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Smoothability of relative stable maps to stacky curves
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Abstract. Using log geometry, we study smoothability of genus 0 twisted stable maps to stacky
curves relative to a collection of marked points. One application is to smoothing semi-log canonical
fibered surfaces with marked singular fibers.
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1. Introduction

Consider the moduli space Maps◦n of degree n maps f : C→ P
1 from a smooth rational curve C such

that f is unramified over infinity. Marking the preimage f −1(∞) = {p1, . . . ,pn} of such a map induces a
locally closed embedding

M̃aps◦n ↪→M0,n(P
1,n)

of the Sn-torsor M̃aps◦n→Maps◦n parametrizing such f : C→ P
1 as well as a labeling of f −1(∞) into the

space of n-pointed degree n genus 0 stable maps to P
1. The image of this embedding is the locus of stable

maps (f : C→ P
1,p1, . . . ,pn) such that C is smooth and f (pi) =∞ for all i. Let Mapsn denote the closure

of this locus.

Question 1. Is there a combinatorial description of the boundary Mapsn \ M̃aps◦n?

There are several natural combinatorial conditions (see Proposition 2.4 and the discussion preceding it)

that are necessary for a stable map (f : C
n:1−−−→ P

1,p1, . . . ,pn) to lie inside Mapsn:

(1) The evaluations satisfy f (pi) =∞ for all i.
(2) Every point of f −1(∞) ⊂ C either is a marked point or is on a contracted component.
(3) For each maximal connected closed subvariety T ⊂ C contracted to ∞ by f , we have

# marked points on T =
∑

ramification index of f at the nodes T ∩ (C \ T ).

More generally, for any tuple of non-negative integers (d1, . . . ,dn) with d =
∑
di , one can consider the

locally closed subset M(d1,...,dn) ⊂M0,n(P1,d) of n-pointed degree d genus 0 maps (f : C→ P
1,p1, . . . ,pn)

such that f (pi) =∞ and f is ramified of order di at pi if di > 0. If di = 0, there is no condition imposed on
the f at pi . Denoting by M(d1,...,dn) the closure of M(d1,...,dn), we can ask the variant of Question 1 for this
space. The necessary conditions above naturally generalize to Conditions (∗) below.

Definition 1.1. Let (f : C→ X,p1, . . . ,pn) be a prestable map to a smooth curve, and fix a tuple of positive
integers (d1, . . . ,dn) and a point x ∈ X. We say that f is a relative map to (X,x) with tangency (d1, . . . ,dn)
if it satisfies the following conditions:

Combinatorial conditions (∗). ([Gat02, Definition 1.1 & Remark 1.7])

(1) The evaluations satisfy f (pi) = x for all i.
(2) Every point of f −1(x) ⊂ C either is a marked point or is on a contracted component.
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(3) For each maximal connected closed subvariety T ⊂ f −1(x), we have∑
pi∈T

di =
∑

q∈T∩(C\T )

ef (q),

where the first sum is over marked points contained in T and ef (q) denotes the ramification of f |C\T at
the point q (see Figure 1 ).

This question in much greater generality was studied by Gathmann [Gat02, Proposition 1.14], building off
previous work of Vakil [Vak00, Theorem 6.1]. In particular, Gathmann showed that Conditions (∗) relative to
∞ are both necessary and sufficient for a stable map to lie in M(d1,...,dn). As a consequence, the set of points

of M0,n(P1,d) satisfying Conditions (∗) relative to ∞ are the points of an irreducible closed substack. See
also the balancing condition of Gross–Siebert [GS13, Definition 1.12 and Lemma 1.15].

In [AV02], Abramovich and Vistoli introduced moduli spaces of twisted stable maps, which allows the
target to instead be a Deligne–Mumford stack. To form a compact moduli space, the source curves obtain a
stacky structure. Let K0,n(X,d) denote the moduli space of n-pointed genus 0 degree d twisted stable maps
to a Deligne–Mumford stack X. The goal of this paper is to study the analogue of Question 1 for genus 0
twisted stable maps to a weighted projective line P(a,b), or more generally a genus 0 Deligne–Mumford
curve.

When X is P(a,b) and ∞ ∈ P(a,b) is a fixed point away from [0 : 1] and [1 : 0], we have the following
(see Theorem 1.5 for a more general result). For this example, the reader can keep in mind M1,1 = P(4,6)
and the point j =∞ parametrizing a nodal elliptic curve.

Theorem 1.2. Let (f : C→ P(a,b),p1, . . . ,pn) be an n-pointed genus 0 twisted stable map such that the coarse
map (g : C→ P

1,q1, . . . , qn) satisfies Conditions (∗) with respect to ∞. Then f is smoothable in a family with
generic fiber satisfying: f (pi) =∞ and f is ramified to order di at pi for all i = 1, . . . ,n.

In what follows, we set up notation needed to state our more general results.

Let (X,x1, . . . ,xr ) be a smooth and proper 1-dimensional genus 0 Deligne–Mumford curve, and suppose
the xi ∈ X are points where the coarse moduli space map is étale (equivalently, the xi have the same stabilizer
as the generic point of X ). For each j = 1, . . . , r, let Γj = (dj1, . . . ,djnj ) be a tuple of positive integers, and fix
n0 ≥ 0. Set n =

∑r
j=0nj and

d =
r∑
j=1

nj∑
k=1

djk ,

and let Γ = (n0, {Γ1,x1}, . . . , {Γr ,xr}) be the tuple of combinatorial data.

Definition-Notation 1.3. For any tuple of combinatorial data Γ , let MΓ (X) be the locally closed substack
of K0,n(X,d) parametrizing n-pointed genus 0 degree d twisted stable maps (f : C→ X, {{pjk}

nj
k=1}

r
j=0) such

that

(1) the pjk are marked points with stabilizer of order ajk lying over smooth points qjk of the coarse
space C,

(2) for each j > 0, the image of pjk is f (pjk) = xj ,
(3) for each j > 0, the coarse map h : C→ X is ramified to order djk at qjk , and
(4) C is smooth.

Similarly, we let NΓ (X) be the locally closed substack of K0,n(X,d) of maps satisfying conditions (1), (2)
and (3) above as well as the condition

(4′) C is smooth in a neighborhood of f −1(xj ) for all j .

We denote by MΓ (X) (resp. NΓ (X)) the closure of MΓ (X) (resp. NΓ (X)) inside K0,n(X,d).
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Note that here and throughout, we are fixing a bijection between the set {1, . . . ,n} and the set {{(j,k)}njk=1}
r
j=0

indexing the marked points. Note also that the marked points with j = 0 are the ones with no tangency
conditions, so in the situation of M(d1,...,dn), we may assume for notational convenience that the first n0
entries (d1, . . . ,dn0) of (d1, . . . ,dn) are 0 so that M(d1,...,dn) =MΓ (P1), where Γ = (n0, {(dn0+1, . . . ,dn),∞}).

Definition-Notation 1.4. For any tuple of combinatorial data Γ , let KΓ (X) denote the subset of K0,n(X,d)
parametrizing those twisted stable maps (f : C→ X, {{pjk}

nj
k=1}

r
j=0) such that for each j = 1, . . . , r, the coarse

moduli map (h : C→ X,qj1, . . . , qjnj ) is a relative map to (X,xj ) with tangency Γj .

Theorem 1.5. Let X and Γ be as above. Then we have an equality NΓ (X) = KΓ (X). That is, every twisted
stable map whose coarse moduli map satisfies the relative condition for {Γj ,xj} for each j = 1, . . . , r is smoothable
to a twisted stable map parametrized by NΓ (X). In particular, KΓ (X) is the set of points of a closed substack
of K0,n(X,d).

Remark 1.6. Note that Theorem 1.5 is local on the target. Indeed, the definitions of both KΓ (X) and NΓ (X)
are in terms of local conditions around the points xi ∈ X. Therefore, the theorem has a natural generalization
to higher-genus maps to a higher-genus target X provided we only consider those maps for which the
1-dimensional components of the preimages f −1(xi) are rational curves. In this case, the theorem reads
that any such map which is also contained in KΓ (X) is smoothable in a family with generic fiber contained
in NΓ (X).

When the target is a weighted projective line, we obtain the following stronger statement.

Theorem 1.7. Let X = P(a,b) be a weighted projective line, and let Γ be a tuple of combinatorial data as above.
Then we have an equalityMΓ (X) =KΓ (X). That is, every twisted stable map which satisfies the relative condition
for {Γj ,xj} for each j = 1, . . . , r is smoothable to a family of stable maps from a smooth rational curve satisfying
f (pjk) = xj and with ramification djk at pjk .

1.1. Applications to moduli of fibered surfaces

Our original motivation for writing this paper came from studying compactifications of the moduli space
of fibered surfaces. Twisted stable maps are used in [AV00, AB19b] to construct a compactification Fvg,n(γ,ν)
of the moduli space of genus γ fibrations over a genus g curve with ν marked sections and n marked fibers.
The objects of the boundary are certain semi-log canonical unions of birationally fibered surfaces called
twisted surfaces. This compactification is closely related to the compactification via stable log varieties from
the minimal model program. In [AB19b, Section 1.4], we proposed the problem of using log geometry to give
the main component a moduli-theoretic interpretation and classify the boundary components. The present
paper solves this problem for elliptic fibrations with marked singular fibers (we refer the reader to [AB21]
and [AB19a, Section 4]). A key observation is that Conditions (∗) relative to ∞∈M1,1 as well as the choice
of stabilizers on the marked points translate to conditions on the configuration of singular fibers on the
components of the twisted elliptic surface; see [AB19a, Propositions 4.1 and 4.4].

Theorem 1.8. Theorem 1.7 gives necessary and sufficient combinatorial conditions for a twisted elliptic surface
over a genus 0 curve with marked singular fibers to be smoothable to an elliptic surface over P1 with marked
singular fibers.

For convenience, we work over an algebraically closed field of characteristic 0.
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Figure 1. In this example, the contracted component is attached to a double branched, unbranched,
and triply branched point, respectively, and thus must have 2+1+3 = 6 marked points.

Figure 2. Maps of this type are given by choosing the map f1 = f |C1
(which is parametrized

by Mapsn), a point of the finite set f −11 (∞) along which to attach C2, and the configuration of
the n + 1 special points on C2 (which is parametrized by M0,n+1), yielding the dimension count
dimMapsn +n− 2.

2. Genus 0 relative stable maps to (P1,∞)

In this section, we prove the special case of Theorem 1.2 where the target is P1; i.e., a = b = 1. This
special case was originally proved by Gathmann [Gat02]. Our approach differs from that of [Gat02] in that
we give a direct construction of smoothings of comb-type maps (see Propositions 2.7 and 2.11) rather than
appealing to [Vak00, Theorem 6.1]. This will be a key step in the proof of the general case of Theorem 1.2.
For the remainder of this section, fix positive integers Γ = (d1, . . . ,dn) with d =

∑
di .

Example 2.1. We begin with some examples motivating Conditions (∗) when Γ = (1, . . . ,1). First, it is clear
that Condition (∗)(1) is required as the evaluation condition is closed. However, consider a degree n map
f1 : (C1,q1)→ P

1 from a smooth rational curve C1 with f (q1) =∞. Let C = C1 ∪q1,q2 C2 be a nodal union
of two rational curves, and let p1, . . . ,pn ∈ C2 \ q2 be n marked points. Then there is an n-marked degree n
stable map (f : C→ P

1,p1, . . . ,pn) given by taking the map f1 on C1 and the constant map with image ∞
on C2. While this map satisfies Condition (∗)(1), a simple dimension count shows that the dimension of this
locus inside M0,n(P1,n) is equal to dimMapsn +n−2, and so this condition alone is not enough to cut out
the locus Mapsn at least for n ≥ 3 (see Figure 2).

The above example motivates Condition (∗)(2), which in this case requires that the map f1 be totally
ramified at q1 so that there are no other points of C1 in f −1(∞). Requiring f1 to be totally ramified at
q1 means that we impose the vanishing of n derivatives, which is a codimension n condition on Mapsn.
Thus the locus of maps of this combinatorial type satisfying both Conditions (∗)(1) and (∗)(2) has dimension
dimMapsn − 2. Note that such maps automatically satisfy Condition (∗)(3) as well. However, the following
example illustrates that Conditions (∗)(1) and (∗)(2) do not imply Condition (∗)(3) in general.

Example 2.2. Consider a degree 3 map f1 : (C1,q1,q2) → P
1 from a smooth rational curve such that

f (qi) =∞, and suppose that f has ramification index i at qi . Let (C2,q
′
1,p1,p2) be a smooth pointed rational

curve, and let C = C1 ∪q1,q′1 C2. Then we have a 3-pointed degree 3 stable map (f : C → P
1,q2,p1,p2)
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Figure 3. The map in Example 2.2 which satisfies Conditions (1) and (2) but not (3) since the map is
unramified where the contracted component C2 is attached and ramified over ∞ elsewhere.

where f |C1
= f1 and f |C2

is constant ∞. This map satisfies Conditions (∗)(1) and (∗)(2) but not (∗)(3). Note
furthermore that this stable map cannot lie in Mapsn as f1 is ramified to order 2 at the marked point q2,
but the only way this can happen in the limit of a family in Maps◦n is if two marked points collided at q2.

Remark 2.3. Note that a degenerate special case of Condition (∗)(3) is when T = q is itself a point. Since T
must be a maximal closed subvariety contracted by f , this means that q cannot lie on a contracted
component. Therefore, by Condition (∗)(2), q must be a marked point. Then Condition (∗)(3) reads that f
must be unramified at q. Indeed, we saw this was necessary in the above Example 2.2 (see Figure 3).

We now prove that conditions (1), (2), and (3) of Conditions (∗) are necessary.

Proposition 2.4. Conditions (∗) (1), (2), and (3) are necessary for a stable map to lie inM(d1,...,dn).

Proof. It is clear that (1) is necessary as evaluation is continuous so the condition f (pi) =∞ is closed, so we
proceed to (2) and (3). Consider a 1-parameter family of stable maps

C P
1

S

f

π
σi

over the spectrum S of a DVR with generic fiber lying in Maps◦n, and denote by (f0 : C0→ P
1,p1, . . . ,pn)

the central fiber.
First we show (2). Let U ⊂ C denote the open complement of the locus of components contracted by the

map f , and consider D := f −1(∞). As the total space C is normal and f is non-constant, D is a Cartier
divisor. Moreover, note that any π-vertical component of D is contracted by f and therefore is not in U .
Thus, restricting to U , we see that D |U is a Cartier divisor which is horizontal over S, and therefore any
point of D |U lying over 0 ∈ S must be in the closure of the marked points of the generic fiber.

Finally, we show (3). Ramification corresponds to a polynomial having a multiple root at a point, and
this multiplicity takes into account precisely how many points collided, i.e., the number of marked points
on the relevant contracted component. More formally, we can consider the intersection product T ·D . By
the projection formula, T ·D = 0. On the other hand, D =

∑
σi +E, where E is the π-vertical component.

Computing T · (
∑
σi +E) = 0 in terms of local multiplicities gives exactly the equality in Condition (∗)(3). �

Our task now is to show that Conditions (∗)(1)–(3) are sufficient for a stable map (f : C→ P
1,p1, . . . ,pn)

to lie in M(d1,...,dn). We will do this by constructing a smoothing of the marked curve and a linear series on
the total space which restricts to f on the central fiber but whose generic fiber lies in M(d1,...,dn).

We begin with a preliminary lemma that shows that nodal curves can be smoothed to surfaces admitting
Am singularities for any m at the nodes.
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Lemma 2.5. Let C0 be a genus 0 nodal curve with k nodes q1, . . . , qk , and let m1, . . . ,mk ≥ 1. Then there exists a
smooth C→ S , where S = Spec(R) is the spectrum of a DVR, such that the total space C has an Ami−1 singularity
at qi for each i = 1, . . . , k.

Proof. The miniversal deformation space of a pointed prestable curve of genus 0 is k~t1, . . . , tk�, where ti is
the smoothing parameter of the ith node; i.e., formally locally around the ith node, the miniversal family of
curves looks like xy = ti inside A

2
k~t1,...,tk�

. Let R = ~z� be the DVR in the statement. To prove the lemma, it
suffices to note we can construct a map of rings k~t1 . . . tk�→ k~z� such that ti 7→ zmi . Then formally locally
around the ith node, the family of curves over Spec(R) will be isomorphic to xy = zmi , as required. �

We now show that it suffices to consider the case of a stable map where every maximal connected subtree
contracted by f (as in Condition (∗)(3)) is irreducible.

Lemma 2.6. Let (f0 : C0→ P
1,p1, . . . ,pn) be a stable map satisfying Conditions (∗)(1), (2), and (3). Then there

exists a deformation to a family of stable maps (f : C→ P
1,σi)→ Spec(R) over the spectrum of a DVR such that

(1) the generic fiber (fη ,Cη → P
1, (σi)η) satisfies Conditions (∗)(1), (2), and (3), and

(2) every connected component of f −1η (∞) ⊂ Cη is irreducible.

Proof. Let E1, . . . ,Ek be the 1-dimensional connected components of f −10 (∞), and write C1, . . . ,Cr for the
connected components of the closure of the complement C0 \ {Ei}ki=1. Each E

i is pointed by (qij ,pil), where
the pil are the marked points that lie on Ei and the qij are the points of Ei along which Ei is glued to the
non-contracted components of C. Then each Ei is a pointed genus 0 prestable curve, and there exists a
smoothing Ẽi → Spec(R) with sections τij smoothing the qij and σil smoothing the pil . Now consider the

constant family
⊔
lC

l
R with constant sections corresponding to the marked points and the points q′ij along

which the qij are glued.

We can glue
⊔
lC

l
R with

⊔
t Ẽ

t by identifying the sections q′ij × Spec(R) with τij for all (i, j) and call the
result C→ Spec(R), which is now a family of pointed curves. By construction, this is a partial smoothing
of the pointed curve (C0,p1, . . . ,pn). Moreover, there is a stable map f : C → P

1 constructed by taking
fR|ClR : C

l
R→ P

1 for each l and taking the constant map ∞ on each Ẽt . This descends to a map f as desired
since f (q′ij ) =∞. Conditions (∗)(1), (2) are satisfied by fη by construction, and (∗)(3) is satisfied since the

maximal irreducible components Ẽiη of f −1η (∞) have the same number of marked points as Ei and fη has
the same ramification at (q′ij )η as f0 at q′ij . �

We now restrict ourselves to the case where the connected components of f −1(∞) are irreducible. Let
(f : C0→ P

1,p1, . . . ,pn) be such a map, suppose that E1, . . . ,Ek are the 1-dimensional connected components
of f −1(∞), and write E = tiEi . By the above reduction, each Ei is a smooth rational curve.

We write the closure of the complement of E in C0 as a union of connected components C1, . . . ,Cr . Thus
each Ci is a tree of rational curves such that (f0)|Ci is non-constant and such that the preimage of ∞ is
0-dimensional. For each i, let Ii ⊂ {1, . . . ,n} be the subset of indices k such that pk lies on Ei . If Ei and Cj
intersect, we let qij ∈ Ei and tij ∈ Cj be the points of Ei and Cj , respectively, at which they are glued, and
we let eij be the ramification index of (f0)|Cj at tij . Note that Condition (∗)(3) then reads that for each i,

ni :=
∑
k∈Ii

dk =
∑
j

eij ,

where the left side is a definition and the right sum is over the j such that Ei meets Cj .
Consider a smoothing (C → S,σ1, . . . ,σn) of (C0,p1, . . . ,pn) over the spectrum of a DVR, and let D =∑
diσi denote the divisor of Γ -weighted marked sections on this surface. We wish to construct a rank 1

linear series on such a smoothing so that the central fiber agrees with f0 and the generic fiber satisfies that
D |η is the preimage of ∞. Our strategy is to consider the map π : C→ C′ which contracts E to a point and
instead construct the appropriate linear series on C′ .
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Proposition 2.7. In the setting above, there exist a smoothing (C→ S,σ1, . . . ,σn) and a Cartier divisor D ′ on C′ ,
where π : C→ C′ is the contraction of the Ei such that

(1) π∗D ′ =D +
∑
aiEi for some ai , where D is the divisor of marked sections, and

(2) aiEi ·Cj = eijtij for all i and j such that Ei meets Cj .

Proof. For each i, we let ai =
∏r
j=1 eij and let mij =

∏
k,j eik . By Lemma 2.6, there exists a smoothing

(C → S,σ1, . . . ,σn) of (C0,p1, . . . ,pn) such that C has an Amij−1 singularity at the node tij . Computing
intersection products in the surface C, we have Ei ·C0 = 0 since C0 is a fiber containing Ei . Moreover, if Ei
and Cj intersect, then

Ei ·Cj =
1
mij

tij

since locally around the node ti , the curves Ei and Cj are distinct lines through an Amij−1 singularity.
Therefore,

E2
i =

∑
j

− 1
mij

,

where the sum is over those j for which Ci and Ej meet. Here, we go back and forth between viewing these
intersection products as numbers or as divisors on the curves depending on whether it is convenient to
emphasize the particular intersection points.

Now consider the divisor D +
∑
aiEi . We can compute that D ·Ei =

∑
k∈Ii dk = ni since D is the divisor

of weighted marked sections and Ei contains pk for k ∈ Ii . On the other hand,

aEi ·Cj =
ai
mij

=

∏
j eij∏
k,j eik

= eij .

Finally, (
D +

∑
akEk

)
·Ei = ni −

∑
j

ai
mij

= ni −
∑
j

∏
i eij∏
k,j eik

= ni −
∑
j

eij = 0

by Condition (∗)(3). Here we have used that Ek ·Ei = 0 if i , k.
Therefore, we need to show that D +

∑
aiEi descends to a Cartier divisor D ′ along the contraction

π : C → C′ . Note that π exists, C′ is a normal quasiprojective surface, and π∗OC = OC′ by [KM98,
Theorem 3.7]. Moreover, we have an exact sequence

(2.1) 0 // Pic(C′) π∗ // Pic(C) //
Z,

where the map Pic(C)→ Z is the restriction L 7→ L|E ; see [KM98, Corollary 3.17]. In particular, since
OC(D +

∑
aiEi) is in the kernel of this map, there exists a line bundle L on C′ such that π∗L = OC(D + aE).

On the other hand, π∗OC = OC′ , and so by the projection formula,

π∗OC

(
D +

∑
aiEi

)
= L.

Therefore, there exists a section s ∈H0(L) which pulls back to the section cutting out D +
∑
aiEi on C, and

so D ′ = div(s) is the required Cartier divisor. �

Remark 2.8. Fix a list of positive integers rij for i and j such that Ei meets Cj . Then in the construction
of of the smoothing in Proposition 2.7, we can replace eij with rijeij in the definitions of ai and mij . In
this way, we get a smoothing satisfying the properties of Proposition 2.7, where the total space has Amij−1
singularities with mij divisible by any fixed choice of integers.

Let 0 ∈ P1 be a general point of the target, and consider the divisor B0 ⊂ C0 given by f −10 (0). Then B0
consists of a union of points on C0 which are disjoint from E and contained in the locus where f0 is étale.
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Since C→ S is a family of genus 0 curves birational to P
1
S , we can extend the collection of points B0 into a

Cartier divisor B on C which is horizontal and satisfies B|C0
= B0.

Proposition 2.9. With notation as above, D +
∑
aiEi ∼ B are linearly equivalent Cartier divisors on C.

Proof. Let ψ : C→ S denote the morphism to the base, and consider ψ∗N , where N = OC(D +
∑
aiEi −B).

First we claim that H1(C0,N |C0
) = 0. Indeed, since C0 is a nodal genus 0 curve, it suffices to show that

the degree of N restricted to each component of C0 is at least 0. Now N |E = OE by construction since
(D +

∑
aiEi) ·E = 0 and B avoids E. On the other hand, for each i, we have (D +

∑
aiEi) ·Cj = f −10 (∞)|Cj

and B ·Cj = f −10 (0)|Cj , so these divisors are linearly equivalent. Therefore, we in fact have that N is trivial
on each component of C0. Hence, by cohomology and base change, ψ∗N is a vector bundle whose formation
commutes with base change. Moreover, over the generic fiber, Cη � P

1
η , and B and D +

∑
aiEi are divisors

of the same degree n by construction. Therefore, H0(Cη ,N |Cη ) = 1. Since any line bundle on the spectrum
of a DVR is trivial, we conclude that ψ∗N � OS . Consequently, N has a non-vanishing section which exhibits
the required linear equivalence D +

∑
aiEi ∼ B. �

Remark 2.10. Note that the vanishing claimed in the above proof does not hold if we replace C0 with a
genus 0 Deligne–Mumford stack. See Remark 5.7 for an example.

Now let B′ be the image of B under π, which is also a Cartier divisor since B is contained in the locus
where π is an isomorphism. By the exact sequence (2.1), the linear equivalence in Proposition 2.9 is equivalent
to a linear equivalence D ′ ∼ B′ . In particular, D ′ and B′ form a basepoint-free rank 1 linear subseries of
H0(C′ ,L), where L = OC′ (D ′).

Proposition 2.11. With notation as above, let g : C′→ P
1 be the morphism induced by the basepoint-free linear

series 〈B′ ,D ′〉. Then the composition C π−→ C′
g
−→ P

1 satisfies (g ◦π)|C0
= f0.

Proof. The map (g ◦π) contracts E to ∞ by construction. Moreover, on each Cj , the restrictions of B′

and D ′ satisfy
B′ |Cj = f

−1
0 (0)|Cj

and
D ′ |Cj = f

−1
0 (∞)|Cj

by Proposition 2.7. Therefore, (g ◦π)|Cj = (f0)Cj for all j = 1, . . . , k. We conclude that (g ◦π)|C0
= f0 as it

agrees with f0 on each component of C0. �

Putting these together, we conclude the following.

Theorem 2.12. Let (f0 : C0 → P
1,p1, . . . ,pn) be a stable map satisfying Conditions (∗)(1), (2), and (3). Then

there exist a smoothing (C → S,σ1, . . . ,σn) over S = Spec(R), the spectrum of a DVR, and a stable map
f : C → P

1 such that the generic fiber (fη ,Cη → P
1
η , (σi)η) is contained in M(d1,...,dn) and f |C0

= f0. In
particular, Conditions (∗)(1), (2), and (3) are both necessary and sufficient for a stable map to be contained in
M(d1,...,dn).

Proof. By Propositions 2.7 and 2.11, there exist a smoothing (C→ S,σi) and a map f : C→ P
1 such that

f |C0
= f0 and f −1(∞) = D +

∑
aiEi , where D is the divisor of weighted marked sections and the Ei are

contained on C0. Therefore, f |Cη is in M(d1,...,dn). �

3. Log twisted curves and maps

We refer the reader to [ACG+13] for the standard definitions in log geometry and to [CJR+18, Section 2]
for log twisted stable maps. We always work with fine and saturated (fs) log structures. We will use MX to
denote the log structure of X, which will be implicit if no confusion arises. The characteristic of the log
structure will be denoted by MX .
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3.1. Log geometry

We will need the following results regarding log smooth morphisms.

Remark 3.1.

• If a morphism of log schemes f : X→ pt is log smooth (where the point has the trivial log structure),
then U ⊂ X is a toroidal embedding, where U is the locus with trivial log structure and MX is the
divisorial log structure.
• If C is a curve, then log smooth is equivalent to nodal; see [ACG+13, Theorem 5].
• Given a family f : C→ S of nodal curves, there is a minimal log structure MS on S such that any
other log structure that makes f log smooth is pulled back from it; see [ACG+13, Section 7.3]. We call
the corresponding log structure and structure morphism f [ : f ∗MS → M̃C the canonical log structure
of f : C → S . Note here that M̃C does not include marked points. If f is equipped with marked
points, then we denote the natural log structure by

MC := M̃C

⊕
O∗C

(
⊕O∗C ,iNi

)
,

where the sum is over marked points and Ni is the divisorial log structure associated to the ith

marked point; we call MC the canonical log structure associated to a pointed curve if there is no
confusion.

There exists a log cotangent complex L
log
X/Y (see [Ols05] or [ACG+13, Section 7]) for morphisms of log

schemes f : X → Y , and deformation theory of log schemes is controlled by the log cotangent complex
(see [Ols05, Theorem 5.2]).

Remark 3.2. If f is a log smooth morphism, then the log cotangent complex L
log
X/Y is represented by the

sheaf of log differentials (see [Ols05, Section 1.1(iii)]). There does not exist a distinguished triangle in general;
however, Olsson constructs a distinguished triangle for log flat or integral morphisms (see [Ols05, 1.3]).

3.2. (log) Twisted curves

Our main reference is [Ols07]. To compactify moduli spaces of maps f : C→M, where M is a Deligne–
Mumford stack, one needs to allow C to be a stack as well, known as a twisted curve (see e.g. [AV02, AB19b]).

Definition 3.3. A twisted curve is a purely 1-dimensional Deligne–Mumford stack C, with at most nodes as
singularities, satisfying the following conditions:

(1) If π : C→ C denotes the coarse space morphism, then Csm = π−1Csm, and π is an isomorphism over
a dense open subset of C.

(2) If x̄ → C is a node such that the strictly henselian local ring OC,x̄ is the strict henselization of
k[x,y]/(xy), then

C×C Spec
(
OC,x̄

)
�

[
Spec

(
OC,x̄[z,w]/(zw,z

m − x,wm − y)
)
/µm

]
,

where ξ ∈ µm acts by (z,w) 7→ (ξz,ξ−1w).

Definition 3.4. An n-pointed twisted curve C/S marked by disjoint closed substacks {Σi}ni=1 in C is assumed
to satisfy the following:

(1) The Σi are contained in Csm.
(2) Each Σi is a tame étale gerbe over S .
(3) The map Csm \∪Σi → C is an open embedding.
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Let X be a Deligne–Mumford stack. We say that a fine log structure MX is locally free if for every
geometric point x̄→ X, the characteristic sheaf satisfies MX �N

r for some r .

Definition 3.5. In the above situation, we say that a morphism of sheaves of monoids M→M ′ is simple if
for every geometric point x̄→ X, we have

MX M
′
X

N
r

N
r ,

φ

where φ is given by (m1, . . . ,mr ).

Definition 3.6. An n-pointed twisted log curve over S is the data

(C/S, {σi , ai}, l : MS →M ′S ),

where

• (C, {σi})/S is an n-pointed nodal curve,
• MS is the minimal log structure for the family C→ S ,
• the ai : S→Z>0 are locally constant, and
• l is a simple morphism.

Theorem 3.7 (cf. [Ols07, Theorem 1.8]). The fibered category of n-pointed twisted curves is naturally equivalent
to the stack of n-pointed log twisted curves.

There is a natural map from the stack of twisted curves to the stack of (pre)stable curves induced by
taking the coarse space π : C→ C. The induced map on local deformation spaces Def(C)→Def(C) can
be described as a root stack of order mi along the boundary divisor {ti = 0}, where ti is the deformation
parameter of the ith-node of C and mi is the stabilizer order of C at the ith node. The stabilizer orders mi
correspond via Theorem 3.7 to the data of the simple extension l as in Definition 3.5. For more details, see
the discussion following [Ols07, Theorem 1.9 and Remark 1.10].

Example 3.8. Consider a smoothing of a nodal curve as in Lemma 2.5, and let (C,MC)→ (S,MS ) be the
minimal log structure. The appearance of Ami−1 singularities on the total space of the smoothing at the
nodes of C0 is equivalent to the existence of a simple extension MS ↪→M ′S with φ = (m1, . . . ,mk). Thus,
by Olsson’s Theorem 3.7, such a smoothing is the coarse space of a smoothing of the twisted curve with
stabilizer µmi

at the ith node of C0. Note that we can see this directly by taking the canonical stack of the
total space C which introduces a stabilizer µmi

at the Ami−1 singularity.

Let us briefly explicate the construction of Theorem 3.7 as we will use it further on. If π : C→ C is the
coarse map of a twisted curve over S, then the simple extension l : MS ↪→M ′S is the map between the
minimal log structures of h : C→ S and f : C→ S, respectively. The pushforward log structure π∗M̃C sits
in a pushout square

h∗MS
h∗l //

h[
��

h∗M ′S

π∗f
[

��
M̃C

// π∗M̃C.

Each ai keeps track of the stabilizer of C/C along σi , and we have simple extensions NC,i ↪→ π∗NC,i

corresponding to multiplication by ai on characteristic monoids.
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Definition 3.9. Let (X,MX) be a separated Deligne–Mumford stack with fs log structure. A log twisted
prestable map is a diagram

(C,MC) (X,MX)

(S,MS ),

(f ,f [)

where C→ S is a twisted curve and (C,MC)→ (S,MS ) is log smooth. A log twisted prestable map is stable
if the underlying map f is representable and the coarse map h : C/S→ X is a stable map.

We will also make use of the root stack construction of Borne–Vistoli [BV12, Section 4.2] in the case of
a locally free log structure. Suppose (X,MX) is a locally free log scheme and φ : MX →M

′
is a simple

extension. The root stack φ
√
(X,MX) is a log algebraic stack over SchX which associates to s : T → X

the groupoid of pairs (l,ϕ), where l : s∗MX → M ′T is a simple extension of log structures and ϕ is an
isomorphism of maps of characteristic monoids l � s∗φ.

We conclude this section by comparing the sheaves of log differentials between C and C. This simple
comparison is one of the advantages of using log geometry to study twisted curves. Let (f , f [) : (C,MC)→
(S,M ′S ) and (h,h[) : (C,MC)→ (S,MS ) denote the natural log smooth maps, where MS ↪→M ′S is a simple
extension.

Notation 3.10. We set Ω
log
C/S :=Ω

log
(f ,f [)

and Ω
log
C/S :=Ω

log
(h,h[)

and similarly for the cotangent complex.

Proposition 3.11. Let π : C→ C be the coarse space of a twisted curve. Then

L
log
C/S 'qis Ω

log
C/S [0] � π

∗Ω
log
C/S [0] 'qis Lπ

∗
L
log
C/S .

Proof. Since both (f , f [) and (h,h[) are log smooth, L
log
C/S 'qis Ω

log
C/S and L

log
C/S 'qis Ω

log
C/S . Since Ω

log
C/S is

locally free, Lπ∗Ω
log
C/S [0] 'qis π

∗Ω
log
C/S [0]. Therefore, it suffices to show that the natural map

ρ : π∗Ωlog
C/S →Ω

log
C/S

is an isomorphism which we can compute étale locally. Toward that end, suppose S = Spec(R). In an
étale neighborhood of a marked gerbe with stabilizer µa, the map π can be written as R[u] 7→ R[x] with
u 7→ xa, so ρ : dlogu 7→ adlogx. In a neighborhood of a node with stabilizer µa, we have R[u,v]/(uv−ta)→
R[x,y]/(xy − t) with (u,v) 7→ (xa, ya), so ρ is given by dlogu 7→ adlogx, dlogv 7→ adlogy. In either case, ρ
is an isomorphism since a ∈ R is invertible. �

4. Log maps to 1-dimensional targets

In this section, we collect some results on log twisted maps to stacky curves which we will use to lift the
smoothings from Section 2 to the twisted case.

4.1. Introducing log structures

We begin by giving a criterion to lift a prestable map with 1-dimensional target to a log map. More
precisely, suppose g : C → X is a prestable map to a smooth curve X with log structure MX such that
(X,MX) is log smooth over the trivial log point. We wish to find a log structure MC on C such that (C,MC)
is a log smooth curve and g lifts to a log map. For the purpose of constructing smoothings, it suffices by
Lemma 2.6 to consider the case where the connected components of C which are contracted to the marked
points of (X,MX) are smooth (see also Remark 4.2).
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Proposition 4.1. Let g : C → X be a prestable map with (X,MX) as above. Suppose that the 1-dimensional
connected components of the support of f ∗(MX) are smooth genus 0 curves. Then g lifts to a prestable logarithmic
map. That is, there exist log structures MC on C and M on S = Spec(k) and a map g[ : g∗MX →MC such that
(C,MC)→ (S,M) is log smooth.

Proof. The question is étale local on the target, so we may pull back to a chart for the log structure (X,MX).
Hence without loss of generality, we may assume that the target is (A1,0) = (X,D) with its toric log structure
and that g : C →A

1 is a proper map satisfying the assumptions of the proposition. Moreover, we write
g−1(0) = {p1, . . . ,pk ,E1, . . . ,Er} as a disjoint union of points and smooth rational curves. Let us denote by
qij the nodes of C along Ei and by eij the ramification of g at these points. First we claim that g factors
through an expansion of the target

C
h // X̃

ϕ
// X.

Indeed, consider X̃ = E ∪0 A1, where E = P(ND/X +OD ). To construct such a factorization, it suffices to
construct non-constant maps hi : Ei → E with hi(qij ) = 0 and such that the order of tangency of hi at qij is
equal to eij . Since the Ei are smooth rational curves, such maps exist.

Therefore, we have a factorization h : C→ X̃, and it suffices to show that h can be lifted to a log map
where

MX̃ = M̃X̃ ⊕O∗X̃ ϕ
∗MX

since ϕ underlies a log map (X̃,MX̃)→ (X,MX) and a composition of log maps is a log map. Now we
have reduced to the case where the support of h∗(MX̃ /N) is {p1, . . . ,pk ,pk+1, . . . ,pn}, a union of isolated
points. Here the copy of N in the quotient is the pullback of the minimal log structure on Spec(k) along
X̃→ Spec(k). In a neighborhood of the smooth pi , there is a unique divisorial log structure such that the
map lifts, encoding the order of tangency. In a neighborhood of the nodal pi , the map lifts to a log map by
the tangency condition above, which is precisely the predeformability condition for a map to an expansion
(see for example [ACG+13, Section 12]). �

Remark 4.2. Proposition 4.1 may be generalized to the case where the 1-dimensional connected components
of the support of f ∗MX are trees of rational curves at the expense of allowing C to be blown up at the nodes.
To do this, one needs to consider the map gtrop of tropical curves and subdivide the source and target to
make gtrop tropically transverse (see [Ran22, Sections 2.5 and 2.6] for more details). Such a subdivision
corresponds to choosing a possibly larger expansion X̃→ X and a sequence of log blowups C̃→ C after
which we may lift g to a map h : C̃→ X̃ which underlies a log map as in the proposition. Since this is not
strictly necessary for our stated goal of constructing smoothings, we leave the details to the reader.

Next we address the question of lifting the log structure to a twisted map from its coarse space. More
precisely, consider a proper morphism f : C/S → X from a twisted curve to a smooth Deligne–Mumford
curve X. Let MX be a log structure making (X,MX) a log twisted curve with coarse space (X,MX ↪→M ′X).
Here (X,MX) is log smooth, and MX ↪→M ′X is the simple extension encoding the stabilizers of X. Suppose
furthermore that there exist log structures MC and MS on the coarse space C of C and on S , respectively,
such that

(C,MC)
g
//

��

(X,MX)

(S,MS )

is a prestable log map.

Proposition 4.3. Let f : C/S → X and f : (C,MC)/(S,MS )→ (X,MX) be as above. Then there exist a root
stack π : C̃→ C and log structures MC̃ on C̃ and M ′S on S such that (C̃,MC̃)→ (S,M ′S ) is a log smooth curve,
and there exists a map f [ : (f ◦π)∗MX→MC̃ making f into a prestable log map.



14 K. Ascher and D. Bejleri14 K. Ascher and D. Bejleri

Proof. Let g : C → X be the coarse map. By Theorem 3.7, we have simple extensions of log structures
MC ↪→M ′C ,MS ↪→M ′S , andMX ↪→M ′X on C, S , and X, respectively, such that (C→ S, {ai ,σi},MS ↪→M ′S )
and (X→ Spec(k), {bi ,xi}, k∗→ k∗) are log twisted curves. Here the σi : S→ C correspond to the marked
gerbes of C→ S with order of stabilizer given by ai . Similarly, the xi ∈ X correspond to the marked gerbes
of X with stabilizer order bi .

The question is local on X, so we can restrict to a neighborhood of one of the marked points xi with
stabilizer µbi on X and suppose without loss of generality that there is a single marked point x ∈ X with

stabilizer µb. This point is exactly the support of MX =N and M
′
X =N, and the simple extension is simply

the map 1 7→ b.
By assumption, there exists a map g[ : g∗MX →MC making (g,g[) into a log map. By Theorem 3.7, it

suffices to show that there exist a further simple extension M ′C ↪→M ′′C which is an isomorphism away from
finitely many smooth points and a map of log structures f [ : g∗M ′X →M ′C such that the square

g∗MX
g[
//

��

MC

s
��

g∗M ′X
f [
// M ′′C

commutes. Note that M ′X =MX ⊕N/(e = be′), where e is the element corresponding to a local parameter of
x ∈ X and e′ is the generator of the copy of N. By the universal property of this pushout, to construct f [,
it suffices to show that s(g[(e)) is divisible by b. However, we can guarantee this by taking a large enough
simple extension s. �

4.2. Deformations of log twisted maps and their coarse spaces

Let
(C,MC)

(f ,f [)
//

��

(X,MX)

(S,MS )

be a stable log map from a log twisted curve, and suppose that (X,MX) is a log smooth curve. We define
the critical locus of f to be the support of the cokernel of the natural map

f ∗Ω
log
X →Ω

log
C/S .

Note that this map, viewed as a two-term complex, is a presentation of the log cotangent complex L
log
f

relative to S , so we may equivalently define the critical locus to be the support of H0(Llog
f ).

The critical locus is a union of nodes of C, branch points of f , and contracted components of f . By

contrast, the kernel of the above map, or equivalently H−1(Llog
f ), is supported solely on the contracted

components of f .
Let A1, . . . ,Ak be the connected components of the critical locus and U1, . . . ,Uk be affine étale neighbor-

hoods of the Ai with log structure pulled back from C. Suppose each Ui avoids Aj for j , i. Let Def(f ,f [)
be the versal deformation space of the log map (f , f [). Since the moduli space is a Deligne–Mumford
stack, Def(f ,f [) is pro-representable. Let Defi be the miniversal deformation space of the restriction

(fi := f |Ui : Ui → X, f [|Ui ). We have the following proposition (see also [Vak00, Proposition 4.3]).

Proposition 4.4. In the setting above, the natural map

Def(f ,f [)→Def1×· · · ×Defk
is an isomorphism.
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Proof. The deformation space Def(f ,f [) (resp. Defi ) is constructed via the complex

RHom(Llog
f ,OC) (resp. RHom(Llog

fi
,OUi )).

Since the gi : Ui → C are strict étale, Lg∗iL
log
f = L

log
fi

. Let Ki be the component of K = H−1(Llog
f )

supported on Ai ⊂ Ui and Qi the component of Q = H0(Llog
f ) supported on Ai ⊂ Ui . Since the Ai are

disjoint, we have K = ⊕Ki and Q = ⊕Qi and Ki =H−1(Llog
fi

) and Qi =H0(Llog
fi

).

Since both L
log
f and L

log
fi

are two-term complexes, we have distinguished triangles

K[1]→ L
log
f →Q→ and Ki[1]→ L

log
fi
→Qi → .

There is a natural map RHom(Llog
f ,OC)→ RHom(Llog

fi
,OUi ) given by restricting f to Ui . This map

corresponds to the map on deformation spaces Def(f ,f [)→Defi . Taking direct sums yields the diagram of
distinguished triangles

(4.1) RHom(Q,OC) // RHom(Llog
f ,OC) //

��

RHom(K[1],OC) //

⊕
RHom(Qi ,OUi )

//
⊕

RHom(Llog
fi
,OUi )

//
⊕

RHom(Ki[1],OUi )
//

where the vertical maps are equalities via the identifications K = ⊕Ki and Q = ⊕Qi . The middle map
corresponds to the product of the restriction map on deformation spaces

Def(f ,f [)→Def1×· · · ×Defk .

Since the vertical maps on the ends are equalities, the middle map is an isomorphism by the properties of
distinguished triangles, or equivalently the five lemma, from which we conclude. �

Remark 4.5. Via Diagram (4.1), we see that in fact the deformation spaces Defi of an étale neighborhood Ui
of the component Ai of the critical locus is independent of the choice of Ui since the Qi- and Ki-terms are
independent of Ui .

Now we address the question of lifting log smooth deformations along the coarse space map of a log
twisted curve. Let

(C0,MC0
)

h0 //

��

(X,MX)

(S0,MS0)

be a prestable log map, and suppose that there exists a simple extension of log structures MS →M ′S such
that (C0/S0, (σi , ai), l0 : MS0 →M ′S0) is a log twisted curve. Let (C0,Σi)→ S0 be the corresponding twisted
curve with log map (C0,MC0

) → (S0,M ′S0), and let g0 : (C0,MC0
) → (X,MX) be the composition of h0

with the coarse space map π0 : C0→ C. Let (S0, l0 : MS0 →M ′S0) ↪→ (S, l : MS →M ′S ) be a strict closed
immersion of log schemes with simple extensions defined by a square 0 ideal I ⊂ OS .

Proposition 4.6. With notation as above, suppose we have a log smooth deformation

(4.2) (C,MC)
h //

��

(X,MX)

(S,MS )
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of h0 over (S,MS ). Then h lifts uniquely to a log smooth deformation

(C,MC)
g
//

��

(X,MX)

(S,M ′S )

of g0 factoring through h.

Proof. We can summarize the situation with the commutative diagram below:

(C0,MC0
)

π0

''OOOOOOOOOOO g0

++

##

(C0, (π0)∗MC0
)
(id,s0) //

��

(C0,MC0
)

��

h0
// (X,MX)

(S0,M ′S0)
(id,l0) // (S0,MS0),

where the middle square is a pullback in the category of fs log schemes by [Ols07, Lemma 4.6, Diagram
4.6.2, and Lemma 4.7]. Given a strict square 0 thickening (S, l : MS →M ′S ) of (S0, l0 : MS0 →M ′S0) with
ideal I and a log smooth deformation h as in Diagram (4.2), we can form the pullback

(C,M ′C)
//

��

(C,MC)

��

h // (X,MX)

(S,M ′S )
// (S,MS )

in the category of fs log schemes to obtain a log smooth deformation of h0 ◦ (id, s0). Then MC ↪→M ′C is a
simple extension, and by Theorem 3.7, this is equivalent to a log smooth deformation g . �

5. Smoothing twisted stable maps

Our goal now is to lift the smoothings constructed in Section 2 to the case of twisted maps. More precisely,
suppose we have a genus 0 twisted stable map (f0 : C0→ X,p1, . . . ,pn) such that

• X is a smooth stacky curve with coarse map τ : X→ X = P
1,

• the coarse map (h0 : C0→ X,q1, . . . , qn) satisfies Conditions (∗) relative to ∞∈ X, and
• τ is étale over ∞.

The situation can be summarized in the following diagram, where S0 = Spec(k):

(C0,p1, . . . ,pn)
f0 //

π0

��

X

τ
��

(C0,q1, . . . , qn)
h0 //

��

X

S0.

By Theorem 2.12, there is a smoothing h : (C,σi)/S→ X of h0 over S = Spec(R), the spectrum of a DVR,
with generic fiber contained in M(d1,...,dn), and we wish to lift this to a smoothing f : (C,Σi)/S → X of f0
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with generic fiber contained in MΓ (X). That is, we wish to fill in the dotted arrows in the diagram

(C0,pi) //___

π0

��

(C,Σi)
f
//___

π
���
�
�

X

τ
��

(C0,qi) //

��

(C,σi)
h //

��

X

S0 // S .

The difficulty is that there are global obstructions to lifting from a map to X to a map to X. For example,
the j-invariant of a map to M1,1 must satisfy that the discriminant is a sum of a square and a cube which
cuts out a high-codimension locus inside the space of maps to P

1. The key observation is that τ is étale.
Thus we can lift such a smoothing locally around ∞ (see Theorem 5.1) to obtain a partial smoothing of f0.
Then we can construct a further global smoothing when X has some positivity (see Theorem 5.6).

Theorem 5.1. In the situation above, there exists a partial smoothing f : (C,Σi)/S→ X of f0 such that

• f (Σi) =∞,
• Cη is smooth in a neighborhood of f

−1
η (∞), and

• the coarse map on the generic fiber hη is ramified to order di at (σi)η .

Proof. We wish to use the log deformation theory results of Section 4.2. To do this, we begin by showing that
the smoothing of the coarse map h : (C,σi)/S→ X can be endowed with the structure of a stable log map.

Lemma 5.2. Let (h0 : C0→ P
1,q1, . . . , qn) be as above, and let

C P
1

S

h

σi

be a smoothing constructed in Theorem 2.12. Denote by M the divisorial log structure on P
1 corresponding to the

point ∞. Then there exist log structures MC and MS on C and S and a map h
[ : h∗M→MC such that h is a

stable log map over S .

Proof. First note that C→ S is log smooth, where we equip S = Spec(R) with the standard log structure and
C with the divisorial log structure induced by the union of the central fiber and marked sections. Indeed,
this follows since C→ S is a toroidal morphism of the corresponding toroidal embeddings. Endow P

1 with
the divisorial log structure for ∞⊂ P

1; the pullback of the monomial x∞ cutting out ∞ is locally a sum of
monomials for the toroidal structure on C since h∗[∞] is supported on the toroidal boundary. Thus, there is
a natural map h[ of divisorial log structures recording the exponents of the monomial h∗x∞. �

Suppose (R,m) is complete, and let hn : (Cn,σi,n)/Sn→ X be the compatible system of deformations over
Sn = Spec(R/mn) obtained by truncating the smoothing over S . We will lift these to a compatible system of
deformations of h0 in two steps.

First let (g0, g
[
0) : (C0,MC0

)→ (X,M) be the composition h0 ◦π0, where we note that h0 is a log map by
Lemma 5.2 and π0 is a log map by the definition of log twisted curves. By Lemma 4.6 and induction on n,
the map hn extends to a log smooth deformation gn : (Cn,MCn

)→ (X,MX) over (Sn,M ′Sn), whereMS ↪→M ′S
a simple extension and (Sn,M ′Sn) ↪→ (S,M ′S ) is a strict closed embedding. Moreover, the gi are compatible
by construction. In this way, we get an R-point of the formal deformation space SpfR→Def(g0,g[0).

Next we will use Proposition 4.4 to lift this R-point of Def(g0,g[0), at least in a neighborhood of ∞, to a

smoothing of f0. Note that f0 lifts to a log map (f0, f
[
0 ) by Proposition 4.3, where we endow X with the
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pullback log structure τ∗M . Equivalently, this is the divisorial log structure for ∞ but is different from
the canonical log structure on a log twisted curve. Let U ⊂ P

1 be an étale neighborhood of ∞ such that
τ |V : V → U is étale, where V = τ−1(U ), and such that U avoids all the components of the critical loci
of both f0 and g0 away from ∞. Let Deff0,∞ be the miniversal deformation space of the restriction of

(f0, f
[
0 ) to an étale neighborhood of f −10 (∞) and similarly for Defg0,∞. Note that by the independence of the

chosen étale neighborhood (see Remark 4.5), we have that these are the miniversal deformation spaces of
(f0)|U : f −10 (U )→U ⊂ P

1 and (g0)|V : g−10 (V )→ V ⊂ X. We set U ′ = f −10 (U ) = g−10 (V ) and denote by U ′′

a neighborhood of the critical loci of both f0 and g0 away from ∞.
By Proposition 4.4, we have

Def(f0,f [0 ) �Deff0,∞×Deff0,,∞

and

Def(g0,g[0) �Defg0,∞×Defg0,,∞,

where Deff0,,∞ (resp. Defg0,,∞) is the miniversal deformation space of a neighborhood of the critical loci of

(f0, f
[
0 ) (resp. (g0, g

[
0)) which are away from ∞.

Lemma 5.3. The natural map Deff0,∞→Defg0,∞ induced by composition with τ is an isomorphism.

Proof. We proceed as in Proposition 4.4 and see that there is a natural isomorphism

RHom(Llog
f0
,OC) = RHom(Llog

f ′0
,OU ′ )⊕RHom(Llog

f ′′0
,OU ′′ )

and similarly

RHom(Llog
g0 ,OC) = RHom(Llog

g ′0
,OU ′ )⊕RHom(Llog

g ′′0
,OU ′′ ).

We now compute

L
log
f ′0

= [f ∗0ΩU →Ω
log
U ′ ],

L
log
g ′0

= [g∗0ΩV →Ω
log
U ′ ].

Since τ |V is étale, we have that g∗0ΩV � g
∗
0τ
∗ΩU = f ∗0ΩU by the functorality of pullbacks. Therefore, the

natural map

L
log
g ′0
→ L

log
f ′0

is an isomorphism, so we conclude that the natural map

RHom(Llog
f ′0
,OU ′ )→ RHom(Llog

g ′0
,OU ′ )

is an isomorphism. �

Now let SpfR→Deff0,∞ be the composition of the formal R-point of Def(g0,g[0) constructed above with
composition

Def(g0,g[0)→Defg0,∞→Deff0,∞,

where the first map is the projection from Proposition 4.4 and the second map is the inverse of the
isomorphism in Lemma 5.3. There is a canonical splitting of the projection Def(f0,f [0 ) → Deff0,∞ via
the isomorphism of Proposition 4.4 given by picking the constant deformation in Deff0,,∞. Further
composing with this splitting gives us a formal deformation SpfR → Def(f0,f [0 ). Since Def(f0,f [0 ) is the
formal neighborhood of a point of a locally of finite type algebraic stack (see [Che14, GS13]), this formal
deformation algebraizes to a family (f , f [) : (C,MC)/(S,M ′S )→ (X, τ∗M) of log twisted stable maps (see for
example [Bha16, Theorem 1.1] and [BHL17, Corollary 1.5]). Let us denote by f : (C,Σi)/S→ X the underlying
twisted stable map. By construction, the coarse map of f agrees with h over an étale neighborhood of ∞, so
we conclude that f satisfies the required conditions. �
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Remark 5.4. By construction, the smoothing of Theorem 5.1 induces the constant infinitesimal deformation
of the restriction of f0 away from ∞. More precisely, suppose A is a component of the critical locus of f0
which is disjoint from f −10 (∞), and let U → C be an étale neighborhood of A which is disjoint from all other
critical loci. Then f |U modmn is the constant infinitesimal deformation of f0|U×CC0

.

Remark 5.5. In Theorem 5.1 and the situation above, we can drop the assumption that τ is étale over ∞
at the cost of replacing C0 with a root stack. Indeed, if τ is not étale, then τ factors through a non-trivial
root stack along ∞. In this case, one obtains a corresponding simple extension of log structures M→M ′

on P
1. Then by Proposition 4.3, the map f0 can be extended to a log map after taking a further root

stack C1→ C0. The rest of the argument goes through as written to produce a partial smoothing of the
composition C1→ C0→ X with the required properties as in the theorem. We leave the details to the reader
since our main interest is in the case of (M1,1,∞), where τ is étale over ∞.

5.1. Global smoothings for target weighted projective lines

Next we consider the problem of smoothing twisted stable maps to a weighted projective line P = P(a,b)
without any tangency conditions.

Theorem 5.6. Let (f0 : C0→ P,Σi,0) be a genus 0 twisted stable map to a weighted projective line P = P(a,b).
Then there exists a smoothing

C P

S

f

Σi

over S = Spec(R), the spectrum of a DVR.

Proof. Suppose (R,m) is complete. We will construct such a smoothing by building a compatible system
of deformations over R/mn. Since the stack of not necessarily representable twisted stable maps to P

is a locally of finite type algebraic stack, such a compatible system automatically algebraizes as in the
proof of Theorem 5.1. First note that if a = ka′ and b = kb′ with a′ ,b′ coprime, then the canonical map
ρ : P(a,b)→ P(a′ ,b′) is étale, and so infinitesimal deformations lift uniquely along ρ. Thus, without loss of
generality, we may assume that a and b are coprime and P is a twisted curve.

First we reduce to the case where every connected component in the fibers of f0 : C0→ P is irreducible.
We can argue as in Lemma 2.6. If E is a connected component of the preimage f −10 (p) for some p, then we
can view f0|E as a map to the residual gerbe Gp where E is pointed by the nodes. Then since Gp is étale
over Spec(k), it suffices to smooth the composition E→ Spec(k) as a marked twisted curve and then glue
together the smoothing of E with the constant family of maps f |C0\E along the markings corresponding to
nodes exactly as in the proof of Lemma 2.6 to obtain a partial smoothing where each connected component
of the contracted locus is irreducible. Therefore, without loss of generality, we may suppose that every
connected component of the contracted locus of f0 is irreducible.

By Propositions 4.1 and 4.3, there exists a twisted curve C̃0 with a partial coarse space map π0 : C̃0→ C0
such that g0 := f0 ◦π0 : C̃0→ P can be endowed with a log structure where P has the toric log structure

and (C̃0,MC̃0
)→ (Spec(k),M) is log smooth. Since (P,MP) is toric, the log cotangent complex L

log
P � OP is

trivial. Moreover, since C̃0 is genus 0,

(5.1) Ext1(g∗0L
log
P ,OC̃0

) =H1(C̃0,OC̃0
) = 0.

Therefore, the log deformation space of (g0, g
[
0) is log smooth over the log deformation space of the curve

(C̃0,MC̃0
). By Theorem 3.7, Def(C̃0,MC̃0

) is a root stack over Def(C0,p1, . . . ,pn), where the pi are the
smooth marked points lying under Σi,0. In particular, we can build a smoothing (C/S,σi) of (C0,pi) whose
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truncations (Cn/Spec(R/mn),σi,n) lift to a formal smoothing of (C̃0,MC̃0
), after possibly extending the log

structure on S . By the vanishing obstruction group (5.1), the map (g0, g
[
0) can then be lifted to a compatible

family (gn : C̃n→ P, g[n) of log smooth deformations over R/mn.
Thus, after algebraizing, we have a smoothing (g : C̃/S→ P,Σi) of g0. Taking the relative coarse space

of g gives a flat family of maps f : C/Spec(R)→ P whose formation commutes with base change (see [AOV11,
Proposition 3.4] and [AOV08, Corollary 3.3]). Therefore, we conclude that the central fiber of f agrees
with f0 and that the generic fiber is smooth since it is a partial coarse space of the smooth generic fiber
of C̃/S . �

Remark 5.7. For the proof of Theorem 5.6, it is necessary to use log deformation theory even though the
statement does not make any reference to log geometry. The reason is that the stack P is not convex in the
classical sense. The tangent bundle is not necessarily effective even though it has positive degree, and there
are examples of genus 0 twisted stable maps where the vanishing (5.1) does not hold for the usual tangent
bundle. For example, consider C = [E/τ], where E is an elliptic curve with hyperelliptic involution τ : E→ E,
π : C→ P

1 is the coarse space, and pi ∈ P1 are the points lying under the fixed points of τ . Then the line
bundle L = OC

(
1
2p1 −

1
2p2 +

1
2p3 −

1
2p4

)
with sections 0 ∈ L and 1 ∈ L⊗2 induces a map f : C→ P(1,2) with

f ∗TP = L and h1(C,L) = h1(P1,π∗L) = h1(P1,O(−2)) , 0.

6. Proofs of the main theorems

We use the notation from the introduction. Let (X,x1, . . . ,xr ) be a smooth and proper pointed stacky
curve, and suppose that the coarse map τ : X→ X is étale at the points xi (see also Remark 5.5). Fix a tuple
of discrete data Γ = (n0, {Γ1,x1}, . . . , {Γr ,xr}).

Proposition 6.1. The lociMΓ (X) and NΓ (X) (see Definition 1.3 ) are locally closed substacks of K0,n(X,d).

Proof. We run through the conditions of Definition 1.3. Condition (1) is both open and closed by the definition
of a twisted curve, and condition (2) is closed. Conditions (4) and (4′) are open by the openness of the

smooth locus. For condition (3), we consider the cohomology sheaves of the cotangent complex L
log
f . The

locus where f is constant is given by the support of H−1(Llog
f ). Since the universal family of curves over the

moduli space is proper, the locus where the marked points avoid SuppH−1(Llog
f ) is open, and therefore so

is the condition of f being non-constant along the marked points. Finally, under this condition, the order of
tangency of f at xi is measured by the length of coker(f ∗Ω1

X→Ω1
C)x, and by semicontinuity, there is a

locally closed subset where this length is constant di . �

Proof of Theorem 1.5. The marked points p0k for k = 1, . . . ,n0 with no tangency conditions do not change the
outcome of the problem. Indeed, if we can construct such a smoothing with n0 > 0, then by forgetting and
stabilizing, we obtain a smoothing with n0 = 0, and, conversely, if we have a partial 1-parameter smoothing
over a base S with n0 = 0, then up to a finite base change S ′ → S, we can pick generic sections passing
through p0k to obtain a smoothing with n0 > 0. So without loss of generality, suppose n0 = 0.

We proceed by induction on r . The base case is precisely Theorem 5.1. In general, let (f : C →
X, {{pjk}

nj
k=1}

r
j=1) be a map in KΓ (X). Applying Theorem 5.1 to (f : C → X,pr1, . . . ,prnr ) produces a

1-parameter deformation whose generic fiber is a relative map to (X,xr ) with tangency Γr which also satisfies
that the curve is smooth along the preimage of xr . Moreover, by Remark 5.4, the generic fiber is contained
in KΓ (X). Therefore, without loss of generality, we may assume that C is smooth in a neighborhood
of f −1(xr ). By the inductive hypothesis, there exists a 1-parameter deformation of f with generic fiber
contained in NΓ ′ (X), where Γ ′ = ({Γ1,x1}, . . . , {Γr−1,xr−1}). Moreover, by Remark 5.4, this partial smoothing
induces the constant deformation in an étale neighborhood of f −1(xr ), and so the generic fiber is contained
in NΓ (X). �
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Proof of Theorem 1.7. Let (f : C→ X,pjk) be a map contained in KΓ (X). By Theorem 1.5, there exists a
partial smoothing of (f : C→ X,pjk) with generic fiber contained in NΓ (X), so without loss of generality,
suppose that (f : C→ X,pjk) is contained in NΓ (X). By Theorem 5.6, there exists a smoothing of the stable
map into the interior of K0,n(X,d) since X = P is a weighted projective line. Let SpfR→ Deff be the
corresponding formal deformation. By Proposition 4.4, we can write

Deff = Deff ,x1 ×· · · ×Deff ,xr ×Deff ,, ,

where Deff ,xi is a miniversal deformation space of a small étale neighborhood of the fiber f −1(xi) and
Deff ,, is a miniversal deformation space of the critical loci of f which are disjoint from the fibers f −1(xi) for
each i. Then projecting onto Deff ,, and then composing with the section Deff ,,→Deff which picks the
constant deformation on each of the Deff ,xi factors produces a new formal deformation SpfR→Deff which
agrees with the smoothing from Theorem 5.6 away from the fibers f −1(xi) but is the constant deformation in
a neighborhood of f −1(xi) for all i. After algebraizing this formal deformation as in the proof of Theorem 5.1,
we obtain a 1-parameter family over Spec(R) such that the generic fiber is contained in NΓ (X) but is also
smooth away from the union of the fibers f −1(xi). Therefore, the generic fiber is smooth everywhere and
thus contained in MΓ (X). �
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