By Cohen’s Structure Theorem, when char(k0) = 0 there exists an isomorphism A ' k0[[t]] inducing
the identity on residue fields. Such an isomorphism is not unique. One may restate (i) as follows: we
may identify A with k0[[t]] in such a way that G is defined over the subfield of constants k0 ⊂ k0[[t]].

(2) In (i), the fact that G is constant is not automatic in general; see [GP11b, Chapitre XIX, § 5] for
an example, where Gk((t)) is an étale form of PGL2 but the fiber G0 at t = 0 is solvable with two
connected components.

However, if char(k0) = 0 and G is reductive over A = k0[[t]], then G is constant. To see this, note
that by [GP11b, Chapitre XXIV, Corollaire 1.18], letting Gsplit denote the split form of G over A, there
exists an étale Aut(Gsplit)-torsor P such that twisting Gsplit by P yields G. By [GP11b, Chapitre XXIV,
Théorème 1.3], Aut(Gsplit) is smooth over A, hence by [GP11a, Chapitre XXIV, Proposition 8.1] the
torsor P is defined over k0. Since Gsplit is split, it is defined over Z, hence over k0. Thus G, being
the twist of a group defined over k0 by a torsor defined over k0, is also defined over k0.

(3) In (ii), if we have an A-group embedding SA ⊂ GA, then we also have a k0-group embedding Sk0 ⊂ Gk0 .
However, the converse does not necessarily hold: the natural group homomorphism G(A)→ G(k0) is
surjective (by Hensel’s lemma, since G is A-smooth) but not necessarily injective.

5. Proof of Theorem 1.5

Recall that a commutative ring with identity is said to be semilocal if it has finitely many maximal ideals.

Proposition 5.1. Let G be a split reductive group over SpecZ of rank r > 0. Let n be the order of the Weyl group
of G. Then there exists a finite flat Z-subgroup S ⊂ G with the following properties.

(a) For every semilocal ring R the natural map H1(R,S)→H1(R,G) is surjective.
(b) If a prime number p divides the degree of S , then p divides 2rn.
(c) S is constant over R =Z[1/2r ,ζ] and ζ is a primitive root of unity of degree 2rn. In other words, SR is
the constant R-group scheme associated to an abstract finite group.

Proof. Let T ⊂ G be a split maximal torus over Z, let N ⊂ G be the normalizer of T , and let W :=N/T be
the Weyl group scheme. Since W is étale over Z, it is a disjoint union of copies of SpecZ. Since Pic(Z) = 0
and T is split, we have H1(Z,T ) = 0. It follows that we have a short exact sequence

1→ T (Z)→N (Z)→W (Z)→ 1.

Since T (Z) = (Gm(Z))r = {±1}r , the finite group N (Z) has order 2rn. Let Γ ⊂ G be the scheme-theoretic
closure of N (Z) ⊂N (Q) inside G.

Claim 5.2. The Z-subgroup Γ is reduced and finite flat of degree 2rn over Z.

Proof of Claim 5.2. Since Γ is defined as the scheme-theoretic closure of the constant subscheme N (Z)
Q
⊂

G
Q

, by [BT84, Équation 1.2.6(2)] we have Γ
Q
= N (Z)

Q
. Hence Γ

Q
is finite over Q of degree 2rn. Note

that T ∩ Γ ⊂ T is finite over Z; otherwise Γ would contain a Z-subgroup isomorphic to Gm and hence
Γ (Q) would be infinite, a contradiction. The quotient T /(T ∩ Γ ) is also finite over Z because it is a closed
subgroup of W . Since Γ is an extension of T /(T ∩ Γ ) by T ∩ Γ , it is finite over Z as well. In particular, the
degree of Γ over Z is equal to the degree of Γ

Q
over Q, which is 2rn. Since N (Z)

Q
is reduced, Γ is also

reduced, and hence Γ is flat over Z; see [Liu02, Lemma 4.3.9]. �
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Claim 5.3. Let s : SpecZ→N be a Z-point of N . Then s factors through Γ .

Proof of Claim 5.3. Clearly s
Q
: SpecQ→N

Q
factors through Γ

Q
. Moreover, since Γ is finite over Z, by the

existence part of the valuative criterion for properness s
Z(p)

: SpecZ(p)→ N
Z(p)

factors through Γ
Z(p)

for
every prime p. By the uniqueness part of the valuative criterion for properness, this factorization is unique
for each p. Therefore, these local factorizations glue to a global factorization of s through Γ over Z. �

Claim 5.4. The group scheme Γ is the union of the 2rn irreducible components given by sections of N → SpecZ.
Moreover, the restriction of Γ to SpecZ[1/2r ] is constant.

Proof of Claim 5.4. Let Γ ′ be the closed subscheme of N given by the union of the images of the 2rn sections
of N → SpecZ. (Note that N is separated, hence every section of N → Spec(Z) is a closed immersion.
Therefore Γ ′ is closed.) We have Γ ′ ⊂ Γ by Claim 5.3. By Claim 5.2 there exist a Z-algebra R, finite and
free of rank 2rn, and an ideal I ⊂ R such that Γ = Spec(R) and Γ ′ = Spec(R/I). Since Γ ′ is the union of
2rn copies of Spec(Z) over Z, the rank of R/I is also 2rn. It follows that I is torsion. Since R is free, this
implies that I = 0, hence Γ ′ = Γ .

In order to prove the second part of Claim 5.4, we consider the commutative diagram of short exact
sequences

0 T (Z) N (Z) W (Z) 0

0 T (Fp) N (Fp) W (Fp) 0

o

where Fp is the field of p elements and p is prime to 2r . The vertical map on the left is the inclusion
{±1}r ↪→ (F ×p )

r , and in particular is injective. On the other hand, the mapW (Z)→W (Fp) is an isomorphism
because W is a disjoint union of copies of SpecZ. It follows that N (Z)→N (Fp) is injective. Consequently,
Γ
Fp

= Γ ′
Fp

is a disjoint union of 2rn copies of SpecFp, which means that the irreducible components of Γ do

not intersect above p. Therefore the restrictions to SpecZ[1/2r ] of the 2rn irreducible components of Γ are
pairwise disjoint. This concludes the proof of Claim 5.4. �

For each positive integer m > 1, let φm : T → T be the mth power map given by t 7→ tm. As usual, we will
denote the kernel of φm by T [m]. For each m > 1, T [m] is a flat finite normal subgroup of N of degree mr .

Claim 5.5. We have T ∩ Γ = T [2]. Moreover, T [2] becomes constant over SpecZ[1/2r ].

Proof of Claim 5.5. We have T (Z) = T [2](Z) = {±1}r and T [2] ' (SpecZ[t]/(t2 − 1))r . It follows that the
union of the 2r sections of T → SpecZ is equal to T [2] and that T [2] becomes constant over SpecZ[1/2r ].

By Claim 5.4, Γ → SpecZ is the union of all sections of N → SpecZ. Let s : SpecZ→N be a section.
The composition of s with the projection N →W is a section w : SpecZ→W . If w is trivial, then the
image of s is contained in T , and if w is non-trivial, then the image of s is disjoint from T . This shows that
T ∩ Γ is the union of the sections of N → SpecZ which map to the identity section of W , i.e. the sections
of T → SpecZ. Therefore T ∩ Γ = T [2]. This proves Claim 5.5. �

We are now ready to finish the proof of Proposition 5.1. Let S be the subgroup of N generated by Γ and
φ−1n (Γ ∩ T ). By construction, S is finite flat over Z.

(a) The map H1(R,S)→H1(R,G) is surjective for every semilocal ring R; see [CGR08, Proposition 3.1].
(b) The subgroup of N generated by T [m] and Γ is finite and flat. Its degree divides deg(T [m])·deg(Γ ) =

mr · 2rn. Over SpecZ[1/2r ], Γ ∩ T = T [2] by Claim 5.5. Hence over SpecZ[1/2r ], φ−1n (Γ ∩ T ) =
φ−1n (T [2]) = T [2n]. Setting m = 2n, we see that the degree of S divides |T [2rn]| · |Γ | = (2n)r · (2rn),
and part (b) follows.

(c) Over R =Z[1/2r ,ζ], both T [2rn] and Γ become constant and hence, so does S .
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This concludes the proof of Proposition 5.1. �

Corollary 5.6. Let G be a split reductive group over Spec(Z). Then there exists a G-torsor τ : X→ B, where B
is a smooth irreducible Z-scheme of finite type and for every field k we have edk(Xk(Bk)) = edk(Gk). Here Xk(Bk)
is obtained by restricting the Gk-torsor Xk→ Bk to the generic point of Bk .

Proof. By [GP11a, Exposé VIB, Proposition 13.2] there exists an embedding G ↪→GLn,Z over Z. Since GLn,Z
and G are reductive, by [Alp14, Theorem 9.4.1] the sheaf-theoretic quotient GLn,Z /G is represented by an
affine Z-scheme. It is clear that GLn,Z /G is of finite type over Z and irreducible. It is flat over Z by [Stacks,
Tag 02JZ] and it has smooth fibers, hence it is smooth over Z. We can now take X = GLn,Z, B = GLn,Z /G
and τ the quotient map. For any field k, the Gk-torsor Xk → Bk will then be GLn,k → GLn,k /Gk . Here
Gk acts on Xk = GLn,k by right translations. Since this action is birationally isomorphic to the linear
action of Gk on the affine space of n × n matrices over k, we conclude that edk(Xk(Bk)) = edk(Gk); see
Lemma 2.4(a). �

Proof of Theorem 1.5. By Lemma 2.4(c), edk(G) > edk(G) where k is the algebraic closure of k. Hence, we may,

without loss of generality, replace k by k and thus assume that k is algebraically closed. By Lemma 2.4(d),
edk(G) = ed

Q
(G) for any algebraically closed field k of characteristic 0, where Q is the field of algebraic

numbers. Thus we may assume without loss of generality that

(5.7) k =Q.

By Lemma 2.4(e) there exists a number field L ⊂Q such that

(5.8) edL(G) = ed
Q
(G).

We may assume that L contains ζ, where ζ is a primitive root of unity of degree 2rn. Otherwise we can
simply replace L by L(ζ). Indeed, by Lemma 2.4,

edL(G) > edL(ζ)(G) > edQ(G),

and (5.8) forces edL(ζ)(G) = ed
Q
(G).

Let OL be the ring of algebraic integers in L and p ⊂ OL be a prime ideal lying over p. Note that ζ, being
an algebraic integer, lies in OL. Let A be the completion of the localization of OL at p. Then A is a complete
local ring whose fraction field F contains L and whose residue field f is a finite field of characteristic p.
Recall that ζ ∈ OL ⊂ A.

Now let X→ B be the G-torsor constructed in Corollary 5.6. Consider the Cartesian diagram

XA

��

// X

��
Spec(F)

α

%%

BA //

��

B

��
Spec(f ) // Spec(A) // Spec(Z)

where Spec(F) is the generic point of Spec(A) and Spec(f ) is the closed point. By Theorem 1.2(ii), we have

(5.9) edF(XF) > edf (Xf ).

Note that condition (ii) of Theorem 1.2 is satisfied here: a finite subgroup S ⊂ GA such that the morphism
H1(L,S)→ H1(L,G) is surjective for every field L containing F is constructed in Proposition 5.1. Our
assumption that p does not divide 2rn allows us to factor the inclusion Z ↪→ A through Z[1/2r ,ζ]. Thus
SA is constant by Proposition 5.1(c), as required.
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By Corollary 5.6, we infer

(5.10) edF(XF) = edF(GF) and edf (Xf ) = edf (Gf ).

We finally get

edk(Gk)
(a)
= ed

Q
(G

Q
)
(b)
= edL(GL)

(c)
> edF(GF)

(d)
> edf (Gf )

(e)
> edk0(Gk0)

as desired. Here (a) and (b) follow from our assumptions (5.7) and (5.8) on k and L, (c) from Lemma 2.4(c)
using the inclusion L ⊂ F, (d) from (5.9) and (5.10), and (e) again from Lemma 2.4(c) using the inclusions
f ↪→ Fp ↪→ k0. This completes the proof of Theorem 1.5. �

6. Proof of Theorem 1.2(iii)

We have not been able to adapt the Galois-theoretic approach of Section 4 to prove Theorem 1.2 in
case (iii). The proof below is based on valuation-theoretic methods in the spirit of [BRV18]; see also [FS21,
Lemma 6.2].

Proposition 6.1. Let L be a field and v : L× → Z be a discrete valuation. Assume that a finite group G acts
faithfully on L and that v is invariant under this action. Assume further that k is a subfield of K = LG such that
v(k×) = Z. Denote the residue fields of L, K , and k by L0, K0 and k0, respectively. Finally, assume that G is
weakly tame at p = char(k0) > 0. Then

(a) G acts faithfully on L0, and
(b) edk(L/K) > edk0(L0/K0).

Proof. (a) Let ∆ be the kernel of the G-action on L0. By our assumption, v(k×) = Z and thus v(K×) = Z.
If char(k) = 0, then [BRV18, Proposition 2.3] tells us that ∆ = 1 and we are done. If char(k) = p > 0, then
[BRV18, Proposition 2.3] tells us that ∆ is a p-group. Since we are assuming that G is weakly tame at p, this
implies that ∆ = 1 in this case as well.

(b) Suppose edk(L/K) = d. This means that there exists an intermediate field k ⊂ K ′ ⊂ K and a G-Galois
extension L′/K ′ such that L = L′ ⊗K ′ K and trdegk(K

′) = d. Let K ′0 and L′0 be the residue fields for the
restriction of v to K ′ and L′ , respectively.

By part (a), the G-action on L′0 is faithful. We claim that (L′0)
G = K ′0. Clearly K ′0 ⊂ (L′0)

G ⊂ L′0 and, since
G acts faithfully on L′0, we have [L′0 : (L

′
0)
G] = |G|. On the other hand, by [Lan02, Corollary XII.6.3] the

degree [L′0 : K
′
0] divides [L0 : K0] = |G|, hence K ′0 = (L′0)

G. This proves the claim.
We thus obtain the following diagram of field extensions:

L′

G-Galois

L

G-Galois

L′0

G-Galois

L0

G-Galois

K ′ K and K ′0 K0

k k0

where the right side are obtained from the left side by passing to residue fields. In other words, the G-Galois
extension L0/K0 descends to K ′0. By [BRV18, Lemma 2.1], trdegk0(K

′
0) 6 trdegk(K

′). We conclude that

edk0(L0/K0) 6 trdegk0(K
′
0) 6 trdegk(K

′) = d = edk(L/K),

as desired. �
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We are now ready to complete the proof of Theorem 1.2 assuming (iii). The class α ∈ H1(R,G) is
represented by a finite étale R-algebra E such that G acts faithfully on E over R and transitively permutes
the connected components of Spec(E). Recall that K is the field of fractions of R. Since R is complete, it is
Henselian, hence every connected component of SpecE is local, i.e. is of the form Spec(E1), where E1 is a
discrete valuation ring with valuation ν : E1 \ {0} →Z extending the valuation on R. Denote the fraction
field of E1 by L and the residue field of E1 by L0. Let us now consider two cases.

Case 1. E is integral, i.e. E = E1. In this case the class αK ∈ H1(K,G) is represented by the field
extension L/K , where L is the fraction field of E. By Proposition 6.1(a) the class αK0

is represented by the
field extension L0/K0. The inequality

(6.2) edk0(αK0
) 6 edk(αK )

of Theorem 1.2 now translates to the inequality

edk0(L0/K0) 6 edk(L/K)

of Proposition 6.1(b).

Case 2. E1 , E. To handle this case we will need the following.

Lemma 6.3. Let G be a finite discrete group, H be a subgroup of G, K/k be a field extension and T → Spec(K)
be an H-torsor. Let TG = T ×H G be the G-torsor induced by T . Then edk(T ;H) = edk(T ×H G;G).

Proof. A proof is implicit in [BRV07, Proposition 2.17] and is worked out in detail in [Bre21, Lemma 2.4]. �

We can now complete the proof of Theorem 1.2 (iii) in Case 2. Denote the stabilizer of E1 in G by
H . Then Spec(E) = Spec(E1) ×H G. In other words, the G-torsor Spec(E)→ Spec(R) is induced by the
H-torsor Spec(E1)→ Spec(R) is an H-torsor. Replacing E by E1 and G by H , and using Lemma 6.3, we
reduce Case 2 to Case 1. This completes the proof of Theorem 1.2. �

We conclude this section with a variant of Theorem 1.2, where A and R are not required to be complete.

Theorem 6.4. Let A be a discrete valuation ring with maximal ideal m, fraction field k, residue field k0 and
m-adic completion Â. Set p := char(k0) > 0 and let G be a smooth affine group scheme over A, satisfying one of
the conditions (i), (ii) or (iii) below. Let R ⊃ A be a discrete valuation ring with fraction field K ⊃ k and residue
field K0 ⊃ k0, and assume that m is contained in the maximal ideal of R. Then for every α ∈H1(R,G) we have

edk0(αK0
) 6 edk(αK ).

Furthermore, if Â = k0[[t]] and GÂ is defined over k0, then the above inequality is an equality.

(i) p = 0, and there exist a section σ : k0 → Â of the projection Â → k0, and a k0-group H such that
G ' σ ∗H .

(ii) G◦ is reductive, G/G◦ is A-finite, and there exists a finite subgroup S ⊂ G(Â) such S is tame at p and for
every field L containing k the natural map H1(L,S)→H1(L,G) is surjective.

(iii) GÂ = SÂ, where S is an abstract finite group which is weakly tame at p.

Proof. We have

edk0(αK0
)
(a)
6 edk̂(αK̂ )

(b)
6 edk(αK̂ )

(c)
6 edk(αK )

where R̂ is the completion of R, and k̂, K̂ are the fraction fields of Â, R̂, respectively. Here (a) follows
from Theorem 1.2, (b) from Lemma 2.1(b), and (c) from Lemma 2.1(a). �
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7. Proof of Theorem 1.6

Throughout this section,

(7.1) G will denote a linear algebraic group and X a G-variety,

both defined over a field k. We begin with a brief review of the concepts that will be used in the proof.

Twisting

For any field K/k and G-torsor τ : T → Spec(K), we can define the algebraic space τX over K as the
quotient of T ×k XK by the diagonal action of G. Note that in this situation G acts freely on T ×K XK ,
and τX can be defined by descent so that the quotient morphism T ×K XK → τX is a G-torsor. If X is
quasi-projective, then τX is a K-variety and not just an algebraic space. The algebraic space τX is separated
and of finite type over K . This may be checked after splitting τ ; when τ is split, we have τX ' XK , where '
denotes isomorphism over K . In general, τX does not inherit a G-action from X. There is a natural action
of the twisted group τG on τX, but we will not need it in the sequel. For a more detailed discussion of the
twisting construction and further references, see [DR15, Section 3].

Large fields

A field K is called large if the following property holds for every irreducible K-variety Z : if Z has a
smooth K-point, then K-points are dense in Z . This notion is due to F. Pop. Note that if Z is irreducible
and has a smooth K-point, then it is absolutely irreducible. A variant of this definition assumes that Z is
an irreducible K-curve, rather than an irreducible K-variety of arbitrary dimension. This a priori weaker
property of K turns out to be equivalent. The most important examples of large fields for this paper are
fields of Laurent series K((t)), where K is an arbitrary field (see [Pop14, Section 1A(2)]) and p-closed fields
(see [CT00, p. 360] or [Pop14, Theorem 1.3]). See Section 2.3 for the definition of a p-closed field and [Pop14]
for a detailed discussion of large fields, including further examples.

Lemma 7.2. Let K be a large field and Z be an irreducible separated algebraic space of finite type over K . If Z
has a smooth K-point, then K-points are dense in Z .

Proof. Let z ∈ Z(K) be a smooth point, and let Z ′ := ProjZ(⊕i>0I i)→ Z be the blow-up of Z at z, where I
is the ideal sheaf of z; see [Stacks, Tag 085Q]. It follows that the exceptional divisor E of Z ′→ Z is given
by Projz(⊕i>0I i/I i+1) = P(TZ,z), where TZ,z denotes the tangent space at z. Since K is large, it is infinite,
hence K-points are dense in E. Since z is smooth, any K-point in E is smooth. By [Stacks, Tag 0ADD],
there exists an open embedding U ↪→ Z ′ such that U is a scheme and U ∩E , ∅. Thus U contains smooth
K-points and so, since K is large and U is irreducible, K-points are dense in U . Since the blow-up map
Z ′→ Z is surjective, we conclude that K-points are dense in Z, as desired. �

τ-versality

Suppose K/k is a field extension and τ : T → Spec(K) is a G-torsor. We say that X is τ-weakly versal if
there exists a G-equivariant morphism T → XK defined over K . We say that X is τ-versal if every dense
G-invariant open subvariety of X is τ-weakly versal. Note that if X is primitive, then every non-empty
G-invariant open subvariety is automatically dense.

With these preliminaries out of the way, we can get started on the proof of Theorem 1.6.

Lemma 7.3. Let G and X be as in (7.1), K/k be a field extension, and τ : T → Spec(K) be a G-torsor.

(a) X is τ-weakly versal if and only if the twisted variety τX has a K-point.

(b) Assume further that X is smooth, and K is a large field. Then X is weakly τ-versal if and only if X is
τ-versal.
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Proof. Part (a) is proved at the beginning of Section 4 in [DR15]. Note that the proof relies on [DR15,
Proposition 3.2], where X is not assumed to be irreducible.

(b) If X is τ-versal, then X is obviously weakly τ-versal. Conversely, suppose X is weakly τ-versal.
We want to show that X is τ-versal. Assume the contrary: there exists a Zariski dense open G-invariant
subvariety U of X which is not weakly τ-versal. Then τU is a dense open algebraic subspace of τX (see
[DR15, Corollary 3.4]). By part (a), τU has no K-points but τX has a K-point. Denote this point by x. Since
X is smooth, so is τX. Hence, x lies on a unique irreducible component of τX. Denote this irreducible
component by X1. Since X1 is smooth and irreducible and K is large, K-points are dense in τX1. In
particular, there is a K-point in τU ∩X1, contradicting our assumption that τU has no K-points. �

Lemma 7.4. Let G and X be as in (7.1). Assume that X is generically free and primitive, K/k is a field extension
and τ : T → Spec(K) is a G-torsor. If X is τ-versal, then edk(X) > edk(τ).

Proof. Let f : Xd Z be a G-compression (i.e. a G-equivariant dominant rational map defined over k) to a
generically free G-variety Z of minimal possible dimension, dim(Z) = edk(X) + dim(G). As we explained
in Section 2.2, after replacing Z by a dense open G-invariant subvariety we may assume that Z is the total
space of a G-torsor Z→ B, over some k-variety B of dimension

dim(B) = dim(Z)−dim(G) = edk(X).

Let X0 ⊂ X be the domain of f . Since X is τ-versal, there exists a G-equivariant map T → (X0)K =
X0 ×Spec(k) Spec(K) defined over K . Projecting to the first component and composing with f , we obtain a
G-equivariant morphism

T → Z

defined over k. This morphism induces a pull-back diagram

T

τ
��

// Z

��
Spec(K) // B

of G-torsors. Restricting to the generic point of the image of Spec(K) in B (whose residue field we will
denote by K0), we obtain a pull-back diagram of G-torsors

T

τ
��

// T0
τ0
��

Spec(K) // Spec(K0),

as in (1.1). By definition of edk(τ), edk(X) = dim(B) > trdegk(K0) > edk(τ), as desired. �

Note that Lemma 7.4 is in the same general spirit as Theorem 1.6. Indeed, let τ = τY : T → Spec(K)
be the G-torsor over K = k(Y )G constructed from Y , as in Section 2.2. Then edk(τY ) = edk(Y ), and the
existence of a G-equivariant rational map f : Y d X is equivalent to saying that X is weakly τ-versal.
Lemma 7.4 requires X to be τ-versal, which is a stronger assumption in general. To bridge the gap between
“weakly τ-versal" and “τ-versal", we will use the fact that these two notions are equivalent when K is a large
field; see Lemma 7.3(b). Our strategy is thus to replace k by k((t)), K by K((t)) and τ by τ((t)) = τ⊗K K((t)).
The following lemma tells us that under assumptions (1) – (4) on G of Theorem 1.6, passing from τ to τ((t))
does not change the essential dimension.

Lemma 7.5. Let G be a linear algebraic group over k, satisfying one of the conditions (1) – (4) of Theorem 1.6.
Then for A = k[[t]] the group scheme GA satisfies one of the conditions (i) – (iii) of Theorem 1.2.
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Proof. In the proof (i), (ii), (iii) will always refer to conditions of Theorem 1.2 and (1), (2), (3), (4) to conditions
of Theorem 1.6. The following implications are obvious:

G satisfies (1) =⇒ GA satisfies (i) and G satisfies (4) =⇒ GA satisfies (iii).

The implication

G satisfies (2) =⇒ GA satisfies (ii)

follows from Proposition 5.1. The implication

G satisfies (3) =⇒ GA satisfies (ii)

follows from [CGR06, Theorem 1.1(c)] and [CGR08, Remark 4.1]. �

We are now ready to complete the proof of Theorem 1.6. Let K = k(Y )G and τ = τY : T → Spec(K) be
the G-torsor constructed from Y , as above. The G-equivariant rational map f : Y d X tells us that X is
weakly τ-versal. Let L := K ⊗k k((t)). Then the inclusions of fields

k ↪→ k((t)) ↪→ L ↪→ K((t))

induce a Cartesian diagram

(7.6) TK((t))
τ((t))

��

// TL
τ1
��

// T

τ
��

f
// XK

Spec(K((t))) // Spec(L) // Spec(K).

Let X1 = Xk((t)) = X ×Spec(k) Spec(k((t))) viewed as a G-variety over k((t)). (Here G acts on the first
factor.) The G-equivariant map f : T → X defined over k naturally extends to a G-equivariant map
TK((t))→ XK(t)) = (X1)K((t)) defined over K((t)). This shows that X1 is weakly τ((t))-versal. Since K((t)) is a
large field, Lemma 7.3(b) tells us that X1 is τ((t))-versal. Now observe that

(7.7) edk(X)
(a)
> edk((t))(X1)

(b)
> edk((t))

(
τ((t))

)
(c)
= edk(τ)

(d)
= edk(Y ).

Here (a) follows from Lemma 2.2(a), (b) follows from Lemma 7.4, and (d) is a restatement of (2.3). Finally,
(c) follows from Theorem 1.2. Note that Theorem 1.2 can be applied in this situation under any of the
assumptions (1) – (4) of Theorem 1.6 by Lemma 7.5. �

8. Some consequences of Theorem 1.6

Throughout this section k, G and X will be as in (7.1). Recall that X is called weakly versal (respectively,
versal) if it is τ-weakly versal (respectively, τ-versal) for every field K/k and every G-torsor τ : T → Spec(K);
see [DR15, p. 499].

Corollary 8.1. Assume that G satisfies one of the conditions (1) – (4) of Theorem 1.6 and the G-variety X is
generically free and primitive.

(a) If X is smooth and weakly versal, then edk(X) = edk(G).

(b) If X has a smooth G-fixed k-point, then edk(X) = edk(G).

Proof. (a) Let V be a generically free linear representation of G and τV : T → Spec(K) be the G-torsor
over K = k(V )G constructed from V , as in Section 2.2. Since X is τV -versal, there exists a G-equivariant
rational map V d X defined over k. By Theorem 1.6, ed(X) > ed(V ). On the other hand, by Lemma 2.4(a),
ed(V ) = ed(G) > ed(X) and part (a) follows.
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(b) After replacing X by its smooth locus, we may assume that X is smooth. The constant map T → XK
sending T to the G-fixed point in X is G-equivariant for every G-torsor τ : T → Spec(K). Thus X is weakly
versal and part (a) applies. �

Example 8.2. Let k be a field of characteristic p > 0 and G be a subgroup of the symmetric group Sm.
Assume that G is weakly versal at p. For any absolutely irreducible variety Z defined over k, we may view
Zm as a G-variety, where G acts on Zm by permuting the factors. Then

edk(Z
m) = edk(G).

Indeed, if z is a smooth point of Z, then (z, . . . , z) is a smooth G-fixed point of Zm, and Corollary 8.1(b)
applies. �

Example 8.3. Let G be a linear algebraic group satisfying one of the conditions (1) – (4) of Theorem 1.6, and
let X be a smooth connected algebraic group defined over a field k (not necessarily linear). Suppose G acts
generically freely on X by group automorphisms. Then

(8.4) edk(X) = edk(G).

Indeed, the identity element of X is a smooth fixed point of G, and Corollary 8.1(b) applies.
In the case, where X is affine, this was previously known. In this case X is versal as a G-variety (see [DR15,

Example 7.4]), and (8.4) follows. If X is not affine, it is no longer versal as a G-variety (only weakly versal)
but equality (8.4) holds nevertheless.

Corollary 8.5. Let G be a linear algebraic group satisfying one of the conditions (1) – (4) of Theorem 1.6, and let
X and Y be G-varieties. Assume that Y is generically free and primitive, and that X is smooth and absolutely
irreducible. If there exists a G-equivariant rational map f : Y d X, then

(8.6) edk(X ×k Y ) = edk(Y ).

Proof. Consider the G-equivariant maps (i) f ×k id : Y d X ×k Y and (ii) pr2 : X ×k Y → Y . By Theorem 1.6,
(i) implies that edk(X ×k Y ) > edk(Y ). Similarly, (ii) implies that edk(Y ) > edk(X ×k Y ), and Equality (8.6)
follows. �

Note that the G-action on X in the statement of Corollary 8.5 is not assumed to be generically free. As a
special case, (8.6) holds if G acts trivially on X and X(k) , ∅. This was previously known only in the case
where k-points are dense in X.

9. Counterexamples

Lemma 9.1. Let G be a linear algebraic group defined over k, K be a large field containing k and τ : T → Spec(K)
be a G-torsor.

(a) Let X be a generically free G-variety defined over k. If X has a smooth G-fixed k-point, then edk(τ) 6
edk(X) 6 dim(X)−dim(G).

(b) If char(k) = p and G is a finite (constant ) p-group, then edk(τ) 6 1. In other words, edk(L/K) 6 1 for
every G-Galois field extension L/K .

(c) If char(k) = p and G is a finite p-group which is not elementary Abelian, then Theorem 1.6, Corollary 8.1,
Corollary 8.5 and Theorem 1.2 all fail for G.

Proof. (a) After replacing X by its smooth locus, we may assume that X is smooth. The constant map
T → XK sending T to the fixed point shows that X is weakly τ-versal. By Lemma 7.3(b), X is τ-versal.
The inequality edk(τ) 6 edk(X) now follows from Lemma 7.4. The inequality edk(X) 6 dim(X)−dim(G)
follows from the definition of essential dimension.
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(b) In this case there exists a smooth irreducible G-curve X defined over k such that G acts generically freely
(i.e. faithfully) on X and fixes a k-point; see [RV18, Lemma 3]. By part (a), edk(τ) 6 dim(X)−dim(G) = 1.

(c) By [Led07, Proposition 5], edk(G) > 2. By Lemma 2.4(a), this tells us that

(9.2) edk(V ) > 2

where V is the regular representation of G over k. Let X be a smooth G-curve with a fixed k-point, as
in part (b), and f : V → X be the constant G-equivariant morphism sending V to this G-fixed point. If
Theorem 1.6 were true in this case, then we would have

edk(V ) 6 edk(X) 6 dim(X) = 1,

contradicting (9.2). This shows that Theorem 1.6 fails for G.
If Corollary 8.1 were valid for X, we would conclude that edk(X) = edk(G). This leads to a contradiction

because edk(G) > 2 but edk(X) 6 1.
Since the G-action on both X and V is generically free, and both have smooth G-fixed points, there exists

G-equivariant maps X→ V and V → X. If Corollary 8.5 were true in this setting, it would tell us that

edk(V ) = edk(V ×k X) = edk(X ×k V ) = edk(X) 6 1,

contradicting (9.2). Thus Corollary 8.5 fails in this setting as well.
Finally, to show that Theorem 1.2 fails, let K = k(V )G and τ : T → Spec(K) be the G-torsor associated

to the G-action on V , as in Section 2.2. Then edk(τ) = edk(V ) > 2. On the other hand, since K((t)) is a
large field, part (b) tells us that edk((t))

(
τ((t))

)
6 1. In particular, edk((t))

(
τ((t))

)
< edk(τ). This shows that

Theorem 1.2 fails for A = k[[t]], R = K[[t]] and α = τR. (Note that none of the conditions (i), (ii), (iii) of
Theorem 1.2 are satisfied here.) �

Remark 9.3. Lemma 9.1(b) is proved in [RV18] in the case where K is a p-closed field. Recall that p-closed
fields are large; see [CT00, p. 360].

Remark 9.4. A conjecture of A. Ledet [Led04] asserts that edk(Z/pnZ) = n for any infinite base field k of
characteristic p and any integer n > 1. This conjecture has been proved for n 6 2 and is open for every
n > 3. Moreover, Ledet showed that edk(Z/pnZ) 6 n, so his conjecture is equivalent to the existence of a
field extension K/k and a Z/pnZ-torsor τ : T → Spec(K) such that edk(τ) > n.

This conjecture has many interesting consequences [BRV18], [Tos19]. It looks even more remarkable
in light of Lemma 9.1(b), which asserts that edk((t))

(
τ((t))

)
6 1 for every field K containing k and every

G-torsor τ over Spec(K).

Remark 9.5. The smoothness assumption on X in the statement of Theorem 1.6 cannot be dropped.
Indeed, let G be a finite group. Then there exists a curve C of genus > 2 with a faithful G-action. To

construct C, start with a curve Cn with a faithful Sn-action as in [BR97, Remark 4.5]. For large n, Cn will
automatically be of genus > 2, since Sn cannot act faithfully on a rational or elliptic curve. After embedding
G into Sn (again, for a suitably large n), we may view C = Cn as a G-curve. Next we embed C into a
projective space P(V ) in an Sn-equivariant way, where Sn acts linearly on V (e.g. by using a pluri-canonical
embedding) and we consider X the affine cone over C. The origin 0 in X is fixed by Sn (and hence, by G).
Note that since the center of Sn is trivial for any n > 2, we may assume that no element of Sn (and hence, of
G) acts by scalar multiplication on V .

The natural projection Xd C tells us that edk(X) 6 dim(C)−dim(G) = 1. We claim that Theorem 1.6
fails for the constant map f : V → X sending all of V to the origin. Here V is a faithful linear representation
of G over k (e.g. the regular representation). Indeed, if Theorem 1.6 were true for f , it would tell us that
1 > edk(X) > edk(V ) = edk(G) for every irreducible G-variety Y , i.e. 1 > edk(G), which is false for most
finite groups; see [BR97, Theorem 6.2] or [Led07]. Of course, the reason for this failure of Theorem 1.6 in
this example is that X is singular at the origin.



Essential dimension under specialization 23Essential dimension under specialization 23

Similar (even easier) examples can be constructed for a connected group G as follows. Start with a
generically free representation G→GL(V ), let w be a point in general position in P(W ), where W = V ⊕ k,
and X be the cone over the Zariski closure of the orbit G ·w in P(W ). Clearly edk(X) = 0. Once again, the
“constant" morphism f : V → X taking the whole of V to 0 is G-equivariant. If Theorem 1.6 were true for f ,
then we would obtain 0 > edk(V ) = edk(G), which is false for most connected groups G, e.g. for G = SOn

(n > 3) or PGLn (n > 2). Once again the reason Theorem 1.6 fails in this example is that X is singular at the
origin. �

10. An analogue of Theorem 1.6 for essential dimension at a prime

Theorem 10.1. Let k be a field, G be a linear algebraic group defined over k and X, Y be generically free primitive
G-varieties defined over k. Assume that X is smooth. If there exists a G-equivariant correspondence f : Y  X of
degree prime to q, then edk,q(X) > edk,q(Y ).

The proof of Theorem 10.1 is similar to the proof of Theorem 1.6, but simpler. Since the q-closure K (q) of
any field K is large, we do not need to pass to k((t)) or appeal to Theorem 1.2. Note that we do not require
G to be smooth or reductive here, and char(k) can be arbitrary.

Proof. Let K/k be a field extension and τ = τY : T → Spec(K) be a G-torsor constructed from Y , as in
Section 2.2. The correspondence Y  X of degree prime to q gives rise to a G-equivariant rational map
τK (q) : TK (q) → X, where K (q) is the q-closure of K . In other words, X is weakly τK (q)-versal. Since K (q) is a
large field, Lemma 7.3 tells us that X is τK (q)-versal. By Lemma 7.4,

(10.2) edk(X) > edk(τK (q)) = edk,q(τ) = edk,q(Y ),

where the first equality is (2.5) and the second equality is (2.8). Moreover, suppose π : X ′ d X is a G-
equivariant dominant rational map of G-varieties of degree prime to q. Viewing the inverse of π as a
correspondence π−1 : X X ′ and composing it with f , we obtain a correspondence π−1 ◦ f : Y  X ′ of
degree prime to q. By (10.2), we get

edk(X
′) > edk,q(Y ).

Taking the minimum over all G-equivariant rational covers X ′d X of degree prime to q and using (2.7), we
arrive at the desired inequality edk,q(X) > edk,q(Y ). �

Using Theorem 10.1, we can deduce prime-to-q analogues of all of the corollaries and examples in
Section 8. Note however, that Corollary 8.1 is less novel in this context. In particular, by [DR15, Theorem 8.3]
a weakly q-versal smooth G-variety X is q-versal. If X is generically free and primitive, this implies
edk,q(X) = edk,q(G). The case where X has a fixed point is considered in [DR15, Corollary 8.6]. The equality
edk(X) = edk(G) of Corollary 8.1 is more intricate, because X may not be versal.

On the other hand, to the best of our knowledge, the following prime-to-q analogue of Corollary 8.5 is
new. It is proved by the same argument as Corollary 8.5, with Theorem 10.1 used in place of Theorem 1.6.

Corollary 10.3. Let X be Y be G-varieties. Assume that Y is generically free and primitive, and X is smooth
and absolutely irreducible. If there exists a G-equivariant correspondence f : Y  X of degree prime to q, then
edk,q(X ×k Y ) = edk,q(Y ). �

Appendix A. Essential dimension at a prime

In this appendix we will prove a variant of Theorem 1.2, where essential dimension is replaced by essential
dimension at a fixed prime q. Note that conditions (i), (ii) and (iii) of Theorem 1.2 simplify in this setting;
they are replaced by conditions (i’) and (ii’) below.
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Theorem A.1. Let A be a complete discrete valuation ring with maximal ideal m, fraction field k and residue
field k0. Set p := char(k0) > 0, q , p be a prime number, and let G be a smooth affine group scheme over A,
satisfying one of the conditions (i’) or (ii’) below.
Let R ⊃ A be a complete discrete valuation ring with fraction field K ⊃ k and residue field K0 ⊃ k0, and assume

that mR is the maximal ideal of R. Then for every α ∈H1(R,G) we have

edk0,q(αK0
;GK0

) 6 edk,q(αK ;GK ).

Furthermore, if A = k0[[t]] and GA is defined over k0, then the above inequality is an equality.

(i’) char(k0) = 0, and there exist a section σ : k0→ A of the projection A→ k0 and a k0-group H such that
G ' σ ∗H ;

(ii’) G◦ is reductive, there exists a finite subgroup S ⊂ G(A) of order invertible in k0 such that for every q-closed
field L containing k the natural map H1(L,S)→H1(L,G) is surjective.

Note that if S is the finite group in (ii’) and Sq is the Sylow q-subgroup of S , then H1(L,Sq)→H1(L,S)
is an isomorphism for every q-closed field L. Hence, we may replace S by Sq in (ii’). In other words, if the
finite subgroup group S of G(A) in (ii’) exists, we may assume that S is a q-group.

Our proof of Theorem A.1 below is analogous to that of Theorem 1.2 in Section 4. However, since the
definition of edk,q(αK ;GK ) allows replacing K by a finite extension L/K of degree prime to q (and similarly
for edk0,q(αK0

;GK0
)) there are some complications involving extensions of valuations from K to L.

Proof of Theorem A.1. Let π ∈ A be a uniformizer. Using Lemma 4.1, as we did at the beginning of the proof
of Theorem 1.2 in Section 4, we may assume that mR is the maximal ideal of R, that is, that π is also a
uniformizer in A. Let K ′/K be a finite extension of degree prime to q and k ⊂ F ⊂ K ′ be a field of definition
for αK ′ such that

(A.2) edk,qαK = trdegk F.

Let v : (K ′)×→ 1
d
Z be the unique surjective valuation extending the given valuation on K . Let R′ ⊂ K ′ be

the local ring and K ′0 the residue field of v. Since q does not divide [K ′ : K], it does not divide d. Moreover,
since F contains k and π ∈ A ⊂ k, we have

Z ⊂ v(F×) ⊂ 1
d
Z.

Let O ⊂ F be the valuation ring and F0 ⊂ K ′0 the residue field of v|F× . The inclusion A ⊂ O of valuation
rings induces an inclusion k0 ⊂ F0 of residue fields. By [RS21b, Lemma 7.1], we have

(A.3) trdegk F > trdegk0 F0.

Let R̂ be the π-adic completion of R, and let F̂ be the fraction field of R̂, that is, the completion of F
as a valued field. Since K ′ is complete, the universal property of the completion gives a unique field
embedding F̂ ↪→ K ′ extending the inclusion F ⊂ K ′ . We view F̂ as a subfield of K ′ via this embedding, so
that F ⊂ F̂ ⊂ K ′ , O ⊂ Ô ⊂ R′ , and the residue field of F̂ is F0.

If L is a field containing k and n > 1 is an integer invertible in k, we write Ln for the étale L-algebra
L[x]/(xn −π). Then Ln factors as a product of finite-dimensional separable field extensions of L, each of
which contains an nth root of π. Moreover, if L is the fraction field of a complete discrete valuation ring with
uniformizer π, then by Eisenstein’s Criterion Ln is a field. Thus kn, F̂n, and Kn are fields, while K ′n is not
necessarily a field. Since kn is a field, the inclusion kn ⊂ K ′n factors through a unique field factor K ′′n ⊂ K ′n.
Thus kn, F̂n and Kn are all contained in K ′′n .
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We have a commutative diagram

F0 Ô F̂ F̂n

K ′0 R′ K ′ K ′′n

K0 R K Kn.

Passing to Galois cohomology, we obtain the following commutative diagram:

(A.4)

H1(F0,G) H1(Ô,G) H1(F̂n,G)

H1(K ′0,G) H1(R′ ,G) H1(K ′′n ,G)

H1(K0,G) H1(R,G) H1(Kn,G),

∼

∼

∼

where the horizontal maps on the left are isomorphisms by Lemma 3.5(a).
For the injectivity of the horizontal maps on the right side of (A.4), we argue as follows. Let L be a field

containing k, n > 1 be an integer invertible in k, L be an algebraic closure of L, and L′n be a field factor
of Ln. Let π1/n ∈ L be such that (π1/n)n = π, and consider the homomorphism φn : Ln → L induced by
x 7→ π1/n. The restriction of φn to L′n is a field embedding L′n ↪→ L which factors through L(π1/n). By
Lemma 3.2(b), we can extend π1/n to a system

{
π1/m

}
m>1

of roots of π in L such that (π1/mm′ )m = π1/m′ for

every m,m′ > 1. Letting

L(π1/∞) :=
⋃
m>1

L(π1/m) ⊂ L,

we have the inclusions
L ⊂ L′n ⊂ L(π1/∞).

Letting L be F̂, K ′n or Kn, we deduce from Lemma 3.5(c) that the horizontal maps on the right are injective.
Since αK ′ is defined over F, it is defined over F̂. We let β ∈ H1(F̂,G) be such that βK ′ = αK ′ . We now

observe that βF̂(π1/∞) is defined over Ô. Indeed, if (i’) holds then this follows from [Flo06, Proposition 5.4].
If (ii’) holds then, letting S be a finite subgroup of G(A) as in (ii’), βF̂(π1/∞) admits reduction of structure

to some γ ∈ H1(F̂(π1/∞),S). Now Claim 3.11 shows that γ is defined over Ô, hence so is βF̂(π1/∞). The

field F̂(π1/∞) is the increasing union of the F̂n, hence there exists some n > 1 such that βF̂n is defined over

Ô. Since βK ′′ = αK ′′ , we have βK ′′n = αK ′′n , hence αK ′′n is also defined over Ô. From the commutativity of
the right-hand side of (A.4) and the injectivity of the map H1(R′ ,G)→H1(K ′′n ,G), we deduce that αR′ is
defined over Ô. The commutativity of the left-hand side of (A.4) now implies that αK ′0 is defined over F0.
Since [K ′0 : K0] divides d, it is not divisible by q. Thus

trdegk0 F0 > edk0,qαK0
.

Combining this with (A.2) and (A.3), we conclude that

edk,qαK = trdegk F > trdegk0 F0 > edk0,qαK0
.

Suppose now that A = k0[[t]] and that GA is defined over k0. Let K (q) be a q-closure of K , and let K
(q)
0

be a q-closure of K0 contained in K (q). By (2.5), we have edk,qαK = edk αK (q) and edk0,qαK0
= edk0 αK (q)

0
.

Now Lemma 2.1(a) implies that edk,qαK 6 edk0,qαK0
. Therefore edk,qαK = edk0,qαK0

, completing the proof
of Theorem A.1. �
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Remark A.5. Recall that in Theorem 6.4 we proved a version of Theorem 1.2, where we did not assume that
A and R were complete. One may also prove a variant of Theorem A.1 without assuming that A and R are
complete. If Â denotes the m-adic completion of A, the correct formulation of this variant is obtained by
replacing A by Â in the sentence beginning with “Furthermore,” and in assumptions (i’) and (ii’). The proof
is identical to the argument used to deduce Theorem 6.4 from Theorem 1.2, and is left to the reader.

Remark A.6. Let G be a linear algebraic group over a field k0 of positive characteristic. Then Gk0[[t]]
does not satisfy Assumption (ii’) of Theorem A.1 in general. Thus Theorem A.1 is not strong enough to
recover Theorem 10.1 in positive characteristic. We will use Theorem A.1 in [RS21a] to prove prime-to-q
analogues of the main results there.

Appendix B. Cohomological invariants

Let k be a field of arbitrary characteristic, G be a linear algebraic k-group, X be a generically free
primitive G-variety, and n > 0 be an integer. Consider the following properties of X:

(i) edk(X;G) > n.
(ii) There exists a cohomological invariant of degree > n for G which does not vanish on the class of X

in H1(k(X)G,G).

It is well known that (ii) implies (i). While (i) and (ii) are not equivalent, they are analogous to each other.
The purpose of this section is to state and prove an analogue of Theorem 1.6 in the context of cohomolog-

ical invariants, Proposition B.2 below. Our proof of Proposition B.2 is easier than the argument in Section 7
and goes through in arbitrary characteristic.

Let Fieldsk be the category of fields containing k, Ab be the category of Abelian groups, H : Fieldsk→ Ab
be a covariant functor. Following A. S. Merkurjev, we will require H to satisfy the following condition:

(B.1) The homomorphism H(L)→H(L((t))) is injective ∀ field extension L/k.

This is condition (∗) of [GMS03, p. 108]. In particular, it is satisfied by the Galois cohomology functor
K 7→ Hd+1(K,Q/Z(d)) for every d > 0. Let G be a linear algebraic group over k, and let Inv(G,H) be
the set of invariants of G with values in H , that is, natural transformations H1(−,G)→ Forget◦H , where
Forget : Ab→ Set is the forgetful functor. The set Inv(G,H) has the structure of an Abelian group.

If Z is a primitive generically free G-variety, let K = k(Z)G and τZ : T → Spec(K) be the G-torsor
constructed in Section 2.2. Let [Z] ∈H1(K,G) denote the class of τZ .

Proposition B.2. Let k be a field, let G be a smooth linear algebraic group over k, and let X, Y be primitive
generically free G-varieties defined over k. Assume that X is smooth, and that there exists a G-equivariant
rational map f : Y d X. Let H be a functor satisfying (B.1), and let α,β ∈ Inv(G,H). If α([X]) = β([X]), then
α([Y ]) = β([Y ]).

Proof. Replacing α and β by α − β and 0, respectively, we may assume that β = 0.
Let K = k(Y )G and τY : T → Spec(K) be the G-torsor constructed in Section 2.2. Set X1 := Xk((t)), as

in Section 7. Since α([X]) = 0, clearly α([X1]) = 0. Set τY ((t)) := τY ×Spec(K) Spec
(
K((t))

)
. The same

argument as in Section 7 tells us that X1 is τY ((t))-versal.
Let U ⊂ X1 be a dense open subscheme which is the total space of a G-torsor π : U → B. Recall that τX1

is the generic fiber of π. Since X1 is τY -versal, there is a morphism of G-torsors TY → U defined over k.
Let x ∈ B be the image of the induced morphism SpecK((t))→ B. (The point x is not necessarily closed.)
Since U and G are smooth, so is B. It follows that the stalk OB,x is a regular local ring. Choose a local
system of parameters u1, . . . ,un in the maximal ideal of OB,x. For 0 6 i 6 n, let xi be the generic point of
the variety Bi ⊂ B defined by u1 = · · · = ui = 0 (we only consider the irreducible component containing x).
In particular, B0 = B. Then for every i = 1, . . . ,n the point xi+1 is regular of codimension 1 in the closure of
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xi . Moreover, x0 is the generic point of B, and xn = x. By assumption, α([π−1(x0)]) = 0. Applying [GMS03,
Part 2, Lemma 3.2] iteratively, we conclude that α([π−1(xi)]) = 0 for all i. In particular, α([π−1(x)]) = 0.
Since τY ((t)) is a pullback of π−1(x), we deduce that α([YK((t))]) = 0. Since H satisfies (B.1), we conclude
that α([Y ]) = 0, as desired. �
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