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Families of stable 3-folds in positive characteristic

János Kollár

Abstract. We show that flat families of stable 3-folds do not lead to proper moduli spaces in any
characteristic p > 0. As a byproduct, we obtain log canonical 4-fold pairs, whose log canonical
centers are not weakly normal.
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Following [KSB88], the moduli space of varieties of general type is compactified as follows. Start with
a family of smooth projective varieties g◦ : X◦B→ B◦ over a smooth, affine curve B◦. Possibly after a base
change C◦→ B◦, it extends to a semi-stable family g : X→ C over a smooth proper curve C ⊃ C◦, as in
[KKM+73]. Finally, let gc : Xc→ C be the relative canonical model as in [KM98, Section 3.8].

In characteristic 0, the resulting fibers have semi-log-canonical singularities and ample canonical class.
These are called stable varieties. Stable varieties with a fixed volume have a coarse moduli space that is
projective over Q; see [Kol23] for details.

Our aim is to give examples to show that this process does not work for 3-folds in positive characteristic.
For simplicity, we work over algebraically closed fields from now on.

Theorem 1. Flat families of stable 3-fold pairs of fixed volume do not form a proper moduli theory in any
characteristic p > 0.

Remark 2. In our examples, the approach of [KSB88] does produce a canonical model gc : Xc→ C; the
problem is that some of its fibers do not satisfy Serre’s condition S2. However, the normalization of each
fiber is a stable variety. So we may well have a proper moduli space, but we need to allow some families
whose fibers are stable only after normalization. However, we do not have a precise conjecture on which
families should be allowed.

It is known that moduli theory is more complicated in positive characteristic. This is partly due to the
failure of Kodaira’s vanishing theorem, and to the current lack of resolution of singularities. The appearance
of p-torsion in the class group leads to other problems. However, it was expected that once these are
correctly accounted for, the rest of the arguments would go through. For surfaces, large parts of the theory
have been worked out in [Pat17, ABP23].

Surprisingly, in Example 4 the normalization of the central fiber does lift to characteristic 0, so Kodaira’s
vanishing theorem holds on it by [DI87]. The problem comes from the nearby fibers that exist only in
characteristic p > 0. These nearby fibers are normal, but not CM by Lemma 17. In characteristic 0, being CM
is a deformation-invariant property of stable varieties; see [KK10]. It is thus possible that such examples do
not occur if one works solely in the closure of the moduli of smooth varieties of general type in dimensions
2 and 3; see [ABL22, Bri22]. As we discuss in Example 3, there are such examples starting in dimension 5 in
characteristic 2.

Therefore, while the examples obtained so far indicate that the positive-characteristic moduli theory is
much more subtle, they do not rule out the possibility that, in the end, the necessary modifications are
mainly technical.

A series of non-CM singularities is discussed in the papers [Kov18, Tot19, Ber19], but it did not seem
to have been observed that they can be used to construct stable degenerations, where the generic fibers
are smooth with ample canonical class, and the special fibers have isolated, non-normal singularities. The
dimension of the resulting examples is about twice the characteristic.

Example 3. (Kovács–Totaro–Bernasconi examples). Let X = G/P be a projective, homogeneous space. The
cases when P is non-reduced were studied in [HL93, Lau96, LR97]. Most of these are not Fano, but if X is
Fano and Kodaira vanishing fails, then cones over X give interesting singularities; see [Kov18, Tot19, Ber19].
The smallest dimension of such an X is 5 in characteristic 2, and about twice the characteristic in general.

Assume that −KX =mH for some ample divisor H for some m ≥ 1. Then |H | is very ample by [Lau96],
so it gives an embedding X ↪→ P

N , where N = dim |H |. Let Y := C(X,H) ⊂ P
N+1 be the projective cone

over X with vertex v. Then

H i+1
v (Y ,OY ) �

∑
m∈ZH

i
(
X,OX(mH)

)
by [Kol13, Remark 3.12]. If H1

(
X,OX(H)

)
, 0, then H2

v (Y ,OY ) , 0, hence depthvOY = 2.
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Let D ∈ |H | be a smooth divisor and DY ⊂ Y its preimage. Since KX +D ∼ (m− 1)H , the pair (Y ,DY ) is
log canonical if m = 1 and canonical if m > 1 by [Kol13, Section 3.1]. The divisor DY is Cartier on Y by
[Kol13, Proposition 3.14(2)].

There is a natural morphism π : C(D,H |D )→DY , which is an isomorphism outside the vertex. Further-
more, π is an isomorphism if and only if depthvDY ≥ 2, which holds if and only if depthv Y ≥ 3. Thus,
if H1

(
X,OX(H)

)
, 0, then DY is not normal. Intersecting Y with a pencil of hyperplanes gives a locally

stable degeneration with generic fiber X and special fiber DY . Taking a suitable cyclic cover as in [KM98,
Section 2.4], we get a series of examples of stable degenerations, where the generic fibers are smooth varieties
with ample canonical class, and the special fibers have isolated non-normal singularities.

The cases described in [Tot19] have m = 2. Then the normalization of DY has canonical singularities;
hence these deformations take place in what is usually considered the ‘interior’ of the moduli space. On the
other hand, these constructions start with a variety for which Kodaira vanishing fails, so they cannot be
lifted to characteristic 0.
Aside. The series of non-CM, quotient singularities of [Yas19] all have depth ≥ 3 by [ES80], so they do

not give similar examples.

All the ingredients going into the proof of Theorem 1 seem to be well known. Unipotent bundles on
elliptic curves have been studied in [Ati57, Har71, Oda71]. Closely related examples of pathological families
of elliptic surfaces are given in [Bri20]. Using cones to go from a lower-dimensional non-general type variety
to a higher-dimensional general type one has been utilized many times. For example, [McK06] used it to
show that log abundance for general type varieties in dimension n+1 implies log abundance for all varieties
in dimension n; see Section 11. Related results on the deformation invariance of plurigenera also appear in
[EH21, BBS21].

The main step is the following; see [KM98, Definition 2.37] for the definition of divisorial log terminal,
abbreviated as dlt.

Example 4. In every characteristic p > 0, there exist a morphism g : Y →A
1 and an effective Q-divisor ∆

on Y such that

(4.a) g : Y →A
1 is smooth, projective, of relative dimension 3;

(4.b) KY +∆ is g-semiample and g-big;

(4.c) the fibers (Yt ,∆t) are dlt;

(4.d) (Y ,Yt +∆) is dlt for every t ∈A1, and this continues to hold after any base change C→A
1;

(4.e) H0
(
Y0,ω

m
Y0
(m∆0)

)
> H0

(
Yt ,ω

m
Yt
(m∆t)

)
for t , 0 and m ≥ 1 sufficiently divisible.

As in [Kol13, Theorem 4.9], we have (4.d)⇒ (4.c) by adjunction. In characteristic 0, inversion of adjunction
says that (4.c) implies the log canonical variant of (4.d). The key new feature is the jump of the plurigenera
(4.e).

There are many examples in positive characteristic where finitely many of the plurigenera jump. The
surfaces produced in [Bri20] lead to families of elliptic pairs (with terminal singularities) where infinitely
many of the plurigenera jump. These surfaces can also be used (instead of Example 8) to obtain families of
3-folds as in Example 4.

The new feature of Example 4 is that the fibers are of general type, and infinitely many of the plurigenera
jump. This has strong consequences.

Proof of Theorem 1. We deduce the theorem from Example 4. Since KY +∆ is g-semiample and g-big, there
exist a morphism with connected fibers h : Y → Y ′ and a relatively ample divisor D ′ on Y ′→A

1 such that
m0(KY +∆) ∼ h∗(m0D

′) for some m0 > 0. By definition, the relative canonical model is(
Y c,∆c

)
:= Proj

A
1 ⊕m≥0g∗ωmY (bm∆c).
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On the right-hand side, we can change the summation to multiples of m0, which shows that
(
Y c,∆c

)
=(

Y ′ ,h∗∆
)
. The fiber over the origin is(

Y c,∆c
)
0
= Proj⊕m≥0 im

[
g∗ω

mm0
Y (mm0∆)→H0

(
Y0,ω

mm0
Y0

(mm0∆0)
)]
,

whereas the canonical model of the fiber (Y0,∆0) is(
(Y0)

c, (∆0)
c
)
:= Proj⊕m≥0H0

(
Y0,ω

mm0
Y0

(mm0∆0)
)
.

By (4.e), we see that (
Y c,∆c

)
0
,
(
(Y0)

c, (∆0)
c
)
.

The properties (4.a)–(4.e) continue to hold after any base change C →A
1, so

(
Y c,∆c

)
×
A

1 C → C is the

canonical model of
(
Y ,∆

)
×
A

1 C→ C. Thus
(
Y c,∆c

)
0
is the unique stable degeneration of the family over

A
1 \ {0} by [Kol23, Theorem 11.40]. �

In our examples, Sing(Yt)c is 1-dimensional. Localizing at its generic point gives a simple elliptic
singularity of dimension 2. There is a natural morphism(

(Y0)
c, (∆0)

c
)
−→

(
Y c,∆c

)
0
,

which is an isomorphism outside the singular set and purely inseparable over Sing(Y c)0. These imply the
following; see [Kol96, Section 7.2] for weak normality.

Corollary 5. For any p > 0, there are log canonical 4-fold pairs (X,S +∆) of characteristic p, where S is a
Cartier divisor that is not weakly normal.

Proof. The pair
(
Y c,∆c + (Y c)0

)
is a log canonical 4-fold, (Y c)0 is a Cartier divisor and a log canonical

center but not weakly normal. �

Remark 6. In characteristic 0, weakly normal coincides with seminormal, and all log canonical centers
are seminormal by [Amb03, Fuj17]; see also [Kol13, Theorem 5.14]. A series of papers culminating in
[BMP+20] establish that MMP for 3-folds works in characteristics at least 7, just as in characteristic 0.
This led to a hope that, in any fixed dimension, new phenomena appear only in low characteristics; see
[Tot19, Ber19, HW19, HW20] for such results. By Corollary 5, this is not the case for 4-folds.

However, in MMP one can frequently work with dlt pairs only; thus a dlt example would be the main test
case. Our

(
Y c,∆c

)
are not dlt; see Lemma 17.

Let (X,S) be a 3-dimensional plt pair. If char ≥ 7, then S is normal, but there are counterexamples
in characteristics 2; see [CT19]. See also [Ber21, Lac20, ABL22] for related examples. However, no such
example seems to be known where S is Cartier.

Question 7. Let (X,S +∆) be a 3-dimensional, semi-log-canonical pair, where S is a Cartier divisor. Is S
weakly normal?

We start the construction of our 3-dimensional examples with a family of elliptic surfaces, similarly to
[Bri20]. Then we build these up to dimension 3.

Example 8. We construct a morphism g : (S,∆+Θ)→A
1 of relative dimension 2, where g : S →A

1 is
smooth, projective, the fibers (St ,∆t +Θt) are terminal, KS +∆ is g-semiample, numerically trivial, and
KS +∆+Θ is g-semiample of Kodaira dimension 1. Moreover, all large plurigenera jump:

H0
(
S0,ω

m
S0
(bm∆0 +mΘ0c)

)
> H0

(
St ,ω

m
St
(bm∆t +mΘtc)

)
for t , 0,m� 1.

The key is the behavior of unipotent vector bundles on elliptic curves in positive characteristic.
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9. Elliptic ruled surfaces. Let E be an elliptic curve. A vector bundle is unipotent if it can be written as a
successive extension of copies of OE .

By [Ati57], for every r , there is a unique rank r , indecomposable, unipotent vector bundle Fr = Fr(E), and
every unipotent vector bundle is a direct sum of these Fr . Thus a unipotent vector bundle U is isomorphic
to Fr if and only if rankU = r and h0(E,U ) = 1.

Note that F2(E) sits in an exact sequence

0 −→OE −→ F2(E) −→OE −→ 0

that corresponds to a non-zero class in H1(E,OE).
Let τ : E′→ E be a non-constant map of elliptic curves. Then we get

0 −→OE′ −→ τ∗F2(E) −→OE′ −→ 0.

This shows that

• if τ∗ : H1(E,OE)→H1(E′ ,OE′ ) is non-zero, then τ∗F2(E) � F2(E′);
• if τ∗ : H1(E,OE) → H1(E′ ,OE′ ) is zero, then τ∗F2(E) � OE′ ⊕ OE′ . This holds if and only if
h0

(
E′ , τ∗F2(E)

)
≥ 2.

Set m = degτ . If the characteristic does not divide m, then 1
m TraceE′/E : τ∗OE′ →OE is a splitting of

OE → τ∗OE′ . Thus H1(E,OE)→H1(E′ ,OE′ ) is an injection. In particular, we are always in the first case in
characteristic 0.

Note that τ∗ : H1(E,OE)→H1(E′ ,OE′ ) is the tangent map of g∗ : Pic(E)→ Pic(E′) at the origin. (This
holds for Abelian varieties; see [Mum70, Section 15].) Thus τ∗ : H1(E,OE)→H1(E′ ,OE′ ) is the zero map if
and only if τ∗ : Pic(E)→ Pic(E′) is inseparable. This cannot happen in characteristic 0, but in characteristic
p > 0, there is always a degree p map ρ : E′ → E such that ρ∗ : H1(E,OE)→ H1(E′ ,OE′ ) is the zero map.
(For higher-dimensional Abelian varieties, ρ∗ has a 1-dimensional kernel; see [Mum70, Section 15].)

Projectivising F2, we get a P
1-bundle π1 : S1→ E with a unique section D1 with self-intersection 0. Note

that KS1 +2D1 ∼ 0 and the normal bundle of D1 is trivial.
Let C ⊂ S1 be an irreducible, reduced curve that is disjoint from D1. Then it is numerically equivalent

to a multiple of D1; hence pa(C) = 1 by adjunction. The projection τ : C→ E is dominant; hence C is a
smooth, elliptic curve. The fiber product S1 ×E C has two disjoint section; hence τ∗F2(E) is trivial. Thus
H1(E,OE)→H1(C,OC) is the zero map.

Conversely, let g : C→ E be a non-constant morphism such that g∗ : H1(E,OE)→H1(C,OC) is the zero
map. Then g∗F2 splits, giving C→ S1 whose image is linearly equivalent to deg(g) ·D1.

Claim 9.1. We have (π1)∗OS1(mD1) = Fm+1 if either chark = 0 or m < chark.

Proof. Let C be an integral curve such that C ∼mD1. Then (C ·D1) = 0, so either C and D1 are equal, or
they are disjoint. As we noted above, the latter cannot happen if either chark = 0 or m < chark. Thus
h0(S1,OS1(mD1)) = 1 for such values. Pushing forward the filtration

OS1 ⊂ OS1(D1) ⊂ · · · ⊂ OS1(mD1)

gives that (π1)∗OS1(mD1) is unipotent. �

Claim 9.2. If chark = p > 0, then (π1)∗OS1(pD1) = OE ⊕Fp.

Proof. Choose a degree p map ρ : E′→ E such that ρ∗ : H1(E,OE)→H1(E′ ,OE′ ) is zero. Then pull-back
by ρ : E′→ E splits F2, so H

0(S1,OS1(pD1)) ≥ 2. On the other hand, from

0 −→OS1((p − 1)D1) −→OS1((pD1) −→OD1
−→ 0

we get that Fp ↪→ (π1)∗OS1(pD1) and H0(S1,OS1(pD1)) ≤ 2. These imply that we have (π1)∗OS1(pD1)
)
�

OE ⊕Fp. �
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It is not clear what the (π1)∗OS1(mD1) are for larger values of m, but we have the following.

Claim 9.3. In all cases, h0(S1,OS1(mD1)) < m+1 for m ≥ 1.

Proof. The filtration
OS1((p − 1)D1) ⊂ OS1(pD1) ⊂ · · · ⊂ OS1(mD1)

gives that H0(S1,OS1(mD1)) ≤ 1+ (m− p+1) =m+1− (p − 1) < m+1. �

Note that if chark = 0, then in fact h0(S1,OS1(mD1)) = 1. If chark = p > 0, then we expect that
h0(S1,OS1(mD1)) = bm/pc+1. (See [Sch10] for computing Fm ⊗Fn.)

Remark 9.4. The reader can check that in our constructions, one can replace E with any Abelian variety A
of dimension n. The key property is that there is a non-split extension

0 −→OA −→ F2(A) −→OA −→ 0

that becomes split after a suitable degree p cover A′ → A. By [Mum70, Section 15], this always holds in
characteristic p > 0. The resulting g : (Y ,∆)→A

1 has relative dimension n+2. The singular sets of the
canonical models (Yt)c are still 1-dimensional.

10. Construction of Example 8. Over A1, there is a degeneration of F2 to the split bundle OE ⊕OE . Thus
we get a vector bundle F over E ×A1 whose restriction to E × {0} is OE ⊕OE and to E × {t} is F2 for t , 0.

Let π : S→ E ×A1 be the corresponding P
1-bundle with the unique section D in |OS(1)|. If 0 , t ∈A1,

then we get πt : (St ,Dt)→ Et = E isomorphic to π1 : (S1,D1)→ E, and over 0 ∈ A1 we get (S0,D0) �
(E ×P1,E × {∞}).

The jump in the plurigenera comes from Claim 9.3:

H0
(
S0,OS0(mD0)

)
=m+1 > H0

(
S1,OS1(mD1)

)
.

Now consider KS +3D = (KS +2D) +D ∼D . It is nef, and by the above computations, all the plurigenera
of the fibers jump at c = 0. However, (St ,2Dt) is not log canonical, so this is not yet very useful.

Now assume that we are in characteristic p > 0, and let ρ : E′→ E be a degree p morphism as in Section 9
such that ρ∗ : H1(E,OE)→H1(E′ ,OE′ ) is the zero map.

Consider (ρ,1) : E′×A1→ E×A1. The pull-back of St is a trivial P
1-bundle for every t ∈A1, so (ρ,1)∗S

is a trivial P1-bundle over E′ ×A1. Pushing forward, we get that |pD | is a basepoint-free relative pencil
on S .

We can thus replace 2D with a linear combination

∆ := 1
mpG1 + · · ·+ 1

mpG2m,

where the Gi ∈ |pD | are general and m is large enough. We then have a pair (S,∆) (we can even make the
fibers terminal) such that KS +∆ ∼

Q
0. Now we have a locally stable morphism(

S,∆+D
)
→A

1, (10.1)

where KS +∆+D is semiample, and all (large enough) plurigenera jump at t = 0. (If we want terminal fibers,
we can also replace D with 1

mpG
′
1 + · · ·+

1
mpG

′
m as above.)

Working on the surface S0, the Iitaka fibration of KS0 +∆0 +D0 is the coordinate projection τ0 : S0 �
E ×P1→ P

1. However, the restriction of the (relative) Iitaka fibration of S to S0 is given by a pencil in
|pD0| whose members are geometrically connected. The only such pencil is the composite of τ0 with the
Frobenius morphism P

1→ P
1.

This example has Kodaira dimension 1, but we can use it to get a general type example in one dimension
higher, using the following method.
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11. Let Z be a projective variety whose pluricanonical maps behave in unexpected ways. Then [McK06]
constructs a general type pair (of dimension one higher) whose pluricanonical maps also behave unexpectedly.

Choose a sufficiently general embedding Z ↪→ P
N , and let C ⊂ P

N+1 be the cone over Z with vertex
v ∈ C.

Blow up v to get Y → C with exceptional divisor E � Z . By adjunction, ωY (E)|E � ωE . So, assuming that
the maps

H0
(
Y ,ωmY (mE)

)
−→H0(E,ωmE ) �H

0(Z,ωmZ ) (11.1)

are surjective, the behavior of the pluricanonical maps of Z should be ‘visible’ from the pluricanonical maps
of the pair (Y ,E).

The problem is that Y is a P
1-bundle over Z, so in fact H0

(
Y ,ωmY (mE)

)
= 0 for m > 0. There are two

ways to fix this. Let HC be the hyperplane class on C and HY its pull-back to Y .
First, choose d� 1, and let DC ∼ dHC be a general divisor not passing through v. It gives DY ⊂ Y , with

DY disjoint from E, and the pair (Y ,DY +E) is of general type. We work out below that the maps

H0
(
Y ,ωmY (mDY +mE)

)
−→H0(E,ωmE ) �H

0(Z,ωmZ ) (11.2)

are surjective.
Second, fix r > 0 not divisible by the characteristic, fix d� 1, and let s ∈ OC(drHC) be a general section.

As in [KM98, Section 2.4], these data determine degree r, ramified, cyclic covers

πC : Cr := C
[
r
√
s
]
−→ C and πY : Yr := Y

[
r
√
s
]
−→ Y ,

whose canonical classes are π∗C
(
KC + d(r − 1)HC

)
(resp. π∗Y

(
KY + d(r − 1)HY

)
).

Here Er := π
−1
Y (E) is r disjoint copies of E. We check that the maps

H0
(
Yr ,ω

m
Yr
(mEr )

)
−→H0(Er ,ω

m
Er
) � ⊕r1H

0(Z,ωmZ ) (11.3)

are surjective.

Next we go through the details of this for log canonical pairs (Z,∆Z ) such that KZ +∆Z ∼Q 0. For these,
the cone is also log canonical, and the vertex is a log canonical center.

12. Cone construction. Start with a projective pair (Z,∆Z ) such that KZ +∆Z ∼Q 0, and a semiample
Q-divisor DZ . Choose any ample L, and consider Y := ProjZ(OZ +L). It is a P1-bundle τ : Y → Z with two
sections: Z0 ⊂ Y with normal bundle L−1, and Z∞ ⊂ Y with normal bundle L. With ∆Y := τ∗∆Z , we have

KY +∆Y +Z0 +Z∞ ∼Q 0.

Thus KY +∆Y +Z0+2Z∞+DY is semiample and big. We get its canonical model φY : Y → Y c. Here φY is
an isomorphism on Y \Z0, and it restricts to the morphism given by multiples of DZ on Z0 � Z .

If (Z,∆Z +DZ ) is dlt, then so is (Y ,∆Y +Z0 +Z∞ +DY ) by [Kol13, Proposition 2.15]. Since |Z∞| is ample
on Y \Z0, we can replace 2Z∞ with a suitable Q-divisor Z ′∞ ∼Q 2Z∞ to get a dlt pair

(Y ,∆Y +Z0 +Z
′
∞ +DY ) (12.1)

with these properties.
If L is very ample, then we can let Z ′∞ be the sum of two general members of |Z∞|; otherwise, we

may need Z ′∞ to be a Q-divisor. This may be preferable anyhow since this way we can arrange that
(Y ,∆Y +Z0 +Z ′∞ +DY ) is terminal away from Z0. Note, however, that Z0 must stay with coefficient 1, so dlt
is the best that we can have for (Y ,∆Y +Z0 +Z ′∞ +DY ). This is in accordance with [ABL22, Corollary 1.3].
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13. Computing the plurigenera. Let (Y ,∆Y + Z0 + Z ′∞ +DY ) be as above. Taking into account that
KY +∆Y +Z0 +Z∞ ∼Q 0, for all sufficiently divisible m, we have

H0
(
Y ,OY (mKY +m∆Y +mZ0 +mZ

′
∞ +mDY )

)
=H0

(
Y ,OY (mZ∞ +mDY )

)
=H0

(
Z,OZ(mDZ )⊗ Sm(OZ +L)

)
=

∑m
r=0H

0
(
Z,Lr(mDZ )

)
.

(13.1)

Since DZ is semiample, by Fujita’s vanishing theorem [Fuj83] we can choose L sufficiently ample such that

h0
(
Z,Lr(mDZ )

)
= χ

(
Z,Lr(mDZ )

)
for r ≥ 1 and for all sufficiently divisible m. These terms are thus deformation invariant. (In our case, this
actually works for any L since Kodaira vanishing holds on the St ; cf. [Muk13, Theorem 3].)

The key term is the r = 0 summand H0
(
Z,OZ(mDZ )

)
of (13.1). Thus we see that if we vary the pair

(Z,∆Z +DZ ), then any jump in the plurigenera of (Z,∆Z +DZ ) leads to the same jump in the plurigenera of
(Y ,∆Y +Z0 +Z ′∞ +DY ), for all sufficiently divisible m.

14. Construction of Example 4. Start with
(
S,∆+ 1

2D
)
→A

1 as in (10.1). Let L be any relatively ample

line bundle on S , and set Y := ProjS(OS +L). We get (Y ,∆Y +Z0 +Z ′∞ +DY )→A
1 as in (12.1).

Claims (4.c)–(4.d) follow from Corollary 16, and the jump of the plurigenera (4.e) is computed in Section 13.

In characteristic 0 one usually proves claims (4.c)–(4.d) using inversion of adjunction as in [Kol13,
Theorem 4.9]. This is not known in positive characteristic; see however [HX15] for related results for 3-folds.
The following is a combination of [KSC04, Exercise 6.18] and [Kol13, Proposition 2.7].

Lemma 15. Let X be a regular scheme and
∑
i∈I Di a simple normal crossing divisor. For J ⊂ I , set DJ := ∩i∈JDi .

Let ∆ be an effective R-divisor. Assume that

(15.a) for every J , none of the irreducible components of DJ is contained in Supp∆, and multx(∆|DJ ) ≤ 1 (resp.
< 1) for every x ∈DJ .

Then (X,D +∆) is log canonical (resp. dlt ) near D .

Proof. Let E be an exceptional divisor over X. In order to show that a(E,X,D +∆) ≥ −1, we may localize at
the generic point of centerX E ⊂ X. So assume that centerX E = {x} is a closed point. If x < Supp∆, then
we are done by [Kol13, Proposition 2.7]. Otherwise, let π : BxX→ X be the blow-up with exceptional divisor
D0. Using induction and [KM98, Lemma 2.45], it is enough to prove the following two claims:

(15.b) a(D0,X,D +∆) ≥ −1 (resp. > −1), and
(15.c)

(
BxX, (D0 +π−1∗ D) +π−1∗ ∆

)
also satisfies (15.a).

These are both straightforward. �

Corollary 16. Let g : (X,D +∆)→ C be a smooth morphism. Assume that
(
X, (Xc +D) +∆

)
satisfies (15.a) for

every c ∈ C.
Then

(
X, (Xc +D) +∆

)
is log canonical (resp. dlt ) for every c ∈ C, and the same holds after every base change

C′→ C.

The following also shows that the canonical models of the fibers do not form a flat family.

Lemma 17. The (Yi)c are not dlt, (Y0)c is CM, but (Y1)c � (Y c)t for t , 0 is not CM.

Proof. We have τYi : Yi → (Yi)c, which restricts to the elliptic fibration τi : Si → P
1. The localization of (Yi)c

at the generic point of its singular set is thus a 2-dimensional, elliptic singularity. In particular, the (Yi)c are
not dlt.
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For the CM claims, we aim to use Lemma 18. As in Section 13, the cohomologies of line bundles on the Yi
are easy to compute. In particular, we obtain that R1(τYi )∗OYi = R

1(τi)∗OSi .
Since S0→ P

1 is trivial, R1(τ0)∗OS0 � OP
1 . Next we show that R1(τ1)∗OS1 has a 0-dimensional associated

point.
With D1 as in Section 9, τ1 is given by the pencil |pD1,C|. The general member is a smooth, elliptic

curve, so R1(τ1)∗OS1 is a coherent sheaf of generic rank 1. If it is torsion-free, then it is a line bundle.
In particular, H1(pD1,OpD1

) = 1. Next we compute that H1(pD1,OpD1
) = 2, giving a contradiction, so

R1(τ1)∗OS1 is not torsion-free.
Consider the exact sequence

0 −→OS1 −→OS1(pD1) −→OpD1
−→ 0.

Pushing forward to E and using Claim 9.2, we get

0 −→OE
α−→ Fp ⊕OE −→ π∗OpD1

−→ 0.

Note that OS1 →OS1(pD1) factors through OS1((p − 1)D1), and π∗OS1((p − 1)D1) gives that Fp summand.
Thus the composite of α with the second projection αE : OE →OE ⊕Fp→OE is zero. Therefore, π∗OpD1

�

Fp−1 ⊕OE , and so H1(pD1,OpD1
) = 2. �

Lemma 18. Let g : Y → X be a birational morphism of normal, projective 3-folds. Let L be an ample line bundle
on X. Assume that H i(Y ,g∗L−r ) = 0 for i < 3 and r � 1. Then X is CM if and only if R1g∗OY does not have a
0-dimensional associated point.

Proof. The Leray spectral sequence computing H i(Y ,g∗L−r ) contains

H1(X,L−r ) ↪−→H1(Y ,g∗L−r ) and H0(X,L−r ⊗R1g∗OY ) −→H2(X,L−r ) −→H2(Y ,g∗L−r ).

Thus H1(X,L−r ) = 0, and H2(X,L−r ) = 0 for r � 1 if and only if R1g∗OY has no 0-dimensional associated
points. The rest follows from [KM98, Corollary 5.72]. �
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