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Maximality of moduli spaces of vector bundles on curves
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Abstract. We prove that moduli spaces of semistable vector bundles of coprime rank and degree
over a non-singular real projective curve are maximal real algebraic varieties if and only if the
base curve itself is maximal. This provides a new family of maximal varieties, with members of
arbitrarily large dimension. We prove the result by comparing the Betti numbers of the real locus
to the Hodge numbers of the complex locus and showing that moduli spaces of vector bundles over
a maximal curve actually satisfy a property which is stronger than maximality and that we call
Hodge-expressivity. We also give a brief account on other varieties for which this property was
already known.
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Notation

A real algebraic variety is a pair (X,7) where X is a complex algebraic variety equipped with an
antiholomorphic involution 7 : X — X. We denote by IRX the set of its real points, that is to say the fixed
point set of T. Throughout this note, complex algebraic varieties are endowed with their Euclidean topology.
Except otherwise stated, we consider cohomology with coefficients in Z/2Z. Given a smooth compact
manifold M and a non-singular projective complex algebraic variety X, we denote by P,(M) the mod 2
Poincaré polynomial of M and by H,,,)(X) the Hodge polynomial of X, i.e.

P(M) = Zbi(M)ti and  Hyp)(X) = Zhi'j(X)xiyj.

i>0 1,j>0
1. Introduction

1.1. Maximal and Hodge-expressive real algebraic varieties

Let X be a real algebraic variety (not necessarily projective nor smooth). It is a consequence of Smith
theory (see for example [Manl7, Section 3.3]) that the mod 2 Betti numbers of RX and X satisfy the following
Smith-Thom inequality:

dim X 2dimX
) BiRX) < ) bi(X).
i=0 i=0

When equality holds, the real algebraic variety X is said to be maximal. Maximal varieties constitute
extremal objects in real algebraic geometry that enjoy special properties. We refer to the book [Manl7] or to
the survey [DKO0O] for an account on the subject.

To date, not many maximal real algebraic varieties are known. It is standard that Grassmannians equipped
with their standard real structure (e.g. real projective spaces) are maximal, as well as non-singular (or
mildly singular) real toric varieties [BFMvHO0G6, Fra22]. One also easily constructs maximal real algebraic
(hyperelliptic) curves of arbitrary genus. Furthermore, the Jacobian of a real algebraic curve with non-empty
real part is maximal if and only if the curve is maximal [GH81]. Knowledge starts to be more fragmented
in the case of surfaces, we refer the interested reader to [Manl7, Chapter 4] or [DKO0O, Section 3], as well
as to Section 3. Things are of course getting worse when increasing the dimension; the knowledge of the
authors essentially reduces to the classifications of maximal cubic real hypersurfaces of dimension 3 and 4
[Kra09, FK10], and to the unpublished construction by Itenberg and Viro, dating back to the 1990’s, of
maximal real projective hypersurfaces of arbitrary degree and dimension.

The goal of this note is to provide a new family of maximal real algebraic varieties with members of
arbitrarily large dimension: moduli spaces of vector bundles of coprime rank and degree over a maximal
real algebraic curve.
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Poincaré polynomials of the complex and real part of these moduli spaces have been computed in [AB83]
and [LS13] respectively (see also [Bail4]). It turns out, however, that equating both sums of Betti numbers
directly is quite intricate (see [LS13] for the rank 2 case). So, in Theorem 1.2, we prove a stronger statement
instead: the i'M Betti number of the real part of the moduli space is equal to the ith ascending diagonal sum
of the Hodge diamond of its complex part (see Figure 1). This implies maximality since the moduli spaces in
question have torsion-free integral cohomology [AB83].

Ko
hn,i hi,n
hn,O hi,n—i hO,n
hi,O hO,i
hO’O

Figure 1. Ascending diagonals of the Hodge diamond.

The idea of deducing maximality from this stronger statement comes from the old empirical observation
that, although few maximal real algebraic varieties are currently known, a seemingly large proportion of
them, that we suggest to call Hodge-expressive, in fact satisfy this stronger property.

Definition 1.1. A non-singular projective real algebraic variety X is called Hodge-expressive if H*(X;Z) is
torsion free and

Pt(IRX) = H(t,l)(X)-

Clearly, a Hodge-expressive variety is maximal. As mentioned above, such varieties already appear in the
literature and, in an informal way, one may say that Hodge-expressive real algebraic varieties constitute the
basic maximal real algebraic varieties. In Section 3, we provide a brief panorama of known Hodge-expressive
varieties. Usually, Hodge-expressivity of a real algebraic variety is a consequence of a prior proof of its
maximality. Here, we propose to go the other way round: maximality is established as a consequence of
Hodge-expressivity. From what we know, this is also the strategy used in the aforementioned unpublished
construction by Itenberg and Viro.

Note that Hodge-expressive varieties satisfy x = o (in the terminology of [Bru22]), since

X(RX) = P1(RX) = H_1,1)(X) = o(X),

where the last equality is the Hodge index Theorem.

1.2. Moduli spaces of vector bundles over real algebraic curves

Let € be a non-singular connected projective complex algebraic curve of genus g > 1. Given two integer
numbers r > 1 and d € Z, we denote by M (r,d) the moduli space of semistable holomorphic vector
bundles of rank r and degree d over 6. When r and d are coprime, the space M (r,d) is a non-singular
complex projective variety of dimension 72(g — 1)+ 1. For the rest of this discussion, we assume that g > 2.
Using the number-theoretic approach to the cohomology of moduli spaces of vector bundles developed by
Harder and Narasimhan in [HN75], Desale and Ramanan obtained in [DR75] a recursive formula for the
rational Poincaré polynomial of Mg (r,d). Then, using gauge theory, Atiyah and Bott proved in [AB83] that
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the integral cohomology of Mg (r,d) is torsion-free and gave an alternative proof of the recursive formula by
Desale and Ramanan. Later on, Zagier obtained a closed formula for P;(Mg(r,d)) in [Zag96], and Earl and
Kirwan used a finite-dimensional analogue of the Atiyah-Bott approach to prove a recursive formula for the
Hodge polynomial Hy )(Mc(r,d)) in [EKOO]. A consequence of these formulas (either recursive or closed)
is that Betti and Hodge numbers of M (r,d) depend only on the topological data ¢ and r (and not d).

When € is a non-singular real projective curve, the anti-holomorphic involution 7 : ¢ — ¢ induces
a real structure £ — T°€ on Mg (r,d), turning the moduli space Mg (r,d) into a real algebraic variety
as well. In fact, if r and d are coprime and € has real points, the real locus of M (r,d) consists exactly
of isomorphism classes of geometrically stable real vector bundles of rank r and degree d (¢f- [Schl2]),
where geometric stability of a real bundle (%, 7) means that the underlying complex bundle & is stable. In
[LS13], Liu and Schaffhauser developed a real analogue of the Atiyah-Bott approach to obtain a recursive
formula, as well as a closed formula, computing P;(RMg(7,d)). As in the complex situation, the Betti
numbers of RMy (r,d) are seen a posteriori not to depend on d but only on g,7 and by(RE’). Note that
bo(RMg(r,d)) = 200RE)-1 1y [Sch12].

Given a line bundle A of degree d on €, one may also consider the moduli space M (r, A) of semistable
holomorphic vector bundles of rank r with fixed determinant A. By definition, this space is a fiber of the
determinant map Mg (r,d) — Pic?(%). When r and d are coprime, the space M (r,A) is a non-singular
complex projective variety of dimension (r? —1)(g — 1), which is real if both € and A are real. Both
polynomials H, (Mg (r,A)) and P(RMg (1, A)) can be deduced from those of Mg (r,d), see Section 2.3.

The next statement is the main result of this note.

Theorem 1.2. Let 6 be a maximal non-singular real projective curve of genus ¢ > 1. Letr > 1 andd € Z
be coprime integers, and let A\ be a real line bundle of degree d on 6. Then both moduli spaces My (r,d) and
Mg (r, A) are Hodge-expressive.

In particular, these moduli spaces are maximal when € is maximal. The next proposition shows that the
converse is true for the moduli spaces M (r,d).

Proposition 1.3. Let G be a non-singular real projective curve of genus ¢ > 1 and such that R€ #0. Let r > 1
and d € Z be coprime integers. If € is not maximal, then neither is My (1,d).

Note that Mg (r,A) is maximal when either ¢ =1 or r = 1 (provided R% = 0), since in this case it
is reduced to a point. Whether M (7, A) is non-maximal when 4 is non-maximal and g,r > 2 remains
an open question. As noted in [LS13], the explicit formulas for the mod 2 Betti numbers of RM¢(r,A)
quickly become too complex to be evaluated at ¢ =1 (and similar remarks apply for the Hodge numbers of
Mg (1, A)). It was however checked in [LS13], using a computer, that this is indeed the case up until r = 6.
As is visible from Section 2.3, our proof of Proposition 1.3 does not allow us to conclude that Mg (r,A) is
not maximal when € is not maximal and g, 7 > 2.

1.3. Outline of the paper
Section 2 is devoted to the proof of Theorem 1.2 and Proposition 1.3. In Section 3, we give a panorama of
known maximal and Hodge-expressive real algebraic varieties.
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2. Hodge-expressivity for moduli spaces of vector bundles

In this section we prove Theorem 1.2 and Proposition 1.3. We first treat the particular cases g =1 and
r =1 in Sections 2.1 and 2.2 respectively. As a consequence, we prove Proposition 1.3 in Section 2.3 and
show that it suffices to prove Theorem 1.2 for M (r,d). This is achieved in Sections 2.4 and 2.5.

2.1 The case g=1

If € is of genus 1 and gcd(r,d) = 1, the determinant map Mg (r,d) —> Pic? (%) is an isomorphism
of algebraic varieties [Tu93]. In particular, one gets an isomorphism M (r,d) ~ € after a point xo € €
has been chosen. In the case when € is real and xy € R%), this isomorphism is real by [BS16], proving
Theorem 1.2 and Proposition 1.3 in the case g = 1.

From now on, we suppose that g > 2.

2.2. The case r =1

The case of moduli spaces of line bundles over € is well known, since these moduli spaces are the Picard
varieties Pic?(%). In particular one has

Hiyy)(Pic?(€)) = (1+x)8(1+p)S.
On the other hand by [GHB8I], one has
P(RPic! (7)) = 20 ®E1p((81)8) = 20RO (1 4 1)
when RE # (. Since € is maximal if and only if by(IR€’) = g+1, this proves Theorem 1.2 and Proposition 1.3
in the case r = 1.
2.3. Preliminaries

Recall that the groups H* (M (r,d); Z) and H* (Mg (r,A);Z) are torsion-free by [AB83]. Hence it is
enough to prove the two identities
P(RM(r,d)) = Hy1y( Mg (r,d))  and  B(RMg(r,A)) = Hyp) (Mg (r, A))
Moreover when gcd(r,d) = 1, it is proved in [EK0O] and in [Bai20], respectively, that
Hy (M (r,d)) = Higy)(Pic?(€))Hixp)( M (r, A))
and
P(RM(r,d)) = P(RPic!(€))P(RMg (r, A))
In view of Section 2.2, this gives
(2.1) Hi) (Mg (r,d)) = 28 (1+ )8 H 1) M (r,A)),
and
P(RMg(r,d)) = 2RO1(1 4 1) P(RMeg (r, A)).
In particular, applying the Smith-Thom inequality to M¢ (7, A), we get:
Zbi(IR./\/lgg(r,d)) = P(RM(r,d))
i=0
= 20RO+ Py (R M (1, A))
28Ry (My (r,A)) = ) bi(Me (r,d))

i=0

N
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and equality can only hold here if by(R€) = g+ 1, that is to say if € is maximal. This proves Proposition 1.3.
O

Next, when € is maximal, we see from (2.1) that Mg (7,d) is Hodge-expressive if and only if M (r,A)
is Hodge-expressive. To prove Theorem 1.2, it is therefore sufficient to prove

2.2) P(RM (r,d)) = H1)( M (r,d)).

In order to do so, we will show in the next two sections, using results from [EK00, LS13], that the polynomials
H;1) (Mg (r,d)) and P(Mg(r,d)) satisfy the same recursion relation.

2.4. Hodge numbers of My (r,d)

Here we recast the computation from [AB83, EK00] of Poincaré and Hodge polynomials of the moduli
spaces Mg (r,d). For all (r,d) € Z.yxZ, we denote by Bung(r,d) the moduli stack of all vector bundles of
rank 7 and degree d on €. It contains, as an open substack, the moduli stack of semistable vector bundles
of rank r and degree d on &, which we denote by Bung (r,d). If we fix a C* complex vector bundle E of

rank 7 and degree d over €, there is an isomorphism of stacks
Bung(r,d) =~ [Ap/GEg],

where Ag is the set of Dolbeault operators (i.e. holomorphic structures) on E and G is the automorphism
group of E (i.e. the gauge group). In particular, we can think of the cohomology of the stack Bung(r,d)
in the sense of [Beh05] simply as the Gg-equivariant cohomology of the affine space Ag. By [AB83], the
integral cohomology of Bung (r,d) is torsion-free. Moreover, its Poincaré series does not depend on d and
is given by

(1+1)% I_[ (1+2-1)%8

Pt(Bung(r,d)) ) (1 £2i-2)(1 — 20

i=2
By [HN75], an algebraic vector bundle & over 6 admits a unique filtration, called the Harder-Narasimhan
Sfiltration,

0=&ycé& 1 C---C& =86
such that:

e forallie{l,...,¢}, the vector bundle &;/&;_; is semistable;
e setting 7; := rk(&;/&;_1) and d; := deg(&;/&;_1), we have

d d
a > e > “a .
" |
The topological invariants (r;,d;);<j<¢ of the successive quotients &;/&;_; constitute the Harder-Narasimhan
type (or HN type) of the vector bundle &. If & is of rank r and degree d, then its HN type is subject to the
following constraints:
1) dy+---+d;=d,
2 r+-+r=r,

d d
(B) > >

By definition, the vector bundle & is semistable if and only if it is of HN type (r,d), which we denote by pigs.
We denote by I, ; the set of all possible tuples of integers p = (r;,d;); <i<, satisfying properties (1), (2), (3)
above. Note that this set is infinite as soon as r > 2. For instance:

Iq= {(Z,d),(l,k,l,d—k) | k > %}
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For all y € I, 4, there exists an algebraic substack Bune (p) of Bung (r,d), parameterizing vector bundles
of type p, with Bung (pss) = Bung (r,d). The codimension of Bung (p) is finite and, for all p # p, it is
equal to

d” = Z (rjdi—ridj+rirj(g—1)).
1<i<j<l(p)

Moreover, there is an isomorphism of Q-vector spaces

H*(Bungg(y);Q) ®H Bun (r;,d;); Q)

In particular, we have, for all p €1, 4,

y

Pt(Bung(y)) = ]_[Pt(Bun%(ri,di)).

i=1
Finally, the stratification of the moduli stack Bung (r,d) by the substacks Buneg (p) is perfect in the sense
that the associated Gysin long exact sequence breaks up into short exact sequences [AB83]. This implies that

Pt(Blm%ﬁ(r,d)) = Z tzd"Pt(Buﬂgg(’u)),

[JEI,’d
yielding the recursive formula
PJBun%ﬁ(r,d)) = Pt(Bunqg r,d Z $24y ]_[P Bune;(r;,d ))
H#Hss i=

When r and d are coprime, all semistable vector bundles of rank r and degree d are stable. Atiyah and
Bott have shown that, in this case, the Poincaré polynomial of Mg (r,d) is related to the Poincaré series of
Bung (r,d) via the identity

P(Mg(r,d)) = (1-*)P(Bun(r,d)).

Altogether, setting Q;E(r,d )=(1-t )Pt(Bunss (7, d)) one obtains the recursive formula

¢
1+t2’ )28 2 .

(2.3) QF(r,d) 1+t2g]_[ A Z WI_[QF(Q,«L-),
B i=1

IMEIr,d \{/’las}

expressing all polynomials Q;E(r, d) in terms of the initial term

QF(1,d) = P(Mg(1,d)) = P(Pic!(%)) = (1+1)

In [EKO00], Earl and Kirwan obtained a similar recursive formula for the Hodge polynomial of M (r,d)
when r and d are coprime. Namely, setting Q(y (7, d) = H(y,y)(M(r,d)) and using the construction of
Mg(r,d) as a GIT quotient, they proved that

d eﬂ
xp)%n
(2.4 Qi) = (1=x)G(rd) = Y — 2T Qe (rnd),
(1=xp)» i
MEIV,d\{MSS} i=1

expressing recursively all polynomials Q(y,,)(7,d) in terms of the power series

(1+x)8(1+)8 77 (1 +x"19)8 (1 +xipi1)8
G ,d) = | | L AS —
(x,y)(r ) 1 —-xy ) (1 _xz—lyz—l)(l _xlyl)
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and the initial term
Quy)(Ld) = (1-xp)Giy)(L,d) = (1+x)8(1+9)¢ = Hiyy)(Pic’(€)).

Plugging x =y =t in equation (2.4), one finds again the recursion (2.3). And plugging x =t and y =1 in
equation (2.4), one obtains the following recursion:

. . 14
L+ N8 (1 418 4 .

(2.5)  Quu(rd) =2%(1+y)* = — - ——— | | Qun(ridi),
D (L-t=1)(1-t) Melmz\{ﬂss}(1—t)ﬂ ];[

which will be useful to prove Theorem 1.2.

Remark 2.1. Although this is not how Earl and Kirwan prove their result, the power series G(y,)(r,d) can be
interpreted as the Hodge series of the moduli stack Buneg (r,d) [Tel98, BD07].

2.5. Betti numbers of RMy(r,d)

When the curve € is defined over the reals, so is the moduli stack Bung(r,d). Here, we recast the
computation of the mod 2 Poincaré polynomial of RMe (r,d) from [LS13] . We denote by 1 := by(IRE) the
number of connected components of R%, and we assume that 1 > 0. The stack RBung(r,d) is a disjoint
union

RBung(r,d) = I_IBun%(r, d,s)
S

of 2! connected components, each of which is indexed by the possible real invariants of a real vector
bundle (&, T) of rank r and degree d, namely the first Stiefel-Whitney class

s=(s1,...,5,) €(Z/2Z)"

of the vector bundle RE over R% = L S, subject to the condition s; + -+ +5, =d mod 2. The substack
Bun%(r, d,s) is the stack of all real vector bundles of rank r, degree d and real type s. Fixing a C* real
vector bundle (E, 7) with these invariants (7,d, s), we get an isomorphism of stacks

Bung;(r, d,s) ~ [AL/GE],

where A" C A is the set of all T-fixed Dolbeault operators (for the real structure on Ag induced by the real
structure of E), and Gf C G is the group of gauge transformations of E that commute with 7. It turns out
that the mod 2 Poincaré series of Bung,,(r, d,s) is independent of d and s [LS13]. As a consequence, the
space RBung(r,d) has mod 2 Poincaré series

r

(L4 8)8 prp (L4 278l g = hyn=l (1 4 4yt
I_[ (L—t=1)(1-+) '

Because of the uniqueness of the destabilizing sub-bundle, semistability over IR is equivalent to semistability
over C and all sub-bundles (&;);<¢ in the Harder-Narasimhan filtration of a real algebraic vector bundle
& over € are real. So the substack Bung (p) is defined over R and RBune (p) is the stack of all real vector
bundles of HN type u. Moreover, for all y € I, 4, there is an isomorphism of (Z/2Z)-vector spaces

e
H*(RBung (u); Z/2Z) =~ ®H*(m3ungg(ri,di);2/2z).
i=1
In particular, we have, for all p €1, 4,

o

Pt(lRBung(y)) = ]_[Pt(lRBun%(ri,di)).
i=1
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Finally, the substacks (RBung (u)) form a stratification of RBung (r,d) which is perfect over Z/27Z, so

Hel
P,(RBung (r,d)) = Z t% P,(RBung (1))
uel 4
yielding the recursive formula
l
Pt(IRBun%;(r,d)) = Pt(IRBungg(r,d)) - Z £ ﬁPt(IRBun%;(ri,di)).
HEL g\ piss} i=1

When 7 and d are coprime, one has the identity
P(RM(r,d)) = (1-1t)P(RBun (r,d)).
Altogether, setting Q]tR(n, r,d)=(1- t)Pt(IRBun%;(r,d)), one obtains the recursive formula

1+ t2i—1)g+l—n (1 + ti—l)n—l 1+ tz’)n—l
(1—t=1)(1 - )

d b
Y T QR dy
5‘_1 2yl ),

(L=t)" i

;ui;uSS

QR (n,r,d) = 2”-1(1+t)g]_[(
(2.6) =

expressing all polynomials QX (1,7,d) in terms of the initial term
QR(n,1,d) = P(RPic* (%)) = 2" (1 +1)S.
Thus it follows from relations (2.5) and (2.6) that, for all r and d, one has
Qr(g+1rd) = Qulrd)
Since, when d and r are coprime,
QR(g+1rd) = B(RMg(r,d)  and  Qur,d) = Hyy)(Mg(r,d)),
by results from [EK00, LS13], we see that relation (2.2), hence also Theorem 1.2, is proved. O

3. A brief panorama of Hodge-expressive varieties

We list below a few basic examples of Hodge-expressive varieties and discuss their relevance among
maximal real algebraic varieties.

3.1. Handy real algebraic varieties

Real projective spaces, i.e. CP" equipped with the standard complex conjugation, constitute the simplest
projective real algebraic varieties. One checks easily that they are all Hodge-expressive.

More generally, the standard complex conjugation in C induces a real structure on the Grassmannian
variety Gr(d,n) of d-planes in C". Schubert cells provide a stratification of Gr(d, n) by real affine spaces
[MS74], implying that for all i > 0

byi1(Gr(d,n))=0  and  bi(RGr(d,n)) = byi(Gr(d, n)) = h"/(Gr(d, m)).

Hence all Grassmannian varieties are Hodge-expressive.

Toric varieties constitute another generalization of projective spaces. A toric variety carries a standard
real structure inherited once again from the standard complex conjugation in C*, and all these non-singular
real projective toric varieties are Hodge-expressive by [BFMvHO06, Fra22].
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Grassmannian and toric varieties are particular cases of balanced varieties, i.e. non-singular projective
complex manifold X such that hJ(X) = 0 whenever i = j. By definition, such a variety satisfies P,(CX) =
H;,1)(X) = Hs2,1)(X). In particular if X is both balanced and Hodge-expressive, then P,(CX) = Py (IRX).

Hodge-expressivity is preserved by certain elementary operations on real algebraic varieties, for instance
taking products or projectivizing a vector bundle over the variety. This follows from the fact that both
Hodge and Betti numbers satisfy the same relations under these elementary operations: on the one hand,
the Hodge polynomial extends to a motivic invariant from the Grothendieck ring Ky(Varg) of complex
algebraic varieties to Z[x,y] [PS08, Remark 5.56], and on the other hand, the Kiinneth formula (or more
generally the Leray-Hirsch Theorem, [Hat02, Theorem 4D.1]) implies that the Poincaré polynomial behaves
analogously in basic situations. More precisely, we observe the following:

e The product of Hodge-expressive real algebraic varieties X1, X5, ..., X, equipped with the product
real structure, is Hodge-expressive. Indeed, one deduces from the multiplicativity of the Hodge
polynomial and from the Kiinneth formula that

k

[

i=1

k

|_[ RX;

i=1

k

= [Pmx).

i=1

Hix,y)

k
:I_[H(x,y)(Xi): and P
i=1

e Similarly, if E is a real algebraic vector bundle of rank r over a Hodge-expressive real algebraic variety
X, the real projective bundle IP(E) is also Hodge-expressive. By the scissor relations on Ky(Varg),
we get that

H(x,y)(IP(E)) = H(x,y)(X)H(x,y)(CPr_l)'

And since the first Chern class (resp. the first Stiefel-Whitney class) of the tautological line bundle on
IP(E) (resp. RIP(E)) restricts to the generator of H*(CP"~!) (resp. H*(IRP"!)), we deduce from the
Leray-Hirsch theorem that H*(IP(E); Z) is torsion-free if X is, and that

P,(RP(E)) = P,(X)P,(RP"").

e We deduce in particular from the last item that the blow-up X ofa Hodge-expressive variety X along
a Hodge-expressive subvariety Y is Hodge-expressive as well. Using again the scissor relations on
Ky(Varg), we have

Hi,)(X) = Hisoy(X) + (719" #2292 o 4 xp) Hi ) (),

where 7 is the codimension of Y in X. The computation of Betti numbers of X from [GH78, Chapter 4,
Section 6] carries over word for word to the real part. In particular, we obtain that H*(X;Z) is
torsion-free if X and Y are, and that

P(RX) = P,(RX) + (" ' + "2+ .-+ t)P,(RY).

One may also consider symmetric powers of real algebraic varieties, or more generally quotients X*/T" of
a k™ product X¥ by the canonical action of a subgroup T' of the symmetric group $y. The product and the
symmetric power correspond to the two extremal cases I' = {Id} and I = S, respectively. Any real structure
on X extends canonically to X k/T, and Franz proved in [Fral8] that X*/T is a maximal real algebraic variety
as soon as X is (note that the converse does not hold in general, as shown by the second symmetric power
of CP! equipped with the antipodal involution). It would be interesting to investigate whether Xk/T is
Hodge-expressive as soon as it is non-singular and X is Hodge-expressive. When T = Sy, the kP symmetric
power XKl of X is projective and non-singular if and only if X is a non-singular projective curve. In this
case partial results regarding Hodge-expressivity can be obtained, as we shall see in Section 3.2 below.
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3.2. Curves

Let € be a non-singular real projective curve of genus g. In this case the Smith-Thom inequality reduces
to the Harnack-Klein inequality

with equality if and only if € is maximal. Since
H(x,y)(%) =1+ g(x + y) + XV,
and
P(RE) = bo(RE)(1+1)<(g+1)(1+1) = H1)(%),
the curve € is Hodge-expressive if and only if it is maximal.
By the Abel-Jacobi Theorem, we have Picd(%) ~Jac(€) forall d € Z, so
Hiyy)(Pic?(€)) = (1+x)8(1+p)S.

By [GHBI], if by(RE’) > 0 one has

P(RPic?(€)) = 20O (1448 < 28(1+)¢ = Hyyp)(Pic? (%))
Since Pic? (%) has torsion-free integral cohomology, we deduce that
(3.1) Pic?(%) Hodge-expressive &= Pic? (%) maximal <= % maximal
as soon as by(RE) > 0.

Remark 3.1. When R = 0, one has RPic?(€) = 0 if g and d are both odd [GH8]]. And if g is odd and d
is even, the Poincaré polynomial of RPic?(%) is 2(1 + t)8, so its value at ¢ = 1 is strictly smaller than 228,
unless g = 1 (in which case Pic?? (%) is maximal even though RE = 0). Finally, if g is even, the Poincaré
polynomial of RPic?(€) is (1 + t)8, so its value at ¢ = 1 is strictly smaller than 228, unless g = 0.

From the utmost right equivalence in (3.1) and the discussion in Section 3.1, one deduces that the kth

symmetric power €| of & is Hodge-expressive if € is maximal and k > 2g — 1, which refines [BDM17,
Theorem 3.1]. Indeed, the Riemann-Roch and Abel-Jacobi theorems imply that €] can be expressed as
the projectivization of a real algebraic vector bundle over Jac(%), see [ACGH85, Chapter IV]. Furthermore,
from the explicit computation of Betti numbers of RE ) for k=2,3 in [BDM17], one also sees that EH s
Hodge-expressive when & is maximal and k = 2,3 (see for example [LS11] for Hodge numbers of &¥). It
would be interesting to investigate whether ¥ is Hodge-expressive as soon as & is.

Hodge-expressivity may also be used to determine “elementary embeddings” of real algebraic curves in
real algebraic surfaces. As an example, let us consider Harnack curves in the real projective plane. They
were originally constructed by Harnack in [Har76], and constituted the first family of maximal curves of
arbitrary degree in IRP2. Since then, Harnack curves have also been obtained as elementary applications
of a large proportion of construction methods of maximal real algebraic curves (e.g. [[V96]). Surprisingly,
they also appeared in several contexts other than pure real algebraic geometry (e.g. [KO06]). To summarize
informally, a maximal real algebraic curve in IRP? is a Harnack curve, except if it has a good reason not to
be so.

The topological type of the pair (RP?,IR%) for a Harnack curve % in RP? is depicted in Figure 2 below.
Suppose that a Harnack curve € of even degree 2k in IRP? is given by the real equation P(x,7,z) = 0, where
the real polynomial P(x,,z) is positive on the non-orientable connected component of RP? \ R%". Then,
on the one hand, one easily sees from Figure 2 that the real algebraic surface X with equation w? — P(x,7, z)
in the weighted projective space CP(1,1,1, k) satisfies
(k=1)(k=2)

bo(RX) = by(RX) = >

+1  and b (RX) = 3k(k—1)+2.
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e N~——— —
(k=1)(k-2) 3k(k-1)
2 2
(a) d =2k

Figure 2. Harnack curves of degree d in IRP?, up to isotopy and in an affine chart.

On the other hand, the Hodge diamond of X is (see for example [DK0O0, Section 2.5])

Note that H*(X;Z) is torsion-free by the Lefschetz hyperplane section Theorem. So the basic nature of a
Harnack curve € may be reflected in the fact that X is Hodge-expressive.

3.3. Surfaces

We refer to [DK0O, Section 3] and [Manl7, Chapter 4] for more details and references regarding the
various classifications of real algebraic surfaces discussed in this section.

It follows from the classifications by Comessati that all maximal real Abelian surfaces are Hodge-expressive.
For examples, the Hodge diamond of an Abelian surface is

1
2 2
1 4 1,
2 2
1

and such a real surface X is maximal if and only if RX is the disjoint union of four tori $! x S!.

There exist maximal real algebraic K3-surfaces that are not Hodge-expressive. As shown by Kharlamov
[Kha76], the three possible topological types for the real part of a maximal real K 3-surface are: the disjoint
union of a sphere S? and a surface of genus 10, the disjoint union of five spheres with a surface of genus 6,
and the disjoint union of nine spheres with a surface of genus 2. Since a K3 surface has torsion-free integral
cohomology and has the following Hodge diamond

1
0 0
1 20 1,
0 0
1

only the first topological type corresponds to a Hodge-expressive variety.

Note that there exist maximal real algebraic Enriques surfaces satisfying

b;(RX) > Zhi’j(X) Vielo,1,2),
>0
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see [DK0O, Manl7|. This shows the necessity of the torsion-freeness assumption in the implication

(Pt(IRX) = H(t,l)(X)) — X maximal.

The first family of maximal real algebraic surfaces of arbitrary degree in CP® was constructed by Viro in
[Vir79], generalizing Harnack’s construction. A non-singular hypersurface in CP” has torsion-free integral
cohomology by the Lefschetz hyperplane section Theorem, and it turns out that all surfaces in Viro’s family
are Hodge-expressive.

3.4. Higher dimension

As mentioned earlier, our knowledge of maximal real algebraic varieties of dimension at least 3 is quite
restricted. By [Kra09], there exists a unique topological type of maximal real cubic 3-folds in CP#, and
one checks that it is Hodge-expressive. By [FK10], there exist three topological types of maximal real cubic
4-folds in CP>, only one of them being Hodge-expressive.

All maximal real algebraic projective hypersurfaces from Itenberg and Viro’s unpublished construction
are Hodge-expressive. As mentioned earlier, this is even a crucial point in their argumentation, since
they prove that the real algebraic hypersurfaces that they construct are maximal by showing that they are
Hodge-expressive. Note that the Itenberg-Viro’s construction uses primitive combinatorial patchworking.
Renaudineau and Shaw recently proved [RS18] that all maximal real algebraic hypersurfaces of a non-singular
compact toric variety that are obtained by primitive combinatorial patchworking are Hodge-expressive, thus
confirming a long standing conjecture of Itenberg’s.

We are not aware of any general construction of maximal real hypersurfaces in CP" that are not
Hodge-expressive.
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