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Serre-invariant stability conditions and
Ulrich bundles on cubic threefolds

Soheyla Feyzbakhsh and Laura Pertusi

Abstract. We prove a general criterion which ensures that a fractional Calabi–Yau category of
dimension at most 2 admits a unique Serre-invariant stability condition, up to the action of the
universal cover of GL+2 (R). We apply this result to the Kuznetsov component Ku(X) of a cubic
threefold X. In particular, we show that all the known stability conditions on Ku(X) are invariant
with respect to the action of the Serre functor and thus lie in the same orbit with respect to the
action of the universal cover of GL+2 (R). As an application, we show that the moduli space of
Ulrich bundles of rank at least 2 on X is irreducible, answering a question asked by Lahoz, Macrì
and Stellari in [LMS15].
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1. Introduction

Let X be a smooth cubic hypersurface in the complex projective space P
4. As first noted by

Kuznetsov [Kuz04], the birational geometry of X is controlled by a certain full admissible subcategory
Ku(X) of the bounded derived category Db(X), defined by the semiorthogonal decomposition

Db(X) = 〈Ku(X),OX ,OX(H)〉.

We call Ku(X) the Kuznetsov component of X. It has been shown that Ku(X) completely determines the
isomorphism class of the cubic threefold X; see [BMM+12, BBF+20]. The proof involves the theory of stability
conditions for complexes in the derived category as introduced by Bridgeland [Bri07], and the study of
moduli spaces of stable objects in Ku(X).

Up to now there are two different constructions of stability conditions on Ku(X): one in [BMM+12] (see
Section 5.2) and one in [BLM+17] (see Section 4.2). One of the goals of this paper originates from the desire
to understand the connection between these two families of stability conditions.

1.1. Main results

Let T be a C-linear triangulated category with Serre functor S . Recall that the space of stability conditions
on T carries a right action of G̃L

+
2 (R), which is the universal cover of GL+2 (R); see Section 2.1. The first

result of this paper is a general criterion which implies the existence of a unique orbit of stability conditions
which are invariant with respect to the action of the Serre functor (Definition 3.1).

Theorem 1.1 (Theorem 3.2). Let σ1 and σ2 be Serre-invariant stability conditions on a linear triangulated
category T satisfying the conditions (C1), (C2) and (C3) in Section 3. Then there exists a g̃ ∈ G̃L+(2,R) such that
σ1 = σ2 · g̃ .

Theorem 1.1 applies for instance to the Kuznetsov component of a cubic threefold X to show that the
known stability conditions on Ku(X) are identified in the stability manifold up to the action of G̃L

+
2 (R),

answering a question asked by Macrì and Stellari (see [PY20, Remark 4.9]).

Theorem 1.2 (Corollary 5.7). Let X be a cubic threefold. The stability condition σ on Ku(X) defined in [LMS15]
is in the same orbit as the stability conditions σ (α,β) introduced in [BLM+17] with respect to the G̃L

+
2 (R)-action.
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Our second result provides a detailed description of the moduli spaces of stable objects in Ku(X) with
minimal dimension with respect to any Serre-invariant stability condition. More precisely, let MX(v) and
MX(w) be the moduli of slope-stable sheaves on X with Chern characters

v =
(
1,0,−1

3
H2,0

)
and w =

(
2,−H,−1

6
H2,

1
6
H3

)
.

Note that v is the numerical class of the ideal sheaf I` of a line ` in X and in fact MX(v) is isomorphic to
the Fano variety of lines on X. We also denote by MX(v −w) the moduli of large volume stable complexes
on X of class v −w; see Definition 4.10.

Theorem 1.3 (Theorem 4.5). We have the isomorphisms

MX(v) �

LOX (−⊗O(H))
// MX(w) �

LOX (−⊗O(H))
// MX(v −w).

Moreover, the above three moduli spaces are isomorphic to the moduli of σ -stable objects of class [I`] in Ku(X),
where σ is any Serre-invariant stability condition on Ku(X).

Finally, we apply Theorem 1.2 to study the moduli space of Ulrich bundles of rank at least 2 on X. Recall
that an Ulrich bundle E on X is an arithmetically Cohen–Macaulay vector bundle such that the graded
module ⊕m∈ZH0(X,E(mH)) has 3rank(E) generators in degree 1 (see Section 6). Ulrich bundles all lie
in Ku(X). Thus the moduli spaces of stable objects in Ku(X) become a useful tool to deduce properties
of certain classical moduli spaces of semistable sheaves on X, such as non-emptyness and irreducibility.
Applying these techniques, Lahoz, Macrì and Stellari [LMS15, Theorem B] show that the moduli space MsU

d
of stable Ulrich bundles of rank d on X is non-empty and smooth of the expected dimension d2 +1. They
leave as an open question its irreducibility, which is our last result.

Theorem 1.4 (Theorem 6.1). Let X be a cubic threefold. The moduli space of Ulrich bundles of rank at least 2 on
X is irreducible.

1.2. Related works and motivation

The interest in the study of Serre-invariant stability conditions on semiorthogonal components in the
bounded derived category has grown recently, mostly due to applications to the study of moduli spaces (see for
instance [PY20, LZ22]) and to the desire to better understand the Kuznetsov component. For Fano threefolds
of Picard rank 1 and index 2, the existence of Serre-invariant stability conditions on their Kuznetsov
component is proved in [PY20], making use of the stability conditions constructed in [BLM+17]. In the
upcoming paper [PR22], the same result is proved for the Kuznetsov component of a Gushel–Mukai threefold.
On the other hand, in the recent paper [KP21], the authors show the non-existence of Serre-invariant stability
conditions on Kuznetsov components of almost all Fano complete intersections of codimension at least 2.

The assumptions in Theorem 1.1 require the category to be fractional Calabi–Yau with numerical
Grothendieck group of rank 2 generated by objects E with small hom1(E,E). The first condition allows one
to control the phase of stable objects after the action of the Serre functor, and the other conditions make the
category similar to the bounded derived category of a curve. Since in the case of curves of genus at least 2
there is a unique orbit of stability conditions by Macrì’s result [Mac07], these are very natural conditions for
one to expect the category to have a unique Serre-invariant stability condition.

Theorem 1.1 applies to cubic threefolds and to other Fano threefolds (see Remark 3.8). Note that in these
cases the uniqueness result has been recently proved independently by [JLL+21]. We explain in Section 3 a
related application in the case of very general cubic fourfolds.

In Proposition 5.3 we apply the method in [BLM+17] to construct stability conditions on Ku(X) via the
embedding of Ku(X) in Db(P2,B0); see [LMS15]. These stability conditions are Serre invariant, as shown
in Section 5.3. Since the stability conditions constructed in [BLM+17] are also Serre invariant by [PY20,
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Corollary 5.5], we deduce that all the stability conditions constructed on Ku(X) up to now are Serre invariant.
Theorem 1.2 then follows from Theorem 1.1. An interesting question would be to understand whether
the property of Serre invariance characterises the stability conditions on Ku(X). This fact together with
Theorem 1.1 would allow one to show that there is a unique orbit of stability conditions on Ku(X), in analogy
to the case of curves of genus at least 2; see [Mac07].

Another open question is to generalise Theorem 1.3 and Corollary 6.5 to further study moduli spaces
of semistable objects in Ku(X) with respect to a Serre-invariant stability condition like their projectivity or
irreducibility. Some cases of small dimension have been studied in [PY20, APR22, BBF+20, Qin21, LZ22].

The study of Ulrich bundles is a central theme in classical algebraic geometry and commutative algebra
(see for instance [ES03] and [Bea18] for a survey). The existence of Ulrich bundles have been shown on cubic
threefolds by [LMS15, Theorem B]. In the rank 2 case, namely the case of instanton sheaves of minimal
charge, we know a full description of the moduli space with class 2[I`] for cubic threefolds, see [LMS15],
and more generally for Fano threefolds of Picard rank 1, index 2 and degree d ≥ 3; see [Qin21, LZ22]. For
the case of cubic fourfolds, we refer to [FK20].

Theorem 1.4 follows from an embedding of the moduli space of Ulrich bundles of rank d ≥ 2 on X in
a moduli space of semistable objects in Ku(X) with class d[I`], where I` is the ideal sheaf of a line in X.
By Theorem 1.2, the latter moduli space can be described via an irreducible moduli space parametrising
Gieseker-semistable sheaves which are B0-modules; it has the same dimension as MsU

d .

1.3. Plan of the paper

In Section 2 we recall the definitions and basic properties of (weak) stability conditions, tilt stability,
wall-crossing and a method to construct stability conditions on Kuznetsov components. Section 3 is devoted
to the proof of Theorem 1.1. In Section 4 we review the construction of the stability conditions σ (α,β)
from [BLM+17], and then we prove Theorem 1.3. In Section 5 we extend the construction of stability
conditions on Ku(X) from [BMM+12, LMS15], and we show they are Serre invariant. Finally, we deduce
Theorem 1.2. In Section 6 we prove Theorem 1.4.

Acknowledgments

We are very grateful to Chunyi Li, Emanuele Macrì, Paolo Stellari, Richard Thomas, Xiaolei Zhao and
Shizhuo Zhang for many useful conversations, and to Arend Bayer for suggesting the strategy used in
Theorem 1.1. We also thank an anonymous referee for useful comments.

2. (Weak) Bridgeland stability conditions and tilting

In this section we recall the definitions and properties of (weak) Bridgeland stability conditions and
wall-crossing. Our main reference is [BMS16]. We also mention the stronger Bogomolov inequalities proved
in [Li19] in the case of cubic threefolds. Finally, we explain the method to construct stability conditions on
the orthogonal complement of an exceptional collection introduced in [BLM+17].

2.1. Review on (weak) stability conditions

Let T be a C-linear triangulated category, and denote by K(T ) its Grothendieck group. A (weak) stability
condition on T is defined by giving the heart of a bounded t-structure and a (weak) stability function on it.
Fix a finite-rank lattice Λ with a surjective morphism v : K(T )�Λ. We denote by<[−] (resp.=[−]) the
real (resp. imaginary) part of a complex number.

Definition 2.1. Let A be the heart of a bounded t-structure on T . A group homomorphism Z : Λ→ C

is a (weak) stability function on A if for any 0 , E ∈ A, we have =Z(v(E)) ≥ 0, and in the case that
=Z(v(E)) = 0, we have<Z(v(E)) < (≤)0.
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By abuse of notation, we will write Z(E) for an object E ∈ A instead of Z(v(E)). The slope of E ∈ A with
respect to Z is defined by

µZ(E) =

−
<Z(E)
=Z(E) if=Z(E) > 0,

+∞ otherwise.

An object F ∈ T is called (semi )stable with respect to the pair (A,Z) if some shift F[k] lies in the heart A
and for every proper subobject F′ ⊂ F[k] in A we have

µZ(F
′) < (≤) µZ(F[k]/F′).

Definition 2.2. A (weak) stability condition (with respect to Λ) on T is a pair σ = (A,Z), where A is the
heart of a bounded t-structure on T and Z is a (weak) stability function satisfying the following properties:

(a) HN property: Every object of A has a Harder–Narasimhan (HN) filtration with σ -semistable factors.
(b) Support property: There exists a quadratic form Q on Λ⊗R such that the restriction of Q to kerZ is

negative definite and Q(E) ≥ 0 for all σ -semistable objects E in A.

We denote by StabΛ(T ) the space of stability conditions on T with respect to Λ. This space is actually a
complex manifold; see [Bri07].

If Λ is the numerical Grothendieck group of T , we call σ a numerical (weak) stability condition. Any
(weak) stability condition defines a slicing on T .

Definition 2.3. The phase of a σ -semistable object E ∈ A is

φ(E)B
1
π
arg(Z(E)) ∈ (0,1].

If Z(E) = 0, then φ(E) = 1. For F = E[n], we set

φ(E[n]) := φ(E) +n.

The slicing Pσ of T corresponding to σ is a collection of full additive subcategories Pσ (φ) ⊂ T for φ ∈R,
such that:

(i) for φ ∈ (0,1], the subcategory Pσ (φ) is given by the zero object and all σ -semistable objects with
phase φ;

(ii) for φ+n with φ ∈ (0,1] and n ∈Z, we set Pσ (φ+n)B Pσ (φ)[n].

The HN property of (weak) stability condition σ implies that for 0 , E ∈ T , there exists a unique finite
sequence of real numbers

φ+(E)B φ1 > φ2 > · · · > φn C φ−(E)

and a unique sequence of objects in T

0 = E0
f1−→ E1

f2−→ E2
f3−→ ·· ·

fn−1−−−→ En−1
fn−−→ En = E

with cone(fi) ∈ Pσ (φi).

It is clear from the definition that A = Pσ (0,1], where the latter is the full subcategory of T consisting of
the zero object together with those objects 0 , E ∈ T which satisfy 0 < φ−(E) ≤ φ+(E) ≤ 1.
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On the stability manifold StabΛ(T ), we have:

(a) a right action of the universal covering space G̃L
+
2 (R) of GL+

2 (R): for a stability condition σ =
(P ,Z) ∈ StabΛ(T ) and g̃ = (g,M) ∈ G̃L

+
2 (R), where g : R→ R is an increasing function such that

g(φ+1) = g(φ) + 1 and M ∈GL+
2 (R), we define σ · g̃ to be the stability condition σ ′ = (P ′ ,Z ′) with

Z ′ =M−1 ◦Z and P ′(φ) = P (g(φ)) (see [Bri07, Lemma 8.2]);
(b) a left action of the group of linear exact autoequivalences AutΛ(T ) of T , whose induced action on K(T ) is

compatible with v: for Φ ∈ AutΛ(T ) and σ ∈ StabΛ(T ), we define Φ · σ = (Φ(P ),Z ◦Φ−1∗ ), where Φ∗
is the automorphism of K(T ) induced by Φ .

2.2. Tilt stability

An important tool in the construction of weak stability conditions is the procedure of tilting a heart. Let
σ = (A,Z) be a weak stability condition on T and µ ∈R. We consider the following subcategories of A:

T µσ B {E ∈ A| every Harder–Narasimhan factor F of E has µZ(F) > µ},

F µσ B {E ∈ A| every Harder–Narasimhan factor F of E has µZ(F) ≤ µ}.

Theorem 2.4 ([HRS96]). The category

Aµσ B 〈T
µ
σ ,F

µ
σ [1]〉extension closure

is the heart of a bounded t-structure on T .

We say that the heart Aµσ is obtained by tilting A with respect to the weak stability condition σ at slope µ.
The above construction applies to the case of the bounded derived category T = Db(X) of coherent

sheaves on a smooth projective variety X, to define tilt stability conditions. Fix an ample divisor H on X,
and set n := dim(X). The pair σH = (Coh(X), ZH ), where ZH = −ch1Hn−1 + ch0Hn, is a weak stability
condition on Db(X), known as slope stability, with respect to the rank 2 lattice generated by the elements of
the form (Hn ch0(E),Hn−1 ch1(E)) for E ∈Db(X); see [BLM+17, Example 2.8]. In particular, the slope of a
coherent sheaf E on X is defined by

µH (E) =

H
n−1 ch1(E)
Hn ch0(E)

if ch0(E) > 0,

+∞ otherwise.

Any µH -semistable sheaf E satisfies the Bogomolov–Gieseker inequality

∆H (E) := (Hn−1 ch1(E))
2 − 2Hn ch0(E) ·Hn−2 ch2(E) ≥ 0.

We observe that if n = 1, then σH is a stability condition.
Now given β ∈R, we denote by Cohβ(X) the heart of a bounded t-structure obtained by tilting the weak

stability condition σH at the slope µH = β (see Theorem 2.4). For E ∈Db(X), the twisted Chern character is
defined by chβ(E) := e−βH ch(E). Explicitly, the first three terms are

chβ0(E) := ch0(E), chβ1(E) := ch1(E)− βH ch0(E)

and

chβ2(E) := ch2(E)− βH ch1(E) +
β2H2

2
ch0(E).

Proposition 2.5 ([BLM+17, Proposition 2.12]). There is a continuous family of weak stability conditions
parametrised by R>0 ×R, given by

(α,β) ∈R>0 ×R 7→ σα,β = (Cohβ(X),Zα,β)
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with

Zα,β(E) : Λ �Z
3 → C(

H3 ch0(E),H
2 ch1(E),H ch2(E)

)
7→ 1

2
α2Hn chβ0(E)−H

n−2 chβ2(E) + iH
n−1 chβ1(E).

The weak stability condition σα,β is called tilt stability, and if n = 2, then it defines a stability condition
on Db(X) (see [Bri08, AB13]). There is a region in the upper half-plane where the notions of σα,β-stability
and µH -stability are closely related.

Lemma 2.6 ([BMS16, Lemma 2.7]). Assume E ∈ Coh(X) is a µH -stable sheaf of positive rank. Then E is an
element of Cohβ(X) for β < µH (E) and is σα,β-stable for α� 0.

We now recall the notions of walls and chambers for tilt stability.

Definition 2.7. Fix v ∈Λ. A numerical wall for v is a subset of the upper half-plane of the form

W (v,w) = {(α,β) ∈R>0 ×R : µα,β(v) = µα,β(w)}

with respect to a vector w ∈ Λ. We say a point (α,β) ∈W (v,w) is on an actual wall for v if and only if
there is an object E ∈ Cohβ(X) of class v(E) = v which is strictly σα,β-semistable and unstable on one side
of the wall.

A chamber for class v is a connected component in the complement of the union of walls in the upper
half-plane.

Tilt stability satisfies well-behaved wall and chamber structure, in the sense that walls with respect to a
class v ∈ Λ are locally finite. Properties of walls are described by the following theorem, which was first
proved in [Mac14] (see also [Sch20]).

Theorem 2.8 (Bertram’s nested wall theorem). Fix v ∈Λ.
(a) Numerical walls for v are either nested semicircles centred on the β-axis, or a vertical ray parallel to the

α-axis.
(b) If two numerical walls intersect, then they are the same. If a numerical wall contains a point defining an

actual wall, then the numerical wall is an actual wall.
(c) If ch0(v) , 0, then there is a unique vertical numerical wall given by β = µH (v). If ch0(v) = 0 and

Hn−1 ch1(v) , 0, then there is no vertical wall.

2.3. Cubic threefolds

We know any slope-semistable sheaf and, more generally, any σα,β-semistable object satisfies ∆H (E) ≥ 0;
see [BMS16, Theorem 3.5]. In the case of a smooth complex cubic threefold X, we have stronger Bogomolov
inequalities as follows.

Proposition 2.9 ([Li19, Corollary 3.4]). Let E be a slope-semistable coherent sheaf of positive rank on X. If∣∣∣µH (E)∣∣∣ ≤ 1
2 , then ch2(E) ≤ 0, and if 1

2 <
∣∣∣µH (E)∣∣∣ ≤ 1, then

H ch2(E) ≤
∣∣∣H2 ch1(E)

∣∣∣− 1
2
H3 ch0(E).

Theorem 2.10. For any σα,β-semistable object E ∈Db(X), we have

0 ≤Qα,β(E)B
(
α2

2
+
β2

2

)(
C2
1 − 2C0C2

)
+ β (3C0C3 −C1C2) +

(
2C2

2 − 3C1C3

)
,

where Ci := chi(E).H3−i .
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Proof. Conjecture 5.3 of [BMS16] is proved for cubic threefolds in [Li19, Theorem 0.1]. Thus [BMS16, Theorem
5.4] implies that [BMS16, Conjecture 4.1] holds on cubic threefold. One can easily show that its statement is
equivalent to Qα,β(E) ≥ 0. �

2.4. Induced stability conditions

We finish this section by recalling induced stability conditions on an admissible subcategory. Let T be a
C-linear triangulated category with Serre functor S . Assume T has a semiorthogonal decomposition of the
form

T = 〈D,E1, . . . ,Em〉,
where {E1, . . . ,Em} is an exceptional collection and D := 〈E1, . . . ,Em〉⊥. The next proposition gives a criterion
to construct a stability condition on D from a weak stability condition on T .

Proposition 2.11 ([BLM+17, Proposition 5.1]). Let σ = (A,Z) be a weak stability condition on T . Assume that
the exceptional collection {E1, . . . ,Em} satisfies the following conditions:

(a) Ei ∈ A;
(b) S(Ei) ∈ A[1];
(c) Z(Ei) , 0 for all i = 0,1, . . . ,m.

If moreover there are no objects 0 , F ∈ A′ :=A∩D with Z(F) = 0, then the pair σ ′ = (A′ ,Z |K(A)) is a stability
condition on D.

3. Serre-invariant stability conditions

Let T be a triangulated category which is linear of finite type over a field K ; i.e. ⊕iHom(E,F[i]) is
a finite-dimensional vector space over K . Assume that T has Serre functor S . Since S is a linear exact
autoequivalence, we can have the following definition.

Definition 3.1. A stability condition σ on T is Serre invariant (or S-invariant ) if S · σ = σ · g̃ for some
g̃ ∈ G̃L+2 (R).

Assume T satisfies the following conditions:

(C1) The Serre functor S of T satisfies Sr = [k] when 0 < k/r < 2 or r = 2 and k = 4.
(C2) The numerical Grothendieck group N (T ) is of rank 2, and we have the inequality `T B

max{χ(v,v) : 0 , v ∈ N (T )} < 0.
(C3) There is an object Q ∈ T satisfying

(3.1) − `T +1 ≤ hom1(Q,Q) < −2`T +2.

If k = 2r = 4, there are two objects Q1,Q2 ∈ T satisfying (3.1) such that Q1 is not isomorphic to Q2
or Q2[1], hom(Q2,Q1) , 0 and hom(Q1,Q2[1]) , 0.

We can slightly relax (C3) in the case k = 2r = 4; see Lemma 3.7.
The goal of this section is to prove the following theorem.

Theorem 3.2. Let σ1 and σ2 be S-invariant numerical stability conditions on a triangulated category T satisfying
the above conditions (C1), (C2) and (C3). Then there exists a g̃ ∈ G̃L+(2,R) such that σ1 = σ2 · g̃ .

Remark 3.3. It is easy to see that if the Serre functor satisfies S = [2], then every stability condition on T is
Serre invariant.

Before proving Theorem 3.2, we apply similar arguments as in [PY20] to investigate some of the properties
of S-invariant stability conditions.
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Proposition 3.4. Let T be a triangulated category satisfying conditions (C1) and (C2) above, and let σ = (Z,A)
be an S-invariant stability condition on T .

(a) If E is a σ -semistable object of phase φ(E), then φ(S(E)) ≤ φ(E) + 2. The inequality is strict if k/r < 2.
(b) (Weak Mukai lemma) Let A→ E → B be an exact triangle in T such that Hom(A,B) = 0 and the

σ -semistable factors of A have phases greater than (or equal to in case k/r < 2) the phases of the σ -semistable
factors of B. Then

(3.2) hom1(A,A) + hom1(B,B) ≤ hom1(E,E).

(c) Any non-zero object E ∈ T satisfies

hom1(E,E) ≥ −`T +1.

(d) A σ -semistable object E satisfies φ(E) + 1 ≤ φ(S(E)). The inequality is strict if E is σ -stable.
(e) If E ∈ T satisfies −`T +1 ≤ hom1(E,E) < −2`T +2, then it is σ -stable.

Proof. Since σ is an S-invariant stability condition on T , there is a (g,M) ∈ G̃L+2 (R), where g : R→R is an
increasing map with g(φ+1) = g(φ) + 1, such that S · σ = σ · g̃ . Thus φ(S(F)) = g(φ(F)) and for any n > 0,

(3.3) φ(Sn(F)) = g(φ(Sn−1(F))) = g2(φ(Sn−2(F))) = · · · = gn(φ(F)).

If φ(S(F)) = g(φ(F)) > (≥) φ(F) + 2, then since g is increasing,

φ(F) + k = φ(Sr(F))
(3.3)
= gr(φ(F)) > (≥)gr−1(φ(F) + 2) = gr−1(φ(F)) + 2 > (≥) · · · > (≥)φ(F) + 2r,

which gives k/r > (≥) 2, leading to a contradiction. This completes the proof of part (a).

To prove part (b), let A→ E→ B be an exact triangle in T with Hom(A,B) = 0. If φ+(B) < φ−(A), then
part (a) implies φ+(S(B))− 2 ≤ φ+(B), which gives

(3.4) φ+(S(B)) < φ−(A[2]).

If k/r < 2, we may assume φ+(B) ≤ φ−(A) because by part (a) again, (3.4) holds. Then

(3.5) hom(B,A[2]) = hom(A[2],S(B)) = 0,

and the same argument as in [BB17, Lemma 2.4] implies the claim (3.2).

To prove part (c), first assume E is σ -semistable. Up to shift, we may assume E ∈ P (0,1]. Thus
hom(E,E[i]) = 0 for i < 0. Also by part (a), φ(S(E)) ≤ 3; thus we have hom(E,E[i]) = hom(E[i],S(E)) = 0
for i ≥ 3. Hence

(3.6) hom(E,E[1]) = −χ(E,E) + hom(E,E) + hom(E,E[2]) ≥ −`T +1,

as claimed. If E is not σ -semistable, then let E1→ E→ E/E1 be the first piece in its HN filtration. Then
applying weak Mukai lemma in part (b) to this sequence gives

hom1(E1,E1) ≤ hom1(E,E).

Thus the claim in part (c) follows by the first part of the argument because E1 is σ -semistable.

Take a σ -semistable object E. Part (c) implies that hom(E[1],S(E)) = hom(E,E[1]) , 0; thus φ(E) + 1 ≤
φ(S(E)) as claimed in part (d). If E is σ -stable, then S(E) is also σ -stable. Since there is a non-
zero map from E to S(E)[−1], they cannot have the same phase. Note that S(E) , E[1]; otherwise
hom1(E,E) = hom(E,E) = 1, which is not possible by part (c).

Finally, to prove part (e), take an object E ∈ T satisfying the minimality condition

−`T +1 ≤ hom1(E,E) < −2`T +2
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on hom1(E,E). Assume for a contradiction that E is not σ -semistable, and let A→ E→ B be the first piece
in the HN filtration of E. So A is σ -semistable and

φ(A) = φ+(E) > φ+(B).

Thus hom(A,B) = 0, and we can apply weak Mukai lemma in part (b). Then part (c) implies

2(−`T +1) ≤ hom1(A,A) + hom1(B,B) ≤ hom1(E,E),

which is not possible by our assumption.
Now assume E is strictly σ -semistable. First suppose k/r < 2. Let Q ↪→ E be a σ -stable factor of E with

quotient E1 ∈ P (φ(E)). If hom(Q,E1) , 0, then the σ -stability of Q implies that there is an embedding
Q ↪→ E1 with quotient E2 ∈ P (φ(E)). By continuing this process, we get an exact triangle A→ E→ B in
P (φ(E)) such that A is S-equivalent to ⊕kQ for some k > 0 (i.e. all σ -stable factors of A are isomorphic to
Q) and hom(A,B) = 0. If B , 0, then the weak Mukai lemma and part (c) lead to a contradiction as above.
Thus [E] = k[Q] ∈ N (T ) and χ(E,E) = k2χ(Q,Q) ≤ k2`T . This gives

hom1(E,E) = −χ(A,A) + hom(A,A) + hom(A,A[2]) ≥ −k2`T +1.

Then our assumption implies −k2`T +1 < −2`T +2, which is possible only if k = 1 because `T ≤ −1. Thus
E is σ -stable. This completes the proof of (e) for the case k/r < 2.

If E is strictly σ -semistable and k = 2r = 4, we apply Lemma 3.5 below. In Lemma 3.5(b), the same
argument as in the weak Mukai lemma in part (b) implies that

hom1(E1,E1) + hom1(E2,E2) ≤ hom1(E,E),

which is not possible by the minimality assumption on hom1(E,E). Thus Lemma 3.5(a) happens; i.e. E is
S-equivalent to G⊕k1 ⊕ S(G)⊕k2[−2] for a stable object G. Hence χ(E,E) = (k1 + k2)2χ(G,G) because

χ(G,G) = χ(G,S(G)) = χ(S(G),S(G)) = χ(S(G),S2(G)) = χ(S(G),G).

Therefore, (3.6) gives

hom1(E,E) ≥ −χ(E,E) + 1 = −(k1 + k2)2χ(G,G) + 1.

If k1 + k2 ≥ 2, then

−2`T +1 > hom1(E,E) ≥ −4`T +1,

which implies 0 > −2`T , leading to a contradiction. Thus k1 + k2 = 1; i.e. E is isomorphic to either G or
S(G)[−2], so E is σ -stable as claimed. �

Lemma 3.5. Suppose k = 2r = 4 and E is a strictly σ -semistable object. Then either

(a) E is S-equivalent to G⊕k1 ⊕ S(G)⊕k2[−2] for a stable object G which has same phase as S(G)[−2] if
k2 , 0, or

(b) there is a non-trivial triangle E1 → E → E2 of σ -semistable objects of the same phase such that
hom(E1,E2) = 0 and hom(E2,E1[2]) = 0.
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Proof. Considering the Jordan–Hölder filtration, we can write the short exact sequence A→ E→ G, where
G is stable of the same phase as E. If hom(A,G) , 0, then we gain a surjection A� G with kernel A1:

G

��

A1
//

��

E //

��

F1

��

A //

��

E // G

G.

Thus the cone of A1→ E, denoted by F1, is S-equivalent to G
⊕2. If hom(A1,G) , 0, we continue the above

argument to reach a triangle Am→ E→ Fm such that hom(Am,G) = 0 and Fm is S-equivalent to G⊕m+1.
If Am = 0, then E is S-equivalent to G⊕m+1 as in case (a).

We know S(G) is σ -stable and φ(S(G)) ≤ φ(G) + 2 by Proposition 3.4, part (a). If φ(S(G)) < φ(G) + 2,
then

hom(G,Am[2]) = hom(Am[2],S(G)) = 0.

Hence if φ(S(G)) < φ(G) + 2 or hom(Am,S(G)[−2]) = 0 , then hom(Fm,Am[2]) = 0; thus we get a triangle
as in case (b). But if φ(S(G)[−2]) = φ(G) and hom(Am,S(G)[−2]) , 0, then there is a commutative diagram

S(G)[−2]

��

B1 //

��

E //

��

E1

��

Am //

��

E // Fm

S(G)[−2],

where E1 is S-equivalent to G⊕m+1 ⊕ S(G)[−2]. If hom(B1,S(G)[−2]) , 0, we continue the above argu-
ment to get a triangle Bn → E → En such that En is S-equivalent to the sum G⊕m+1 ⊕ S(G)⊕n[−2] and
hom(Bn,S(G)[−2]) = 0. If Bn = 0, then we are in case (a) and if Bn , 0, we continue the above process to
obtain an exact triangle E1→ E→ E2 such that E2 is S-equivalent to G⊕k1 ⊕ S(G)⊕k2[−2] and

hom(E1,G) = 0 = hom(E1,S(G)[−2]).

This implies that

hom(E1,E2) = 0.

Moreover, we have hom(E2,E1[2]) = hom(E1,S(E2)[−2]), and S(E2)[−2] is S-equivalent to S(G)[−2]⊕k1 ⊕
S2(G)⊕k2[−4] = S(G)[−2]⊕k1 ⊕G⊕k2 ; thus hom(E1,S(E2)[−2]) = 0 as claimed in case (b). �

Now assume our triangulated category T satisfies condition (C3). If k/r < 2, fix an object Q satisfying
(3.1). By Proposition 3.4(e), both Q and S(Q)[−2] are stable. Moreover, parts (a) and (d) of the proposition
imply

φ(Q)− 1 < φ(S(Q)[−2]) < φ(Q).

Hence, up to G̃L
+
2 (R)-action, we may assume Q is stable of phase 1 and S(Q)[−2] is of phase 1

2 .



12 S. Feyzbakhsh and L. Pertusi12 S. Feyzbakhsh and L. Pertusi

If k = 2r = 4, we fix two objects Q1 and Q2 described in condition (C3). By Proposition 3.4(e), they
are σ -stable. Since hom(Q2,Q1) , 0, we obtain φ(Q2) < φ(Q1), and since hom(Q1,Q2[1]) , 0, we get
φ(Q1)− 1 < φ(Q2). Thus up to G̃L

+
2 (R)-action, we may assume Q1 is of phase 1 and Q2 is of phase 1/2.

From now on, when k/r < 2, we define

Q1 BQ and Q2 B S(Q)[−2].

As a consequence, we have the following.

Lemma 3.6. Let σ = (Z,A) be an S-invariant stability condition on T . Up to G̃L+2 (R)-action, we may assume
Z(Q1) = −1 and Z(Q2) = i.

Proof of Theorem 3.2. Lemma 3.6 implies that after action by G̃L
+
(2,R), we can assume σ1 and σ2 have the

same central charge Z given by the bijective group homomorphism

Z : N (T )→C, Z([Q1]) = −1, Z([Q2]) = i.

By Proposition 3.4(c), any σi-semistable object E satisfies hom1(E,E) ≥ −`T +1. We show by induction on
hom1(E,E) that if E is a σ1-(semi)stable object in Pσ1(0,1] with phase φσ1(E), then

(i) E is σ2-(semi)stable, and
(ii) E has the same phase as with respect to σ1; i.e. φσ2(E) = φσ1(E).

Step 1. (Base of the induction) If hom1(E,E) is minimal, i.e.

−`T +1 ≤ hom1(E,E) < −2`T +2,

Proposition 3.4(e) implies that E is σi-stable. Thus it remains to show that if E is in the heart Pσ1(0,1] with
phase φσ1(E), then E ∈ Pσ2(0,1] with φσ2(E) = φσ1(E).

To do this, note that we only need to show E ∈ Pσ2(0,1]. Namely, in that case, since σ1 and σ2 have the
same central charge, E must have the same phase with respect to them. Assume otherwise, so there is a
non-zero m ∈Z such that E[2m] ∈ Pσ2(0,1]. In fact, since σ1 and σ2 have the same central charge, an even
shift of E lies in the heart for σ2. By Lemma 3.6, E is not isomorphic to Q1 or Q2 since Q1 and Q2 are in
the heart of σ1 and σ2. We want to show that

(3.7) χ(Q1,E) = χ(Q2,E) = 0.

Indeed, since E[i] ∈ Pσ1(i, i +1] and E[2m] ∈ Pσ2(0,1], we obtain

hom(Q1,E[i]) = hom(Q1,E[2m][i − 2m]) = 0 when i ≤max{0,2m}.

Proposition 3.4(a),(d) give S(Q1)[−2] ∈ Pσi (0,1]; thus

hom(Q1,E[i]) = hom(E[−2+ i],S(Q1)[−2]) = hom(E[2m][−2+ i − 2m],S(Q)[−2]) = 0

if i >min{2,2m+2}. Hence, in total we obtain χ(Q1,E) = 0. Similarly, we have

hom(Q2,E[i]) = hom(Q2,E[2m][i − 2m]) = 0 when i <max{0,2m}.

The above vanishing holds for i =max{0,2m} if φσ1(E) ∈ (0,1/2]. Moreover, Proposition 3.4(a), (d) imply
that S(Q2)[−2] ∈ Pσi (−1/2,1/2]. Thus

hom(Q2,E[i]) = hom(E[i − 2],S(Q2)[−2]) = hom(E[2m][i − 2− 2m],S(Q2)[−2]) = 0

if i > min{2,2m + 2}. Also, the above vanishing holds for i = min{2,2m + 2} when φσ1(E) ∈ (1/2,1].
Therefore, χ(Q2,E) = 0, as claimed in (3.7).

Since Z(Q1) and Z(Q2) are linearly independent, the classes [Q1] and [Q2] are also linearly independent
in N (T ). Hence (3.7) implies that χ([F], [E]) = 0 for any [F] ∈ N (T ); thus [E] = 0 by the definition of
N (T ), leading to a contradiction. This completes the proof for the case that hom1(E,E) is minimal.

Step 2. Now assume hom1(E,E) ≥ −2`T +2. There are three possibilities:
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(i) E is not σ2-semistable;
(ii) E is strictly σ2-semistable;
(iii) E is σ2-stable.

First suppose case (i) happens; then we show that E ∈ Pσ2(0,1]. If not, consider its HN filtration, and let
E1 be the first object of maximum phase and En be the last object of minimum phase with respect to σ2.
Then the weak Mukai lemma (3.2) applied to the triangle E1 → E → E/E1 and Proposition 3.4(c) imply
hom1(E1,E1) < hom1(E,E). Thus, by the induction assumption, E1 is σ1-semistable with φσ1(E1) = φσ2(E1).
The existence of a non-zero map E1→ E and the stability of E with respect to σ1 imply that

(3.8) φσ2(E1) = φσ1(E1) ≤ φσ1(E) ≤ 1.

Applying the same argument to the last piece in the HN filtration Q→ E→ En, we get

(3.9) 0 < φσ1(E) ≤ φσ1(En) = φσ2(En).

Therefore, E ∈ Pσ2(0,1]. Moreover, since the stability functions for σ1 and σ2 are the same, we obtain
φσ1(E) = φσ2(E); thus (3.8) implies that φσ2(E1) ≤ φσ2(E), which is not possible. Thus E is σ2-semistable.

Now suppose case (ii) happens, so E is strictly σ2-semistable. First assume k/r < 2. Let {Ei}i∈I be
the Jordan–Hölder filtration of E with respect to σ2. By the weak Mukai lemma (3.2) and the induction
assumption, it follows that the Ei are σ1-stable of the same phase as with respect to σ2. Thus E is strictly
σ1-semistable of the same phase as with respect to σ2. If k = 2r = 4, we apply Lemma 3.5. If E is
S-equivalent to G⊕k1 ⊕ S(G)[−2]⊕k2 for a σ2-stable object G and k1 + k2 > 1, then (3.6) gives

hom1(E,E) ≥ −χ(E,E) + 1 = −(k1 + k2)2χ(G,G) + 1 > −χ(G,G) + 2 ≥ hom1(G,G).

Thus G and S(G) are σ1-stable of the same phase. Hence, E is strictly σ1-semistable and φσ1(E) = φσ2(E).
If case (b) of Lemma 3.5 happens, then the same argument as in the weak Mukai lemma implies that
hom1(Ei ,Ei) < hom1(E,E); thus again the claim follows by the induction assumption.

Finally, assume case (iii) happens. If E is strictly σ1-semistable, then the same argument as in case (ii)
implies that E is also strictly σ2-semistable. Thus E must be σ1-stable, and we only need to show E has the
same phase with respect to both σ1 and σ2.

We know E ∈ Pσ1(0,1]. Since E is σ2-stable, there is an m ∈Z such that E[2m] ∈ Pσ2(0,1]. If m , 0, then
the same argument as in Step 1 implies that χ(Qj ,E) = 0 for j = 1,2, and so [E] = 0 in N (T ), which is not
possible. Thus m = 0, and E has the same phase with respect to both σ1 and σ2. �

As suggested to us by Zhiyu Liu and Shizhuo Zhang, we can slightly relax the condition (C3).

Lemma 3.7. If k = 2r = 4, we can change the condition (C3) to the following: there are three objects Q1,Q2,Q
′
2 ∈

T satisfying (3.1) such that:
(a) Q2 and Q

′
2 have the same class in N (T );

(b) Q1 is not isomorphic to Q2 or Q
′
2[1];

(c) hom(Q2,Q1) , 0 and hom(Q1,Q
′
2[1]) , 0;

(d) hom(Q′2,Q2[3]) = 0.

Proof. Let σ = (Z,A) be an S-invariant stability condition on T . By Proposition 3.4(e), we know all three
objects Q1,Q2,Q

′
2 are σ -stable. Hence, up to G̃L

+
2 (R)-action, we may assume Q1 is of phase 1 and

Z(Q1) = −1. If φ(Q2) ∈ (0,1], then we can assume Z(Q2) = i and proceed as before. So assume for a
contradiction that Q2 <A. The assumptions (b) and (c) imply that

φ(Q2) < φ(Q1) = 1.

If φ(Q2) ∈ (−∞,−1), then φ(S(Q2)) < 1, and so hom(Q1,S(Q2)) = 0, which is not possible by condition (c).
This implies that

(3.10) − 1 ≤ φ(Q2) ≤ 0.
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On the other hand, conditions (b) and (c) give 1 = φ(Q1) < φ(Q′2) + 1. This implies that 1 ≤ φ(Q′2) because
Q2 and Q′2 have the same class. Since hom(Q′2[1],S(Q1)) , 0, we obtain

1 ≤ φ(Q′2) ≤ 2.

Thus φ(Q′2) = φ(Q2) + 2, which implies that

hom(Q′2,Q2[i]) = 0 for i ≤ 1 and i ≥ 5.

Therefore,

−hom(Q′2,Q2[3]) + hom(Q′2,Q2[2]) + hom(Q′2,Q2[4]) = χ(Q
′
2,Q2) = χ(Q2,Q2) < 0,

and so hom(Q′2,Q2[3]) , 0, which is in contradiction to assumption (d). �

Remark 3.8. Theorem 3.2 can be applied to prove the uniqueness of Serre-invariant stability conditions on
the Kuznetsov component of certain Fano threefolds of Picard rank 1 and index 2 (see [Kuz09, Theorem 2.3]
for the classification in terms of the degree). More precisely, as explained in Corollary 4.3 and Remark 4.4, it
applies to the Kuznetsov component of a cubic threefold (degree 3 case) and to the quartic double solid
(degree 2 case), respectively. Theorem 3.2 (via the relaxed condition in Lemma 3.7) also applies to the
Kuznetsov component of a Gushel–Mukai threefold, which is a Fano threefold of Picard rank 1, index 1 and
genus 6, by [PR22, Corollary 4.5]. Recently, the uniqueness of Serre-invariant stability conditions for the
above examples has been independently proved in [JLL+21, Theorem 4.25] and [Zha21, Theorem 4.24]. But
we believe that the general criterion given in Theorem 3.2 could be potentially applied in other interesting
geometric examples. For instance, in the next section we explain an application to the Kuznetsov component
of a very general cubic fourfold.

Aside: Very general cubic fourfolds

If the Serre functor of T is S = [2], i.e. T is a 2-Calabi-Yau category, then clearly any stability condition
is Serre invariant. An example of such a category is the Kuznetsov component of a cubic fourfold. In this
section we apply Theorem 3.2 to show that if X is a very general cubic fourfold, then there is a unique
G̃L

+
(2,R)-orbit of stability conditions on the Kuznetsov component of X.

Recall that the bounded derived category of a cubic fourfold X has a semiorthogonal decomposition of
the form

Db(X) = 〈Ku(X),OX ,OX(1),OX(2)〉
by [Kuz10], where Ku(X) = 〈OX ,OX(1),OX(2)〉⊥. The Serre functor of Ku(X) satisfies S = [2]. By [AT14],
the numerical Grothendieck group of X contains two classes λ1 and λ2 spanning a rank 2 A2-lattice

〈λ1,λ2〉 �
(

2 −1
−1 2

)
with respect to the intersection pairing (−,−) := −χ(−,−). We say that X is very general if N (Ku(X)) =
〈λ1,λ2〉.

Corollary 3.9. Let X be a very general cubic fourfold. If σ1, σ2 are stability conditions on Ku(X), then there
exists a g̃ ∈ G̃L+(2,R) such that σ1 = σ2 · g̃ .

Proof. The Serre functor of Ku(X) satisfies S2 = [4], as required in (C1). Since X is very general, we have

N (Ku(X)) � 〈λ1,λ2〉 �
(

2 −1
−1 2

)
.

For every v ∈ N (Ku(X)), we have v = aλ1 + bλ2. Thus

v2 = 2a2 +2b2 − 2ab ≥ 2.
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It follows that χ(v,v) = −v2 ≤ −2, which implies that

`Ku(X) :=max{χ(v,v) : v , 0 ∈ N (Ku(X))} = −2 < 0,

as required in (C2).
We now check (C3). Recall that given a line ` ⊂ X, we can define the objects F` , P` ∈ Ku(X) sitting in

0→ F`→O⊕4X →I`(1)→ 0,

OX(−1)[1]→ P`→I`.

Their classes in N (Ku(X)) are v(F`) = λ1 and v(P`) = λ1 + λ2 as computed in [LLM+18, Section 6.3].
By [BLM+17, Lemma A.5], they are stable with respect to every stability condition on Ku(X), and by [LLM+18,
(6.3.1)], their phases with respect to the stability conditions constructed in [BLM+17] satisfy

(3.11) φ(F`) < φ(P`) < φ(F`) + 1.

Since χ(F`,F`) = −2 = 2−hom1(F`,F`) and similarly for P` , we have

3 ≤ hom1(F`,F`) = hom1(P`, P`) = 4 < 6.

For two lines ` and `′ , we have

hom(F`, P`′ ) = hom(I`(1), P`′ [1])
= hom(I`(1),I`′ [1])
= hom(I`(1),O`′ )
= hom(O`(1),O`′ [1]).

The latter is equal to 0 if ` ∩ `′ = ∅. Assume ` and `′ intersect in a point. Then by the local-to-global
spectral sequence, we only have to consider H0(Ext1(O`(1),O`′ )). Since Ext1(O`(1),O`′ ) is supported on
the intersection point, we conclude that hom(O`(1),O`′ [1]) = 1 and thus hom(F`, P`′ ) = 1 , 0 if ` and `′

intersect in a point.
We know χ(P`′ ,F`) = −(λ1 +λ2,λ1) = −1. By (3.11) and Serre duality, hom(P`′ ,F`[i]) = 0 for i , 0,1,2;

hence

−1 = χ(P`′ ,F`) = hom(P`′ ,F`)−hom1(P`′ ,F`) + hom2(P`′ ,F`),

which implies hom(P`′ ,F`[1]) ≥ 1 for every pair of lines `, `′ . Thus (C3) holds if we set Q1 = P`′ and
Q2 = F` . �

4. Kuznetsov component of cubic threefolds

From now on, we assume X is a smooth complex cubic threefold, and OX(H) denotes the corresponding
very ample line bundle.

4.1. Kuznetsov component

The Kuznetsov component Ku(X) is the right-orthogonal complement of the exceptional collection
OX ,OX(H) in Db(X) sitting in the semiorthogonal decomposition

Db(X) = 〈Ku(X),OX ,OX(H)〉

(see [Kuz04]). By [BMM+12, Proposition 2.7], the numerical Grothendieck group N (Ku(X)) of Ku(X) is a
rank 2 lattice

N (Ku(X)) =Z [I`]⊕Z [S(I`)],
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where I` is the ideal sheaf of a line ` in X and S denotes the Serre functor of Ku(X). With respect to this
basis, the Euler form χKu(X)(−,−) on N (Ku(X)) is represented by

(4.1)

(
−1 −1
0 −1

)
.

Note that by [Kuz04, Lemma 4.1, Lemma 4.2], the functor

O: Db(X)→Db(X), O(−) = LOX (−⊗OX(H))[−1]

satisfies O|2Ku(X) = S
−1[1] and O|3Ku(X) � [−1]. Thus

S[−3] = S−2[2] = O|4Ku(X) = O|Ku(X)[−1],

which implies that
S = O|Ku(X)[2] = LOX (−⊗OX(H))[1].

4.2. Stability conditions on Ku(X)

Stability conditions on Ku(X) have been first constructed in [BMM+12] and more recently in [BLM+17].
We recall here the definition of the latter, while the former will be reviewed in Section 5.2.

For β ∈R, denote by Cohβ(X) the heart of a bounded t-structure obtained by tilting Coh(X) with respect
to slope stability at slope µH = β. By [BLM+17, Proposition 2.12], for α ∈R>0, the pair σα,β = (Cohβ(X),Zα,β)
defines a weak stability condition on Db(X), known as tilt stability, with respect to the lattice Λ � Z

3

generated by the elements of the form (H3 ch0(E),H2 ch1(E),H ch2(E)) ∈Q3 for E ∈Db(X) (see Section 2.2).
Here

Zα,β B
1
2
α2H3 chβ0 −H chβ2 +iH

2 chβ1

with chβ B e−β ch = (ch0,ch1−βH ch0,ch2−βH ch1+
1
2β

2H2 ch0, . . . ). Its associated slope is

µα,β(E) = −
<Zα,β(E)

=Zα,β(E)
for=Zα,β(E) , 0,

where<[−] and=[−] are the real and imaginary parts.
Now consider the tilted heart Coh0α,β(X) = 〈Fα,β[1],Tα,β〉, where Fα,β (resp. Tα,β ) is the subcategory

of objects in Cohβ(X) with µ+α,β ≤ 0 (resp. µ−α,β > 0). By [BLM+17, Proposition 2.14], the pair σ0
α,β =(

Coh0α,β(X),−iZα,β
)
is a weak stability condition on Db(X).

Sheaves supported in codimension 3 are the only objects in the heart Cohβ(X) whose central charge Zα,β
vanishes. We denote by Coh0(X) the category of sheaves on X of codimension 3.

Proposition 4.1. Any σ0
α,β-(semi )stable object E ∈ Coh

0
α,β(X) is σα,β-(semi )stable if it does not lie in an exact

triangle of the form
F[1]→ E→ T ,

where F ∈ Fα,β and T ∈ Coh0(X). Conversely, take a σα,β-(semi )stable object E such that either
(a) E ∈ Tα,β and Hom(Coh0(X),E) = 0, or
(b) E ∈ Fα,β and Hom(Coh0(X),E[1]) = 0.

Then E is σ0
α,β-(semi )stable.

Proof. First assume E ∈ Coh0α,β is σ0
α,β-(semi)stable, so by definition it lies in an exact triangle

(4.2) F[1]→ E→ T

for some F ∈ Fα,β and T ∈ Tα,β . If Zα,β(T ) , 0, i.e. T < Coh0(X), we have

<[−iZα,β(T )] ≥ 0 and <[−iZα,β(F[1])] < 0.
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This shows that the phase of F[1] is bigger than that of T with respect to σ0
α,β . Thus the exact triangle (4.2)

implies that one of the following cases happens:

(i) E = T ∈ Tα,β ;
(ii) E = F[1] ∈ Fα,β[1]; or
(iii) T ∈ Coh0(X).

Case (iii) is excluded in the statement, so we may assume the first two cases happen. We only consider the
case E ∈ Tα,β ; the other one can be shown by a similar argument. Suppose for a contradiction that E is not
σα,β-(semi)stable, and let

(4.3) E1→ E→ E2

be a destabilising sequence in Cohβ(X). We may assume E1 is σα,β-semistable; thus

µ−α,β(E1) = µα,β(E1) ≥ µα,β(E2) ≥ µ
−
α,β(E2) ≥ µ

−
α,β(E) ≥ 0.

The right inequality follows from the definition of Tα,β . Thus both E1 and E2 lie in Tα,β ; hence (4.3) is also a

destabilising sequence for E in Coh0α,β with respect to σ0
α,β , which leads to a contradiction.

Now assume E ∈ Tα,β is σα,β-(semi)stable and Hom(Coh0(X),E) = 0. In the rest of the argument, all Ti
lie in Tα,β and all Fi lie in Fα,β . Suppose E1→ E → E2 is a destabilising sequence with respect to σ0

α,β .

We can assume E2 is σ0
α,β-semistable. Thus by the above argument, we have either (1) E2 ∈ Fα,β[1], or

(2) E2 ∈ Tα,β , or (3) E2 lies in an exact triangle F2[1]→ E2→ T2, where T2 ∈ Coh0(X).
Since E ∈ Tα,β , the phase of E with respect to σ0

α,β is less than or equal to 1
2 . But we know the phase of

objects in Fα,β[1] is bigger than 1
2 ; thus case (i) cannot happen. In case (iii) we know the phase of E2 is

equal to the phase of F2[1], so again this case cannot happen. Hence we may assume E2 ∈ Tα,β .
By definition, we know E1 lies in an exact triangle F1[1]→ E1→ T1. But the composition of the injections

F1[1]→ E1→ E is zero because hom(Fα,β[1],Tα,β) = 0. Thus E1 ∈ Tα,β , and so the destabilising sequence

is an exact sequence in the original heart Cohβ(X) which (semi)destabilises E with respect to σα,β , leading
to a contradiction.

Finally, suppose E ∈ Fα,β is σα,β-(semi)stable and we have hom(Coh0(X),E[1]) = 0. Let E1→ E[1]→ E2
be a destabilising sequence with respect to σ0

α,β . We may assume E1 is σ0
α,β-semistable. We know E1 <

Coh0(X), and the phase of objects in Tα,β \Coh0(X) with respect to σ0
α,β is less than the phase of objects in

Fα,β[1]. Thus the same argument as in case (a) implies that E1 lies in an exact triangle F1[1]→ E1→ T1,
where T1 ∈ Coh0(X) and F1 , 0. By definition, E2 lies in an exact triangle F2[1] → E2 → T2. Since
hom(Fα,β[1],Tα,β) = 0, the composition of surjections E[1]→ E2→ T2 is zero. Thus T2 = 0 and E2 = F2[1].
Taking cohomology from the destabilising sequence with respect to the heart Cohβ(X) gives the long exact
sequence

0→ F1→ E→ F2→ T1→ 0.

Thus F1 is a subobject of E in Cohβ(X). We know the phase of E1 is equal to the phase of F1[1] with
respect to σ0

α,β , and it is bigger than or equal to the phase of E[1]. This implies that the phase of F1 is
bigger than or equal to the phase of E with respect to σα,β , leading to a contradiction. �

By restricting weak stability conditions σ0
α,β to the Kuznetsov component Ku(X), we obtain a stability

condition on it.

Theorem 4.2 ([BLM+17, Theorem 6.8], [PY20, Theorem 3.3 and Corollary 5.5]). For every (α,β) in the set

(4.4) V B
{
(α,β) ∈R>0 ×R : −1

2
≤ β < 0,α < −β, or − 1 < β < −1

2
,α ≤ 1+ β

}
,
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the pair σ (α,β) = (A(α,β),Z(α,β)) is a S -invariant stability condition on Ku(X), where

A(α,β) := Coh0α,β(X)∩Ku(X) and Z(α,β)B −iZα,β |Ku(X).

As an application of Theorem 3.2, we get the following.

Corollary 4.3. All S-invariant stability conditions on Ku(X) such as σ (α,β) for (α,β) ∈ V lie in the same
orbit with respect to the action of G̃L

+
(2,R).

Proof. We know S3 = [5] and that the numerical Grothendieck group N (Ku(X)) is a lattice of rank 2 such
that χKu(X)(v,v) ≤ −1 for any 0 , v ∈ N (Ku(X)). Thus conditions (C1) and (C2) hold for Ku(X). We also

have dim
C
Hom1(I`,I`) = 2 as the Hilbert scheme of lines in X is a smooth surface; see [AK77, Section 1].

Thus the claim follows from Theorem 3.2. �

Remark 4.4. Theorem 3.2 also applies to the Kuznetsov component of the quartic double solid Y , which is a
double cover Y → P

3 ramified in a quartic. In fact, by [Kuz09] there is a semiorthogonal decomposition of
the form Db(Y ) = 〈Ku(Y ),OY ,OY (H)〉, where H is an ample class, and the numerical Grothendieck group
of Ku(Y ) is a rank 2 lattice represented by the matrix(

−1 −1
−1 −2

)
.

An easy computation shows that (C2) holds. Moreover, the Serre functor of Ku(Y ) satisfies SKu(Y ) = ι[2],
where ι is an involutive autoequivalence of Ku(Y ), by [Kuz19, Corollary 4.6]. Thus (C1) holds with k = 2r = 4.
It remains to find two objects as in (C3). Consider the ideal sheaf of a line I` and its derived dual
J` := RHom(I`,O(−H)[1]). By [PY20, Remark 3.8], for proper choices of lines, they provide the required
objects.

4.3. Stable objects in Ku(X) with minimal hom1

By (4.1), the classes in N (Ku(X)) with self-intersection −1 are

±[I`] , ±[S(I`)] and ± [S2(I`)] = ± ([I`]− [S(I`)]) .

In this section we investigate the moduli of semistable objects of the above classes. We denote by Mσ
Ku(X)(v)

the moduli space of σ -semistable objects of class v ∈ N (Ku(X)).

Theorem 4.5. Let σ be an S -invariant stability condition on Ku(X).

(a) The moduli space Mσ
Ku(X)([I`]) is isomorphic to the moduli space MX(v) of slope-stable sheaves on X with

Chern character v B ch(I`) =
(
1,0,−13H

2,0
)
.

(b) The moduli space Mσ
Ku(X)([S(I`)]) is isomorphic to the moduli space MX(w) of slope-stable sheaves on X

with Chern character wB
(
2,−H,−16H

2, 16H
3
)
.

(c) The moduli space Mσ
Ku(X)([S

2(I`)]) is isomorphic to the moduli space MX(v −w) of large volume limit
stable complexes of character v −w.

In particular, all the three moduli spaces above are isomorphic to the Fano variety Σ(X) of lines in X.
This proves Theorem 1.3. Part (a) of Theorem 4.5 is proved in [PY20]; however, we prove it here via a slightly
different argument.

We start with a slope-stable sheaf E with Chern character v. So E is torsion-free with double dual
E∨∨ = OX . Thus it lies in the exact sequence

E ↪→OX �Q,
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where Q is a torsion sheaf of character
(
0,0, 13H

2,0
)
, which is therefore isomorphic to the structure sheaf

O` of a line ` in X. Thus E is isomorphic to the ideal sheaf I` .
By Lemma 2.6, I` is σα,β-stable for β < 0 and α� 0. Applying [Fey22, Lemma 3.5] to I` , we see that

there is no wall for it crossing the vertical line β = β0 = −1/H3. Thus I` is σα,β0-stable for any α > 0. Since
µα,β0(I`) < 0, we have I`[1] ∈ Coh0α,β0(X). For any sheaf Q ∈ Coh0(X), we know

hom(Q,O`) = 0 = hom(Q,OX[1]).

Thus hom(Q,I`[1]) = 0, and so Proposition 4.1 implies that I`[1] is σ0
α,β0

-stable. Since I` ∈ Ku(X), we
immediately get that I` is σ (α,β0)-stable. Thus by Corollary 4.3, we get the following.

Lemma 4.6. The ideal sheaf I` for any line ` in X is stable with respect to any S -invariant stability condition
on Ku(X).

By definition, S(I`) is also stable with respect to any S-invariant stability condition on Ku(X). The next
step is to describe the complex S(I`). We know I`(H) is of character

(
1,H, 16H

2,−16H
3
)
, so χ(OX ,I`(H)) =

3. Consider the short exact sequence

I`(H) ↪→OX(H)� O`(H).

Since the map Hom(OX ,OX(H))→ Hom(OX ,O`(H)) is surjective and H i(OX(H)) = 0 for i > 0 by the
Kodaira vanishing theorem, we get

hom(OX ,I`(H)[1]) = hom(OX ,I`(H)[2]) = 0.

Thus we obtain
S(I`)[−1] = LOX (I`(H)) = cone(O⊕3X

ev−−→ I`(H)).

Since Pic(X) =Z.H , Lemma 3.5 of [Fey22] implies that I`(H) is σα,β=0-stable for any α > 0. Thus I`(H) is
σα,β-semistable along the numerical wall W (I`(H),OX[1]) where I`(H) and OX[1] have the same phase.
Therefore, their extension LOX (I`(H)) is also σα,β-semistable along the wall. One can easily show that
W (I`(H),OX[1]) intersects the horizontal line α = 0 at two points with β-values 0 and 1

3 . Thus by the
definition of the heart Cohβ(X), S(I`) is a two-term complex with cohomology in degree -2 and -1, and

(4.5) µ+H
(
H−2(S(I`))

)
≤ 0.

Also, since H−1(S(I`)) is a quotient sheaf of I`(H), we get

1 ≤ µH
(
H−1(S(I`))

)
.

We know ch(S(I`)) = w =
(
2,−H,−16H

2, 16H
3
)
. The rank of H−1(S(I`)) is lower than 1 = rank(I`(H)). If

the rank is 1, then the image im(ev) in the category of coherent sheaves is of rank zero, which is not possible
because I`(H) is torsion-free. Thus H−1(S(I`)) is of rank zero, so

(−1)i+1 ch1
(
Hi(S(I`))

)
.H2 ≥ 0

for i = −2,−1. Thus ch1
(
H−1(S(I`))

)
is equal to either zero or H . In the latter case, we will have

ch≤2
(
H−2(S(I`))

)
= (2,0,−α) for some α ≥ 0 because of the Gieseker semistability of O⊕3X . Then im(ev) is

a subsheaf of I`(H) of rank 1, so it is torsion-free of class ch(im(ev)) = (1,0,α) and so α ≤ 0; thus in total
we obtain α = 0.

Applying a similar argument also implies that ch3
(
H−2(S(I`))

)
= 0; thus H−2(S(I`)) = O⊕2X , which is

not possible by the definition of the evaluation map ev. Therefore, H−1(S(I`)) is a sheaf supported in
dimension at most 1.

We also claim H−2(S(I`)) is slope stable. Otherwise, there is a subsheaf F of bigger slope. By (4.5), it
must be of class ch≤1(F) = (1,0). The semistability of S(I`)[−1] along the wall implies that H−2(S(I`)) is a
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reflexive sheaf. If not, H−2(S(I`))[1], and so S(I`)[−1], has a subobject supported in dimension at most 1
of phase 1, which is not possible. Since H−2(S(I`)) is of rank 2, its quotient sheaf H−2(S(I`))/F is stable,
and it must also be reflexive. Taking the double dual shows that F∨∨ = F; thus F is a line bundle, and so
F � OX , which is in contradiction to the definition of the evaluation map ev. Therefore, H−2(S(I`)) is slope
stable.

The next proposition implies that H−1(S(I`)) is zero and so the evaluation map ev is surjective and the
kernel is a reflexive sheaf of Chern character w.

Lemma 4.7. Take an H -slope-stable sheaf E of Chern character (2,−H,ch2,ch3). Then ch2 .H ≤ −16H
3, and if

ch2 .H = −16H
3, then ch3 ≤ 1

6H
3. This, in particular, implies that any H-slope-stable sheaf of Chern character

w is a reflexive sheaf.

Proof. Proposition 2.9 implies that ch2 .H ≤ 0. Since c2(E) =
1
2H

2 − ch2 is an integral class, we obtain
ch2 .H ≤ −16H

3. Assume ch2 .H = −16H
3. There is no wall for E crossing the vertical line β = −1 by [Fey22,

Lemma 3.5]; thus E is σα,β=−1-stable for any α > 0. One can easily compute that

lim
α→0

µα,β=−1(OX(−2H)[1]) < lim
α→0

µα,β=−1(E),

which implies that hom(E,OX(−2H)[1]) = 0 because OX(−2H)[1] is σα,β-stable for any α > 0 and β ∈R;
see [BMS16, Corollary 3.11]. Moreover, since

µH (E) =
−1
2
< µH (OX),

we get hom(OX ,E) = 0. Therefore, χ(OX ,E) = ch3(E)− 1
6H

3 ≤ 0, as claimed. �

Thus we obtain
S(I`) = LOX (I`(H))[1] = K`[2]

for a slope-stable reflexive sheaf K` of Chern character w. The next proposition shows that any slope-stable
sheaf K of class w is of the form LOX (I`(H))[−2] for a line ` on X.

Proposition 4.8. Take a slope-stable sheaf K of Chern character w. There exists a line ` on X such that K lies
in the short exact sequence

0→ K →O⊕3X →I`(H)→ 0.

In other words, K = S(I`)[−2].

Proof. Lemma 4.7 implies that K is a reflexive sheaf; thus K[1] is σα,β-stable for β ≥ −12 and α� 0; see
[BBF+20, Proposition 4.17]. Since there is no wall for K[1] crossing the vertical line β = 0, it is σα,β-semistable
along the numerical wall W (K[1],OX[1]). We have

lim
α→0

µα,β=0(K[1]) < lim
α→0

µα,β=0(OX(2H)).

Thus hom(K,OX[2]) = hom(OX(2H),K[1]) = 0. Also, hom(K,OX[3])=hom(OX(2H),K)=0 because
µH (K) < 0. Therefore,

3 = χ(K,OX) = hom(K,OX)−hom(K,OX[1]),
which implies that there is a non-zero map K[1]→OX[1]. Therefore, K[1] is unstable below the numerical
wall W (K[1],OX[1]).

Choose three linearly independent sections of K∨:

ψ : K[1]→O⊕3X [1].

We know K[1] and OX[1] are σα,β-semistable of the same phase φ and OX[1] is a simple object in
P (φ). Therefore, the map ψ is surjective in P (φ). The kernel kerψ in P (φ) is of Chern character(
1,H, 16H

2,−16H
3
)
. Taking cohomology gives the long exact sequence of coherent sheaves

0→H−1(kerψ)→ K →O⊕3X →H
0(kerψ)→ 0.
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The wall W (K[1],OX[1]) intersects the horizontal line α = 0 at two points with β = 0, 13 . Thus moving
along the wall implies that

(4.6)
1
6
≤ µ−H

(
H0(kerψ)

)
.

Moreover, the slope stability of K implies that

(4.7) µH
(
H−1(kerψ)

)
≤ −1

2
.

Therefore, 0 < (−1)i ch1
(
Hi(kerψ)

)
.H and ch1

(
H0(kerψ)

)
− ch1

(
H−1(kerψ)

)
= H . Thus one of the

ch1
(
Hi(kerψ)

)
must be zero, and the other one is equal to (−1)iH .

First assume H−1(kerψ) is non-zero, so its rank is less than 2 = rank(K). Note that it cannot be of
rank 2; otherwise, the image of ψ is torsion. Then (4.7) implies that ch1

(
H−1(kerψ)

)
H2 ≤ −12H

3. Thus

ch≤1
(
H−1(kerψ)

)
= (1,−H), and so ch≤1

(
H0(kerψ)

)
is equal to (2,0), which is not possible by (4.6). Thus

H−1(kerψ) is zero and kerψ is a sheaf.
We finally claim that kerψ is torsion-free. If not, by (4.6), its torsion part is supported in dimension

at most 1. Since kerψ is semistable along the wall of phase lower than 1, it cannot have a subobject of
phase 1. Hence its torsion part is trivial; i.e. kerψ is a torsion-free sheaf. This immediately implies that
kerψ = I`(H) for a line ` on X. �

The next step is to compute S2(I`).

Lemma 4.9. We have h0(K`(H)) = 3.

Proof. We know h0(K`(H)) = χ(K`(H)) + h1(K`(H)) = 3+ h1(K`(H)). There is no wall for K`(H) crossing
the vertical line β = 0. Therefore, K`(H) is semistable along the numerical wall W (K`(H),OX). Suppose for
a contradiction that there are four linearly independent global sections:

s : O⊕4X → K`(H).

Since OX is stable along the wall and has the same phase as K`(H), the map s is injective and the cokernel
of s is also semistable of the same phase. It is of Chern character ch(cok s) =

(
−2,H,−16H

2,−16H
3
)
. The

numerical wall W (K`(H),OX) intersects the horizontal line α = 0 at two points with β1,β2 = 0,−13 . Thus by
the definition of the heart, we get

(4.8) µ+H
(
H−1(cok s)

)
≤ −1

3
.

Since H0(cok s) is a quotient of K`(H), we obtain

1
2
≤ µH

(
H0(cok s)

)
.

Therefore, ch≤1(H−1(cok s)) = (2,−H), and H0(cok s) is supported in dimension at most 1. Moreover, (4.8)
implies that H−1(cok s) is slope stable; Proposition 2.9 then implies that

ch2(H−1(cok s))H ≤ 0.

Hence

ch2(cok s)H = ch2(H0(cok s))H − ch2(H−1(cok s))H ≥ 0,

which gives a contradiction. �

Therefore, h1(K`(H)) = 0 and

LOX (K`(H)) = cone(O⊕3X → K`(H))C J` , S(K`) = J`[1] ⇒ S2(I`) = J`[3].
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Moreover,

ch(J`) =
(
−1,H,−1

6
H2,−1

6
H3

)
= v −w.

Consider the numerical wall W (K`(H),OX). A similar argument as in the proof of Lemma 4.9 implies that

µ+H
(
H−1(J`)

)
≤ −1

3
and

1
2
≤ µH

(
H0(J`)

)
.

Thus ch≤1
(
H−1(J`

)
) = (1,−H), and H0(J`) is supported in dimension at most 1. We claim H−1(J`) is

a line bundle; otherwise, there is a sheaf Q supported in dimension at most 1, and we have injections
Q ↪→H−1(J`)[1] ↪→ J` , which is not possible because of the semistability of J` along the numerical wall
W (OX ,K`(H)). Thus H−1(J`) = OX(−H) and H0(J`) = O`(−H). This implies that J` is large volume limit
stable.

Definition 4.10. A two-term complex E ∈ Db(X) supported in degree 0 and −1 is said to be large
volume limit stable if H−1(E) is a line bundle, H0(E) is a sheaf supported in dimension at most 1, and
Hom(Coh≤1(X),E) = 0.

By [Tod13, Lemma 3.12 and Lemma 3.13(ii)], a complex E ∈Db(X) is large volume limit stable if and only
if E lies in Cohβ(X) and is σα,β-stable for β > µH (E) and α� 0.

Proof of Theorem 4.5. Any slope-semistable sheaf E of class v is isomorphic to I` for a line ` in X. By
Lemma 4.6, I` is σ -stable for any S-invariant stability condition σ on Ku(X).

Conversely, let E ∈ Ku(X) be a σ -stable object of class [I`]. By Corollary 4.3, we may assume σ = σ (α,β),
where (α,β) ∈ V ∩ Γ with Γ the hyperbola with equation α2 = β2 − 2

3 . One can easily compute that

(4.9) Z(α,β)(E) = −1.

So E is of maximum phase; thus E is σ0
α,β-semistable. Since E lies in Ku(X) (so we have χ(OX(kH),E) = 0

for k = 0,1) and is of class [I`], one can easily show that E is of Chern character ±v. Proposition 4.1 implies
that either (1) E is σα,β-semistable, or (2) E lies in an exact triangle

F[1]→ E→ T ,

where F ∈ Fα,β and T ∈ Coh0(X). In the latter case, F[1] is of phase 1 with respect to σ0
α,β , so it is

σα,β-semistable by Proposition 4.1. We have

ch(F) = −ch(E) + ch(T ) =
(
1,0,−1

3
H2,ch3(T )

)
.

Let (α0,β0) be the intersection point of ∂V with Γ . The closedness of semistability implies that E in
case (1) (or F in case (2)) is σα0,β0-semistable. We know the point (α0,β0) lies on the numerical wall
W (E,OX(−H)[1]). In case (2), applying Theorem 2.10 to F at the limiting point (α,β)→ (0,−1), we obtain
that

ch3(T ) = ch3(F) ≤
5
9
,

which gives T = 0, so E = F[1] and we are reduced to case (1). In case (1), Lemma 4.11 below implies that E
is σα,β-stable for α� 0, so E is a slope-stable sheaf up to a shift, by [BMS16, Lemma 2.7]. This completes
the proof of part (a).

For part (b), take a slope-stable sheaf E of class w. By Proposition 4.8, there is a line ` on X such that
E = K` . Thus E is in Ku(X) and is σ -stable for any S-invariant stability condition σ . Conversely, let E be a
σ -stable object in Ku(X) of class [S(I`)]. Then S−1(E) is σ -stable of class [I`]. Hence by part (a), S−1(E)
is, up to a shift, isomorphic to the ideal sheaf of a line ` on X. Thus E is isomorphic to S(I`) and so is a
slope-stable sheaf up to a shift.
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Finally, we prove part (c). Take a large volume limit stable complex J of class v −w. We know there is no
wall for J above the numerical wall W (OX , J). Thus J is σα,β-stable of phase lower than 1 if −1 < β < −13 .
Sheaves supported in dimension zero are σα,β-semistable of phase 1, so Hom(Coh0(X), J) = 0. One can
easily check that J ∈ Tα,β when β→−1; thus Proposition 4.1 implies J is σ0

α,β-stable. We claim that J lies in
the Kuznetsov component Ku(X). By definition, J lies in the exact triangle

OX(−H)[1]→ J →O`(−H).

We know Homi(OX(H),OX(−H)) vanishes for i , 3 and is isomorphic to C for i = 3. Also,
Homi(OX(H),O`(−H)) = 0 vanishes for i , 1 and is isomorphic to C for i = 1. Thus homi(OX(H), J) = 0
for every i ∈Z. We also have

Homi(OX ,OX(−H)) = Homi(OX ,O`(−H)) = Homi(OX , J) = 0

for all i ∈Z. Therefore, J ∈ Ku(X), and so J is σ (α,β)-stable when −1 < β < −13 .
Conversely, take a σ -stable object E ∈ Ku(X) of class [S2(I`)] for an S-invariant stability condition σ .

Thus S−1(E) is σ -stable of class [K`], so by the second part, there is a line ` in X such that S−1(E) = K` .
Thus E is isomorphic to J` up to shift. This completes the proof. �

Lemma 4.11. Let E be a σα,β-semistable object of Chern character v for (α,β) along the numerical wall
W (E,OX(−H)[1]). Then E is σα,β-stable for α� 0 and β > 0.

Proof. Suppose for a contradiction that W (E,OX(−H)[1]) is an actual wall and F1→ E→ F2 is a destabilis-
ing sequence. Let ch≤2(F1) = (r, cH,sH2). Since the boundary of the wall intersects the vertical line β = −1,
we must have=[Zα=0,β=−1(Fi)] ≥ 0; thus

0 ≤ c+ r and 0 ≤ −c+1− r .

Hence by relabelling F1 and F2, we may assume c = −r . Since the Fi have the same phase as E along the
wall, one can easily show that s = 1

2r . Therefore, ch≤2(F2) =
(
1− r, rH, H2

(
−13 −

1
2r

))
and

∆H (F2) = (H3)2
( r
3
+
2
3

)
.

By [BMS16, Corollary 3.10], we must have 0 ≤ ∆H (F2) < ∆H (E) = 2
3 (H

3)2. Since ∆H ∈ 1
3 (H

3)2Z, we obtain
r = −1 or r = −2. In both cases, F2 is of positive rank and F1 is of negative rank, so F1 must be the
subobject in the destabilising sequence to have phase bigger than E above the wall.

Since ∆H (F1) = 0, F1 is σα,β-semistable for any α > 0 and β > −1; see [BMS16, Corollary 3.11(a)]. Thus
H−1(F1) is a slope-stable reflexive sheaf, and H0(F1) is supported in dimension at most 1. Since ∆H (F1) = 0,
there is no room for ch2(H0(F1)), so H0(F1) is indeed supported in dimension zero. Applying Theorem 2.10
to F1(H) shows that for β > 0, we have

(4.10) 0 ≤ 3rβ
(
ch3

(
H0 (F1(H))

)
− ch3

(
H−1 (F1(H))

))
.

Moreover, since H−1(F1(H)) is a µH -stable sheaf, Lemma 2.6 implies that it is σα′ ,β′ -stable for β
′ < 0 and

α′ � 0. Applying Theorem 2.10 to H−1(F1) at this region shows that

0 ≤ −3rβ′ ch3
(
H−1 (F1(H))

)
⇒ 0 ≤ −ch3

(
H−1 (F1(H))

)
.

Combining this with (4.10) shows that ch3
(
Hi (F1(H))

)
= 0 for i = −1,0. Therefore, H0(F1) = 0 and

[F1] = r[OX(−H)]; thus F1 � OX(−H)⊕−r [1].
If r = −1 and F2 is σα,β-stable along the wall, then F2 will be σα,β-stable for α� 0 and β > −12 because

there is no wall for it crossing the vertical line β = −1. Hence F2 is a slope-stable sheaf of character
ch≤2(F2) =

(
2,−H, 16H

2
)
, which is not possible by Proposition 2.9. Thus F2 is strictly semistable along the

wall, and the same argument as above implies that one of its destabilising subobject is OX(−H)[1]. Hence
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we may assume r = −2. Then ∆H (F2) = 0; thus by [BMS16, Corollary 3.11(a)], F2 is a slope-stable sheaf,
which again is not possible by Proposition 2.9. �

5. Stability conditions on the Kuznetsov component via conic fibrations

Let X be a cubic threefold as before. Fix a line `0 in X, and consider the linear projection to a disjoint
P
2 in the P

4 containing X, which induces a conic fibration structure on the blowup of X along `0. Let B0
(resp. B1) be the sheaf of even (resp. odd) parts of the Clifford algebra corresponding to the conic fibration as
in [Kuz08, Section 3]. We denote by Coh(P2,B0) the abelian category of right coherent B0-modules and by
Db(P2,B0) its bounded derived category. By [BMM+12, Section 2.1], there is a semiorthogonal decomposition

(5.1) Db(P2,B0) = 〈Ξ(Ku(X)),B1〉,

where Ξ : Ku(X)→Db(P2,B0) is a fully faithful embedding. We set

Ku(P2,B0) := Ξ(Ku(X)),

which is equivalent to Ku(X) by definition. In [BMM+12, LMS15], the authors use the semiorthogonal
decomposition (5.1) to construct stability conditions on Ku(X). In this section, we first summarise their
construction and then show that all these stability conditions on Ku(X) are S-invariant and lie in the same
orbit with respect to G̃L

+
2 -action.

5.1. Stability conditions on non-commutative P
2

The Chern character of an object E ∈Db(P2,B0) is

ch(Forg(E)) ∈ K(P2)⊗Q �Q
⊕3,

where Forg : Db(P2,B0)→Db(P2) is the forgetful functor; by abuse of notation, we denote it by ch(E) for
simplicity. Recall that by [BMM+12, Proposition 2.12], we have

(5.2) N (P2,B0) =Z[B−1]⊕Z[B0]⊕Z[B1],

and the Chern characters

ch(B−1) =
(
4,−7, 15

2

)
, ch(B0) =

(
4,−5, 9

2

)
, ch(B1) =

(
4,−3, 5

2

)
are linearly independent. For objects in Db(P2,B0), we have the Euler characteristic

χ(−,−) =
∑
i

(−1)i homi
Db(P2,B0)

(−,−).

Given [F] = x[B−1] + y[B−1] + z[B−1] ∈ N (P2,B0) with ch(F) = (r, c1,ch2), [LMS15, Remark 2.2(iv)] gives

χ(F,F) = x2 + y2 + z2 +3xy +3yz+6xz

= − 7
64
r2 − 1

4
c21 +

1
2
r ch2 .

Slope stability for torsion-free sheaves in Coh(P2,B0) is defined via

rank(F)B rank(Forg(F)), deg(F) = c1(Forg(F)).c1(OP
2(1)).

Lemma 5.1 ([BLM+17, Theorem 8.3]). Any slope-semistable torsion-free sheaf E in Coh(P2,B0) of character
(r, c1,ch2) satisfies the quadratic inequality

(5.3) Q(E)B c21 − 2r ch2+
11
16
r2 ≥ 0.
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Proof. If E is slope stable, then [LMS15, Lemma 2.4] implies that χ(E,E) ≤ 1. Since r = rank(E) is a multiple
of 4 by [BMM+12, Lemma 2.13(i)], we obtain

χ(E,E) = − 7
64
r2 − 1

4
c21 +

1
2
r ch2 ≤

r2

16
,

which implies the claim. If E is strictly slope semistable with stable factors {Ei}i∈I , we get

ch2(Ei)
r(Ei)

≤ 1
2

(
c1(Ei)
r(Ei)

)2
+
11
32

=
1
2

(c1
r

)2
+
11
32
,

which shows (5.3) holds for E. �

Consider the open subset

U B

{
(b,w) ∈R2 : w >

b2

2
+
11
32

}
.

By (5.3) we have the following result, which is well known in the commutative setting by [BMT14, BMS16]
(see also [PPZ19, Lemma 4.4]).

Proposition 5.2. There is a continuous family of Bridgeland stability conditions on Db(P2,B0) parametrised by
U given by

(b,w) ∈U 7→ σ b,w =
(
Cohb(P2,B0), Zb,w = −ch2+wch0+i(ch1−bch0)

)
.(1)

5.2. Induced stability conditions

By [BMM+12, Proposition 2.9(ii)], the Serre functor SDb(P2,B0) of D
b(P2,B0) is equal to − ⊗B0 B−1[2].

Remark 9.4 of [BLM+17] shows that B0 and B1 are slope-stable B0-modules with µ(B0) = −54 and µ(B1) = −34 ,
respectively. Then B1 and B0[1] = SDb(P2,B0)(B1)[−1] are in Cohb(P2,B0) for −54 ≤ b < −

3
4 . Since σ b,w is a

stability condition on Db(P2,B0), we see that the conditions in [BLM+17, Proposition 5.1] are all satisfied, as
we wanted.

Proposition 5.3. For any (b,w) ∈U with −54 ≤ b < −
3
4 , the pair

(5.4) σ (b,w)B
(
Ab B Cohb(P2,B0)∩Ku(P2,B0), Zb,w|N (Ab)

)
is a stability condition on Ku(P2,B0). With respect to G̃L

+
2 -action, they all lie in the same orbit as the stability

condition(2)

(5.5) σ =
(
A− 5

4
, Z = ch0+i

(
ch1+

5
4
ch0

))
.

Proof. The first claim follows from [BLM+17, Proposition 5.1] (see Proposition 2.11). Arguing as in [LPZ22,
Proposition and Definition 2.15], we have the relation

ch2(F) = −ch1(F)−
3
8
rank(F)

for every F ∈ Ku(P2,B0). Thus we can rewrite

<[Zb,w|N (Ab)] = ch1+
(3
8
+w

)
ch0 .

(1)In [LMS15], authors consider only the ray σb=−1,w for w > 27
32 , where w = 23

32 +2m2 in their notation.
(2)The stability condition σ is first constructed in [BMM+12, Section 3].
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As a consequence,

µb,w|N (Ab) = −
<[Zb,w|N (Ab)]

=[Zb,w|N (Ab)]
=
−ch1−

(
3
8 +w

)
ch0

ch1−bch0

=
−ch1−

(
3
8 +w

)
ch0 + ch1−bch0

ch1−bch0
− 1

= −

(
3
8 +w+ b

)
ch0

ch1−bch0
− 1.

Since 3
8 +w+ b > 0 for (b,w) ∈U , the stability function Zb,w|N (Ab) induces the same ordering on Ab as the

function

Zb B ch0+i(ch1−bch0).

Thus the stability condition
(
Ab,Zb,w|N (Ab)

)
lies in the same orbit as σb = (Ab,Zb) with respect to G̃L

+
2 -

action. We know Zb = T
−1
b ◦Z− 5

4
, where

Tb =
(

1 0
b+ 5

4 1

)
.

Since b+ 5
4 ≥ 0, there exists a cover gb B (Tb, fb) ∈ G̃L

+
2 (R) such that

Pσ− 54
(fb(0,1]) ⊂ 〈A− 5

4
,A− 5

4
[1]〉.

Also, an easy computation shows that Cohb(P2,B0) ⊂ 〈Coh−
5
4 (P2,B0),Coh−

5
4 (P2,B0)[1]〉 (see for in-

stance [PY20, Lemma 3.7]). Restricting to the heart Ab, this implies

Ab ⊂ 〈A− 5
4
,A− 5

4
[1]〉

by [BLM+17, Lemma 4.3]. Thus the stability conditions σb and σ− 5
4
. gb have the same central charge and

satisfy the conditions of [BMS16, Lemma 8.11]; hence they are the same. �

5.3. Serre invariance

In this section we show the following result.

Theorem 5.4. The stability condition σ =
(
A− 5

4
,Z

)
from (5.5) on Ku(P2,B0) is Serre invariant.

Therefore, Proposition 5.3 implies that all stability conditions σ (b,w) from (5.4) are Serre invariant.
By [Bon89] (see also [Kuz04, Proposition 3.8]), the Serre functor SB0 of Ku(P

2,B0) satisfies

S−1B0 � LB1(−⊗B1)[−2] � (−⊗B1) ◦LB0(−)[−2].

We first describe the image of the heart after the action of S−1B0 .

Proposition 5.5. We have LB0(A− 5
4
)⊗B1 ⊂ 〈A− 5

4
,A− 5

4
[1]〉.

Proof. Let E ∈ A− 5
4
= Coh−

5
4 (P2,B0)∩Ku(P2,B0), and set E′ := LB0(E). We first show that

(5.6) E′ ⊗B1 = LB0(E)⊗B1 ∈ 〈Coh
− 5

4 (P2,B0),Coh−
5
4 (P2,B0)[1]〉.

By Serre duality and the fact that B0[1],B−1[1] ∈ Coh−
5
4 (P2,B0), we have that Homi(B0[1],E) can be

non-zero only for i = 0,1,2. Thus E′ is defined by the triangle

B0[1]⊕k1 ⊕B
⊕k2
0 ⊕B0[−1]⊕k3

ev−−→ E→ E′ .
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Since B0[1] is stable of phase 1 with respect to σ b=− 5
4 ,w

, the map f in the following commutative diagram is

injective in Coh−
5
4 (P2,B0):

B0[1]⊕k1

��

f
// E

id
��

// G

��

B0[1]⊕k1 ⊕B
⊕k2
0 ⊕B0[−1]k3

��

// E

��

// E′

��

B0[1]⊕k2 ⊕B0[−1]k3 // 0 // B0[1]⊕k2 ⊕B
k3
0 .

Hence, we obtain G ∈ Coh−
5
4 (P2,B0). Tensoring the third column by B1 gives the exact triangle

G⊗B1→ E′ ⊗B1→B
⊕k2
1 [1]⊕B⊕k31 .

By Lemma 5.6 below, we have G⊗B1 ∈ 〈Coh−
5
4 (P2,B0),Coh−

5
4 (P2,B0)[1]〉; thus claim (5.6) follows.

Since LB0(E)⊗B1 = LB1(E ⊗B1), we know LB0(E)⊗B1 ∈ Ku(P
2,B0). If we consider the HN filtration of

LB0(E)⊗B1 with respect to σ b=− 5
4 ,w

, claim (5.6) implies that the maximum and minimum phases satisfy

0 < φ−σ b=− 54 ,w
(LB0(E)⊗B1) ≤ φ

+
σ b=− 54 ,w

(LB0(E)⊗B1) ≤ 2.

Then the definition of stability condition σ implies that

0 < φ−σ b=− 54 ,w
(LB0(E)⊗B1) ≤ φ

−
σ (LB0(E)⊗B1) ≤ φ

+
σ (LB0(E)⊗B1)

≤ φ+
σ b=− 54 ,w

(LB0(E)⊗B1) ≤ 2.

Therefore,

LB0(E)⊗B1 ∈ 〈Coh
− 5

4 (P2,B0)∩Ku(P2,B0),Coh−
5
4 (P2,B0)∩Ku(P2,B0)[1]〉,

as claimed. �

Lemma 5.6. We have Cohb(P2,B0)⊗B1 ⊂ 〈Cohb(P2,B0),Cohb(P2,B0)[1]〉.

Proof. Since B1 is a flat B0-module, by (5.2), for F ∈ Coh(P2,B0), we have that

ch1(F ⊗B1) = ch1(F) +
1
2
rank(F).

If F ∈ Coh(P2,B0) is slope semistable with µ(F) > b, then F⊗B1 is slope semistable with slope µ(F)+ 1
2 > b.

Then F ⊗B1 is in Cohb(P2,B0). Otherwise, assume F ∈ Coh(P2,B0) is slope semistable with µ(F) ≤ b. If
µ(F) + 1

2 ≤ b, then F ⊗B1[1] ∈ Coh
b(P2,B0), while if µ(F) + 1

2 > b, then F ⊗B1 ∈ Coh
b(P2,B0) and thus

F ⊗B1[1] ∈ Cohb(P2,B0)[1]. This implies the claim. �

Proof of Theorem 5.4. Since S2B0[−3] = S
−1
B0 [2], we only need to find a g B (T ,f ) ∈ G̃L+2 (R) such that

S−1B0 [2] .σ = σ .g.

We know S−1B0 [2] .σ =
(
Z ◦SB0[−2] , S

−1
B0 [2]

(
A− 5

4
∩Ku(P2,B0)

))
. By [LMS15, Remark 2.2 and Proposition

2.12], the classes v1 B [Ξ(I`)] = [B1] − [B0] and v2 B [Ξ(SKu(X)(I`))] = 2[B0] − [B−1] are the basis of
N (Ku(P2,B0)). Also, [Huy06, Lemma 1.30] implies SB0(Ξ(I`)) = Ξ(SKu(X)(I`)) and[

SB0
(
Ξ
(
SKu(X)(I`)

))]
=

[
Ξ
(
S2Ku(X)(I`)

)]
=

[
Ξ
(
SKu(X)(I`)

)]
− [Ξ(I`)] .
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Therefore, Z ◦SB0 = T
−1 ◦Z for a linear invertible function T : R2→R

2 defined as

T −1
[
Z(v1)

]
= Z(v2) and T −1

[
Z(v2)

]
= Z(v2)−Z(v1).

Thus
T
[
Z(v1)

]
= Z(v1)−Z(v2) and T

[
Z(v2)

]
= Z(v1).

We know Z(v1) = 2i and Z(v2) = 4+2i, so one can easily check that the linear function T with respect to
the standard basis can be represented as (

1 −2
1
2 0

)
.

Thus there exists a cover (T ,f ) ∈ G̃L+2 (R) such that f (0,1) ⊂ (0,2), so

Pσ (f (0,1]) ⊂ 〈A− 5
4
,A− 5

4
[1]〉.

Thus the stability conditions σ · g and ((− ⊗ B1) ◦ LB0) · σ have the same stability functions, and the
condition of [BMS16, Lemma 8.11] holds for their hearts by Proposition 5.5. Hence they are the same stability
conditions. �

Corollary 5.7. The stability condition σ from (5.5) and the stability conditions σ (b,w) defined in (5.4) are in the
same orbit as σ (α,β) defined in Theorem 4.2 with respect to the G̃L

+
2 (R)-action.

Proof. As noted in Corollary 4.3, the conditions of Theorem 3.2 are satisfied by Ku(X). Then the statement
follows from Theorem 5.4, Theorem 4.2 and the uniqueness implied by Theorem 3.2. �

Remark 5.8. Note that all the known stability conditions on Ku(X) are Serre invariant. An interesting
question would be to understand whether the property of S-invariance holds for every stability condition
on Ku(X). A positive answer would imply that there is a unique G̃L

+
2 (R)-orbit of stability conditions by

Theorem 3.2, giving a complete description of the stability manifold of Ku(X), in analogy to the case of the
bounded derived category of a genus at least 2 curve studied in [Mac07].

6. Ulrich bundles

Let X be a smooth cubic threefold as before. We denote by M
(s)U
d the moduli of (stable) Ulrich bundles.

By [LMS15, Theorem B], the moduli space MsU
d of stable Ulrich bundles of rank d on X is non-empty and

smooth of dimension d2 +1. In this section we apply our result on Serre-invariant stability conditions to
show the following.

Theorem 6.1. The moduli spaceMU
d of Ulrich bundles of rank d is irreducible.

Recall that an Ulrich bundle E of rank d ≥ 2 on X is a vector bundle on X satisfying H i(X,E(jH)) = 0
for all i = 1,2, j ∈Z and such that the graded module ⊕m∈ZH0(X,E(mH)) has 3d generators in degree 1.
Proposition 2.9 of [CHG+12] shows that any Ulrich bundle E is Gieseker semistable, and if it is Gieseker
stable, then it is µ-stable. Moreover, if an Ulrich bundle E is Gieseker strictly semistable, then its stable
factors are also Ulrich bundles. Thus [LMS15, Lemma 2.19] implies that

ch(E) =
(
d,0,−d

3
H2,0

)
= d ch(I`).

The Gieseker semistability of E implies that Hom(OX(kH),E) = 0 for k ≥ 0. We also have χ(OX(kH),E) = 0
for k = 0,1; thus the definition of Ulrich bundles implies thatHom(OX(kH),E[3]) = 0. Therefore, E ∈ Ku(X).
The first step to prove Theorem 6.1 is to show that Ulrich bundles are semistable objects in the Kuznetsov
component with respect to the stability conditions σ (α,β) defined in Theorem 4.2.
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Proposition 6.2. Every E ∈MU
d is σ (α,β)-semistable in Ku(X) for any (α,β) ∈ V , with V as in (4.4).

Proof. Since µH (E) = 0 and E is Gieseker semistable, we get E ∈ Cohβ(X) for β < 0, and by [BMS16,
Lemma 2.7], the Ulrich bundle E is σα,β-semistable for α � 0. Theorem 3.1 of [Fey22] implies that E is
σα,β0-semistable for any α > 0 and

β0 = −
1

3d(d − 1)
.

Since E is locally-free, Proposition 4.1 implies that E is σ0
α,β0

-semistable; thus by definition, E is σ (α,β0)-
semistable for α small enough because E ∈ Ku(X). Hence the claim follows from Corollary 4.3. �

We denote by M
σ (α,β)
Ku(X) (d[I`]) the moduli space parametrising σ (α,β)-semistable objects in Ku(X) of class

d[I`]. Proposition 6.2 implies that we have an embedding

(6.1) MU
d ↪→M

σ (α,β)
Ku(X) (d[I`]).

The next step is to show that (6.1) is an open embedding. By Corollary 4.3, we may assume the pairs

(α,β) ∈ V , with V as in (4.4), are on the curve α2 = β2 − 2/3, so (up to a shift) any E ∈Mσ (α,β)
Ku(X) (d[I`]) has

maximum phase 1 in the heart A(α,β), as in (4.9). Therefore, E ∈ Coh0α,β(X) is σ0
α,β-semistable of phase 1.

We claim E is σα,β-semistable; otherwise, Proposition 4.1 implies that E lies in the exact triangle

(6.2) F[1]→ E→ T ,

where F ∈ Fα,β and T ∈ Coh0(X). By our choice of (α,β), we know µα,β(F) = 0. Since F ∈ Fα,β , we know

µ+α,β(F) ≤ 0 = µα,β(F).

Thus F is σα,β-semistable of slope zero. But we know µα,β(OX(−2H)[1]) < 0; thus

hom(OX ,F[2]) = hom(F,OX(−2H)[1]) = 0.

Since E ∈ Ku(X), we know hom(OX ,E) = 0; thus the exact triangle (6.2) implies that hom(OX ,T ) = 0,
which is not possible as T is a skyscraper sheaf, and so E is σα,β-semistable.

Hence, up to a shift, we may assume any E ∈Mσ (α,β)
Ku(X) (d[I`]) lies in the heart Cohβ(X). Thus Hi(E) = 0

if i , 0,−1, and if H−1(E) , 0, then it is a torsion-free sheaf. So if we consider the locus of objects

E ∈ Mσ (α,β)
Ku(X) (d[I`]) with rank(H−1(E)) = 0, then we get precisely the locus of sheaves which we know is

non-empty and by [GD63, Theorem 7.7.5] is an open sublocus. Moreover, being Ulrich is an open property,

see [CHG+12], so MU
d is an open subset of M

σ (α,β)
Ku(X) (d[I`]), as claimed.

By Theorem 4.2, we have

M
σ (α,β)
Ku(X) (d[I`]) �M

σ (α,β)
Ku(X) (d[S(I`)]),

and Corollary 5.7 gives the isomorphism

(6.3) M
σ (α,β)
Ku(X) (d[S(I`)]) �M

σ (b,w)
Ku(P2,B0)

(2d[B0]− d[B−1]),

where the stability conditions σ (b,w) are defined in Proposition 5.3.

Proposition 6.3. Take an object E ∈Db(P2,B0) of class 2d[B0]− d[B−1] = d
(
4,−3, 32

)
. Then E is a shift of a

Gieseker-(semi )stable sheaf if and only if E lies in Ku(P2,B0) and is σ (b,w)-(semi )stable for some (b,w) ∈U ,
where −54 ≤ b < −

3
4 .

Proof. First assume E is a Gieseker-(semi)stable sheaf. Then its Gieseker-slope is less than that of B1, so
hom(B1,E) = 0. Moreover,

hom(B1,E[2]) = hom(E,B0) = 0;
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thus hom(B1,E[1]) = −χ(B1,E) = −2dχ(B1,B0) + dχ(B1,B−1) = 0. This shows that E ∈ Ku(P2,B0). Since
E is Gieseker (semi)stable, it is σ b,w-(semi)stable for b < −34 and w� 0. Then [BLM+17, Remark 5.12] implies
that E is σ (b,w)-semistable.

Conversely, take a σ (b,w)-(semi)stable object E in Ku(P2,B0). We may assume E ∈ Ab and by the
uniqueness of SB0-invariant stability conditions, we can assume w� 0. Thus [BLM+17, Remark 5.12] shows

that E is in Cohb(P2,B0) and is σ b,w-(semi)stable. This immediately implies that E is a Gieseker-(semi)stable
sheaf. �

Thus we get the isomorphism

M
σ (b,w)
Ku(P2,B0)

(2d[B0]− d[B−1]) �Mss
(P2, B0)

(2d[B0]− d[B1])CMd ,

whereMd parametrises Gieseker-semistable sheaves in Coh(P2,B0) of class 2d[B0]− d[B1]. The last step
is to show the following.

Proposition 6.4. The moduli spaceMd is irreducible.

Proof. The argument is the same as Step 3 in the proof of [LMS15, Theorem 2.12]; we include it for
completeness.

The first claim is thatMd is connected. If d = 1, then (6.3) gives

M1 �M
σ (α,β)
Ku(X) ([I`]),

and the latter is isomorphic to the Fano surface of lines in X by [PY20, Theorem 1.1]. In particular,
M1 is connected. For d > 1, the strictly semistable locus is covered by the images of the natural maps
ϕd1,d2 : Md1 ×Md2 →Md for 1 ≤ d1 ≤ d2 ≤ d and d1 + d2 = d which send any pair (E1,E2) to E1 ⊕ E2.
Thus by induction, we deduce that the semistable locus of Md is connected as well. Arguing exactly as
in [KLS06, Lemma 4.1], we obtain the non-existence of a connected component ofMd consisting of purely
stable sheaves. We conclude thatMd is connected.

Finally, note that for all E ∈ Md , we have Ext2(E,E) = Hom(E,E ⊗B0 B−1)
∨ = 0. This implies that

Md is normal, combining well-known results in deformation theory and Quot schemes (see [LMS15,
Theorem 2.12]). �

Since MU
d is an open subset of the irreducible space Md , it is irreducible. This ends the proof of

Theorem 6.1.
We also observe the following property, which is a consequence of the previous computations.

Corollary 6.5. The moduli space M
σ (α,β)
Ku(X) (d[I`]) is irreducible and projective.

Proof. By the above computation, we have M
σ (α,β)
Ku(X) (d[I`]) �Md . Since the latter is a moduli space of

Gieseker-semistable sheaves, constructed as a GIT quotient of an open subset of a Quot-scheme, it is
projective. Hence Proposition 6.4 implies the statement. �

In particular, by Theorem 3.2, we deduce that Mσ
Ku(X)(d[I`]) is irreducible and projective for every

Serre-invariant stability condition σ on Ku(X).
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