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Big Picard theorems and algebraic hyperbolicity for varieties
admitting a variation of Hodge structures

Ya Deng

Abstract. In this paper, we study various hyperbolicity properties for a quasi-compact Kähler
manifold U which admits a complex polarized variation of Hodge structures so that each fiber of
the period map is zero-dimensional. In the first part, we prove that U is algebraically hyperbolic
and that the generalized big Picard theorem holds for U . In the second part, we prove that
there is a finite étale cover Ũ of U from a quasi-projective manifold Ũ such that any projective
compactification X of Ũ is Picard hyperbolic modulo the boundary X − Ũ , and any irreducible
subvariety of X not contained in X−Ũ is of general type. This result coarsely incorporates previous
works by Nadel, Rousseau, Brunebarbe and Cadorel on the hyperbolicity of compactifications of
quotients of bounded symmetric domains by torsion-free lattices.
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1. Introduction

1.1. Background

The classical big Picard theorem says that any holomorphic map from the punctured disk ∆∗ into P1

which omits three points can be extended to a holomorphic map ∆→ P
1, where ∆ denotes the unit disk.

Therefore, we introduce a new notion of hyperbolicity which generalizes the big Picard theorem. We say a
complex manifold U is quasi-compact Kähler if it is a Zariski open subset of a compact Kähler manifold Y .
Such a Y will be called a smooth Kähler compactification of U .

Definition 1.1 (Picard hyperbolicity). A quasi-compact Kähler manifold U is called Picard hyperbolic if there
is a smooth Kähler compactification Y of U such that any holomorphic map f : ∆∗ → U extends to a
holomorphic map f̄ : ∆→ Y .

We will prove in Lemma 5.3 that this definition does not depend on the compactification of U . Picard
hyperbolic varieties first attracted the author’s interest because of the recent interesting work [JK20] by
Javanpeykar–Kucharczyk on the algebraicity of analytic maps. In [JK20, Definition 1.1], they introduce a new
notion of hyperbolicity: a reduced quasi-projective variety U is Borel hyperbolic if any holomorphic map from
a quasi-projective variety to U is algebraic. In [JK20, Corollary 3.11], they prove that a Picard hyperbolic
variety is Borel hyperbolic. We refer the readers to [JK20, Section 1] for their motivation on the Borel
hyperbolicity. Picard hyperbolic varieties fascinate us further when we realize in Proposition 5.2 that a more
general extension theorem is also valid for them: any holomorphic map from ∆p × (∆∗)q to the manifold U
in Definition 1.1 extends to a meromorphic map from ∆p+q to Y .

By Borel [Bor72] and Kobayashi–Ochiai [KO71], it has long been known to us that the quotients of
bounded symmetric domains by torsion-free arithmetic lattices are hyperbolically embedded into their
Baily–Borel compactification, and thus they are Picard hyperbolic (see [Kob98, Theorem 6.1.3]). Period
domains, first introduced by Griffiths [Gri68a] and later systematically studied by him in the seminal
work [Gri68b,Gri70a,Gri70b], are classifying spaces of polarized Hodge structures and are a generalization
of bounded symmetric domains. In [JK20, Section 1.1], Javanpeykar–Kucharczyk conjectured that an algebraic
variety U which admits an integral variation of Hodge structures (Z-VHS for short) with quasi-finite period
map is Borel hyperbolic. Their conjecture was recently proved in a remarkable work of Bakker–Brunebarbe–
Tsimerman [BBT23]. The proof is based on the tame geometry for quotients D�Γ of period domains D by
arithmetic groups Γ containing the monodromy group of the Z-VHS. However, when one studies Picard
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hyperbolicity (or Borel hyperbolicity) for varieties admitting the more general complex polarized variation of
Hodge structures (C-PVHS for short), there are several problems which seem difficult to tackle if one uses
o-minimal geometry in [BBT23]:

• The monodromy group Γ might act non-discretely on the period domain D, and thus the quotient of
the period domain by the monodromy group D�Γ is even non-Hausdorff.
• The local monodromies at infinity might not be quasi-unipotent, though it always is for a Z-VHS by

the theorem of Borel.

Therefore, the great differences between a Z-VHS and a C-PVHS require new ideas if one would like to
extend the theorem by Bakker–Brunebarbe–Tsimerman to the context of C-PVHSs. This is one of the main
goals in this paper. In the first part, we prove the Picard hyperbolicity of quasi-compact Kähler manifolds
admitting a C-PVHS using techniques in complex-analytic geometry and Hodge theory.

1.2. Big Picard theorem and algebraic hyperbolicity

Theorem A. Let U be a quasi-compact Kähler manifold. Assume that there is a C-PVHS over U so that each
fiber of the period map Uuni → D is zero-dimensional, where Uuni is the universal cover of U and D is the
period domain associated to the above C-PVHS. Then U is both algebraically hyperbolic and Picard hyperbolic. In
particular, U is Borel hyperbolic.

Note that we make no assumptions on the local monodromies of the C-PVHS at infinity (which can be
non–quasi-unipotent) or on its global monodromy group (thus it might act non-discretely on U ). Let us
mention that when the C-PVHS over U in Theorem A is moreover a Z-PVHS, the Borel hyperbolicity of U
in Theorem A has been proven in [BBT23, Corollary 7.1], and the algebraic hyperbolicity of U is implicitly
shown by Javanpeykar–Litt in [JL19, Theorem 4.2] if the local monodromies of the Z-VHS at infinity are
unipotent (see Remark 5.5). Our proof of Theorem A is based on complex-analytic and Hodge-theoretic
methods, and it does not use the delicate o-minimal geometry in [PS08,PS09,BKT20,BBT23]. Indeed, we
are not sure that the tame geometry for period domains of Z-PVHSs in [BKT20,BBT23] can be applied to
prove Theorem A.

We can even generalize Theorem A to higher-dimensional domain spaces.

Corollary 1.2 (= Theorem A + Proposition 5.2). Let U be the quasi-compact Kähler manifold in Theorem A,
and let Y be a smooth Kähler compactification of U . Then any holomorphic map f : ∆p × (∆∗)q→U extends to a
meromorphic map f : ∆p+qd Y . In particular, if W is a Zariski open subset of a compact complex manifold X,
then any holomorphic map g : W →U extends to a meromorphic map g : Xd Y .

1.3. Hyperbolicity for the compactification after a finite étale cover

The second main result of this paper is on the hyperbolicity for the compactification of some finite étale
cover of the quasi-compact Kähler manifold U in Theorem A. Let us first introduce several definitions of
hyperbolicity. We refer the readers to the recent survey by Javanpeykar [Jav20, Section 8] for more conjectural
relations among them.

Definition 1.3 (Notions of hyperbolicity). Let (X,ω) be a compact Kähler manifold, and let Z ( X be a
closed subset of X.

(i) The manifold X is Kobayashi hyperbolic modulo Z if the Kobayashi pseudo distance satisfies dX(x,y) > 0
for any distinct points x,y ∈ X not both contained in Z .

(ii) The manifold X is Picard hyperbolic modulo Z if any holomorphic map γ : ∆∗→ X whose image is
not contained in Z extends across the origin.

(iii) The manifold X is Brody hyperbolic modulo Z if any entire curve γ : C→ X is contained in Z .
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(iv) The manifold X is algebraically hyperbolic modulo Z if there is an ε > 0 so that for any compact
irreducible curve C ⊂ X not contained in Z, one has

2g(C̃)− 2 ≥ εdegωC,

where g(C̃) is the genus of the normalization C̃ of C, and degωC :=
∫
C
ω.

Note that Definition 1.3(iv) was first introduced in [JX22]. It is easy to show that if X is Kobayashi
hyperbolic modulo Z (resp. Picard hyperbolic modulo Z), then X is Brody hyperbolic modulo Z .

The second main result of the paper is the following theorem.

Theorem B. Let U be a quasi-compact Kähler manifold. Assume that there is a C-PVHS over U so that each
fiber of the period map is zero-dimensional. Then there are a quasi-projective manifold Ũ and a finite étale cover
Ũ →U such that for any projective compactification X of Ũ ,

(i) an irreducible Zariski closed subvariety of X not contained in D̃ := X − Ũ is of general type;
(ii) the variety X is Picard hyperbolic modulo D̃;
(iii) the variety X is Brody hyperbolic modulo D̃;
(iv) the variety X is algebraically hyperbolic modulo D̃ .

By the work of Deligne (see [Mil13, Theorem 7.10]), the quotient of any bounded symmetric domain by a
torsion-free lattice always admits a C-PVHS whose period map is immersive everywhere. Theorem B then
yields the following.

Corollary C. Let U be the quotient of a bounded symmetric domain by a torsion-free lattice. Then there is a finite
étale cover Ũ →U from a quasi-projective manifold Ũ with any projective compactification X of Ũ Picard and
algebraically hyperbolic modulo X − Ũ .

Let us stress here that Nadel [Nad89] and Rousseau [Rou16] proved that the variety X in Corollary C
is Brody and Kobayashi hyperbolic modulo X − Ũ , and Brunebarbe [Bru20a] and Cadorel [Cad21,Cad22]
proved that any Zariski closed subvariety not contained in X − Ũ is of general type. Theorem B thus
incorporates their results, but at the cost of loss of effectivity for the level structures (see Remark 6.4) due to
the generality of our result in Theorem B.

1.4. Main strategy

1.4.1. Negatively curved Finsler metric. Let Y be a compact Kähler manifold, and let D be a simple
normal crossing divisor on Y . Assume that there is a C-PVHS over U := Y −D . In [Gri70a], Griffiths
constructed a metrized line bundle on U whose curvature is semipositive and strictly positive at the points
where the period map is immersive. Based on the work by Simpson and Mochizuki, in Proposition 3.5, we
can extend this Griffiths line bundle over Y to obtain a more refined positivity result.(1) We then construct a
special system of log Hodge bundles (E,θ) = (⊕p+q=mEp,q,⊕p+q=mθp,q) on the log pair (Y ,D) so that some
higher-stage Ep0,q0 contains a big line bundle which admits enough local positivity along D . Inspired by
our previous work [Den22a] on the proof of Viehweg–Zuo’s conjecture on Brody hyperbolicity of moduli
of polarized manifolds, in Theorem 3.9 we show that (E,θ) still enjoys a “partially” infinitesimal Torelli
property. These results enable us to construct a negatively curved and generically positive definite Finsler
metric on TY (− logD) in a similar vein as [Den22a].

Theorem 1.4 ( = Theorem 3.6 + Theorem 4.6). Let Y be a compact Kähler manifold, and let D be a simple
normal crossing divisor on Y . Assume that there is a C-PVHS over U := Y −D whose period map is immersive at
one point. Then there are a Finsler metric h (see Definition 4.1 ) on TY (− logD) which is positive definite on a

(1)If the local monodromy around D is unipotent, this is well known.
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dense Zariski open subset U◦ of Y −D and a smooth Kähler form ω on Y such that for any holomorphic map
γ : C→U from an open set C ⊂C to U , one has

ddc log |γ ′(t)|2h ≥ γ
∗ω(1.1)

when γ(C)∩U◦ , ∅.

Let us mention that, though we only construct the (possibly degenerate) Finsler metric over TY (− logD),
it follows from (1.1) that we know exactly the behavior of its curvature near the boundary D since ω is a
smooth Kähler form over Y . The proof of Theorem A is then based on Theorem 1.4 and some criteria
for the big Picard theorem established in [DLS+19] (see Theorem 5.4). Let us also mention that the Finsler
metric constructed in Theorem 1.4 is also crucially used in the proof of Theorem B.

1.4.2. On the hyperbolicity of the compactification. The proof of Theorem B is based on Theorem 6.1,
whose proof is technically involved. It is worthwhile to mention that our proof is quite different from those
in [Nad89,Rou16, Bru20a,Cad22]. All these proofs relied heavily on the special property of quotients of
bounded symmetric domains by torsion-free lattices. They all applied the toroidal compactifications by
Mumford to find the desired finite étale cover Ũ →U when U is a quotient of a bounded symmetric domain
by a torsion-free lattice. We construct the cover Ũ →U in Theorem B in a subtle way using the residual
finiteness of the global monodromy group. We refer the readers to the beginning of Section 6 for the general
strategy.

1.5. Some new developments

Shortly after this paper appeared on arXiv, Brunebarbe–Brotbek [BB20, Theorem 1.5] proved the Borel
hyperbolicity of U in Theorem A under the additional assumption that the local monodromy of the C-
PVHS at infinity is unipotent. Moreover, they also obtained a weaker result than Theorem B(ii) in [BB20,
Theorem 1.7], in which they showed that for a quasi-projective manifold U admitting a Z-PVHS with
quasi-finite period map, there is a finite étale cover Ũ → U so that the projective compactification X of
Ũ is Borel hyperbolic modulo X − Ũ . Our proofs are indeed quite different: Brotbek–Brunebarbe’s proof is
based on their Second Main Theorem using the Griffiths–Schmid metric, which coincides with the curvature
form of the Griffiths line bundle. Let us also mention that result similar to Theorem B(i) is also obtained by
Brunebarbe in [Bru20b, Theorem 1.1] when the underlying local system of the C-PVHS is defined over Z.

In [CD21] Cadorel and the author generalized Theorems A and B and Corollary C in this paper to
quasi-compact Kähler manifolds admitting nilpotent Higgs bundles. More recently, in [CDY22, Theorem 0.1]
Cadorel, Yamanoi and the author proved that for any complex quasi-projective normal variety X, if there is a
big representation % : π1(X)→ GLN (C) such that the Zariski closure of %(π1(X)) is a semisimple algebraic
group, then there is a proper Zariski closed subset Z ( X such that

• any closed subvariety of X not contained in X is log general type;
• X is Picard hyperbolic modulo Z .

We stress here that Theorem A in this paper is applied in [CDY22].
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Notation and Conventions

• A log pair (Y ,D) consists of a (possibly non-compact) complex manifold and a simple normal crossing
divisor D . It will be called a compact Kähler log pair (resp. projective log pair ) if Y is a compact Kähler
(resp. projective) manifold.
• A complex manifold is called quasi-compact Kähler if it is a Zariski open subset of a compact Kähler

manifold.
• A log morphism f : (X,D̃)→ (Y ,D) between log pairs is a morphism f : X→ Y with D̃ ⊂ f −1(D).
• For a big line bundle L on a projective manifold, B+(L) denotes its augmented base locus (see [Laz04,

Definition 10.3.2]).

2. Preliminaries on Hodge theory

2.1. Systems of Hodge bundles

Following Simpson [Sim88], a complex polarized variation of Hodge structures (C-PVHS) is equivalent to
a system of Hodge bundles. Let us recall the definition in this subsection.

Definition 2.1 (Higgs bundle). A Higgs bundle on a complex manifold Y is a pair (E,θ) consisting of a
holomorphic vector bundle E on Y and an OY -linear map

θ : E −→ E ⊗Ω1
Y

so that θ ∧θ = 0. Such a map θ is called the Higgs field.

Definition 2.2 (Harmonic bundle). A harmonic bundle (E,θ,h) consists of a Higgs bundle (E,θ) and a
hermitian metric h for E such that

D := ∂h + ∂̄E +θ +θ∗h
is flat. Here ∂h+ ∂̄E is the Chern connection, and θ∗h ∈ C

∞(Y ,End(E)⊗Ω0,1
Y ) is the adjoint of θ with respect

to h.

Definition 2.3 (System of Hodge bundles). A system of Hodge bundles of weight m is a harmonic bundle
(E,θ,h) satisfying the following:

• The vector bundle E = ⊕p+q=mEp,q is a direct sum of holomorphic vector bundles Ep,q.
• The map θ restricts to

θ|Ep,q : Ep,q −→ Ep−1,q+1 ⊗Ω1
Y .

• The splitting E = ⊕p+q=mEp,q is orthogonal with respect to h.

We write hp,q = h|Ep,q and θp,q = θ|Ep,q . This harmonic metric h will be called the Hodge metric.

Throughout this paper, we observe the convention that 0 ≤ p,q ≤m for the decomposition E = ⊕p+q=mEp,q.
This can always be achieved if we make a Tate twist (k,k) to increase the weight by 2k when k ∈Z>0 is large
enough.

2.2. Filtered bundles and parabolic Higgs bundles

In this section, we recall the notions of filtered bundles and parabolic Higgs bundles from [Sim88,Moc07].
Let (Y ,D =

∑c
i=1Di) be a log pair.

Definition 2.4. A filtered bundle (E,PaE) on (Y ,D) is a locally free sheaf E on U := Y −D, together with
an Rc-indexed filtration PaE by locally free sheaves on Y such that

(i) a ∈Rc and PaE|U = E;
(ii) PaE ⊂ PbE for a ≤ b (i.e., ai ≤ bi for all i);
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(iii) PaE ⊗OY (Di) = Pa+1iE with 1i = (0, . . . ,1, . . . ,0) with 1 in the ith component;
(iv) Pa+εE = PaE for any vector ε = (ε, . . . ,ε) with 0 < ε� 1;
(v) write P<aE = ∪b<aPbE; the set of weights a such that PaE/P<aE , 0 is discrete in Rc.

A weight is normalized if it lies in (−1,0]c. Denote P0E by �E, where 0 = (0, . . . ,0). Note that the set of
weights of (E,PaE) is uniquely determined by the weights lying in (−1,0]c.

Definition 2.5. A parabolic Higgs bundle on (Y ,D) is a filtered bundle (E,PaE) together with OY linear map

θ : �E −→Ω1
Y (logD)⊗ �E

such that
θ ∧θ = 0 and θ(PaE) ⊆Ω1

Y (logD)⊗PaE for a ∈ [−1,0)c.

A natural class of filtered bundles comes from extensions of systems of Hodge bundles, which will be
discussed in Section 2.4.

2.3. Admissible coordinates

Definition 2.6 (Admissible coordinate). Let (Y ,D =
∑c
i=1Di) be log pair. Let p be a point of Y , and let

{Dj}j=1,...,` be the components of D containing p. An admissible coordinate around p is a tuple (U ;z1, . . . , zn;ϕ)
(or simply (U ;z1, . . . , zn) if no confusion arises) where

• U is an open subset of Y containing p;
• there is a holomorphic isomorphism ϕ : U → ∆n so that ϕ(Dj ) = (zj = 0) for any j = 1, . . . , `.

We shall write U ∗ := U −D .

Recall that the complete Poincaré metric ωP on (∆∗)` ×∆n−` is described as

ωP =
∑̀
j=1

√
−1dzj ∧ dz̄j
|zj |2(log |zj |2)2

+
n∑

k=`+1

√
−1 dzk ∧ dz̄k

(1− |zk |2)2
(2.1)

Note that ωP = ddcϕ with

ϕ := − log

∏̀
j=1

(
− log |zj |2

)
·

 n∏
k=`+1

(1− |zk |)2

 .(2.2)

Remark 2.7 (Global Kähler metric with Poincaré growth). Let (Y ,ω) be a compact Kähler manifold, and let
D =

∑`
i=1Di be a simple normal crossing divisor on Y . Let σi be the section H0(Y ,OY (Di)) defining Di ,

and pick any smooth metric hi for the line bundle OY (Di). One can prove that when ε > 0 is small enough,
the closed (1,1)-current

T :=ω −ddc log

−∏̀
i=1

log |ε · σi |2hi

(2.3)

is a Kähler current (i.e., T ≥ δω for some δ > 0), and on any admissible coordinate (U ;z1, . . . , zn), T |U−D is
mutually bounded with ωP .

2.4. Extension of systems of Hodge bundles

Let (Y ,D =
∑`
i=1Di) be log pair. Let (E,h) be a hermitian bundle on Y −D . For any a = (a1, . . . , a`) ∈R` ,

we can prolong E over Y by P ha E as follows:

P ha E(U ) =

σ ∈ Γ (U −D,E|U−D ) | |σ |h . 1∏`
i=1 |zi |ai+ε

∀ε > 0

 ,(2.4)
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where (U ;z1, . . . , zn) is any admissible coordinate. We still use the notation �E in the case a = (0, . . . ,0).
In general, P ha E is not coherent. However, by the deep work of Simpson [Sim88, Theorem 3] and
Mochizuki [Moc07], this is the case for systems of Hodge bundles.

Theorem 2.8 (Simpson, Mochizuki). If (E = ⊕p+q=mEp,q,θ,h) is a system of Hodge bundles on Y −D, then
(E,P ha E,θ) is a parabolic Higgs bundle on (Y ,D).

In this case, we write PaE for P ha E to lighten the notation, and denote by

θ : PaE −→ PaE ⊗Ω1
Y (logD)

the prolonged Higgs field by abuse of notation. From Theorem 2.8, one can easily deduce the following.

Lemma 2.9. Let (E = ⊕p+q=mEp,q,θ,h) be as above.
(i) We have PaE = ⊕p+q=mPaEp,q. Here PaEp,q is the extension of (Ep,q,hp,q).
(ii) The map θ restricts to

θ|PaEp,q : PaE
p,q −→ PaEp−1,q+1 ⊗Ω1

Y (logD).

Remark 2.10. If (E = ⊕p+q=mEp,q,θ,h) is a system of Hodge bundles, PaE coincides with the Deligne
extension with real part of the eigenvalue in [a,a+ 1). See the table in [Sim90, p. 746].

Definition 2.11. Let (Y ,D) be a log pair. Let (E = ⊕p+q=mEp,q,θ,h) be a system of Hodge bundles defined
over Y −D . The extension (�E = ⊕p+q=m�Ep,q,θ) is called the canonical extension of (E = ⊕p+q=mEp,q,θ,h).

Lemma 2.9 inspires us to introduce the definition of systems of log Hodge bundles.

Definition 2.12 (System of log Hodge bundles). Let (Y ,D) be a log pair. A system of log Hodge bundles of
weight m over (Y ,D) consists of a pair (E = ⊕p+q=mEp,q,θ = ⊕p+q=mθp,q), where

• E = ⊕p+q=mEp,q is a direct sum of holomorphic vector bundles Ep,q on Y ;
• θ is a direct sum of

θp,q : E
p,q −→ Ep−1,q+1 ⊗Ω1

Y (logD)

with θ ∧θ = 0.

3. Construction of a special system of log Hodge bundles

In this section, we first study the refined positivity for the Griffiths line bundle associated to a system of
Hodge bundles. This positivity is well known when the corresponding C-PVHS has unipotent monodromies
near the boundary. We then construct a special system of log Hodge bundles (see Theorem 3.6) over the log
pair (Y ,D) in Theorem 1.4. Such a system of Hodge bundles will be used to construct a negatively curved
Finsler metric in Section 4.

3.1. Refined positivity for Griffiths line bundles

For a system of Hodge bundles (E = ⊕p+q=mEp,q,θ,h) over a complex manifold U , in [Gri70a] Griffiths
constructed a line bundle L on U , which can be endowed with a natural metric with semipositive curvature.
Precisely, one has

L :=
(
detEm,0

)⊗m
⊗
(
detEm−1,1

)⊗(m−1)
⊗ · · · ⊗detE1,m−1.(3.1)

Here θ∗p,q is the adjoint of θp,q with respect to hp,q. The Hodge metric h then induces a metric hL on L
whose curvature is

√
−1ΘhL(L) = −tr

m−1∑
q=0

θ∗m−q,q ∧θm−q,q

 ≥ 0.(3.2)
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One can see that
√
−1ΘhL(L) > 0 at the point y where θ : TY ,y → End(Ey) is injective. Note that θ is the

differential of the period map (see, e.g., [KKM11, p. 429] for the proof). This means that
√
−1ΘhL(L) is strictly

positive at the point where the period map is immersive.
Now assume U = Y −D, where (Y ,D) is a compact Kähler log pair. Let T be the Kähler current on Y

defined in Remark 2.7. Then ωU := T |U is a complete Kähler metric with Poincaré type near D . We recall
the following theorem by Simpson [Sim88, Lemma 10.1] and Mochizuki [Moc07].

Theorem 3.1 (Simpson, Mochizuki). Let (E = ⊕p+q=mEp,q,θ,h) be a system of Hodge bundles on U = Y −D .
Then

|θ|h,ωU ≤ C(3.3)

for some constant C > 0.

Lemma 3.2. In the notation above,
√
−1ΘhL(L) is less singular than ωU , which we denote by

√
−1ΘhL(L) .ωU .

Proof. By Theorem 3.1, one has |θp,q|h,ωU ≤ C. Then |θ∗p,q|h,ωU ≤ C. Hence∣∣∣θ∗p,q ∧θp,q∣∣∣h,ωU ≤ C2.

It follows from (3.2) that ∣∣∣∣√−1ΘhL(L)∣∣∣∣ ≤ C′
for some constant C′ > 0. The lemma follows directly from the above inequality. �

By Lemma 3.2, the mass of
√
−1ΘhL(L) is bounded near D, and one can thus apply the Skoda extension

theorem (see [Dem97, Theorem 2.3]) so that the trivial extension of
√
−1ΘhL(L) over Y is a positive closed

(1,1)-current, which is denoted by S . The current S is therefore less singular than the current T defined in
Remark 2.7, which we denote by S . T .

Let us consider the extension P1L of (L,hL) defined in (2.4), where 1 = (1, . . . ,1). Then hL can be seen as
the singular hermitian metric for P1L; this can be seen explicitly from the proof of the next lemma.

Lemma 3.3. The curvature
√
−1ΘhL(P1L) is a closed positive (1,1)-current. In particular, P1L is a pseudo

effective line bundle on Y .

Proof. Pick any p ∈ Y . We take an admissible coordinate (W ;z1, . . . , zn) around p as in Definition 2.6. Since
S is a closed positive current on Y , over W there is a plurisubharmonic function ψ so that S = ddcψ. Note
that S . T . One thus has ϕ . ψ, where ϕ is defined in (2.2). For the new metric h̃L := hL · eψ of L, one has
Θh̃L

(L) = 0 over W −D ' (∆∗)` ×∆n−` .
Let ∇ be the corresponding Chern connection of (L, h̃L), which is flat by the relation Θh̃L(L) = 0. It

corresponds to a unitary representation ρ : Z` ' π1(W −D)→U (1). Let γi be a clockwise loop around the
origin in the ith factor (∆∗)` ×∆n−` 'W −D . Let Ti = ρ([γi]) ∈U (1) be the monodromy corresponding to
the loop γi .

Consider the universal covering map

π : H` ×∆n−` −→ (∆∗)` ×∆n−`

(t1, . . . , t`, z`+1, . . . , zn) 7−→
(
e2π
√
−1t1 , . . . , e2π

√
−1t` , z`+1, . . . , zn

)
,

where H = {t ∈ C | Im(z) > 0}. Choose a flat section Φ of the flat line bundle π∗(L,∇). Since (L, h̃L) is
unitary flat, |Φ |h̃L is constant, and we may assume that |Φ |h̃L ≡ 1. Recall that Ti = ρ([γi]) ∈ U (1) is the
monodromy corresponding to the loop γi ; one has

Ti ·Φ(t1, . . . , t`, z`+1, . . . , zn) = Φ(t1, . . . , ti +1, . . . , t`, z`+1, . . . , zn).(3.4)
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Write Ti = e2π
√
−1bi for some 0 < bi ≤ 1. Define a new section of π∗L by

Ψ (t1, . . . , t`, z`+1, . . . , zn) := Φ(t1, . . . , t`, z`+1, . . . , zn)e
−2π
√
−1

∑`
i=1 biti .

By (3.4), one has
Ψ (t1, . . . , t`, z`+1, . . . , zn) := Ψ (t1, . . . , ti +1, . . . , t`, z`+1, . . . , zn)

for any i = 1, . . . , `. It thus descends to a section σ (z) of L|W−D ; i.e.,

σ (π(t1, . . . , t`, z`+1, . . . , zn)) = Ψ (t1, . . . , t`, z`+1, . . . , zn).

Note that ∇(Φ) = 0; one has

∇(Ψ ) = Φ · e−2π
√
−1

∑`
i=1 biti

−2π√−1∑̀
i=1

bi · dti

 = Ψ ·
−2π√−1∑̀

i=1

bi · dti

 .
Hence

∇(σ (z)) = −
∑̀
i=1

bid logzi · σ (z).

Therefore, σ (z) is a holomorphic section trivializing L|W−D . Note that

|Ψ |h̃L =
∣∣∣∣Φ · e−2π√−1∑`

i=1 biti
∣∣∣∣ = ∣∣∣∣e−2π√−1∑`

i=1 biti
∣∣∣∣ ,

where the second equality follows from the fact that |Φ |h̃L ≡ 1. It follows that |σ (z)|h̃L =
∏`
i=1 |zi |−bi , and thus

|σ (z)|hL =
∏̀
i=1

|zi |−2bi · e−ψ(3.5)

by the relation h̃L := hL · eψ . Since ϕ . ψ, one has

1 . e−ψ . e−ϕ .

∏̀
j=1

(
− log

∣∣∣zj ∣∣∣2)

N

for some N > 0, where the last inequality follows from (2.2). Therefore,∏̀
i=1

1
|zi |bi−ε

. |σ (z)|hL .
∏̀
i=1

1
|zi |bi+ε

(3.6)

for any ε > 0. Since 0 < bi ≤ 1, one has σ ∈ P1L|W by (2.4). Let us show that σ is a generator of P1L|W .
For any section s ∈ P1L(W ), there is a holomorphic function f ∈ O(W −D) so that s = f · σ . By (2.4)

again,

|f | · |σ |hL = |s|hL .
1∏`

i=1 |zi |1+ε
for all ε > 0. By (3.6), one has

|f | . 1∏`
i=1 |zi |1−bi+ε

for all ε > 0. Pick ε � 1 with 1 − bi + ε < 1 for all i. The above inequality shows that f extends to a
holomorphic function over W . Hence σ is a generator of P1L|W .

By (3.5), one has

√
−1ΘhL(P1L) = ddc log |σ |hL = S +

∑̀
i=1

bi[Di],(3.7)

where [Di] is the current of integration associated to Di . This finishes the proof of the theorem. �



Hyperbolicity of varieties admitting C-PVHS 11Hyperbolicity of varieties admitting C-PVHS 11

The following lemma is a consequence of the above proof.

Lemma 3.4. For any N ∈Z>0, let P1(L⊗N ) be the extension of (L⊗N ,h⊗NL ) defined in (2.4). Then

P1
(
L⊗N

)
= (P1L)⊗N ⊗O

−∑̀
i=1

(dNbie − 1)Di

 .
Proof. We use the same notation as that in the proof of Lemma 3.3. Consider the section σN , which is a
generator of (P1L)⊗N |W . For any section s ∈ P1(L⊗N )(W ), there is a holomorphic function f ∈ O(W ∗) so
that s = f · σN , where W ∗ :=W −D . By (2.4) again, one has

|f | · |σN |h⊗N
L

= |s|h⊗N
L
.

1∏`
i=1 |zi |1+ε

for all ε > 0. By (3.6), one has

|f | . 1∏`
i=1 |zi |1−Nbi+ε

for all ε > 0. This shows that f ∈ OY (−
∑`
i=1(dNbie − 1)Di).

On the other hand, if g ∈ OY (−
∑`
i=1(dNbie − 1)Di), then by (3.6), one has

|g · σN | . 1∏`
i=1 |zi |1−dNbie+Nbi+ε

.
1∏`

i=1 |zi |1+ε

for any ε > 0. This yields the lemma. �

In summary, we have the following positivity result for Griffiths line bundles.

Proposition 3.5. Let (Y ,D) be a compact Kähler log pair. Let (E = ⊕p+q=mEp,q,θ,h) be a system of Hodge
bundles over Y −D . Assume that its period map is immersive at one point. Then �(L⊗N )⊗OY (−D) is a big line
bundle on Y for N � 1. In particular, Y is projective.

Proof. Recall that the closed positive current S is the trivial extension of the semipositive (1,1)-form ΘhL(L)
over Y . By (3.7), one has

{c1(P1L)} = {S}+
∑̀
i=1

bi{Di}.

Lemma 3.4 then yields {
c1

(
P1

(
L⊗N

))}
=N {S}+

∑̀
i=1

(Nbi − dNbie+1){Di}.

Note that
P1

(
L⊗N

)
= �

(
L⊗N

)
⊗OY (D).

Therefore,

c1
(
�
(
L⊗N

)
⊗OY (−D)

)
=N {S}+

∑̀
i=1

(−1+Nbi − dNbie){Di}.

By the discussion at the beginning of this subsection, the semipositive (1,1)-form ΘhL(L) is strictly positive
at the point where the period map is immersive. By Boucksom’s criterion [Bou02], the cohomology class {S}
is a big (1,1)-class. Therefore, N {S} − 2D is big for N � 1. Note that

1+Nbi − dNbie ≥ 0.

Since the sum of a big class with an effective class is still big, we conclude that c1(�(L⊗N )⊗OY (−D)) is big.
This proves the lemma. �
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3.2. Special system of Hodge bundles

Let (Y ,D) be a compact Kähler log pair. Let (F = ⊕p+q=mFp,q,η,hF) be a system of Hodge bundle over
U := Y −D whose period map is immersive at one point. Let us write rp := rank Fp,q. Recall that the
Griffiths line bundle for (F = ⊕p+q=mFp,q,η,hF) is

L :=
(
detFm,0

)⊗m
⊗
(
detFm−1,1

)⊗(m−1)
⊗ · · · ⊗detF1,m−1.

By Proposition 3.5, �(L⊗N )⊗OY (−D) is a big line bundle for some N � 1. Let us write

r :=N
(
mrm + (m− 1)rm−1 + · · ·+ r1

)
.

We define a new system of Hodge bundle (E = ⊕P+Q=rmE
P ,Q,θ,h) on U = Y −D by setting (E,θ,h) :=

(F,η,hF)⊗r . Precisely, E := F⊗r , and

θ := η ⊗1⊗ · · · ⊗1︸     ︷︷     ︸
(r−1)−tuple

+1⊗ η ⊗1⊗ · · · ⊗1︸     ︷︷     ︸
(r−2)−tuple

+ · · ·+1⊗ · · · ⊗1︸     ︷︷     ︸
(r−1)−tuple

⊗η.

Define

EP ,Q := ⊕p1+···+pr=P ;q1+···+qr=QF
p1,q1 ⊗ · · · ⊗Fpr ,qr .(3.8)

Then we have
θ : EP ,Q −→ EP−1,Q+1 ⊗Ω1

U ,

and one can easily check that h = h⊗rF is the Hodge metric for (E = ⊕P+Q=rmE
P ,Q,θ).

Note that detFp,q = ∧rpFp,q ⊂ (Fp,q)⊗rp ⊂ F⊗rp . Hence

L⊗N =
(
detFm,0

)⊗Nm
⊗
(
detFm−1,1

)⊗(N (m−1))
⊗ · · · ⊗

(
detF1,m−1

)⊗N
⊂

(
Fm,0

)⊗Nmrm ⊗ · · · ⊗ (
F1,m−1

)⊗Nr1 ⊂ EP0,Q0 ,

where P0 = N (rmm2 + rm−1(m − 1)2 + · · · + r1) and Q0 = rm − P0. In other words, L⊗N is a subbundle of
EP0,Q0 . Moreover, their hermitian metrics are compatible in the following sense: h⊗N

L
= h|L. By the very

definition of the extension (2.4), one has

�
(
L⊗N

)
⊂ �EP0,Q0 .

In summary, we construct a special system of log Hodge bundles on (Y ,D) as follows (we change the notation
for brevity’s sake).

Theorem 3.6. Let (Y ,D) be a compact Kähler log pair. Let (F = ⊕p+q=mFp,q,η,hF) be a system of Hodge
bundles over Y −D whose period map is immersive at one point. Then there is a system of log Hodge bundles
(E = ⊕p+q=`Ep,q,θ = ⊕p+q=`θp,q) on (Y ,D) satisfying the following properties:

(i) The pair (E,θ) is the canonical extension (in the sense of Definition 2.11 ) of some system of Hodge bundles
(Ẽ, θ̃,hhod) defined over Y −D .

(ii) There is a big line bundle L over Y such that L ⊂ Ep0,q0 for some p0 + q0 = `, and L⊗OY (−D) is still big.
(iii) If the period map moreover has zero-dimensional fibers, then the augmented base locus satisfies B+(L) ⊂D .

Remark 3.7. The interested readers can compare the Higgs bundle in Theorem 3.6 with the Viehweg–Zuo
Higgs bundle in [VZ02,VZ03] (see also [PTW19]). Loosely speaking, a Viehweg–Zuo Higgs bundle for a log
pair (Y ,D) is a Higgs bundle (E = ⊕p+q=mEp,q,θ) over (Y ,D + S) induced by some (geometric) Z-PVHS
defined over a Zariski open subset of Y − (D ∪ S), where S is another divisor on Y so that D + S is simple
normal crossing. The extra data is that there is a sub-Higgs sheaf (F = ⊕p+q=mFp,q,η) ⊂ (E,θ) such that the
first stage Fn,0 is a big line bundle, and that we have

η : Fp,q −→ Fp−1,q+1 ⊗Ω1
Y (logD).
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As we explained in Section 1.4.1, the positivity Fn,0 comes in a sophisticated way from Kawamata’s big line
bundle detf∗(mKX/Y ), where f : X → Y is some algebraic fiber space between projective manifolds. For
our Higgs bundle (E = ⊕p+q=mEp,q,θ) over the log pair (Y ,D) in Theorem 3.6, the global positivity is the
Griffiths line bundle which is contained in some intermediate stage Ep0,q0 of (E = ⊕p+q=mEp,q,θ).

3.3. Iterating Higgs fields

Let (E = ⊕p+q=`Ep,q,θ) be the system of log Hodge bundles on a compact Kähler log pair (Y ,D) satisfying
the two conditions in Theorem 3.6. We apply ideas by Viehweg–Zuo [VZ02,VZ03] to iterate Higgs fields.

Since we have θ : Ep,q→ Ep−1,q+1 ⊗Ω1
Y (logD), one can iterate θ k times to obtain

Ep0,q0 −→ Ep0−1,q0+1 ⊗Ω1
Y (logD) −→ ·· · −→ Ep0−k,q0+k ⊗⊗kΩ1

Y (logD).

Since θ ∧θ = 0, the above morphism factors through

Ep0,q0 −→ Ep0−k,q0+k ⊗ SymkΩ1
Y (logD).(3.9)

Since L is a subsheaf of Ep0,q0 , it induces

L −→ Ep0−k,q0+k ⊗ SymkΩ1
Y (logD),

which is equivalent to a morphism

τk : Sym
kTY (− logD) −→ L−1 ⊗Ep0−k,q0+k .(3.10)

The readers might be worried that all τk might be trivial, so that the above construction will be meaningless.
In the next subsection, we will show that this cannot happen.

3.4. An infinitesimal Torelli-type theorem

We begin with the following technical lemma.

Proposition 3.8. Let (E = ⊕p+q=`Ep,q,θ) be a system of log Hodge bundles on a compact Kähler log pair
(Y ,D) satisfying the two conditions in Theorem 3.6. Then there is a singular hermitian metric hL with analytic
singularities for L such that

(i) the curvature current satisfies √
−1ΘhL(L) ≥ T ,

where T is the Kähler current on Y defined in Remark 2.7;
(ii) the singular hermitian metric h := h−1L ⊗ hhod on L

−1 ⊗ E is locally bounded on Y and smooth outside
D ∪B+(L−D), where hhod is the Hodge metric for the system of Hodge bundles (E = ⊕p+q=`Ep,q,θ)|U .
Moreover, h ·

∏`
i=1 |σi |

−ε
hi
vanishes on D ∪B+(L −D) for ε > 0 small enough. Here σi is the canonical

section in H0(Y ,OY (Di)) defining Di , and hi is a smooth metric for the line bundle OY (Di).

Proof. By Theorem 3.6(ii), the line bundle L⊗OY (−D) is big, and thus by [Bou04, Theorem 3.17], we can put
a singular hermitian metric g0 on it with analytic singularities for L⊗OY (−D) such that g0 is smooth on
Y \B+(L⊗OY (−D)), where B+(L⊗OY (−D)) is the augmented base locus of L⊗OY (−D), and the curvature
current satisfies

√
−1Θg0(L−D) >ω for some smooth Kähler form ω on Y . Take g := g0(−

∏`
i=1 log |ε ·σi |

2
·hi ).

Then
√
−1Θg(L−D) > T :=ω −ddc log

−∏̀
i=1

log |ε · σi |2hi

 .
Note that T is a Kähler current when 0 < ε� 1.

Let hD be the canonical singular hermitian metric for D so that
√
−1ΘhD (OY (D)) = [D]. We define a

singular hermitian metric on L as follows:
hL := g · hD .
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Then
√
−1ΘhL(L) =

√
−1Θg(L⊗OX(−D)) + [D] ≥ T .

The first condition is verified.
Note that g−1 vanishes on B+(L⊗OY (−D)), and h−1D vanishes on D . Since hhod is smooth over Y −D , we

have B+(L) ⊂ B+(L⊗OY (−D)), so h := hhod · h−1L vanishes on B+(L)−D . For any point y ∈ D, we pick an
admissible coordinate (W ;z1, . . . , zn) and a frame (e1, . . . , er ) for E|W . Since (E,θ) is the canonical extension
of a system of Hodge bundles (Ẽ, θ̃,hhod), by (2.4) one has

|ei |h .
1∏`

i=1 |zi |ε

for all ε > 0. Pick a section e ∈ L(W ) which trivializes L|W . By the definition of hL, one has

|e|2hL &
1∏`

i=1 |zi |
.

Hence for the frame (e1 ⊗ e−1, . . . , er ⊗ e−1) trivializing E ⊗L−1|W , one has

|ei ⊗ e−1|h .
∏̀
i=1

|zi |1−ε

for any ε > 0. This shows that h ·
∏`
i=1 |σi |

−ε
hi

vanishes on D when ε > 0 is small enough. The proposition is
proved. �

Theorem 3.9 (Infinitesimal Torelli-type property). The morphism τ1 : TY (− logD)→ L−1⊗Ep0−1,q0+1 defined
in (3.10) is generically injective.

The proof is almost the same at that of [Den22a, Theorem D]. We provide it here for the sake of
completeness.

Proof. The inclusion L ⊂ Ep0,q0 induces a global section s ∈ H0(Y ,L−1 ⊗ Ep0,q0) by Theorem 3.6(ii); this
section is generically non-vanishing over U = Y −D . Set

U1 := {y ∈ Y − (D ∪B+(L−D)) | s(y) , 0},(3.11)

which is a non-empty Zariski open subset of U . Since the Hodge metric hhod is a direct sum of metrics
hp on Ep,q, the metric h for L−1 ⊗ E is a direct sum of metrics h−1L · hp on L−1 ⊗ Ep,q, which is smooth
over U0 := Y − (D ∪B+(L−D)). Let D ′ be the (1,0)-part of its Chern connection over U1 and Θ to be its
curvature form. Then over U0, we have

Θ = −ΘL,hL ⊗1+1⊗Θhp0 (E
p0,q0)

= −ΘL,hL ⊗1−1⊗
(
θ∗p0,q0 ∧θp0,q0

)
−1⊗

(
θp0+1,q0−1 ∧θ

∗
p0+1,q0−1

)
= −ΘL,hL ⊗1− θ̃

∗
p0,q0 ∧ θ̃p0,q0 − θ̃p0+1,q0−1 ∧ θ̃

∗
p0+1,q0−1,(3.12)

where we set

θp,q = θ|Ep,q : Ep,q −→ Ep−1,q+1 ⊗Ω1
Y (logD)

and

θ̃p,q = 1⊗θp,q : L−1 ⊗Ep,q −→ L−1 ⊗Ep−1,q+1 ⊗Ω1
Y (logD)
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and define θ̃∗p,q to be the adjoint of θ̃p,q with respect to the metric h−1L · h. Hence over U1, one has

−ddc log |s|2h =

{√
−1Θ(s), s

}
h

|s|2h
+

√
−1{D ′s, s}h ∧ {s,D ′s}h

|s|4h
−
√
−1{D ′s,D ′s}h
|s|2h

6

{√
−1Θ(s), s

}
h

|s|2h
(3.13)

thanks to Cauchy–Schwarz inequality
√
−1|s|2h · {D

′s,D ′s}h >
√
−1{D ′s, s}h ∧ {s,D ′s}h.

Substituting (3.12) into (3.13), over U1, one has

√
−1ΘL,hL −dd

c log |s|2h 6 −

{√
−1θ̃∗p0,q0 ∧ θ̃p0,q0(s), s

}
h

|s|2h
−

{√
−1θ̃p0+1,q0−1 ∧ θ̃

∗
p0+1,q0−1(s), s

}
h

|s|2h

=

√
−1

{
θ̃p0,q0(s), θ̃p0,q0(s)

}
h

|s|2h
+

{
θ̃∗p0+1,q0−1(s), θ̃

∗
p0+1,q0−1(s)

}
h

|s|2h

≤

√
−1

{
θ̃p0,q0(s), θ̃p0,q0(s)

}
h

|s|2h
,(3.14)

where θ̃p0,q0(s) ∈ H
0
(
Y ,L−1 ⊗ Ep0−1,q0+1 ⊗Ω1

Y (logD)
)
. By Proposition 3.8(ii), one has |s|2h(y) = 0 for any

y ∈ D ∪ B+(L −D). Therefore, there exists a y0 ∈ U0 so that |s|2h(y0) > |s|
2
h(y) for any y ∈ U0. Hence

|s|2h(y0) > 0, and by (3.11), y0 ∈ U1. Since |s|2h is smooth over U0, ddc log |s|2h is seminegative at y0 by the
maximal principle. By Proposition 3.8(i),

√
−1ΘL,hL is strictly positive at y0. By (3.14) and the relation

|s|2h(y0) > 0, we conclude that
√
−1

{
θ̃p0,q0(s), θ̃p0,q0(s)

}
h

is strictly positive at y0. In particular, for any

non-zero ξ ∈ TY ,y0 , one has θ̃p0,q0(s)(ξ) , 0. For k = 1, we write τk in (3.10) as

τ1 : TY (− logD) −→ L−1 ⊗Ep0−1,q0+1.

Then over U , it is defined by τ1(ξ) := θ̃p0,q0(s)(ξ) and is thus injective at y0 ∈ U1. Hence τ1 is generically
injective. The theorem is thus proved. �

4. Construction of a negatively curved Finsler metric

The aim of this technical section is to prove Theorem 1.4 based on Theorem 3.6. We first give the
definition of a Finsler metric.

Definition 4.1 (Finsler metric). Let E be a holomorphic vector bundle on a complex manifold X. A Finsler
metric on E is a real non-negative continuous function h : E→[0,+∞[ such that

h(av) = |a|h(v)

for any a ∈ C and v ∈ E. The metric h is positive definite on a subset U ⊂ X if h(v) > 0 for any non-zero
v ∈ Ex and any x ∈U .

We mention that our definition is a bit different from that in [Kob98, Section 2.3], which requires convexity,
and the Finsler metric therein can be upper-semicontinuous.

Let (E = ⊕p+q=`Ep,q,θ) be a system of log Hodge bundles on a compact Kähler log pair (Y ,D) satisfying
the two conditions in Theorem 3.6. We adopt the same notation as that in Theorem 3.6 and Section 3.4
throughout this section. Let us denote by n the largest non-negative number for k so that τk in (3.10) is not
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trivial. By Theorem 3.9, n > 0. Following [Den22a, Section 2.3], we construct Finsler metrics F1, . . . ,Fn on
TY (− logD) as follows. By (3.10), for each k = 1, . . . ,n, there exists a

τk : Sym
kTY (− logD) −→ L−1 ⊗Ep0−k,q0+k .

Then it follows from Proposition 3.8(ii) that the (Finsler) metric h on L−1 ⊗ Ep0−k,q0+k induces a Finsler
metric Fk on TY (− logD) defined as follows: for any e ∈ TY (− logD)y ,

Fk(e) := h
(
τk

(
e⊗k

)) 1
k .(4.1)

Let C ⊂C be any open subset of C. For any holomorphic map γ : C→U := Y −D, one has

dγ : TC −→ γ∗TU = γ∗TY (− logD).(4.2)

We denote by ∂t :=
∂
∂t the canonical vector field in C ⊂C, and by ∂̄t :=

∂
∂t̄ its conjugate. The Finsler metric

Fk induces a continuous hermitian pseudo metric on C, defined by

γ∗F2k =
√
−1Gk(t)dt ∧ dt̄.(4.3)

Hence Gk(t) = |τk
(
dγ(∂t)⊗k

)
|2/kh , where τk is defined in (3.10).

By Theorem 3.9, there is a Zariski open subset U◦ of U such that U◦ ∩B+(L) = ∅ and τ1 is injective at
any point of U◦. We now fix any holomorphic map γ : C→U with γ(C)∩U◦ , ∅. By Proposition 3.8(ii),
the metric h for L−1 ⊗ E is smooth and positive definite over U −B+(L). Hence G1(t) . 0. Let C◦ be a
(non-empty) open subset of C whose complement C \C◦ is a discrete set so that

• γ(C◦) ⊂U◦;
• for every k = 1, . . . ,n, either Gk(t) ≡ 0 on C◦, or Gk(t) > 0 for every t ∈ C◦;
• γ ′(t) , 0 for any t ∈ C◦; namely γ |C◦ : C◦→U0 is immersive everywhere.

By the definition of Gk(t), if Gk(t) ≡ 0 for some k > 1, then τk(∂
⊗k
t ) ≡ 0, where τk is defined in (3.10). Note

that one has τk+1(∂
⊗(k+1)
t ) = θ̃(τk(∂

⊗k
t ))(∂t), where

θ̃ = 1L−1 ⊗θ : L−1 ⊗E −→ L−1 ⊗E ⊗Ω1
Y (logD).

We thus conclude that Gk+1(t) ≡ 0. Hence there exists an m with 1 ≤m ≤ n so that the set {k | Gk(t) > 0
over C◦} = {1, . . . ,m} and G`(t) ≡ 0 for all ` =m+1, . . . ,n. From now on, all the computations are made over
C◦ if not specified.

Using the same computations as those in the proof of [Den22a, Proposition 2.10], we have the following
curvature formula.

Theorem 4.2. For k = 1, . . . ,m, over C◦, one has

∂2 logG1

∂t∂t̄
≥ΘL,hL

(
∂t , ∂̄t

)
−
G2
2

G1
if k = 1,(4.4)

∂2 logGk
∂t∂t̄

≥ 1
k

ΘL,hL (∂t , ∂̄t)+ Gkk
Gk−1k−1

−
Gk+1k+1

Gkk

 if k > 1.(4.5)

Here we make the convention that Gm+1 ≡ 0 and 0
0 = 0. We also write ∂t (resp. ∂̄t) for dγ(∂t) (resp. dγ(∂̄t))

abusively, where dγ is defined in (4.2).

Let us mention that in [Den22a, Equation (2.2.11)], we dropped the term ΘL,hL(∂t , ∂̄t) in (4.5), though it
can be easily seen from the proof of [Den22a, Lemma 2.7].

We will follow ideas in [Den22a, Section 2.3] (inspired by [TY15,BPW22,Sch18]) to introduce a new Finsler
metric F on TY (− logD) by taking a convex sum of the form

F :=

√√
n∑
k=1

kαkF
2
k ,(4.6)
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where α1, . . . ,αn ∈R+ are some constants which will be fixed later.
For the above, for γ : C→U with γ(C)∩U◦ , ∅, we write

γ∗F2 =
√
−1H(t)dt ∧ dt̄.

Then

H(t) =
n∑
k=1

kαkGk(t),(4.7)

where Gk is defined in (4.3). Recall that for k = 1, . . . ,m, Gk(t) > 0 for any t ∈ C◦.
We first recall a computational lemma by Schumacher.

Lemma 4.3 ( [Sch18, Lemma 17]). Let αj and Gj be positive real numbers for j = 1, . . . ,n. Then

(4.8)
n∑
j=2

αjG
j+1
j

G
j−1
j−1

−αj−1
G
j
j

G
j−2
j−1

 > 1
2

−α3
1

α2
2

G2
1 +

αn−1n−1
αn−2n

G2
n +

n−1∑
j=2

α
j−1
j−1

α
j−2
j

−
α
j+2
j

α
j+1
j+1

G2
j


Now we are ready to compute the curvature of the Finsler metric F based on Theorem 4.2.

Theorem 4.4. Fix a smooth Kähler metric ω on Y . There exist universal constants 0 < α1 < . . . < αn and δ > 0
such that for any holomorphic map γ : C→U = Y −D with C an open subset of C and γ(C)∩U◦ , ∅, one has

ddc log |γ ′(t)|2F ≥ δγ
∗ω.(4.9)

Proof. By Theorem 3.9 and the assumption that γ(C)∩U◦ , ∅, we have G1(t) . 0.
We first recall a result in [Den22a, Lemma 2.9]; we write its proof here as it is crucial in what follows.

Claim 4.5. There is a universal constant c0 > 0 (i.e., it does not depend on γ) so that ΘL,hL(∂t , ∂̄t) ≥ c0G1(t)
for all t ∈ C.

Proof of Claim 4.5. Indeed, by Proposition 3.8(i), it suffices to prove that

|∂t |2γ∗(T )∣∣∣τ1(dγ(∂t))∣∣∣2h > c0(4.10)

for some c0 > 0, where T is a Kähler current on Y , which is a smooth complete metric over Y −D of
Poincaré type. It can be seen as a singular hermitian metric for TY (− logD). Hence for any admissible
coordinate (U ;z1, . . . , zn), one has ∣∣∣∣∣zi ∂∂zi

∣∣∣∣∣
T
∼ (− log |zi |)−1.

On the other hand, by Proposition 3.8(ii), one has∣∣∣∣∣∣τ1
(
zi
∂
∂zi

)∣∣∣∣∣∣
h

. C ·
∏̀
i=1

|zi |ε

for some constant ε > 0. Hence one has τ∗1h . T . Since Y is compact, there exists a constant c0 > 0 such
that T > c0τ

∗
1h. Therefore,

|∂t |2γ∗T∣∣∣τ1(dγ(∂t))∣∣∣2h =
|∂t |2γ∗T
|∂t |2γ∗τ∗1h

≥ c0.

Hence (4.10) holds for any γ : C→U with γ(C)∩U◦ , ∅. The claim is proved. �
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By [Sch12, Lemma 8],

√
−1∂∂̄ log

 n∑
j=1

jαjGj

 >
∑n
j=1 jαjGj

√
−1∂∂̄ logGj∑n

i=1 jαjGi
.(4.11)

Substituting (4.4) and (4.5) into (4.11), and observing the convention that 0
0 = 0, we obtain

∂2 logH(t)
∂t∂t̄

≥ 1
H

−α1G2
2 +

n∑
k=2

αk

Gk+1k

Gk−1k−1
−
Gk+1k+1

Gk−1k


+ ∑n

k=1αkGk
H

ΘL,hL(∂t , ∂̄t)

=
1
H

 n∑
j=2

αjG
j+1
j

G
j−1
j−1

−αj−1
G
j
j

G
j−2
j−1


+

∑n
k=1αkGk
H

ΘL,hL(∂t , ∂̄t)

(4.8)
≥ 1
H

−12 α3
1

α2
2

G2
1 +

1
2

n−1∑
j=2

α
j−1
j−1

α
j−2
j

−
α
j+2
j

α
j+1
j+1

G2
j +

1
2
αn−1n−1
αn−2n

G2
n


+

∑n
k=1αkGk
H

ΘL,hL(∂t , ∂̄t)

Claim 4.5
≥ 1

H

α12
(
c0 −

α2
1

α2
2

)
G2
1 +

1
2

n−1∑
j=2

α
j−1
j−1

α
j−2
j

−
α
j+2
j

α
j+1
j+1

G2
j +

1
2
αn−1n−1
αn−2n

G2
n


+

1
H

12α1G1 +
n∑
k=2

αkGk

ΘL,hL(∂t , ∂̄t).
One can take α1 = 1 and choose the further αj > αj−1 inductively so that

c0 −
α2
1

α2
2

> 0,
α
j−1
j−1

α
j−2
j

−
α
j+2
j

α
j+1
j+1

> 0 ∀ j = 2, . . . ,n− 1.(4.12)

Hence
∂2 logH(t)
∂t∂t̄

≥ 1
H

12α1G1 +
n∑
k=2

αkGk

ΘL,hL(∂t , ∂̄t) (4.7)
≥ 1
n
ΘL,hL(∂t , ∂̄t)

over C◦. By Proposition 3.8(i), this implies that

ddc log |γ ′ |2F = ddc logH(t) ≥ 1
n
γ∗
√
−1ΘL,hL ≥ δγ

∗ω(4.13)

over C◦ for some positive constant δ which does not depend on γ . Since |γ ′(t)|2F is continuous and locally
bounded from above over C, by the extension theorem of subharmonic function, (4.13) holds over the
whole C. Since c0 > 0 is a constant which does not depend on γ , so are α1, . . . ,αn by (4.12). The theorem is
thus proved. �

As a summary of the results in this subsection, we obtain the following theorem.

Theorem 4.6. Let (E = ⊕p+q=`Ep,q,θ) be a system of log Hodge bundles on a compact Kähler log pair (Y ,D)
satisfying the two conditions in Theorem 3.6. Then there are a Finsler metric h on TY (− logD) which is positive
definite on a dense Zariski open subset U◦ of U := Y −D and a smooth Kähler form ω on Y such that for any
holomorphic map γ : C→U from any open subset C of C with γ(C)∩U◦ , ∅, one has

ddc log |γ ′ |2h ≥ γ
∗ω.(4.14)

Proof of Theorem 1.4. Theorem 3.6 together with Theorem 4.6 imply Theorem 1.4. �
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5. Big Picard theorem and algebraic hyperbolicity

5.1. Algebraic and Picard hyperbolicity

In Definition 1.3, we have seen the definition of algebraic hyperbolicity for a compact complex manifold X,
which was introduced by Demailly in [Dem97, Definition 2.2]. He proved in [Dem97, Theorem 2.1] that X is
algebraically hyperbolic if it is Kobayashi hyperbolic. The notion of algebraic hyperbolicity was generalized
to log pairs by Chen [Che04].

Definition 5.1 (Algebraic hyperbolicity). Let (X,D) be a compact Kähler log pair. For any reduced
irreducible curve C ⊂ X such that C 1 D, we denote by iX(C,D) the number of distinct points in the set
ν−1(D), where ν : C̃→ C is the normalization of C. The log pair (X,D) is algebraically hyperbolic if there is
a smooth Kähler metric ω on X such that

2g(C̃)− 2+ i(C,D) ≥ degωC :=
∫
C
ω

for all curves C ⊂ X as above.

Note that 2g(C̃) − 2 + i(C,D) depends only on the complement C −D . Hence the above notion of
hyperbolicity also makes sense for quasi-projective manifolds: we say that a quasi-projective manifold U is
algebraically hyperbolic if it has a log compactification (X,D) which is algebraically hyperbolic.

However, unlike Demailly’s theorem, it is unclear to us that Kobayashi hyperbolicity or Picard hyperbolicity
of X −D will imply algebraic hyperbolicity of (X,D). In [PR07], Pacienza–Rousseau proved that if X −D is
hyperbolically embedded into X, the log pair (X,D) (and thus X −D) is algebraically hyperbolic.

Before we prove that Definition 1.1 does not depend on the compactification of U , we will need the
following proposition, which is a consequence of the deep extension theorem of meromorphic maps by
Siu [Siu75]. The meromorphic map in this paper is defined in the sense of Remmert, and we refer the reader
to [FG02, p. 243] for the precise definition.

Proposition 5.2. Let Y ◦ be a Zariski open subset of a compact Kähler manifold Y . Assume that Y ◦ is Picard
hyperbolic. Then any holomorphic map f : ∆p × (∆∗)q → Y ◦ extends to a meromorphic map f : ∆p+q d Y . In
particular, any holomorphic map g from a Zariski open subset X◦ of a compact complex manifold X to Y ◦ extends
to a meromorphic map from X to Y .

Proof. By [Siu75, Theorem 1], any meromorphic map from a Zariski open subset Z◦ of a complex manifold Z
to a compact Kähler manifold Y extends to a meromorphic map from Z to Y provided that the codimension
of Z −Z◦ is at least 2. The complement ∆p × (∆∗)q in ∆p+q is a simple normal crossing divisor D . We
remove a subvariety Z ⊂ ∆p+q of codimension at least 2 with D −Z smooth. Then any point x ∈ D −Z
has an open neighborhood Ωx ⊂ ∆p+q −Z which is isomorphic to ∆p+q−1 ×∆∗. It then suffices to prove the
extension theorem for any holomorphic map f : ∆r ×∆∗→ Y ◦.

By the assumption that Y ◦ is Picard hyperbolic, for any z ∈ ∆r , the holomorphic map f |{z}×∆∗ : {z} ×∆∗→
Y ◦ can be extended to a holomorphic map from {z} ×∆ to Y . It then follows from [Siu75, p.442, (∗)] that f
extends to a meromorphic map f : ∆r+1d Y . This proves the first part of the proposition. To prove the
second part, we first apply the Hironaka theorem on resolution of singularities to assume that X −X◦ is
a simple normal crossing divisor on X. Then any point x ∈ X −X◦ has an open neighborhood Ωx which
is isomorphic to ∆p+q so that X◦ ' ∆p × (∆∗)q under this isomorphism. The above arguments show that
g |Ωx∩X◦ extends to a meromorphic map from Ωx to Y , and thus g can be extended to a meromorphic map
from X to Y . The proposition is proved. �

Let us prove that Definition 1.1 does not depend on the compactification of U . This independence also
implies the following result.
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Lemma 5.3. Let U be a Zariski open subset of a compact Kähler manifold Y . If any holomorphic map f : ∆∗→U
extends to f̄ : ∆→ Y , then Y is bimeromorphic to any other compact Kähler manifold Y ′ which contains U as a
Zariski open set. In particular, f : ∆∗→U also extends to a holomorphic map ∆→ Y ′ .

Proof. By blowing up Y −U and Y ′ −U , we can assume that both Y −U and Y ′ −U are simple normal
crossing divisors. By the same arguments as those in the proof of Proposition 5.2, the identity map of U
extends to meromorphic maps a : Y d Y ′ and b : Y ′d Y . Note that a ◦ b|U and b ◦ a|U are identity maps.
Hence Y and Y ′ are bimeromorphic. Composing b with f̄ , one obtains the desired extension ∆→ Y ′ of
f : ∆∗→U in Y ′ . �

By Chow’s theorem, Proposition 5.2 in particular gives an alternative proof of the fact that a Picard
hyperbolic variety is moreover Borel hyperbolic, proven in [JK20, Corollary 3.11].

5.2. Proof of Theorem A

This subsection is devoted to the proof of Theorem A. We first recall the following criteria for Picard
hyperbolicity established in [DLS+19], whose proof is Nevanlinna-theoretic.

Theorem 5.4 ( [DLS+19, Theorem A]). Let Y be a projective manifold, and let D be a simple normal crossing
divisor on Y . Let f : ∆∗ → Y −D be a holomorphic map. Assume that there is a (possibly degenerate) Finsler
metric h of TY (− logD) such that |f ′(t)|2h . 0 and

ddc log |f ′(t)|2h ≥ f
∗ω(5.1)

for some smooth Kähler metric ω on Y . Then f extends to a holomorphic map f : ∆→ Y .

We will combine Theorem 5.4 with Theorem 1.4 to prove Theorem A.

Proof of Theorem A. By Theorem 1.4, there exist finitely many compact Kähler log pairs {(Xi ,Di)}i=0,...,N so
that the following hold:

(1) There are morphisms µi : Xi → Y with µ−1i (D) = Di so that each µi : Xi → µi(Xi) is a birational
morphism and X0 = Y with µ0 = 1.

(2) There are smooth Finsler metrics hi for TXi (− logDi) which is positive definite over a Zariski open
subset U◦i of Ui := Xi −Di .

(3) The restriction µi |U◦i : U
◦
i → µi(U◦i ) is an isomorphism.

(4) There are smooth Kähler metrics ωi on Xi such that for any holomorphic map γ : C→Ui with C
an open subset of C and γ(C)∩U◦i , 0, one has

ddc log |γ ′ |2hi ≥ γ
∗ωi .(5.2)

(5) For any i ∈ {0, . . . ,N }, either µi(Ui)−µi(U◦i ) is zero-dimensional, or there exists an I ⊂ {0, . . . ,N } so
that

µi(Ui)−µi(U◦i ) ⊂ ∪j∈Iµj(Xj ).
Let us explain how to construct these log pairs. By the assumption, there is a C-PVHS on Y −D so that
each fiber of the period map is zero-dimensional. In particular, the period map is generically immersive. We
then apply Theorem 1.4 to construct a Finsler metric on TY (− logD) which is positive definite over some
Zariski open subset U◦ of U = Y −D with the desired curvature property (4.14). Set X0 = Y , µ0 = 1 and
U◦0 = U◦. Let Z1, . . . ,Zm be all irreducible subvarieties of Y −U◦ which are not components of D . Then
Z1∪ . . .∪Zm ⊃U \U◦. For each i, we take a desingularization µi : Xi → Zi so that Di := µ

−1
i (D) is a simple

normal crossing divisor in Xi . We pull back the C-PVHS to Ui = Xi −Di via µi . Then its period map is still
generically immersive. We then apply Theorem 1.4 to construct the desired Finsler metrics in item (4) for
TXi (− logDi). We iterate this construction, and since at each step the dimension of Xi is strictly decreasing,
this algorithm stops after finitely many steps.
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(i) We will first prove that U is Picard hyperbolic. Fix any holomorphic map f : ∆∗→U . If f (∆∗)∩U◦0 , ∅,
then |f ′(t)|h0 . 0 by item (2). By item (4), there is a smooth Kähler metric ω0 on X0 such that

ddc log |f ′(t)|2h0 ≥ f
∗ω0.

We now apply Theorem 5.4 to conclude that f extends to a holomorphic map f : ∆→ X0 = Y .
Now assume f (∆∗)∩µ0(U◦0 ) = ∅. By item (5), there exists an I0 ⊂ {0, . . . ,N } so that

f (∆∗) ⊂ µ0(U0)−µ0(U◦0 ) ⊂ ∪j∈I0µj(Xj ).

Since the µj(Xj ) are all irreducible, there exists a k ∈ I0 so that f (∆∗) ⊂ µk(Xk). Note that Uk := µ
−1
k (U ).

Hence f (∆∗) ⊂ µk(Uk). If f (∆∗)∩µk(U◦k ) , ∅, then by item (3), f (∆∗) is not contained in the exceptional set
of µk . Hence f can be lifted to fk : ∆∗→Uk , so that µk ◦ fk = f and fk(∆∗)∩U◦k , ∅. By Theorem 5.4 and

item (4) again, we conclude that fk extends to a holomorphic map f k : ∆→ Xk . Hence µk ◦ f k extends f . If
f (∆∗)∩µk(U◦k ) = ∅, we apply item (5) to iterate the above arguments, and after finitely many steps, there
exists an Xi so that f (∆∗) ⊂ µi(Ui) and f (∆∗)∩µi(U◦i ) , ∅. By item (3), f can be lifted to fi : ∆∗→Ui so
that µi ◦ fi = f and fi(∆∗)∩U◦i , ∅. By Theorem 5.4 and item (4) again, fi extends to the origin, and so
does f . This proves the Picard hyperbolicity of U = Y −D .

(ii) Let us prove the algebraic hyperbolicity of U in as similar vein as [DLS+19, Proof of Theorem D]. Fix
any reduced and irreducible curve C ⊂ Y with C 1D . By the above arguments, there exists an i ∈ {0, . . . ,N }
so that C ⊂ µi(Xi) and C ∩µi(U◦i ) , ∅. Let Ci ⊂ Xi be the strict transform of C under µi . By item (3), hi |Ci
is not identically equal to zero.

Denote by νi : C̃i → Ci ⊂ Xi the normalization of Ci , and set Pi := (µi ◦ νi)−1(D) = ν−1i (Di). Then

dνi : TC̃i (− logPi) −→ ν∗i TXi (− logDi)

induces a (non-trivial) hermitian pseudo metric h̃i := ν∗i hi over TC̃i (− logPi). By (5.2), the curvature current

of h̃−1i on C̃i satisfies √
−1
2π

Θh̃−1i
(KC̃i (logPi)) ≥ ν

∗
iωi .

Hence

2g(C̃i)− 2+ i(C,D) =
∫
C̃i

√
−1
2π

Θh̃−1i

(
KC̃i (logPi)

)
≥

∫
C̃i

ν∗iωi .

Fix a Kähler metric Ω1
Y on Y . Then there is a constant εi > 0 so that ωi ≥ εiµ∗iΩ

1
Y . We thus have

2g(C̃i)− 2+ i(C,D) ≥ εi
∫
C̃i

(µi ◦ νi)∗Ω1
Y = εi degΩ1

Y
C

for µi ◦ νi : C̃i → C the normalization of C. Set ε := infi=0,...,N εi . Then we conclude that for any reduced
and irreducible curve C ⊂ Y with C 1D, one has

2g(C̃)− 2+ i(C,D) ≥ εdegΩ1
Y
C,

where C̃→ C is its normalization. This shows the algebraic hyperbolicity of U . The proof of the theorem is
accomplished. �

Let us mention that the idea of using Finsler metrics to prove the hyperbolicity in the above theorem was
inspired by the work of To–Yeung in [TY15].

Remark 5.5. Let U be a quasi-projective manifold admitting an integral variation of Hodge structures whose
period map is quasi-finite. In [JL19, Theorem 4.2], Javanpeykar–Litt proved that U is weakly bounded in the
sense of Kovács–Lieblich [KL10, Definition 2.4] (which is weaker than algebraic hyperbolicity). Though not
mentioned explicitly, their proof of [JL19, Theorem 4.2] implicitly shows that such a U is also algebraically
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hyperbolic when the local monodromies of the C-PVHS at infinity are unipotent. Their proof is based on
the work [BBT23] as well as the Arakelov-type inequality for Hodge bundles by Peters [Pet00].

We end this section with the following remark.

Remark 5.6. Let (E,θ) be the system of log Hodge bundles on a log pair (Y ,D) as that in Theorem 4.6.
One can also use the idea by Viehweg–Zuo [VZ02] in constructing their Viehweg–Zuo sheaf (based on the
negativity of kernels of Higgs fields by Zuo [Zuo00]) to prove a weaker result than Theorem 4.6: for any
holomorphic map γ : C→U from any open subset C of C with γ(C)∩U◦ , ∅, there exist a Finsler metric
hC of TY (− logD) (depending on C) and a Kähler metric ωC for Y (also depending on C) so that |γ ′(t)|2h . 0
and

ddc log |γ ′ |2hC ≥ γ
∗ωC .

It follows from our proof of Theorem A that one can also combine Theorem 5.4 with this result, which is
only weaker in appearance, to prove Theorem A. The more general result Theorem 1.4 will be used to prove
Theorem 6.1(ii) in the next section.

6. Hyperbolicity for the compactification after a finite étale cover

In this section, we will prove Theorem B and Corollary C. We first prove the following theorem.

Theorem 6.1. Let U be a quasi-compact Kähler manifold. Assume that there is a C-PVHS over U whose period
map is immersive at one point. Then there are a finite étale cover Ũ → U together with a compact Kähler
compactification X of Ũ and a proper Zariski closed subvariety Z ( X so that

(i) the variety X is of general type;
(ii) the variety X is Kobayashi hyperbolic modulo Z;
(iii) the variety X is Picard hyperbolic modulo Z;
(iv) the variety X is algebraically hyperbolic modulo Z .

Let us briefly explain the idea of the proof of Theorem 6.1 and some related results. Let Y be a compact
Kähler manifold compactifying U with D := Y −U a simple normal crossing divisor. By Theorem 3.6,
there is a special system of log Hodge bundles (E,θ) := (⊕p+q=`Ep,q,⊕p+q=`θp,q) on (Y ,D) satisfying the
properties therein. We divide the proof into four steps.

(1) The first step is devoted to constructing a compact Kähler log pair (X,D̃) and a generically finite
surjective log morphism µ : (X,D̃) → (Y ,D) which is étale over U so that for each irreducible
component D̃i of D̃,
• either ordD̃i (µ

∗D)� 1,
• or the local monodromy of the pull-back C-PVHS over Ũ around D̃i is trivial.

To find this µ, we apply the well-known result that that monodromy group of a C-PVHS is residually
finite and use the Cauchy argument principle to show the high ramification over irreducible com-
ponents of D̃ around which the local monodromies are not trivial. Let us mention that this step is
quite different from those in [Nad89,Rou16,Bru20a,Cad22] for the hyperbolicity of compactifications
of quotients of bounded symmetric domains by a torsion-free lattice, as they all applied Mumford’s
work on toroidal compactifications of quotients of bounded symmetric domains [Mum77] so that
ordD̃i (µ

∗D)� 1 for all D̃i . In general, we are not sure that such a covering can be found in our case.
(2) The second step is to construct a new system of log Hodge bundles (G = ⊕p+q=`Gp,q,η) over (X,D̃)

which is the canonical extension of the pull-back of the C-PVHS via µ. This system of log Hodge
bundles (G = ⊕p+q=`Gp,q,η) on (X,D̃) satisfies the two conditions in Theorem 3.6. Moreover,
some Gp0,`−p0 contains L̃⊗OX(`DX) with L̃ a big line bundle. Here DX is the sum of irreducible
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components of D̃ around which the local monodromies of the pull-back C-PVHS are not trivial
(hence µ is highly ramified over DX ). Note that (G,η) has singularities along DX instead of D̃ since
the pull-back C-PVHS extends across the components where the local monodromies are trivial (see
(6.4).)

(3) The third step is to prove Theorem 6.1(i). We start with Gp0,`−p0 and iterate the Higgs field η,
ending at finitely many steps. By the negativity of the kernel of θ̃, L̃⊗O(`DX) ⊂ Gp0,`−p0 , and (6.4),
we can construct an ample sheaf contained in some symmetric differential SymβΩ1

X (rather than
on SymβΩ1

X(logD̃)!). It follows from a celebrated theorem of Campana–Păun [CP19] that X is of
general type. Let us mention that this idea of iterating Higgs fields to their kernels, originally due to
Viehweg–Zuo [VZ02], has been used by Brunebarbe in [Bru20a], in which he proved similar results for
quotients of bounded symmetric domains by arithmetic groups. There are also some similar results for
quotients of bounded domains by Boucksom–Diverio [BD21] and Cadorel–Diverio–Guenancia [CDG19].

(4) The last step is to prove Theorem 6.1(ii)–Theorem 6.1(iv). We use the above system of log Hodge
bundles (G,η) and ideas in Section 4 to construct a Finsler metric F on TX (rather than TX(− logD)!)
due to the extra positivity L̃⊗O(`DX) ⊂ Gp0,`−p0 . Such a metric F is generically positive and has
holomorphic sectional curvature bounded from above by a negative constant by Theorem 4.4. By
the Ahlfors–Schwarz lemma, we conclude that X is Kobayashi hyperbolic modulo a proper closed
subvariety, and by Theorem 5.4, the Picard hyperbolicity modulo a proper subset of X follows. Let us
mention that Rousseau [Rou16] has proved a similar result for hermitian symmetric spaces, which
was later refined by Cadorel [Cad22]. Their methods use Bergman metrics for bounded symmetric
domains instead of Hodge theory.

Now we start the detailed proof of Theorem 6.1.

Proof of Theorem 6.1. By Theorem 3.6, there is a system of log Hodge bundles (E,θ)=(⊕p+q=`Ep,q,⊕p+q=`θp,q)
over (Y ,D) satisfying the two conditions therein. In particular, there are a big line bundle L on Y and an
inclusion L ⊂ Ep0,`−p0 for some 0 ≤ p0 ≤ `. Pick m� 1 so that L− `+1m D is a big Q-line bundle.

Step 1a. Fix a base point y ∈ U := Y −D . Let us denote by ρ : π1(U,y) → GL(r,C) the monodromy
representation of the corresponding C-PVHS and denote by Γ := ρ(π1(U,y)) its monodromy group, which
is a finitely generated linear group, hence residually finite by a theorem of Malcev [Mal40]. Let us cover Y
by finitely many admissible coordinate systems{(

Uα;z
(α)
1 , . . . , z

(α)
d

)}
α∈S

,

where S is a finite set, so that

D ∩Uα =
(
z
(α)
1 · · ·z

(α)
kα

= 0
)
.

Write U ∗α := Uα −D . The fundamental group π1(U ∗α , yα) ' π1((∆∗)kα ×∆d−kα , yα) 'Zkα is abelian. Pick a

base point yα ∈ U ∗α . Let e
(α)
1 , . . . , e

(α)
kα

be the generators of π1((∆∗)kα ×∆d−kα , yα); namely, e
(α)
i is a clockwise

loop around the origin in the ith factor ∆∗. Pick a path hα : [0,1]→ Y −D connecting yα with y, and

denote by γ
(α)
i ∈ π1(Y −D,y) the equivalent class of the loop h−1α · e

(α)
i · hα . Set T

(α)
i := ρ(γ (α)

i ). Clearly,

T
(α)
1 , . . . ,T

(α)
αk commute pairwise.

Let S ⊂ Γ be the finite subset defined by{(
T
(α)
1

)`1
· · ·

(
T
(α)
kα

)`kα
| α ∈ S,0 ≤ `i < m

}
,(6.1)

where m is the integer chosen at the beginning. It follows from the definition of a residually finite group that
there is a normal subgroup Γ̃ of Γ with finite index so that

S∩ Γ̃ = {0}.(6.2)
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Then ρ−1(Γ̃ ) is a normal subgroup of π1(U,y) with finite index. Let ν : Ũ →U be the finite étale cover of
U so that for the induced map of the fundamental group ν∗ : π1(Ũ ,x)→ π1(U,y), its image is ρ−1(Γ̃ ). Here
x ∈ Ũ with µ(x) = y. We consider π1(Ũ ,x) as a subgroup of π1(U,y) of finite index. Since the monodromy
representation of the pull-back of the C-PVHS on Ũ is the restriction

ρ|π1(Ũ ,x) : π1(Ũ ,x) −→ GL(r,C),

its monodromy group is thus Γ̃ .

Step 1b. Note that U is quasi-projective. Hence Ũ is also quasi-projective. Let us take a smooth projective
compactification X of Ũ with D̃ := X − Ũ simple normal crossing so that ν : Ũ → U extends to a log
morphism µ : (X,D̃)→ (Y ,D). Write D̃ =

∑n
j=1 D̃j , where the D̃j are irreducible components of D̃ .

Claim 6.2. For each j = 1, . . . ,n, one has

• either ordD̃j (µ
∗D) ≥m,

• or the local monodromy group of the pull-back C-PVHS around D̃j is trivial.

Proof of Claim 6.2. Since {U (α)}α∈S covers D, there is an α ∈ S so that for the admissible coordinate system

(U (α);z(α)1 , . . . , z
(α)
d ), one has µ−1(U (α))∩ D̃j , ∅. We will write (U ;z1, . . . , zd) instead of (U (α);z(α)1 , . . . , z

(α)
d )

and k instead of kα to lighten the notation. Namely, U ∩D = (z1 · · ·zk = 0). Note that k ≥ 1.
Pick a point x ∈ D̃j−∪i,jD̃i so that there is an admissible coordinate system (W ;x1, . . . ,xn) with µ(W ) ⊂ U

and W ∩ D̃ = (x1 = 0). Denote by (µ1(x), . . . ,µd(x)) the expression of µ within these coordinates. Then

(µ1(x), . . . ,µd(x)) =
(
xn11 ν1(x), . . . ,x

nk
1 νk(x),µk+1(x), . . . ,µd(x)

)
,

where ν1(x), . . . ,νk(x) are holomorphic functions defined on W so that none of them is identically equal to
zero on (x1 = 0), and np ≥ 0 for p = 1, . . . , k.

We thus can choose a slice S := {(x1, . . . ,xd) | {|x1| ≤ ε,x2 = ζ2, . . . ,xd = ζd} ⊂ W so that νi(x) , 0 for any
x ∈ S and any i = 1, . . . , k. Let us define a loop e(θ) : [0,1]→W ∗ :=W − D̃ by e(θ) := (εe2πiθ ,ζ2, . . . ,ζd)
which is the generator of π1(W ∗,x0), where x0 ∈W ∗ is a point with µ(x0) = yα ∈ U ∗. By Cauchy’s argument
principle, the winding number of µp ◦ e(θ) around 0 is np for p = 1, . . . , k. Hence by the diagram

π1(W ∗,x0) π1(U ∗, yα)

Z Z
k ,

ν∗

'

one has ν∗(1) = (n1, . . . ,np).
Pick a path h̃ : [0,1] → Ũ connecting x and x0, which lifts the above path hα : [0,1] → U . Set

γ̃0 ∈ π1(Ũ ,x) to be the equivalence class of the loop h̃−1 · e · h̃. Then

ν∗(γ̃0) =
[
h−1α ·

(
e
(α)
1

)n1
· · ·

(
e
(α)
k

)nk
· hα

]
=

(
γ
(α)
1

)n1
· · ·

(
γ
(α)
k

)nk
Therefore, (

T
(α)
1

)n1
· · ·

(
T
(α)
k

)nk
= ρ (ν∗(γ̃0)) ∈ Γ̃ .

By (6.1) and (6.2), either ρ (ν∗(γ̃0)) = 0, or there is some i ∈ {1, . . . , k} so that ni ≥m. The first case means
that the local monodromy of the pull-back C-PVHS around D̃j is trivial. In the latter case, one has

ordD̃j (µ
∗D) =

k∑
i=1

ni ≥m.

The claim is proved. �
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Step 2. Set DX ⊂ D to be the sum of all D̃j so that the local monodromy group of the pull-back C-PVHS
around D̃j is not trivial. Then by the dichotomy in Claim 6.2, µ∗D −mDX is an effective divisor, and the
pull-back C-PVHS on Ũ around D̃i with D̃i 1DX is trivial. Note that the pull-back C-PVHS extends to a
C-PVHS defined over X −DX .

By the second condition in Theorem 3.6(i), (E,θ) is the canonical extension (in the sense of Definition 2.11)
of some system of Hodge bundles (Ẽ = ⊕p+q=`Ẽp,q, θ̃,hhod) defined over Y −D . Hence for any admissible
coordinate (U ;z1, . . . , zd) and any holomorphic frame (e1, . . . , er ′ )|U for Ep,q, one has

|ej |hod .
1∏k

i=1 |zi |ε

for all ε > 0. If we take an admissibe coordinate (W ;x1, . . . ,xd) with W ∩ D̃ = (x1 · · ·xc = 0) and µ(W ) ⊂ U ,
one can see that

|µ∗ej |µ∗hod .
1∏c

i=1 |xi |ε·ni

for all ε > 0. Here ni := ord(xi=0)(µ
∗(z1 · · ·zk)). It then follows from the definition of the extension (2.4) that

µ∗Ep,q ⊂ �(µ∗Ẽp,q).(6.3)

Note that µ∗(Ẽ, θ̃,hhod) is still a system of Hodge bundles over Ũ , which corresponds to the pull-back of
the given C-PVHS on U . Recall that the pull-back C-PVHS extends to a C-PVHS defined over X −DX .
Hence µ∗(Ẽ, θ̃,hhod) extends to a system of Hodge bundles over X −DX .

We denote by (G = ⊕p+q=`Gp,q,η = ⊕p+q=`ηp,q) the canonical extension (in the sense of Definition 2.11) of
µ∗(Ẽ, θ̃,hhod) (which is defined over X −DX ) over the log pair (X,DX), which is thus a system of log Hodge
bundles on (X,DX). In particular, one has

ηp,q : G
p,q −→ Gp−1,q+1 ⊗Ω1

X(logDX).(6.4)

By Lemma 2.9(i), one has

Gp,q = �(µ∗Ẽp,q).(6.5)

Since L is a subsheaf of Ep0,`−p0 , by (6.3) and (6.5), one has

µ∗L ⊂ µ∗Ep0,q0 ⊂ Gp0,q0 .

Recall that µ∗D −mDX is an effective divisor and L− `+1m D is a big Q-line bundle. Write L̃ := µ∗L− `DX .
Then L̃ and L̃−DX are both big line bundles. The above inclusion yields

L̃⊗OX(`DX) ⊂ Gp0,q0 .(6.6)

Step 3. Now we iterate η k times as in Section 3.3 to obtain a morphism

Gp0,`−p0 −→ Gp0−k,`−p0+k ⊗ SymkΩ1
X(logDX).(6.7)

The inclusion (6.6) then induces a morphism

κk : L̃⊗OX(`DX) −→ Gp0−k,`−p0+k ⊗ SymkΩ1
X(logDX).(6.8)

Write k0 for the largest k so that κk0 is non-trivial. Then 0 ≤ k0 ≤ p0 ≤ `. Let us denote by Np the kernel of
θp,`−p. Hence κk0 admits a factorization

κk0 : L̃⊗OX(`DX) −→Np0−k0 ⊗ Sym
k0Ω1

X(logDX).

We first note that k0 > 0; or else, there is a morphism from the big line bundle L̃⊗OX(`DX) to Np0 , whose
dual N ∗p0 is weakly positive in the sense of Viehweg by [Bru17] (see also [Den22b, Theorem 4.6]). Hence κk0
induces

L̃ −→Np0−k0 ⊗ Sym
k0Ω1

X(logDX)⊗OX(−`DX) ⊂Np0−k0 ⊗ Sym
k0Ω1

X
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due to k0 ≤ p0 ≤ `. In other words, there exists a non-trivial morphism

L̃⊗N ∗p0−k0 −→ Symk0Ω1
X .

Recall that N ∗p0−k0 is weakly positive. The torsion-free coherent sheaf L̃ ⊗N ∗p0−k0 is big in the sense of
Viehweg. Hence there is an α > 0 so that

Symα
(
L̃⊗N ∗p0−k0

)
⊗OX(−A)

is generically globally generated for some ample divisor A. One thus has a non-trivial morphism

OX(A) −→ Symαk0Ω1
X .

By a theorem of Campana–Păun [CP19, Corollary 8.7], X is of general type.

Step 4. Let us prove that X is both pseudo Picard and pseudo Kobayashi hyperbolic. Note that κk in (6.8)
induces a morphism

τk : Sym
kTX(− logDX) −→ Gp0−k,`−p0+k ⊗ L̃−1 ⊗OX(−`DX)

By Theorem 3.9, we know that τ1 is injective on a Zariski open set Ũ ′ ⊂ Ũ . The morphism τk induces a
morphism

τ̃k : Sym
kTX −→ SymkTX(− logDX)⊗OX(`DX) −→ Gp0−k,`−p0+k ⊗ L̃−1

which coincides with τk over Ũ . Hence τ̃1 is also injective over Ũ ′ . By Proposition 3.8, we can take a
singular hermitian metric hL̃ for L̃ so that h := h−1

L̃
⊗ h̃hod on G⊗ L̃−1 is locally bounded on Y and smooth

outside DX ∪B+(L̃ −DX), where h̃hod is the Hodge metric for the system of Hodge bundles (G,η)|X−DX .
Moreover, h vanishes on DX ∪B+(L̃−DX). This metric h on G⊗ L̃−1 induces a Finsler metric Fk on TX
defined as follows: for any e ∈ TX,x,

Fk(e) := h
(
τ̃k

(
e⊗k

)) 1
k

We apply the same method as in Section 4 to construct a new Finsler metric F on TX by taking a convex
sum in the form

F :=

√√√ k0∑
i=1

αiF
2
i ,

where α1, . . . ,αk0 ∈ R
+ are certain constants. This Finsler metric F on TX is positive definite over Ũ◦ :=

Ũ ′ −B+(L̃−DX) as τ̃1 is injective over Ũ ′ and h is smooth on Ũ −B+(L̃−DX). Set Z := X \ Ũ◦, which is a
proper Zariski closed subvariety of X. By Theorem 4.4 one can choose α1, . . . ,αk0 ∈R

+ properly so that for
any γ : C→ X with C an open subset of C and γ(C)∩ Ũ◦ , ∅, one has

ddc log |γ ′(t)|2F ≥ γ
∗ω(6.9)

for some fixed smooth Kähler form ω on X. Indeed, it follows from the proof of Theorem 4.4 that there is
an open subset C◦ of C whose complement is a discrete set such that (6.9) holds over C◦. By Definition 4.1,
|γ ′(t)|2F is continuous and locally bounded from above over C, and by the extension theorem of subharmonic
functions, (6.9) holds over the whole unit disk C. Applying Theorem 5.4 to (6.9), we conclude that X is
Picard hyperbolic modulo Z . Hence Theorem 6.1(iii) follows.

Let C be an irreducible compact curve in X not contained in Z . Write hC̃ the induced singular hermitian
metric for TC̃ by F, where C̃ is the normalization of C. Then by (6.9), one has

2g(C̃)− 2 = −
√
−1ΘhC̃ (TC̃) ≥ degω(C).

This proves Theorem 6.1(iv).
By Definition 4.1 again, there is an ε > 0 so that ω ≥ εF2. Hence (6.9) implies that

∂2 log |γ ′(t)|2F
∂t∂t̄

≥ ε|γ ′(t)|2F
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for any γ : ∆→ X with γ(∆)∩Ũ◦ , ∅. In other words, the holomorphic sectional curvature of F is bounded
from above by the negative constant −ε (see [Kob98, Theorem 2.3.5]). By the Ahlfors–Schwarz lemma, we
conclude that X is Kobayashi hyperbolic modulo Z (see [Den22a, Lemma 2.4]). This proves Theorem 6.1(ii).
The theorem is proved. �

During the above proof, we indeed obtained the following result.

Theorem 6.3. Let (Y ,D) be a compact Kähler log pair, and let (E,θ) = (⊕p+q=`Ep,q,⊕p+q=`θp,q) be a system of
log Hodge bundles on (Y ,D) satisfying the following conditions:

(1) The pair (E,θ) is the canonical extension of some system of Hodge bundles over Y −D of weight `.
(2) There is a big line bundle L over Y such that L⊗OX(`D) ⊂ Ep0,q0 for some p0 + q0 = `.
(3) The line bundle L⊗OX(−D) is still big.

Then there is a proper Zariski closed subset Z ( Y so that

(i) Y is Kobayashi hyperbolic modulo Z;
(ii) Y is Picard hyperbolic modulo Z;
(iii) Y is algebraically hyperbolic modulo Z .
(iv) Y is of general type;

Now we are able to prove Theorem B.

Proof of Theorem B. By Steps 1–3 in the proof of Theorem 6.1, we can construct a projective log pair (X,D)
and a log morphism µ : (X,D̃)→ (Y ,D) which is a finite étale cover over U . Over (X,D), there is a system
of log Hodge bundles (G = ⊕p+q=`Gp,q,η = ⊕p+q=`ηp,q) satisfying the following properties:

(1) The pair (G,η) is the canonical extension of some system of Hodge bundle on X −DX , where DX is
a reduced simple normal crossing divisor supported on D .

(2) There is a big line bundle L̃ on X so that L̃⊗O(−DX) is also big,
(3) There is an inclusion L̃⊗OX(`DX) ⊂ Gp0,`−p0 for some p0 > 0.

Since the period map has zero-dimensional fibers, by Theorem 3.6(iii) and the construction of L̃ at the
beginning of the proof of Theorem 6.1, we moreover have that

(4) the augmented base locus satisfies B+(L̃) ⊂ D̃ .

Let Z̃ be any irreducible Zariski closed subvariety of X of positive dimension which is not contained
in D̃ . Take a resolution of singularities g : Z→ Z̃ so that DZ := ν−1(DX) is simple normal crossing. Then
g : (Z,DZ )→ (X,DX) is a log morphism which is generically finite.

By item (4), we can see that LZ := g∗L̃ is big. Since g∗DX −DZ is an effective divisor, LZ ⊗OZ(−DZ ) is
also big. By item (3), one has

LZ ⊗OZ(`DZ ) ⊂ g∗
(
L̃⊗OX(`DX)

)
⊂ g∗Gp0,`−p0 .

For the C-PVHS corresponding to (G,η)|X−DX , we pull it back to Z −DZ via g and denote by (Ẽ, θ̃) the
induced system of Hodge bundles on Z −DZ . Let (E = ⊕p+q=`Ep,q,θ) be the canonical extension of such a
system of Hodge bundles. In the same vein as the proof of (6.3), one has

g∗Gp0,`−p0 ⊂ Ep0,`−p0 .

In summary, we construct a system of log Hodge bundles (E = ⊕p+q=`Ep,q,θ) on (Z,DZ ) satisfying the two
conditions in Theorem 6.3. By Theorem 6.3, Z is of general type. We have proved Theorem B(i).

Let us prove Theorem B(ii). For any γ̃ : ∆∗→ X whose image is not contained in D̃, let Z̃ be its Zariski
closure. Take a desingularization ν : Z → Z̃ as above, and let γ : ∆∗→ Z be the lift of γ . By the above
argument and Theorem 6.3, γ extends to a holomorphic map γ : ∆→ Z . Therefore, ν ◦γ extends γ̃ . We
proved Theorem B(ii). It is easy to see that Theorem B(ii) implies Theorem B(iii).
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The proof of Theorem B(iv) is exactly the same as that of Theorem A. We will not repeat the arguments
and leave the proof to the interested readers. �

We now show how to deduce Corollary C from Theorem B.

Proof of Corollary C. By the work of Baily–Borel and Mok, we know that U is quasi-projective. By the work
of Deligne, U admits a C-PVHS whose period map is immersive everywhere (see, e.g., [Mil13, Theorem 7.10]).
The corollary immediately follows from Theorem B(ii). �

Remark 6.4. Corollary C unifies the previous result by Nadel who proved that X is Brody hyperbolic modulo
X − Ũ . Applying Theorem B(i), it also re-proves theorems by Brunebarbe [Bru20a] and Cadorel [Cad22]: any
positive-dimensional irreducible subvariety of X not contained in X − Ũ is of general type. However, since
our proof does not rely on special properties of bounded symmetric domains (we use neither Mumford’s
work on toroidal compactifications nor the existence of variations of Hodge structures of Calabi-Yau type
over quotients of bounded symmetric domains by arithmetic groups), we certainly loose the effectivity result
regarding the level structures of the étale coverings, which is also a main result in [Nad89,Bru20a,Cad22].
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