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Walls and asymptotics for Bridgeland stability conditions
on threefolds

Marcos Jardim and Antony Maciocia

Abstract. We consider Bridgeland stability conditions for threefolds conjectured by Bayer–Macrì–
Toda in the case of Picard rank 1. We study the differential geometry of numerical walls,
characterizing when they are bounded, discussing possible intersections and showing that they are
essentially regular. Next, we prove that walls within a certain region of the upper half plane that
parameterize geometric stability conditions must always intersect the curve given by the vanishing
of the slope function and, for a fixed value of s, have a maximum turning point there. We then
use these facts to prove that Gieseker semistability is equivalent to a strong form of asymptotic
semistability along a class of paths in the upper half plane, and we show how to find large families
of walls. We illustrate how to compute all of the walls and describe the Bridgeland moduli spaces
for the Chern character (2,0,−1,0) on complex projective 3-space in a suitable region of the upper
half plane.
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1. Introduction

Bridgeland’s notion of stability conditions on triangulated categories, introduced in [Bri07] and [Bri08],
provides a new set of tools to study moduli spaces of sheaves on smooth projective varieties. Such tools
have been successfully applied by many authors first to the study of sheaves on surfaces, see for example
[AM16, AB13, BM14a, BM14b, Fey16, Fey17, FL21, MM13, YY14], and more recently on threefolds (especially
P

3); see for instance [GHS18, MS20, Sch20a, Schi20b]. One way to study moduli spaces of sheaves using
Bridgeland stability spaces is to restrict attention to the so-called geometric stability conditions parameterized
by (a subset of) the upper half plane H. Once we know that the moduli space of Bridgeland-stable objects
is asymptotically given by the Gieseker semistable moduli space along an unbounded path, we can try to
locate all the points where the moduli space changes along this path (these isolated points are called walls)
and compute the change to the moduli space. Eventually, we might reach a point where the Bridgeland space
is empty, and then we can reverse our steps to reconstruct the Gieseker moduli space.

For surfaces, this is a fairly well-understood process. In that case, it is known that the geometric stability
space is non-empty, that there only finitely many walls inH away from the β-axis which are nested semicircles
centered along the horizontal axis and that Bridgeland stability is asymptotic to (twisted) Gieseker stability.
Furthermore, there is an effective algorithm to find all such walls for a given Chern character, and then we
can carry out the process above to recover the moduli space of semistable sheaves. One approach to finding
walls in this case is to observe that every wall for a given Chern character v intersects a special curve which
we will denote by Θv in this paper, given by the vanishing locus of the slope function να,β(v), and we can
then restrict our attention to finding walls along Θv .

The whole process becomes much more complicated for threefolds. We can still use the 2-dimensional
construction, but it does not produce full stability conditions, and it is unable to detect sufficient features of
the Gieseker moduli spaces since the latter does not coincide, in general, with the asymptotic moduli space.

The first step to improve this was made possible by a number of results guaranteeing the existence of
Bridgeland stability conditions on the derived category of sheaves on different types of threefolds, based
on the pioneering work of Bayer, Macrì and Toda [BMT14]. Their idea is to start with the surface case
and tilt again. This provides a full stability condition, and the family of moduli spaces is considerably
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more refined than the one provided by the first tilt. Even though there is no general result which shows
that their construction works for all smooth threefolds, it is known to work for a wide variety of relevant
examples: P3 [Mac14], smooth quadric threefolds, cf. [Sch14], abelian threefolds, cf. [BMS16, MP16], Fano
threefolds with Picard rank 1, cf. [Li19b], more general Fano threefolds, cf. [BMS+17, Piy17], and smooth
quintic threefolds, cf. [Li19a]. More precisely, the geometric stability conditions constructed by Bayer, Macrì
and Toda via the generalized Bogomolov–Gieseker inequality proposed in [BMT14] depend on three real
parameters (α,β,s) ∈R+×R×R+. For each of these, we have an abelian category Aα,β and a slope function
λα,β,s which allows us to test the stability of objects of Aα,β . There are, however, known counterexamples
(see [Sch17] and [MS19]) where the generalized Bogomolov–Gieseker inequality fails.

The goal of this paper is to advance on the other two stages of the process outlined above, namely the
understanding of the structure of walls and that of asymptotic stability. We only consider the case where
X is a smooth projective threefold of Picard rank 1 over an algebraically closed field of characteristic 0.
This means that we can view our Chern classes (and their twists) as purely numerical vectors of the form
v = (v0,v1,v2,v3).

In order to study walls, we start by providing a uniform way to define the slope functions and their
differences in terms of skew-symmetric functions. We go on to consider a number of general properties of
numerical λ-walls (defined as the locus where two λ-slopes are equal) in Section 4.1. They are, in general,
quartic curves, possibly unbounded and not connected.

In our first main result, we find a simple characterization of those numerical λ-walls which are bounded,
and we show that unbounded walls satisfy a version of Bertram’s nested wall theorem. Given numerical
Chern characters v, u and u′ , we define δ01(u,v) := u0v1 −u1v0 and an equivalence relation u ∼v u′ which
is essentially that the λ-walls for v corresponding to u and u′ are the same; see (4.9) for a precise definition.
We also remark that when v is a numerical Chern character satisfying the Bogomolov–Gieseker inequality
v2

1 − 2v0v2 ≥ 0 and v0 , 0, the curve Θv allows us to divide the upper half plane H into four regions (see
Figure 1 for an example and Section 3 for details).

Main Theorem 1. Suppose v0 , 0 and u �v u′ .

(1) The numerical λ-wall for v corresponding to u is bounded if and only if δ01(u,v) , 0.
(2) If δ01(u,v) = 0 = δ01(u′ ,v), then the numerical λ-walls corresponding to u and u′ do not intersect.
(3) If δ01(u,v) , 0 and ch≤2(u) = ch≤2(u′), then the numerical λ-walls for v corresponding to u and u′

only intersect on Θv .
(4) An unbounded numerical λ-wall for v does not intersect Θv , and its unbounded connected components are

contained in R0
v .

The different parts of Main Theorem 1 are proved in various results contained in Section 4.
The third stage, determining the asymptotics, is not well known. In [BMT14, Section 6], it is shown that

the large volume limit as α→∞ for (α,β) ∈H gives a polynomial stability condition, but the converse and
other directions were not considered. However, unlike the 2-dimensional case, we cannot assume the walls
are bounded in all directions. In fact, it is easy to check that as s→ 0, the walls are unbounded, and it is
theoretically possible that the number of walls is infinite.

This means that the large volume limit is more subtle than for surfaces. We need, therefore, to be more
careful about what we mean by asymptotic stability, which we define precisely in Definition 7.1. We use a
strong form of such asymptotic stability which effectively includes finiteness of the number of walls for a given
object. We also need to be careful to specify the curve along which we are considering the asymptotics. To
this end, we introduce the notion of unbounded Θ±-curve, which is essentially a curve which is asymptotically
either to the left or to the right of all Θ-curves; see Definition 5.9.

To help set this up, we also consider what would happen for surfaces, in Section 5. In our case, we look at
so-called ν-stability for threefolds, which mimics stability for surfaces given by the first tilt on the category
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Figure 1. The four regions of the plane as defined by the hyperbola Θv and the vertical line
{β = µ(v)} when v is a numerical Chern character satisfying the Bogomolov–Gieseker inequality
v2

1 − 2v0v2 ≥ 0 and v0 , 0. In this picture, we used ch≤2(v) = (2,−1,−5/2).

of coherent sheaves, by re-proving results about the large volume limit without the assumption that the walls
are bounded.

In order to describe the asymptotics, we need to understand how the stability of an object varies along
curves. For ν-stability, it turns out that stable objects can only be destabilized once along inward-moving
curves (which cross ν-walls only once). It turns out that this also holds for λ-stability outside the ν-wall.
See Theorem 7.8 for the details. Accomplishing such a task requires an understanding of the geometry of
λ-walls. For the ν-walls, this was simple because they were circles, and the key property is that they cross the
Θv-curve at their maximum. To understand the similar properties of λ-walls, we need to understand their
differential properties in a similar way. We do this is Section 6. Unlike ν-walls, λ-walls need not be regular,
and we carefully study when regularity fails. When s = 1/3, it is straightforward to prove that the walls are
regular except if they happen to cross a very special point (on Γu,1/3 and its ν-wall), in which case there is a
cusp. For other values of s, it is much harder. It turns out to be easier to study the differential properties of
the 2-dimensional wall where we allow s to vary, which we call Σu,v , regarded as a real algebraic quartic
surface in R3. We show that Σu,v is regular except at some exceptional points and for exceptional u and v
(see Theorem 6.7 for the details).

Moreover, there is again a special curve, here denoted by Γv,s, which is defined as the vanishing locus of
the slope function λα,β,s(v). When s = 1/3, a numerical λ-wall for v crosses Γv,1/3 at its maximum point
(just as a ν-wall crosses Θv at its maximum) and the associated ν-wall at its minimum point. This imposes
large constraints on the possible numerical λ-walls when s = 1/3. We also show that for s ≥ 1/3, any wall
existing for one value of s must also exist for all s. When s < 1/3, we show that any wall existing for s exists
for all value less than that of s.

The key conclusion is the following; see also Theorem 6.17. The proof uses key differential-geometric
information about Σu,v such as its Gauss and mean curvatures.

Main Theorem 2. Suppose a real numerical Chern character v satisfies the Bogomolov–Gieseker inequality and
v0 , 0. Any connected bounded component of a numerical λ-wall in R−v for some s ≥ 1/3 intersects Γ −v,s.

Although the same statement is not true for unbounded walls, we can describe the explicit conditions u
must satisfy so that the wall corresponding to u intersects Γv,s.

We are then finally in position to prove, in Section 7, that strong asymptotic stability is equivalent to
Gieseker stability. Our results can be summarized as follows.
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Main Theorem 3. Let v be a numerical Chern character with v0 , 0 and satisfying the Bogomolov–Gieseker
inequality; fix s ≥ 1/3.

(1) If γ is an unbounded Θ−-curve, then an object E ∈Db(X) is asymptotically λα,β,s-(semi)stable along γ if
and only if E is a Gieseker (semi)stable sheaf.

(2) If γ be an unbounded Θ+-curve, then an object E ∈Db(X) is asymptotically λα,β,s-(semi)stable along γ if
and only if E∨ is a Gieseker (semi)stable sheaf.

Duals of Gieseker semistable sheaves can be described via a technical lemma of independent interest
which characterizes duals of torsion-free sheaves on threefolds (see Proposition 2.15 for the details). We also
emphasize that more is true for the special curve Γv,s, which is an example of an unbounded Θ−-curve: the
first part of the previous statement holds for every s > 0.

The study of the differential geometry of λ-walls is also useful to help locate them. Here again there is
a complication. For ν-walls (or walls for surfaces), a point on an actual ν-wall corresponds to an actual
destabilizing sub-object F of an object E which is ν-stable on one side of the wall and ν-unstable on the
other. This is then always the case at all points along the numerical ν-wall. In other words, if a portion of a
numerical ν-wall is an actual ν-wall, then the whole numerical ν-wall is an actual ν-wall. It follows that to
locate actual ν-walls, it suffices to look along, say, a vertical line from the limiting centre or along Θv ; we do
this in two examples, one in Section 8.1 and the other in Lemma 8.4.

The situation for λ-walls is quite different. While we have proved that numerical λ-walls to the left of Θv
must intersect Γv,s, that need not be true for actual λ-walls. However, the largest actual λ-wall (if it exists)
must cross Γv,s, and this allows us to find λ-walls by working along Γv,s from infinity.

We work out a complete example for the case of the Chern character v = (2,0,−1,0) on P3. This
is done for the region to the left of Θv in Proposition 8.8. The key step is to first find what we call
pseudo-walls. These are given by destabilizing objects which satisfy the Bogomolov–Gieseker and generalized
Bogomolov–Gieseker inequalities. This approach to finding λ-walls complements Schmidt’s method [Sch20a,
Theorem 6.1], which is to observe that, essentially, the λ-walls crossing Θv must also cross their associated
ν-wall at the same point.

We close the paper with a number of examples for the case of P3 in Section 8. First we consider
the case of the ideal sheaf of a line; it illustrates one of two typical situations in which the Γv,s curve
intersects Θv . In this case, we show that there must exist a vanishing λ-wall containing the intersection point
(see Theorem 4.22), and we illustrate this by constructing such a wall for this example. We also consider the
ideal sheaf of a point for which Γv,s and Θv do not cross and provide some additional stability information
for our final example, which is the null correlation sheaves on P3. In this case, we show there are no ν-walls.
We exhibit a number of methods to illustrate the various phenomena which can occur and to locate walls,
and we show that there is effectively a single wall to the left of Θv . These cases are also considered from a
different point of view using Bridgeland stability in [SS21].

Throughout the paper we make very full use of the triangulated structure of the derived category of
coherent sheaves and especially the octahedral axiom. We use a higher-dimensional variant of the octahedral
axiom, which is key to understanding how objects vary in the heart Aα,β along paths in the upper half plane.
We illustrate this in Section 2.3 using Paul Balmer’s description of the objects of Aα,β .
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2. Background material and notation

Let X be an irreducible, non-singular projective variety of dimension 3 over an algebraically closed
field of characteristic 0 with Pic(X) = Z. Fix an ample generator L of Pic(X), and write ` = c1(L). Our
assumptions mean that each object A ∈Db(X) has a well-defined numerical Chern character

ch(A) := (ch0(A)`3,ch1(A) · `2,ch2(A) · `,ch3(A)) ∈Z×Z× 1
2
Z× 1

6
Z.

Abusing notation, we will simply write chi(A) for chi(A) · `3−i . We will refer to an element of R4 =
R⊗Knum(X) as a real numerical Chern character and an element v of Z×Z× 1

2Z×
1
6Z as a Chern character

when there is an object A ∈ Db(X) such that v = ch(A). We write the components as v = (v0,v1,v2,v3)
corresponding to the Chern characters of objects so that the underlying real Chern character v which is the
numerical Chern character ch(A) of an object of Db(X) satisfies vi = chi(A).

Given β ∈ R, recall the definition of the twisted Chern character chβ(A) := exp(−β) · ch(A) =
(chβ0(A),chβ1(A),chβ2(A),chβ3(A)). So

chβ0(A) := ch0(A);

chβ1(A) := ch1(A)− β ch0(A);

chβ2(A) := ch2(A)− β ch1(A) +
1
2
β2 ch0(A);

chβ3(A) := ch3(A)− β ch2(A) +
1
2
β2 ch1(A)− 1

6
β3 ch0(A).

Recall that the µ-slope of a coherent sheaf E ∈ Coh(X) is defined as follows:

µ(E) :=

ch1(E)/ ch0(E) if E is torsion-free,

+∞ otherwise.

In addition, we also define

µ+(E) := max{µ(F) | F ↪→ E is a non-zero subsheaf } and

µ−(E) := min{µ(G) | E� G is a non-zero quotient }.
As usual, E is said to be µ-(semi)stable if every non-zero subsheaf F ↪→ E satisfies µ(F) < (≤) µ(E/F). So E
is µ-semistable if and only if µ+(E) = µ(E) or, equivalently, µ−(E) = µ(E).

2.1. ν-stability

Given β ∈R, consider the following torsion pair on Coh(X):

Tβ := {E ∈ Coh(X) | every non-zero quotient E� G satisfies µ(G) > β} and

Fβ := {E ∈ Coh(X) | every non-zero subsheaf F ↪→ E satisfies µ(F) ≤ β}.

Tilting on (Fβ ,Tβ), one obtains an abelian subcategory Bβ := 〈Fβ[1],Tβ〉 of Db(X), which is the heart of a
t-structure on Db(X).

For B ∈Db(X), let Hp(B) denote cohomology with respect to Coh(X). Observe that the objects of Bβ are
those B ∈Db(X) such that:

• Hp(B) = 0 for p , −1,0;
• H−1(B) ∈ Fβ ; and
• H0(B) ∈ Tβ .
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In particular, from the definition of Fβ , the sheaf H−1(B) must be torsion-free.
Introducing a new parameter α ∈R+, one considers a group homomorphism

Ztilt
α,β : Knum(X)→C,

called a central charge, given by

(2.1) Ztilt
α,β(B) := −

(
chβ2(B)− 1

2
α2 ch0(B)

)
+
√
−1chβ1(B),

whose corresponding slope function is

(2.2) να,β(B) :=


chβ2(B)−α2 ch0(B)/2

chβ1(B)
if chβ1(B) , 0,

+∞ if chβ1(B) = 0.

In addition, we also define

ν+
α,β(B) := max{να,β(F) | F ↪→ B in Bβ , F , 0} and

ν−α,β(B) := min{να,β(G) | B� G in Bβ , G , 0}.

An object B ∈ Db(X) is said to be να,β-(semi)stable if B ∈ Bβ and every non-zero sub-object F ↪→ B

within Bβ satisfies να,β(F) < (≤) να,β(B/F). Note that E is να,β-semistable if and only if ν+
α,β(E) = να,β(E)

or, equivalently, ν−α,β(E) = να,β(E).

Every µ-semistable sheaf and every να,β-semistable object B ∈ Bβ satisfies the usual Bogomolov–Gieseker
inequality, which in our situation is purely numerical, see [BMT14, Corollary 7.3.2]:

(2.3) Qtilt(B) := ch1(B)2 − 2ch0(B)ch2(B) ≥ 0.

In addition, for certain choices of X, every να,β-semistable object B ∈ Bβ also satisfies the following
generalized Bogomolov–Gieseker inequality:

Qα,β(B) = α2Qtilt(B) + 4(chβ2(B))2 − 6chβ1(B)chβ3(B)

=Qtilt(B)(α2 + β2) + (6ch0(B)ch3(B)− 2ch1(B)ch2(B))β + 4ch2(B)2 − 6ch1(B)ch3(B)

≥ 0,

(2.4)

originally proposed in [BMT14, Conjecture 1.3.1]. This inequality was proved to hold for all Fano and abelian
threefolds with Picard rank 1, see [Li19b] and [BMS16, MP16], respectively, and for the quintic threefold; see
[Li19a]. We assume from now on that X is such that the generalized Bogomolov–Gieseker inequality (2.4)
holds for all να,β-semistable objects.

Let H :=R+ ×R, thought of as the upper half plane, with coordinates denoted by (α,β). We will want to
consider the slope function as a function of α and β, and to this end it is convenient to define the following
function on (α,β) ∈H:

(2.5) ρv(α,β) = v2 − v1β +
1
2
v0(β2 −α2),

which coincides with the numerator of να,β(B) when v = ch(B). To simplify the notation, we define
ρB(α,β) := ρch(B)(α,β) for objects B ∈Db(X).

Note that the pair (Bβ ,Ztilt
α,β) is a weak stability condition in Db(X), in the sense of [Tod10, Section 2], for

all pairs (α,β) ∈R+ ×R. In practical terms, this gives the following.

Proposition 2.1. Fix β ∈R. If B ∈ Bβ , then chβ1(B) ≥ 0, with equality only if ρB(α,β) ≥ 0 for all α > 0.
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2.2. λ-stability

The next step is to consider the following torsion pair on Bβ :

Tα,β := {E ∈ Bβ | every non-zero quotient E� G satisfies να,β(G) > 0} and

Fα,β := {E ∈ Bβ | every non-zero sub-object F ↪→ E satisfies να,β(F) ≤ 0}.

Tilting on (Fα,β ,Tα,β), one obtains a new abelian subcategory Aα,β := 〈Fα,β[1],Tα,β〉 of Db(X), which is
also the heart of a t-structure on Db(X).

One then introduces a third parameter s > 0 in order to define a family of central charges

Zα,β,s : Knum(X)→C

as follows, for A ∈ Aα,β :

(2.6) Zα,β,s(A) := −chβ3(A) +
(
s+ 1/6

)
α2 chβ1(A) +

√
−1

(
chβ2(A)−α2 ch0(A)/2

)
,

whose corresponding slope function is

(2.7) λα,β,s(A) :=


chβ3(A)−

(
s+ 1/6

)
α2 chβ1(A)

chβ2(A)−α2 ch0(A)/2
if chβ2(A)−α2 ch0(A)/2 , 0,

+∞ if chβ2(A)−α2 ch0(A)/2 = 0.

Remark 2.2. We could also consider a more general central charge, whose real part is

−chβ3(A) + bchβ2(A) + achβ1(A)

for parameters b ∈R and a ∈R+; see [BMS16, Lemma 8.3] and [Piy17]. However, we will only consider the
special case where b = 0, while a = α2(s+ 1/6).

An object A ∈Db(X) is said to be λα,β,s-(semi)stable if A ∈ Aα,β and every non-zero sub-object F ↪→ A

within Aα,β satisfies λα,β,s(F) < (≤) λα,β,s(B/F).
For further reference, we define for each real numerical Chern character v ∈R4 the following function on

(α,β) ∈H:

(2.8) τv,s(α,β) = v3 − v2β +
1
2
v1β

2 − 1
6
v0β

3 −
(
s+

1
6

)
(v1 − v0β)α2,

which coincides with the numerator of λα,β,s(A) when v = ch(A). Again, we define τA,s(α,β) := τch(A),s(α,β)
for objects A ∈ Db(X), and we will also write τv(α,β,s) = τv,s(α,β). Note that, when non-zero, the
denominator of λα,β,s(A) is ρA(α,β).

Finally, a direct consequence of the generalized Bogomolov–Gieseker inequality (2.4) is that (Aα,β ,Zα,β,s) is
a (numerical) stability condition, in the sense of [BMT14, Definition 2.1.1], for every triple (α,β,s) ∈R+×R×R+.
In practical terms, this yields the following.

Proposition 2.3. Fix (α,β) ∈H. If A ∈ Aα,β is non-zero, then ρA(α,β) ≥ 0, with equality only if τA,s(α,β) > 0
for every s ∈R+.

The generalized Bogomolov–Gieseker inequality can also be used to prove a form of the support property
for λα,β,s-semistability. In the case we are considering where the Picard rank is 1, we can state it as follows.

Proposition 2.4 (cf. [BMS16, Theorem 8.7]). Suppose X is a smooth threefold with Picard rank 1 such
that the generalized Bogomolov–Gieseker inequality (2.4) holds for all να,β-semistable objects. If E ∈ Aα,β is
λα,β,s-semistable, then Qα,β(E) ≥ 0.

Remark 2.5. This implies that (Aα,β ,Zα,β,s) is a (full) Bridgeland stability condition on Db(X).
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Remark 2.6. Observe that λα,β,s-semistable objects may not satisfy the usual Bogomolov–Gieseker inequality.
For example, on P

3, the object A := OX[2] ⊕ OX(1) is λ1/2
√

1+6s,1/2,s-semistable for every s > 0, but
Qtilt(A) = −1.

When we come to do more detailed computations, it will also be useful to have a more uniform notation
for the various functions of v ∈ Knum(X) introduced above; more precisely, we define the following:

(2.9)
chα,β0 (v) := v0, chα,β2 (v) := ρv(α,β),

chα,β1 (v) := chβ1(v), chα,β3 (v) := τv,1/3(α,β).

By convention, we set chα,βi (v) = 0 for i < {0,1,2,3}. Alternatively, one can also define

chα,β(v) = Re
(
exp(−β −

√
−1α) · v

)
.

The reason for setting s = 1/3 will become clearer in Section 4.2, but one technical reason is that the

partial derivatives of chα,βi (v) with respect to α and β behave very well; more precisely,

(2.10) ∂α chα,βi (v) = −α chα,βi−2(v) and ∂β chα,βi (v) = −chα,βi−1(v).

Note that τv,s(α,β) = chα,β3 (v)−α2(s − 1/3)chα,β1 (v).
We also introduce

(2.11)
∆ij(α,β) := chα,βi (u)chα,βj (v)− chα,βj (u)chα,βi (v) and

δij(u,v) := chi(u)chj(v)− chj(u)chi(v) = ∆ij(0,0).

In particular, note that ∆10(α,β) = δ10(u,v).
The following is an easy exercise.

Lemma 2.7. Fix real numerical Chern characters u and v.

(1) We have ∆01∆23 +∆02∆31 +∆12∆03 = 0.
(2) The partial derivatives of ∆ij are given by

∂α∆ij(α,β) = −α
(
∆i−2 j(α,β) +∆i j−2(α,β)

)
,

∂β∆ij(α,β) = −
(
∆i−1 j(α,β) +∆i j−1(α,β)

)
.

(3) Assume either chα,βi (u) , 0 or chα,βi (v) , 0. Then, for any i, j,k ∈ {0,1,2,3}, if ∆ij(α,β) = 0 = ∆ik(α,β),
then ∆jk(α,β) = 0.

(4) The following are equivalent:

(a) There exist α,β and i ∈ {0,1,2,3} such that chα,βi (v) , 0 (or chα,βi (u) , 0) and for all j ∈ {0,1,2,3},
∆ij(α,β) = 0.

(b) For all α,β and for all i, j ∈ {0,1,2,3}, we have ∆ij(α,β) = 0.
(c) We have u ∝ v.

Note that u ∝ v means that u and v are proportional as vectors.
In what follows, we will useMα,β,s(v) to denote the set of λα,β,s-semistable objects with Chern character v;

Piyaratne and Toda proved in [PT19] thatMα,β,s(v) has the structure of an algebraic stack, locally of finite
type over C. Determining whetherMα,β,s(v) also has the structure of a projective variety is an important
problem.
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2.3. The second tilt category

We will now collect some useful facts about the objects in the second tilt category Aα,β . Much of the
following is well known and is easy to deduce in various ad hoc ways, but we give a novel treatment using
higher octahedra which is of independent interest (the idea first appeared in [Bal11]). We will henceforth drop
the X from the notation Aα,β . Recall that Hi denotes cohomology in Coh(X) and HiB denotes cohomology
in Bβ .

Suppose A ∈ Aα,β for some (α,β) ∈H. We write Ai = H−iB (A) and Aij = H−j(Ai). So we have three
distinguished triangles:

(2.12)

A11[1]→ A1→ A10,

A01[1]→ A0→ A00,

A1[1]→ A→ A0.

Because these triangles intersect, we can arrange them into a diagram as follows:

(2.13)

A01 A0[−1] A1[1] A10[1]

A00[−1] C Ã[1] A01[1]

A C′ A0

A11[3] A1[2]

A10[2].

// // //

// // //

��
//
��

�� ��
//

��

��

ff

�� �� ��
//

//

ff

ff

ff

Here the squiggly arrows X Y mean X→ Y [1]. The diagram is meant to repeat infinitely above and
to the right by shifting by [−n] and [n]. Every square commutes, and the triangles along the diagonal are
distinguished. Furthermore, each triple of morphisms formed by composing horizontally and then vertically
and then looping back via the repeated diagram to the right is distinguished. The additional objects C, C′

and Ã[1] are defined as cones on suitable composites. Three of the triangles are given in display (2.12), and
the remaining seven are

(2.14)

A1[1]→ C→ A01[1]→ A1[2],

A10[1]→ C′→ A0→ A10[2],

A10[1]→ Ã[1]→ A01[1]→ A10[2],

C→ A→ A00→ C[1],

A11[2]→ A→ C′→ A11[3],

A11[2]→ C→ Ã[1]→ A11[3],

Ã[1]→ C′→ A00→ Ã[2].

The first two tell us what the Bβ-cohomologies of C and C′ are. The third tells us that Ã ∈ Coh(X). The
fourth and fifth tell us what the Aα,β-cohomologies of C and C′ are, and the final two tell us what the
Coh(X)-cohomologies of C and C′ are. In particular, we have that

(2.15) H−2(A) ' A11, H−1(A) = Ã and H0(A) ' A00.

There are also five distinguished octahedra which are obtained by removing one row and column from
the diagram in display (2.13) (for a more concrete example of an octahedron in this form, see the diagrams
(2.22) in the proof of Proposition 2.15). The diagram can also be represented as a 4-dimensional shape given



Walls and asymptotics on threefolds 11Walls and asymptotics on threefolds 11

as a truncated 5-simplex with five octahedral and five tetrahedral faces. Another way to express the diagram
is that A is filtered in Db(X) by

A00[−3]→ A01[−1]→ A10→ A11[2]→ A

with factors A0[−2], Ã and A1[1], respectively.
Observe that Ai1 ∈ Fβ , and these must be torsion-free sheaves, while Ai0 ∈ Tβ and, in particular,

A00 ∈ Aα,β . In fact, a slightly stronger statement is true.

Lemma 2.8. If A ∈ Aα,β for some (α,β) ∈H, then H−2(A) must be a reflexive sheaf.

Proof. Assume H−2(A) ' A11 is not reflexive and T := A∗∗11/A11 , 0. Then T → A11[1] is a monomorphism
in Bβ . Since A11[1] is a Bβ-sub-object of A1, it must have ν+

α,β(A11) ≤ 0. However, να,β(T ) = +∞, providing
a contradiction. �

The following fact will also be useful later on.

Lemma 2.9. If A ∈ Aα,β for some (α,β) ∈H satisfies H−2(A) =H−1(H0
β(A)) = 0, then Hp(A) ' Hpβ(A) for

p = −1,0.

Proof. Chasing through the seven triangles listed in display (2.14) with A11 = A01 = 0, one concludes that
Ã ' C ' A1, which is the same as H−1(A) ' H−1

β (A) by the isomorphisms in (2.15). The vanishing of A01

also implies that A0 ' A00 by the sequences in display (2.12); hence H0(A) 'H0
β(A). �

We will need to consider short exact sequences in Aα,β ; we look at situations where the middle term is in
either Bβ or Bβ[1].

Lemma 2.10. If A ∈ Aα,β ∩Bβ and B ↪→ A� C is a short exact sequence in Aα,β , then there are in Aα,β a
short exact sequence D ↪→ A� C′ , a quotient C� C′ and an injection B ↪→D such that C′ ,D ∈ Bβ .

Proof. Apply HB to get a long exact sequence in Bβ :

0→ C1→ B→ A→ C0→ 0.

Note, in particular, that B ∈ Bβ . Split this via D . Then ν−α,β(D) > 0, and so D ∈ Aα,β . Set C′ = C0. Then

we have a short exact sequence D→ A→ C′ in Aα,β together with an injection B ↪→ D and a surjection
C� C′ also in Aα,β , as required. �

Lemma 2.11. If A ∈ Aα,β ∩Bβ[1] and B ↪→ A� C is a short exact sequence in Aα,β , then there are in Aα,β a
short exact sequence B′ ↪→ A�D, a sub-object B′ ↪→ B and a quotient D� C with B′ ,D ∈ Bβ[1].

Proof. Apply HB to get a long exact sequence in Bβ :

0→ B1→ A1→ C1→ B0→ 0.

In particular, C ∈ Bβ[1]. Split this via D[−1]. Then ν+
α,β(D) ≤ 0, and so D ∈ Aα,β . Then we have a

short exact sequence B1[1] ↪→ A � D in Aα,β together with an injection B1[1] ↪→ B and a surjection
D� C1[1] = C in Aα,β , as required. �

When the middle term is in Coh(X), we can say a lot more.

Proposition 2.12. Suppose E ∈ Aα,β ∩Coh(X) and D ↪→ E is a non-zero monomorphism in Aα,β . Then E ∈ Bβ

and D01[2] ∈ Aα,β . Furthermore, there are an F ∈ Coh(X)∩Bβ ∩Aα,β and monomorphisms D
φ
↪→ F ↪→ E in

Aα,β such that one of the following holds for G := E/F in Aα,β :
(1) G ∈ Coh(X)∩Bβ .
(2) G ∈ Coh(X)[1]∩Bβ[1], and φ is the identity.
(3) G ∈ Coh(X)[1]∩Bβ .
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Proof. If A = E ∈ Aα,β ∩Coh(X), then the triangles (2.12) and (2.14) imply C = 0, and then A1[1] is a sheaf,
and so A1 = 0. This establishes E ∈ Bβ .

Applying cohomology in Bβ to the triangle D→ E→ B, where B = E/D in Aα,β , we have that D1 = 0
and have a Bβ long exact sequence

(2.16) 0→ B1→D→ E→ B0→ 0.

So D ∈ Bβ ∩ Aα,β . Split (2.16) in the middle via Q ∈ Bβ , say. From the Bβ short exact sequence
D→Q→ B1[1], we see that Q ∈ Bβ ∩Aα,β and D→Q injects in Aα,β . Applying cohomology in Coh(X)
to the triangle Q→ E→ B0, we see that Q ∈ Coh(X). Applying it to B1→D→Q, we get

B11 �D01 and 0→ B10→D00→Q→ 0

in Coh(X). From this, it follows that D01 ∈ Aα,β[−2].
If D01 , 0, we set F = Q, and then we repeat the above argument with Q replacing D . So we can

assume D01 = 0. Suppose B0 = 0. Then Q = E. Now set F = D00 = D . Then we have case (2) as
G := B10[1] ∈ Bβ[1]∩Aα,β .

Otherwise, B0 , 0. Note that D ↪→Q in Aα,β , and so to find F, we may assume B1 = 0 (by replacing D
by Q in the above). Applying cohomology in Coh(X), we have a long exact sequence

0→ B01→Q→ E→ B00→ 0.

If B00 = 0, then we take F = Q, and we have case (3). Otherwise, we split the sequence via F. From
Q→ F→ B01[1], we see that F ∈ Aα,β ∩Bβ . This is case (1). Note that the triangles Q→ F→ B01[1] and
B01[1]→ B→ B00 imply that B01[1] ∈ Aα,β , and so Q→ F injects (and so D→ F also injects).

The general case can be summarized in a higher octahedron:

(2.17)

B00[−1] F B̃[1] B01[1]

E B B0 B00

D[1] Q[1] F[1]

B10[2] B̃[2]

B01[2].

// // //

// // //

��
//
��

�� ��
//

��

��

ff
�� �� ��

//

//

ff

ff

ff

�

2.4. Duals of semistable sheaves

Given an object A ∈ Db(X), we denote its derived dual by A∨ := RHom(A,OX)[2]. For a sheaf E, its
derived dual E∨ satisfies Hj(E∨) = Extj+2(E,OX) for j = −2,−1,0,1 and Hj(E∨) = 0 otherwise. If E is
torsion-free, then we have the following short exact sequence in Coh(X):

(2.18) 0→ E→ E∗∗→QE → 0, QE := E∗∗/E,

where E∗ :=Hom(E,OX). Note that dimQE ≤ 1; letting ZE be the maximal 0-dimensional subsheaf of QE ,
define TE := QE/ZE . Let E′ be the kernel of the composed epimorphism E∗∗� QE � TE ; it fits into the
following short exact sequence in Coh(X):

(2.19) 0→ E→ E′→ ZE → 0.

We then have that Hj(E∨) = 0 for j , −2,−1,0, and

H−2(E∨) = E∗ ' E′∗, H−1(E∨) = Ext1(E,OX) ' Ext1(E′ ,OX) and

H0(E∨) = Ext2(E,OX) ' Ext3(ZE ,OX).
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Moreover, Ext1(E,OX) ' Ext1(E′ ,OX) fits into the short exact sequence

0→Ext1(E∗∗,OX)→Ext1(E,OX)→Ext2(TE ,OX)→ 0.

Clearly, E∗ ∈ Fβ for β > µ+(E∗), while Ext1(E,OX) ∈ Tβ for every β; it follows that E′∨[−1] ∈ Bβ for every
β > µ+(E∗). In addition, Z∨E [1] is a 0-dimensional sheaf, so Z∨E [1] ∈ Tβ ⊂ Bβ for every β. Comparing with
the triangle

(2.20) E′∨→ E∨→ Z∨E [1]

obtained from dualizing the sequence in display (2.19), we have proved the following.

Proposition 2.13. If E is a torsion-free sheaf and

0→ E→ E′→ ZE → 0

is the sequence (2.19), where ZE is the maximal 0-dimensional subsheaf of E∗∗/E, then

(2.21) H−1
β (E∨) ' E′∨[−1] and H0

β(E∨) ' Z∨E [1] ' Ext2(E,OX)

whenever β > µ+(E∗).

We can also formulate a converse to this construction. Let Coh(X)d denote the category of coherent
sheaves on X of dimension at most d. We want to be able to characterize when an object A ∈Db(X) which
has cohomology in three consecutive places Ai , Ai+1 and Ai+2 such that Ai is reflexive and Ai+j ∈ Coh(X)2−j
for j = 1,2 is the shift of the dual of a torsion-free sheaf. We will make use of this when we analyze the
asymptotics for β � 0; we will express them in the form of lifting properties. First we need a technical
lemma as an intermediate step. The equivalent statement in dimension 2 is an easy exercise: if A has
cohomology in two places with Ai locally free and Ai+1 ∈ Coh(X)0 such that any subsheaf S→ Ai+1 does
not lift to A, then A is the shift of the dual of a torsion-free sheaf.

Lemma 2.14. An object A ∈Db(X) satisfies the conditions

(1) Hi(A) = 0, i , −2,−1,0,
(2) F :=H−2(A) is a reflexive sheaf,
(3) G :=H−1(A) ∈ Coh(X)1,
(4) S :=H0(A) ∈ Coh(X)0,
(5) the induced map F∗→Ext2(G,OX) surjects, with kernel K , say,
(6) the induced map Ext1(F,OX)→Ext3(G,OX) is an isomorphism, and
(7) the induced map f : K →Ext3(S,OX) surjects

if and only if E := A∨ � kerf is a torsion-free sheaf.

Proof. To see where these induced maps come from, consider the triangles

F[2]→ A→ F̃→ F[3],

G[1]→ F̃→ S→ G[2].

Then we have maps

Hom(F,OX)→ RHom(F̃[−3],OX)→ RHom(G[−2],OX) � Ext2(G,OX)

and Ext1(F,OX)→ RHom(F̃[−4],OX)→Ext3(G,OX). The final one arises because there is a short exact
sequence of sheaves

0→Ext3(S,OX)→Ext3(F̃,OX)→Ext2(G,OX)→ 0,

and so K →Ext3(F̃,OX) lifts to K →Ext3(S,OX).
The lemma follows immediately from the spectral sequence

Ext−p(Hq(A),OX)⇒Hq−p+2(A∨),
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which converges on the third page to a single entry at (p,q) = (0,−2). Note that E is torsion-free because it is
the subsheaf of a reflexive sheaf (namely F∗). We also have that E′ � K , ZE � Ext3(S,OX), QE � Ext2(G,OX)
and TE � Ext3(G,OX). �

We can give a more categorical description of the conditions as follows.

Proposition 2.15. Suppose A ∈Db(X). Then A satisfies the conditions

(1) Hi(A) = 0, i , −2,−1,0,
(2) F :=H−2(A) is a reflexive sheaf,
(3) G :=H−1(A) ∈ Coh(X)1,
(4) S :=H0(A) ∈ Coh(X)0,
(5) no monomorphism S ′→ S in Coh(X) lifts to A, and
(6) no monomorphism G′→ G in Coh(X) lifts to A[−1]

if and only if E := A∨ is a torsion-free sheaf.

Proof. It is easy to see that the final two conditions are necessary because otherwise we would have maps
E→Ext3(S ′ ,OX)[−3] or E→Ext2(G′ ,OX)[−2] or E→Ext3(G′ ,OX)[−3], which are impossible.

For the converse, we show that (5) implies Lemma 2.14(7) while (6) implies Lemma 2.14(5) and Lemma 2.14(6)
by considering the contrapositives. For the proof, we consider the octahedron

(2.22)

F[2]

��

F[2]

��
B[1] //

��

A //

��

S

G[1] // F̃ // S

or

S[−1] B[1] G[1]

A F̃ S

F[3] B[2]

G[2].

// //

// //

��
//
��

��

ff
�� ��

ff

ff

Observe that the triangle F∨[−2]→ G∨→ B∨ shows that when Lemma 2.14 holds, B∨ = K[1].
First suppose K →Ext3(S,OX) fails to surject. Let the quotient be denoted by T ; this is in Coh(X)0. Let

S ′ be Ext(T ,OX). Then S ′→ S , and the composite with S→ B[2] vanishes and so lifts to A, as required.
Now suppose item (5) or (6) of Lemma 2.14 fails. Applying cohomology to the left vertical triangle of our

octahedron and abbreviating Hi(B) to Bi , we have

0→ B−1→ F∗→Ext2(G,OX)→ B0→Ext1(F,OX)→Ext3(G,OX)→ B1→ 0.

Then the cone on B−1[1]→ B is the dual of an object G′ supported in dimension 1, and there is a map
G′→ G which lifts to G′→ B. But there are no morphisms G′[1]→ T [−1], and so this lifts to a non-zero
map G′[1]→ A, as required. �

Remark 2.16. We can rephrase item (5) in Proposition 2.15 to say that if K → A is a map from a sheaf in
Coh(X)0, then the induced map K → S must be zero. Similarly, item (6) becomes the statement that if
K[1]→ A is a map with K ∈ Coh(X)1, then the induced map K → G must be zero. In practice, these are
easier to test, but we will make more use of the conditions stated in Proposition 2.15. It is also clear how to
extend the statement to higher dimensions.

2.5. Refining notions of stability for sheaves

We complete this section by introducing a stability condition in Coh(X) which interpolates between
µ-stability and Gieseker stability; it will play a role in some of the proofs below.

The Hilbert polynomial of a coherent sheaf E on X with respect to the polarization L is

PE(t) := χ(E ⊗L⊗t) = ch0(E)χ(L⊗t) + ch1(E)x2(t) + ch2(E)x1(t) + ch3(E),
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where

x2(t) :=
(1

2
t2L2 + t td1(X) ·L+ td2(X)

)
, x1(t) := (tL+ td1(X)) ,

and the tdj(X) denote the Todd classes of X. If F is another coherent free sheaf on X, we define, following
[Rud97, Section 2],

Λ(E,F) :=
(
δ10(E,F),δ20(E,F),δ30(E,F),δ21(E,F),δ31(E,F),δ32(E,F)

)
,

where δij(E,F) := δij(ch(E),ch(F)) following the notation introduced in display (2.11).
We remark that a coherent sheaf E is Gieseker (semi)stable if and only if every proper, non-trivial subsheaf

F ↪→ E satisfies Λ(E,F) > (≥) 0 in the lexicographic order. For instance, assume E is torsion-free, and let
F ↪→ E be a proper subsheaf; letting pE(t) denote the reduced Hilbert polynomial of the sheaf E, we have

pE(t)− pF(t) =
1

ch0(E)ch0(F)

(
δ10(E,F)x2(t) + δ20(E,F)x1(t) + δ30(E,F)

)
,

so E is Gieseker (semi)stable if and only if(
δ10(E,F),δ20(E,F),δ30(E,F)

)
> (≥) 0

in the lexicographic order. Similarly, a torsion-free sheaf E is Gieseker (semi)stable if and only if every
quotient sheaf E� G satisfies (

δ10(E,G),δ20(E,G),δ30(E,G)
)
< (≤) 0

in the lexicographic order.
In what follows, it will be important to consider another notion of stability for torsion-free sheaves, which

is equivalent to the notion of stability in the category Coh3,1(X) in the sense of [HL10, Definition 1.6.3].

Definition 2.17. A torsion-free sheaf E on X is said to be µ≤2-(semi)stable if every proper, non-trivial
subsheaf F ↪→ E satisfies (δ10(E,F),δ20(E,F)) > (≥) 0 in the lexicographic order.

For the sheaf E′ defined as in display (2.19), we observe that:

(i) E is µ-(semi)stable if and only if E′ is µ-(semi)stable;
(ii) E is µ≤2-(semi)stable if and only if E′ is µ≤2-(semi)stable.

The first claim follows from the fact that E′∗ = E∗. For the second claim, note that ch≤2(E′) = ch≤2(E)
since E′/E is 0-dimensional; in addition, any subsheaf F′ ↪→ E′ will induce a subsheaf F ↪→ E such that
ch≤2(F′) = ch≤2(F).

Clearly, one has the following chains of implications:

µ-stable ⇒ µ≤2-stable ⇒ Gieseker stable ⇒

⇒ Gieseker semistable ⇒ µ≤2-semistable ⇒ µ-semistable.

Example 2.18. It is not hard to find explicit examples that show that the reverse implications do not hold
in general. Indeed, for X = P3, let S be a rank 2 reflexive sheaf given as an extension of an ideal sheaf of
a line L ⊂ P3 by O

P
3 ; note that ch(S) = (2,0,−1,1). Let C ⊂ P3 be curve, and consider an epimorphism

ϕ : S� OC(k); define Eϕ := kerϕ.

(1) If C is a line not intersecting L and k > 0, then Eϕ is µ≤2-semistable but not Gieseker semistable.
(2) If C is a conic not intersecting L and k = 0, then Eϕ is µ≤2-stable but not µ-stable.
(3) If C is a line intersecting L in a single point, then Eϕ is Gieseker stable but not µ≤2-stable.

Finally, we also recall the following notion of stability for sheaves of dimension 2; compare with [HL10,
Definition 1.6.8].
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Definition 2.19. A torsion sheaf T ∈ Coh(X)2 on X is said to be µ̂-(semi)stable if it is pure and every
subsheaf U ⊂ T satisfies

µ̂(U ) :=
ch2(U )
ch1(U )

< (≤)
ch2(T )
ch1(T )

= µ̂(T ).

Setting Λ2(E,F) := (δ10(E,F),δ20(E,F),δ21(E,F)), we introduce the following version of the Harder–
Narasimhan filtration, which will be useful later on.

Lemma 2.20. Every sheaf E admits a filtration 0 = E0 ⊆ E1 ⊂ · · · ⊂ En = E satisfying the following conditions:

(1) dimE1 ≤ 1, and dimEk ≥ 2 for every k ≥ 2.
(2) Each factor Gk := Ek/Ek−1 for k ≥ 2 is either µ̂-semistable (if dimEk/Ek−1 = 2) or µ≤2-semistable (if

Ek/Ek−1 is torsion-free), and

Λ2(Gk ,Gk+1) > 0 for k = 1, . . . ,n− 1.

Proof. Let E1 be the maximal subsheaf of E of dimension at most 1, so that F := E/T has dimension at
least 2. Note that this E1 might be the zero sheaf.

Next, let F = F0 � F1 � · · · ⊂ Fn = 0 be the Harder–Narasimhan cofiltration of F as an object in the
category Coh3,1(X), in the sense of [HL10, Theorem 1.6.7]; each Fk is a sheaf of dimension at least 2, either
µ̂- or µ≤2-semistable. Composing with E� F provides our required cofiltration and hence a filtration in the
usual way. �

3. Regions of H

Let v be a real numerical Chern character with v0 , 0 satisfying Qtilt(v) ≥ 0. It follows that the curve

Θv := {ρv(α,β) = 0}

is a hyperbola in H, centered around the vertical line Mv := {β = µ(v)}; explicitly,

(3.1) ρv(α,β) = 0 ⇐⇒ (β −µ(v))2 −α2 =
Qtilt(v)

v2
0

.

When v fails the Bogomolov–Gieseker inequality, we occasionally still consider Θv , but now it is a single-
branch hyperbola cutting the α-axis.

The hyperbola Θv divides H into three regions R− tR0 tR+ defined as follows:

R−v = {(α,β) | ρv(α,β) > 0 and β < µ(v)},

R0
v = {(α,β) | ρv(α,β) < 0 or ρv(α,β) = 0 and β < µ(v)}, and

R+
v = {(α,β) | ρv(α,β) ≥ 0 and β > µ(v)}.

Notice that R−v does not include any of the Θv , whereas R
0 and R+

v include the branch of Θv to their left. In
addition, R0

v is split in half by the vertical line {β = v1/v0}; we shall denote these regions by R0+
v and R0−

v (to
include the vertical line) to the left and right, respectively. These regions are illustrated in Figure 1.

Remark 3.1. The various cases which arise in Proposition 2.12 can be rewritten usefully in terms of these
regions. In the notation of the statement, we have F ∈ R−ch(F), and then the cases are:

(1) G ∈ R−ch(G),

(2) G ∈ R0+
ch(G),

(3) G ∈ R0−
ch(G).

The categories Aα,β along the curve Θv satisfy some strong conditions. These form the basis for
Theorem 4.21 (see also [Sch20a, Lemmas 6.2 and 6.4]).
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Proposition 3.2. If A ∈ Aα,β with ch(A) = v and (α,β) ∈ Θv , then, for every s > 0, A is λα,β,s-semistable,
H0
β(A) ∈ Coh(X)0, and H−1

β (A) is να,β-semistable.

Conversely, if B ∈ Bβ with ch≤2(B) = ch≤2(v) is να,β-semistable for some (α,β) ∈Θv and P ∈ Coh(X)0, then
every non-trivial extension A ∈ Ext1(P ,B[1]) with ch(A) = v belongs to Aα,β and is λα,β,s-semistable for every
s > 0.

Proof. Suppose F ↪→ A is a sub-object in Aα,β . Since ρA(α,β) = 0, we have that ρF(α,β) = 0 as well; thus
λα,β,s(F) =∞. The analogous statement holds for quotient objects. Hence, E is λα,β,s-semistable for every
s > 0.

Now write A as

0→ A1[1]→ A→ A0→ 0

in Aα,β . As in the argument above, we also conclude that ρA0
(α,β) = 0. However, this contradicts

ν−α,β(A0) > 0 unless A0 ∈ Coh(X)0. Since A1 ∈ Fα,β , we have ν+
α,β(A1) ≤ 0 = να,β(A1), and so A1 is

να,β-semistable.
For the second statement, note that every sub-object F ↪→ B within Bβ satisfies να,β(F) ≤ να,β(B) = 0

since B is να,β-semistable and (α,β) ∈ Θv . It follows that B ∈ Fα,β ; thus B[1] ∈ Aα,β . Since P ∈ Coh(X)0,
then P ∈ Tα,β for every (α,β) ∈H; thus any extension A ∈ Ext1(P ,B[1]) does belong to Aα,β . For every
s > 0, we have λα,β,s(A) = +∞ because (α,β) ∈Θv ; thus A must be λα,β,s-semistable. �

3.1. Variation of Aα,β along paths

Fix a numerical Chern character v, a point (α,β) ∈ R−v and some object A of Aα,β with ch(A) = v.
Suppose γ : [0,b) → H is a path in the upper half plane with γ(0) = (α,β). Let πi : H → R be the
projection maps (so that π1 picks out the α-value and π2 the β-value). First assume β(t) := π2(γ(t)) is
constant and α(t) := π1(γ(t)) is monotonic increasing. As before we write A0 and A1 for the Bβ-cohomology
of A. Observe that the Harder–Narasimhan factors of A0 and A1 with respect to να,β are locally constant
(they change only on λ-walls corresponding to the factors). Let A−0 be the Harder–Narasimhan factor of A0
with να,β(A−0) = ν−α,β(A0). Then as we move along γ (upwards), A remains in Aα,β until we cross Θ−ch(A−0 ) (in

a Harder–Narasimhan chamber), at which point H1
A(A) = A−0 . But since ν

+
α,β(A1) < 0 and we are traversing

the path upwards, for any Harder–Narasimhan factor A′1 of A1 with ch(A′)1 = v′ , we start in the region
R0
v′ . Hence we can only cross Θ+

ch(A′1), but this does not take A out of Aγ(t). The reverse happens if α(t) is
monotonic decreasing. In this case, if A+

1 is the Harder–Narasimhan factor corresponding to ν+
γ(t)(A1), then

as we cross Θ+
ch(A+

1 ), A moves out of Aγ(t) with H−1
A (A) = A+

1 . Otherwise, A remains in Aγ(t).
This also applies to horizontal paths, but now we need to consider what happens when we cross vertical

lines Mu = {β = µ(u)} corresponding to u equal to Chern characters of µ-Harder–Narasimhan factors of
A00, A10, A01 and A11. In this case, we see that crossing these lines does not affect A. To see this, consider
one of the cases where µ−(A10) = µ(B) and Ã10 = ker(A10→ B) in Coh(X). Then we have an octahedron

A1 A10 B

A11[2] Q[1] A1[1]

Ã10[1] A10[1]

B[1]

// //

// //

��
//
��

��

ff

�� ��

ff

ff

for some new object Q. From this it follows that Q ∈ Bβ and that ν∗α,β(Q) ≤ 0 as Q is a Bβ-sub-object of A1.

So Q[1] ∈ Aα,β . Now we add the triangle A1[1]→ A→ A0 to the octahedra by inserting a second column



18 M. Jardim and A. Maciocia18 M. Jardim and A. Maciocia

and second row to form a higher octahedron (see Section 2.3)

(3.2)

A0[−2] A1 A10 B

A[−1] C′[−1] D[−1] A0[−1]

A11[2] Q[1] A1[1]

Ã10[1] A10[1]

B[1]

// // //

// // //

��
//
��

�� ��
//

��

��

ff

�� �� ��
//

//

ff

ff

ff

with a new object D, where C′ is from (2.14). The triangle B[1]→D→ A0 implies that D ∈ Aα,β . We also
see that Q[1]→ A→ D is a triangle and so A ∈ Aα,β . Hence, A remains in Aα,β through Mu . The other
cases follow similarly.

In conclusion, we have proved the following.

Theorem 3.3. Suppose (α0,β0) ∈H and A ∈ Aα0,β0 . Let A−0 be the Harder–Narasimhan factor of A0 ∈ Bβ0

with least να0,β0
and A+

1 the Harder–Narasimhan factor of A1 with the greatest να0,β0
. Also suppose Θ+

ch(A+
1 ) does

not contain (α0,β0). Then there is an open neighbourhood U of (α0,β0) such that A ∈ Aα,β for all (α,β) ∈U .
Furthermore, any boundary of U consists of Θ+

w-curves associated to sub-objects in Bβ or Θ−w-curves of quotient
objects.

3.2. The Γ -curve

The next step is to understand the vanishing locus of λ-slope for a given numerical Chern vector v and
to study its relative position with respect to Θv .

Definition 3.4. For any real numerical Chern character v and s ≥ 0, we define the curve

Γv,s := {(α,β) ∈H | τv,s(α,β) = 0}.

In addition, we set Γ •v,s := Γv,s ∩R•v , with • = −,0,+.

The curve Γv,s is given explicitly by

(3.3) v0β
3 − 3v1β

2 +
(
6v2 − (6s+ 1)v0α

2
)
β +

(
(6s+ 1)v1α

2 − 6v3

)
= 0.

If v0 , 0, equation (3.3) is cubic on β; hence Γv,s has at most three connected components. In fact, there
exists an α0 > 0 such that

Γv,s ∩ {(α,β) ∈H | α > α0}
has exactly three connected components. Two of these components are asymptotic to lines α

√
6s+ 1 =

±(β − v1/v0) and therefore lie in the regions R±v ; these are the curves Γ ±v,s in Definition 3.4 above. The third
component, namely Γ 0

v,s, either coincides with or is asymptotic to the vertical line β = v1/v0.

Example 3.5. When v = (m,0,−n,0) for some m,n > 0, equation (3.3) simplifies to(
mβ2 − (6s+ 1)mα2 − 6n

)
β = 0,

so Γv,s consists of exactly three components: Γ ±v,s are the two branches of the hyperbola β2−(6s+1)α2 = 6n/m,
and Γ 0

v,s coincides with the vertical axis {β = 0}.

In the limit s→ 0, also assuming that the Bogomolov–Gieseker inequality v2
1 ≥ 2v0v2 holds for v, the

curves Γ ±v,s=0 are co-asymptotic with the two branches of the hyperbola Θv .
It turns out that the position of the different branches of the cubic curve Γv,s relative to the two branches of

the hyperbola Θv has an important geometric meaning, which is unravelled in the following two statements.
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Proposition 3.6. Let v be a real numerical Chern character with v0 , 0 satisfying the Bogomolov–Gieseker
inequality (2.3). If, for each (α,β) ∈H, there is an object E ∈ Aα,β with ch(E) = v, then Γv,s consists of exactly
three connected components:

Γ −v,s t Γ 0
v,s t Γ +

v,s

and

(3.4) q(E) := 3v2
1v

2
2 − 6v3

1v3 + 18v0v1v2v3 − 8v0v
3
2 − 9v2

0v
2
3 ≥ 0.

Proof. The hypotheses imply that the three asymptotic branches Γ •v,s remain in their respective regions R•v
for • = +,−,0 all the way down to the horizontal axis {α = 0}, and so we have three distinct irreducible
components, as given.

Recall that a cubic equation admits three distinct real roots exactly when its discriminant is positive.
Regarding equation (3.3) as a cubic in β, an easy computation gives its discriminant as (108 times)

qα(E) := α6v4
0(6s+ 1)3 + 9α4v2

0(6s+ 1)2
(
v2

1 − 2v0v1

)
+ 27α2(6s+ 1)

(
v2

1 − 2v0v1

)2

+ 27
(
3v2

1v
2
2 − 6v3

1v3 + 18v0v1v2v3 − 8v0v
3
2 − 9v2

0v
2
3

)
.

(3.5)

Setting α = 0 yields (3.4). Finally, we need to know that qα can only change sign once as α varies. To see
that, observe that

dqα(E)
dα2 = 3(6s+ 1)

(
v2

0(6s+ 1)α2 + 3(v2
1 − 2v0v2)

)2
> 0.

So as a cubic in α2, qα has a single point of inflection and so can change sign at most once. Note that, since
v2

1 ≥ 2v0v1, the point of inflection does not occur for any α > 0. �

We also make use of the following.

Definition 3.7. Suppose v0 , 0 and Qtilt(v) ≥ 0. We define the region RLv,s to be

{(α,β) ∈H | α < α0 whenever (α0,β) ∈ Γ −v,s} ∩R−v .

Alternatively,
RLv,s = {(α,β) ∈H | v0τv,s(α,β) ≥ 0} ∩R−v .

Note that if q(v) < 0, then Γv,s intersects Θv . This is illustrated in Figure 2. On the other hand, away

from Θv and Mv , the curve Γ −v,1/3 is strictly monotonic. This is because ∂β chα,β3 (v) = −chα,β2 (v). It follows
that if q(v) ≥ 0, we have Γv,s ∩Θv = ∅, and otherwise this intersection is a single point at which Γv,s has a
minimum turning point, as illustrated in Figure 2.

Proposition 3.8. Let v be a real numerical Chern character with v0 , 0 satisfying the Bogomolov–Gieseker
inequality (2.3). If q(v) < 0, then Γv,s intersects the left branch of Θv if and only if

v2
0v3 > v0v1v2 −

1
3
v3

1 .

Proof. This is easiest to see by considering the sign of λα,β,s(v) for very small α (we can just take α = 0).
Observe that for β → −∞, the sign is positive, and the sign changes when we cross either Γv,s or Θv .
If q(v) < 0, then Γv,s crosses the β axis exactly once. Since ρv(α,β) > 0 for β → −∞, it follows that
τv,s(α,β) > 0 to the left of this point. Observe that λ0,β,s(v) = 0 for β > µ(v) if and only if Γv,s intersects the
left branch of Θv . Write τv,s(0,β) as

6v3 −
6v1v2

v0
+

2v3
1

v2
0

+
(
β − v1

v0

)(
3v2

1
v0
− 6v2

)
− v0

(
β − v1

v0

)3

.

Then the numerical condition is the positivity of the constant term in this cubic in β − v1/v0. �
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Γ−

v,s

Θ−

v

Γ0
v,s

Θ+
v

Γ+
v,s

Ξu,v

β = µ(v)

Υu,v,s

b

Figure 2. This graph contains an example of the situation described in Proposition 3.8 for v =
(3,4,2,2/3), which is the Chern character of the tangent bundle of P3. We set s = 1/3. The curve
Γv,s (in red) intersects the left branch of the hyperbola Θv (in blue) at the point (α,β) ≈ (0.27,0.62).
In addition, Γ 0

v,s is asymptotic to the vertical line Mv , while the component Γ +
v,s does not intersect Θ

+
v .

We also illustrate Theorem 4.22 here, with the vanishing ν- and λ-walls represented by the curves
Ξu,v (in magenta) and Υu,v,s (in black), respectively, where u = ch(O

P
3(1)). Finally, Lemma 4.5 is

also represented since both of these walls cross Θ−v at the same point.

The following is an easy exercise.

Proposition 3.9. The quartic form q in equation (3.4) is invariant under E 7→ E ⊗OX(k) and E 7→ E∨.

4. Walls

4.1. ν-walls

Given a real numerical Chern character v, a curve Ξu,v ⊂ R+ ×R is called a numerical ν-wall for v if
there is a real numerical Chern character u such that

Ξu,v := {tu,v(α,β) = 0}, where

(4.1) tu,v(α,β) := ρu(α,β)chβ1(v)− ρv(α,β)chβ1(u) = ∆21(α,β);

compare with the notation introduced in display (2.11). Note that this coincides with the numerator of the
difference να,β(u)−να,β(v), so its vanishing locus is precisely where it changes sign. Observe that numerical
ν-walls are invariant as subsets of the upper half plane under the changes of coordinates u 7→ κv + u,
u 7→ ζu and (u,v) 7→ (v,u) for any real constants κ and ζ , 0.

Lemma 4.1. Suppose v0 > 0, v satisfies the Bogomolov–Gieseker inequality and u = (0,1,x,y) for real x and y.
Then the following are equivalent:

(1) Ξu,v is empty.
(2) For all real κ, κv +u satisfies the Bogomolov–Gieseker inequality.
(3) (x −µ(v))2 ≤ µ(v)2 − 2v2/v0.
(4) δ02(u,v)2 ≤ 4δ01(u,v)δ12(u,v).

Proof. The Bogomolov–Gieseker inequality for κv +u as a polynomial in κ is

(4.2) κ2Qtilt(v) + 2κ(v1 − v0x) + 1.
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The condition in (3) is the discriminant condition for (4.2) divided by v2
0 . This shows that (2) and (3) are

equivalent. The condition that Ξu,v = ∅ is that ∆21(0,β) = 0 has at most one solution. Explicitly, this is

(4.3) β2v0/2− βv0x+ v1x − v2,

and the discriminant condition for this is v2
0x

2 ≤ 2v0(v1x − v2), which is equivalent to the condition in (3).
Finally, δ02(u,v)2 − 4δ01(u,v)δ12(u,v) = v2

0x
2 − 2v0(v1x − v2) establishes the equivalence of (4). �

The structure of numerical ν-walls was described in [Mac14] for the case of projective surfaces, but
the same results also hold for projective threefolds; see for instance [Sch20a, Theorem 3.3] and [MS17,
Remark 9.2]. Precisely, numerical ν-walls are non-intersecting semicircles centered along the horizontal axis
and cross the hyperbola Θv at their maximum point or the vertical line Mv . The semicircles tend to a fixed
point (0,C0) on the β-axis as the radius tends to zero.

Definition 4.2. A numerical ν-wall Ξu,v is called an actual ν-wall if for some (α0,β0) ∈ Ξu,v , there are
an object B ∈ Bβ0 with ch(B) = v and a να0,β0

-semistable sub-object F ↪→ B with ch(F) = u such that the
quotient E/F is also να0,β0

-semistable.

It then follows that the same property holds for every point of Ξu,v ; see [Sch20a, Theorem 3.3]. Actual
ν-walls are locally finite (that is, any compact subset of the upper half plane intersects only finitely many
numerical ν-walls), see [MS17, Lemma 6.23], and there are Cmax ∈R and Rmax > 0 such that every numerical
ν-wall is contained in the semicircle centered at (0,Cmax) with radius Rmax. In particular, there is an α > 0
for which there are only finitely many actual ν-walls above the horizontal line {α = α}. However, actual
ν-walls may accumulate towards the point Θv ∩ {α = 0}; see [Mea12] and [YY14] for examples on abelian
surfaces.

Another observation is that, since ν-walls are nested, there can be at most two vanishing ν-walls for a
given Chern character v, one on each side of the vertical line Mv .

The following technical result, which will be useful in Section 8, follows immediately from Lemma 4.1. For
a Chern character v, we let

Yv = {γ | γ = δ02(u,v)/δ01(u,v) for some actual ν-wall given by u}.

Proposition 4.3. Suppose ch(E) = v and ch(F) are two numerical Chern characters which satisfy the Bogomolov–
Gieseker inequality, v0 > 0 and δ01(u,v) , 0. If F ↪→ E� G is a short exact sequence in Bβ for β < µ(E), then
if δ02(u,v)/δ01(u,v) < Yv , we have

δ01(u,v)δ12(u,v) ≥ 0 and |δ02(u,v)| ≤ 2
√
δ01(u,v)δ12(u,v).

For example, if a particular Chern character v admits no actual ν-walls, then any Chern character of a
sub-object in Bβ must satisfy those inequalities.

4.2. λ-walls

Given in a real numerical Chern character v, a curve Υu,v,s ⊂R+ ×R is called a numerical λ-wall for v if
there is a real numerical Chern character u such that

Υu,v,s := {fu,v,s(α,β) = 0}, where

(4.4) fu,v,s(α,β) := τu,s(α,β)ρv(α,β)− τv,s(α,β)ρu(α,β).

Note that this coincides with the numerator of the difference λα,β,s(u)−λα,β,s(v), so its vanishing locus is
precisely where it changes sign. Comparing with the notation introduced in display (2.11), we remark that

fu,v,s(α,β) = ∆32 −α2(s − 1/3)∆21;

thus, in particular, fu,v,1/3(α,β) = ∆32(α,β).
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More explicitly, using the notation from display (2.11)

δij = δij(u,v) = chi(u)chj(v)− chj(u)chi(v),

we have

fu,v,s(α,β) =
6s+ 1

12
δ10α

4

+
(3s − 1

6
δ10β

2 − 3s − 1
3

δ20β +
6s+ 1

6
δ21 −

1
2
δ30

)
α2

+
( 1

12
δ10β

4 − 1
3
δ20β

3 +
1
2

(δ30 + δ21)β2 − δ31β + δ32

)
.

(4.5)

Numerical λ-walls that are bounded as subsets of H have a simple numerical characterization.

Proposition 4.4. Let v be a real numerical Chern character with v0 , 0 and satisfying the Bogomolov–Gieseker
inequality. A numerical λ-wall Υu,v,s for v is bounded if and only if δ10(u,v) , 0.

Notice that if Υu,v,s is bounded for some value of the parameter s, then it is bounded for every value of s.

Proof. Assuming δ10(u,v) , 0, turn fu,v,s(α,β) into a homogeneous polynomial of degree 4 by adding a new
variable γ ; let us denote this new function by fu,v,s(α,β,γ). The set {fu,v,s(α,β,γ) = 0} can be regarded as
a hypersurface in RP2, and Υu,v,s is bounded if and only if {fu,v,s(α,β,γ) = 0} does not intersect the line at
infinity {γ = 0}.

Comparing with equation (4.5), note that

fu,v,s(α,β,0) =
δ10

12

(
6sα2(α2 + β2) + (α2 − β2)2

)
.

Since the right-hand side vanishes if and only if α = β = 0, we conclude that {fu,v,s(α,β,γ) = 0} does not
intersect the line at infinity {γ = 0}; hence Υu,v,s is bounded.

Next, if δ10(u,v) = 0 and δ20(u,v) , 0, then the homogenisation of fu,v,s(α,β) yields a polynomial
fu,v,s(α,β,γ) of degree 3. Comparing with equation (4.5), note that

(4.6) fu,v,s(α,β,0) = −δ20

3

(
(3s − 1)α2 + β2

)
β,

so fu,v,s(1,0,0) = 0; thus Υu,v,s is not bounded.
Finally, if δ10(u,v) = δ20(u,v) = 0, then fu,v,s(α,β) becomes a constant multiple of ρu(α,β) = ρv(α,β);

hence the curve Υu,v,s coincides with the hyperbola Θv , which is not bounded. �

Next, we observe an interesting relation between a numerical λ-wall Υu,v,s and its associated numerical
ν-wall Ξu,v : if one intersects the hyperbola Θv , then so does the other.

Lemma 4.5. Let v be a real numerical Chern character satisfying the Bogomolov–Gieseker inequality and v0 , 0.
If a numerical λ-wall Υu,v,s intersects Θv at a point (α0,β0) for which an object A with ch(A) = v exists in
Aα0,β0 , then the associated numerical ν-wall Ξu,v also passes through (α0,β0).
Conversely, if a numerical ν-wall Ξu,v intersects Θv at a point (α0,β0), then the associated numerical λ-wall

Υu,v,s also passes through (α0,β0).

Proof. Since ρv(α0,β0) = 0, we have ρu(α0,β0)τv,s(α0,β0) = 0. However, Proposition 2.3 guarantees that
τv,s(α0,β0) > 0 for every s, thus ρu(α0,β0) = 0. It follows that tu,v(α0,β0) = 0, as desired.

For the second statement, note that Θv never intersectsMv because v is assumed to satisfy the Bogomolov–

Gieseker inequality and so chβ0
1 (v) , 0. So, if tu,v(α0,β0) = ρv(α0,β0) = 0, then also ρu(α0,β0) = 0, thus

fu,v(α0,β0) = 0. �

Lemma 4.6. If the curves Θv and Γv,s intersect, then every numerical λ-wall for v passes through the point of
intersection.
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Proof. Let (α0,β0) be the point of intersection, so that ρv(α0,β0) = τv,s(α0,β0) = 0. By the expression in
display (4.4), it follows that fu,v,s(α0,β0) = 0 for every real numerical Chern character u and every s > 0. �

Let us now analyse unbounded numerical λ-walls. Note that if δ10(u,v) = 0, then the expression in
equation (4.5) reduces to a cubic polynomial in β, with coefficients depending on α2, so it always has a real
root; in other words, unbounded numerical λ-walls intersect every horizontal line. Furthermore, unbounded
numerical λ-walls with different values of the parameter s can look very different; see Figure 3. In particular,
an unbounded numerical λ-wall might not be connected, and one of its connected components may be
bounded; see Figure 4. The main properties of unbounded walls are described in the following series of
lemmas. First, we consider the case s > 1/3.

s = 0.01

s = 2.5

s = 0.01

Θ−

v Θ+
v

α

β

Figure 3. The numerical λ-wall Υu,v,s for v = (2,0,−3,0) and u = (0,0,−1,1) is plotted for s = 0.01
(red curve), where the wall has two separate connected components, and for s = 2.5 (purple curve),
where the wall has a single connected component. Both curves are asymptotic to the vertical line
Mv = {β = µ(v) = 0}, while the red curve is also asymptotic to both branches of Θv (in blue).

Lemma 4.7. Let s > 1/3. If u and v are real numerical Chern characters satisfying δ10(u,v) = 0 and
δ20(u,v) , 0, then there exists a βmax > 0 (depending on u, v and s) such that Υu,v,s ⊂R+ × [−βmax,βmax].

Proof. If δ10 = 0, then equation (4.5) reduces, after dividing by δ20, to

(4.7) ((s − 1/3)β + · · · )︸              ︷︷              ︸
a2

α2 +
(
β3/3 + · · ·

)
︸       ︷︷       ︸

a0

= 0

If s > 1/3 and either β� 0 or β� 0, then both coefficients a2 and a0 in equation (4.7) have the same sign;
hence equation (4.7) does not admit any solutions. �

Lemma 4.8. Let s , 1/3. If u and v are real numerical Chern characters satisfying δ10(u,v) = 0 and
δ20(u,v) , 0, then one of the connected components of Υu,v,s is asymptotic to the vertical line {β = β′}, where

β′ :=
3

(6s − 2)δ20(u,v)

(6s+ 1
3

δ21(u,v)− δ30(u,v)
)
.

Proof. If s , 1/3, then the equation fu,v,s(α,β) = 0 can be rewritten in the following way:

α2 =

1
3
δ20β

3 − 1
2

(δ30 + δ21)β2 + δ31β − δ32

−3s − 1
3

δ20β +
6s+ 1

6
δ21 −

1
2
δ30

.

Note that the denominator vanishes at the value β = β′ given above; therefore, α goes to infinity as β
approaches β′ . �
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Lemma 4.9. Let s ≤ 1/3. If u and v are numerical Chern characters satisfying δ10(u,v) = 0 and δ20(u,v) , 0,
then there exists an αmax > 0 (depending on u, v and s) such that

Υu,v,s ∩ {(α,β) ∈H | α > αmax} ⊂ {(α,β) ∈H | ρv(α,β) < 0}.

Proof. If s < 1/3, then equation (4.7) does admit solutions, which are asymptotically of the form

α
√

1/3− s = ±(β − β′)

for some β′ ∈R given explicitly in Lemma 4.8 above. In other words, there is an α > 0 such that we have
Υu,v,s ∩ {(α,β) ∈H | α > α} ⊂ R0

v .
If s = 1/3 and δ21 − δ30 , 0, then the equation fu,v,s(α,β) = 0 reduces to

α2 +
(

2
3

δ20

δ21 − δ30
β3 + · · ·

)
= 0.

Depending on the sign of δ20/(δ21 − δ30), such an equation does admit solutions either for β � 0 or for
β� 0; in both cases, α grows like |β|3/2, so Υu,v,s will lie in the region R0

v once α is sufficiently large. The
same conclusion holds when δ30 = δ21 since then fu,v,s(α,β) becomes just a cubic polynomial on β, not
depending on α. �

Remark 4.10. Note that there are no ν-walls corresponding to unbounded λ-walls, and so by continuity the
unbounded component remains in R0

v as it cannot intersect Θv .
However, an unbounded λ-wall for v may have a bounded connected component contained in R−v , as

pictured in Figure 4.

Γ−

v,s

Θ−

v Γ0
v,s Θ+

v

Γ+
v,s

Υu,v,s

Υu,v,s

Figure 4. The numerical λ-wall Υu,v,s for v = (2,0,−1,0) and u = (1,0,−1,1), so that δ01(u,v) = 0,
is plotted for s = 1/3 (black curve). It has two connected components: one is bounded and fully
contained in R−v ; the other is unbounded and fully contained in R0+

v . The bounded component
crosses Γ −v,s. The curve Θv and the other connected components of Γv,s, namely Γ 0

v,s and Γ +
v,s, are also

shown, with the former coinciding with the α-axis.

We now show that intersection between numerical λ-walls and the curve Γv,s is independent of s.

Lemma 4.11. If a numerical λ-wall Υu,v,s crosses Γv,s for some s ≥ 0 away from Θv , then Υu,v,s crosses Γv,s for
every s ≥ 0 at points whose β-coordinate does not depend on s.

Proof. Assume (α0,β0) ∈ H satisfies fu,v,s(α0,β0) = τv,s(α0,β0) = 0 and ρv(α0,β0) , 0; in other words,
(α0,β0) ∈ Υu,v,s∩ Γv,s lies away from the hyperbola Θv . It follows that τu,s(α0,β0) = 0; i.e. the curve Γu,s also
passes through (α0,β0), so that

chβ0
3 (u) =

(
s+

1
6

)
chβ0

1 (u)α2
0 .

Since τv,s(α0,β0) = 0 as well, we conclude that

(4.8)
chβ0

3 (u)

chβ0
1 (u)

=
chβ0

3 (v)

chβ0
1 (v)

=
(
s+

1
6

)
α2

0 .



Walls and asymptotics on threefolds 25Walls and asymptotics on threefolds 25

For any s ≥ 0, there is an αs such that (s + 1/6)α2
s = (s + 1/6)α2

0 ; substituting back into equation (4.8), we
conclude that τu,s(αs,β0) = τv,s(αs,β0) = 0, thus fu,v,s(αs,β0) = 0, meaning that (αs,β0) ∈ Υu,v,s ∩ Γv,s ∩ Γu,s,
which is independent of the parameter s ≥ 0. �

Given v ∈ Knum(X), we define an equivalence relation in Knum(X) as follows:

(4.9) u ∼v u′ if there exist real numbers ψ , 0 and φ such that u′ = φv +ψu.

Note that u ∼v u′ implies δij(u′ ,v) = ψδij(u,v) and thus Υu,v,s = Υu′ ,v,s. In other words, the set of numerical
λ-walls for a fixed v ∈ Knum(X) only depend on the equivalence class under ∼v .

Lemma 4.12. Suppose u and v are real numerical Chern characters and v0 , 0. Then:

(1) u ∼v (0,1,δ02(u,v)/δ01(u,v),δ03(u,v)/δ01(u,v)) if δ01(u,v) , 0 and
(2) u ∼v (0,0,1,δ03(u,v)/δ02(u,v)) if δ01(u,v) = 0 and δ02(u,v) , 0.

Proof. If δ01(u,v) , 0, take φ = u0/δ01(u,v) and ψ = −v0/δ01(u,v). If δ01(u,v) = 0, take φ = u0/δ02(u,v)
and ψ = −v0/δ02(u,v). �

It follows that equivalence classes for ∼v come in three types when v0 , 0, according to Table 1 below (x
and y are arbitrary rational numbers). In the degenerate case, the numerical λ-wall Υu,v,s coincides with Θv .

Type Characterization Canonical element
Bounded δ01 , 0 (0,1,x,y)

Unbounded δ01 = 0, δ02 , 0 (0,0,1,x)
Degenerate δ01 = δ02 = 0, δ03 , 0 (0,0,0,1)

Table 1. Equivalence classes ∼v when v0 , 0.

This gives us a quick way to see that various families of numerical λ-walls do not intersect each other,
and it provides a form of Bertram’s nested wall theorem.

Theorem 4.13. Suppose v0 , 0 and u �v u′ .

(1) The numerical ν-walls corresponding to u and u′ do not intersect away from Mv .
(2) If δ01(u,v) = 0 = δ01(u′ ,v), then the numerical λ-walls corresponding to u and u′ do not intersect.
(3) If δ01(u,v) , 0 and ch≤2(u) = ch≤2(u′), then the numerical λ-walls for v corresponding to u and u′

only intersect on Θv .

Proof. We prove (3) and leave (1) and (2) as similar exercises. We simply observe that the equation for the
numerical λ-wall Υu,v,s can be written in the following manner:

u3ρv(α,β) = g(α,β,v,ch≤2(u))

for some function g . Hence, if (α,β) is not on Θv but lies on Υu,v,s ∩ Υu′ ,v,s, then we must have u3 =
ch3(u′). �

We conclude that distinct unbounded numerical λ-walls never intersect one another. On the other
hand, it is interesting to observe that, in contrast with numerical ν-walls, two distinct bounded numerical
λ-walls for Υu,v,s and Υu′ ,v,s can intersect both along Θv (if ch≤2(u) = ch≤2(u′), as illustrated in item (3) of
Theorem 4.13), and away from it; see Figure 5.

Our normal form for u can also be used to give sufficient conditions for when a numerical λ-wall for v
intersects Γv,s.

Proposition 4.14. Let u and v be real numerical Chern characters such that v satisfies the Bogomolov–Gieseker
inequality, ch0(v) , 0 and δ01(u,v) , 0. If δ01(u,v)δ03(u,v) ≥ δ02(u,v)2/2, then the numerical λ-wall Υu,v,s
intersects Γ 0

v,s. If δ01(u,v)δ03(u,v) ≤ δ2
02/2, then Υu,v,s intersects both Γ

+
v,s and Γ

−
v,s.
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ΘvΓ−

v,s Γ0
v,s

Υu,v,s

Υu′,v,s

b

Figure 5. The numerical λ-walls Υu,v,s and Υu′ ,v,s for v = (2,0,−3,0) with u = (1,−1,1/2,−1/6)
and u′ = (1,−2,2,−4/3) are plotted for s = 1/3; they cross at the point (α = 0.5,β = −1.48). The
curves Γv,1/3 (in red) and Θv (in blue) are also shown.

Proof. Writing u in the canonical form (0,1,x,y), observe that Γu,s is given by the hyperbola

(β − x)2/2−α2(s+ 1/6) = x2/2− y.

The conditions in the statement about δij are equivalent to the hyperbola crossing the β-axis or not.

The hyperbolae are asymptotic to β = x ±
√

2(s+ 1/6)α, while Γv,s is asymptotic either to Mv or to
β = µ±

√
6(s+ 1/6)α. Then the hypotheses guarantee that Γu,s and Γv,s intersect as stated. �

Remark 4.15. Observe that an unbounded numerical λ-wall Υu,v,s associated to u ∼v (0,0,1,x) intersects Γv,s
(necessarily away from Θv since unbounded λ-walls for v never cross Θv ) at a point with coordinates (α,x)
for some uniquely determined α so long as x is the β-coordinate of some point on Γv,s. Since the wall Υu,v,s
can only cross Θv at its intersection with Γv,s and its asymptotes are in R0

v , it follows that, for |x| sufficiently
large, there is a component of the wall which is bounded and which intersects Γ ±v,s.

4.3. Actual, pseudo and vanishing λ-walls

Definition 4.16. An actual λ-wall Wu,v,s is the subset of points (α,β) in Υu,v,s for which there are an object
E ∈ Aα,β with ch(E) = v and a path γ : (−1,1)→R>0 ×R such that γ(0) = (α,β) and E ∈ Aγ(t) is λ-stable
for t < 0 and λ-unstable for t > 0.

This is a rather stronger condition than the usual one, which asks simply that A be properly λα,β,s-
semistable at the point (α,β). Our definition ensures that actual λ-walls are 1-dimensional and avoids
degenerate situations like the one described in Remark 2.6. In addition, it allows us to state the following.

Lemma 4.17. An actual λ-wall Wu,v,s is a union of segments of arcs within the underlying numerical λ-wall
Υu,v,s whose endpoints lie on another actual λ-wall for u or v, or on Θu ∩Θv , or on the β-axis.

Proof. Note that the wall will have an endpoint if α→ 0 along the curve; we take that to be an endpoint by
convention.(1)

First assume p ∈Wu,v,s is an isolated point; that is, there exists an open neighbourhood B of p on which
there are no other actual λ-walls. In contrast with the path γ going through p along which the moduli
space Mγ(t),s(v) changes as explained above, one can find a path γ ′ : [0,1]→ B such that γ ′(0) = γ(0)
and γ ′(1) = γ(1) which does not cross any actual λ-wall, implying thatMγ(0),s(v) =Mγ(1),s(v), and thus
providing a contradiction.

(1)In fact, we will see in Section 6 than the wall crosses α = 0 transversely or is singular there.
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It follows that Wu,v,s is a union of segments of arcs within Υu,v,s. The same argument shows that if
an endpoint (α0,β0) of such an arc does not lie on another actual λ-wall for a short exact sequence
0→ A→ E→ B→ 0 in Aα,β corresponding to the wall (so ch(E) = v and either ch(A) = u or ch(B) = u),
then E, A or B must go out of the category. But if A or B go out of the category, it is because they
have a sub-object or quotient object which has a Θ-curve going through that point. But then the λ-slope
goes to infinity, and this would contradict the existence of the wall in a small neighbourhood of the point.
Consequently, the wall can only end on Θch(E) and so also on Θch(A). �

In another direction, if an object is strictly destabilized along a curve, then it can only become stable if
the curve crosses either an actual λ-wall or a Θ-curve. Note that if an actual λ-wall Wu,v crosses Θu , then
it must also cross Θv .

Proposition 4.18. Fix s > 0. Suppose γ : (−a,b) → H is a curve for some a,b > 0 and A ∈ Aγ(t) for all
−a < t < b. Suppose B ↪→ A� C is a destabilizing sequence for −a < t < 0.

(1) If A is not λγ(t),s-semistable for 0 < t < b, then there exist ε,ε′ > 0 and some destabilizing sequence
K ↪→ A�Q defined for all −ε′ < t < ε with λγ(t),s(K) ≥ λγ(t),s(B), respectively λγ(t),s(Q) ≤ λγ(t),s(C),
with equalities if and only if C =Q, respectively B = K .

(2) If A is λγ(t),s-stable for 0 < t < b, then there is an actual λ-wall corresponding to B containing γ(0).

Proof. In either case, we have a long exact sequence for 0 < t < ε in Aγ(t):

0→ C−1→ B0→ A→ C0→ B1→ 0.

This is because as we cross t = 0, the phase changes continuously and the Aγ(t)-cohomology of any
object in Aγ(t) for −ε′ < t < 0 in nearby γ(t) is concentrated in positions −1, 0 and/or 1. Split the
sequence via B0 → K → A → Q → C0, and note that, for −1 � t < 0, C−1[1],B1[−1] ∈ Aγ(t) and
limt↗0λγ(t),s(C−1[1]) = +∞ and limt↗0λγ(t),s(B1[−1]) = −∞. We also have short exact sequences for
−1� t < 0:

C−1[1]→ C→ C0 and B0→ B→ B1[−1].

It follows that K → A→ Q is short exact in Aγ(t) for −ε < t < ε and that, for −1� t < 0, λγ(t),s(K) ≥
λγ(t),s(B), with equality only if C−1 = 0. Similarly, λγ(t),s(Q) ≤ λγ(t),s(C), with equality only if B1 = 0.

If A is λγ(t),s-stable beyond t = 0, then we must have equality in one of these. If both are equalities,
then the sequence 0→ B→ A→ C→ 0 provides an actual λ-wall at γ(0). If only one is an equality, then
γ(0) ∈Θu , where u = ch(B) or u = ch(C). But then, λγ(0),s(A) = +∞ and so γ(0) ∈Θch(A) as well, and so,
again, this sequence provides an actual λ-wall. �

If our aim is to find all actual λ-walls, then it is easier to first consider a list of necessary numerical
conditions in order to reduce the possibilities to a small list of examples (this is exactly what we will do in
the example presented in Proposition 8.8 below).

Definition 4.19. By a pseudo λ-wall Wu,v,s, we mean the subset of points (α,β) of a numerical λ-wall Υu,v,s
for which:

(1) there are objects E,F,G ∈ Aα,β satisfying ch(E) = v, ch(F) = u, ch(G) = v −u;
(2) Qα,β(u) ≥ 0, Qα,β(v −u) ≥ 0, Qα,β(u) +Qα,β(v −u) ≤Qα,β(v).

The support property, see Proposition 2.4, implies that an actual λ-wall is also a pseudo λ-wall. We shall
see an example in (8.14) in Proposition 8.8 of a pseudo-wall which is not an actual wall but for which there
is a destabilizing sequence.

Remark 4.20. In practice, we would start by replacing (1) with the necessary conditions that u ∈ Z×Z×
Z/2×Z/6 and χ(u) ∈ Z. The third inequality in (2) is an observation of Schmidt ([Sch20a, Lemma 2.7])
and follows from the fact that the bilinear form satisfies Qα,β(v,v) =Qα,β(v) ≥ 0.
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Unlike actual ν-walls, distinct actual λ-walls for a given Chern character v do intersect. This was first
noticed by Schmidt in [Sch20a], where he establishes a refinement of Lemma 4.5 providing a relationship
between actual ν- and λ-walls for v along Θ−v ; more precisely, he proves the following statement.

Theorem 4.21 (cf. [Sch20a, Theorem 6.1]). Let v be a Chern character satisfying the Bogomolov–Gieseker
inequality and v0 , 0, and let (α0,β0) be a point Θ−v .

• If there is an actual λ-wall for v containing (α0,β0) given by the exact sequence 0→ F→ A→ G→ 0
in Aα0,β0 , then there is an actual ν-wall containing (α0,β0) given by the exact sequence 0→ F[−1]→
A[−1]→ G[−1]→ 0 in Bβ0 .
• Conversely, if there is an actual ν-wall for v containing (α0,β0) given by the sequence 0→ F → A→
G→ 0 in Bβ0 , then there is an actual λ-wall for v which is defined by the same sequence in Aα0,β0 .

We also provide a concrete example of two distinct actual λ-walls for the Chern character v := (2,0,−1,0)
which intersect away from Θv , in Section 8.4 below.

Furthermore, an actual λ-wall Wu,v,s is called a vanishing λ-wall for v if for each p ∈Wu,v,s there exists
a path γ : (−1,1)→H crossing Wu,v,s transversely at γ(0) = p for some w ∈ (0,1) such thatMγ(t),s(v) , ∅
for t < 0, whileMγ(t),s(v) = ∅ and t > 0.

The meaning of the quartic function q(v) on Knum(X) defined in equation (3.4) can now be expressed in
the following theorem using the geometry of the Γ -curves we defined in Section 3. Recall that q(E) is the
discriminant of the cubic defining Γ whose roots are the β-coordinates of Γv,s ∩ {α = 0}.

Theorem 4.22. Let v be a Chern character for which there exists a Gieseker semistable sheaf E with ch(E) = v.
If q(v) < 0, then there must exist vanishing ν- and λ-walls for v.

Proof. Since E is Gieseker semistable, v satisfies the Bogomolov–Gieseker inequality, and so the curve Θv
divides the plane into three regions, as explained in Section 3 above.

Note that Γv,s is a smooth cubic curve, and so when q(E) < 0, there is an open neighbourhood of α = 0
such that also qα(E) < 0. It follows that there is some α0 > 0 such that Γv,s ∩ {α = α0} consists of a single
point. Thus, either the asymptotic components Γ −v,s and Γ 0

v,s, or Γ +
v,s and Γ 0

v,s, must belong to the same
connected component of Γv,s, which must then cross the hyperbola Θv .

Since Proposition 2.3 fails for (α,β) ∈Θv below the point of intersection (α̃, β̃) := Γv,s ∩Θv , there cannot
exist any objects with Chern character equal to v in Aα,β for (α,β) ∈Θv with α ≤ α̃.

Fix β and α sufficiently large so that (α,β) lies above any ν-wall for v. Then E is να,β-semistable, and
Proposition 3.2 guarantees the existence of λα,β,s-semistable objects in Aα,β for (α,β) ∈H. It follows that
there must exist a vanishing ν-wall for v crossing Θv above the point of intersection {(α̃, β̃)} := Γv,s ∩Θv .
But then there is also a vanishing λ-wall through the same point (α̃, β̃). �

We will see an example of the situation described in Theorem 4.22 in Section 8.1 below, where we study
in detail the ideal sheaf of a line in P3.

5. Asymptotic να,β-stability

One of the main goals of this paper is to characterize which objects in Db(X) are να,β- and λα,β,s-
semistable at infinity, that is, for large values of the parameters α, β. More formally, let γ : [0,∞)→H be
an unbounded path; we consider the following definition. The dual situation is also considered in [Piy17,
Proposition 3.2] but from a different perspective.
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Definition 5.1. An object A ∈Db(X) is asymptotically να,β-(semi)stable along γ if the following two conditions
hold:

(i) There is a t0 > 0 such that A ∈ Bγ(t) for every t > t0.
(ii) There is a t1 > t0 such that, for every t > t1, every sub-object F ↪→ A in Bγ(t) satisfies νγ(t)(F) < (≤)

νγ(t)(A).

In this section we characterize asymptotically να,β-semistable objects. More precisely, we establish the
following results.

Theorem 5.2. Let B ∈Db(X) be an object with ch0(B) , 0.

(1) B is asymptotically να,β-(semi)stable along a path γ(t) = (α(t),β(t)) such that β(t) < µ(B) for t� 0 if
and only if B is a µ≤2-(semi)stable sheaf.

(2) B is asymptotically να,β-(semi)stable along a path γ(t) = (α(t),β(t)) such that β(t) > µ(B) for t� 0 if
and only if S := B∨[−1] is a µ≤2-(semi)stable sheaf such that S∗∗/S either is empty or has pure dimension 1.

Theorem 5.2 is not new, though its statement and the second part, especially, are different from previous
versions. The proof of item (1) is essentially the same as [Bri08, Proposition 14.2], which covers the case
of K3 surfaces; also compare with [Schi20b, Proposition 2.5]. Part (2) is to be compared with [AM16,
Proposition 2.3] in the case of surfaces and [BMT14, Proposition 5.1.3]. Since we will use Theorem 5.2 and
the arguments in its proof in the subsequent sections, we include a full proof here. Our proof is longer than
previous ones for two reasons. Firstly, we have a stronger form of asymptotic stability, and secondly we do
not assume there are only finitely many ν-walls above a certain horizontal line. Although the latter fact
is true, we want to illustrate how it can be avoided, since it is not known for λ-stability. If we do assume
the ν-walls are bounded above, then it follows that the t1 of the definition of asymptotic ν-stability can be
chosen uniformly in E, that is, t1 only depends on ch≤2(E).

The study of asymptotic να,β-stability is considerably simplified by the following observation.

Lemma 5.3.

(1) If B ∈ Bβ for all β� 0, then B ∈ Coh(X).
(2) Suppose E is a µ-semistable sheaf, and suppose there is some (α,β) with β < µ(E) which lies on an actual

ν-wall so that there are a να,β-semistable object F and a monomorphism F ↪→ E in Bβ . Then this is the
only ν-wall for β < µ(E) at which E is destabilized.

Proof. If H−1(B) , 0, then

chβ1(H−1(B)[1]) = −ch1(H−1(B)) + ch0(H−1(B))β < 0 for β� 0,

so B cannot lie in Bβ for any β� 0.
For the second item, the idea is that E must be να,β-stable above the ν-wall defined by the exact

sequence. The local finiteness of the actual ν-walls ensures that E is να,β-stable either immediately below
or immediately above this wall. But we can show that the latter holds, as follows. First observe that
δ01(E,F) ≤ 0. This is because if we split the Coh(X) sequence

0→H−1(G)→ F→ E→H0(G)→ 0,

where G = E/F in Bβ , via K → E, then µ(K) ≤ µ(E) by the µ-semistability of E while µ(H−1(G)) ≤ β < µ(F)
and so µ(F) < µ(K) ≤ µ(E). We use Lemma 2.7(2) to compute the partial derivatives, which satisfy

∂α
(
να,β(E)− να,β(F)

)
= ∂α

∆21(E,F)

chβ1(E)chβ1(F)
= − αδ01(E,F)

chβ1(E)chβ1(F)
≥ 0

as E is µ-semistable. Consequently, E cannot be destabilized on another wall outside of this ν-wall because
it must be stable immediately above any wall and unstable immediately below the wall. But on a path
between two adjacent walls, it cannot be both stable and unstable.
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To complete the proof, observe that F ↪→ E� G remains a short exact sequence in Bβ at all points inside
the ν-wall corresponding to F. �

We will see that a similar statement holds for β > µ(E). So, for a given E, there is at most one actual
ν-wall destabilizing it on each side of the vertical line Mv . We can then reduce the proof of Theorem 5.2 to
the study of asymptotic να,β-stability along horizontal lines. To this end, we define

(5.1)
Λ−α := {(α,β) ∈H | α = α,β < 0} and

Λ+
α := {(α,β) ∈H | α = α,β > 0}.

5.1. Asymptotics along Λ−
α

The first part of Theorem 5.2 is proved in two separate lemmas.

Lemma 5.4. If B ∈ Db(X) is asymptotically να,β-semistable along the horizontal half-line Λ−α , then B is a
µ≤2-semistable sheaf.

Proof. By Lemma 5.3, we may assume B ∈ Coh(X)∩Bβ for all β� 0.
Let T ↪→ B be a torsion subsheaf of B; if ch1(T ) , 0, then

lim
β→−∞

−1
β

(να,β(T )− να,β(B)) =
1
2
,

contradicting asymptotic να,β-semistability. If ch1(T ) = 0, then

να,β(B) < να,β(T ) = +∞

for every (α,β) ∈H, again contradicting asymptotic να,β-semistability. So B must be a torsion-free sheaf.
Let F be a subsheaf of B; since F ∈ Bβ for β < µ−(F), F is also a sub-object of B within Bβ for

β <min{µ−(F),µ−(B)}. Note that

lim
β→−∞

(
να,β(F)− να,β(B)

)
= −1

2
δ10(B,F)

ch0(F)ch0(B)
≤ 0

by asymptotic να,β-semistability. It follows that δ10(B,F) ≥ 0; thus B is µ-semistable.
If δ10(B,F) = 0, then

lim
β→−∞

(−β)(να,β(F)− να,β(B)) = − δ20(B,F)
ch0(F)ch0(B)

≤ 0

by asymptotic να,β-semistability; thus δ20(B,F) ≥ 0, as desired. �

Before going on to look at the converse, we can make an interesting deduction from this.

Proposition 5.5. If E is a µ-semistable sheaf which is not µ≤2-semistable, then E is not να,β-semistable for any
(α,β) ∈H.

Proof. Suppose otherwise. Then by item (2) in Lemma 5.3, it follows that E is asymptotically να,β-semistable,
and then by Lemma 5.4 it must be µ≤2-semistable, which yields a contradiction. �

Now we consider the converse to Lemma 5.4.

Lemma 5.6. Fix α > 0. If E is µ≤2-semistable, then there is a β0 < 0 (depending only on ch≤2(E) and α) such
that E is να,β-semistable for every β < β0.

Proof. First, note that E is µ-semistable; thus E ∈ Tβ ⊂ Bβ whenever β < µ(E). Then Lemma 5.3(2) implies
that there is at most one actual ν-wall for E containing the point (α,β0) (set β0 = µ(E) if the wall does not
exist). It follows that E is να,β-stable for β < β0. �

This completes the proof of the first part of Theorem 5.2.
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Remark 5.7. Recall the definition of µ̂-stability from Definition 2.19. We will also need the following version
of Lemma 5.6 for torsion sheaves: given any fixed α > 0, if T ∈ Coh(X)2 is µ̂-semistable, then there is a
β0 < 0 such that T is να,β-semistable for every β < β0. The proof of this claim is similar to the proof of
Lemma 5.6.

We can now describe an asymptotic Harder–Narasimhan filtration for unstable objects as well.

Proposition 5.8. Let γ(t) = (α(t),β(t)) be a path satisfying limt→∞β(t) = −∞. If B ∈Db(X) is an object for
which there is a t0 > 0 such that B ∈ Bβ(t) for all t > t0, then B admits a filtration in Bβ(t)

0 = B0 ⊆ B1 ⊂ B2 ⊂ · · · ⊂ Bn = B

whose factors Gk := Bk/Bk−1 are asymptotically να,β-semistable and satisfy

(1) νγ(t)(B1) = +∞ for every t > 0 if B1 , 0;
(2) for each k = 2, . . . ,n, there is a tk > t0 such that νγ(t)(Gk)− νγ(t)(Gk+1) > 0 for every t > tk .

Proof. The first item of Lemma 5.3 implies that B must be a sheaf, so it admits a filtration as described in
Lemma 2.20; this is the filtration we are looking for.

Indeed, each factor in the filtration of Lemma 2.20 belongs to Bβ for β� 0, according to Lemma 5.6 and
Remark 5.7. The property in item (1) is clear since B1 ∈ Coh1(X). Item (2) is a consequence of the following
claim: given E,F ∈ Coh(X) with ch≤1(E),ch≤1(F) , 0, we have νγ(t)(E) > νγ(t)(F) for t� 0 if and only if
Λ2(E,F) > 0. This can be explicitly checked for the path γ(t) = (α,−t) using the limits calculated in the
proof of Lemma 5.4; the verification for more general paths is similar. �

5.2. Unbounded Θ∗-curves

It is tempting to think that if B ∈ Bβ (respectively, A ∈ Aα,β ) for some α, β, then B∨ ∈ B−β (respectively,
A∨ ∈ Aα,−β ). The problem is that the duals of objects B in Fβ are not necessarily in T−β because it might be
that µ+(B) = β and then µ−(B∨) = −β. The analogous statement holds for objects A in Fα,β . However, an
asymptotic version of this statement does hold.

First we prove a technical lemma which allows us to turn Proposition 5.8 about the existence of asymptotic
Harder–Narasimhan filtrations into a more precise bound on ν−α,β so long as we constrain the unbounded
curve we move along. To this end, we introduce the following definition.

Definition 5.9. A path γ : (0,∞) → H with γ(t) = (α(t),β(t)) is called an unbounded Θ−-curve if
limt→∞β(t) = −∞ and for all v such that v≤1 , (0,0), νγ(t)(v) > 0 for all t sufficiently large. Equiva-
lently, the curve is asymptotically bounded by Θ−v ; i.e.

lim
t→∞

α̇(t)
β̇(t)

> −1.

We define the dual curve γ∗ by γ∗(t) = (α(t),−β(t)). Similarly, we define γ to be an unbounded Θ+-curve if
limt→∞β(t) = +∞ and for all v such that v≤1 , (0,0), νγ(t)(v) < 0 for all t sufficiently large.

In particular, γ is an unbounded Θ−-curve if and only if γ∗ is an unbounded Θ+-curve.

Remark 5.10. If v0 = 0 while v1 , 0, then the first condition implies the second; indeed, we have νγ(t)(v) =
v2/v1 − β(t), and the first condition implies that this is positive for all t� 0.

When v0 , 0, the condition on νγ(t) is satisfied, for example, if there is an ε > 0 such that for all t� 0,
α(t)2 < β(t)2(1− ε): we have

lim
t→∞

νγ(t)(v)

−β(t)
> lim
t→∞

v2 − β(t)v1 + β(t)2εv0/2
−v1β(t) + v0β(t)2 =

ε
2
> 0.

So again this is positive for all t� 0.
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Example 5.11. Note that, since s > 0, α2 < β2(1− ε) sufficiently far along Γ −v,s, and so Γ −v,s is an unbounded
Θ−-curve.

Lemma 5.12. Let γ be an unbounded Θ−-curve. If B ∈ Bβ(t) for all t � 0 and ch≤1(B) , (0,0), then there
exists a t0 > 0 such that ν−γ(t)(B) > 0 for all t > t0.

Proof. Using Remark 5.8, there is a t0 large enough so that there is a fixed Harder–Narasimhan factor of B,
say B0 ∈ Bβ(t), which satisfies νγ(t)(B0) = ν−γ(t)(B) for all t > t0. If ch0(B0) = ch1(B0) = 0, then νγ(t)(B0) =∞
for all t� 0, and we are done. Otherwise, ch≤1(B0) , (0,0). Then νγ(t)(B0) is asymptotically positive by
the assumption on γ(t); thus ν−γ(t)(B) > 0 for t� 0, as desired. �

Combining this with Proposition 2.13, we deduce the following.

Proposition 5.13. Consider an unbounded Θ−-curve γ as above. Then the following are equivalent for an object
E ∈Db(X):

(1) E ∈ Aγ(t) for all t� 0.
(2) E ∈ Bβ(t) for all t� 0.
(3) E ∈ Coh(X).

If E ∈ Coh(X) contains no subsheaf of dimension 0, then there is a t0 > 0 such that for all t > t0, E∨ ∈ Aγ
∗(t).

Proof. Lemma 5.12 implies that (2) implies (1) and a similar a similar but simpler argument for µ−(E)
shows that (3) implies (2). The idea for the converses is that if E1[1]→ E → E0 is short exact in Aγ(t0),
then Lemma 5.12 again shows that ν−γ(t)(E1) becomes positive as t increases, and then E1[1] ∈ Bβ(t) for t

sufficiently large and so E ∈ Bγ(t) for the same range of t. A similar argument shows (2) implies (3).
Now assume E is a coherent sheaf. When E is torsion-free, the claim follows immediately from

Proposition 2.13 and the observation that ν+
γ∗(t)(E

′∨) = −ν−γ(t)(E
′)→−∞ as t→∞. Otherwise, let T ⊂ E be

its maximal torsion subsheaf. Then the hypothesis implies that T ∨ ∈ Aγ∗(t) for all t� 0, and so dualizing
T → E→ E/T , we deduce the last part. �

Corollary 5.14. Suppose γ is an unbounded Θ−-curve γ and E is a sheaf in Aγ(t) for all t ≥ 0. A short exact
sequence 0→ F→ E→ G→ 0 in Aγ(0)∩Coh(X) remains a short exact sequence in Aγ(t) for all t ≥ t0 for some
t0 ≥ 0.

Proof. Observe that 0 → F → E → G → 0 is also a short exact sequence in Bβ(0) by the first part of
Proposition 2.12 and so also in Bβ(t) for all t > 0 since γ is a Θ−-curve and so remains to the left of any
Θ-curve. But ν−γ(t)(G) ≥ ν−γ(t)(E). So G ∈ Aγ(t) for all t > 0. The same is not necessarily true for F. But

ν−γ(t)(F) > 0 for all t� 0. �

5.3. Asymptotics along Λ+
α

We now move to the proof of the second part of Theorem 5.2, starting with a characterization of objects
lying in Bβ for β� 0.

Lemma 5.15. Let B ∈Db(X). There is a β0 > 0 such that B ∈ Bβ for every β > β0 if and only if the following
conditions hold:

(1) Hp(B) = 0 for p , −1,0.
(2) H−1(B) is a torsion-free sheaf.
(3) H0(B) is a torsion sheaf.
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Proof. Set E := H−1(B) and P := H0(B). If B ∈ Bβ for every β � 0, then the first two items follow
immediately. For the third one, just note that

lim
β→∞

chβ1(P )
β

= −ch0(P ) ≥ 0;

thus ch0(P ) = 0.
Conversely, we have that E ∈ Fβ for β ≥ µ+(E) and P ∈ Tβ for every β; it follows immediately that B ∈ Bβ

for β ≥ µ+(E). �

Lemma 5.16. If B ∈ Db(X) is asymptotically να,β-semistable along Λ
+
α , then S := B∨[−1] is a µ≤2-semistable

sheaf such that S∗∗/S either is empty or has pure dimension 1.

Proof. For simplicity, set E := H−1(B) and P := H0(B). We start by checking that E is reflexive and
dimP ≤ 1.

Indeed, if E is not reflexive, then QE := E∗∗/E ∈ Tβ ⊂ Bβ for every β; thus QE is a sub-object of B
within Bβ . But να,β(QE) = +∞ for every (α,β) ∈ H, so we have a contradiction with the asymptotic
να,β-semistability of B.

Lemma 5.15 implies that ch0(P ) = 0. If ch1(P ) , 0, then

lim
β→∞

1
β

(να,β(B)− να,β(P )) =
1
2
,

also contradicting the asymptotic να,β-semistability of B.
Any subsheaf U of P has dimension less than 1, so να,β(U ) = +∞, and hence U cannot lift to a

sub-object of B. By Proposition 2.15, we conclude that S := B∨[−1] is a torsion-free sheaf. Note that
Ext3(S∗∗/S,OX) ' Ext2(S,OX) =H1(B) = 0, so S∗∗/S cannot have a 0-dimensional subsheaf.

Let G be a quotient sheaf of S . Then G∗ is a subsheaf of S∗ =H−1(B), and G∗[1] ↪→ B is a sub-object
within Bβ for every β > µ+(G∗). Note that δ10(G∗[1],B) = δ10(S,G), so

lim
β→∞

(να,β(G∗[1])− να,β(B)) =
1
2

δ10(S,G)
ch0(G)ch0(S)

≤ 0

by asymptotic να,β-semistability, so S is µ-semistable.
Next, note that δ20(G∗[1],B) = δ20(G,S); thus if δ10(S,G) = 0, then

lim
β→∞

(β)(να,β(G∗[1])− να,β(B)) = − δ20(G,S)
ch0(G)ch0(S)

≤ 0,

implying that δ20(S,G) ≤ 0, meaning that S is µ≤2-semistable. �

Finally, we provide the converse of the previous lemma, thus concluding the proof of Theorem 5.2. For
E ∈ Coh(X), note that Lemma 5.15 implies that E∨[−1] ∈ Bβ for β� 0 if and only if E has no subsheaf of
dimension at most 1, and the cokernel of the canonical morphism E→ E∗∗ has pure dimension 1.

Lemma 5.17. If S is a µ≤2-semistable sheaf such that S
∗∗/S is either empty or has pure dimension 1, then there is

a β0 > 0 such that S∨[−1] is να,β-semistable for all β > β0.

Proof. The observation in the previous paragraph implies that B := S∨[−1] ∈ Bβ for every β ≥ −µ(S).
Let F ↪→ B be a sub-object within Bβ for β > −µ(S); note that ch0(H0(F)) = 0 by Lemma 5.15. First

assume ch0(F) = ch0(H−1(F)) , 0. It follows that

µ(F) = µ(H−1(F))− ch1(H0(F))
ch1(H−1(F))

≤ µ(H−1(F)) ≤ µ(S∗) = µ(B)

since S∗ is µ-semistable and H−1(F) is a subsheaf of S∗. We then have

lim
β→∞

(
να,β(F)− να,β(B)

)
=

1
2

(µ(F)−µ(B)) ≤ 0.
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If µ(F) = µ(B), then µ(H−1(F)) = µ(S∗) and ch1(H0(F)) = 0. Denoting by G := B/F the corresponding
quotient in Bβ , we have the following exact sequence in Coh(X):

(5.2) 0→H−1(F)→ S∗→H−1(G)
f
→H0(F)→Ext1(S,OX)→H0(G)→ 0.

Clearly, kerf is torsion-free, and this implies that H−1(F) is reflexive. Let P ↪→H0(F) be a monomorphism
of sheaves that lifts to F, and let U be the image of the composite morphism of sheaves P ↪→H0(F)→
Ext1(S,OX). Since U ∈ Tβ ⊂ Bβ for every β, U coincides with the image of the composite monomorphism
P ↪→ F ↪→ B = S∨[−1] in Bβ , so Proposition 2.15 implies that U = 0, so in fact P = 0. We therefore conclude,
again by Proposition 2.15, that F := F∨[−1] is a torsion-free sheaf. Dualizing and shifting the triangle

F→ B→ G→ F[1]

in Db(X), we obtain the triangle

G→ S→ F→ G∨, G := G∨[−1],

which yields the exact sequence in Coh(X)

0→H0(G)→ S→ F→H1(G)→ 0.

Note that chk(H1(G)) = 0 for k = 0,1; it follows that

δ20(B,G) = δ20(S,G) = δ20(S,H0(G)) + ch0(S)ch2(H1(G)) ≥ 0.

We then obtain

lim
β→∞

β
(
να,β(B)− να,β(G)

)
= − δ20(B,G)

ch0(B)ch0(G)
≤ 0.

If equality holds, then both ch≤2(F) and ch≤2(G) are multiples of ch≤2(B), meaning that να,β(F) = να,β(B) =
να,β(G) for every (α,β). In any case, we conclude that there is a β0 > 0 such that να,β(F) ≤ να,β(B) for
β > β0.

Next, assume ch0(F) = ch0(H−1(F)) = 0, so H−1(F) = 0 and F ∈ Tβ . If ch1(F) , 0, then

lim
β→∞

1
β

(να,β(B)− να,β(F)) =
1
2
,

so να,β(B) > να,β(F) for β� 0. Therefore, it is enough to consider the case when dimF ≤ 1.
The sequence in display (5.2) simplifies to

0→ S∗→H−1(G)
f
→ F→Ext1(S,OX)→H0(G)→ 0.

Since kerf is a subsheaf of F, we conclude that dimkerf ≤ 1, so that (kerf )∗ = Ext1(kerf ,OX) = 0.
Therefore, dualizing the sequence

0→ S∗→H−1(G)→ kerf → 0,

we get that S∗∗ 'H−1(G)∗ and

(5.3) Ext1(S∗,OX)→Ext2(kerf ,OX)→Ext2(H−1(G),OX)→ 0

since the reflexivity of S∗ implies that Ext2(S∗,OX) = 0. In addition, since H−1(G) is torsion-free, we
can also deduce that Ext3(kerf ,OX) = 0, meaning that either kerf has pure dimension 1, or kerf = 0.
However, the latter leads to a contradiction with the exact sequence in display (5.3) since both Ext1(S∗,OX)
and Ext2(H−1(G),OX) are 0-dimensional sheaves (since S∗ is reflexive and H−1(G) is torsion-free), while
Ext2(kerf ,OX) is a 1-dimensional sheaf. It follows that kerf = 0; hence F is a subsheaf of Ext1(S,OX)
that lifts to B = S∨[−1], contradicting Proposition 2.15. �
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6. The differential geometry of surface walls

Definition 6.1. Let u and v be real numerical Chern characters such that v satisfies the Bogomolov–Gieseker
inequality. We define the surface wall Σu,v ⊂R+ ×R×R+ to be the vanishing locus of

fu,v(α,β,s) = ∆32(α,β)−α2(s − 1/3)∆12(α,β),

the numerator of the difference of slopes λα,β,s(u) − λα,β,s(v) now regarded as a function of all three
parameters (α,β,s). Note that

(6.1) Σu,v = Σv,u = Σφv+ψu,v

for any real φ and ψ , 0. Throughout this section, we will be referring to the function fu,v frequently, and it
is will be more readable to abbreviate it when the context is clear to f (α,β,s) or just f .

In addition, we will denote by Γv (without the parameter s in the subscript) the surface {τv,s(α,β) = 0} ⊂
R×R+. In this notation, Γv,s0 = Γv ∩ {s = s0} and Υu,v,s0 = Σu,v ∩ {s = s0} for any s0 ∈R+.

Our aim in this section is to explore some of the differential-geometric properties of Σu,v with a view to
understanding finiteness properties of λ-walls. We will assume v is a fixed real numerical Chern character.
Note that, by (6.1), we can assume u0 = v0. It turns out to be best to consider the two cases u0 = 0 = v0 and
u0 , 0 , v0. The former is dealt with in Remark 6.5.

Generically, Σu,v can have components of dimensions 0, 1 or 2. In fact, each of these does arise at least
as a numerical surface wall. For example, for v = (3,−2,−1/2,1) and u = (0,1,−1/2,0),

fu,v(0,β, s) = (β + 1)2(β2 + 2)/4

and fu,v(α,β,s) , 0 whenever α , 0. At special points where the curves Γv,s and Θv intersect, Σu,v is
guaranteed to be locally a surface.

Lemma 6.2. At the points of intersection Γu,s∩Γv,s, Θu∩Θv and Γv,s∩Θv , the surface wall Σu,v is 2-dimensional.

In other words, a surface wall Σu,v does have 2-dimensional components whenever it is not empty.

Proof. Note that each pair of curves divides a small ball around their intersection into four regions; otherwise,
the (algebraic) curves must coincide. They cannot coincide except possibly for the Theta curves, but then
Σu,v = Θu ×R. Then for a small arc around the intersection point in two of the regions, the function
fu,v(α,β,s) is positive on one curve and negative on the other, and so must vanish at some point in the
region for each arc sufficiently close to the intersection point. Combining this with Lemma 4.11, we see that
Σu,v is 2-dimensional in a neighbourhood of the point. �

We now look more carefully at the differential geometry of the surface wall Σu,v . The normal vector is
given by the gradient of f (α,β,s).

Lemma 6.3.

∂αf = α
(
1 + 2(s − 1/3)

)
∆21 −α∆30 +α3(s − 1/3)∆10,

∂βf = −∆31 −α2(s − 1/3)∆20,

∂sf = α2∆21,

∂2
αf = (1 + 2(s − 1/3))∆21 −∆30 +α2(5s+ 1/3)∆10,

Hf =


∂2
αf 2α(s − 1/3)∆02 2α∆21 −α3∆01,

2α(s − 1/3)∆02 ∆21 +∆30 +α2(s − 1/3)∆10 −α2∆20,
2α∆21 −α3∆01 −α2∆20 0

 .
Proposition 6.4. For any s1 > s0 > 0, Σu,v ∩R×R× {s0 ≤ s ≤ s1} is compact if and only if ∆01 , 0.
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Proof. This is just a restatement of Proposition 4.4 in terms of Σu,v . �

Note that when s = 0, the surface is unbounded along α = ±β.

Remark 6.5. In the case where v0 and u0 are non-zero, if u gives rise to a ν-wall with respect to v, then
∆01 , 0. Then ∆21(α,β) = 0 has a 1-dimensional solution set. So if ∆02 = 0 (everywhere), then, in particular,
∆20 = 0 along the ν-wall, and it follows that (u0,u1,u2) ∝ (v0,v1,v2), which then cannot have a ν-wall as
∆21 = 0 everywhere. On the other hand, if ∆01 = 0, then if ∆20(α,β) = 0 for some (α,β), it must vanish
identically and again (u0,u1,u2) ∝ (v0,v1,v2). But then ∆21 = 0 identically. On a λ-wall, we then have
∆32 = 0 and so u ∝ v. It follows that ∆02 cannot vanish identically.

If v0 = 0 = u0, then ∆i0 = 0 identically for all i. Then there are no ν-walls. The numerical λ-walls are
nested ellipses, much as ν-walls are for the truncated Chern characters. It follows that Σu,v is always regular
and horizontal exactly on Γv,s. The variation in s is just a vertical scaling by

√
s+ 1/3.

It is interesting to consider the regularity of numerical walls, and we will use this extensively in our
analysis of the asymptotics. The regularity of a general wall for arbitrary s is complicated and hard to
describe, but the situation is simpler if we consider the whole surface Σu,v and also for the case s = 1/3,
which we describe first.

Proposition 6.6. When s = 1/3, a numerical wall Υu,v,1/3 is regular everywhere in the upper half plane except
where it intersects Γu,1/3 and its numerical ν-wall Ξu,v .

Proof. At a non-regular point p on Υu,v,1/3, we have ∆32 = 0 = ∆31 and ∆30 = ∆21. If p < Γv,1/3, then
Lemma 2.7(3) implies ∆12 = 0, and so ∆30 = 0. But then Lemma 2.7(4) implies u ∝ v. So p ∈ Γv,1/3 ∩ Γu,1/3.
But then ∆30 = 0 and so ∆21 = 0. But then p ∈ Ξu,v . Conversely, if p ∈ Γv,1/3 ∩ Ξu,v ∩ Υu,v,1/3, then
∂αf = 0 = ∂βf , and so p is not a regular point. �

Looking at the second derivatives, we see that the local model for Υu,v,1/3 at its singular point is
(α−α0)2 +higher order terms = 0, and so the singular point is a cusp. We see this more generally in case (2)
in Theorem 6.7 below.

Theorem 6.7. Suppose u and v are real numerical Chern characters with v0 , 0. Any 2-dimensional component
of the surface wall Σu,v is regular everywhere except in one of the following situations:

(1) It intersects a ν-wall away from Γv at α = 0, in which case it is locally α2 − β2.
(2) It intersects a ν-wall and Γv at s = 1/3 for α > 0, in which case it is locally

(α −α0)2 + (α −α0)(s − 1/3) +
∆02(α0,β0)
∆01(α0,β0)

(β − β0)(s − 1/3) = 0

up to scaling.
(3) It intersects a ν-wall and Γv at α = 0 and s = 1/3, in which case the surface is smooth (locally given by

(β − β0)3 = 0).

(4) The characters u and v are special vectors satisfying µ(v) = µ(u), ∆03 = ∆21, ∆20 , 0 and ch
α,µ(v)
3 (v) =

0 = ch
α,µ(u)
3 (u). Then Σu,v is regular except along the line Mv × {s = 1/3} ∪ {α = 0, s < 1/3}, and it is

locally (β − β0)
(
(s0 − 1/3)(α −α0) + (β − β0)2

)
at (α0,µ(v),1/3) and at (0,β0, s0).

Note that in (1), we also allow the degenerate case where the ν-wall has radius 0. An example of this can
be seen for v = (2,0,−1,0), illustrated in Figure 11 in Section 8.

Proof. Suppose (α,β,s) is a non-regular point of Σu,v . Then ∇fu,v(α,β) = 0. From ∂sfu,v = 0, we have either
α = 0 or ∆12(α,β) = 0. We will treat these two cases separately.

First suppose α , 0. Then ∆12 = 0. From fu,v = 0, we also have ∆32 = 0. From ∂αfu,v = 0, we have

∆30 = α2(s−1/3)∆10, and from ∂βfu,v = 0, we have ∆31 = −α2(s−1/3)∆20. Assume chβ1(v) , 0 and s , 1/3.
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Then Lemma 2.7(3) implies that ∆31 = 0, and then ∆20 = 0 so that also ∆10 = 0. Since v0 , 0, Lemma 2.7(4)

implies that u ∝ v, which gives a contradiction. So we must have chβ1(v) = 0 = chβ1(u) or s = 1/3. In the
case s , 1/3, it follows that ∆01 = 0. From ∂βfu,v = 0, we have ∆02 = 0, but this contradicts ∆03 = 0. So we

must have s = 1/3 and either (a) ∆01 = 0 = ∆30 along chβ1(v) = 0 or (b) the λ-curve passes through both a
ν-wall and Γv,s.

We consider case (a). From ∆31 = 0, we then have that u ∝ v unless chα,β3 (u) = 0 = chα,β3 (v) along Mv .
Then we have that the conditions are equivalent to

∆01 = 0,(6.2)

v3v
2
0 − v1v2v3 + v3

1 /3 = 0,(6.3)

∆03 = ∆12, and(6.4)

∆02 , 0.(6.5)

The first equality for u also follows (from the second). Note that in this situation, Σu,v is singular all along
Mv and so also at α = 0. Along Mv the Hessian of f vanishes. The only third derivatives to be non-zero
(up to symmetry) are ∂3

βfu,v = 2∆02 and ∂α∂β∂sfu,v = 2α∆02. So the local model for fu,v is

2∆02(β −µ(v))
(
(β −µ)2 + (α −α0)(s − 1/3)

)
.

This is a triple zero at α = 0 and looks like y = 0∪ y2 = xz for α , 0. In fact, since fu,v(α,v1/v0) = 0, we
have that (β − v1/v0) is a linear factor of fu,v .

Now suppose α = 0. Then ∂βfu,v = 0 implies that ∆31(α,β) = 0. But from fu,v = 0, we have ∆32(α,β) = 0.
If the point is not on Γ , then ∆21(α,β) = 0, and so (α,β) is on a ν-wall. Then the Hessian at this point is
the diagonal diag(−∆30(0,β),∆30(0,β),0). Then fu,v is locally of the form ∆03(α2 − (β − β0)2) to lowest
order, as required. Conversely, such a point (where a numerical λ-wall intersects its associated ν-wall away
from Γv on α = 0) is always singular of this form.

Alternatively, if the point lies on Γv,s ∩ Γu,s and α = 0, then the Hessian is equal to the diagonal

diag(∆21(0,β)(s + 1/3),∆21(0,β),0). So ∆21 = 0. But this can only happen if either chβ1(v) = 0 = chβ1(u)
or we are also on a ν-wall. In the latter case, we are in case (b); see below. Otherwise, ∆01 = 0. But then
we either have the special situation described before, or ∆20 = 0 and ∆30 = 0, so we have u ∝ v. This is
impossible. In the special case above, we have Hfu,v = 0 again, and the same third derivatives are non-zero
as before.

In case (b) above, we have ∆21 = 0 and chα,β3 (u) = 0 = chα,β3 (u), so that ∆3i = 0 for all i. Since Σu,v also
crosses a ν-wall, we must have ∆20 , 0. When α , 0, the local form in (2) can then be read off the Hessian.
Note that at s = 1/3, the wall has a standard cusp singularity given by (α −α0)2 ∝ (β − β0)3. Otherwise, the
Hessian vanishes at the point. The third derivatives are then all zero except for ∂3

βfu,v = −2∆02. This gives
the required form in (3). �

Remark 6.8. The special case where the surface is not regular for α > 0 splits into two types: v1 = 0 and
v1 , 0. The former case gives v3 = 0 = u3 and u1 = 0. Then, so long as ∆02 , 0, the surface has the local
form as stated in Theorem 6.7. It follows that f (α,β,s) = ((3s − 1)α2 + β2)β∆02, so Σu,v is reducible. As a
concrete (actually generic) example, consider the Chern characters v = (2,0,−3,0) and u = ch(OX). On P3,
v is the Chern character of a rank 2 locally free sheaf E with c1(E) = 0 and c2(E) = 3; see Figure 6.

On the other hand, if v1 , 0, the picture will be the same translated by µ(v) along β. Note that (6.2) will
determine u1 for arbitrary non-zero ch(v) and u0. Then (6.3) will determine v3, while (6.4) will determine
u2: one root is also a root of ∆02 = 0 and so must be dismissed, and then u2 is uniquely determined. This
gives a 3-parameter family of possible rational examples, but to correspond to actual objects, there are
strong diophantine constraints which will depend on the threefold X.
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Figure 6. An example of a reducible surface Σu,v with u = (1,0,0,0) and v = (2,0,−3,0), illustrating
case (4) of Theorem 6.7.

Corollary 6.9. If ∆01 , 0, then Σu,v ∩{α > 0, s > 0, s , 1/3} is regular and Υu,v,s0 = Σu,v ∩{s = s0} is bounded
for each s0 > 0.

A numerical λ-wall Υα,β,s is said to be horizontal at a point (α0,β0) ∈H if ∂βfu,v(α0,β0) = 0.

Proposition 6.10. Assume u and v are as in Theorem 6.7. Let s = 1/3. A numerical λ-wall is horizontal at a
point (α,β) <Θv if and only if (α,β) ∈ Γv,s or (α,β) ∈ Ξu,v away from Θv . It is a local maximum on Γv,s and a
local minimum of Ξu,v except for the special case where δ01 = 0 and (α,β) ∈ Γv,s ∩Ξu,v , where it is a point of
inflection.

Proof. By Lemma 6.3, Υα,β,s is horizontal if and only if ∂βfu,v,s = ∆13(α,β) = 0. First assume the point is on

Γv,s (but not on Θv ), so that chα,β3 (v) = 0. Then also chα,β3 (u) = 0 because chα,β2 (v) , 0 and fu,v,s(α,β) = 0.
Hence, ∆31(α,β) = 0, and so ∂βfu,v,s = 0, and the wall is horizontal. In a local chart away from a point
where the wall is vertical, we can view α as a function of β. Then the second derivative is given by

d2α

dβ2 = −
∂2
βfu,v,s

∂αfu,v,s
=

∆21 +∆30

α∆21 −α∆30
= − 1

α
.

If the point is on the associated ν-wall Ξu,v , then since chβ1(v) , 0, we have

∆32 =
chα,β2 (v)

chβ1(v)
∆31,

and so if also ∆32 = 0, then the Υu,v,s must be horizontal there, unless the point lies on Θv . The second
derivative (if the point is not on Γv,s) is 1/α. Note that when the point is also on Γv,s, the wall is singular
by Theorem 6.7(2); otherwise, ∆21 and ∆30 cannot vanish simultaneously except in the special case
where δ01 = 0. Consequently, there is never a point of inflection on a numerical λ-wall except at Γv,s ∩Ξu,v
in this special case.

Assume Υu,v,s is horizontal at a point (α,β) not on Γv,s. Then ∆13(α,β) = 0, and from ∆23(α,β) = 0,

we also have ∆12(α,β) = 0 by Lemma 2.7(3) since chα,β3 , 0 by assumption. So (α,β) is on the associated
ν-wall. �
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Remark 6.11. A numerical λ-wall might be horizontal as it crosses Θv , though it generally is not. In that
case, we can use β and s as local coordinates on the surface, and the second fundamental form at that point
is II = 1

αdβ
2. Then the Gauss curvature is zero, and the mean curvature is 1/2α.

Now we consider how numerical λ-walls vary with s. Note that Σu,v ∩ {s = s0} = Υu,v,s0 .

Theorem 6.12. Let Σ′ be a non-empty connected component of Σu,v .

(1) Suppose s0 ≥ 1/3. If Σ′ ∩ {s = s0} , ∅, then Σ′ ∩ {s = s1} , ∅ for every s1 ≥ 1/3.
(2) Suppose s0 < 1/3. If Σ′ ∩ {s = s0} , ∅, then Σ′ ∩ {s = s1} , ∅ for every 0 ≤ s1 < s0.

If Σ′ ∩ {s = s0} , ∅, then Σ′ ∩ {s = s1} , ∅ for every 0 < s1 ≤ s0.

In other words, if a numerical λ-wall exists for one s0 ≥ 1/3, then it must also exist for all s ≥ 1/3,
whereas if s0 < 1/3, then it need only exist for s < s0. This means that numerical λ-walls can only be
“created” for s < 1/3 and as s decreases. We shall see below that walls cannot be “created” in R±v,s even when
s < 1/3, but they can be created in R0

v,s.

Proof. First observe that we may assume boundedness away from s = 0 because if ∆01 = 0, then ∆20 , 0 and
so fu,v,s(α,β) = 0 is a cubic in β. Then it must have a solution for all α. But if a wall crosses α = 0 for one
value of s, then it crosses it for all s.

By Theorem 6.7, the surface is regular except at special points on α = 0 where there are multiple tangent
planes which include the s-direction or we are in case (2) of the theorem. But this latter case cannot arise in
the present situation. This means that if Σu,v ∩ {s = s1} is empty for some s1 > 0, then there is some s0 such
that ∂αfu,v,s0 = 0 = ∂βfu,v,s0 and ∂sfu,v |s=s0 , 0. It follows that α , 0 and ∆12(α,β) , 0.

Then Σu,v |s0 is a union of closed curves, unbounded curves or one or more distinct points. Suppose (α,β)
is a point on a closed curve component. Since f is a quadratic function of α2, it follows that nearby (α,β)
there are two distinct solutions for a fixed β. If the curve does not cross α = 0, then there are four distinct
solutions sufficiently close to two points in α > 0. But then there are also four points for α < 0, which is
impossible. So the curve must cross α = 0. But this gives a contradiction as α , 0. We can also eliminate
the possibility of unbounded curves, as follows. Each unbounded curve must have two distinct unbounded
branches. Then nearby s0, there will be four unbounded branches. But the implicit function defining the
λ-wall Υu,v,s0 is only asymptotically cubic (see the proof of Proposition 4.4), and so this is impossible.

Consequently, Σu,v ∩ {s = s0} consists only of isolated points. Now consider one of these points, with
coordinates (α0,β0). By regularity, we can use α and β as local coordinates on Σu,v at this point. Note that
the first fundamental form at (α0,β0) is dα2 +dβ2, from the vanishing of −∂αfu,v/∂sfu,v and −∂βfu,v/∂sfu,v .

From fu,v(α0,β0, s0) = 0, ∂αfu,v(α0,β0, s0) = 0 and ∂βfu,v(α0,β0, s0) = 0, we have

∆32 = α2
0 (s0 − 1/3)∆12,(6.6)

∆30 = (1 + 2(s0 − 1/3))∆21 +α2
0 (s0 − 1/3)∆10,(6.7)

∆31 = α2
0 (s0 − 1/3)∆02,(6.8)

where we abbreviate ∆ij(α0,β0) to ∆ij here and in the rest of the proof. Together with Lemma 2.7(1), these
identities imply that

(6.9) α2
0(s0 − 1/3)∆2

02 = −(2s0 + 1/3)∆2
12.

Since α0 , 0 and ∆12 , 0, we deduce that ∆02 , 0 and s < 1/3. This establishes the first part of the theorem.
For the second part, we show that the mean curvature at our point is negative, and so the surface

must curve towards s < s0. To this end, observe that the Gauss curvature K is a positive multiple of
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∂2
αfu,v∂

2
βfu,v − (∂α∂βfu,v)2. Using (6.7), we have

∂2
αfu,v = 2α2

0(2s0 + 1/3)∆10,

∂α∂βfu,v = 2α0(s0 − 1/3)∆02,

∂2
βfu,v = α2

0(s − 1/3)∆10 + 2(s0 + 2/3)∆21.

Using (6.9), we have (∂α∂βfu,v)2 = −(2s0 + 1/3)(s0 − 1/3)∆2
21. Then K has the same sign as

α4
0(s0 − 1/3)∆2

10 +α2
0(s0 + 2/3)∆10∆21 + (s0 − 1/3)∆2

21

= (s0 − 1/3)(α0∆10 +∆12)2 + 3s0α
2
0∆10∆21

But the tangent plane at (α0,β0) only intersects Σu,v at that point and so K ≥ 0. The first term is negative,
and so we must have ∆10∆21 > 0.

The mean curvature is then

−
∂2
αfu,v
∂sfu,v

−
∂2
βfu,v

∂sfu,v
= −3s0α0

∆10

∆21
− 2
α0

(
s0 +

2
3

)
< 0

as required. �

We observe that numerical λ-walls do admit isolated points; see Figure 7 below.

Figure 7. This is the surface wall Σu,v for v = (2,−1,−1,0) and u = (0,1,−10,−3). Taking s0 '
0.0569, the point (α,β) ' (6.24,3.52) is an isolated point of the numerical λ-wall Υu,v,s0 = Σu,v |s0 .

As a consequence of Theorem 6.7 and the proof of Theorem 6.12, we can deduce that 1-dimensional
components of numerical λ-walls for a fixed s are regular away from ν-walls.

Corollary 6.13. For any s > 0 and any real numerical Chern characters u and v, any connected component of a
numerical λ-wall Υu,v,s inH is regular as a real curve away from Ξu,v . In particular, if there is no associated
ν-wall for the pair u, v, then Υu,v,s is always regular.

Proof. Away from the ν-wall Ξu,v (if non-empty) when s = 1/3, Σu,v is regular by Proposition 6.6 or
Theorem 6.7. But by the proof above, the only place where the plane tangent to Σu,v is parallel to the
(α,β)-plane occurs at isolated points and not in a 1-dimensional portion of the surface wall. �
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We complete this section by returning to the issue of the intersection of numerical λ-walls for v and the
curves Θv and Γv,s.

Unravelling the equality in (4.8) yields a cubic polynomial equation for β0. This means that the intersection
Υu,v,s∩ Γv,s consists of at most three points away from Θv ; in addition, according to Lemma 4.11, the number
of intersection points does not depend on the parameter s. Notice that the total number of intersection
points of a λ-wall for v with Γv,s will increase by 1 if q(v) < 0.

Let us now examine one situation in which Υu,v,s ∩ Γv,s contains two points.

Lemma 6.14. If a connected component of a numerical λ-wall Υu,v,s crosses a connected component of Γv,s twice
away from the hyperbola Θv , then the associated numerical ν-wall Ξu,v is non-empty.

Proof. By Lemma 4.11, we can let s = 1/3. Then the two intersection points are local maxima of Υu,v,1/3. By
Corollary 6.13, the component is regular or has a tacnode on a ν-wall. If it is regular, then it must have a
minimum between the two maxima. Proposition 6.10 implies that such a minimum must lie on the associated
ν-wall. �

Figure 8 illustrates the typical situation described in Lemma 6.14 and shows that it does arise. It is easy
to see that the intersection with α = 0 must happen to the right of Γ −v,s because Γ −v,s is monotonic.

Γ−

v,s
Γ0
v,s

Γ+
v,s

Θ−

v

Θ+
v

Υu,v,s

Ξu,v

b

b
b

b

b

b

Figure 8. This example contains several interesting features. We set s = 1/3, v = (3,1,0,−1) and
u = (0,1,−3,7). First, the curve Γv,s (in red) intersects the positive branch of the hyperbola Θv (in
blue); this intersection is marked with a black bullet. Second, the numerical λ-wall Υu,v,s (in black)
crosses the curve Γv,s four times (marked with green bullets), twice along Γ −v,s. Finally, we can see that
the associated numerical ν-wall Ξu,v (in magenta) cuts Γ −v,s (red bullet) between the two intersection
points of Υu,v,s ∩ Γ −v,s, illustrating the phenomenon described in Lemma 6.14. Both Υu,v,s and Ξu,v

cut Θ−v at the same point.

The situation in Figure 8 also demonstrates another phenomenon in which a numerical λ-wall intersects
horizontal lines four times. When this happens, it must be that f (α,β) has three turning points along this
horizontal line. But note that ∂βf = −∆31 when s = 1/3. On the other hand, ∂α∆31 = 0, and so the solutions
of ∆31 = 0 are vertical lines. But these intersect the wall at its horizontal turning points (the green points in
Figure 8). The middle one also intersects Υu,v,1/3 again at a minimum or on Θv , which must therefore also
be on Ξu,v . For a connected component, we could already deduce this because such a component must have
at least one minimum, but the same will follow even when the geometry of the wall does not require there to
be a minimum. This more precise reasoning allows us to refine Lemma 6.14 as follows.

Lemma 6.15. If a numerical λ-wall Υu,v,s intersects Γ
−
v,s twice, then Υu,v,s must intersect Θv and Ξu,v intersects

Γ −v,s in between the intersection points.

Proof. Note that Lemma 6.14 shows that if the wall is a connected component, then it must intersect Ξu,v .
Since the solutions of ∆31 = 0 are vertical lines, there must be minima above or below the maxima (the
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green dots on Γ −v,1/3 in Figure 8). Since the wall cannot cross Γ −v,s for a third time because it would have to
double back on itself and there can only be at most two solutions of ∆32 = 0 along any vertical line, it must
cross Ξu,v a third time at a point which is not a minimum, which must therefore be on Θv . Note that an
alternative picture to Figure 8 has the wall cross α = 0 twice to the left of Γ −v,s. In that case, it only crosses
Ξu,v once, and then Ξu,v does not intersect Γ −u,v between the two intersection points.

Now we assume the wall is two nested components. First we observe that this hypothesis is independent
of s. To see that, note that if a component were created at (α,β), then there would be six distinct solutions of
f (α,β) = 0 along β = β, which is impossible. The two bounded components must have maxima at s = 1/3
which must intersect Γ −v,1/3.

Then there are three vertical line components of ∆31 = 0 which intersect Γ −v,1/3 at the maxima of the wall
at distinct β-values. Since the inner bounded component must have a maximum (on Γ −v,1/3), the middle
component of ∆31 = 0 intersects the wall at that point and so intersects the outer component away from
Γ −v,1/3. But this point cannot be a point of inflection (see Remark 6.11) and so must be a minimum, which
must therefore be on a ν-wall. If the wall is otherwise in the exterior of the ν-wall, then that point must be
at the maximum of the ν-wall and so is on Θv . Otherwise, it must cross the ν-wall again, which is not a
turning point, and so must also cross Θv . In fact this minimum of Υu,v,1/3 in the outer component must
have another maximum, which must be on Γv (see Figure 9 for a concrete example of this case). �

We can argue similarly to Lemma 6.15 in R0
v .

Lemma 6.16. If a numerical λ-wall Υu,v,s intersects Γ
0
v,s twice, then Υu,v,s intersects Ξu,v and Θv .

Proof. First observe that by Lemma 4.11, the hypothesis and conclusion are independent of s, and so we may
set s = 1/3.

If Υu,v,s has a single component, then there must be a minimum between the maxima, and so it crosses
Ξu,v at that point. If there are two components, then the geometry does not require there to be a minimum.
But then there are three vertical components of ∆31 = 0. The middle one intersects the inner component at
its maximum, and then it must intersect the other component at a minimum (by Proposition 6.10) which
must be on Ξu,v .

In the last case, either the outer component is unbounded and the minimum occurs on Θv , or it is
bounded and there is a further maximum which must be on Γ ±v,1/3, and so the wall again crosses Θv . The
shape is illustrated in Figure 9. �

We can now state the main theorem of this section.

Theorem 6.17. Suppose a real numerical Chern character v satisfies the Bogomolov–Gieseker inequality and
v0 , 0. Any connected bounded component of a numerical λ-wall in R−v,s for some s ≥ 1/3 intersects Γ −v,s.

Proof. Let Υu,v,s be the component, and suppose for a contradiction that it does not cross Γ −v,s. By
Theorem 6.12, this component must exist for all s, and so we may assume s = 1/3. By Theorem 6.7, Υu,v,1/3
is regular except possibly in case (2) of that theorem, in which case the singular point is on Γ −v,s, as required.
Otherwise, Υu,v,1/3 is regular, and so it must have a maximum. By Proposition 6.10, it must intersect Γ −v,1/3
at this point. �

Remark 6.18. In other words, if we want to classify all of the actual λ-walls in the region R−v,s then we only
need to locate the ones which cross Γ −v,s. But note that the wall may not be actual as it crosses Γ −v,s.

On the other hand, this fails for s < 1/3 because isolated walls can appear as s decreases. Some will be
unbounded as s→ 0, but others may persist as isolated closed curves.

Finally, observe that analogous statements also hold for Γ +
v,s and the region to the right of Θ+

v .
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7. Asymptotic λα,β,s-stability in R±v,s

Similarly to Definition 5.1, we introduced the following definition, where γ : [0,∞)→H is an unbounded
path.

Definition 7.1. An object A ∈ Db(X) is asymptotically λα,β,s-(semi)stable along γ if the following two
conditions hold for a given s > 0:

(i) There is a t0 > 0 such that A ∈ Aγ(t) for every t > t0.
(ii) There is a t1 > t0 such that for all t > t1, every sub-object F ↪→ A in Aγ(t) satisfies λγ(t),s(F) < (≤)

λγ(t),s(A).

Our first goal is to characterize asymptotically λα,β,s-semistable objects with numerical Chern character v
satisfying v0 > 0 and the Bogomolov–Gieseker inequality along two families of paths contained in the region
R−v , namely the paths Γ −v,s for each s > 0 and Λ−α for each α > 0; see the notation introduced in display (5.1).

We then invoke Proposition 5.13 to characterize asymptotically λα,β,s-semistable objects along the paths
Γ +
v,s and Λ+

α . More precisely, we show that λα,β,s-semistable objects along Γ +
v,s and Λ+

α are duals of Gieseker
semistable sheaves.

First, we provide a simple consequence of asymptotic λα,β,s-semistability and the support property along
unbounded paths.

Lemma 7.2. Let A ∈Db(X) be an asymptotically λα,β,s-semistable object along an unbounded path γ(t). Then
Qtilt(A) ≥ 0.

Proof. The support property in Proposition 2.4 implies that Qγ(t)(A) ≥ 0 for all large enough t.
First suppose limt→∞β(t) = ±∞; then

0 ≤ lim
t→∞

Qγ(t)(A)

β(t)2 =
(

lim
t→∞

α(t)2

β(t)2 + 1
)
Qtilt(A).

As the first factor is positive for all t, it follows that Qtilt(A) ≥ 0.
If limt→∞α(t) =∞, then

0 ≤ lim
t→∞

Qγ(t)

α(t)2 =Qtilt(A),

and the same conclusion follows. �

7.1. Asymptotics along Γ −v,s

We now turn to asymptotically λα,β,s-semistable objects with Chern character v along the curve Γ −v,s; we
assume from now on v satisfies v0 , 0 and the Bogomolov–Gieseker inequality (2.3).

Since chβ1(E) , 0 along Γ ±v,s, we have

(7.1) λα,β,s(E) = 0 ⇔ α2 =
chβ3(E)

(s+ 1/6)chβ1(E)
,

at least away from the point where Γ ±v,s meets Θv (it meets it exactly once if q(E) < 0 and not at all otherwise),
so we can use β < 0 as a parameter.

Substituting α2 from equation (7.1) into the expression for λα,β,s(u), we define the function λv,β,s(u); to
be precise,

λv,β,s(u) =
chβ3(u)chβ1(v)− chβ3(v)chβ1(u)

chβ2(u)chβ1(v)−u0 chβ3(v)/(2s+ 1/3)
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expresses the λ-slope of an object F with ch(F) = u along Γ ±v,s. If ch0(F) , 0, the previous expression yields

(7.2) λv,β,s(F) = − 6s+ 1
9sch0(E)ch0(F)

·
δ01β

3 − 3δ02β
2 + 3(δ03 + δ12)β − 3δ13

β3 + lower order terms
,

where δij = δij(F,E), as defined in equation (2.11). When ch0(F) = 0 and ch1(F) , 0, we obtain

(7.3) λv,β,s(F) = −1
3

ch0(E)ch1(F)β3 + lower order terms

ch0(E)ch1(F)β2 + lower order terms
.

Note that a numerical λ-wall Υu,v,s crosses Γ
±
v,s precisely at the zeros of the function λv,β,s(u).

The behaviour of the ν-slope of an object F ∈ Db(X) along Γ ±v,s can be analysed in a similar way.
Substituting α2 from equation (7.1) into the expression for να,β(F), we obtain

(7.4) lim
β→−∞

−1
β
να,β(F) =


s

2s+ 1/3
if ch0(F) , 0,

1 if ch0(F) = 0, ch1(F) , 0.

We are now in position to state the main result of this section.

Theorem 7.3. Let v be a numerical Chern character with v0 , 0 satisfying the Bogomolov–Gieseker inequality
(2.3). For each s > 0, an object A ∈Db(X) with ch(A) = v is asymptotically λα,β,s-(semi)stable along Γ −v,s if and
only if A is a Gieseker (semi)stable sheaf.

The proof will be done in a series of lemmas.

Lemma 7.4. For every s > 0, if there is a β0 < 0 such that E ∈ Aα,β for (α,β) ∈ Γ −v,s with β < β0, then
E ∈ Coh(X).

This claim actually follows directly from Proposition 5.13, but we give an alternative hands-on proof.

Proof. Using the notation of Section 2.3, note that ν+
α,β(E1) ≤ 0, since E1 ∈ Fα,β , for every (α,β) ∈ Γ −v,s with

β < β0. However, equation (7.4) implies that for every sub-object F ↪→ E1, there exists a β
′
0 < 0, depending

only on ch≤2(F), such that να,β(F) > 0 for every (α,β) ∈ Γ −v,s and β < β′0, leading to a contradiction. It
follows that E1 = 0.

On the other hand, the inequality

chβ1(E01) = ch1(E01)− β ch0(E01) ≤ 0

for all β� 0 implies that ch0(E01) = 0; thus E01 = 0 since E01 is torsion-free. �

Lemma 7.5. For every s > 0, if E is an asymptotically λα,β,s-(semi)stable object along Γ −v,s, then E is a Gieseker
(semi)stable sheaf.

Proof. If E is asymptotically λα,β,s-semistable along Γ −v,s, then E is a sheaf by Lemma 7.4 or Proposition 5.13.
If E is not torsion-free, let F ↪→ E be its maximal torsion subsheaf; if T ↪→ F is a subsheaf of dimension

at most 1, then T ↪→ E is a morphism in Aα,β for (α,β) ∈ Γ −v,s and β � 0 since T ∈ Tα,β for every (α,β).
We have that ch0(T ) = ch1(T ) = 0; then

(7.5) λv,β,s(T ) =

−β +
ch3(T )
ch2(T )

if ch2(T ) , 0,

+∞ if ch2(T ) = 0,

so T would destabilize E. Therefore, we can assume F has pure dimension 2; let T be its maximal
µ̂-semistable subsheaf. Remark 5.7 implies that T ∈ Aα,β for (α,β) ∈ Γ −v,s and β � 0; thus T ↪→ E is a
morphism in Aα,β in the same range. Since ch0(T ) = 0 and ch1(T ) , 0, we have

lim
β→−∞

−1
β
λv,β,s(T ) =

1
3
,
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again contradicting asymptotic λ-semistability. We therefore conclude that E must be torsion-free.
If F ↪→ E is a proper (torsion-free) subsheaf with δ01(F,E) , 0, then equation (7.2) implies that

lim
β→−∞

λv,β,s(F) = − 6s+ 1
9sch0(E)ch0(F)

δ01(F,E) ≤ 0

by hypothesis; thus δ01(F,E) ≥ 0.
If δ01(F,E) = 0, then equation (7.2) implies that

lim
β→−∞

(−β)λv,β,s(F) = − 6s+ 1
3sch0(E)ch0(F)

δ02(F,E) ≤ 0;

thus δ02(F,E) ≥ 0.
Finally, if δ01(F,E) = δ02(F,E) = 0, then

lim
β→−∞

β2λv,β,s(F) = − 6s+ 1
3sch0(E)ch0(F)

δ03(F,E) ≤ 0;

thus δ03(F,E) ≥ 0, with equality holding if and only of δ03(F,E) = 0 as well. In other words, E is Gieseker
(semi)stable. �

We now prove the converse of Lemma 7.5. The difficulty is that the strong definition of asymptotic stability
includes showing that a given object has only finitely many walls along Γ −v,s. In fact, we can show that there
is at most one, at least outside its actual ν-wall.

Assume E is a Gieseker stable sheaf, and suppose there is an actual λ-wall given by the short exact
sequence 0→ F→ E→ G→ 0 crossing Γ −v,s. Consider the case where F and G are sheaves.

Lemma 7.6. Fix s > 0 and β. Suppose E is a Gieseker stable sheaf with ch(E) = v and F ↪→ E is a sub-object
in both Coh(X) and Aα,β such that E/F ∈ Aα,β ∩Coh(X) for all β < β and (α,β) ∈ Γ −v,s. Then there is some
β0 < β such that λα,β,s(F) < λα,β,s(E) for all β < β0.

Proof. We can compute the same limits as in the proof of Lemma 7.5; we first have

lim
β→−∞

λα,β,s(F) = − 6s+ 1
9sch0(E)ch0(F)

δ01(F,E) ≤ 0

since δ01(F,E) ≥ 0 by hypothesis. If δ01(F,E) = 0, then

lim
β→−∞

(−β)λα,β,s(F) = − 6s+ 1
3sch0(E)ch0(F)

δ02(F,E) ≤ 0

because δ02(F,E) ≥ 0. Finally, if δ02(F,E) also vanishes, then

lim
β→−∞

β2λα,β,s(F) = − 6s+ 1
3sch0(E)ch0(F)

δ03(F,E) ≤ 0

since δ03(F,E) ≥ 0, with equality holding if and only if δ03(F,E) = 0 as well, which implies that λα,β,s(F) = 0
for every (α,β) ∈ Γ −v,s for β� 0. �

This enables us to prove that Gieseker stable sheaves can only be destabilized as we move down along Γ −v,s.

Lemma 7.7. Suppose E is a Gieseker stable sheaf and F ↪→ E is a subsheaf which also corresponds to an actual
λ-wall Wu,v,s crossing Γ

−
v,s at a point P beyond any ν-wall for E. If E/G ∈ Aα,β ∩Coh(X), then E must be stable

above the point P .

Proof. Parameterize the curve Γ −v,s by γ(t) in the decreasing β-direction with γ(0) = P . By assumption and
Proposition 5.13, E ∈ Aγ(t) for all t ≥ 0. Suppose E is unstable in Aγ(t) for some t > 0. Observe that for
t � 0, we have that F ↪→ E is a monomorphism in Aγ(t). This is because if λγ(t),s(F) ≥ λγ(t),s(E) for all
t > 0, then Corollary 5.14 and Lemma 7.6 give a contradiction. It follows that at some point Q = γ(t0), for
t0 > 0, we have λQ,s(F) = λQ,s(E), and so the numerical λ-wall Υu,v,s crosses Γ

−
v,s twice. Then Lemma 6.15
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tells us that there is a numerical ν-wall Ξu,v intersecting Γ −v,s between P and Q. But 0→ F→ E→ G→ 0 is
a short exact sequence in Bβ(t) for all t ≥ 0, and so this is an actual ν-wall, contradicting the assumption. �

We now show that above an actual ν-wall for E, the λ-wall equivalent of Lemma 5.3(2) holds.

Theorem 7.8. Suppose E is a Gieseker stable sheaf with Chern character v. Then there is at most one actual
wall Wu,v,s intersecting Γ

−
v,s at a point P above the actual ν-wall for E. In particular, such a wall destabilizes

downwards along Γ −v,s.

Proof. We prove the last part first. Suppose a numerical wall Υu,v,s intersects Γ
−
v,s at P above the ν-wall for

E. Note that Υu,v,s is a slice of Σu,v , and since this is an orientable surface, to show that the E can only be
destabilized downwards, it suffices to consider the case s = 1/3. We show that fu,v,1/3(α,β) is increasing as
we cross Υu,v,1/3 moving down Γ −v,1/3. This is equivalent to showing

∇f · (−∂βτ,∂ατ)
∣∣∣
P
> 0.

Using (2.10) and Lemma 6.3, we have ∇f = (α∆21 −α∆30,−∆31), and the tangent vector down along Γ −v,s is

(chα,β2 ,−α chα,β1 ). Note that chP3 (v) = 0 = chP2 (u) since chP2 (v) , 0. Hence, ∆3i(P ) = 0. So

∇f · (−∂βτ,∂ατ)
∣∣∣
P

= α chP2 (v)∆21(P ).

But ∆21(P ) > 0 as we are outside the ν-wall (where ∆21 vanishes), and chP2 (v) > 0 as P ∈ R−v .
So if we have two wallsWu,v,s andWu′ ,v,s corresponding to F1 ↪→ E and F2 ↪→ E crossing Γ −v,s at P = γ(0)

and Q = γ(1), respectively, then F2 destabilizes E below Q. If F2 → E remains an injection in Aγ(t) for
0 ≤ t ≤ 1, Wu′ ,v,s must cross Γ −v,s again, and then there would be an actual ν-wall between P and Q, which
is not permitted by hypothesis. So it must be that F2→ E ceases to be an injection at some point. Let that
point be R. We show that E remains unstable as we cross R. In fact, we will prove a stronger result in the
following lemma. �

Lemma 7.9. Suppose E is a Gieseker stable sheaf with ch(E) = v, and let γ be a curve segment of Γ −v,s from a
point Q = γ(0) to P = γ(1) which is outside an actual ν-wall. Suppose 0→ A→ E→ B→ 0 is a short exact
sequence in AP corresponding to an actual λ-wall through the point Q. Then E is λγ(t),s-unstable for all t ∈ (0,1].

Proof. By the second statement of the previous lemma, we know that 0→ A→ E→ B→ 0 destabilizes for
t ∈ (0,ε) for some ε > 0. We also know from that proof that λγ(t),s(A) > λγ(t),s(E) for all t ∈ (0,1]. In the
case where A is not a sheaf, we have that 0→ A→ E→ B→ 0 remains short exact to the end of Γ −v,s as
E = A00 and B = A01[2] and Γ −v,s ends on either the β-axis or Θ−v . So we may assume A is a sheaf.

Then A remains in the category until its Harder–Narasimhan factor with smallest ν, A−, say, goes out
of the category. But then just beyond that point λ(A−) > 0, and so E→ kerA(B→ A−[1]) still destabilizes
E. We can continue until we have exhausted all of the Harder–Narasimhan factors A′ of A. Finally, as we
approach the last Θ−ch(A′)-curve for the filtration of A, we have λ(A′) < 0. But then there would be a wall

corresponding to A′ destabilizing E above, which is impossible. It follows that A remains in Aγ(t) for all
t ∈ [0,1].

Similarly, B0 remains in Aγ(t) until Θ− of a factor, but this cannot happen as E remains in the category.
But then B remains in the category by Theorem 3.3. This completes the proof. �

We can now complete the proof of Theorem 7.3.

Lemma 7.10. If E is a Gieseker (semi)stable sheaf, then E is asymptotically λα,β,s-(semi)stable along Γ −v,s.

Proof. If E is Gieseker stable, then the first part of Definition 7.1 follows from the fact that E ∈ Coh(X) and
Proposition 5.13, and the second now follows from Theorem 7.8. The statement for semistability follows by
inducting on the length of the Jordan–Hölder filtration of E. �
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Remark 7.11. Just as for Proposition 5.8, we can deduce from Lemma 7.10 that any E ∈ Aα,β for all (α,β) along
an unbounded Θ−-curve γ(t) in R−v has an asymptotic Harder–Harasimhan filtration for λαβ,s-stability.

The following will be useful in Section 8.4.

Proposition 7.12. Let E be a Gieseker stable sheaf with ch(E) = v, and let Wu,v,s be an actual λ-wall in R
−
v

crossing Γ −v,s. Then there is an actual λ-wall which either crosses the β-axis between Γ −v,s and Θ
−
v or cuts Θ

−
v . In

particular, in the latter case, there is an actual ν-wall for E.

Proof. Let P denote the point where Wu,v,s cuts Γ
−
v,s. By Lemma 4.17, Wu,v,s ends either on another actual

λ-wall which must remain above the original wall or on α = 0. So we have a piecewise path of actual λ-walls
in the region between Γ −v,s and Θ−v . By Theorem 7.8, this path cannot cross Γ −v,s again except at P , but then
there is a loop in R−v intersecting Γ −v,s at P outside of which E is unstable. But then E would be unstable on
both sides of P , contradicting the fact that Wu,v,s is an actual wall. The path cannot be unbounded in this
region because unbounded curves are only unbounded in R0

v . So it must cross either Θ−v or the β-axis in
this region.

For the last part, observe that the final segment of the path crossing Θ−v is an actual λ-wall, and so by
Theorem 4.21, there is an actual ν-wall crossing Θ−v at the same point. �

7.2. Asymptotics along Λ−
α

Next, we study objects that are asymptotically λα,β,s-semistable along a horizontal line {α = α}, or
asymptotically λα,β,s-semistable. The key is to observe that Λ−α is eventually in RLv,s, which is the region to the
left of Γ −v,s (see Definition 3.7). Then we can use Theorem 6.17. We establish the following result.

Theorem 7.13. Let v be a Chern character of an object of Db(X) satisfying v0 , 0 and the Bogomolov–Gieseker
inequality (2.3). For each s ≥ 1/3 and each α > 0, an object A ∈Db(X) is asymptotically λα,β,s-semistable along
Λ−α if and only if A is a Gieseker semistable sheaf.

The strategy of the proof is very similar to the one used in Theorem 7.3, though with different calculations;
we include them here for the sake of completeness. Indeed, note that

(7.6) lim
β→−∞

−1
β
να,β(F) =

1/2 if ch0(F) , 0,

1 if ch0(F) = 0 and ch1(F) , 0.

As before, the claim follows from Proposition 5.13(1); alternatively, it can also be proved in the same
manner as Lemma 7.4 above.

Lemma 7.14. Fix α > 0. If there is a β0 < 0 such that E ∈ Aα,β for every β < β0, then E ∈ Coh(X).

The next step is to understand the difference in λ-slopes; note that

(7.7) λα,β,s(F)−λα,β,s(E) =
fu,v(α,β)

ρu(α,β)ρv(α,β)

with u = ch(F) and v = ch(E). The full expression of the numerator is given by equation (4.5); the numerator
is given by

ρu(α,β)ρv(α,β) =
1
4

ch0(F)ch0(E)β4 − 1
2

(ch1(F)ch0(E) + ch1(E)ch0(F))β3

+
(1

2
ch0(F)ch0(E)α2 + ch1(F)ch1(E) +

1
2

(ch0(F)ch2(E) + ch2(F)ch0(E))
)
β2

+ ( terms of lower order in β).

With these formulas at hand, we can establish the if part of Theorem 7.13. First we prove a version of
Lemma 7.6 along Λ−α .
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Lemma 7.15. For any fixed s > 0 and α > 0, if E is a Gieseker stable sheaf, then there is no monomorphism
F ↪→ E in Aα,β with λα,β,s(F) ≥ λα,β,s(E) for all β < β.

Proof. If F ↪→ E� G is a short exact sequence in Aα,β for every β < β0, then Lemma 7.14 implies that both
F and G are sheaves. We first have that

lim
β→−∞

(
λα,β,s(F)−λα,β,s(E)

)
=

1
3

δ10(F,E)
ch0(F)ch0(E)

≤ 0

since δ10(F,E) ≤ 0 by hypothesis. If δ10(F,E) = 0, then also

lim
β→−∞

(−β)(λα,β,s(F)−λα,β,s(E)) =
4
3

δ20(F,E)
ch0(F)ch0(E)

≤ 0

because δ20(F,E) ≤ 0. Finally, if δ20(F,E) also vanishes, then

lim
β→−∞

β2(λα,β,s(F)−λα,β,s(E)) = 4
δ30(F,E)

ch0(F)ch0(E)
≤ 0

since δ30(F,E) ≤ 0, with equality holding if and only if δ30(F,E) = 0 as well, which implies that λα,β,s(F) =
λα,β,s(E) for every α, β and s. It follows that E is asymptotically λα,β,s-(semi)stable, as desired. �

Now we extend Theorem 7.8 to Λ−α . The trick is to reduce to the case of Γ −v,s.

Lemma 7.16. Suppose s ≥ 1/3, and suppose E is a Gieseker semistable sheaf with ch(E) = v. Then there is a
β such that for all β < β, there are no actual λ-walls intersecting Λ−α . Furthermore, there are no more actual
λ-walls to the left of the actual ν-wall for E in R−v .

Proof. Suppose Wu,v,s is an actual λ-wall intersecting Λ−α at a point P = (α,β0). By the choice of β, we can
assume P ∈ RLv,s. By Theorem 6.12. any numerical λ-wall Wu,v,s for s ≥ 1/3 remains a numerical λ-wall at
s = 1/3, and, since it is bounded, each component must intersect Γ −v,1/3 at its maxima. Theorem 7.8 tells us
that this wall must destabilize to the right. If Wu,v,1/3 is not actual as it crosses Γ −v,1/3, then by Lemma 4.17,

it ends on another actual λ-wall. Repeating, we have a piecewise path of walls W
(i)
u,v,1/3 which must all

destabilize to the right, and so the path has increasing α. Then it must cross Γ −v,1/3. But the actual λ-wall

component WN
v,1/3 crossing Γ −v,1/3 must be the unique wall by Theorem 7.8. So there cannot be another such

wall to the left of P . Hence, we can let β = β0.
For the last sentence, observe that if the wall crosses Λ−α again, then there must be a piecewise smooth

curve of actual λ-walls which intersects Γ −v,s at a point Q, say. This can only happen if there is a ν-wall
above Q. �

These two lemmas then immediately imply the following.

Lemma 7.17. For any s ≥ 1/3 and α > 0, if E is a Gieseker (semi)stable sheaf, then E is asymptotically
λα,β,s-(semi)stable along Λ−α .

We now consider the converse.

Lemma 7.18. For any s > 0 and α > 0, if E is asymptotically λα,β,s-(semi)stable along Λ−α , then E is a Gieseker
(semi)stable sheaf.

Proof. If E is asymptotically λα,β,s-(semi)stable along α = α, then Lemma 7.14 implies that E is a sheaf.
If E is not torsion-free, let F ↪→ E be its maximal torsion subsheaf. If T ↪→ F is a subsheaf of

dimension 1, then T ↪→ E is a morphism in Aα,β for β� 0 since T ∈ Tα,β for every (α,β). We have that
ch0(T ) = ch1(T ) = 0; thus

lim
β→−∞

−1
β

(
λα,β,s(T )−λα,β,s(E)

)
=

2
3
> 0
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provided ch2(T ) , 0, contradicting the asymptotic λ-semistability. If ch(T ) = (0,0,0, e), then T clearly
destabilizes E as well.

So now assume F has pure dimension 2, and let T be its maximal µ̂-semistable subsheaf. Remark 5.7
implies that T ∈ Aα,β for β� 0; thus T ↪→ E is a morphism in Aα,β in the same range. Since ch0(T ) = 0
and ch1(T ) , 0, then

lim
β→−∞

−1
β

(
λα,β,s(T )−λα,β,s(E)

)
=

1
6
> 0,

again contradicting the asymptotic λ-semistability. We therefore conclude that E is torsion-free.
If E is not Gieseker semistable, let F ↪→ E be its maximal destabilizing subsheaf. As in the first part of

the proof of Lemma 7.17, we can conclude that F ∈ Aα,β for β� 0, so F ↪→ E is a morphism in Aα,β in the
same range.

It follows that

lim
β→−∞

(
λα,β,s(F)−λα,β,s(E)

)
=

1
3

δ10(F,E)
ch0(F)ch0(E)

≥ 0;

thus δ10(F,E) = 0 because E is asymptotically λα,β,s-semistable. We then have that

lim
β→−∞

(−β)(λα,β,s(F)−λα,β,s(E)) =
4
3

δ20(F,E)
ch0(F)ch0(E)

≥ 0;

thus again δ20(F,E) = 0. Finally, we have that

lim
β→−∞

β2(λα,β,s(F)−λα,β,s(E)) = 4
δ30(F,E)

ch0(F)ch0(E)
≥ 0;

thus δ30(F,E) = 0, meaning that ch(F) = ch(E), contradicting the fact that F is a proper subsheaf of E. We
therefore conclude that E must be Gieseker (semi)stable, as desired. �

7.3. Asymptotics along general unbounded Θ−-curves

We can now extend our results to any unbounded Θ−-curve (recall Definition 5.9).

Theorem 7.19. Let γ be an unbounded Θ−-curve, and fix s ≥ 1/3. An object E ∈ Db(X) is asymptotically
λα,β,s-(semi)stable along γ if and only if E is Gieseker (semi)stable.

Proof. We consider the stable case first, and we deduce the semistable case by inducting on the lengths of
the Jordan–Hölder filtrations.

Suppose E is Gieseker stable. Then Lemma 7.16 as α varies implies that there is at most a single
destabilizing piecewise smooth curve of actual λ-walls from the β-axis, and it cannot be unbounded in R−v .
So the piecewise curve must either cross the β-axis again or cross Θ−v . In either case, there is a β such that
E is λβ,α,s-stable in {β < β} ∩R−v and so asymptotically λ-stable along any curve in this region.

Conversely, suppose that E is asymptotically λ-stable along γ and not Gieseker stable. Then for all t� 0,
E is not λ-stable along Λ−α(t). Let t0 be the least t ∈R such that E is λ-semistable in Aγ(t) for all t < t0. By
increasing t0 if necessary, we may assume that for each t > t0, there is some Ft such that Ft destabilizes
E at some β = β1 < β(t) along Λ−α(t) and such that ν−γ(t)(Ft) > 0 (by the assumption that γ is a Θ−-curve
and Lemma 5.12). So there must be a wall Wch(E),ch(Ft),s which crosses the vertical line β = β1. But that wall
must cross either Λ−α(t) at β < β1 or=(γ) at γ(t′) for some t′ > t. Since it remains an actual λ-wall, the
latter possibility cannot happen by the assumption on t0. The former possibility means that there must be
another F′t which destabilizes at some (α(t),β2) with β2 < β1. Repeating, we have an infinite sequence of
such destabilizers, which contradicts Lemma 7.16. �

Remark 7.20. We expect that the assumption s ≥ 1/3 is unnecessary. But there are instances of walls which
vanish as s increases. These could occur to the left of our piecewise destabilizing wall. For any s, we would
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conjecture that there are only finitely many of these, and then there would be a Gieseker chamber containing
a finite number of small regions where E is λ-unstable.

We can now deduce asymptotic conditions along unbounded curves in R+
v . Using the notion of unbounded

Θ−-curve γ and of its dual curve γ∗ proposed in Definition 5.9, we state the following.

Proposition 7.21. Let γ be an unbounded Θ−-curve. Then E is asymptotically λα,β,s-(semi)stable along γ if and
only if E∨ is asymptotically λα,β,s-(semi)stable along γ∗.

Proof. By Proposition 5.13, we know that there is a t1 such that E∨ ∈ Aγ∗(t) for all t > t1. If F ↪→ E
destabilizes E for all t > t0, then the proposition also shows that there is some t2 such that F∨ and E∨ are
in Aγ∗(t) for all t > t2 and also E∨→ F∨ surjects in Aγ∗(t). But λγ(t),s(F) = −λγ∗(t),s(F∨). �

Putting Theorem 7.19 and Proposition 7.21 together, we immediately deduce the following statement.

Theorem 7.22. Let v be a numerical Chern character satisfying v0 , 0 and Qtilt(v) ≥ 0, and fix α > 0. For
each s ≥ 1/3, an object A ∈ Db(X) with ch(A) = v is asymptotically λα,β,s-(semi)stable along an unbounded
Θ+-curve if and only if A∨ is a Gieseker (semi)stable sheaf.

Since Theorem 7.3 holds for every s > 0, we have a stronger statement for the asymptotics along Γ +
v,s.

Theorem 7.23. Let v be a numerical Chern character satisfying v0 , 0 and Qtilt(v) ≥ 0. For each s > 0, an
object A ∈Db(X) is asymptotically λα,β,s-(semi)stable along Γ +

v,s if and only if A
∨ is a Gieseker (semi)stable sheaf.

Note that Proposition 2.15 provides an explicit characterization of objects A ∈ Db(X) that are dual to
torsion-free sheaves.

8. Examples of classifying walls: ideal sheaves and null correlation sheaves

We complete this paper by studying some concrete examples of actual λ-walls and asymptotically
λα,β,s-stable objects for X = P3 which illustrate many of the results established above.

8.1. Ideal sheaves of lines in P
3

Let L ⊂ P3 be a line, and let IL denote its ideal sheaf; recall that v := ch(IL) = (1,0,−1,1). The curves
Θv and Γv,s are given by

Θv : β2 −α2 = 2,

Γv,s :
(
s+

1
6

)
βα2 −

β3

6
+ β = −1.

Note that for every s > 0, the curve Γv,s intersects Θ
−
v at a single point, call it Ps, whose β-coordinate is the

real root of the polynomial 3sβ3 + (2− 6s)β + 3 = 0; the case s = 1/3 is pictured in Figure 2.
Theorem 4.22 guarantees the existence of vanishing ν- and λ-walls, which are precisely given by the

triangle

O
P

3(−1)⊕2→ IL→OP3(−2)[1].

We simplify the notation and use Ξ := Ξu,v and Υs := Υu,v,s, where u = ch(O
P

3(−1)), for the vanishing ν-
and λ-walls just described, respectively.

Both curves cut Θ−v at the point R := Θv∩Ξ∩Υs = (α = 1/2,β = −3/2). In addition, the vanishing λ-wall
crosses Γ −v,s at the point Qs := Γ −v,s ∩Υs = (1/

√
6s+ 1,−2).

There are no other actual ν-walls for the numerical Chern vector v = (1,0,−1,1). To see that, suppose
A→ IL is a να,β-stable destabilizing object in Bβ ; then it must destabilize along β = −

√
2 and also on Θ−v .
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Let ch≤2(A) = (r,−c,d); then r > 0, and the condition that both A and IL/A are in Bβ gives us

−c − βr < 0,

c − β(1− r) ≤ 0,

and so −βr < c ≤ β(1 − r). For β = −
√

2, we see that c = r is the only solution. Then the first inequality
implies r < β/(1 + β) =

√
2/(
√

2− 1) and so 0 < r ≤ 3. Now choosing β on Θ−v , we have d + βc + r = 0 in
order for A to destabilize IL. So d = −r(β + 1) > r(

√
2− 1). On the other hand, the Bogomolov–Gieseker

inequality for A gives r2 ≥ 2rd and so d ≤ r/2. Then d = r/2 as it must be in Z[1/2].

Θ−

v

R

Ps

Qs

Γ−

v,s

Ξ

Υs

b

b
b

Figure 9. The vanishing ν- and λ-walls (in purple and black, respectively) for the ideal sheaf of
a line. Note that the λ-wall is connected but possesses two irreducible components. Both curves
intersect Θv (in blue) and Γ −v,s (in red).

Since O
P

3(−2) and O
P

3(−1) are λα,β,s-stable for all (α,β,s), it follows that this is the only actual λ-wall
destabilizing ideal sheaves of lines.

8.2. Ideal sheaves of points in P
3

Let p ∈ P3 be a point, and let Ip denote its ideal sheaf; recall that v := ch(Ip) = (1,0,0,−1). The curves
Θv and Γv,s are given by

Θv : β2 −α2 = 0,

Γv,s :
(
s+

1
6

)
βα2 −

β3

6
= 1.

Note that Γv,s does not intersect Θ−v . There are no actual ν-walls because ch≤2(Ip) = ch≤2(O
P

3) and
Ip→OP3 injects in Aα,β ∩Bβ ∩Coh(P3).

The resolution of Ip

0→O
P

3(−3)→O
P

3(−2)⊕3→O
P

3(−1)⊕3→ Ip→ 0

induces two triangles. The first one defines a reflexive sheaf Sp with u := ch(Sp[1]) = (−2,3,−3/2,−1/2)
whose only singularity is precisely the point p by splitting the resolution in the middle. Then we have
triangles

(8.1) O
P

3(−2)⊕3[1]→ Sp[1]→O
P

3(−3)[2].

The second one relates the sheaf Sp with Ip:

(8.2) O
P

3(−1)⊕3→ Ip→ Sp[1].

This provides one wall which cuts Γv,s at (1/
√

6s+ 1,−2). There is another wall which crosses at the same
point, given by an object D which is not a sheaf (or a shift of a sheaf) with u′ := ch(D) = (0,3,−9/2,7/2),

D→ Ip→OP3(−3)[2],
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Γ
−

v,s

Υu,w,s

Υw,v,s

Υu′,v,s

Υw′,u′,sb

Figure 10. This graph shows the numerical λ-walls Υu,w,s (in blue), Υw′ ,u′ ,s (in purple, where
w′ = ch(O

P
3(−1))), Υw,v,s (in black) and Υu′ ,v,s (in orange), and the curve Γ −v,s (in red) crossing at the

point (α = 1/
√

3,β = −2); we set s = 1/3. The shaded region marks where the objects O(−3)[2],
O(−2)[1] and O(−1), and consequently also Sp[1], D and Ip, belong to Aα,β .

where D is the cone on the morphism O
P

3(−2)⊕3→O
P

3(−1)⊕3 in the resolution of Ip. This gives rise to a
fourth triangle:

O
P

3(−1)⊕3→D→O
P

3(−2)⊕3[1].

Note that this provides an example in Proposition 2.12 where D < Coh(X), and note that we have E/D ∈
Coh(O

P
3)[2] ∩ Bβ[1]. The objects O

P
3(−3)[2], O

P
3(−2)[1] and O

P
3(−1) all belong to Aα,β for every

(α,β) within a square with vertices at the points (α = 0,β = −2), (α = 1/2,β = −3/2), (α = 1,β = −2),
(α = 1/2,β = −5/2). Consequently, this also follows for Sp and D .

Note that at the special point P , λα,β,s(OP3(−1)) = λα,β,s(OP3(−2)) = λα,β,s(OP3(−3)) = λα,β,s(D) =
λα,β,s(Sp) = λα,β,s(Ip).

Within this region, the two triangles induce actual λ-walls Υw,u,s, where w := ch(O
P

3(−2)[1]), and Υu,v,s.
One can check that Υw,u,s and Υu,v,s intersect at the point (α = 1/

√
6s+ 1,β = −2), which also belongs to

Γ −v,s, for every s, implying that the sheaf Ip is a λα,β,s-semistable object at that point; see Figure 10. It is easy
to see that Ext1(D,O

P
3(−3)[2]) = 0 = Ext1(O

P
3(−1)⊕3,Sp), and so the walls are vanishing.

It follows that there exists an open set V ⊂ H containing the point (α = 1/
√

6s+ 1,β = −2) in its
boundary such that Ip is a λα,β,s-stable object for every (α,β) ∈ V . Moreover, Υu,v,s is a vanishing λ-wall
for Ip for β > −2, and Υu′v,s is the vanishing wall for β < −2. The resulting wall is C1 on Γ −v,1/3 but only C0

for other values of s.
Since Ip is also asymptotically λα,β,s-stable along Γ

−
v,s, it follow that Ip is λα,β,s-stable for every (α,β) ∈ Γ −v,s

with β < −2 (that is, no actual λ-wall crosses Γ −v,s for β < −2).

8.3. Torsion-free sheaves with Chern character (2,0,−1,0)

Our first step towards the classification of λα,β,s-semistable objects with Chern character v = (2,0,−1,0)
on P3 near the curve Γ −v,s is the classification of µ-semistable torsion-free sheaves with this Chern character.

Below, p and L, respectively, denote a point and a line in P3. Recall also that a torsion-free sheaf E on
P

3 is called a null correlation sheaf if it sits in the exact sequence

0→O
P

3(−1)→Ω1
P

3(1)→ E→ 0;
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see [Ein82]. Note that ch(E) = (2,0,−1,0). A locally free null correlation sheaf is called a null correlation
bundle; non–locally free null correlation sheaves satisfy a sequence of the form

0→ E→O⊕2
P

3 →OL(1)→ 0

for some line L ⊂ P3.

Proposition 8.1. Let E be a µ-semistable torsion-free sheaf on X = P3 with ch(E) = (2,0,−1,0).

(1) If E is locally free, then E is a null correlation bundle; in particular, E is µ-stable.
(2) If E is properly torsion-free, then E is strictly µ-semistable, and it is given by one of the following extensions:

(a) 0→ IL→ E→ Ip → 0 for p ∈ L with non-trivial extension (in particular, E is a null correlation
sheaf, and it is µ≤2-stable),

(b) 0→ Ip→ E→ IL→ 0 for arbitrary p and L (in particular, E is not µ≤2-semistable, and it has no
global sections),

(c) 0→ O
P

3 → E → IL̃ → 0, where L̃ is a 1-dimensional scheme satisfying the sequence 0→ Op →
OL̃ → OL → 0 for arbitrary p and L (in particular, E is not µ≤2-semistable, and it has a global
section).

Note that Ext1(IL, Ip) = 0 when p < L.

Proof. If E is locally free, then [Cha84, Lemma 2.1] implies that E is µ-stable; the fact that every µ-stable
rank 2 bundle E with c2(E) = 1 on P3 is a null correlation bundle is proved in [OSS80, 4.3.2, p. 363].

If E is not locally free, then E∗∗ is a µ-semistable rank 2 reflexive sheaf with ch1(E∗∗) = 0, and either
ch2(E∗∗) = 0 or ch2(E∗∗) = 1; in both cases, E∗∗ is strictly µ-semistable (cf. [Cha84, Lemma 2.1]), so E is
strictly µ-semistable. The first case forces E∗∗ = O⊕2

P
3 , while, in the second case, E∗∗ must be a properly

reflexive sheaf SL given by the sequence

(8.3) 0→O
P

3 → SL→ IL→ 0;

note that ch(SL) = (2,0,−1,1).
We start by analysing the first case, that is, E∗∗ = O⊕2

P
3 . We have that ch(QE) = (0,0,1,0), where

QE := E∗∗/E; note that h0(E) = 0,1. Again, two possibilities follow: either QE has pure dimension 1, in
which case QE = OL(1), or QE satisfies a sequence of the form

0→ Z→QE →OL(k)→ 0,

where Z is a 0-dimensional sheaf and k − 1 = −h0(Z) < 0 because ch3(OL(k)) = −ch3(Z); since we have
h0(OL(k)) > 0, we must have k = 0 and thus Z = Op.

The first possibility, namely QE = OL(1), leads to the sequence

0→ E→O⊕2
P

3 →OL(1)→ 0

and therefore yields the sheaves described in item (2)(a) since IL is the kernel of the composition
O
P

3 →O⊕2
P

3 � OL(1). In addition, notice that these are the null correlation sheaves. Checking that these
sheaves are µ≥2-stable is a simple exercise.

The second possibility leads to the sequence

0→ E→O⊕2
P

3 →OL̃→ 0

and therefore yields the sheaves described in item (2)(c).
Finally, if E∗∗ = SL, then QE = Op, and the sequence 0→ E→ SL→Op→ 0 together with the sequence

(8.3) lead to the sequence in item (2)(b). �

It is important to notice that non-trivial extensions like the ones in items (2)(b) and (2)(c) of Proposition 8.1
do exist. Let us first consider the extension of an ideal sheaf of a line by an ideal sheaf of a point.
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Lemma 8.2. If p is a point and L is a line in P3, then

dimExt1(IL, Ip) =
{

3 if p < L,
5 if p ∈ L.

Proof. First, apply the functor Hom(−, Ip) to the exact sequence 0→ IL → OP3 → OL → 0 to conclude
that Ext1(IL, Ip) ' Ext2(OL, Ip). Applying the functor Hom(OL,−) to the exact sequence 0→ Ip→OP3 →
Op→ 0, we obtain

(8.4) 0→ Ext1(OL,Op)→ Ext2(OL, Ip)→H1(OL(−4))→ Ext1(OL,Op)→ 0.

Note that Exti(OL,Op) = H0(Exti(OL,Op)). If p < L, then Exti(OL,Op) = 0 for every i ≥ 0; thus
Ext1(IL, Ip) 'H1(OL(−4)), which completes the proof of the first claim.

If p ∈ L, then one can check that

h0(Exti(OL,Op)) =
{

2 for i = 1,
1 for i = 2.

Comparing with the exact sequence in display (8.4), we obtain the second part of the statement. �

Next we consider the sheaves in item (2)(c) of Proposition 8.1.

Lemma 8.3. If L̃ is the 1-dimensional scheme described in item (2)(c) of Proposition 8.1, then we have
dimExt1(IL̃,OP3) = 1.

Proof. Note that
Ext1(IL̃,OP3) 'H2(IL̃(−4))∗ 'H2(IL(−4))∗,

where the first isomorphism is given by Serre duality, and the second follows from the sequence 0→ IL̃→
IL→Op→ 0.

The resolution of the ideal sheaf IL yields the cohomology sequence

0→H2(IL(−4))→H3(O
P

3(−6))→H3(O
P

3(−5))⊕2→H3(IL(−4))→ 0.

However, H3(IL(−4)) 'Hom(IL,OP3)∗; thus h2(IL(−4)) = 1. �

Now let G denote the Grassmanian of lines in P3. Recall that a line L ∈ G is called a jumping line for
a µ-semistable torsion-free sheaf E with ch1(E) = 0 on P3 if E ⊗OL = OL(−a)⊕OL(a) for some a > 0; we
denote by J (E) the set of jumping lines for E, as a subset of G.

If E is a null correlation sheaf, then J (E) is a divisor of degree 1 in G. Therefore, for each null correlation
sheaf E and L ∈ J (E), there exists an epimorphism E � OL(−1) whose kernel is a Gieseker semistable
sheaf K with ch(K) = (2,0,−2,2).

Such sheaves have been previously considered by Miró-Roig and Trautmann in [MRT94, Section 1.5]; they
showed that the family of sheaves K defined by exact sequences of the form

0→ K → E→OL(−1)→ 0,

where E is a null correlation sheaf and L ∈ J (E), define a locally closed 8-dimensional subscheme of the full
moduli space of Gieseker semistable sheaves on P3 with Chern character equal to (2,0,−2,2). In addition,
this moduli space, which we will simply denote by Z, is an irreducible projective variety of dimension 13,
and every such sheaf satisfies an exact sequence of the form

(8.5) 0→O
P

3(−2)⊕2 A→O⊕4
P

3 (−1)→ K → 0,

with A a 4× 2 matrix of linear forms in four variables. Combining this with the presentation of OL(−1)

0→O
P

3(−3)→O
P

3(−2)⊕2→O
P

3(−1)→OL(−1)→ 0,
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we have a presentation for any Gieseker stable sheaf of Chern character (2,0,−1,0):

(8.6) 0→O
P

3(−3)→O
P

3(−2)⊕4→O
P

3(−1)⊕5→ E→ 0.

Our next goal in this section is the classification of να,β-stable objects for the Chern character v =
(−2,0,1,0). First, we show that there are no ν-walls.

Lemma 8.4. For v = ±(2,0,−1, k), there are no actual ν-walls for any k.

Proof. We first suppose β < 0. Then we may assume E is a Gieseker semistable sheaf (to find the biggest
wall). Suppose F is a sub-object of E in Bβ with νβ(F) = νβ(E) and ch(F) = (r,x,y/2, z/6). Then r ≥ 1

and x ≤ 0. By [Mac14, Corollary 2.8], every ν-wall must cross β = µ(E)−
√
∆(E)/r(E)2 = −1 (at the bottom

of Θv ), and so 0 < x + r < 2 and then x = 1 − r . We look for ν-walls along Θ−v . Then α
2 = β2 − 1. Now

chα,β2 (F) = y/2 − β(1 − r) + r/2 = 0. So y = 2β(1 − r) − r . If r ≥ 2, then y ≥ r − 1 as β < −1. From the
Bogomolov–Gieseker inequality for F, we have (r −1)2 ≥ ry ≥ r(r −1), which is impossible. So r = 1. Then
y = −1, but x = 0, and (1,0,−1/2, z/6) is not the Chern character of a sheaf.

Now we assume β > 0. Then E is the dual of a Gieseker semistable sheaf. Suppose 0→ F→ E→ G→ 0
is a short exact sequence in Bβ with να,β(F) = να,β(E) = να,β(G) for some α. If E is a sheaf, then so is G,
and G∨ ∈ Bβ with να,−β(G∨) = −να,−β(G). But then F∨ is also a sheaf, and so E∨ is not να,−β-stable, but
this contradicts the last paragraph. If E is not a sheaf, then H0(G) is a quotient of OL(1), and since we may
assume G is να,β-semistable, it follows that condition (6) of Proposition 2.15 holds and H−1(G) is reflexive
(any torsion sheaf T with a map T [1]→H−1(G)→ G injects). Since S = 0 in Proposition 2.15, it follows
that G is the dual of a torsion-free sheaf, and again F∨ is a sheaf. So we still have a contradiction. �

Lemma 8.4 has two interesting applications. First we recover the following stronger version of a well-known
fact.

Proposition 8.5. If k > 0 is an integer, then there are no µ≤2-semistable torsion-free sheaves of Chern character
(2,0,−1, k) on P3.

Proof. Note that q(v) = 8(2− 9k2) < 0. Then if there are µ≤2-semistable torsion-free sheaves, there must
exist an actual vanishing ν-wall by Theorem 4.22. But there are no ν-walls. �

Note that SL in the proof of Proposition 8.1 is an example of a µ-semistable reflexive sheaf of Chern
character (2,0,−1,1). In addition, let E be a null correlation bundle, and let {p1, . . . ,pk} be distinct points
in P3; the kernel of an epimorphism E� ⊕ki=1Opi provides an example of a µ-stable torsion-free sheaf with
Chern character (2,0,−1,−k) for any k > 0.

One can also provide a complete description of να,β-stable objects with Chern character (2,0,−1,0).

Proposition 8.6. Given any α > 0, an object B ∈ Bβ(P3) with ch(B) = (2,0,−1,0) is να,β-stable if and only if

(1) B is a null correlation sheaf, when β < 0;
(2) B∨[−1] is a null correlation sheaf, when β > 0.

Proof. Theorem 5.2 and Proposition 8.1 tell us that the asymptotically να,β-stable objects on each side of the
α-axis are precisely the ones described above. Since there are no actual ν-walls, such objects are να,β-stable
everywhere. �

Note that it also follows from Proposition 8.5 that if k > 0, then there are no να,β-objects with Chern
character (2,0,−1, k). We can also deduce that from the fact that Qα,β(2,0,−1, k) = 4 + 4α2 + 4β2 + 12βk,
which vanishes for k > 0 in the region β < 0; since there are no non-vertical ν-walls, this is impossible.
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8.4. λ-walls and stability for the Chern character (2,0,−1,0)

We now turn to the classification of actual λ-walls corresponding to Gieseker stable objects and the
description of the λα,β,s-semistable objects with Chern character v = (2,0,−1,0) near the curve Γ −v,s.

Note that the fact that both IL and Ip are λ1/
√

6s+1,−2,s-semistable for every s > 0, checked in Sections 8.1
and 8.2, implies that the sheaves of described in items (2)(a) and (2)(b) of Proposition 8.1 are also λ1/

√
6s+1,−2,s-

semistable for every s > 0. For this case, we will set s = 1/3 for simplicity.
We first observe that there is a vanishing wall through the point P given by β = −2 and α2 = 1/3 on Γ −v,1/3

given by F = O
P

3(−1). Theorem 7.8 and Lemma 8.4 then imply that this is the largest actual λ-wall for such
Gieseker stable sheaves, and it suffices to find all of the walls through P . So in what follows, we set β = −2
and α2 = 1/3. One strategy to find all of the walls would be to guess some based on prior knowledge, and
then check whether both the sub-object F and the quotient object G are semistable, thus guaranteeing that
the suspected wall is an actual one. However, we shall try to deduce the walls by solving the inequalities to
locate solutions directly to illustrate the techniques one might use to do this.

For E with ch(E) = (2,0,−1,0), we consider a short exact sequence in Aα,β

0→ F→ E→ G→ 0

with λα,β(F) = λα,β(E) along Γ −v,s. We let ch(F) = (r,x,y/2, z/6) for integers r,x,y,z. Since χ(F) =
r + 11x/6 + y + z/6 is an integer, we must have 6|(z − x). In fact, at our point P , χ(F) ∝ chP3 (u) = 0, so this
holds automatically.

We have chα,β2 (E) = 2
3β

2,

chα,β2 (F) =
y

2
− βx+

1
3
β2r +

1
2
r

and

chα,β2 (G) = −
y

2
+ βx − 1

3
β2(r − 2)− 1

2
r.

These provide the constraints

(8.7) 0 <
y

2
+ 2x+

11
6
r <

8
3
.

Since F ∈ Tβ , we have x ≥ −2r . In addition, we have λ1/
√

3,−2,1/3(F) = 0, which gives

z = −11x − 6(r + y).

Finally, we also have

QP (F) = 12r2 + 28rx+
23
3
ry +

46
3
x2 + 8xy + y2 and

QP (v −u) = 12r2 + 28rx+
23
3
ry − 98

3
r +

46
3
x2 + 8xy − 40x+ y2 − 34

3
y +

64
3
.

(8.8)

From Proposition 2.12, there are some constraints on F and G. We will focus on cases (1) and (2) of that
proposition. We first eliminate case (2).

Lemma 8.7. Given E, F and G as above, F < Coh(X) and G < Bβ[1]∩Coh(X)[1].

Proof. The assumption G[−1] ∈ Bβ implies that x ≥ 2(r − 2), and r ≥ 2, so the constraints from chP2 (F)
imply that y/2 < 32/3− 35r/6 ≤ −1 and so y ≤ −3. We also have

2x <
8
3
−
y

2
− 11

6
r.

Then from (8.8), we have

QP (F) <
1601

12
r2 − 3440

9
r +

7648
27
− 3

(
y − 32

9
+

7
6
r
)2
.
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Now y < 64/3 − 35r/3, and when r > 3, it is easy to see that the above bound on QP (F) is negative.
When r = 2, we have −22 < 3y + 12x < −6 from the constrains, while QP (u) < 0 in the range −23−

√
f (x) <

3y + 12x < −23 +
√
f (x) for some (quadratic) function f (x) and QP (v − u) < 0 in the range −6 −

√
6x <

3y+12x < −6+
√

6x; hence one of these must be negative so long as the ranges overlap. This happens when
x ≥ 2. When x = 0, we have G[−1] ∈ Aα,β , which gives a contradiction. If x = 1, then the constraints give
−17/3 < y/2 < −2. But G is a sheaf, and so y � 0 (mod 2). Hence y = −6,−8,−10 are the only possibilities.
For y = −6, QP (v − u) = −2/3. For y = −8, QP (u) = −10/3. For y = −10, QP (u) = −14. When r = 3, the
constraints give −66 < 6y+24x < −34, while QP (u) < 0 in the range −69−

√
g(x) < 6y+24x < −69+

√
g(x)

and QP (v −u) < 0 in the range −35−
√
h(x) < 6y + 24x < −35 +

√
h(x), and again one or the other must be

negative for any value of y or x, and this time the ranges overlap for all x ≥ 0.
In any case, F or G is not λP -semistable, which is impossible. �

Given Lemma 8.4, it is reasonable to assume ∆21(ch(E),ch(F)) ≥ 0 (with equality only if it holds for all
β), which gives the inequality

(8.9) y +
8
3
x+ r < 0.

We take this inequality as an ansatz to eliminate possibilities rather than a necessary condition for a
numerical wall to be actual.

Proposition 8.8. Consider v = (2,0,−1,0). Then on X = P3, there are five pseudo λ-walls for a Gieseker stable
sheaf E intersecting Γ −v,1/3, given by

0→IL→ E→Ip→ 0,(8.10)

0→ K → E→OL(−1)→ 0,(8.11)

0→O
P

3(−1)→ E→IC(1)→ 0,(8.12)

0→ A→E→O
P

3(−3)[2]→ 0,(8.13)

0→ Sp(1)→ E→Ip/H → 0,(8.14)

where L is a line, C is the union of two lines on a quadric surface in P3 and H is a hyperplane. Moreover, K is a
Gieseker semistable sheaf with ch(K) = (2,0,−2,2), as described in display (8.5), and A is quasi-isomorphic to a
complex O

P
3(−2)⊕4→O

P
3(−1)⊕5. The first two are coincident, and only (8.13) is an actual λ-wall below Γ −v,1/3,

while only (8.12) is actual above Γ −v,1/3.

Proof. We assume E is a Gieseker stable torsion-free sheaf. These are classified by Proposition 8.1. We start
by looking at an exceptional case not described in Proposition 2.12. This is where F is not a sheaf and the
destabilizing sequence is of the form F→ E→ F11[2]. This arises from the presentation of E in (8.6),

0→O
P

3(−3)→O
P

3(−2)⊕4→O
P

3(−1)⊕5→ E→ 0.

Viewing the middle map as a 2-step complex A in Db(X), near P we have that A→ E→ A11[2] is short
exact in AP . It is easy to see that this is a wall and A11 = O

P
3(−3), giving (8.13). From the definition of A, it

follows that

Ext1(A,O(−3)[2]) = Ext3(A,O(−3)) = 0;

thus where this wall is actual, it is a vanishing wall. The presentation of A shows that it has a vanishing
λ-wall given by O(−2) (as a sub-object) which goes through the point P ; denote this wall by W . One can
check that W is above (8.13) to the right of Γ −v,1/3, but it is below (8.13) to the left of Γ −v,1/3. This shows that
(8.13) is actual to the left but not to the right of Γ −v,1/3.

Once we have found the walls for µ-semistable torsion-free sheaves E, we need to also consider new
objects which become λ-stable as we cross each wall. Lemma 8.7 and Proposition 2.12 show that it is
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reasonable to assume our destabilizing objects F and G are in Aα,β ∩Bβ ∩Coh(X). Then we have additional
constraints to add to (8.7) and (8.8):

(8.15) − 2r < x ≤ 0

since E is µ-semistable and F ∈ Bβ . We also add the ansatz (8.9) and consider various possible cases for the
Chern character (r,x,y/2, z/6) of F.

First consider the case r = 1.

Case (1,0, y/2, z/6). Suppose x = 0. Then the chP2 -constraint gives 5/3 > y > −11/3. Then 1 ≥ y ≥ −3.
From (8.9), we have y ≤ −1, and so we have the possibilities y = −1,−2,−3. But F is of rank 1 and
torsion-free, and so y � 0 (mod 2); so y = −2 is the only possibility. This gives the first wall (8.10).

Case (1,−1, y/2, z/6). Now suppose x = −1. The constraints on y give 17/6 > y ≥ 1. But (8.9) implies
y < 8/3− r = 5/3, and so y = 1 is the only possibility. This gives wall (8.12).

Finally, we return to the case r = 2. Then G is a torsion sheaf. We have −3 ≤ x ≤ 0. We shall consider
these, case by case as before.

Case (2,0, y/2, z/6). We now consider the special case x = 0. The constraints give −6 ≤ y < −2. But y
must be even for G to be a sheaf, and so y ≤ −4. When y = −4, we have the same wall as (8.10) but given by
the sequence (8.11). When y = −6, we have QP (F) = −8, and so F cannot be semistable.

Case (2,−1, y/2, z/6). Now we let x = −1. Then the constraints give 0 ≥ y > −10/3, so −3 ≤ y ≤ 0. But
2ch2(G) � 1 (mod 2). Hence y = −1 or y = −3. In the former case, ch(F) = (2,−1,−1/2,5/6), which
corresponds to sequence (8.14). But one can check that QP (2,−1,−1/2,5/6) = 1 > 0, QP (0,1,−1/2,−5/6) =
25/3 > 0 and QP (v)−QP (2,−1,−1/2,5/6)−QP (0,1,−1/2,−5/6) = 12 > 0, so this is a pseudo-wall. In the
latter case, QP (u) = −17/3, so F cannot be λ-semistable.

Case (2,−2, y/2, z/6). When x = −2, we have 1 ≤ y ≤ 5 from the chP2 -constraints and y+2 ≤ 4 from (8.9).
So 1 ≤ y ≤ 3. But 2ch2(G) � 0 (mod 2), and so y = 2 is the only possible solution. Then F = O

P
3(−1)⊕2

and G = IC(1)/O
P

3(−1), but this gives the same wall as (8.12).

Case (2,−3, y/2, z/6). When x = −3, the chP2 -constraint gives y > 14/3 and so y ≥ 5. But (8.9) gives
y + 2 < 8 and so y = 5. In this case, z = −6. But then χ(F) = 5/2, and so this is impossible.

This completes all of the possible numerical cases satisfying our ansatzes.
Note that the walls for (8.10) and (8.11) coincide. For s ≥ 1/3, the walls below Γ −v,s are in the order

(8.13)>(8.10)=(8.11)>(8.14)>(8.12), and this is reversed above Γ −v,s (see Figure 11).
Finally, we observe that IC(1) is destabilized by O(−1)⊕4. In fact, the quotient is Ω2(1)[1], and this is

stable to the right of Γ −v,1/3 and to the left of Θ−O(−2). The wall for this is below (8.12) to the right of P and so
(8.12) is actual in this region. �

Remark 8.9. Note that the problem of eliminating walls when x ≤ −2 and r = 1 is actually a quadratic
programming problem. To see this, note that

z = −2β2x+ 3βy + 3β − 3x,

and so

QP (F) = 3β2 +
10
3
β2x2 + 2x2 − 2β3x − 6βx − 4βxy + y2 +

5
3
β2y + y,

which we can rewrite as

Ft(v) = vAtv
T − cvT
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subject to the inequalities

4 ≤ γ < λ/2 < µ/4,
−2−γ ≤ y ≤ γ,

λ−µ/3 < (y + 1)/2 < λ+µ/3,

where v = (λ,µ,γ,y) = (βx,β2,x2, y),

At =


10(1− t)/3 −1 0 −2
−1 0 5t/3 5/6
0 5t/3 0 0
−2 5/6 0 1


and c = (6,−3,−2,−1). Then we need to show there is a real value of t for which Ft(v) < 0 given the
constraints. In fact, numerical methods show that the “local” maximum value of F(v) when t = 1 is negative
even without the additional non-linear constraint γµ = λ2. But At is not definite, and so this need not be a
global maximum.

Γ
−

v,1/3
Θ−

v

Figure 11. This graph shows the actual and pseudo λ-walls for the Chern character v = (2,0,−1,0)
intersecting at the point (α = 1/

√
3,β = −2), as described in Proposition 8.8. The green curve is

(8.13), the black one is (8.12), the cyan one is (8.14), and the purple one is (8.10). The outermost curve
(black and green) is the actual λ-wall, while the remaining curves are only pseudo λ-walls. The
stability chambers in the region R−v are described in Theorem 8.10.

It follows from Theorem 6.17 that no other λ-walls in the region R−v exist when s = 1/3. This observation
allows us to give a complete chamber decomposition of this region, summarized in the following statement.

Theorem 8.10. Let X = P
3, and consider the numerical Chern character v = (2,0,−1,0); fix s = 1/3. The

region R−v is divided into two stability chambers Ci within which the λα,β,s-stable objects are described as follows:

(C1) null correlation sheaves,
(C2) no stable objects.

The two stability chambers just described are pictured in Figure 11 as follows: the chamber (C1) lies above
the green and black curves (which correspond to the walls (8.13) and (8.12), respectively).

As a final remark, we observe that Proposition 8.8 provides concrete examples of intersecting actual
λ-walls for the Chern character (2,0,−1,0).
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