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Trace formalism for motivic cohomology
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Abstract. A goal of this paper is to construct trace maps for the six functor formalism of motivic
cohomology after Voevodsky, Ayoub, and Cisinski–Déglise. We also construct an ∞-enhancement
of such a trace formalism. In the course of the ∞-enhancement, we need to reinterpret the trace
formalism in a more functorial manner. This is done by using Suslin–Voevodsky’s relative cycle
groups.
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1. Introduction

Let f : X→ S be a flat morphism of dimension d between schemes of finite type over a field k. Let Λ be a
torsion ring in which the exponential characteristic of k is invertible. In [SGA4, Exposé XVIII, Théorème 2.9],
the trace map Trf : Rf!f ∗Λ(d)[2d]→Λ satisfying various functorial properties is constructed. Here, the
cohomological functors are taken for the étale topoi. Furthermore, the trace map is characterized by such
functorialities. This trace map is fundamentally important, and for example, it is used to construct the cycle
class map. In other words, we may view the trace formalism as a device to throw cycle-theoretic information
into the cohomological framework. The main goal of this paper is to construct an analogous map for the
motivic cohomology of Voevodsky, and its ∞-enhancement. The ∞-enhancement of the trace formalism will
serve as an interface between “actual cycle” and “∞-enhancement of motivic cohomology” in [Abe22b].

Let us explain the method to construct the trace formalism. From now on, we consider the six functor
formalism of the motivic cohomology theory with coefficients in Λ := Z[1/p], where p is the characteristic
of our base field k. The principle that makes the construction of the trace map work is the observation that
the higher homotopies vanish. More precisely, we have

(1.1) RiHom
(
Rf!f

∗Λ(d)[2d],Λ
)

= 0

for i < 0. A benefit of this vanishing is that if we take an open subscheme j : U ↪→ X such that Us ⊂ Xs
is dense for any s ∈ S, then constructing Trf and constructing Trf ◦j are equivalent. In [SGA4], this
property is used ingeniously to reduce the construction to simpler situations. Another benefit which is more
important for us is that the vanishing allows us to construct the map “locally”. Namely, by the vanishing,
constructing Trf is equivalent to constructing a morphism R2df!f

∗Λ(d)→Λ of sheaves. In the case of étale
cohomology, since it admits proper descent, by de Jong’s alteration theorem, the construction is reduced to
the case where S is smooth. We note that we commonly use de Jong’s alteration theorem to reduce proving
properties to smooth cases, but to reduce constructions to smooth cases needs control of higher homotopies,
which requires great amount of effort in general. In the case where S is smooth, the construction is easy
because we have an isomorphism Hom

(
Rf!f ∗Λ(d)[2d],Λ

)
�Hom

(
RpX!p

∗
XΛ(dX)[2dX],Λ

)
, where pX is the

structural morphism for X and dX := dim(X), using the relative Poincaré duality, namely the isomorphism
p∗S(dS )[2dS ] � p!

S . In the case of étale cohomology, in [SGA4], the relative Poincaré duality theorem is
established by using the trace formalism, and the argument we explained here is somewhat circular. However,
in the theory of motives, the relative Poincaré duality follows from theorems of Morel–Voevodsky, Ayoub,
and Cisinski–Déglise which use completely different methods, and the above argument actually works.
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Now, assume we wish to enhance the trace map ∞-categorically. The first question that immediately
comes up with is that what it means by “∞-enhancement” in this situation. To address the question, we need
a reinterpretion of the trace map, and to motivate our reinterpretation, let us discuss a defect of traditional
formalism. Let f be a flat morphism between non-reduced schemes such that fred is not flat. In this situation,
we have the trace map Trf . However, since motivic or étale cohomology is insensitive to nil-immersions,
Trf induces a similar map for fred. This observation gives us an impression that the trace map should be
associated with a “cycle” rather than a “scheme”. To realize this idea, we use the relative cycle group of
Suslin and Voevodsky. For a morphism f : X→ S , they defined a group denoted by zequi(X/S,d) which is a
certain subgroup of the group of cycles in X equidimensional of dimension d over S (see [SV]). When f is
flat of dimension d, the cycle [X] is an element of zequi(X/S,d). Using these observations, we show that

there exists a morphism zequi(X/S,n)→ Hom
(
Rf!f ∗Λ(n)[2n],Λ

)
for any n, such that, when f is flat of

dimension d, the image of [X] ∈ zequi(X/S,d) is the traditional trace map. The object Hom
(
Rf!f ∗Λ(n),Λ

)
is often called the Borel–Moore homology, and is denoted by HBM(X/S,Λ(n)). Note that we are considering it
as an object of the derived category (or as a spectrum). The associations zequi(X/S,n) and HBM(X/S,Λ(n))
to X/S are functorial with respect to the base changes of S and pushforwards along proper morphisms
X→ X ′ over S . These functorialities yield (∞-)functors from a certain category Ãr to the ∞-category of
spectra Sp. The ∞-enhancement of the trace map can be formulated as a natural transform between these
∞-functors, and we will show the existence of such an ∞-functor in the last section. This ∞-enhancement
of the trace map is one of the crucial ingredients in [Abe22b].

Before concluding the introduction, let us present the organization of this paper. In Section 2, we recall
the six functor formalism of the theory of motives after Voevodsky, Ayoub, Cisinski–Déglise. In Section 3, we
formulate our main result. To describe the functoriality of zequi(X/S,n) and HBM(X/S,Λ(n)) above, it is
convenient to use the language of “bivariant theory” after Fulton–MacPherson. We start by recalling such
a theory, and we state our main theorem. We conclude this section by showing an analogue of (1.1) in the
motivic setting. In Section 4, we construct the trace map in the case where the base scheme S is smooth. In
Section 5, we construct the trace map in general and show the main result. In Section 6, we establish the
∞-enhancement. We note that, even though we use the language of ∞-categories throughout the paper for
convenience and coherence, it is straightforward to formulate and prove the results of Sections 2 to 5 using
the language of model categories, as in [CD15, CD19]. Using the language of ∞-categories is more essential
in Section 6.
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Notation and conventions

We fix a perfect field k of characteristic p > 0. By ∞-category, we always mean (∞,1)-category, and by
category we always mean 1-category. For a scheme S , we denote by Sch/S the category of schemes separated
of finite type over S . When S = Spec(k), we often denote this by Sch/k .

2. Review of six functors

2.1. We will use the language of∞-categories, but except for §6, this is used just to facilitate the presentation.
See the remark at the end of this paragraph for some explanation.
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Let P rL
st be the full subcategory of P rL (cf. [Lur09, Definition 5.5.3.1]) spanned by stable ∞-categories.

We have the functor SH : Schop
/k → P rL

st sending T to Voevodsky-Morel’s stable homotopy ∞-category
SH(T ) (cf. [CD15, §2.1] or [CD19, Example 1.4.3] for model categorical treatment and [Abe22a, §6.7] and
references therein for ∞-categorical treatment). Let Λ be a commutative ring. Then Voevodsky defined the
motivic Eilenberg-MacLane spectrum HΛk , which is an E∞-algebra of SH(Spec(k)). By pulling back, this
spectrum yields a spectrum HΛT /k on SH(T ), and defines an “absolute ring SH-spectrum” in the sense of
[Deg18, Definition 1.1.1]. The absolute ring SH-spectrum HΛT /k is equipped with an “orientation” in the
sense of [Deg18, Definition 2.2.2] by [Deg18, Example 2.2.4]. Under this situation, all the results of [Deg18,
Introduction, Theorem 1] can be applied. We do not try to recall the definitions of each terminology, but
instead, we sketch what we can get by fixing these data.

We put DT := Mod
HΛT

(SH(T )), the symmetric monoidal∞-category of HΛT -module objects in SH(T ).
Then the assignment DT to T can be promoted to a functor D : Schop

/S → P rL
st which yields “motivic

categories” in the sense of [CD19]. This can be checked from [CD19, Proposition 5.3.1 and Proposition 7.2.18].
We may find a summary of the axioms of what this means in [Abe22a, §6.1], and also references. Among
other things, we may use “six functors”. In this ∞-categorical context, we can find a construction of six
functor formalism in [Abe22a, §6.8], which follows the idea of [Kha16]. Let X ∈ Sch/S . Then DX is a
symmetric monoidal stable ∞-category. Given a morphism f : X→ Y in Sch/S , the functor D induces the
functor DY →DX , which we denote by f ∗ in accordance with the six functor formalism of Grothendieck.
The functor f ∗ admits a right adjoint, which we denote by f∗. We also have the “extraordinary pushforward
functor” f! : DX →DY as well as its right adjoint f !. We have the natural transform f! → f∗ which is an
isomorphism when f is proper.

The orientation on HΛ yields an orientation on D in the sense of [CD19, Definition 2.4.12] by [CD19,
Example 2.4.40] and [Deg18, §2.2.5]. For n ∈Z, we denote the n-th Tate twist by (n), the n-th shift by [n],
and (n)[2n] by 〈n〉. We often denote the unit object of DT by ΛT . By fixing an orientation, we have a
canonical isomorphism f ∗(d)[2d] � f ! for any smooth morphism f in Sch/S (cf. [CD19, Theorem 2.4.50]). In
fact, the fundamental class constructed in [Deg18, Introduction, Theorem 1] can be seen as a generalization
of this isomorphism.

Remark. If the reader feels uncomfortable with using ∞-categories, it is essentially harmless to replace P rL
st

by the the (2,1)-category of triangulated categories T ri above. Then, we may regard DT as a triangulated
category. The only exception might be that when we consider descents. In order to consider descents inside
the traditional framework, we need to introduce the category of diagrams as in [CD19, §3]. Therefore, strictly
speaking, simply considering the functor Schop

/S →T ri is not enough for the theory of descent. We leave the
details to the interested reader.

2.2. Let f : X→ S . For F ∈ DS , we set

H∗c(X/S,F ) := f!f
∗F , H∗(X/S,F ) := f∗f

∗F and HBM(X/S,F ) := HomDS
(
H∗c(X/S,F ),ΛS

)
.

Here, we view HBM as a spectrum. When the coefficient ring Λ is obvious, we abbreviate HBM(X/S,Λ(n))
by HBM(X/S,n). We write HBM

m (X/S,F ) for πmHBM(X/S,F ), and call it the Borel-Moore homology. Note
that πmHBM(X/S,n) coincides with (HΛ)BM

m,n(X/S) in [Deg18]. Assume we are given a closed subscheme
Z ⊂ X and denote the complement by U . By localization sequence of 6-functor formalism, we have the long
exact sequence

· · · −→HBM
m (Z/S,F ) −→HBM

m (X/S,F ) −→HBM
m (U/S,F ) −→HBM

m−1(Z/S,F ) −→ ·· · .

2.3. We introduce the pdh-topology as follows.

Definition. We define pdh-topology on Sch/k to be the topology generated by the following two types of
families:
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(1) {f : Y → X}, where f is finite surjective flat morphism of constant degree power of p;
(2) cdh-covering.

We call `′dh-topology what is called `dh-topology in [CD15, §5.2]. Obviously, cdh-topology is coarser
than pdh-topology, and pdh-topology is coarser than `′dh-topology for any ` , p.

Let S be an object of Sch/k . Recall that the theorem of Temkin [T], which is a refinement of Gabber’s
prime-to-` alteration theorem, states as follows: there exists an alteration S ′→ S whose generic degree is some
power of p and S ′ is smooth. Without Temkin’s theorem, pdh-topology might have been useless, but armed
with the theorem, we can show the following statement as usual.

Lemma. For any S ∈ Sch/k , there exists a pdh-covering f : T → S such that T is a smooth k-scheme. We may
even take f to be proper.

Proof. Even though the argument is standard, we recall a proof for the sake of completeness. We use
the induction on the dimension of S . Using Temkin’s theorem, take an alteration T1→ S whose generic
degree is power to p and T1 is smooth. By using Gruson-Raynaud’s flattening theorem, we may take
a modification S ′ → S with center Z ⊂ S such that the strict transform T2 of T1 is flat over S ′ . By
construction T2→ S ′ is finite surjective flat morphism whose degree is power to p, and thus, {T2→ S ′} is a
pdh-covering. By induction hypothesis, we may find a proper pdh-covering W → Z such that W is smooth.
Because {Z,S ′→ S} is a pdh-covering, {W,T2→ S} is also a pdh-covering. This covering factors through
{W,T1→ S}, so the latter is a pdh-covering as well. Thus, we may simply take T :=W

∐
T1. �

For any S ∈ Sch/k , we may find a pdh-hypercovering S•→ S such that Si is k-smooth by standard use of
the lemma above and [SGA4, Exposé Vbis, Proposition 5.1.3].

2.4. We have the following pdh-descent, which is a straightforward corollary of a `′dh-descent result by
S. Kelly.

Lemma. Assume p−1 ∈ Λ. Then any object of DS satisfies pdh-descent. In other words, if we are given a
pdh-hypercovering p• : S•→ S and F ∈ DS , the canonical morphism F → lim←−− i∈∆pi∗p

∗
iF in the ∞-category DS

is an equivalence.

Proof. Let C := cofib
(
F → lim←−− i∈∆pi∗p

∗
iF

)
. We wish to show that C ' 0, and for this, it suffices to show that

C ⊗
Z[1/p] Z(`) ' 0 for any prime ` , p (cf. [CD15, proof of Proposition 3.13]). To show this, we must show

that for any compact object G ∈ DS , we have Hom(G,C ⊗Z(`)) ' 0. We have

Hom(G,C ⊗Z(`)) ' cofib
[
Hom(G,F ⊗Z(`))→Hom(G, ( lim←−− i∈∆pi∗p

∗
iF )⊗Z(`))

]
.

We may further compute as

Hom
(
G, ( lim←−− i∈∆pi∗p

∗
iF )⊗Z(`)

)
'Hom

(
G, lim←−− i∈∆pi∗p

∗
iF

)
⊗Z(`)

'
(

lim−−→i∈∆
(Hom(G,pi∗p∗iF )

)
⊗Z(`)

' lim−−→i∈∆
Hom

(
p∗iG,p

∗
iF

)
⊗Z(`)

' lim−−→i∈∆
Hom

(
p∗iG,p

∗
i

(
F ⊗Z(`)

))
'Hom

(
G, lim←−− i∈∆pi∗p

∗
i

(
F ⊗Z(`)

))
,

where the 1st and 4th equivalences follow from the compactness of G and p∗iG respectively. By [CD15,
Theorem 5.10], F ⊗ Z(`) admits `′dh-descent, in particular, pdh-descent. Thus, combining with the
computations above, we have C ⊗Z(`) ' 0 as desired. �
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Now, let G ∈ DS . Then we have

Hom(G,F )
∼−−−→Hom

(
G, lim←−− i∈∆pi∗p

∗
iF

)
� lim←−− i∈∆Hom

(
G,pi∗p∗iF

)
� lim←−− i∈∆Hom

(
p∗iG,p

∗
iF

)
.

We write Homk := π−kHom. Assume that Homk
(
p∗iGi ,p

∗
iFi

)
� 0 for any i ∈ ∆. Then the complex of

∆-indexed diagrams
{
Hom

(
p∗iGi ,p

∗
iFi

)}
i∈∆

belongs to D+(Ab∆), and induces a spectral sequence

(2.1) E
p,q
2 = Rp lim←−− i∈∆Homq(p∗iG,p

∗
iF ) =⇒Homp+q(G,F ).

3. Main result and vanishing of higher homotopy

3.1. Let us recall the definition of bivariant theory after Fulton and MacPherson very briefly.

Definition. A bivariant theory T over k is an assignment to each morphism f : X→ Y in Sch/k a Z-graded
Abelian group T (f ) equipped with three operations:

(1) (Product) For composable morphisms f : X→ Y and g : Y → Z , we have a homomorphism of graded
groups • : T (f )⊗ T (g)→ T (g ◦ f ).

(2) (Pushforward) Assume we are given composable morphisms f and g as in (1). If, furthermore, f is
proper, we have the homomorphism f∗ : T (g ◦ f )→ T (g).

(3) (Pullback) Consider the following Cartesian diagram:

(3.1)
X ′

g ′
//

f ′

��
�

X

f
��

Y ′
g
// Y .

Then we have the homomorphism g∗ : T (f )→ T (f ′).

These operations are subject to (more or less straightforward) compatibility conditions. Among these
compatibility conditions, let us recall the projection formula for the later use. We consider the diagram (3.1)
such that g is proper, and a morphism h : Y → Z . Assume we are given α ∈ T (f ) and β ∈ T (h ◦ g). Then
we have α • g∗(β) = g ′∗(g

∗α • β).
Given bivariant theories T , T ′ , a morphism of theories T → T ′ is a collection of homomorphisms

T (f )→ T ′(f ) for any morphism f in Sch/k compatible with the operations above. We refer to [FM81, §2.2]
for details.(1)

Definition 3.2. Let T be a bivariant theory over k. An A
1-orientation of T is an element η ∈ T 1(A1→

Spec(k)), where T 1 is the degree 1 part. Let T ′ be another bivariant theory endowed with an A
1-

orientation η′ . A morphism of bivariant theories F : T → T ′ is said to be compatible with the orientation if
F(A1→ Spec(k))(η) = η′ .

Remark. Fulton and MacPherson called an orientation a rule to assign an element of T (f ) to each f in a
compatible manner. Since our A

1-orientation can be regarded as a part of this data, we named it after
Fulton and MacPherson’s. This has a priori nothing to do with orientation of motivic spectra.

3.3. Our Borel-Moore homology HBM
a (X/S,Λ(b)) defines a bivariant theory (in an extended sense because

it is bigraded), cf. [Deg18, §1.2.8]. By associating the graded group
⊕

kHBM
2k (X/S,Λ(k)) to X→ S , we define

the bivariant theory denoted by HBM
2∗ (X/S,Λ(∗)). This bivariant theory has a canonical orientation as

follows. Let q : A1
S → S be the projection. Then we have a morphism

q!q
∗ΛS(1)[2] � q!q

!ΛS
adj
−−−−→ΛS ,

(1)In our situation, “confined maps” are “proper morphisms” and any Cartesian squares are “independent squares”.
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where the isomorphism is defined using [CD19, Theorem 2.4.50.3] and the canonical identification of
MTh

A
1(Tq) with Λ

A
1(1)[2], where MTh is the motivic Thom spectrum defined in [CD19, Definition 2.4.12].

The class of the above morphism in HBM
2 (X/S,Λ(1)) � π0HomD(S)(q!q

∗ΛS(1)[2],ΛS ) is the canonical
orientation of HBM

2∗ (X/S,Λ(∗)).

3.4. Let us introduce another main player of this paper, z(−,−), from [SV]. Let f : X→ S be a morphism,
and d ≥ 0 be an integer. Recall that Suslin and Voevodsky(2) introduced Abelian groups zequi(f ,d) and
z(f ,d), or zequi(X/S,d) and z(X/S,d) if no confusion may arise. We do not recall the precise definition
of these groups, but content ourselves with giving ideas of how these groups are defined. Both groups
are certain subgroups of the free Abelian group Z(X) generated by integral subscheme of X. If we are
given an element w ∈ Z(X) we may consider the “support” denoted by Supp(w) in an obvious manner.
Naively thinking, we wish to define z(X/S,d) as a subgroup of Z(X) consisting of w such that Supp(w)→ S
is equidimensional of dimension d over generic points of S . However, if we defined z(X/S,d) in this way,
the association z(XT /T ,d) to T would not be functorial. In order to achieve this functoriality, Suslin and
Voevodsky introduces an ingenious compatibility conditions. We do not recall these compatibility conditions,
but here is an illuminating example: Let Z ⊂ X be a closed immersion such that the morphism Z→ S is flat.
Then the associated cycle [Z], called a flat cycle, belongs to z(X/S,d). Now, the group zequi(X/S,d) is a
subgroup of z(X/S,d). The element w belongs to zequi(X/S,d) if and only if the morphism Supp(w)→ S
is equidimensional (of relative dimension d). By the compatibility conditions we mentioned above, if we
are given a morphism S ′→ S , we have the pullback homomorphism z(equi)(X/S,d)→ z(equi)(X ×S S ′/S ′ ,d).
This enables us to define presheaves z(equi)(X/S,d) on Sch/S . Then z(X/S,d) is a cdh-sheaf, and the
cdh-sheafification of zequi(X/S,d) coincides with z(X/S,d). Furthermore, flat cycles generate z(X/S,d)
cdh-locally, and can be thought of as a building pieces (cf. [SV, Theorem 4.2.11]). The following theorem
compactly summarizes some aspects of [SV].

Theorem (cf. [SV]). The assignments z(f ,∗) :=
⊕

k z(f ,k) and zequi(f ,∗) :=
⊕

k zequi(f ,k) to a morphism f
can be promoted to a bivariant theories with A1-orientation.

Proof. Given any morphism α : T → S , the pullback homomorphism

α : z(equi)(X/S,d) −→ z(equi)(XT /T ,d)

is then defined in [SV, right after Lemma 3.3.9]. Given a proper morphism X → Y , the pushforward
homomorphism

β∗ : z(equi)(X/S,d) −→ z(equi)(Y /S,d)

is defined in [SV, Corollary 3.6.3]. Given a sequence of morphisms X
f
−→ Y

g
−→ Z and integers d,e ≥ 0, the

homomorphism

Cor: z(equi)(X/Y ,d)× z(equi)(Y /Z,e) −→ z(equi)(X/Z,d + e)

is defined in [SV, Corollary 3.7.5]. We may endow with A
1-orientation by taking η := [A1]. The compatibility

conditions for these operations have also been proven in [SV]. �

3.5. Our main theorem is as follows.

Theorem. Recall that the base field k is a perfect field of characteristic p > 0, and let Λ := Z[1/p]. Then, there
exists a unique map of bivariant theories compatible with A1-orientation:

τ : zequi(−,∗) −→HBM
2∗ (−,Λ(∗)).

(2)In fact, Suslin and Voevodsky used the notation z(X/S,d) as a presheaf on Sch/S . Our z(X/S,d) is the global sections of it.
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A proof of this theorem is given at the end of Section 5. Let us introduce a notation. Let f : X→ S be a
flat morphism of relative dimension d. Then [X] is an element of zequi(f ,d). If we are given τ as above, we
have τ([X]) ∈HBM

2d (f ,Λ(d)). This element is denoted by Trτf .

Remark 3.6.

(1) Our theorem produces trace maps only for motivic Eilenberg-MacLane spectrum, and the reader
might think that our theorem is too restrictive. However, this is not the case since the motivic
Eilenberg-MacLane spectrum is universal among “absolute SH-spectrum E with orientation which is
Λ-linear and whose associated formal group law is additive” by [Deg18, Remark 2.2.15]. More precisely,
if we are given such an absolute SH-spectrum E, we have a unique map φ : HΛ→ E. Associated to

this map, we may consider the composition zequi(−,Λ(∗)) τ−→HBM
2∗ (−,Λ(∗))

φ
−→HBM

2∗ (−,E(∗)), where
the last object is the Borel-Moore homology associated with E, and we get trace maps for E.

(2) Choose E to be the `-adic étale absolute spectrum HétQ` for ` , p. By construction above, we have
zequi(X/S,d)→ HBM

ét,2d(X/S,d), where HBM
ét,∗ (X/S,∗) is the `-adic Borel-Moore homology. If f is a

flat morphism of dimension d, the image of [X] ∈ zequi(X/S,d) by this morphism is denoted by Trét
f .

This element of HBM
ét,2d(X/S,d), considered as a morphism H∗c(X/S,ΛS(d)[2d])→ ΛS , coincides

with the trace map defined in [SGA4, Exposé XVIII, Thórème 2.9]. Thus, the morphism τ can be
seen as a generalization of the trace map of loc. cit., at least when the base field is perfect.

(3) When X→ S is a g.c.i. morphism, Déglise defined a similar map in [Deg18, Theorem 1]. In fact, our
map can be considered as a generalization of [Deg18] (even though we only consider over a field), or
rather, is built upon Déglise’s map.

(4) The theorem also holds in the case where p = 0 and Λ = Z. Furthermore, in the case where p > 0
and if we assume the existence of the resolution of singularities, we may, in fact, take Λ = Z in the
theorem. The proof works with obvious changes, and the detail is left to the reader.

(5) The theorem, in fact, holds for any field k, not necessarily perfect. In fact, let l := kperf be the
perfection. The compact support cohomology H∗c(X/S) is compatible with arbitrary base change.
Thus, by [EK20, Corollary 2.1.5], or alternatively [CD15, Proposition 8.1], the pullback homomorphism
HBM
p (X/S,Λ(q))→HBM

p (Xl/Sl ,Λ(q)) is an isomorphism since p−1 ∈Λ. Using this isomorphism, the

trace map for HBM
2∗ (Xl/Sl ,Λ(∗)), constructed above, induces the trace map for HBM

2∗ (X/S,Λ(∗)) as
well.

3.7. Before going to the next section, let us show the most important property to construct the trace
map, namely the vanishing of suitable higher homotopies. For a morphism f : X→ S, we put dim(f ) :=
max

{
dim(f −1(s)) | s ∈ S

}
.

Proposition. For a morphism f : X→ S in Sch/k and an integer d such that dim(f ) ≤ d, we have

HBM
2m+n(X/S,Λ(m)) = 0

in one of the following cases:

(1) for any m > d and any n,
(2) when m = d and for any n > 0.

Proof. First, assume that S = Spec(k). We claim that

HBM
n (X,m) := πnHBM(X/Spec(k),Λ(m)) = 0

if m > d = dim(X) or m = d and n > 2m. Assume X is smooth of equidimension d. Then we know that
HBM
n (X,Λ(m)) � H2d−n

M (X,Λ(d −m)) � CHd−m(X,n− 2m;Λ), where HM is the motivic cohomology and
the last isomorphism follows by [CD19, Example 11.2.3]. Thus the claim follows(3) because CH0(X,i;Λ) �

(3)In fact, this holds also for n < 0 by [Har77, III 2.5, II Ex. 1.16 (a)].
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H−iM(X,Λ(0)) � H−izar(X,Λ) = 0 for i > 0. In general, we proceed by the induction on the dimension of X.
We may assume X is reduced. There exists Z ⊂ X such that X \Z is smooth and dim(Z) < d since k is
assumed perfect. We have the exact sequence

· · · −→HBM
n (Z,Λ(m)) −→HBM

n (X,Λ(m)) −→HBM
n (X \Z,Λ(m)) −→HBM

n−1(Z,Λ(m)) −→ ·· · .

Assume d ≤ m. Then HBM
n (Z,Λ(m)) = 0 for any n since dim(Z) < d ≤ m and the induction hypothesis.

Thus HBM
n (X,Λ(m)) �HBM

n (U,Λ(m)), and the claim follows by the smooth case we have already treated.
We next assume that S is smooth over k. We may assume that S is of equidimension e. Let π : S→ Spec(k)
be the structural morphism. Then we have

Hom
(
H∗c(X/S,ΛS )〈m〉 ,ΛS [−n]

)
�Hom

(
H∗c(X/S,ΛS )〈m〉 ,π∗Λ[−n]

)
�Hom

(
H∗c(X/S,ΛS )〈m〉 ,π!Λ〈−e〉 [−n]

)
�Hom

(
H∗c(X)〈m+ e〉 ,Λ[−n]

)
.

Since dim(X) ≤ dim(S) + d = e+ d, we get the vanishing by the S = Spec(k) case.
Finally, we treat the general case. We take a pdh-hypercovering S• → S so that Si is smooth. Let

F ,G ∈D(S). Then by pdh-descent spectral sequence (2.1), we have

E
p,q
2 = Rp lim←−−∆Homq(F•,G•) =⇒Homp+q(F ,G).

If E
p,q
2 = 0 for q < 0, then Homi(G,F ) = 0 for i < 0. Thus, we get the claim by applying this to

F =H∗c(X/S,ΛS )〈m〉 and G = Λ. �

Remark. Consider the case where p may not be invertible in Λ. If S is smooth, then the proposition holds.
If we further assume the resolution of singularities, the proposition also holds for any f .

4. Construction of the trace map when the base is smooth

Let f : X→ S be a flat morphism. When S is smooth, we will construct a map which is supposed to be
the same as Trτf in this section.

4.1. For a scheme Z, we often denote dim(Z) by dZ . Let f : X→ S be (any) separated morphism of finite
type such that S is smooth equidimensional, and put df := dX −dS . In this case, let us construct a morphism

tf : f!ΛX

〈
df

〉
→ΛS , which we will show to be equal to Trf when f is flat.

Let us start to construct tf . Considering componentwise, it suffices to construct the morphism when S is
connected. For any separated scheme X of finite type over k, we have the canonical isomorphism

γX : HBM
2n (X,Λ(n))

∼−−−→ CHn(X;Λ)

by [Jin16, Corollary 3.9]. We have

HBM
2df

(X/S,Λ(df )) �HBM
2dX

(X,Λ(dX))
γX−−−−→
∼

CHdX (X;Λ),

where the first isomorphism follows since g∗〈d〉 ∼−→ g ! for any equidimensional smooth morphism g of relative
dimension d. Let X =

⋃
i∈I Xi be the irreducible components, and let I ′ ⊂ I be the subset of i such that

dim(Xi) = dX . Let ξi be the generic point of Xi . The element in HBM
2d (X/S,Λ(d)) corresponding via the

isomorphism above to the element
∑
i∈I ′ lg(OX,ξi ) · [Xi,red] ∈ CHdX (X;Λ) on the right hand side is defined

to be tf .
Let us end this paragraph with a simple observation. Let U ⊂ X be an open dense subscheme.

Then the restriction map HBM
2df

(X/S,Λ(df )) → HBM
2df

(U/S,Λ(df )) is an isomorphism. Indeed, we have
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HBM
2dh

(X/Z,Λ(dh)) � CHdX (X;Λ) �Λ⊕rX , where rX is the set of irreducible components of X of dimension
dX by the computation above. Since rX and rU are the same, we get the claim.

4.2. By the setup 2.1, we may apply [Deg18, Introduction, Theorem 1]. In particular, for a morphism between
smooth schemes f : X→ Y we have the fundamental class ηf ∈HBM

2df
(X/Y ,Λ(df )). When Y = Spec(k), we

sometimes denote ηf by ηX . As we expect, we have the following comparison.

Lemma. Assume f : X → Y is a morphism between smooth equidimensional schemes. Then tf = ηf in

HBM
2df

(X/Y ,Λ(df )).

Proof. Assume Y = Spec(k). In this case, f is smooth. Then by [Deg18, Theorem 2.5.3], the fundamental
class ηf is equal to the one constructed in [Deg18, Proposition 2.3.11], which is nothing but the one we
constructed above by [Jin16, Proposition 3.12]. Let us treat the general case. For a k-scheme Z , denote by pZ
the structural morphism. Unwinding the definition, our tf is the unique dotted map so that the following
diagram on the right is commutative:

ΛX

〈
df

〉
//

t
adj
pX &&

f !ΛY

f !ηY
��

f!ΛX

〈
df

〉
//

f!t
adj
pX
��

ΛY

ηY
��

f !p!
YΛ〈−dY 〉 , f!p

!
XΛX〈−dY 〉 adjf

// p!
YΛ〈−dY 〉 .

Here, t
adj
g denotes the morphism given by taking adjoint to tg . Equivalently, tf is the unique dotted map so

that the diagram above on the left is commutative. Thus, it suffices to check that the diagram replacing the

dotted arrow by ηf commutes. From what we have checked, t
adj
pZ = ηadj

pZ for any smooth scheme Z . Thus, the
desired commutativity follows by the associativity property of fundamental class (cf. [Deg18, Introduction,
Theorem 1.2]). �

Lemma 4.3.

(1) Assume we are given morphisms X
f
−→ Y

g
−→ Z such that Y and Z are smooth and equidimensional. Let the

composition be h. We have tg • tf = th in HBM
2dh

(X/Z,Λ(dh)).
(2) Consider the Cartesian diagram (3.1). Assume further that Y and Y ′ are smooth equidimensional and f is

flat. The map g∗ : HBM
2df

(X/Y ,Λ(df ))→HBM
2df

(X ′/Y ′ ,Λ(df )) sends tf to tf ′ .
(3) Consider a proper morphism f : X → Y and a morphism g : Y → Z such that Z is smooth and equidi-

mensional. Put h := g ◦ f . Then the map f∗ : HBM
2dh

(X/Z,Λ(dh)) → HBM
2dh

(Y /Z,Λ(dh)) sends th to
deg(X/Y ) · tg when th = tg and 0 otherwise.

Proof. Let us check the claim (1) of the lemma. By construction of tf , we may assume that X is reduced.
By §4.1, we may shrink X by its dense open subscheme since HBM

2dh
(X/Z,Λ(dh)) remains the same. Thus,

we may assume that X is smooth as well. In this case, we get the compatibility by Lemma 4.2 and [Deg18,
Introduction, Theorem 1.2]. The final claim (3) is just a reformulation of [Jin16, Proposition 3.11]. Let us check
the claim (2) of the lemma. Since Y , Y ′ are smooth, we may factor g into a regular immersion followed
by a smooth morphism. Thus, it suffices to check the case where g is a regular immersion and a smooth
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morphism separately. In both cases, consider the following diagram:

f ′! ΛX ′
〈
df

〉
∼

t
adj
pX′

**

��

♣

g∗f!ΛX

〈
df

〉
t

adj
pX

//

��

g∗f!p
!
XΛ〈−dY 〉

∼

adjf
��

f ′! g
′∗p!

XΛ〈−dY 〉
η

adj
g′

// f ′! g
′!p!

XΛ〈−dY ′〉

adjf ′
��

g∗ΛY

t
adj
pY //

t
adj
pY ′

22g∗p!
YΛ〈−dY 〉

ηadj
g // g !p!

YΛ〈−dY ′〉 .

The map g∗tf is the unique straight dotted arrow redering the left small square diagram commutes, and
tf ′ is the unique bent dotted arrow rendering the outer largest diagram commutes. Since f is flat, f is
transversal to g in the sense of [Deg18, Example 3.1.2]. This implies that f ∗(ηg ) = ηg ′ by [Deg18, Introduction,
Theorem 1.3]. By taking the adjoint, this implies that the right square is commutative. Since Y , Y ′ are

assumed to be smooth, we have t
adj
pY = ηadj

pY and t
adj
pY ′ = ηadj

pY ′ by the previous lemma. Since g , pY , pY ′ are gci
morphism, the bottom semicircular diagram is commutative by [Deg18, Introduction, Theorem 1.2]. In order
to check the equality in the claim, it remains to check that the ♣-marked diagram commutes.

When g is smooth, the verification is easy, so we leave it to the reader. Assume g is a regular immersion.
In [Jin16, Definition 2.31], Jin defines a morphism Rf (g) : H∗c(X ′)→H∗c(X)〈c〉 where c = dim(Y )−dim(Y ′).
By construction, this is defined as the composition

pX ′ !ΛX ′ � pX!g
′
! f
′∗ΛY ′ � pX!f

∗g!ΛY ′
ηg
−−−→ pX!f

∗ΛY 〈c〉 .

Applying [Deg18, Introduction, Theorem 1.3], this is the same as pX!ηg ′ . Now, since g !([X]) = [X ′] in
CHdX′ (X

′) by the flatness of f , [Jin16, Proposition 3.15] implies that the following diagram on the left
commutes:

H∗c(X ′)

tpX′ %%

Rf (g)=pX!ηg′ // H∗c(X)〈c〉

tpXxx
Λ〈−dX ′〉 ,

g ′∗p∗XΛ〈dX ′〉
ηg′ //

tpX
��

g ′!p∗XΛ〈dX〉

tpX
��

g ′∗p!
XΛ〈c〉

ηg′ // g ′!p!
XΛ.

Taking the adjunction, the verification is reduced to the commutativity of the right diagram above. This
follows by the following commutative diagram:

g ′∗p∗XΛ〈dX ′〉

g∗(tpX )
��

ηg′⊗id
// g ′!ΛX ⊗ g ′∗p∗XΛ〈dX〉

proj
//

id⊗g ′∗(tpX )
��

g ′!p∗XΛ〈dX〉

g ′!(tpX )
��

g ′∗p!
XΛ〈c〉

ηg′⊗id
// g ′!ΛX ⊗ g ′∗p!

XΛ
proj

// g ′!p!
XΛ.

Here, proj are the morphisms induced by the projection formula (or more precisely [Deg18, (1.2.8.a)]), and
we conclude the proof. �

Lemma 4.4. Assume we have a morphism of bivariant theories τ in Theorem 3.5. Then for a flat morphism
f : X→ S such that S is smooth and equidimensional, we must have an equality Trτf = tf .

Proof. First, consider the case where X = S . Since τ preserves the product structure, τ(idS ) must send the
unit element 1 = [S] ∈ zequi(S/S,0) to 1 = id ∈HBM

0 (S/S,0). By [Jin16, Proposition 3.12], tid is equal to id
as well, and the claim follows in this case. When f is an open immersion, we may argue similarly.
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Now, let f : X→ S be a finite étale morphism such that S is smooth and equidimensional of dimension d.
We may assume X and S are integral, and the degree of f is n. By f∗ : zequi(X/S,0) → zequi(S/S,0),
[X] is sent to n · [S] in zequi(S/S,0) by definition of f∗. This implies that f∗(Trτf ) = n · id where

f∗ : HBM
0 (X/S,Λ(0))→HBM

0 (S/S,Λ(0)). On the other hand, we have the following commutative diagram
by [Jin16, Proposition 3.11]:

Λ
∼

n·
��

CHd(X;Λ)
γX
∼

//

f∗
��

HBM
2d (X,Λ(d))

f∗
��

∼ HBM
0 (X/S,Λ(0))

f∗
��

Λ
∼ CHd(S;Λ)

γS
∼

// HBM
2d (S,Λ(d)) ∼ HBM

0 (S/S,Λ(0)).

This implies that, since Λ = Z[1/p] is torsion free, the left vertical map is injective, and so is the right
vertical map. Thus Trτf is characterized by the property that f∗Trτf = n · 1, and it suffices to check that
f∗tf = n · 1. By definition, γX([X]) = tf , and the commutative diagram again implies that f∗tf = n · 1. Thus
tf = Trτf in this case.

Consider the case where S = Spec(k) . We may assume that X is integral, and we may shrink X by its
open dense subscheme since HBM

2dX
(X,Λ(dX)) does not change by §4.1. Then we may assume that f can be

factored into X
g
−→A

df → Spec(k) where the first morphism is étale. By shrinking X further, we may assume

we have the factorization X
g ′

−→ V ↪→A
df of g where g ′ is finite étale. Since the trace map is assumed to

preserve A
1-orientation, we must have Trτp = tp where p : A1→ Spec(k) by [Jin16, Proposition 3.12]. Thus,

by Lemma 4.3-(1), we have Trτf = tf .
Finally, let us treat the general case. Let U ⊂ X be an open dense subscheme such that Ured is smooth

over k. Let e be the dimension of S . We have an isomorphism F : HBM
2d (X/S,Λ(d)) 'HBM

2(d+e)(U,Λ(d + e)),
again, by §4.1. By construction, this morphism sends x to ηS •x. In view of Lemma 4.2, this is equal to tS •x.
Now, we have

F(Trτf ) = Trτf |U • tS = Trτf |U •TrτS = TrτU = tU = tf |U • tS = F(tf )

where the 2nd equality follows by what we have already proven, the 3rd by the transitivity of the trace map,
the 4th by what we have already proven, and the 5th by Lemma 4.3-(1). Thus, we conclude the proof. �

5. Construction of the trace map

In this section, we prove the main result.

5.1. Let f : X→ S be a morphism. To a morphism T → S , we associate

HBM(X/S,n)(T ) := HomDS
(
H∗c(X/S,ΛS(n)),H∗(T /S,ΛS )

)
'HBM(XT /T ,n),

which defines a presheaf of spectra HBM(X/S,n) on Sch/S . We denote by HBM
m (X/S,n) the Abelian presheaf

πmHBM(X/S,n) on Sch/S . Here, πm is taken as a presheaf and do not consider any topology.

Lemma 5.2.

(1) The spectra-valued presheaf HBM(X/S,n) on Sch/S is a spectra-valued sheaf on the ∞-topos
Shv(Sch/S,pdh)∧, where Sch/S,pdh denotes the pdh-site and (·)∧ denotes the hypercompletion.

(2) Let us assume that dim(f ) ≤ d. We the have Γ
(
T , π̃2dHBM(X/S,d)

)
� π2dHBM(XT /T ,d), and

πiHBM(X/S,d) = 0 for i > 2d. Here, π̃n is the functor πn in the ∞-topos Shv(Spdh)∧, in other
words, the pdh-sheafification of πn.
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Proof. Let us show the claim (1) of the lemma. Let T•→ T be a pdh-hypercovering of q : T → S ∈ Sch/S .
We must show that the canonical map

HBM(X/S,n)(T )→ lim←−− i∈∆HBM(X/S,n)(Ti)

is an equivalence in DT . By Lemma 2.4 applied to F = ΛT ∈ DT , we have the equivalence ΛT
∼−→

lim←−− i∈∆H
∗(Ti/T ,ΛT ). By applying q∗, taking into account that q∗ commutes with arbitrary limit by

the existence of a left adjoint, we have an equivalence H∗(T /S,ΛS )
∼−→ lim←−− i∈∆H

∗(Ti/S,ΛS ). Thus, the

claim follows by definition. Let us show the claim (2) of the lemma. The Abelian sheaf π̃iHBM(X/S,d)
is the pdh-sheafification of the Abelian presheaf associating πiHBM(X/S,d)(T ) to T ∈ Sch/S . Since
πiHBM(X/S,d)(T ) �HBM

i (XT /T ,d), this vanishes if i > 2d by Proposition 3.7. Furthermore, since lim←−− is

left exact, 1 and the vanishing for i > 2d imply that π2dHBM(X/S,d) is already a pdh-sheaf on Sch/S , and
the claim follows. �

5.3. Let X→ S be a morphism. Let us recall the Abelian group Hilb(X/S,r) for an integer r ≥ 0 from [SV,
§3.2]. This is the set of closed subschemes in X which are flat over S . We denote by ΛHilb(X/S,r) the free
Λ-module generated by Hilb(X/S,r).

Now, assume that S is smooth. For a (flat) morphism g : Z → S in Hilb(X/S,r), we constructed
tg ∈HBM

2r (Z/S,Λ(r)) in §4.1 when S is equidimensional. Even if S is not equidimensional, by considering
componentwise, we define the element tg . By associating to Z the image of tg via the map HBM

2r (Z/S,Λ(r))→
HBM

2r (X/S,Λ(r)), we have the map Hilb(X/S,r)→HBM
2r (X/S,Λ(r)). This yields the map ΛHilb(X/S,r)→

HBM
2r (X/S,Λ(r)). Now, let IX/S ⊂ ΛHilb(X/S,r) be the submodule consisting of elements

∑
λiZi ∈

ΛHilb(X/S,r) such that the associated cycle
∑
λi[Zi] = 0 (cf. the paragraph before Theorem 4.2.11 in [SV]).(4)

Since tg only depends on the underlying subset and its length, the above constructed map factors through I ,
and defines a map

T (X/S,r) : ΛHilb(X/S,r)/IX/S →HBM
2r (X/S,Λ(r))

Lemma 5.4. Let h : T → S be a morphism between smooth k-schemes. Then we have the following commutative
diagram of Abelian groups

ΛHilb(X/S,r)
T (X/S,r)

//

h∗

��

HBM
2r (X/S,Λ(r))

h∗

��
ΛHilb(XT /T , r)

T (XT /T ,r) // HBM
2r (XT /T ,Λ(r))

Proof. This follows immediately from Lemma 4.3-(2). �

5.5. Let f : X → S be a morphism. Let Z(X/S,r) be the presheaf of Abelian groups on Sch/S which
sends T to ΛHilb(XT /T , r)/IXT /T , and z(X/S,r) be the presheaf which sends T to z(XT /T , r). Consider the

(geometric) morphism of sites Sch/S,pdh
a−→ Sch/S,cdh

b−→ Sch/S . Then we have

(5.1) (b ◦ a)∗
(
Z(X/S,r)

)
� a∗

(
b∗Z(X/S,r)

)
� a∗z(X/S,Λ(r)) � z(X/S,Λ(r)),

where the 2nd isomorphism follows by [SV, Theorem 4.2.11], the last isomorphism follows since z(X/S,Λ(r))
is an h-sheaf by [SV, Theorem 4.2.2] and, in particular, a pdh-sheaf.

Now, a pdh-hypercovering S• → S is said to be good if Si is smooth for any i. Let HR(S) be the
(ordinary) category of pdh-hypercoverings of S (cf. [SGA4, Exposé V, §7.3.1]). Denote by HRg(S) the full
subcategory of HR(S) consisting of good pdh-covers. Recall that HR(S)op is filtered (cf. [SGA4, Exposé V,

(4)In [Kel13, §2.1], Kelly pointed out a problem in the definition of the map cycl of [SV] used in the definition of IX/S above.
Note that we may employ Kelly’s definition of cycl to define IX/S , but we get the same ideal, and it does not affect our arguments.
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Théorème 7.3.2]). For any S• ∈ HR(S), we can take S ′• ∈ HRg(S) and a morphism S ′• → S• by [SGA4,
Exposé Vbis, Proposition 5.1.3] and 2.3, which implies that HRg(S)op is cofinal in HR(S)op (cf. [SGA4,
Exposé I, Proposition 8.1.3]). Put X• := X ×S S•. Thus we have the isomorphisms

z(X/S,Λ(r)) � z(X/S,Λ(r))(S)
∼−−−→ lim−−→S•∈HR(S)op

lim←−− i∈∆Z(X/S,r)(Si)

∼←−−− lim−−→S•∈HRg(S)op
lim←−− i∈∆ΛHilb(Xi/Si , r)/I ,

where the 2nd isomorphism holds by [SGA4, Exposé V, Théorème 7.4.1] and (5.1).

Let Ab∆ be the category of simplicial Abelian groups. Consider the functors

Z(−, r),HBM
2r (−,Λ(r)) : HRg(S)op→ Ab∆,

defined by sending S• to Z(X•/S•, r) and HBM
2r (X•/S•,Λ(r)) respectively. By Lemma 5.4, we have the map

of functors Z(−, r)→HBM
2r (−,Λ(r)). Now, assume:

dim(f −1(s)) ≤ d for any s ∈ S .

By Lemma 5.2-(2), we also have the descent isomorphism HBM
2d (X/S,d)

∼−→ lim←−− i∈∆HBM
2d (Xi/Si ,d) of Abelian

groups. Combining everything together, we have a map

trf : z(X/S,d) � lim−−→S•∈HRg(S)
lim←−− i∈∆Z(−,d)

→ lim−−→S•∈HRg(S)
lim←−− i∈∆HBM

2d (−,d) �HBM
2d (X/S,d).

Lemma 5.6.

(1) Consider the Cartesian diagram (3.1). Assume dim(f −1(y)) ≤ d for any point y of Y , in which case the
same property holds for f ′ . Then we have g∗ ◦ trf = trf ′ ◦ g ′∗.

(2) Let X
g
−→ X ′

f ′

−−→ Y be morphisms and put f := f ′ ◦ g . We assume that for any y ∈ Y , dim(f (′)−1(y)) ≤ d
and g is proper. Then we have trf ′ ◦ g∗ = g∗ ◦ trf .

Proof. Let us check the claim (1) of the lemma. Take a good pdh hypercovering α : Y•→ Y . Then we are
able to find a good pdh-hypercovering α′ : Y ′•→ Y ′ which fits into the following diagram, not necessarily
Cartesian:

Y ′• //

α′

��

Y•

α
��

Y ′ // Y .

Consider the following diagram:

z(X/Y ,d) ∼ //

��

lim←−− i∈∆ z(XYi /Yi ,d) Tr //

��

lim←−− i∈∆HBM
2d (XYi /Yi ,d)

��

HBM
2d (X/Y ,d)∼oo

��
z(X ′/Y ′ ,d) ∼ // lim←−− i∈∆ z(X

′
Y ′i
/Y ′i ,d) Tr // lim←−− i∈∆HBM

2d (X ′Y ′i
/Y ′i ,d) HBM

2d (X ′/Y ′ ,d).∼oo

Both external squares are commutative by the functoriality of z(−,d) and HBM(−,d), and the middle as well
by 4.3-(2). The claim (2) follows immediately from Lemma 4.3-(3). �
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5.7. Proof of Theorem 3.5
First, let us construct a morphism zequi(−,d) → HBM

2d (−,d). Let f : Y → T be a morphism, and w ∈
zequi(Y /T ,d). Let W be the support of w, and i : W ↪→ Y be the closed immersion. Then w is the
image of an element w′ ∈ zequi(W/T ,d) via the morphism iz∗ : zequi(W/T ,d) → zequi(Y /T ,d). Since
w ∈ zequi(Y /T ,d), the dimension of each fiber of f ◦i is ≤ d. Thus, we have already constructed the morphism
trf ◦i : zequi(W/T ,d)→ HBM

2d (W/T ,d). We define τY /T (w) := iH∗ ◦ trf ◦i(w′), where iH∗ : HBM
2d (W/T ,d)→

HBM
2d (Y /T ,d) is the pushforward. This defines a map τY /Z : zequi(Y /T ,d) → HBM

2d (Y /T ,d). In view of
Lemma 5.6-(2), this map is in fact a homomorphism of Abelian groups. This map is compatible with base
change and pushforward by Lemmas 5.6-(1) and 5.6-(2). The uniqueness of the map follows by Lemma 4.4
and construction.

It remains to show the compatibility with respect to the product structure. Let X
f
−→ Y

g
−→ Z be morphisms,

and x ∈ zequi(X/Y ,d), y ∈ zequi(Y /Z,e). By definition, we may assume that Z is smooth, and Supp(x) ⊂ X
and Supp(y) ⊂ Y are flat over Z . By projection formula of bivariant theories (cf. §3.1), we may assume that
Y = Supp(y) (with reduced induced scheme structure). Then, by the compatibility with pushforward, we may
replace X by Supp(x). In this situation, we are allowed to shrink Z by its open dense subscheme because
HBM(X/Z,d + e) does not change by §4.1, we may further assume that y = [Y ]. Now, for an open immersion
j : U ⊂ X, we have restriction morphisms zequi(X/Z,n)→ zequi(U/Z,n) and HBM(X/Z,n)→HBM(U/Z,n)
and we may check easily that these are compatible with τX/Z . Since f : X→ Y is dominant, we may take open
dense subschemes U ⊂ X and V ⊂ Y such that f (U ) ⊂ V , U → V is flat, and V is smooth. The compatibility
with open immersion allows us to replace X by U . Since τU/Y (x)• τY /Z(y) = τU/V (x)• τV /Z(y|V ), it suffices
to show the claim for U → V → Z , and in this case, we have already treated in Lemma 4.3-(1) together with
Lemma 4.4. �

6. ∞-enhancement of the trace map

In this section, we upgrade the trace map to the ∞-categorical setting.

6.1. Let Ãr be the category of morphisms X → S in Sch/k whose morphisms from Y → T to X → S
consists of diagrams of the form

(6.1)

Y

��

XT //αoo

��
�

X

��
T T

g
// S

where α is proper. The composition is defined in an evident manner, and we refer to [Abe22a, §5.2] for the
detail. We often denote an object corresponding to X→ S in Ãr by X/S . For Y /T ∈ Ãr, let Cov(Y /T ) be
the set of families {YTi /Ti → Y /T }i∈I where {Ti → T } is a cdh-covering. The category Ãr does not admits
pullbacks in general, but each morphism (YTi /Ti)→ (Y /T ) is quarrable, in other words, for any morphism
(Y ′/T ′)→ (Y /T ), the pullback (YTi /Ti)×(Y /T ) (Y ′/T ′)→ (Y ′/T ′) exists. Indeed, we can check easily that

(YTi /Ti)×(Y ′/T ′) (Y /T ) � (Y ′ ×T Ti/T ′ ×T Ti). Thus, this family defines a pretopology on Ãr in the sense of
[SGA4, Exposé II, §1.3].

Now, fixing (Y /T ) ∈ Ãr, we have the functor ιY /T : Sch/T → Ãr sending T ′ → T to (Y ×T T ′/T ′). This
functor commutes with pullbacks. Putting the cdh-topology on Sch/T , the functor ιX/T is cocontinuous
(cf. [SGA4, Exposé III, §2.1]) by [SGA4, Exposé II, §1.4].

6.2. By associating the Abelian group z(Y /T ,n) to Y → T , we have a functor zSV(n) : Ãr
op→Sp♥. Then

zSV(n) is an Abelian sheaf on Ãr. Indeed, we must show the Čech descent with respect to the elements of
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Cov(Y /T ) by [SGA4, Exposé II, §2.2]. This is exactly the contents of [SV, §4.2.9]. We define z(n) to be the
sheafification of zSV(n) regarded as a spectra-valued presheaf on Ãr.

Now, by [ES21, Lemma C.3], we have the following commutative diagram of geometric morphisms of
∞-topoi

(6.2)

Shv(Sch/T ,cdh)
ιsY /T //

��

Shv(Ãr)

��

P (Sch/T )
ιY /T // P (Ãr).

Note that, since local objects (with respect to a localization) are stable under taking limits by definition,
(ιsY /T )∗ is commutes with limits by [ES21, Lemma C.3], which justifies that ιsY /T is a geometric morphism.
Moreover, by [Lur18, Proposition 20.6.1.3], the functor (ιsY /T )∗ is given by composing with ιY /T . In particular,
z(n) ◦ ιY /T is the (cdh-)sheafification of zSV(n) ◦ ιY /T .

6.3. Assume we are given a morphism F : (Y /T )→ (X/S) in Ãr as in (6.1). Then we have the morphism of
spectra

F∗ : HBM(X/S,d)[−2d]
g∗

−−−→HBM(XT /T ,d)[−2d]
α∗−−−→HBM(Y /T ,d)[−2d].

With this morphism, we can check easily that the association HBM(X/S,d)[−2d] to X/S ∈ Ãr yields a
functor H : Ãr

op→ hSp. It is natural to expect that this morphism can be lifted to a functor of∞-categories
Ãr

op→Sp. We put the existence as an assumption as follows:

Assume we are given a functor HBM(d) : Ãr
op→Sp between ∞-categories whose induced

functor between homotopy categories coincides with H above.

We constructed such a functor in [Abe22a, Example 6.8], and also in [Abe22b, §C.3] using a slightly different
method. Now, we have the following ∞-enhancement of the trace map.

Theorem 6.4. There exists essentially uniquely a morphism of spectra-valued sheaves τ† : z(d)→HBM(d) on Ãr
for any d such that the composition

zequi(−,d) ↪−→ z(−,d) � π0z(d)
π0(τ†)
−−−−−−−→ π0HBM(d) �HBM

2d (−,d)

coincides with the morphism τ of Theorem 3.5.

Proof. Let π0zequi(d) ⊂ π0z(d) be the subsheaf so that the value at X → S is zequi(X/S,d). Note that
π0zequi(d) is just a notation and not π0 of some presheaf zequi(d). We first define the trace map for

π0zequi(d). Let Ãrd be the full subcategory of Ãr consisting of objects f : X → S such that dim(f ) ≤ d.

First, let us construct the map after restricting to Ãrd . We have already constructed the map of spectra-valued
presheaves

(6.3) π0zequi(d)|Ãrd

τ−−→ π0HBM(d)|Ãrd

∼←−−− τ≥0HBM(d)|Ãrd
−→HBM(d)|Ãrd

.

Here, the equivalence follows by Lemma 5.2-(2) since we are restricting the functor to Ãrd . Now, let the
category App be the full subcategory of Fun(∆1, Ãr) spanned by the morphisms h : (X/S)→ (Y /T ) in Ãr
such that (Y /T ) belongs to Ãrd . We have functors s, t : App→ Ãr where s is the evaluation at {0} ∈ ∆1,
and t is at {1}. Namely, for h above, we have s(h) = (X/S) and t(h) = (Y /T ). By [Lur09, Corollary 2.4.7.12],
s is a Cartesian fibration. Note that we have the natural transform s→ t and this induces the morphism
of functors φ : F ◦ top → F ◦ sop for any functor F : Ãr

op → Sp. From now on, we abbreviate F ◦ top,
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F ◦ sop by F ◦ t, F ◦ s to avoid heavy notations. By (6.3), we have the map π0zequi(d) ◦ t→HBM(d) ◦ t of
spectra-valued presheaves on App. Now, we have the following diagram of ∞-categories

Appop

sop

��

F // Sp

��
Ãr

op // ∆0,

where F is either π0zequi(d)◦ t or HBM(d)◦ t. Since s is a Cartesian fibration, sop is a coCartesian fibration.
Since the ∞-category Sp is presentable, any left Kan extension exists by [Lur09, Proposition 4.3.2.15]. We
denote by LKE(F) : Ãr

op→Sp a left Kan extension of the above diagram. We have the following diagram
of spectra-valued presheaves:

LKE(π0zequi(d) ◦ t) //

��

LKE(HBM(d) ◦ t)

��
π0zequi(d) HBM(d).

Here, the vertical morphisms are defined by taking the adjoint to φ. We claim that the left vertical map is
equivalent. For this, it suffices to show that π0zequi(d) is in fact a left Kan extension of π0zequi(d) ◦ t. Let

(X/S) ∈ Ãr, and we denote by AppX/S the fiber of s over (X/S). Since sop is a coCartesian fibration, by

invoking [Lur09, Proposition 4.3.3.10], it suffices to show that
(
π0zequi(d)

)
(X/S) is a left Kan extension of(

π0zequi(d) ◦ t
)
|Appop

X/S
along the canonical map Appop

X/S → {X/S} for any X/S . This amounts to showing
that the morphism of spectra (namely the colimit is the “derived colimit”)

lim−−→D∈Appop
X/S

zequi

(
t(D)/S,d

)
−→ zequi(X/S,d)

is an equivalence. Let C(X/S) be the category of closed immersions Z ↪→ X such that the composition Z→ S
is in Ãrd . The category Appop

X/S is filtered and the inclusion C(X/S) ↪→ Appop
X/S cofinal. Thus, the colimit

is t-exact by [Lur18, Proposition 1.3.2.7], and it suffices to show the morphism lim−−→Z∈C(X/S)
zequi

(
Z/S,d

)
→

zequi(X/S,d) of Abelian groups is an isomorphism. This follows by definition. Thus we have the map
π0zequi(d)→HBM(d) of spectra-valued presheaves.

Finally, let us extend this map to the required map. The ∞-presheaf HBM(d) on Ãr is in fact an
∞-sheaf. Indeed, let HBM(d)→ LHBM(d) be the localization morphism. We must show that this morphism
is an equivalence. Recall that for an ∞-category C, a simplicial set S, and a morphism α : F → G in
Fun(S,C), α is an equivalence if and only if α(s) is an equivalence for any vertex s of S . We believe
that this is well-known, but a (fairly) indirectly way to see this is by applying [Lur09, Corollary 5.1.2.3]
to the diagram (∆0). → Fun(S,C) given by α. Now, let (Y /T ) ∈ Ãr. Since the verification is pointwise
by the recalled fact, it suffices to show that HBM(d) ◦ ιY /T → (LHBM(d)) ◦ ιY /T is an equivalence. By
(6.2), this morphism can be identified with ι∗Y /TH

BM(d)→ L
(
ι∗Y /TH

BM(d)
)
, which is an equivalence since

ι∗X/TH
BM(d) ' HBM(X/S,d) is already a cdh-sheaf (cf. Lemma 5.2-(1)). Thus, by taking the sheafification

to the morphism π0zequi(d)→HBM(d), we get the morphism z(d)→HBM(d). The essential uniqueness
follows by construction, and the detail is left to the reader. �
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