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Reduction of Kummer surfaces modulo 2 in the
non-supersingular case
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Abstract. We obtain necessary and sufficient conditions for the good reduction of Kummer surfaces
attached to abelian surfaces with non-supersingular reduction when the residue field is perfect of
characteristic 2. In this case, good reduction with an algebraic space model is equivalent to good
reduction with a scheme model, which we explicitly construct. We extend these results to Kummer
surfaces attached to 2-coverings of such abelian surfaces.
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1. Introduction

To an abelian surface A over a field K , one can attach the associated Kummer surface Kum(A), defined as
the minimal desingularisation of the quotient of A by the antipodal involution ι(P ) = −P . If the characteristic
of K is not 2, then Kum(A) is a K3 surface. Quartic surfaces with sixteen nodes in P

3 are classically studied
singular models of Kummer surfaces associated to Jacobians of genus 2 curves. When K is a number field,
such Kummer surfaces, as well as those attached to products of elliptic curves, form classes of K3 surfaces
most accessible for studying their arithmetic; see for example [HS16, SZ17] and references therein.

If the characteristic of K is 2, then the geometry of Kum(A) depends on the 2-rank of A, that is, the
integer r ∈ {0,1,2} such that A[2] has 2r points over an algebraic closure of K . The abelian surface A
is called ordinary if r = 2 and supersingular if r = 0; in the remaining case, where r = 1, A will be called
almost ordinary. Then Kum(A) is a K3 surface if and only if A is not supersingular. This was proved by
Shioda when A is a product of elliptic curves [Shi74] and by Katsura in general [Kat78]. In contrast, if A is
supersingular, then Kum(A) is geometrically rational. Katsura also points out another striking difference
between these cases: if A is not supersingular, then the singularities of A/ι are rational double points, which
are four geometric points of type D4 when A is ordinary, and two geometric points of type D8 when A is
almost ordinary, giving rise to sixteen rational curves in Kum(A). On the other hand, if A is supersingular,
then the unique singular point of A/ι is an elliptic singularity. In the non-supersingular case, the 2-rank of
A also controls the height of the K3 surface Kum(A), which is 1 in the ordinary case and 2 in the almost
ordinary case; see Remark 6.5.

In this paper we are interested in necessary and sufficient conditions for good reduction of Kummer
surfaces. We will therefore take K to be a complete discretely valued field of characteristic zero, with ring of
integers OK and perfect residue field k. Given an abelian surface A over K , we say that X = Kum(A) has
good reduction if there exists a scheme or algebraic space X smooth and proper over OK with generic fibre
XK � X. Note that in this situation, the special fibre Xk is necessarily a K3 surface since it must have trivial
canonical bundle ωXk � OXk ,

(1) and (coherent) Euler characteristic χ(OXk ) = 2. Although for general K3

(1)This is because the isomorphism Pic(X )→ Pic(X) sends ωX /OK to ωX .



Reduction of Kummer surfaces modulo 2 in the non-supersingular case 3Reduction of Kummer surfaces modulo 2 in the non-supersingular case 3

surfaces, good reduction requires models which are algebraic spaces (see for example [Mat15a, Example 5.2]),
in the cases considered in this paper, it turns out that schemes suffice.

If char(k) , 2, then Kum(A) has good reduction if and only if there exists a quadratic twist Aχ of A such
that Aχ has good reduction. Indeed, if Kum(A) has good reduction, one can show that the inertia group
of K acts on H1

ét(AK ,Q`) via a quadratic character and then apply the classical Néron–Ogg–Shafarevich
criterion (see the proof of Theorem A.1, which is certainly well known to the experts). Conversely, any
quadratic twist of A satisfies Kum(Aχ) � Kum(A), so replacing A with Aχ, we can assume that A has good
reduction. In this case, the Néron model A/OK of A/K is an abelian scheme with generic fibre AK � A. We
can then form the quotient A/ι and blow up the singular subscheme to obtain a smooth model of Kum(A)
over OK ; see [Mat15b, Lemma 4.2] and [Ove21, Proposition 3.11].

If char(k) = 2, one direction of this argument still works: if Kum(A) has good reduction, then a quadratic
twist Aχ of A has good reduction, and Kum(A) � Kum(Aχ). But the argument in the other direction breaks
down, essentially because the singular subscheme of A/ι is no longer étale over OK . We are therefore
left with the following question: suppose that char(k) = 2, and let A/K be an abelian surface with good
reduction A/OK . When does Kum(A) have good reduction?

Our first result is a construction, in the non-supersingular case, of an explicit smooth model of Kum(A)
over the ring of integers of a finite extension of K that trivialises the Galois action on the 2-torsion subgroup
A[2]. We use a local equation of the special fibre at each singular point, but not much else. Our method
relies on the crucial fact that blowing up a (singular!) section commutes with specialisation to each fibre,
provided the section meets both fibres at rational double points; see Proposition 5.1. As a consequence we
obtain the following.

Theorem 1. Assume that char(k) = 2, and let A/K be an abelian surface with good, non-supersingular reduction.
Then Kum(A) has potentially good reduction with a scheme model.

An important feature of our model is that it establishes a bijection between the sets of sixteen geometric
exceptional curves of the special and generic fibres.(2) A weaker result concerning good reduction with an
algebraic space model, and without an explicit bound on the degree of the field extension required, follows
from Artin’s simultaneous resolution of singularities [Art74]. This can be applied because A/ι is flat over OK ,
and its fibres are normal varieties with at worst rational double points.

To explain more refined results than Theorem 1, let us fix an algebraic closure K of K , with residue field k̄,
and let ΓK denote the Galois group of K/K . We therefore have the exact sequence

(1.1) 0 −→A[2]◦(K) −→ A[2](K) −→A[2](k̄) −→ 0

of ΓK -modules, where A[2]◦ is the connected component of the identity of the 2-torsion subscheme A[2] ⊂ A
(see Section 4.1 below).

Theorem 2. Assume that char(k) = 2, and let A/K be an abelian surface with good, ordinary reduction. Then
Kum(A) has good reduction over K if and only if the exact sequence (1.1) of ΓK -modules splits. Moreover, in this
case Kum(A) has good reduction with a scheme model.

Another way of phrasing the given condition is as the splitting of the connected-étale sequence

0 −→A[2]◦ −→A[2] −→A[2]ét −→ 0

of finite flat group schemes over OK . It is a consequence of Cartier duality that the splitting of (1.1) implies in
particular that the ΓK -module A[2](K) is unramified (see Section 4.1); however, the converse fails – there
exist examples where A[2](K) is unramified but the exact sequence (1.1) is non-split (see Example 6.4).

(2)This bijection, however, does not describe the images of these curves under the specialisation map on Néron–Severi groups.
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In particular, this gives an example of a K3 surface over Q2 which only attains good reduction over a
non-trivial unramified extension.(3)

We also have similar results in the almost ordinary case.

Theorem 3. Assume that char(k) = 2, and let A/K be an abelian surface with good, almost ordinary reduction.
Then Kum(A) has good reduction over K if and only if the ΓK -module A[2](K) is trivial. Moreover, in this case
Kum(A) has good reduction with a scheme model.

Again, it is easy to see that this condition is not vacuous: there exist examples where the ΓK -module
A[2](K) is unramified but non-trivial.

The ‘if’ directions of Theorems 2 and 3 are proved by explicitly constructing a smooth model for Kum(A),
by resolving the singularities of the quotient scheme A/ι as in the proof of Theorem 1. The hypotheses on
A[2](K) are exactly what is required to make this construction work over OK itself.

The ‘only if’ directions of Theorems 2 and 3 are rather more involved, and the proofs use (the easy
direction of) the main result of [CLL19]. (Note that since we have potentially good reduction by Theorem 1,
the crucial Hypothesis (?) of [CLL19] is always satisfied in our case.) Indeed, we have an isomorphism
Ak/ι � (A/ι)k (see Proposition 5.6), and this implies the key observation that Kum(Ak) is the ‘canonical
reduction’ of Kum(A) in the terminology introduced in [CLL19] (see Section 6 for the definition). By [CLL19,
Theorem 1.6], good reduction of Kum(A) with an algebraic space model is therefore equivalent to the
existence of an isomorphism between the Galois representations in the `-adic étale cohomology groups of
Kum(Ak) and Kum(A), where ` is any odd prime. We compare the Galois action on these cohomology
groups by explicitly calculating the Galois action on the exceptional curves of Kum(Ak) and Kum(A).

We finish this paper by applying our method to give a necessary and sufficient condition for good reduction
of ‘twisted’ Kummer surfaces, that is, Kummer surfaces associated to 2-coverings of abelian surfaces; see
Theorem 7.4. Again, we only have results in the case of non-supersingular reduction. Indeed, the approach
of this paper does not seem to be suitable for studying good reduction of Kummer surfaces attached to
abelian surfaces with good, supersingular reduction. In the non-supersingular case, we make crucial use
of the fact that a smooth model for Kum(A) over OK can be obtained by resolving the singularities of
the obvious singular model A/ι. This completely breaks down in the supersingular case, where no such
resolution of A/ι can possibly provide a smooth model for Kum(A).

Notation and conventions

Throughout, OK is a complete discrete valuation ring with field of fractions K , maximal ideal mK , and
residue field k = OK /mK . We assume that char(K) = 0 and that k is perfect with char(k) = 2.

Let K be an algebraic closure of K , and write ΓK = Gal(K/K). The residue field of the maximal unramified
extension Knr ⊂ K is an algebraic closure k̄ of k. We write Γk = Gal(k̄/k) = Gal(Knr/K), and we have the
usual inertia exact sequence

1 −→ IK −→ ΓK −→ Γk −→ 0

relating ΓK and Γk .
Let G be the (abstract) group Z/2. For any abelian group object A (in any category), we write ι : A→ A

for the involution ι(x) = −x, which we also think of as an action of G.

Acknowledgments

This paper benefited from intensive discussions with Evis Ieronymou to whom we are very grateful. We
would like to thank Martin Liebeck for suggesting to use group cohomology in the proof of Theorem 4.6.
We thank Otto Overkamp for his interest in this paper and helpful remarks.

(3)The only examples of such behaviour in the literature are for K3 surfaces over Qp with p ≥ 5; see [LM18, Theorem 7.2].



Reduction of Kummer surfaces modulo 2 in the non-supersingular case 5Reduction of Kummer surfaces modulo 2 in the non-supersingular case 5

2. Geometry in the ordinary case

For this section, we will let A/k be an ordinary abelian variety. Thus A[2](k̄) � (Z/2)2, and the quotient
variety A/G has four (geometric) singular points, all of type D1

4; see [Sch09, table on p. 144]. These points
are in a natural Γk-equivariant bijection with A[2](k̄). The exceptional divisor of the minimal resolution
Kum(A)→ A/G therefore contains sixteen rational curves, occurring in four (geometrically) connected
components. Our goal here is to calculate the Galois action on these curves and in particular prove the
following result.

Proposition 2.1. The sixteen exceptional curves of Kum(A)→ A/G are indexed Γk-equivariantly by the set
A∨[2](k̄)×A[2](k̄).

We achieve this by first considering the case where k is algebraically closed and giving a geometric
description of how these singular points arise. This description will then be easily seen to be Galois
equivariant. Note that the factor A[2](k̄) arises from the four singular points of A/G. It is therefore enough
to complete around the image of the identity O ∈ A and prove that the exceptional curves of the minimal
resolution of the resulting D1

4 singularity are naturally indexed by A∨[2](k̄).
So suppose for now that k is algebraically closed, and let ÔA,O be the completed local ring of A at the

identity element O ∈ A.

Proposition 2.2. There exists an isomorphism

ÔA,O � kJu,vK

such that the involution ι acts via ι(u) = u
1+u and ι(v) =

v
1+v , and the formal group law ∆ satisfies

∆(u) ≡ 1⊗u +u ⊗ 1+u ⊗u mod (u2 ⊗ 1,1⊗u2,v2 ⊗ 1,1⊗ v2),

∆(v) ≡ 1⊗ v + v ⊗ 1+ v ⊗ v mod (u2 ⊗ 1,1⊗u2,v2 ⊗ 1,1⊗ v2).

Proof. As in the proof of [Kat78, Lemma 4], the classification of formal group laws over k implies that there
is an isomorphism of formal groups

(2.1) Â/O � Ê ×E/O,

where E is any ordinary elliptic curve over k. For example, we can take E to be the curve

y2 + xy = x3 + x.

Note that the involution ι on E is defined by ι(x,y) = (x,y + x). The function z = x/y is a local parameter at
the origin of the group law O ∈ E, so that the completed local ring ÔE,O is isomorphic to kJzK. We have
ι(z) = z(1 + z)−1. In view of (2.1), this proves the claim concerning the action of ι. For the claim concerning
the form of ∆, we simply use the formula on the top of p. 115 of [Sil86]. �

Let S = Spec(ÔA,O), let T = S/G, and let q : S → T be the quotient morphism. It follows from [Sch09,
Proposition 1.1], which is simply a statement of the main result of [Art75], that

T = Spec
(

kJx,y,zK
(z2 + xyz+ x2y + xy2)

)
,

where q is given by

x =
u2

1+u
, y =

v2

1+ v
, z =

uv(u + v)
(1 +u)(1 + v)

.

Let O ∈ S denote the closed point and q(O) ∈ T its image in T ; thus O = V (u,v) and q(O) = V (x,y,z) as
closed subschemes of S and T , respectively. Let

S(1) := BlO S −→ S, T (1) = Blq(O)T −→ T



6 C.D. Lazda and A.N. Skorobogatov6 C.D. Lazda and A.N. Skorobogatov

be the blowups at O and q(O), respectively. Explicitly, we have

S(1) = Proj
(
kJu,vK[U,V ]
(uV + vU )

)
and

T (1) = Proj
(

kJx,y,zK[X,Y ,Z]
(xY + yX,xZ + zX,yZ + zY ,Z2 + xYZ + xXY + xY 2)

)
.

It is clear that S(1) is smooth. By [Kat78, Proposition 3(i)] or [Sch09, Proposition 5.1], the singular point q(O)
is a rational double point of type D1

4 (for the classification of rational double points in all characteristics,
see [Art77]). By [Sch09, Corollary 1.7], T (1) is normal with at most rational double points as singularities,
and the minimal desingularisation of T factors through T (1). We let D(1) ⊂ S(1) and E(1) ⊂ T (1) denote the
reduced exceptional subschemes of S(1)→ S and T (1)→ T , respectively.

Lemma 2.3. The rational map q : S(1) d T (1) is regular, and the induced map D(1) → E(1) is a universal
homeomorphism.

Proof. Let S ′ → S be the blowup of the fibre q−1(q(O)) ⊂ S . By the universal property of blowing up, we
have a commutative diagram

S ′ //

��

S

��
T (1) // T .

By [Sch09, Lemma 1.3, Remark 1.4], the ideal of q−1(q(O)) is the bracket ideal m[2]
O = {f 2 | f ∈mO}, where

mO ⊂ ÔA,O is the maximal ideal. We have m[2]
O mO =m3

O, which is simply saying that (u2,v2)(u,v) = (u,v)3.

Thus the ideal m[2]
O becomes invertible on S(1). By the universal property of blowing up, there is a unique

factorisation S(1)→ S ′ → S, which therefore provides the required regular map S(1)→ T (1) extending q.
Explicitly, the map q is given by

(u,v, [U : V ]) 7−→
(
u2

1+u
,
v2

1+ v
,
uv(u + v)

(1 +u)(1 + v)
,

[
U2

1+u
:
V 2

1+ v
:
UV (u + v)

(1 +u)(1 + v)

])
,

which on D(1) = V (u,v) ⊂ S(1) simplifies to

(0,0, [U : V ]) 7−→ (0,0,0, [U2 : V 2 : 0]).

This map can therefore be identified with the relative Frobenius and is thus a universal homeomorphism. �

It follows from the results of [Sch09] that T (1) has precisely three singular points, all of type A1. An
explicit calculation gives these three points as

(x,y,z, [X : Y : Z]) = (0,0,0, [0 : 1 : 0]), (0,0,0, [1 : 0 : 0]), (0,0,0, [1 : 1 : 0]).

Since D(1)→ E(1) is a universal homeomorphism and k is algebraically closed, these in turn give rise to
three k-points on D(1). Explicitly, these are the three points

(u,v, [U : V ]) = (0,0, [1 : 0]), (0,0, [0 : 1]), (0,0, [1 : 1]).

Via the natural identification D(1) = P(TOA), where TOA is the tangent space to A at O, these three
points therefore correspond to three distinguished tangent directions to A at O. We can give an alternative
description of these tangent directions as follows.

Since k has characteristic 2, the inclusion A[2] ⊂ A induces an isomorphism TO(A[2])→̃TOA, and the
formula for ∆ given in Proposition 2.2 gives A[2]◦ � µ⊕22 . We therefore obtain three subgroups of A[2]◦

isomorphic to µ2, and the tangent spaces to these three subgroups give three preferred tangent directions to
A at O.
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Lemma 2.4. These three directions are precisely those coming from the three singular points of T (1).

Proof. Again, we can just calculate everything explicitly. Indeed, A[2]◦ is the closed subgroup scheme of S
defined by u = ι(u), v = ι(v); thus we can write

A[2]◦ � Spec
(
kJu,vK
(u2,v2)

)
with the group law given by ∆(u) = 1⊗u +u ⊗ 1+u ⊗u, and similarly for v. The three preferred tangent
directions come from the three closed subgroup schemes of Spec

(
kJu,vK
(u2,v2)

)
defined by

u = 0, v = 0, u + v = 0,

respectively. The strict transform of the closed subscheme {u = 0} ⊂ S is the closed subscheme {U = 0} of
S(1), which intersects the exceptional divisor D(1) at the point (u,v, [U : V ]) = (0,0, [0 : 1]). Similarly, the
strict transform of the closed subscheme {v = 0} ⊂ S (respectively, {u + v = 0}) intersects the exceptional
divisor D(1) at the point (0,0, [1 : 0]) (respectively, (0,0, [1 : 1])). �

We now drop the assumption that k is algebraically closed. Then we can form S = Spec(ÔA,O), T := S/G,
q : S → T , and T (1) := Blq(O)T as above, and thus T (1) has precisely three singular points over k̄. The
description of these three singular points as arising from the three subgroups of Ak̄[2]

◦ respects the Galois
action, and so we obtain the following.

Corollary 2.5. Let A be an ordinary abelian surface over k. Then there is an isomorphism of k-schemes

(T (1)
sing)red � (A∨[2])red \ {O}.

Proof. The three subgroups of Ak̄[2]
◦ isomorphic to µ2 canonically correspond to the three non-zero

elements of the abelian group Hom(A∨[2](k̄),F2), which we can identify canonically with A∨[2](k̄) via the
isomorphism ∧2(A∨[2](k̄)) � F2. These isomorphisms are Γk-equivariant. �

If we now consider the minimal resolution Kum(A)→ A/G, then we can apply the description given
in Corollary 2.5 around each of the four singular points of A/G. Since these singular points correspond
precisely to the points of A[2](k̄), this completes the proof of Proposition 2.1. �

3. Geometry in the almost ordinary case

We now want to carry out a similar analysis when A is an almost ordinary abelian surface over k. We
have A[2](k) = A[2](k̄) =Z/2, and A/G has two geometric singular points, both k-rational and both of type
D2

8; see [Sch09, table on p. 144]. The exceptional divisor of the minimal resolution Kum(A)→ A/G contains
sixteen rational curves, occurring in two (geometrically) connected components. The main result of this
section is then the following.

Proposition 3.1. The sixteen exceptional curves of Kum(A)→ A/G are all k-rational.

Translating by the unique non-identity point of A[2](k) = A[2](k̄) = Z/2, we see that it suffices to
prove the rationality of the eight exceptional curves of the minimal resolution of the formal D2

8 singularity
Spec(ÔA,O)/G. If we look at the associated Dynkin diagram, we see that the only possible Galois action is
to interchange the two curves corresponding to the nodes at the two ‘short ends’ of the diagram. Thus we
see straight away that at least six of the exceptional curves are k-rational, and the remaining two are defined
(at worst) over a quadratic extension of k.
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3.1. Formal groups and 2-divisible groups

To prove Proposition 3.1, we decompose the formal group of A.

Lemma 3.2. There is a k-isomorphism of formal groups Spf(ÔA,O) � G1 ×k G2, where Gh is a connected,
2-divisible formal group of dimension 1 and height h, for h = 1,2.

Proof. Let A[2∞] be the 2-divisible group of A and A∨[2∞] that of its dual. If we let D denote the Cartier
duality functor for p-divisible groups (so that D(G)[pn] = Hom(G[pn],µpn)), then the Weil pairing gives
an isomorphism A∨[2∞] � D(A[2∞]). Since k is perfect, the connected-étale sequences of both A[2∞]
and A∨[2∞] split canonically by [Tat97, last paragraph on p. 142]. Thus by Cartier duality, we obtain a
decomposition

A[2∞] �D
(
A∨[2∞]ét

)
×G2 ×A[2∞]ét,

where G2 is a connected 2-divisible group of height 2 and dimension 1. Passing to the connected component
of A[2∞], we find that

A[2∞]◦ �D
(
A∨[2∞]ét

)
×G2,

and invoking [Tat67, Proposition 1] then gives the result. �

Lemma 3.3. Let Gh = Spf(kJuK) be a 2-divisible formal group over k of dimension 1 and height h ≥ 1. Then
the inversion map ι is of the form

ι(u) = u + a

for some a ∈ kJuK× with valu(a) = 2h.

Proof. If ι(u) = a1u + a2u2 + · · · , then we must have a1 = 1 and hence ι(u) = u + a for some a ∈ kJuK with
valu(a) ≥ 2. The 2-torsion Gh[2] is the ι-fixed subscheme of Gh, which is defined by the ideal generated by
u + ι(u) = a and is therefore of rank valu(a) over k. But since Gh has height h, we know that Gh[2] is of
rank 2h over k, and the result follows. �

Corollary 3.4. Let x = u · ι(u) and a = u + ι(u). The quotient Gh/ι is given by Spf(kJxK), the element a lies in
kJxK and satisfies valx(a) = 2h−1, and u satisfies the equation

u2 + au + x = 0.

Proof. Arguing as in the proof of [Art75, Lemma 1], we see that kJuK is finite free over kJxK of rank
dimk kJuK/(x) = 2. In particular, this implies that k((u))/k((x)) is finite of degree 2, from which we deduce
that the inclusion k((x)) ⊂ k((u))G is an equality, and hence kJuKG = k((x))∩ kJuK = kJxK. Then a = u + ι(u)
is an element of kJuKG = kJxK. Moreover, valu(a) = valu(u2

h
f ) = 2h and valu(x) = 2; hence valx(a) = 2h−1,

as required. Finally the fact that u2 + au + x = 0 is a straightforward check. �

3.2. A naïve resolution of A/G

Having decomposed the formal group of A, we can then explicitly resolve the singular surface
Spec(ÔA,O)/G in the most naïve way, by repeatedly blowing up the ‘worst’ singularity. Let us write
S = Spec(ÔA,O) = Spec(kJu,vK), where we may use the results of Section 3.1 above to choose u and v in
such a way that G acts via

ι(u) = u +u2f (u), ι(v) = v + v4g(v)

for some f ∈ kJuK×, g ∈ kJvK×. Let x = uι(u), y = vι(v), z = uι(v) + vι(u). From Corollary 3.4, we obtain
u2+au+x = 0, where a = xε(x) for some ε(x) ∈ kJxK×. Similarly, we have v2+bv+y = 0, where b = y2η(y)
for some η(y) ∈ kJyK×. By [Sch09, Proposition 1.1], we see that the quotient T := S/G is given by

T = Spec
(

kJx,y,zK
(z2 + xy2zε(x)η(y) + x2yε(x)2 + xy4η(y)2)

)
.

Write q : S→ T for the quotient morphism. Then q(O) is the unique singular point of T and is of type D2
8.
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Lemma 3.5. There exist a cubic extension k′/k and a change of co-ordinates x 7→ αx, y 7→ βy, z 7→ γz, with
α,β,γ ∈ k′Jx,y,zK×, inducing an isomorphism

T � Spec
(

kJx,y,zK
(z2 + xy2z+ x2y + xy4)

)
.

Proof. If we make the given substitution, then we obtain the equation

γ2z2 +αβ2γxy2zεη +α2βx2yε2 +αβ4xy4η2 = 0,

and for this to be of the required form, we need

αβ2εη = γ, α2βε2 = γ2, αβ4η2 = γ2.

Solving these equations gives
α = ε−2, β3 = η−2, γ = αβ2εη.

Thus we need to be able to take a cube root of η ∈ kJyK×, which we can always do over the (at worst) cubic
extension k( 3

√
η(0)). �

We already know that all the exceptional curves in the minimal resolution of T are rational over a
quadratic extension of k. To prove that they are k-rational, we are therefore allowed to make a cubic
extension of k and hence assume that

T � Spec
(

kJx,y,zK
(z2 + xy2z+ x2y + xy4)

)
.

Let T (1) be the blowup of T at q(O) = V (x,y,z). Thus

T (1) = Proj
(

kJx,y,zK[X,Y ,Z]
(xY + yX,xZ + zX,yZ + zY ,Z2 + y2XZ + yX2 + y3XY )

)
.

Let E(1) ⊂ T (1) denote the reduced exceptional subscheme of T (1)→ T .
Via direct calculation, we can show that T (1) has precisely two singular points, both defined over k, and

given in co-ordinates (x,y,z, [X : Y : Z]) by

Q
(1)
1 = (0,0,0, [1 : 0 : 0]), Q

(1)
2 = (0,0,0, [0 : 1 : 0]).

These are of type A1 and D1
6, respectively. Indeed, if we set y

′ = y/x and z′ = z/x, we can explicitly describe

the formal completion T
(1)

/Q
(1)
1

as

T
(1)

/Q
(1)
1

= Spec
(

kJx,y′ , z′K
(z′2 + x2y′2z′ + xy′ + x3y′4)

)
,

and if we set x′ = x/y and z′′ = z/y, then the formal completion T
(1)

/Q
(1)
2

is given by

T
(1)

/Q
(1)
2

= Spec
(

kJx′ , y,z′′K
(z′′2 + x′y2z′′ + x′2y + x′y3)

)
.

We now let T (2)→ T (1) be the blowup at the k-rational singular point Q
(1)
2 of type D1

6. We let E(2) ⊂ T (2)

denote the reduced exceptional subscheme of T (2)→ T , which naturally decomposes as E(2) = E(2)
1 ∪E

(2)
2 ,

where E
(2)
1 is the (reduced) strict transform of E(1) and E

(2)
2 is the reduced exceptional subscheme of

T (2)→ T (1).
To perform explicit calculations on T (2), we write x′ = x/y and z′′ = z/y and take the formal completion

T
(1)

/Q
(1)
2

= Spec
(

kJx′ , y,z′′K
(z′′2 + x′y′2z′′ + x′2y + x′y3)

)
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at Q
(1)
2 . Thus T (2) ×T (1) T

(1)

/Q
(1)
2

is given by

Proj
(

kJx′ , y,z′′K[X ′ ,Y ′ ,Z ′]
(x′Y ′ + yX ′ ,x′Z ′ + z′′X ′ , yZ ′ + z′′Y ′ ,Z ′2 + y′2X ′Z ′ + yX ′2 + yX ′Y ′)

)
.

Further explicit calculations show that T (2) has three singular points Q
(2)
1 , Q

(2)
2 , and Q

(2)
3 . The first of these,

Q
(2)
1 , is obtained simply as the strict transform of Q

(1)
1 , lies on E

(2)
1 \ E

(2)
2 , and is k-rational of type A1.

The second, Q
(2)
2 , is the unique point of E

(2)
1 ∩E

(2)
2 and is given in co-ordinates (x′ , y,z′′ , [X ′ : Y ′ : Z ′]) by

(0,0,0, [1 : 0 : 0]). It is therefore k-rational, and it is not difficult to show, again via explicit calculation, that
it is of type A1.

The final singularity Q
(2)
3 lies on E

(2)
2 \ E

(2)
1 . In co-ordinates (x′ , y,z′′ , [X ′ : Y ′ : Z ′]), it is given by

(0,0,0, [0 : 1 : 0]), and if we set x′′ = x′/y and z′′′ = z′′/y, then the formal completion T
(2)

/Q
(2)
3

is given

explicitly by

Spec
(

kJx′′ , y,z′′′K
(z′′′2 + x′′y2z′′′ + x′′2y + x′′y2)

)
.

In particular, this singularity is k-rational and of type D0
4.

We now let T (3) → T (2) be the blowup at Q
(2)
3 . We let E

(3)
3 ⊂ T (3) denote the reduced exceptional

subscheme of T (3)→ T (2), write E
(3)
1 , E

(3)
2 for the (reduced) strict transforms of E

(2)
1 , E

(2)
2 , and set E(3) =

E
(3)
1 ∪E

(3)
2 ∪E

(3)
3 . A further explicit calculation shows that T (3) has five singular points, all of type A1, and

lying on E(3) as follows:

Q
(3)
2 Q

(3)
3

Q
(3)
4

Q
(3)
5

Q
(3)
1

E
(3)
1

E
(3)
3

E
(3)
2

It is clear that the points Q
(3)
1 and Q

(3)
2 are k-rational since they are simply the unique preimages of Q

(2)
1

and Q
(2)
2 . That Q

(3)
3 is k-rational then follows from the geometry of the above configuration since there is no

other point it could be sent to under the Galois action. To see that the last two points Q
(3)
4 and Q

(3)
5 are

k-rational, we can do an explicit calculation. Indeed, if we write

T
(2)

/Q
(2)
3

= Spec
(

kJx′′ , y,z′′′K
(z′′′2 + x′′y2z′′′ + x′′2y + x′′y2)

)
,

so that T (3) ×T (2) T
(2)

/Q
(2)
3

is given by

Proj
(

kJx′′ , y,z′′′K[X ′′ : Y ′′ : Z ′′]
(x′′Y ′′ + yX ′′ ,x′′Z ′′ + z′′′X ′′ , yZ ′′ + z′′′Y ′′ ,Z ′′2 + y2X ′′Z ′′ + yX ′′2 + yX ′′Y ′′)

)
,

then we can explicitly give the singular points Q
(3)
3 , Q

(3)
4 , and Q

(3)
5 in co-ordinates as

(x′′ , y,z′′′ , [X ′′ : Y ′′ : Z ′′]) = (0,0,0, [1 : 0 : 0]), (0,0,0, [1 : 1 : 0]), (0,0,0, [0 : 1 : 0]).

This completes the proof of Proposition 3.1. �
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4. The Galois action on Kummer surfaces

We can now use the above results to describe, in the non-supersingular case, the Galois action on the
cohomology of Kummer surfaces over K and k. We will assume that k is perfect of characteristic 2 and let
A/OK be a relative abelian surface with generic fibre A :=AK .

4.1. Preliminaries on Cartier duality

The 2-torsion subscheme A[2] is a finite flat group scheme over OK ; we let A[2]◦ be the connected
component of the identity. By [Tat97, Section (3.7)(I)], we have the connected-étale exact sequence of finite
flat group OK -schemes

0 −→A[2]◦ −→A[2] −→A[2]ét −→ 0,

where A[2]ét is the largest étale group OK -scheme quotient of A[2]. If we base change from OK to k, the
connected-étale sequence splits, and we have(

A[2]ét
)
k
= (Ak[2])ét = (Ak[2])red,

and this is the unique étale group scheme over k whose k̄-points are in Γk-equivariant bijection with Ak[2](k̄);
see for example [Tat97, Section (3.7)(IV)]. Thus over OK , we deduce that

A[2]ét(K) =A[2]ét(Knr) �A[2]ét(k̄) =A[2](k̄),

which are all isomorphisms of (unramified) ΓK -modules.

Lemma 4.1. The connected-étale sequence

0 −→A[2]◦ −→A[2] −→A[2]ét −→ 0

splits if and only if the exact sequence

0 −→A[2]◦(K) −→ A[2](K) −→A[2](k̄) −→ 0

of ΓK -modules splits.

Proof. Clearly if the connected-étale sequence splits, then the sequence of ΓK -module splits. Conversely, if the
sequence of ΓK -modules splits, we obtain a finite flat group scheme G ⊂ A[2] of order |A[2]ét| as the image
of the splitting. Taking the closure of G inside A[2] then gives a finite flat group scheme G ⊂ A[2] of order
|A[2]ét| mapping isomorphically onto A[2]ét. This gives a splitting of the connected-étale sequence. �

Let A∨/OK be the dual abelian surface, which exists by [BLR90, Theorem 8.5]. By [Oda69, Corol-
lary 1.3], the finite flat group k-schemes A[2] and A∨[2] are Cartier duals of each other; that is,
A[2] = HomOK (A

∨[2],Gm) = HomOK (A
∨[2],µ2). If A has ordinary reduction, that is, A[2](k̄) ' (Z/2)2,

then so does A∨. Thus each of the group schemes A[2]◦, A[2]ét, A∨[2]◦, A∨[2]ét has order 4. The
Cartier dual of a commutative finite étale group OK -scheme annihilated by 2 is connected; hence
HomOK (A

∨[2]ét,µ2) is naturally embedded into A[2]◦. Since the orders are equal, we obtain a canonical
isomorphism

A[2]◦ �HomOK (A
∨[2]ét,µ2).

Similarly, we have A∨[2]◦ � HomOK (A[2]
ét,µ2), and we also have a canonical isomorphism of F2[Γk]-

modules
Hom(A∨[2](k̄),µ2(K)) �A∨[2](k̄)

because µ2(K) = F2 and ∧2(A∨[2](k̄)) = F2. Thus the connected-étale sequence gives rise to an exact
sequence of ΓK -modules

0 −→A∨[2](k̄) −→A[2](K) −→A[2](k̄) −→ 0.

In particular, we have the following statement.
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Lemma 4.2. Suppose that A/OK is a relative abelian surface with ordinary special fibre Ak . Then A[2]◦(K) is
unramified as a ΓK -module.

4.2. Galois action over the residue field

If Ak is not supersingular, then the minimal resolution Kum(Ak)→Ak/G is a K3 surface by [Kat78,
Theorem B]. There are sixteen (geometric) exceptional curves, which appear in four disjoint D4 configurations
when Ak is ordinary, and two disjoint D8 configurations when Ak is almost ordinary. The results of Sections 2
and 3 then describe the Galois action on these curves: if Ak is ordinary, the exceptional curves are indexed
Galois-equivariantly by A∨[2](k̄)×A[2](k̄), and if Ak is almost ordinary, they are all k-rational.

Definition 4.3. Suppose that a group Γ acts on a finite set X. For a prime `, we write QX
` for the associated

Q`-valued permutation representation of Γ .

In particular, if X is the set underlying an n-dimensional F2-representation of Γ , we have dim
Q`
(QX

` ) = 2n.
Thanks to the results of Sections 2 and 3, we can then describe the Γk-representation in H2

ét(Kum(Ak)k̄ ,Q`)
explicitly as follows.

Corollary 4.4. Suppose that Ak is ordinary. Let V = V1 ⊕V2, where V1 =A∨[2](k̄) and V2 =A[2](k̄). Then
for any odd prime `, there is an isomorphism

H2
ét(Kum(Ak)k̄ ,Q`) �H2

ét(Ak̄ ,Q`)⊕QV
` (−1)

of Γk-representations.

Corollary 4.5. Suppose that Ak is almost ordinary. Then for any odd prime `, there is an isomorphism

H2
ét(Kum(Ak)k̄ ,Q`) �H2(Ak̄ ,Q`)⊕Q`(−1)⊕16

of Γk-representations.

4.3. Galois action over the fraction field

We now consider the ΓK -representation in the cohomology group H2
ét(Kum(A)K ,Q`) of the generic fibre.

In this case, we have an isomorphism of ΓK -modules

H2
ét(Kum(A)K ,Q`) �H2

ét(AK ,Q`)⊕QW
` (−1),

where W = A[2](K) is the ΓK -representation on the 2-torsion points of A. A detailed explanation of this
isomorphism can be found in [Ove21, Lemma 4.1].

We will want to compare the Galois representations in H2
ét(Kum(Ak̄),Q`) and H2

ét(Kum(A)K ,Q`), at
least when Ak is non-supersingular. In the almost ordinary case, this is entirely straightforward, so we will
concentrate on the case where Ak is ordinary.

In this case, if we let V1 =A∨[2](k̄) and V2 =A[2](k̄), then recall from Section 4.1 that we have a short
exact sequence of F2[ΓK ]-modules

(4.1) 0 −→ V1 −→W −→ V2 −→ 0.

Let P ⊂ GL(W ) be the parabolic subgroup which leaves invariant the F2-subspace V1 ⊂ W . Let GW
(respectively, GV ) be the image of the action of ΓK on W (respectively, on V = V1 ⊕ V2). The natural
projection π : P → GL(V1)×GL(V2) induces a surjective homomorphism GW → GV . Since GV and GW
are finite, we have GW � GV if and only if |GW | = |GV |.

Theorem 4.6. Suppose that Ak is ordinary. Then the following properties are equivalent:
(1) There is an isomorphism of ΓK -representations Q

V
` 'Q

W
` .

(2) The extension of F2[ΓK ]-modules (4.1) is split.
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(3) |GW | = |GV |.
If these properties hold, then the ΓK -representation in W = A[2](K) is unramified; that is, it factors through Γk .

Proof. The implications (1) ⇒ (3) and (2) ⇒ (1) are clear. Either (1) or (2) implies that the representation
of ΓK in W is unramified because the representation of ΓK in V is unramified. It remains to show that (3)
implies (2).

Choosing a section V2→W of the projection W → V2 induces a section σ of the projection π : P →
GL(V1)×GL(V2). Thus we have a split exact sequence of groups

(4.2) 0 −→ Ru(P ) −→ P −→GL(V1)×GL(V2) −→ 0,

where Ru(P ) is the unipotent radical of P . We need to show that if GW is isomorphic to GV = π(GW ), then
GW is conjugate, via an element of Ru(P ), to σ (GV ).

The pullback of (4.2) with respect to the inclusion GV ⊂GL(V1)×GL(V2) is a split exact sequence

0 −→ Ru(P ) −→ Ru(P )oGV −→ GV −→ 0,

where GV ⊂GL(V1)×GL(V2) acts on Ru(P ) by conjugation. The subgroups GW and σ (GV ) are complements
to Ru(P ) in Ru(P )oGV . It is enough to show that H1(GV ,Ru(P )) = 0 because then all the complements to
Ru(P ) in Ru(P )oGV are conjugate; see, e.g., [Rot09, Proposition 9.21].

We note that the action of (A,B) ∈GL(V1)×GL(V2) on
(
I X
0 I

)
∈ Ru(P ) by conjugation via σ ((A,B)) sends

X to AXB−1, so Ru(P ) is isomorphic as a GL(V1) ×GL(V2)-representation to V1 ⊗F2
V ∗2 � V1 ⊗F2

V2. It
remains to prove that for any subgroup G ⊂ GL(V1)×GL(V2), we have H1(G,V1 ⊗F2

V2) = 0. Since this
group is annihilated by 2, by the standard restriction-corestriction argument, it is enough to prove that
H1(H,V1 ⊗F2

V2) = 0, where H is a 2-Sylow subgroup of G. Then H is contained in a subgroup of S3 × S3
isomorphic to the product of Z/2 ⊂ S3 and Z/2 ⊂ S3. The F2-vector space V1 has a basis whose elements
are permuted by Z/2, and similarly for V2. This gives a basis of V1 ⊗F2

V2 whose elements are permuted by
Z/2×Z/2. It follows that H1(H,V1 ⊗F2

V2) = 0 for any subgroup H ⊂Z/2×Z/2. �

5. Explicit smooth models

Let A/OK be an abelian scheme of relative dimension 2 whose reduction Ak is non-supersingular. Let
A :=AK be the generic fibre of A. In this section, we show how to construct an explicit smooth model for
Kum(A) under suitable assumptions on the 2-torsion A[2](K) as a ΓK -module. In particular, this will result
in a proof of Theorem 1.

5.1. Blowups and specialisation

Let X → Spec(OK ) be a flat morphism of finite type, of relative dimension 2, and with normal, integral
fibres. It is not true in general that blowing up a closed subscheme of X commutes with base change to k,
even if the centre is flat over OK . However, we do have the following result.

Proposition 5.1. Suppose that Z ⊂ X is an OK -section such that both fibres of X have an isolated rational double
point at Z. Then BlZ(X )k � BlZk (Xk).

Proof. Let I ⊂ OX be the ideal of Z and Ik ⊂ OXk the ideal of Zk in Xk . Thus Ik is just the image of I
inside OXk , and similarly each power Ink is the image of the corresponding power In inside OXk . Then

BlZ(X )k = Proj

⊕
n≥0
In ⊗OK k

 ,
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whereas

BlZk (Xk) = Proj

⊕
n≥0
Ink

 ,
so we need to show that the natural map In ⊗OK k −→ I

n
k is an isomorphism for all n. Since this map is

clearly surjective, we see that the natural map

OX /In ⊗OK k→OXk /I
n
k

is an isomorphism. Hence showing that In ⊗OK k→I
n
k is an isomorphism is equivalent to showing that the

exact sequence

0 −→ In −→OX −→OX /In −→ 0

remains exact upon applying −⊗OK k, which will certainly follow if we can show that OX /In is flat over OK .
To see this, we first observe that each OX /In is finite over OK . Indeed, OX /I is finite over OK , and

I /I2 is a finitely generated OX /I -module. Hence the surjective map (I /I2)⊗n→In/In+1 shows that each
In/In+1 is a finitely generated OK -module, and thus so is each OX /In by induction on n.

By the structure theorem for modules over a principal ideal domain, we see that each OX /In is isomorphic
to an OK -module of the form

O⊕rK ⊕OK /m
n1
K ⊕ · · · ⊕OK /m

ns
K .

Thus flatness over OK is equivalent to having s = 0, which in turn is equivalent to the equality of dimensions

(5.1) dimK OXK /I
n
K = dimkOXk /I

n
k .

Since IK ⊂ OXK and Ik ⊂ OXk are both maximal ideals defining isolated rational double points on normal
surfaces, it follows from Lemma 5.2 below that both sides of (5.1) are equal to n2. �

Lemma 5.2. Let (A,mA) be a complete Noetherian local ring, normal of Krull dimension 2, with a rational
double point at mA. Then dimA/mA

(mn
A/m

n+1
A ) = 2n+1.

Proof. We may assume that the residue field A/mA is algebraically closed. In this case, the computation is
done in Theorem 4 and Corollary 6 of [Art66]. �

This result has the following important consequence.

Lemma 5.3. Let x ∈ X (k), and assume that Xk has a rational double point of type A1 at x. Then there exists at
most one (geometric) rational double point of XK specialising to x.

Remark 5.4. If P : Spec(K)→XK is a point, then there exist a finite extension L/K and a finitely generated
OK -algebra R ⊂ L such that R[1/2] = L and the scheme-theoretic image of P is given by a closed immersion
Spec(R)→X . Since the normalisation of R is equal to OL, the special fibre Spec(R⊗OK k) has a single point.
We say that P specialises to x if the closed immersion Spec(R)→X sends the unique point of Spec(R⊗OK k)
to x.

Proof. Suppose towards a contradiction that there are two distinct such points P1, P2. Let L/K be a finite
extension over which both are defined, with ring of integers OL and residue field kL. Let XOL be the base
change of X to OL. Thus XOL is flat over OL with normal fibres, its special fibre XkL has a rational double
point of type A1 at x, and both P1 and P2 specialise to this point.

Let P1 denote the scheme-theoretic closure of P1 inside XOL . This is therefore an OL-section of XOL ,
and we let X ′OL denote the blowup of X ′ along this section. Thus the special fibre X ′kL is smooth over kL
at every point in the fibre over x. Now, we let P2 denote the closure of P2 inside XOL and P ′2 ⊂ X

′
OL its

strict transform. Then P ′2 is an OL-section of X ′OL such that the special fibre X ′kL is smooth at P ′2,kL , but the
generic fibre X ′L is singular at P ′2,L. This is the contradiction we seek. �
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Remark 5.5. More generally, if we have a collection of rational double points, we can talk about their ‘total
degree’ as being the sum of the lower indices in the ADE classification. We can then use Lemma 5.3 to
prove by induction that the total degree of a collection of rational double points cannot increase under
specialisation. We will not need this more general result.

5.2. Blowing up A/G along the étale part of 2-torsion

We now let Y := A/G be the quotient scheme by the involution ι and let q : A → Y be the quotient
morphism. Note that Y is flat over OK . Our aim is to show that under appropriate conditions one can
explicitly construct relative (smooth) Kummer surfaces by resolving the relative quotient surface Y .

We begin by describing the fibres of Y → Spec(OK ). Since quotients of quasi-projective schemes by finite
group actions commute with flat base change,(4) we get a natural identification A/G→̃YK . In fact, the same
is true on the special fibre.

Proposition 5.6. The natural map Ak→Yk induces an isomorphism Ak/G→̃Yk .

Proof. In view of compatibility of quotients by G with flat base change, we may assume that k is algebraically
closed. Since the G-action is free on A\A[2], we obtain an isomorphism

(Ak \Ak[2])/G ˜−→ (A/G)k \ q(Ak[2]).

Once more appealing to compatibility with flat base change, it therefore suffices to prove the analogous
statement after base changing to the formal completion (A/G)/Q at any point Q of q(Ak[2]). Up to
translation, and possibly enlarging K if necessary to ensure that the map A[2](K)→A[2](k) is surjective,
we may therefore replace A with its completion at the zero section Ok ∈ Ak on the special fibre.

Thus we have an action of G on ÔA,Ok � OKJu,vK, and we may choose the local parameters u and v in
such a way that the description of the action and its quotient given in [Sch09, Proposition 1.1] and [Art75,
Theorem, p. 60] holds modulo mK . The quotient OKJu,vK/OKJu,vKG is mK -torsion free, which shows that
the map OKJu,vKG→OKJu,vK remains injective upon applying −⊗OK k. This implies that the natural map
OKJu,vKG ⊗OK k→ kJu,vKG is injective; we need to show that it is in fact an isomorphism. In other words,
we need to show that

OKJu,vKG −→ kJu,vKG

is surjective. But this is straightforward since every element of kJu,vKG can be written as a series in
x = u · ι(u), y = v · ι(v), and z = u · ι(v)+v · ι(u). Any such series clearly lifts to an element of OKJu,vKG. �

Let us now assume that Ak is non-supersingular and that the exact sequence of ΓK -modules

0 −→A[2]◦(K) −→A[2](K) −→A[2](k̄) −→ 0

is split. Then the surjective morphism of finite flat group OK -schemes A[2]→A[2]ét has a section σ , so
that A[2] is isomorphic to A[2]◦ × σ (A[2]ét). The degree of σ (A[2]ét)→ Spec(OK ) is 4 in the ordinary
case and 2 in the almost ordinary case. Let Z = q(σ (A[2]ét)) ⊂ Y denote the scheme-theoretic image of
σ (A[2]ét).

Lemma 5.7. The natural map σ (A[2]ét)→Z is an isomorphism.

Proof. The claim can be checked after making a finite extension of K , so we may assume that σ (A[2]ét) ⊂ A
consists of either four (in the ordinary case) or two (in the almost ordinary case) disjoint OK -sections. Their
images remain disjoint in Y , and so we may reduce to considering the scheme-theoretic image in Y of a
single OK -section in A, where the claim is clear. �

(4)This is essentially because the ring of functions on the quotient can be expressed as a kernel; see for example the argument in
Section (4.24) on p. 59 of [EvdGM].
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Let Y (1) be the blowup of Y in Z. It then follows from Proposition 5.1 that the special fibre Y (1)
k is the

blowup of Yk in its reduced singular locus.

5.3. The ordinary case

We now assume further that Ak is ordinary. Thus both the generic fibre Y (1)
K and the special fibre Y (1)

k
contain twelve (geometric) singular points, all of which are rational double points of type A1. Each of the

twelve singular points on Y (1)
K has to specialise to a singular point on Y (1)

k , and by Lemma 5.3 each singular

point on Y (1)
k is specialised to by at most one singular point on Y (1)

K .
In other words, if we let Z(1) ⊂ Y (1) denote the scheme-theoretic closure of the twelve (geometric) singular

points on Y (1)
K , then Z(1) is finite étale over OK of degree 12 and intersects both the generic and special

fibres in their reduced singular loci. We now let X be the blowup of Y (1) in Z(1).

Theorem 5.8. Suppose that Ak is ordinary and the exact sequence

0 −→A[2]∨(k̄) −→A[2](K) −→A[2](k̄) −→ 0

splits. Then any section σ of A[2] → A[2]ét gives rise to a smooth and projective scheme X /OK , equipped
with an action of A[2]ét, whose fibres are the minimal desingularisations of the fibres of A/G. In particular,
XK � Kum(AK ) and Xk � Kum(Ak).

Proof. The statement about the special fibre follows from the results of Section 2; in particular, Xk is smooth.
The generic fibre XK is clearly the Kummer surface attached to AK , so it is smooth. We can see that X /OK
is flat because X is integral, OK is a DVR, and X → Spec(OK ) is surjective; see [Har77, Proposition III.9.7].
It is projective because it is an iterated blowup of the projective OK -scheme Y . Finally, X /OK is smooth
since it is flat with smooth fibres; see [Stacks, Lemma 01V8]. �

5.4. The almost ordinary case

The construction of an explicit smooth resolution of Y = A/G is slightly more involved in the almost
ordinary case. Here, we assume that A[2](K) = A[2](K), and we show that we can perform the ‘naïve’
resolution described in Section 3.2 on the relative surface Y . In fact, we will replace A with the formal
completion S = Spec(ÔA,Ok ) at the zero section of the special fibre. We let T = S/G and write q : S → T
for the quotient map. We will describe a resolution of S via an explicit sequence of blowups. To obtain a
resolution of Y , we simply perform the same sequence of blowups and then translate the whole procedure
by the point of A[2](K) given by the image of the non-identity point of A[2](k) under the splitting σ of
A[2]→A[2]ét.

First of all, note that any point in the kernel of the reduction map A(K)→A(k) can naturally be thought
of as a K-point of S . Moreover, any such point extends uniquely to a section Spec(OK )→S . In particular,
all eight points of A[2]◦(K) give rise to sections of S , and the images of these sections under q intersect the
generic fibre TK precisely at its eight singular points. The fibre product T (1) := Y (1) ×Y T is then the blowup
of T along q(O).

We therefore know that the (reduced) singular locus of T (1)
K consists of seven K-rational points of type A1,

and the (reduced) singular locus of T (1)
k consists of two k-rational points, one of type A1 and one of type

D1
6. By Lemma 5.3, there exists at least one singular point on T (1)

K specialising to the D1
6-singularity Q

(1)
2

(in the notation of Section 3). Let Q(1)
2 ⊂ T (1) denote the closure of this point and T (2) the blowup of T (1)

along Q(1)
2 .

Now the (reduced) singular locus of T (2)
K consists of six K-rational points of type A1, and the (reduced)

singular locus of T (2)
k consists of three k-rational points, two of type A1 and one of type D0

4. By Lemma 5.3,

https://stacks.math.columbia.edu/tag/01V8
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there exists at least one singular point on T (2)
K specialising to the D0

4-singularity Q
(2)
3 . We let Q(2)

3 ⊂ T (2)

denote the closure of this point and T (3) the blowup of T (2) along Q(2)
3 .

We therefore see that both the general and special fibres of T (3) have precisely five singular points, all of
type A1, and the singular subscheme of T (3) is finite étale of degree 5 over OK . Now, as in the ordinary
case, we may blow up the singular subscheme of T (3) to obtain a scheme which is formally smooth over OK .
We therefore obtain the following analogue of Theorem 5.8.

Theorem 5.9. Suppose that Ak is almost ordinary and that A[2](K) is trivial as a ΓK -module. Then there
exists a smooth and projective scheme X /OK , equipped with an action of A[2]ét, whose fibres are the minimal
desingularisations of the fibres of A/G. In particular, XK � Kum(AK ) and Xk � Kum(Ak).

Remark 5.10. It is not completely transparent exactly where the hypothesis that A[2](K) =A[2](K) is used.
However, a more careful examination of the proof shows that:

(1) the two sections Q(1)
2 and Q(2)

3 that we blew up above,
(2) the chosen splitting of A[2]→A[2]ét,
(3) the canonical multiplicative subgroup µ2 �HomOK (A

∨[2]ét,µ2) ⊂ A[2]
all combine to give a set of K-rational generators of A[2](K). The choice involved in producing X is
essentially a choice of F2-basis of A[2](K) containing the non-trivial element of HomOK (A

∨[2]ét,µ2).

6. Good reduction criterion

In this section, we complete the proofs of Theorems 1, 2, and 3. Since we will want to use the main result
of [CLL19], we first need to explain the ‘canonical reduction’ of a K3 surface which plays a key role there.

6.1. Canonical reduction

Suppose that X/K is a K3 surface which attains good reduction after a finite and unramified extension
of K . In general, this does not imply that X has good reduction over K itself; see for example [LM18,
Section 7]. However, it is still possible to produce a K3 surface X0/k as the ‘reduction’ of X, in a way that is
unique up to k-isomorphism.

The key result that allows us to do this is [LM18, Proposition 4.7(2)], which says that if X1 and X2 are
smooth models of our K3 surface X over OK , that is, smooth and proper algebraic spaces over OK with
generic fibres identified with X, then X1 and X2 are connected by a sequence of flopping contractions and
their inverses. In particular, this implies that the canonical rational map X1 d X2 given by the identity
on generic fibres is an isomorphism away from a finite collection of curves on the special fibres of X1
and X2. We may therefore restrict this map to obtain a birational map X1,k d X2,k between these special
fibres. As remarked in the introduction, these special fibres must be K3 surfaces (since they have trivial
canonical bundle and coherent Euler characteristic 2), and hence this restricted birational map is in fact an
isomorphism.

This has the following important consequence. Suppose that L/K is a finite and unramified Galois
extension, with induced residue field extension kL/k. If X /OL is a smooth model for XL, then we may
consider the natural Gal(L/K)-action on XL as a rational action on X . By the above discussion, this is
defined away from a finite collection of curves on XkL . We can therefore restrict this rational action to the
special fibre XkL , and again, as in the above discussion, this restricted rational action is regular. Hence we
may form the quotient X0 := XkL/Gal(L/K), which is a K3 surface over k by the theory of Galois descent.
Moreover, if we had any two such smooth models X1 and X2 over OL, then the identity map between the
generic fibres induces a Gal(L/K)-equivariant isomorphism between their special fibres. Thus the K3 surface
X0, up to isomorphism, does not depend on the choice of model X /OL, or indeed on the choice of L.
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Definition 6.1. The K3 surface X0 over k is called the canonical reduction of X.

In our case the canonical reduction appears in the following way.

Lemma 6.2. Let Y /OK be a flat, projective scheme with normal, 2-dimensional fibres, such that the minimal
resolution X of YK is a K3 surface. Assume that there exist a finite and unramified Galois extension L/K and a
proper birational morphism X →YOL such that X is smooth over OL with generic fibre isomorphic to XL. Then
the minimal resolution of Yk is the canonical reduction of X.

Proof. The Galois group Gal(L/K) acts naturally on XL and YL, and the morphism XL→YL is Gal(L/K)-
equivariant. The action of Gal(L/K) on XL extends uniquely to a rational action of Gal(L/K) on X . The
morphism X → YOL is thus Gal(L/K)-equivariant. As we have seen, the rational action of Gal(L/K) on
X restricts to a regular action on XkL . We therefore obtain a Gal(kL/k)-equivariant birational morphism
XkL →YkL . Since XkL is a K3 surface, this morphism is a minimal resolution of YkL . Hence XkL/Gal(L/K),
which by definition is the canonical reduction of X, is the minimal resolution of Yk . �

6.2. The proofs

We can now prove our main theorems.

Theorem 6.3. Let A be an abelian surface over K with good, non-supersingular reduction. Then we have the
following statements:

(1) The Kummer surface Kum(A) attains good reduction with a scheme model after a finite field extension
L/K of degree [L : K] ≤ |GL4(F2)|.

(2) If the ΓK -module A[2](K) is unramified, then the extension L/K in (1) can be chosen to be unramified.
(3) (a) If A has ordinary reduction, then Kum(A) has good reduction over K if and only if the exact sequence

0 −→A∨[2](k̄) −→ A[2](K) −→A[2](k̄) −→ 0

of ΓK -modules splits. If this condition holds, then the ΓK -module A[2](K) is unramified and Kum(A)
has good reduction over K with a scheme model.

(b) If A has almost ordinary reduction, then Kum(A) has good reduction over K if and only if the
ΓK -module A[2](K) is trivial. If this condition holds, then Kum(A) has good reduction over K with a
scheme model.

Proof. Parts (1) and (2), as well as ‘if’ statements of part (3) immediately follow from Theorems 5.8 and 5.9.
In particular, we see that the K3 surface Kum(A) satisfies Hypothesis (?) in the terminology of [LM18] and
[CLL19].

For the ‘only if’ direction of part (3), we first note that the hypothesis that Kum(A) has good reduction
implies that A[2](K) is an unramified ΓK -module. We then consider the singular model A/ι for Kum(A),
which by the results of Section 5 has a simultaneous resolution after an unramified extension of K . Hence
Lemma 6.2 shows that Kum(Ak) is the canonical reduction of Kum(A).

It therefore follows from [CLL19, Theorem 1.6] that good reduction of Kum(A) over K is equivalent to the
existence of an isomorphism of ΓK -representations

H2
ét(Kum(A)K ,Q`) 'H2

ét(Kum(Ak)k̄ ,Q`)

for any odd prime `. Indeed, given this isomorphism, we have an induced isomorphism on respective
semisimplifications and therefore an isomorphism

H2
ét(Kum(A)K ,Q`)

H2
ét(AK ,Q`)

'
H2

ét(Kum(Ak)k̄ ,Q`)

H2
ét(Ak̄ ,Q`)

since both sides are semisimple and H2
ét(AK ,Q`) �H2

ét(Ak̄ ,Q`). Hence we can apply Theorem 4.6 in the
case of ordinary reduction or Corollary 4.5 in the case of almost ordinary reduction. �
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Example 6.4. The condition appearing in Theorem 6.3(3a) is not automatic, even if we assume that A[2](K)
is unramified. To see this, we let E/Z2 be the elliptic curve defined by

E : y2 + xy = x3 − 20x − 5.

If we reduce modulo 2, we get the curve

E
F2

: y2 + xy = x3 +1,

which is smooth over F2, and hence E is indeed an elliptic curve over Z2. Note that EF2
has the 2-torsion

point (x,y) = (0,1) and is therefore ordinary. If we make the change of co-ordinates y = 1
2 (y
′ − x), then

E := E
Q2

can be defined by the equation

y′2 = 4x3 + x2 − 80x − 20,

and the right-hand side factors as

4x3 + x2 − 80x − 20 = (4x+1)(x2 − 20).

Since 20 is not a square in Q2, it follows that E(Q2) has precisely one point of exact order 2, namely
(x,y) =

(
−14 ,

1
8

)
. However, the full 2-torsion of E is defined over the unramified extension Q2(

√
5) of Q2.

The exact sequence

0 // E[2]◦(Q2) // E[2](Q2) // E[2](F 2) // 0

E[2](F 2)

therefore consists of unramified F2[ΓK ]-modules, since all points of E[2] are defined over Q2(
√
5), and is

non-split since E[2](F 2) is a trivial Γk-module but E[2](Q2) is not. In particular, if we take A = E ×
Z2
E ,

then A :=A
Q2

is an abelian surface with good ordinary reduction, and the exact sequence

0 −→A∨[2](F 2) −→A[2](Q2) −→A[2](F 2) −→ 0

consists of unramified F2[GK ]-modules and is non-split. Thus Kum(A) has good reduction over Q2(
√
5)

but not over Q2.

We leave it to the reader to find an example of an abelian surface A/K with good, almost ordinary
reduction, such that A[2](K) is unramified but non-trivial as a ΓK -module.

Remark 6.5. In the case where Kum(A) has good reduction, we can ask what the height is of the reduced K3
surface over k, that is, the height of its formal Brauer group over k as defined in [AM77]. This is the same
as the height of the Kummer surface Kum(Ak) and can be detected in the slopes (roughly speaking, the
valuations of the Frobenius eigenvalues) of the geometric crystalline cohomology groups of Kum(Ak). After
replacing k with k̄, and using crystalline cohomology relative to W :=W (k̄), we have an isomorphism of
F-isocrystals

H2
cris(Kum(Ak̄)/W )

Q
�H2

cris(Ak̄/W )
Q
⊕W (−1)⊕16

Q
.

This allows us to simply read off the slopes of H2
cris(Kum(Ak̄)/W )

Q
from those of

H2
cris(Ak̄/W )

Q
=

2∧
H1

cris(Ak̄/W )
Q
.

Indeed, if Ak has 2-rank r ∈ {1,2}, then H1
cris(Ak̄/W )

Q
has slopes 0, 1

2 , 1 with multiplicities r, 4− 2r, r,
respectively. If we therefore set h := 3− r, then H2

cris(Ak̄/W )
Q
has slopes 1− 1

h , 1, 1+
1
h with multiplicities

h, 6− 2h, h, respectively. Since W (−1)
Q
has slope 1, we deduce from [Ill79, Section II.7.2] that Kum(Ak)

has height 1 when Ak is ordinary, and height 2 when Ak is almost ordinary.
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7. Twisted Kummer surfaces

We can also play the same game with Kummer surfaces obtained via twisting. Indeed, let A/K be an
abelian surface, and let Z be a K-torsor for A[2]. We write [Z] for the class of Z in H1(K,A[2]). The
quotient AZ := (A×K Z)/A[2], where A[2] acts diagonally on the product, is a K-torsor for A. There is an
action of G on AZ , coming from the G-action on A, and we can form the quotient AZ /G. Let Kum(AZ )
be the minimal resolution of AZ /G. This is a K3 surface over K ; indeed, it is K-isomorphic to Kum(A).
Alternatively, we could use the fact that the A[2]-action on A gives rise to an action on Kum(A) and then
form the twist (Kum(A)×K Z)/A[2].

Since translations by elements of A(K) act trivially on the cohomology of A, we have canonical isomor-
phisms of ΓK -modules

Hi
ét(AZ,K ,Q`) �Hi

ét(AK ,Q`), i ≥ 0.

Thus we have a canonical isomorphism

H2
ét(Kum(AZ )K ,Q`) �H2

ét(AK ,Q`)⊕Q
Z(K)
` (−1)

of ΓK -representations.

Lemma 7.1. Suppose Kum(AZ ) has good reduction, and let ` be an odd prime. Then both A[2](K) and
H2

ét(AK ,Q`) are unramified as ΓK -modules, and [Z] ∈ ker
(
H1(K,A[2])→H1(Knr,A[2])

)
.

Proof. Since H2
ét(Kum(AZ )K ,Q`) is an unramified ΓK -module, we see immediately that both H2

ét(AK ,Q`)

and Q
Z(K)
` (−1) are unramified. Thus Z(K) = Z(Knr), which implies that A[2](K) is unramified. The same

fact also implies that Z is trivialised over Knr; hence [Z] maps to zero in H1(Knr,A[2]). �

It follows that some quadratic twist of A has good reduction (see the appendix). Since quadratic twists of
A do not change the K-isomorphism class of Kum(AZ ), we will therefore assume that A has good reduction,
with Néron model A/OK . The connected-étale sequence for A[2] then gives rise to an exact sequence

0 −→A[2]◦K −→ A[2] −→A[2]étK −→ 0

of group schemes over K . Define Z ét as the pushout of Z along A[2]→A[2]étK ; that is, Z
ét is the quotient

Z/A[2]◦K . We write π : Z→ Z ét for the quotient morphism.

Lemma 7.2. Suppose that there exists an isomorphism of K-schemes Z � A[2]◦K ×K Z
ét. Then the morphism

π : Z→ Z ét has a section.

Remark 7.3. The lemma is not immediate since the second projection defined by the isomorphism Z �
A[2]◦K ×K Z

ét need not coincide with π : Z→ Z ét.

Proof. First of all, let us suppose that Ak is ordinary. Write Z ét = Spec(L1)t · · · t Spec(Lm), where each Li
is a finite field extension of K . If Li = K for some i, then both Z and Z ét are trivial torsors, and hence the
claim follows from Theorem 4.6. We may therefore assume either that m = 1 and L1 is a quartic extension
of K , or that m = 2 and L1 and L2 are (not necessarily distinct) quadratic extensions of K .

Since π : Z→ Z ét is a A[2]◦K -torsor, we get a decomposition of K-schemes

Z � Z1 t · · · tZm,

where each Zi → Spec(Li) is a A[2]◦K -torsor. Now, our given isomorphism Z �A[2]◦K ×K Z
ét of K-schemes,

together with the identity element ofA[2]◦K , gives rise to a K-morphism Z ét→ Z , and hence to K-morphisms
Spec(Li)→ Zφ(i)→ Spec(Lφ(i)) for some function (not necessarily a permutation) φ : {1, . . . ,m} → {1, . . . ,m}.

If φ is a permutation, then the composite map Z ét → Z → Z ét is an isomorphism, and we therefore
obtain a section as claimed. But if φ is not a permutation, then we must have m = 2, L1 � L2 are isomorphic
quadratic extensions of K , and (after possibly reindexing) φ(i) = 1 for i = 1,2. Write L = L1 = L2. In this
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case, we have Z = Z1 tZ2, where Z1→ Spec(L) is a trivial A[2]◦K -torsor and Z2→ Spec(L) is a possibly
non-trivial A[2]◦K -torsor. But now the fact that we have K-isomorphisms

Z = Z1 tZ2 �A[2]◦K ×K Z
ét =A[2]◦L tA[2]

◦
L and Z1 �A[2]◦L

implies that there also exists a K-isomorphism Z2 �A[2]◦L. This then implies in turn that Z2→ Spec(L) is
a trivial A[2]◦K -torsor. Hence Z→ Z ét is a trivial A[2]◦K -torsor and therefore admits a section as claimed.

The proof in the almost ordinary and supersingular cases is similar, but much easier. �

Theorem 7.4. Let A be an abelian surface over K with good, non-supersingular reduction. Let Z be a K-torsor
for A[2].

(1) The twisted Kummer surface Kum(AZ ) attains good reduction after a finite extension of K .
(2) If the étale K-scheme Z is unramified, then Kum(AZ ) attains good reduction after a finite unramified

extension of K .
(3) (a) If A has ordinary reduction, then Kum(AZ ) has good reduction over K if and only if the étale K-scheme

Z ét is unramified and the morphism π : Z→ Z ét has a section.
(b) If A has almost ordinary reduction, then Kum(AZ ) has good reduction over K if and only if the étale

K-scheme Z ét is unramified, the morphism π : Z→ Z ét has a section, and all points of A[2]◦(K) are
defined over the splitting field of Z ét.

Remark 7.5.

(1) In the almost ordinary case, Z ét is a K-torsor for Z/2, and so its splitting field is either K itself or a
quadratic extension of K .

(2) If Z is a trivial torsor, then the condition in part (3a) does not quite reduce to that in Theorem 6.3
since here we only require a scheme-theoretic section, whereas in Theorem 6.3 the section is required
to be a group homomorphism. This implicitly proves (in the ordinary case) that the connected-étale
sequence

0 −→A∨[2](k̄) −→ A[2](K) −→A[2](k̄) −→ 0

has a section as ΓK -modules if and only if it has a section as ΓK -sets. The most direct proof that we
know of this result goes through Theorem 4.6.

(3) It is not difficult to check that if Kum(AZ ) has good reduction, then it does so with a scheme model.
Indeed, we can easily adapt the explicit constructions of Section 5 to produce scheme-theoretic
models of our twisted Kummer surfaces.

Proof of Theorem 7.4. Parts (1) and (2) follow from Theorem 6.3. Indeed, Kum(A) and Kum(AZ ) are isomor-
phic over a finite extension L/K . If the K-scheme Z is unramified, then A[2](K) is unramified; hence L can
be taken to be unramified over K .

Now let us turn to part (3). We first claim that all hypotheses imply that Z extends to an étale A[2]-torsor
Z/OK or, equivalently, that Z is unramified as an étale K-scheme. Indeed, if Kum(AZ ) has good reduction,
then this follows from Lemma 7.1. On the other hand, if Z ét is unramified and π has a section, then the
fact that π : Z → Z ét is a A[2]◦K -torsor implies that Z �A[2]◦K ×K Z

ét. In the ordinary case, this implies
directly that Z is unramified. In the almost ordinary case, we use the extra assumption that all points of
A[2]◦(K) are defined over the splitting field of Z ét to conclude this.

We may therefore assume that we have such a torsor Z. We let Z ét denote the pushout of Z along
A[2]→A[2]ét; thus Z ét

K � Z
ét. The special fibres Zk and Z ét

k are then étale torsors for Ak[2] and Ak[2]ét,
respectively. Now, the connected-étale sequence for Ak[2] splits canonically, and hence we may write
Zk = Z◦k ×k Z

ét
k , where Z

◦
k is an étale torsor for Ak[2]◦. Since Ak[2]◦ is trivial as an étale sheaf on Spec(k),

any such torsor must be trivial, so we have Zk �Ak[2]◦ ×k Z ét
k . There is a natural action of both Ak[2] and

Ak[2]ét on Ak , and we may therefore form the twisted Kummer surfaces Kum(Ak,Zk ) and Kum(Ak,Z ét
k
),

which are isomorphic since Zk �Ak[2]◦ ×k Z ét
k . We claim that Kum(Ak,Zk ) � Kum(Ak,Z ét

k
) is the canonical



22 C.D. Lazda and A.N. Skorobogatov22 C.D. Lazda and A.N. Skorobogatov

reduction of Kum(AZ ). To see this, we can twist the abelian scheme A by the A[2]-torsor Z to form AZ .
Now taking the quotient of AZ by the natural G-action gives rise to a flat OK -scheme AZ/G, with normal
fibres, such that the minimal resolutions of the fibres are Kum(AZ ) and Kum(Ak,Zk ), respectively. Thus we
may apply Lemma 6.2.

As ΓK -representations, we have

H2
ét(Kum(AZ )K ,Q`) �H2

ét(AK ,Q`)⊕Q
Z(K)
` (−1),

as well as

H2
ét(Kum(Ak,Z ét

k
)k̄ ,Q`) �H2

ét(AK ,Q`)⊕Q
A[2]◦(K)×Z ét(K)
` (−1)

if Ak is ordinary, and

H2
ét(Kum(Ak,Z ét

k
)k̄ ,Q`) �H2

ét(AK ,Q`)⊕Q
⊔8
i=1Z

ét(K)
` (−1)

if Ak is almost ordinary. Indeed, in the latter case we know that all sixteen exceptional curves of Kum(Ak,Z ét
k
)

have to be defined over the (at most) quadratic extension of k trivialising Z ét
k but not over any smaller field.

We therefore deduce from [CLL19, Theorem 1.6] that Kum(AZ ) has good reduction over K if and only if
there exists an isomorphism of (unramified) ΓK -sets

Z(K) �A[2]◦(K)×Z ét(K)

in the ordinary case, and

Z(K) �
8⊔
i=1

Z ét(K)

in the almost ordinary case.
In the ordinary case, if we have such an isomorphism, then the existence of a section was proved in

Lemma 7.2. Conversely, if π has a section, then we know that Z � A[2]◦K ×K Z
ét since π : Z → Z ét is a

trivial A[2]◦K -torsor.
In the almost ordinary case, if we have such an isomorphism Z(K) �

⊔8
i=1Z

ét(K), then any set-theoretic
section will be ΓK -equivariant. The fact that all points of A[2]◦(K) have to be defined over the splitting field
of Z ét follows from applying Theorem 6.3 over this field.

Conversely, suppose that π has a section and all points of A[2]◦(K) are defined over a splitting field L/K
for Z ét. If L = K , then clearly both Z(K) and

⊔8
i=1Z

ét(K) are trivial ΓK -sets. Otherwise, L/K is quadratic,
and then both Z(K) and

⊔8
i=1Z

ét(K) consist of sixteen points, none of which are fixed by ΓK , but all of
which are fixed by the index 2 subgroup ΓL ⊂ ΓK . We can therefore directly construct a ΓK -equivariant
bijection Z(K) �

⊔8
i=1Z

ét(K). �

It is possible for Kum(AZ ) to have good reduction over K even if Kum(A) does not. We give examples
in both the ordinary and almost ordinary cases.

Example 7.6. To give an example where A has good, ordinary reduction, we take elliptic curves E1, E2 over
Z2 with ordinary reduction, such that E1[2](Q2) is a trivial Γ

Q2
-module but E2[2](Q2) is a non-trivial but

unramified Γ
Q2

-module. For example, we could take E1 to be defined by

y2 + xy = x3 − 4x − 1

and E2 to be the curve from Example 6.4.
Let K/Q2 be the unramified quadratic extension over which allQ2-points of E2[2] are defined (equivalently,

over which the connected-étale sequence for E2[2] splits), and let σ : Z/2 � E1[2]ét→E1[2] be a splitting of
the connected-étale sequence of E1. We take A = E1×Z2

E2 and A =A
Q2

; thus σ induces a map Z/2→ A[2].
The quadratic extension K/Q2 gives rise to a class [K] ∈H1(Γ

Q2
,Z/2), and we let Z/Q2 be an A[2]-torsor

whose cohomology class is equal to the image of [K] in H1(Γ
Q2
,A[2]).
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We then see that Z and A[2]◦
Q2
×
Q2
Z ét are isomorphic as Q2-schemes since neither admits a Q2-point

but both split into sixteen disjoint rational points over the quadratic extension K/Q2. Hence the twisted
Kummer surface Kum(AZ ) has good reduction by Theorem 7.4 and Lemma 7.2. On the other hand, since
the connected étale sequence for E2 is not split, neither is that for A, and hence the Kummer surface
Kum(A) cannot have good reduction by Theorem 6.3.

Example 7.7. For an example in the almost ordinary case, we choose a 2-adic field K and elliptic curves
E1,E2/OK such that E1 has ordinary reduction, E2 has supersingular reduction, E1 has full 2-torsion defined
over K , but E2 has one K-point of order 2, with the remaining two defined over an unramified quadratic
extension L/K .

To see that such examples exist, we take K =Q2(
3
√
2), take E1/OK defined by

y2 + xy = x3 − 81
389017

,

and take E2/OK defined by
y2 + y = x3.

The 2-torsion of E2 is defined over the unramified quadratic extension L = K(ω), where ω is a primitive
third root of unity.

Now we take A = E1×OK E2. This has almost ordinary reduction, but A :=AK does not have full 2-torsion
defined over K . Hence Kum(A) does not have good reduction over K by Theorem 4.6. On the other hand,
if we let Z ét/OK be the unique non-trivial A[2]ét-torsor trivialised by the unramified extension L/K and
choose a splitting σ : A[2]ét → A[2] of the connected étale sequence (which exists because E1 has full
2-torsion defined over K ), then we may take Z to be the generic fibre of the A[2]-torsor over OK which is
the pushout of Z ét under the map σ : A[2]ét→A[2]. It is straightforward to check that Z and A satisfy the
hypotheses of Theorem 7.4(3b); thus Kum(AZ ) has good reduction.

Appendix. Good reduction and quadratic twists

In this appendix we prove the following result, which is surely well known to the experts. For this appendix
only, we drop the assumption that char(k) = 2; thus OK will be a complete DVR with fraction field K of
characteristic 0 and perfect residue field k of arbitrary characteristic.

Theorem A.1. Let A be an abelian surface over K , and suppose that Kum(A) has good reduction over K . Then
there exists a character χ : ΓK →Z/2 such that the quadratic twist Aχ has good reduction over K .

Combining the smooth and proper base change theorem with the classical Néron–Ogg–Shafarevich
criterion, and using the inclusion H2

ét(AK ,Q`) ⊂H2
ét(Kum(A)K ,Q`), we can restate Theorem A.1 as follows.

Theorem A.2. Suppose that ` , char(k) and that the inertia subgroup IK ⊂ ΓK acts trivially on H2
ét(AK ,Q`).

Then there exists a character χ : ΓK →Z/2 such that IK acts trivially on H1
ét(A

χ

K
,Q`).

Proof. Let ρ : ΓK → GL(H1
ét(AK ,Q`)) be the representation of ΓK in H1

ét(AK ,Q`). The triviality of the
action of IK on H2

ét(AK ,Q`) implies that ρ(IK ) ⊂ {±1}; see [Ove21, Lemma 4.4(ii)]. Since {±1} is central in
GL(H1

ét(AK ,Q`)), the restriction of ρ to IK is invariant under the action of ΓK on IK by conjugation. This
implies that the restriction of ρ to IK is a Γk-invariant element of H1(IK ,Z/2) = Hom(IK ,Z/2).

We next claim that the restriction map

H1(ΓK ,Z/2) −→H1(IK ,Z/2)
Γk

is surjective. By the Hochschild–Serre spectral sequence, this is equivalent to injectivity of the inflation map

H2(Γk ,Z/2) −→H2(ΓK ,Z/2).
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If char(k) , 2, this is well known; see, e.g., [CTS21, Equation (1.15), p. 30]. If char(k) = 2, then the Artin–
Schreier exact sequence implies that H2(Γk ,Z/2) = 0; see, e.g., [Stacks, Lemma 0A3K]. Hence the map is
trivially injective.

To complete the proof, we now choose χ ∈H1(ΓK ,Z/2) = Hom(ΓK ,Z/2) to be a lifting of the restriction
of ρ to IK . Then the representation of ΓK in H1

ét(A
χ

K
,Q`) restricts to the trivial representation of IK . �
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