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Curve counting and S-duality

S. Feyzbakhsh and R. P. Thomas

Abstract. We work on a projective threefold X which satisfies the Bogomolov–Gieseker conjecture
of Bayer–Macrì–Toda, such as P3 or the quintic threefold.

We prove certain moduli spaces of 2-dimensional torsion sheaves on X are smooth bundles over
Hilbert schemes of ideal sheaves of curves and points in X.

When X is Calabi–Yau, this gives a simple wall-crossing formula expressing curve counts (and
so ultimately Gromov–Witten invariants) in terms of counts of D4-D2-D0 branes. These latter
invariants are predicted to have modular properties which we discuss from the point of view of
S-duality and Noether–Lefschetz theory.
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1. Introduction

A naive way to relate different moduli spaces of coherent sheaves on an algebraic variety is to replace
sheaves by cokernels of their sections (after twisting by an appropriately positive line bundle to ensure
the sheaves have predictable numbers of sections). This would give useful relations between enumerative
invariants counting sheaves, but it very rarely works due to stability issues.

This is one of a series of papers [Fey22, FT21a, FT21b, FT21c] showing it can be made to work — modulo
the wall-crossing formulae required to move to a stability condition for which such cokernels are stable —
on a threefold X satisfying (a weakening of) Bayer–Macrì–Toda’s Bogomolov–Gieseker conjecture [BMT14].
When X is Calabi–Yau, this gives relations between invariants involving unwieldy formulae. In this paper we
concentrate on the one case where the formulae are very simple. They equate the (virtual) counting of ideal
sheaves (of curves and points) with the counting of 2-dimensional pure sheaves,

(1.1) #(ideal sheaves) = c ·#(2-dimensional pure sheaves),

with c an explicit topological constant. The formula reflects the fact that in this case we are ultimately able
to prove (by crossing many walls) that no wall-crossing is necessary — the cokernels are stable and are the
only stable sheaves of the same topological type. Thus the relationship between the moduli spaces is also
very simple, with one being a projective bundle over the other. We explain below why this is so surprising
(to us).

The counts of ideal sheaves on the left-hand side of (1.1) are heavily studied, being equivalent, via
the MNOP conjecture [MNOP06], to the Gromov–Witten theory of X. On the right-hand side, we have
counts of “D4-D2-D0 branes”, which the string-theoretic “S-duality conjecture” predicts are coefficients of
(vector-valued mock) modular forms. Thus (1.1) opens up the potential of governing the Gromov–Witten
theory of X by modular forms. This is discussed in Section 6, alongside a conjectural approach to proving
S-duality geometrically using Noether–Lefschetz theory.

In the sequel [FT21b, FT21c] we apply the same methods to DT invariants counting higher-rank sheaves.
Here the wall-crossing formulae are much more complicated, but ultimately express arbitrary rank DT
invariants in terms of the same data. That is, we can express them in terms of the rank 1 invariants on the
left-hand side of (1.1) (or, by the MNOP conjecture, the Gromov–Witten invariants of X). Or we can express
them in terms of the (conjecturally modular) rank 0 invariants counting D4-D2-D0 branes on the right-hand
side of (1.1).



Curve counting and S-duality 3Curve counting and S-duality 3

Statement of results

Let (X,O(1)) be a smooth polarised complex projective threefold. Gieseker and slope (semi)stability of
sheaves will always be defined by H := c1(O(1)).

Fix β in the image of H4(X,Z)→ H4(X,Q) and m ∈ Z. Let Im(X,β) denote the Hilbert scheme of
subschemes C ⊂ X of dimension at most 1 and topological type

ch2(OC) = [C] = β and ch3(OC) = m.

It is the moduli space of ideal sheaves IC . Torsion-free sheaves of the same Chern character

v := (1,0,−β,−m) ∈
⊕3

i=0H
2i(X,Q)

are all of the form IC ⊗ T , where T is a line bundle with torsion c1(T ) ∈H2(X,Z). Their moduli space is
Im(X,β)×Pic0(X), where

Pic0(X) :=
{
T ∈ Pic(X) : c1(T ) = 0 ∈ H2(X,Q)

}
.

For n� 0 the generic section

(1.2) s : OX(−n) −→ IC ⊗ T

has cokernel a rank 0 Gieseker semistable 2-dimensional sheaf cok(s) of Chern character

(1.3) vn := v − ch(O(−n)) =
(
0, nH, −β − 1

2
n2H2, −m+

1
6
n3H3

)
.

Let MX,H (vn) denote the moduli space of Gieseker semistable sheaves of class vn.

Theorem 1. For X satisfying the Bogomolov–Gieseker conjecture of [BMT14] and n� 0,

• cok(s)⊗L is slope and Gieseker stable for any s , 0 and any L ∈ Pic0(X);
• all points of MX,H (vn) are of the form cok(s)⊗L for unique data ((IC ⊗ T ,s),L);
• mapping cok(s)⊗L to (IC ,T ,L) defines a morphism

MX,H (vn) −→ Im(X,β)×Pic0(X)×Pic0(X)

which is a smooth projective bundle with fibre Pχ(v(n))−1.

We use the weak stability conditions of Bayer–Macrì–Toda [BMT14] on the bounded derived category of
coherent sheaves D(X). Their conjectural Bogomolov–Gieseker inequality for weak semistable objects is the
key to proving the existence of Bridgeland stability conditions on D(X), and is now known to hold for many
threefolds, see [BMS16, Kos18, Kos20, Kos22, Li19a, Li19b, MP16, Mac14, Sch14], such as P3 or the quintic
threefold. In fact we only need its weakening stated in Conjecture BGn below.

For weak stability conditions in the large volume limit, semistable objects F of Chern character vn are
slope semistable sheaves, giving the moduli space MX,H (vn). Several applications of the Bogomolov–Gieseker
inequality show there is a single wall of instability for the class vn. Below this there are no semistable objects,
while on the wall F is destabilised by an exact triangle

IC ⊗ T ⊗L −→ F −→ L(−n)[1]

expressing it as the cokernel of a section (1.2) tensored by L ∈ Pic0(X).
By [GST14] such sheaves F = cok(s)⊗L are all of the form

(1.4) ι∗(IC ⊗L′)

for some subscheme C of a divisor ι : D ↪→ X in the linear system |T (n)| and L′ = T ⊗L in Pic0(X). (Here
IC denotes the ideal sheaf of C on D rather than X, and the H2 class of the pushforward of [C] to X is β.)
So, remarkably, such sheaves are always Gieseker and slope stable, and these are the only sheaves in MX,H (vn).
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In other words, semistable sheaves with Chern character vn must have rank 1 on their support. This came
as a surprise to us. The support D can have reducible components which are non-reduced. For instance,
consider one of the form D =D1∪rD2 for r > 1. Then there are sheaves with Chern character vn which have
support on the reduced divisor D1 ∪D2 but rank r on D2. Theorem 1 says they are necessarily unstable.(1)

(Furthermore, there is a unique L′ ∈ Pic0(X) such that after ⊗(L′)∗, this rank 1 sheaf on D is anti-effective:
its dual has a section. In particular, if β ·H < 0, then MX,H (vn) must be empty.) We do not know of other
situations in which whole series of different moduli spaces of sheaves have been systematically shown to have
such a simple geometric relation as in Theorem 1.

Suppose now that X is a Calabi–Yau threefold: KX � OX and H1(OX) = 0. Since semistability equals
stability for our moduli spaces, they carry symmetric obstruction theories and virtual cycles of dimension 0,
see [HT10, MNOP06, Tho00], and degrees

• Im,β(X) :=
∫
[Im(X,β)]vir

1 ∈Z,

• Ωvn(X) :=
∫
[MX,H (vn)]vir

1 ∈Z.

The first is the count of (ideal sheaves of) curves and points on X conjectured by Maulik–Nekrasov–
Okounkov–Pandharipande to be equivalent to the Gromov–Witten theory of X; see [MNOP06]. This MNOP
conjecture has now been proved for most Calabi–Yau threefolds by Pandharipande and Pixton [PP17]. The
second counts D4-D2-D0-branes, or 2-dimensional torsion sheaves, and is subject to the famous S-duality
conjectures of physicists.

Write these invariants as Behrend-weighted Euler characteristics; see [Beh09]. As Theorem 1 gives a
smooth fibration MX,H (vn)→ Im(X,β) with fibres of signed Euler characteristic

en := (−1)χ(v(n))−1χ(v(n))
(
#H2(X,Z)tors

)2
,

an immediate corollary is the following precise form of equation (1.1).

Theorem 2. Fix β, m, then n� 0. Suppose Conjecture BGn holds on X. Then

(1.5) Ωvn(X) = en · Im,β(X).

In Section 6 we discuss the conjectural modular properties of the invariants Ωvn from two points of view:
(i) S-duality from physics and (ii) Noether–Lefschetz theory [MP10].

Acknowledgements

We thank Arend Bayer, Luis Garcia, Chunyi Li, Jan Manschot, Davesh Maulik, Rahul Pandharipande and
an anonymous referee for their generous help with this paper. Our intellectual debt to Yukinobu Toda is
described in Section 5.

2. Weak stability conditions

Let (X,O(1)) be a smooth polarised complex threefold and H = c1(O(1)). Denote the bounded derived
category of coherent sheaves on X by D(X) and its Grothendieck group by K(X) := K(D(X)). In this section
we review the notion of a weak stability condition on D(X). The main references are [BMT14, BMS16].

We define the µH -slope of a coherent sheaf E on X to be

µH (E) :=

 ch1(E)·H2

ch0(E)H3 if ch0(E) , 0,

+∞ if ch0(E) = 0.

(1)Of course, stable sheaves do exist with rank r > 1 on D2, but if they have the same ch1, ch2 as vn, then by Theorem 1 they
have ch3 < −m+ 1

6n
3H3.
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Associated to this slope, every sheaf E has a Harder–Narasimhan filtration. Its graded pieces have slopes
whose maximum we denote by µ+H (E) and minimum by µ−H (E).

For any b ∈R, let A(b) ⊂ D(X) denote the abelian category of complexes

(2.1) A(b) =
{
E−1

d−→ E0 : µ+H (kerd) ≤ b , µ
−
H (cokd) > b

}
.

Then A(b) is the heart of a t-structure on D(X) by [Bri08, Lemma 6.1]. Let w ∈R \ {0}. On A(b) we have
the slope function(2)

Nb,w(E) :=

 wchbH2 (E)·H− 1
6w

3 ch0(E)H3

w2 chbH1 (E)·H2
if chbH1 (E) ·H2 , 0,

+∞ if chbH1 (E) ·H2 = 0,

where chbH (E) := ch(E)e−bH . This defines a Harder–Narasimhan filtration onA(b) by [BMT14, Lemma 3.2.4].
It will be convenient to replace this by

(2.2) νb,w := σNb,σ + b, where σ :=

√
6
(
w − b

2

2

)
,

for w > 1
2b

2. This is because

(2.3) νb,w(E) =

 ch2(E)·H−wch0(E)H3

chbH1 (E)·H2
if chbH1 (E) ·H2 , 0,

+∞ if chbH1 (E) ·H2 = 0

has a denominator that is linear in b and numerator linear in w, so the walls of νb,w-instability will turn out
to be linear ; see Proposition 2.5. Note that if chi(E) ·Hn−i = 0 for i = 0,1,2, the slope νb,w(E) is defined
by (2.3) to be +∞. Since (2.2) only rescales and adds a constant, it defines the same Harder–Narasimhan
filtration as Nb,σ , so it too defines a weak stability condition on A(b).

Definition 2.1. Fix w > 1
2b

2. We say E ∈ D(X) is νb,w-(semi)stable if and only if

• E[k] ∈ A(b) for some k ∈Z, and
• νb,w(F) (≤)νb,w(E[k]/F) for all non-trivial subobjects F ↪→ E[k] in A(b).

Here (≤) denotes < for stability and ≤ for semistability.

Remark 2.2. Given (b,w) ∈R2 with w > 1
2b

2, the argument in [Bri07, Proposition 5.3] describes A(b). It is
generated by the νb,w-stable two-term complexes E = {E−1→ E0} in D(X) satisfying the following conditions
on the denominator and numerator of νb,w from (2.3):

(a) chbH1 (E) ·H2 ≥ 0, and
(b) ch2(E) ·H −wch0(E)H3 ≥ 0 if chbH1 (E) ·H2 = 0.

That is, A(b) is the extension-closure of the set of these complexes.

We recall the conjectural strong Bogomolov–Gieseker inequality of [BMT14, Conjecture 1.3.1], rephrased in
terms of the rescaling (2.2).

Conjecture 2.3. For νb,w-semistable E ∈ A(b) with ch
bH
2 (E) ·H =

(
w − 1

2b
2
)
ch0(E)H3,

(2.4) chbH3 (E) ≤
(
w
3
− b

2

6

)
chbH1 (E) ·H2.

(2)This is called νb,w in [BMT14, Equation 7], but we reserve νb,w for its rescaling (2.2).
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Although this conjecture is known not to hold for all classes on all threefolds [Sch17], it is possible it
always holds for the special classes required to prove Theorem 1. Setting

b0 := −n
2
−
β ·H
nH3 , wf :=

n2

4
−
β ·H
H3 −

3m
nH3 −

(β ·H
nH3

)2
,

we require the following.

Conjecture BGn. Conjecture 2.3 holds in case (i) below, and for (ii) when β ·H > 0.

(i) b = b0, w ∈ (wf − ε,wf ] for some 0 < ε� 1, and ch(E) = vn.

(ii) b = ch2(E) ·H − 1
2H3 , w = b2 + ch2(E)·H

H3 , and E a torsion-free sheaf with

ch0(E) = 1, ch1(E) ·H2 = 0, −ch2(E) ·H ∈ [β ·H, 2β ·H] .

In fact an even weaker version of BGn in enough to conclude Theorems 1 and 2, as shown in [FT21b,
Section 3.1]. Conjecture 2.3 follows from [BMS16, Conjecture 4.1], which has now been proved in the following
cases:

• X is projective space P
3 (see [Mac14]), the quadric threefold (see [Sch14]) or, more generally, any Fano

threefold of Picard rank 1 (see [Li19b]),
• X is an abelian threefold (see [MP16]), a Calabi–Yau threefold of abelian type (see [BMS16]), a Kummer

threefold (see [BMS16]), or a product of an abelian variety and P
n (see [Kos18]),

• X has nef tangent bundle (see [Kos20]),
• X is one of the Calabi–Yau threefolds considered in [Kos22]; with some work, one can show the

weakening of Conjecture 2.3 proved in [Kos22, Theorem 1.2] is still strong enough to give Theorem 1
for n� 0, and
• X is a quintic threefold (see [Li19a]), or a (2,4) complete intersection in P

5 (see [Liu22]), and (b,w)
are described below.

Theorem 2.4 (cf. [Li19a, Theorem 2.8], [Liu22, Theorem 2.14]). Conjecture 2.3 holds on a smooth quintic
threefold or a (2,4) complete intersection in P

5 when (b,w) satisfy

(2.5) w >
1
2
b2 +

1
2
(b − bbc) (bbc+1− b) .

In particular, Conjecture BGn holds for n� 0.

Proof. Using the notation (α,β) for our (w,b), [Li19a, Theorem 2.8] and [Liu22, Theorem 2.14] prove that
(2.5) implies [BMS16, Conjecture 4.1]. This gives Conjecture 2.3, so we only need to check that the parameters
in Conjecture BGn satisfy (2.5).

For the parameters in the first part of Conjecture BGn, we have

wf −
b20
2

=
n2

8
−
3β ·H
2H3 −

3m
nH3 −

3
2

(β ·H
nH3

)2
,

which for n� 0 satisfies

wf −
b20
2
>

1
2
≥ 1

2
(b0 − bb0c) (bb0c+1− b0) .

Thus there exists an 0 < ε� 1 such that (b0,w) satisfies (2.5) whenever w ∈ (wf − ε,wf ].
For the second part of Conjecture BGn, use the obvious inequality

2x
(
x − 1

H3

)
>

1
H3

(
1− 1

H3

)
for x ≥ 1.

Rearranging gives
1
2

(
−x − 1

2H3

)2
− x

H3 >
1

4H3

(
1− 1

2H3

)
.
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Substituting in x = −ch2(E) ·H ≥ β ·H ≥ 1 and b = ch2(E) ·H − 1
2H3 makes this

b2

2
+
ch2(E) ·H

H3 >
1

4H3

(
1− 1

2H3

)
.

For w = b2 + ch2(E)·H
H3 this is

w − b
2

2
>

1
2

(
1− 1

2H3

) 1
2H3 =

1
2
(b − bbc) (bbc − b+1)

since ch2(E) ·H ∈Z for E of rank 1 with ch1(E) = 0. Thus (2.5) holds for this (b,w). �

In Figure 1 we plot the (b,w)-plane simultaneously with the image of the projection map

Π : K(X) \ {E : ch0(E) = 0} −→ R
2,

E 7−→
(
ch1(E) ·H2

ch0(E)H3 ,
ch2(E) ·H
ch0(E)H3

)
.

b, ch1.H
2

ch0H3

w = b2
2

w, ch2.H
ch0H3

Π(E)

U

ch2(E)·H
ch0(E)H3

ch1(E)·H2

ch0(E)H3

(b,w)

Figure 1. (b,w)-plane and the projection Π(E) when ch0(E) > 0

Note that for any weak stability condition νb,w, the pair (b,w) is in the shaded open subset

(2.6) U :=
{
(b,w) ∈R2 : w >

b2

2

}
.

Conversely, the image Π(E) of νb,w-semistable objects E with ch0(E) , 0 is outside U due to the classical
Bogomolov–Gieseker-type inequality for the H-discriminant,

(2.7) ∆H (E) =
(
ch1(E) ·H2

)2
− 2(ch0(E)H3)(ch2(E) ·H) ≥ 0,

proved for νb,w-semistable objects E in [BMS16, Theorem 3.5].(3) By Remark 2.2 they lie to the right of (or
on) the vertical line through (b,w) if ch0(E) > 0, to the left if ch0(E) < 0, and at infinity if ch0(E) = 0. The
slope νb,w(E) of E is the gradient of the line connecting (b,w) to Π(E).

Objects of D(X) give the space of weak stability conditions a wall and chamber structure, explained in
[FT21a, Proposition 4.1] for instance.

Proposition 2.5 (Wall and chamber structure). Fix an object E ∈ D(X) such that the vector (ch0(E),ch1(E)·H2,
ch2(E) ·H) is non-zero. There exists a set of lines {`i}i∈I in R2 such that the segments `i ∩U (called “walls” ) are
locally finite and satisfy:

(3)[BMS16, Theorem 3.5] states (2.7) with ch replaced by chbH , but the result is still ∆H (E). We use the stronger Bogomolov
inequality ch1(E)2 ·H − 2ch0(E)(ch2(E) ·H) ≥ 0 for µH -semistable sheaves in (3.18).
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(a) If ch0(E) , 0, then all lines `i pass through Π(E).
(b) If ch0(E) = 0, then all lines `i are parallel of slope

ch2(E)·H
ch1(E)·H2 .

(c) The νb,w-(semi )stability of E is unchanged as (b,w) varies within any connected component (called a
“ chamber” ) of U \

⋃
i∈I `i .

(d) For any wall `i ∩U there are a ki ∈Z and a map f : E[ki]→ F in D(X) such that
• for any (b,w) ∈ `i ∩U the objects E[ki], F lie in the heart A(b);
• E[ki] is νb,w-semistable with νb,w(E) = νb,w(F) = slope(`i) constant on the wall `i ∩U , and
• f is a surjection E[ki]� F in A(b) which strictly destabilises E[ki] for (b,w) in one of the two
chambers adjacent to the wall `i .

`2

`1

ch0(E) , 0ch0(E) = 0

b, ch1 ·H2

ch0H3

w, ch2 ·H
ch0H3

b, ch1 ·H2

ch0H3

w, ch2 ·H
ch0H3

U U

Π(E)

`1

`2

Figure 2. The line segments `i ∩U are walls for E.

3. From sheaves to Joyce–Song pairs

Let (X,O(1)) be a smooth polarised complex threefold, and let H := c1(O(1)). Fix β in the image of
H4(X,Z)→ H4(X,Q) and m ∈ Z. In this section we investigate walls of instability for sheaves of Chern
character

vn :=
(
0,nH, −β − 1

2
n2H2, −m+

1
6
n3H3

)
when n� 0. For any sheaf F of rank 0, we define its νH -slope as

(3.1) νH (F) :=

 ch2(F)·H
ch1(F)·H2 if ch1(F) ·H2 , 0,

+∞ if ch1(F) ·H2 = 0.

We say that a sheaf F of rank 0 is slope (semi)stable if for all non-trivial quotients F →→ F′ , one has
νH (F) (≤)νH (F

′).
This section is devoted to proving the following half of Theorem 1.

Theorem 3.1. Fix β ∈ im
(
H4(X,Z)→ H4(X,Q)

)
, m ∈ Z, n� 0, and suppose Conjecture BGn holds on X.

Then any slope semistable sheaf F of Chern character vn is slope stable, and there exist unique (L,I, s) such that

F � cok(s)⊗L,

where I = IC ⊗ T is a torsion-free sheaf of Chern character v = (1,0,−β,−m), the line bundles L,T have torsion
c1, and s : OX(−n)→ I is non-zero.

We call (I, s) a Joyce–Song pair when 0 , s ∈ H0(I(n)). Joyce and Song [JS12, Section 5.4] studied pairs
consisting of a sheaf and a section (of a very positive twist of the sheaf) satisfying a version of Gieseker
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stability for pairs. We use weak stability conditions instead, but ultimately we prove that in this simplified
rank 1 situation, both conditions amount to the same: that I is torsion-free and s is non-zero.

To prove Theorem 3.1, we start in the large volume limit, where a very similar argument to [Bri08,
Proposition 14.2] implies that a rank 0 sheaf is slope (semi)stable if and only if it is νb,w-(semi)stable for any
b ∈R and w� 0.

So now take a slope semistable sheaf F of Chern character vn. It is in the heart A(b) for any b ∈R and
νb,w-semistable for w� 0. By Proposition 2.5 the walls of instability for F are all line segments of slope

b0 := −n2 −
β·H
nH3 ; see Figure 3. The lowest such wall is tangent to ∂U at

(
b0,

1
2b

2
0

)
. So it makes sense to move

down the vertical line b = b0 which intersects all the walls of instability for F. Since

ch0(F) = 0 and chb0H2 (F) ·H = −β ·H − n
2H3

2
− b0nH3 = 0,

Conjecture BGn gives the Bogomolov–Gieseker inequality (2.4) for the stability parameters (b0,w) where
w ∈ (wf − ε,wf ]. This says that while F is νb0,w-semistable,

chb0H3 (F) = −m+
n3H3

6
+ b0H ·

(
β +

n2H2

2

)
+nH · 1

2
b20H

2 ≤
(
w
3
−
b20
6

)
nH3.

Rearranging gives

(3.2) w ≥ wf :=
n2

4
−
β ·H
H3 −

3m
nH3 −

(β ·H
nH3

)2
.

We may assume we chose n� 0 sufficiently large that

wf >
b20
2

=
n2

8
+
β ·H
2H3 +

1
2

(β ·H
nH3

)2
,

so the point (b0,wf ) lies inside U . Therefore, moving down the line b = b0, there is a point w0 ≥ wf where
F is first destabilised. Our ultimate aim (achieved in Proposition 3.7) will be to show that this point is

w0 =
n2
4 + (β·H)2

(nH3)2 where {b = b0} intersects the upper (red) line in Figure 3. This is where F can be destabilised

by O(−n)[1] in (a rotation of ) a triangle O(−n)→ I → F made by a Joyce–Song pair for some sheaf I of
Chern character v. The next proposition gets us part of the way to this goal.

Proposition 3.2. The wall that bounds the large volume limit chamber w� 0 for F has slope b0 = −n2 −
β·H
nH3

and passes through the point (b0,w0), where

wf ≤ w0 ≤
n2

4
+
(β ·H
nH3

)2
.

On this wall there is a destabilising sequence F1 ↪→ F � F2 in A(b0), where F2 is a 2-term complex with
dimsuppH0(F2) ≤ 1 and F1 is a rank 1 torsion-free sheaf with

(3.3) ch1(F1) ·H2 = 0 and − 2β ·H ≤ ch2(F1) ·H ≤ −β ·H.

Proof. By Conjecture BGn and (3.2), F is νb0,w0
-destabilised by a sequence F1 ↪→ F� F2 in A(b0) for some

w0 ≥ wf . By Proposition 2.5 the corresponding wall is `∩U for ` the line pictured in Figure 3 with equation
w = b0b+ x, where

(3.4) x = −b20 +w0 ≥ −b20 +wf = −
2β ·H
H3 − 3m

nH3 − 2
(β ·H
nH3

)2
.

Let b2 < b1 be the values of b at the intersection points of ` and the boundary ∂U =
{
w = 1

2b
2
}

of the space
of weak stability conditions U ,

b1 = b0 +
√
b20 +2x , b2 = b0 −

√
b20 +2x .
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b, ch1·H
2

ch0H3

w = b2
2

w, ch2 ·H
ch0H3

b2 b1

Π(OX(−n))

Π(v) =
(
0,−β·HH3

)

n2
4 + (β·H)2

(nH3)2

w0
wf

b0

`

x

Figure 3. Walls for objects of class vn

We claim that

(3.5) b1 > − 1
2H3 and b2 < −n+ 1

2H3 .

The first is equivalent to b20 +2x >
(
−b0 − 1

2H3

)2
, and thus to

x >
b0
2H3 +

1
8(H3)2

= − n

4H3 −
β ·H

2n(H3)2
+

1
8(H3)2

.

The second is equivalent to
(
b0 +n− 1

2H3

)2
< b20 +2x, and therefore to

x >
(
n− 1

2H3

)(
b0 +

1
2

(
n− 1

2H3

))
= −

(
n− 1

2H3

)(β ·H
nH3 +

1
4H3

)
.

Both of these follow from (3.4) for n� 0.
By Proposition 2.5 there is a short exact sequence F1 ↪→ F� F2 in A(b0) which strictly destabilises F

below the wall. Taking cohomology gives the long exact sequence of coherent sheaves

(3.6) 0 −→H−1(F2) −→H0(F1) −→ F→H0(F2) −→ 0.

In particular, the destabilising subobject F1 is a coherent sheaf. If it had rank 0, then its slope νb,w(F1), see
(2.3), would be constant throughout U , like that of F, so we would not have a wall. Thus ch0(F1) > 0, so
(3.6) gives

ch0(H−1(F2)) = ch0(F1) > 0.

Since rank F2 = −rank F1 , 0, Proposition 2.5 shows that Π(F1) and Π(F2) lie on the line `. All along
`∩U — i.e. for b ∈ (b2,b1) — the objects F1 and F2 lie in the heart A(b) and (semi)destabilise F. Therefore,
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by the definition (2.1) of A(b),

(3.7) µ+H (H
−1(F2)) ≤ b2 < −n+ 1

2H3 and µ−H (F1) ≥ b1 > − 1
2H3 .

Thus intersecting the identity ch1(F) − ch1(H0(F2)) = ch1(F1) − ch1(H−1(F2)) with H2 and dividing by
ch0(F1)H3 gives

n
ch0(F1)

− ch1(H0(F2)) ·H2

ch0(F1)H3 = µH (F1)−µH (H
−1(F2))(3.8)

≥ µ−H (F1)−µ
+
H (H

−1(F2)) ≥ b1 − b2 > n− 1
H3 ,

with the last inequality following from (3.5). Now ch1(H0(F2)) ·H2 ≥ 0 since H0(F2) has rank 0. So (3.8)
can only hold for n > 0 if ch0(F1) = 1 and ch1(H0(F2)) ·H2 = 0. In particular, H0(F2) is supported in
dimension at most 1. Plugging rank F1 = 1 back into (3.7) gives

(3.9)
ch1(F1) ·H2

H3 = µH (F1) > −
1

2H3 , so µH (F1) ≥ 0.

Similarly, plugging rankH−1(F2)) = 1 into (3.7) gives

ch1(H−1(F2)) ·H2

H3 = µH (H
−1(F2)) < −n+

1
2H3 , so µH (H

−1(F2)) ≤ −n.

On the other hand, (3.8) gives n = µH (F1)−µH (H
−1(F2)), so in fact

µH (F1) = 0 and µH (H
−1(F2)) = −n = µH (F2).

We use this to show that F1 is torsion-free. Suppose for a contradiction that its torsion subsheaf T is
non-zero. If ch1(T ) ·H2 > 0, then since µH (F1) = 0, we find µH (F1/T ) ≤ −

1
H3 . But µ−H (F1) ≤ µH (F1/T ), so

this contradicts (3.7). Therefore, ch1(T ) ·H2 = 0, and T is supported in codimension at least 2. But then
νb0,w0

(T ) = +∞, so T strictly destabilises F1, contradicting its νb0,w0
-semistability.

To finish the proof, we consider the projected point Π(F2) =
(
−n, − ch2(F2)·H

H3

)
. Since it lies on the line

` = {w = b0b+ x},

−ch2(F2) ·H
H3 = n

(n
2
+
β ·H
nH3

)
+ x.

Since F2 is νb0,w0
-semistable, it satisfies the classical Bogomolov–Gieseker inequality (2.7),

(3.10) − ch2(F2) ·H
H3 ≤ n2

2
, so that x ≤ −

β ·H
H3 .

This proves that the line ` cannot be above the red uppermost line in Figure 3; i.e.

w0 = b20 + x ≤
(
−n
2
−
β ·H
nH3

)2
−
β ·H
H3 =

n2

4
+
(β ·H
nH3

)2
,

as claimed in the proposition. Moreover, Π(F1) =
(
0, ch2(F1)·H

H3

)
∈ ` gives

(3.11) x =
ch2(F1) ·H

H3 ,

so the inequalities (3.10) and (3.4) imply

−
β ·H
H3 ≥ ch2(F1) ·H

H3 ≥ −
2β ·H
H3 − 3m

nH3 − 2
(β ·H
nH3

)2
.

For n� 0 the second inequality becomes ch2(F1)·H
H3 ≥ −2β·HH3 . �
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Remark 3.3. If β ·H < 0, then (3.3) gives a contradiction, showing that no such F exists and MX,H (vn) is
empty. But then Im(X,β) is also empty since there are no sheaves IC ⊗T with [C] = β when β ·H < 0. Thus
Theorem 1 holds in this case, so from now on we will assume β ·H ≥ 0.

We now borrow some results from [FT21a, Section 8]. There we explain why it is profitable to work on
the vertical line {b = b′} ∩U , where b′ := − 1

H3 ; see Figure 4. In particular, a simple numerical argument
(precisely analogous to the argument that rank 1 sheaves can only be slope destabilised by their rank 0
torsion subsheaves) shows that rank 1 objects with ch1·H2 = 0 are νb′ ,w-semistable at a point of this vertical
line if and only if they are νb′ ,w-stable everywhere on the line.

Lemma 3.4 (cf. [FT21a, Section 8]). Take an object E ∈ A(b′) of rank 1 with ch1(E) ·H2 = 0. If E is
νb′ ,w-semistable for some w >

1
2 (b
′)2, then it is νb′ ,w-stable for all w >

1
2 (b
′)2.

By (3.5), we have b1 > − 1
2H3 > b

′ , so Figure 4 shows that our wall of instability ` for F intersects {b = b′} at
an interior point of U . Therefore, the νb,w-semistability of F1 along the line segment `∩U and Lemma 3.4
show that F1 is νb′ ,w-semistable for all w > 1

2 (b
′)2.

Let `1 be the line connecting Π(F1) =
(
0, ch2(F1)·H

H3

)
to the point

(
b′ , 12 (b

′)2
)

where {b = b′} intersects ∂U .

By Proposition 2.5 the w ↓ 1
2(H3)2 limit of Lemma 3.4 shows that F1 is νb,w-semistable for any (b,w) ∈ `1∩U .

b, ch1·H
2

ch0H3

w, ch2 ·H
ch0H3

`

b1

`1

b = b′= −1H3

w∗

b∗

w = b2
2

w = b2 + x

Π(F1) = (0, c)

Figure 4. Walls for objects of class v

So by Conjecture BGn(ii) we can apply the Bogomolov–Gieseker inequality (2.4) to F1, so long as we can
find a point of `1 ∩U satisfying chbH2 (F1) ·H =

(
w − 1

2b
2
)
ch0(F1)H3, i.e.

ch2(F1) ·H
H3 +

b2

2
= w − b

2

2
.
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This gives the lower parabola in blue in Figure 4. It intersects `1 at (b∗,w∗), where

(3.12) b∗ = ch2(F1) ·H −
1

2H3 , w∗ = (b∗)2 +
ch2(F1) ·H

H3 .

Since

w∗ − (b∗)2

2
=

1
2

(
ch2(F1) ·H −

1
2H3

)2
+
ch2(F1) ·H

H3 > 0,

the point (b∗,w∗) is in the interior of U . As in [FT21a, Proposition 8.3], Conjecture BGn(ii) then gives the
following.

Proposition 3.5. If β ·H > 0, the destabilising sheaf F1 satisfies

ch3(F1) ≤
2
3
ch2(F1) ·H

(
ch2(F1) ·H −

1
2H3

)
. �

A similar argument given in [FT21a, Proposition 8.4] gives a similar inequality for F2(n).

Proposition 3.6. If β ·H > 0, the destabilising object F2 satisfies

ch3(F2(n)) ≤
2
3
ch2(F2(n)) ·H

(
ch2(F2(n)) ·H +

1
2H3

)
. �

Proposition 3.7. We have ch2(F1) ·H = −β ·H and ch2(F2(n)) ·H = 0.

Proof. Set c := ch2(F1) ·H . If β ·H = 0, then (3.3) gives c = −β ·H = 0. So we now assume β ·H > 0. Using
ch0(F1) = 1, ch1(F1) ·H2 = 0 and the exact triangle F1→ F→ F2, we compute

ch1(F2(n)) ·H2 = 0, ch2(F2(n)) ·H = − β ·H − c(3.13)

and ch3(F2(n)) = −m− ch3(F1)−n(β ·H + c).(3.14)

Thus Proposition 3.6 becomes

(3.15) −m− ch3(F1)−n(β ·H + c) ≤ 2
3
(β ·H + c)

(
β ·H + c − 1

2H3

)
,

while Proposition 3.5 says

(3.16) ch3(F1) ≤
2
3
c
(
c − 1

2H3

)
.

Combining the two gives

(3.17) −m− 2
3
c
(
c − 1

2H3

)
−n(β ·H + c) ≤ 2

3
(β ·H + c)

(
β ·H + c − 1

2H3

)
.

By Proposition 3.2 we have c ∈ [−2β ·H,−β ·H], so the right-hand side of (3.17) is bounded while on the
left-hand side, n appears multiplied by −(β ·H + c) ≥ 0. This gives a contradiction for n � 0 unless
−(β ·H + c) = 0. �

Lemma 3.8. The sheaf H0(F2) is supported in dimension 0, and

ch1(H−1(F2)) = −nH in H2(X,Q).

Proof. Proposition 3.2 and the long exact sequence (3.6) show that H−1(F2) is a torsion-free sheaf of rank 1.
Therefore, it is µH -semistable, and the classical Bogomolov inequality applies,

(3.18) ch1(H−1(F2))2 ·H − 2ch2(H−1(F2)) ·H ≥ 0.

By (3.6) again, chi(H−1(F2)) = chi(F1) − chi(F) + chi(H0(F2)). Take i = 2 and intersect with H ; then
Proposition 3.7 gives

(3.19) ch2(H−1(F2)) ·H = −β ·H + β ·H +
n2H3

2
+ ch2(H0(F2)) ·H =

n2H3

2
+ ch2(H0(F2)) ·H.
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Take i = 1 and intersect with H2; then Proposition 3.2 kills the first and third terms, so

(3.20) ch1(H−1(F2)) ·H2 = −nH3.

Therefore, by the Hodge index theorem,

(3.21) n2H3 =

(
ch1(H−1(F2)) ·H2

)2
H3 ≥ ch1(H−1(F2))2 ·H,

with equality if and only if ch1(H−1(F2)) is a multiple of H in H2(X,Q).
Combining (3.18), (3.19) and (3.21) gives

(3.22) ch2(H0(F2)) ·H ≤ 0.

But dimsuppH0(F2) ≤ 1 by Proposition 3.2, so this shows dimsuppH0(F2) = 0, and (3.22) and (3.21) are
equalities. Thus ch1(H−1(F2)) is a multiple of H in H2(X,Q), and by (3.20) that multiple is nH . �

Lemma 3.9. We have ch3(F2) ≤ 1
6n

3H3.

Proof. Lemma 8.2 of [FT21a] implies that F2(n) ∈ A(−b′) is ν−b′ ,w-semistable for b′ = − 1
H3 and w � 0.

Therefore, by [BMT14, Lemma 5.1.3(b)] the shifted derived dual F2(n)∨[1] lies in an exact triangle

(3.23) E ↪−→ F2(n)
∨[1] −→−→ Q[−1],

with Q a 0-dimensional sheaf and E a νb′ ,w-semistable object of A(b′) for w� 0. Since rankE = 1, it is a
torsion-free sheaf by [BMS16, Lemma 2.7]. Moreover, Lemma 3.8 and Proposition 3.7 give

ch1(E) = 0 in H2(X,Q), ch2(E) ·H = 0.

Hence ch3(E) ≤ 0, which by (3.23) gives ch3(F2(n)) ≤ 0. �

We are finally ready to identify the destabilising sequence for F. By Lemma 3.8 there is a subscheme
Z ⊂ X of dimension at most 1 such that

(3.24) H−1(F2) � L(−n)⊗ IZ

for some line bundle L with c1(L) = 0 ∈ H2(X,Q). By (3.19) we find ch2(L(−n) ⊗ IZ ) ·H = 1
2n

2H3 =
ch2(L(−n)) ·H , so in fact Z is 0-dimensional. If it were non-empty, then νb0,w(OZ ) = +∞, so combining the
A(b0)-short exact sequences

OZ ↪−→H−1(F2)[1] −→−→ L(−n)[1] and H−1(F2)[1] ↪−→ F2 −→−→H0(F2)

gives the destabilising subobject OZ ↪→ F2. This contradicts the νb0,w0
-semistability of F2, so in fact Z = ∅.

Therefore, H−1(F2) � L(−n), which has ch3 = −16n
3H3.

Since ch3(F2) ≤ 1
6n

3H3 by Lemma 3.9, this gives ch3(H0(F2)) ≤ 0. But by Lemma 3.8 H0(F2) is
0-dimensional, so it vanishes and

F2 � L(−n)[1].

Thus our destabilising sequence in A(b0) is

(3.25) I ↪−→ F −→−→ L(−n)[1]

for some L ∈ Pic0(X) and rank 1 torsion-free sheaf I := F1 ∈ Im(X,β) × Pic0(X) of Chern character
v = (1,0,−β,−m). Therefore, F ⊗L∗ is (the cokernel of) a Joyce–Song pair O(−n)→ I ⊗L∗.
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3.1. Uniqueness

To finish the proof of Theorem 3.1, we should prove the uniqueness of the sequence (3.25) and the slope
stability of F.

By [BMS16, Lemma 2.7(c)] the slope semistable sheaf I is νb′ ,w-semistable for w� 0. Let `′ be the red
line segment in Figure 3 which passes through Π(OX(−n)) and Π(v). By Lemma 3.4 — and the fact noted
there that `′ ∩U intersects {b = b′}— it is strictly stable all along `′ ∩U . In particular, it is νb0,w0

-stable.
The same is true of L(−n)[1], by [BMS16, Corollary 3.11(a)]. That is,

(3.26) I and L(−n)[1] are νb0,w0
-stable of the same phase.

As we move below the wall ` to w = w0 − ε, they remain stable for 0 < ε� 1 but

νb0,w0−ε(I) > νb0,w0−ε (L(−n)[1])

by an elementary calculation with (2.3). Therefore, (3.25) is the Harder–Narasimhan filtration of F with
respect to νb0,w0−ε. The uniqueness of the Harder–Narasimhan filtration gives the uniqueness of I and L.

3.2. Slope stability

It remains to prove that F is not strictly slope semistable in the sense of (3.1). Suppose F� F′ is a proper
quotient sheaf with νH (F

′) = νH (F).
Since rank F′ = 0 = rank F, the formula (2.3) gives

νb,w(F
′) = νH (F

′) = νH (F) = νb,w(F)

for all (b,w) ∈U . Since all torsion sheaves are in A(b0), F′ is a quotient of F in the abelian category A(b0),
and any quotient of F′ in A(b0) is also a quotient of F. Therefore, F′ is also νb0,w0

-semistable. Since I is
νb0,w0

-stable, the composition

I ↪−→ F −→−→ F′

in A(b0) must be either zero or injective. And it cannot be zero because this would give a surjection
L(−n)[1]� F′ in A(b0), contradicting the νb0,w0

-stability (3.26) of L(−n)[1].
So it is injective. Let C denote its cokernel in A(b0), sitting in a commutative diagram

I �
�

// F // //

����

L(−n)[1]

����

I �
�

// F′ // // C.

Since F′ and I are νb0,w0
-semistable of the same phase, C is also νb0,w0

-semistable. Therefore, the right-hand
surjection contradicts the νb0,w0

-stability (3.26) of L(−n)[1].

4. Proof of the main theorem

In this section we prove the rest of Theorem 1. Let JSn(v) be the moduli space of pairs (I, s), where
I = IC ⊗ T is a torsion-free sheaf of Chern character v = (1,0,−β,−m) and s : OX(−n)→ I is a non-zero
section. Since there are no strictly semistable sheaves of rank 1, this is a special case of the projective moduli
space constructed in [JS12, Section 12.1]. For n� 0 it is a projective bundle over Im(X,β)×Pic0(X) with

fibre P

(
H0(I(n))

)
; see [GST14, Lemma 3.2] for instance. For any such pair (I, s) the cokernel cok(s) is a

sheaf of Chern character vn.

Proposition 4.1. Take a pair (I, s) ∈ JSn(v) for n� 0. Then cok(s) is slope stable.
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Proof. By the same argument as in (3.26), I and OX(−n)[1] are νb0,w0
-stable of the same phase, where

w0 =
n2
4 + (β·H)2

(nH3)2 . Hence the exact sequence

(4.1) I ↪−→ cok(s) −→−→OX(−n)[1]

in A(b0) shows that cok(s) is also νb0,w0
-semistable. Therefore, it is also slope semistable: any quotient

sheaf cok(s)� F′ is torsion, so lies in A(b0) and satisfies

νb0,w0
(cok(s)) = νH (cok(s)) ≤ νH (F

′) = νb0,w0
(F′).

As we just proved in Theorem 3.1, this implies that cok(s) is actually slope stable. �

Proof of Theorem 1. By Theorem 3.1 and Proposition 4.1 we have now proved that any slope or Gieseker
semistable sheaf F of Chern character vn is slope (and so Gieseker) stable, and we have established a
bijection

JSn(v)×Pic0(X) −→ MX,H (vn),(4.2)

((I, s), L) 7−→ cok(s)⊗L.

Next we make the arrow into a morphism. By [LeP95, Theorem 4.11] the product JSn(v) ×X carries a
universal Joyce–Song pair. Tensoring with (the pull back of) a Poincaré sheaf on X×Pic0(X) gives a universal
complex on JSn(v)×Pic0(X)×X. Its cokernel is a flat family of sheaves over JSn(v)×Pic0(X) whose closed
fibres are slope and Gieseker stable sheaves of Chern character vn. It is therefore classified by a map to the
moduli space MX,H (vn), which gives (4.2).

We are left with finding the inverse morphism. Start with F ∈MX,H (vn). By Theorem 3.1 we find a unique
L ∈ Pic0(X) with non-zero Ext1(F,L(−n)) �C defining an extension I ∈ Im(X,β)×Pic0(X),

(4.3) 0 −→ L(−n) −→ I −→ F −→ 0.

As noted in the proof of Proposition 4.1, I and L(−n)[1] are νb0,w0
-stable of the same phase, so

Ext1(I,L(−n)) = 0. Therefore, applying Ext( · ,L(−n)) to (4.3) gives

(4.4) Exti(F,L(−n)) =
{
C, i = 1,
0, i ≤ 0 or i ≥ 4.

We would like to do this in families, as the pairs (F,L) move over MX,H (vn)×Pic0(X). But Ext1(F,L(−n))
is the non-zero Ext group of lowest degree by (4.4), so basechange issues mean it does not show up in the
relative Exts of the family version. Instead, we use its Serre dual

H2(F ⊗L∗(n)⊗KX) � Ext1(F,L(−n))∗.

To set up its family version (4.6) below, we let F be a universal twisted sheaf (4) over X ×MX,H (vn) and let
L be a Poincaré sheaf on X ×Pic0(X). Suppressing some obvious pull back maps for clarity and pushing
forward along the map

(4.5) X ×MX,H (vn)×Pic0(X)
π−−−→MX,H (vn)×Pic0(X),

we consider the twisted sheaf

(4.6) G := R2π∗ (F ⊗L∗(n)⊗KX) on MX,H (vn)×Pic0(X).

By Serre duality applied to (4.4), there are no higher-degree push down cohomology sheaves, so basechange
applies to show that on restriction to any closed point (F,L) ∈ suppG,

G
∣∣∣
(F,L)

= H2(F ⊗L∗(n)⊗KX) � Ext1(F,L(−n))∗ � C.

(4)Working with twisted sheaves is no harder than working with ordinary sheaves; the formalism is set up in [Cal00], for instance.
Eventually we will be able to remove the twisting to make F a coherent sheaf.
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Therefore, G is a (twisted) line bundle on its support SG, where

SG := suppG � � ι
//

))

MX,H (vn)×Pic0(X)

p

��

MX,H (vn)

is a set-theoretic section of p, i.e. a single point in each Pic0(X) fibre over MX,H (vn). We want to upgrade
this statement to one about schemes instead of sets.

Lemma 4.2. The support SG of G is a section of p, so is scheme-theoretically isomorphic to MX,H (vn).

Proof. We first prove SG → MX,H (vn) is an embedding by showing that the fibre over any closed point
F ∈MX,H (vn) is a reduced point L ∈ Pic0(X). Here L is the unique line bundle such that Ext1(F,L(−n)) is
non-zero. Let e be a generator of Ext1(F,L(−n)), defining the extension (4.3). Applying Ext∗( · ,L(−n)) to
(4.3) gives an isomorphism

(4.7) Ext1(L(−n),L(−n)) ∼−−−→
∪e

Ext2(F,L(−n))

because Ext≤2(I,L(−n)) = 0 for I ∈ Im(X,β)×Pic0(X) and n� 0. This map takes any first-order deformation
of L in Pic0(X) to the obstruction (in the right-hand group) to deforming e ∈ Ext1X(F,L(−n)) with it. Thus e
is totally obstructed — it does not deform to first order with L. That is, the Zariski tangent space to the
fibre of SG over {F} — the kernel of (4.7) — is trivial. This shows that SG→MX,H (vn) is an embedding.

To prove SG→MX,H (vn) is an isomorphism of schemes, it is now sufficient to show its basechange to any
fat point of MX,H (vn) is an epimorphism. That is, take the maximal ideal m ⊂ OMX,H (vn) at F, set

Mk := Spec
(
O/mk

)
,

and assume inductively that we have proved Sk := SG ×MX,H (vn)
Mk →Mk is an epimorphism (and so an

isomorphism). We want to show the same is true for k +1.
Let Fk , Lk be the restrictions of the universal sheaves to X ×Mk ×Pic0(X). By our inductive assumption

and basechange, we know that G|Sk is a line bundle on Sk . By relative Serre duality down πk — the
basechange of π (4.5) to Sk — its dual is the line bundle

Ext1πk (Fk ,Lk(−n)) on Sk � Mk ,

which therefore has a trivialising section ek ∈ Ext1(Fk ,Lk(−n)) defining an extension

(4.8) 0 −→ Lk(−n) −→ Ik −→ Fk −→ 0.

Since Pic0(X) is smooth, the classifying map Mk → Pic0(X) of Lk can be extended to Mk+1→ Pic0(X),
thus defining a preliminary Lk+1 over X ×Mk+1. We already have Fk+1 := F |X×Mk+1

. The obstruction to
extending the extension class ek to any

ek+1 ∈ Ext1X×Mk+1
(Fk+1,Lk+1(−n)))

is a class ob in

(4.9) Ext2X×Mk

(
Fk ,Lk(−n)⊗

mk

mk+1

)
∼←−−−−
∪ek

Ext1X×Mk

(
Lk(−n),Lk(−n)⊗

mk

mk+1

)
.

Here the isomorphism follows from applying Ext∗
(
· ,Lk(−n)⊗ (mk/mk+1)

)
to (4.8); cf. (4.7). Now the space

of choices of Lk+1 extending Lk (i.e. maps Mk+1→ Pic0(X) extending the given map from Mk ) is a torsor
over the right-hand group of (4.9). Therefore, the class of (−ob) in this group defines a new Lk+1 for which
the obstruction to the existence of ek+1 now vanishes. This ek+1 then trivialises

Ext1πk+1 (Fk+1,Lk+1(−n)) on Mk+1,
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showing it is a line bundle and that we have defined an extension Sk+1 ⊂ SG of Sk ⊂ SG . Thus SG→MX,H (vn)
is an epimorphism after basechange to Mk+1, as required. �

By basechange G = ι∗T , where T is the twisted line bundle

R2
(
π|X×SG

)
∗

(
(F ⊗L∗(n)⊗KX)

∣∣∣
X×SG

)
on SG � MX,H (vn).

Denote the composition of ι with the projection to Pic0(X) by f : MX,H (vn) → Pic0(X), and let
π′ : X ×MX,H (vn)→MX,H (vn) be the projection. Identifying SG with MX,H (vn), the above becomes

T = R2π′∗ (F ⊗ f ∗L∗(n)⊗KX) on MX,H (vn).

So replacing F by F ⊗ (π′)∗T ∗ gives a new universal sheaf (the twistings cancel) such that, by relative Serre
duality down π′ ,

Ext1π′ (F , f
∗L(−n)) � OMX,H (vn).

The section 1 ∈ Γ (O) defines an extension

0 −→ f ∗L(−n) −→ I −→ F −→ 0.

Since I ⊗ f ∗L∗ is flat over MX,H (vn), we get a family of Joyce–Song pairs classified by a map MX,H (vn)→
JSn(v). By construction, its product with f is the inverse of (4.2). �

5. Relationship to the work of Toda

This paper, its predecessor [FT21a] and its sequel [Fey22] use methods pioneered by Yukinobu Toda. In
[Tod12] he also studied 2-dimensional sheaves on threefolds X satisfying the Bogomolov–Gieseker inequality,
under the additional assumption that X is Calabi–Yau with PicX = Z. Like us, he starts in the large
volume region and then moves down a vertical line in the space of weak stability conditions to find walls
of instability by applying the Bogomolov–Gieseker inequality to weakly semistable objects. In this way, he
gave a mathematical formulation and proof of Denef–Moore’s version [DM11] of the famous OSV conjecture
[OSV04].

In our work we move down the same vertical line {b = b0} but diverge from Toda’s method in two main
ways:

• Toda uses Pic(X) = Z and the Bogomolov–Gieseker inequality at the point (b0,w0) of ` ∩U to
constrain the Chern characters of the destabilising objects F1, F2. Instead, we employed a wall-
crossing argument to analyse F1, F2 along `∩U , using the fact that they stay in A(b) to constrain
ch(Fi) (Proposition 3.2). Further, we then moved down {b = b′}, showing F1 remains semistable to
apply the Bogomolov–Gieseker inequality to it at (b∗,w∗) as in (3.12). This gave a stronger bound for
ch3(F1). A similar argument (replacing b′ = − 1

H3 by −n+ 1
H3 as in [FT21a, Section 8]) did the same

for ch3(F2(n)) (Propositions 3.5 and 3.6). Together, these completely specified ch2(F1) ·H = β ·H
(Proposition 3.7).
• In turn this allows us to show that all semistable sheaves of class vn are destabilised by Joyce–Song

pairs on the first wall. Since Toda does not take n� 0 as large as we do, he also has to analyse many
subsequent walls.

As a result, our wall-crossing formula (1.5) of Theorem 2 is much simpler than Toda’s. If we specialise his
result to our situation by fixing his parameters ξ = 2, µ = 12β·HH3 + 2

H3 and taking n� 0 (while noting that
his Conjecture 1.4 has now been proved, see [BBB+15]), his wall-crossing formula becomes the following.

Theorem 5.1 (cf. [Tod12, Theorem 3.18]). Let X be a smooth projective Calabi–Yau threefold such that Pic(X) =
Z ·H and Conjecture 2.3 holds. Fix n� 0, and let

(5.1) C := {(βi ,mi) ∈ H2(X)⊕H0(X) : βi ·H ≤ 6β ·H, |mi | < (6β ·H +1)n} .
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Then Ωvn(X) is given by

(5.2)
∑

(βi ,mi )∈C, β2−β1=β,
m1−m2−nβ1·H=m

(−1)χ(v(n))−nβ1·H−1 (χ(v(n))−nβ1 ·H) Im2,β2(X)P−m1,β1(X).

Here Pm,β(X) is the stable pairs invariant, see [PT09], the degree of the virtual cycle on the moduli space
Pm(X,β) of stable pairs (F,s) with χ(F) =m and [F] = β.

Toda pointed out to us how (5.2) can be made compatible with our simplification (1.5). By another
application of the Bogomolov–Gieseker-type inequality one can prove Castelnuovo-type bounds to show that
Pk(X,β1) and Ik(X,β2) are empty for k sufficiently small. Since the bounds βi ·H ≤ 6β ·H in the definition
(5.1) of the cone C are independent of n, we can therefore choose a uniform n� 0 so that each term in the
sum (5.2) has at least one of P−m1

(X,β1) or Im2
(X,β2) empty for m1−m2 = nβ1 ·H +m (unless β1 = 0 =m1).

This would give another (ultimately lengthier) proof of Theorem 2 when X is a Calabi–Yau threefold with
Pic =Z.

In [Fey22] the first author extends our methods and Toda’s to prove an OSV-like result for general
Calabi–Yau threefolds, without the Pic(X) =Z condition.

6. Modularity

On Calabi–Yau threefolds, the invariants Ωvn(X) are expected to have modular properties. There are
two points of view on this: one physical (“S-duality”) and one mathematical (Noether–Lefschetz theory). We
describe these now on a Calabi–Yau threefold X with H1(OX) = 0 and H2(X,Z)tors = 0 for simplicity.

6.1. S-duality

Physicists have long conjectured that counts of D4-D2-D0 branes should have modular properties; see
[MSW97, GSY07, dBCD+06, DM11]. In [GSY07] the proposal was to use Gieseker stable sheaves, i.e. the
invariants Ω(vn) :=Ωvn(X). Some suggestive examples on the quintic threefold were calculated and shown
to be compatible with the conjecture in [GY07]. Over time the conjecture has evolved somewhat; see [AMP20]
for the state of the art (and extension to refined counting invariants). It is now expected that one should
replace Gieseker stability by stability at the “large volume attractor point” for the charge vn. Here the central
charge of E can be found by pairing with minus the exponential of minus the complexified Kähler form of
[AMP20, Equation 2.6], giving

1
2
λ2n2H2.ch1(E) + iλ

(
ch2(E) ·nH − ch1(E).

(
β +

1
2
n2H2

))
+ o(λ)

to leading order in their parameter λ→∞. After scaling and adding a constant, this corresponds to the
slope function

ch2(E) ·H
ch1(E) ·H2 −

1
n
·

ch1(E).β
ch1(E) ·H2 .

As n→∞ with E fixed, this tends to νH (E), defined in (3.1), and by Theorem 1 MX,H (vn) is precisely the
moduli space of νH -stable sheaves. Furthermore, there are no strictly νH -semistable sheaves, so we can
perturb νH a little without changing this result. However, the sheaves whose stability we test also depend on
n, so this argument is suggestive but not a proof that sheaves in MX,H (vn) might be “attractor stable” (and
describe all attractor semistable sheaves of class vn) for large n. So we might expect the invariants Ω(vn) to
be the “MSW invariants” of [MSW97, AMP20]. (We return to this point in Remark 6.1.)

Although Gieseker stability is not always preserved by tensoring by a line bundle, slope stability is.
Therefore, by Theorem 1, for n� 0 we have

(6.1) Ω(vn) = Ω
(
e`vn

)
for all ` ∈H2(X,Z),
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where e`vn is the cup product of e` ∈ H ∗(X,Q) with vn. Note that e`vn has the same H2 class nH as vn,
but H4 class

−β − 1
2
n2H2 +nH · `.

Therefore, the invariance (6.1) shows the data of all invariants Ω(vn), over all β and m (for fixed n� 0),(5) is
in fact captured in the smaller set of invariants Ω(0,nH,ch2,ch3) for

(6.2) ch2+
1
2
n2H2 ∈ H4(X,Z)

nH ∪H2(X,Z)
=: Γ .

The group Γ is finite by the hard Lefschetz isomorphism ∪nH : H2(X,Q) ∼−→H4(X,Q). We let β/nH denote
the inverse image of β under this map. Therefore, all the enumerative information can be encoded in the
vector of generating series

(6.3)
⊕
β∈Γ

hnH,β(q), hnH,β(q) :=
∑
m̂

Ω

(
0,nH,−β − 1

2
n2H2,−m+

1
6
n3H3

)
qm̂,

where m̂ is the following normalisation of ch3:

(6.4) m̂ := m+
1
2
nH · β − 1

24
nH · c2(X)−

1
24
n3H3 +

1
2

∫
X

β

nH
∪ β,

which is easily checked to be invariant under vn 7→ e`vn. The series (6.3) are the product of Laurent series in
q with a prefactor qc, c ∈Q. Setting q = e2πiτ , we think of them as meromorphic functions of τ in the upper
half plane. In [GSY07], (6.3) was conjectured to be a vector-valued modular form of weight −b2(X)− 1

2 . This
is now expected to be true only for irreducible ch1, which is far from our case of ch1 = nH .

For more general ch1, the current expectation is that (6.3) should be a vector-valued mock modular form of
depth k − 1, where k is the maximum over all non-trivial decompositions

(6.5) D = D1 + · · ·+Dk for all divisors D ∈ |O(n)|.

That is, it should admit a non-holomorphic modular completion
⊕

β∈Γ ĥnH,β(q) made from k − 1 iterated

Eichler integrals involving the functions h[D1],β1(q), . . . ,h[Dk],βk (q). Explicit formulae for the ĥ in terms of

h are given in [AMP20, Equation 2.11] and inverted to express h in terms of ĥ in [AMP20, Equation 2.15].
Under the modular group, the ĥ should transform as in [AMP20, Equation 2.10] with weight −12b2(X)− 1.

That is, ĥnH,β(−1/τ) should be

− (−iτ)
− 1

2b2(X)−1
√
|Γ |

exp
(
−2πi

(1
4
n3H3 − 1

8
c2(X) ·nH

))∑
γ∈Γ

exp
(
−2πi

∫
γ

β

nH

)
ĥnH,γ ,

and

ĥnH,β(τ +1) = exp
(
2πi

(
1
24
c2(X) ·nH +

1
2

∫
β

β

nH
+
1
2
β ·nH +

1
8
n3H3

))
ĥnH,β(τ).

It is further predicted that, apart from their poles of order 1
24 ((nH)3 + c2(X) ·nH) at q = 0, the functions

h and ĥ are bounded. Since they are vectors of length dimΓ = nH3 and have modular weight −b2(X)/2− 1,
the dimension of the relevant space of (mock) modular forms can be analysed; see [Man08]. In our case its
dimension works out as O(n4), so the first O(n4) Fourier coefficients Ω(vn) should determine the rest.

The hope would be to use this as a method for determining the MNOP invariants Im,β(X) for m >O(n4)
in terms of those with smaller m. This does not currently work in general because once m becomes large,
we have to increase n in Theorem 2 to get the relationship between Ω(vn) and Im,β(X). We would need
the bound n� 0 required in Theorem 2 to be improved to n > O(m1/4) or better. But very recent work

(5)Since we choose n� 0 only after fixing m, we may need to truncate our generating series, considering bounded m ≤M(n) for
a given n. We return to this issue in Remark 6.1.
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[AFK+23] manages to improve the bounds for small m,n in specific examples and thus use modularity to
calculate new Gromov–Witten invariants.

6.2. Noether–Lefschetz theory

Here we flesh out a suggestion of Davesh Maulik to explain, or perhaps one day prove, the modularity
properties of the generating series of invariants Ω(vn) directly. We thank Luis Garcia for his insight and
generous expert assistance with this section.

Again let X be a Calabi–Yau threefold with H1(OX) = 0, and again we work with bounded m and then
large n� 0. We return to this point in Remark 6.1. By Theorem 1 all sheaves in MX,H (vn) are of rank 1 on
their scheme-theoretic support, and that support is a divisor D ∈ |O(n)|. The generic ι : D ↪→ X is smooth
and supports precisely the stable sheaves

(6.6) ι∗(L⊗IZ ),

where L is a line bundle on D and Z ⊂D is a 0-dimensional subscheme. The existence of L means D lies in
one of the Noether–Lefschetz loci NLd,β ⊂ |O(n)| of divisors containing an integral (1,1) class ` := c1(L)
such that ι∗` = β and the discriminant of the sublattice 〈`,h〉 ⊂H2(D,Z) is d. Here h :=H |D and

(6.7) d = disc〈`,h〉 := h2`2 − (h · `)2,

where the intersections are taken on D . (Of course, h2 and h · ` can be expressed on X as nH3 and H · β,
respectively, but `2 cannot be determined by its image β = ι∗` in X).

We briefly review some Noether–Lefschetz theory. We suppose H2(X,Z) =Z ·H for simplicity. Set Λ :=
〈h〉⊥ ⊂ H2(D,Z) to be the primitive cohomology. The Lefschetz theorems give H4(X,Z) � H2(D,Z)/Λ,
which surjects onto Λ∗/Λ by the unimodular intersection pairing on D . The kernel is 〈h〉, so we can describe
the finite group Γ from (6.2) as

(6.8) Γ =
H4(X,Z)

nH ∪H2(X,Z)
�
Λ∗

Λ
� Z/NZ ,

where N = nH3. Then, up to the action of Aut
(
H2(D,Z),h

)
, the data of the 2-dimensional sublattice

〈`,h〉 ⊂ H2(D,Z) is equivalent to the data of its discriminant disc and its coset — the image of ` in the
quotient of the group Λ∗/Λ from (6.8) by ±1.

We have a map Φn : D 7→ XΛ from the open set |O(n)|◦ of smooth divisors D to the moduli space(6)

of weight 2 polarised Hodge structure of signature (h2(OD ),h1,1(D)− 1). This moduli space XΛ contains
universal Noether–Lefschetz loci(7) NLd,γ consisting of Hodge structures on Λ admitting a (1,1) vector in
Λ∗ of square d/h2 and coset γ . (The link to 2-dimensional sublattices 〈`,h〉 ⊂H2(D,Z) takes ` ∈H2(D,Z)

to its projection ` − `·hh2 h ∈Λ
∗ orthogonal to h. This has square `2 − (h·`)2

h2 = d
h2 , where d is the discriminant

(6.7).)
Since the dimension of |O(n)|◦ matches the codimension of the Hodge loci NLd,γ ,

dim |O(n)|◦ = h0(OX(n))− 1 = h2(OD ) = codimNLd,γ ,

we could imagine defining their intersection by pulling back the Thom forms of the Hodge loci constructed in
[Gar18] and integrating over |O(n)|◦. Below we will come back to the obvious problems of non-compactness
of the Hodge loci in showing such integrals converge; for now we ignore them and just work with smooth D
in the interior of the period domain.

The constraints of Griffiths transversality mean we can probably never expect the intersection of Φn|O(n)|◦
and NLd,γ to be of the correct dimension 0. However, in order to formulate a conjecture, one can imagine

(6)Here XΛ is the quotient of the period domain by Aut(H2(D,Z),h) = ker(AutΛ→ Aut(Λ∗/Λ)).
(7)These are called Hodge loci in the paper [Gar18], which extends results of Borcherds and Kudla–Millson from hermitian

symmetric spaces to the period domains of interest to us.
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perturbing the complex structure on X to a non-integrable almost complex structure (compatible with the
symplectic structure dual to H ) to ensure the intersection is 0-dimensional. Since the virtual-dimension-0
deformation theory of ι∗L, or of the pair (D,L), can be matched with the deformation theory of the
intersection (see [KT14, Section 2.1], for instance), we would, as usual, expect to be able to avoid such
non-algebraic deformations by working in situ with the virtual cycle, yielding the same intersection numbers
via excess intersection.

So we imagine Φ∗n[NLd,γ ] reduced isolated intersection points (D,L) with an extra Hodge class ` = c1(L)
of discriminant disc〈`,h〉 = d and coset γ . Each such point would generate a component of a moduli space
MX,H (vn) given by

(6.9) HilbkD � {L⊗IZ : |Z | = k}

parameterising the sheaves (6.6). Here we take the charge m in vn, see (1.3), to be

m = |Z |+ 1
2

(
β ·nH − `2

)
= k +

1
2
β ·nH −

(H · β)2

2nH3 −
d

2h2
,

by calculating ch3 =
1
6n

3H3 −m of (6.6). Taking the Euler characteristic of (6.9), weighting by qm̂, with m̂ as
in (6.4), and summing gives, by the Göttsche formula, the generating series

(6.10) q
c− d

2(h)2

q− 1
24

∞∏
i=1

1
(1− qk)

e(D)

= qc−
d

2h2 η(q)−e(D),

where e(D) is the topological Euler characteristic of any smooth member D ∈ |O(n)|,

e(D) = c2(X) ·nH +n3H3,

and c = nH · β − (H ·β)2
2nH3 + 1

2

∫
β
β
nH ∈ Q. (As in the last section, we should really truncate this sum over

m ≤M(n) if we want to use Theorem 1 to identify MX,H (vn) with unions of Hilbert schemes (6.9), but see
Remark 6.1.)

Summing (6.10) over the divisors D, by summing over all discriminants and cosets in (6.8), the vector of
generating series (6.3) becomes

(6.11) qcη(q)−e(D)
⊕
γ∈Γ

∑
d

Φ∗n
[
NLd,γ

]
q−

d
2h2 .

Now η(q)−e(D) is modular of weight −12e(D), and
⊕

γ∈Γ
∑
d

[
NLd,γ

]
q−

d
2h2 is a vector-valued modular form

(with values in the cohomology of the moduli space XΛ of Hodge structures) of weight 1
2 dimH2

prim(D) =
1
2 (e(D)− 3), by [Gar18, Theorems 1.2 and 5.2].(8)

So we conclude that (6.11) is modular of total weight −32 if we can make finite sense of Φ∗n
[
NLd,γ

]
. This

will involve further work studying degenerations of Hodge structure at the boundary of the space of Hodge
structures. It is natural to expect non-holomorphic corrections, turning modular forms into mock modular
forms. One point of view is that the Thom forms of the Hodge loci are not precisely holomorphic —
taking ∂ gives exact forms da on the moduli space of Hodge structures, see [Gar18, Equation 4.39], which
are therefore exact on pull back to |O(n)|◦ but may not be on the boundary of |O(n)| (where d(Φ∗na) may
have poles with non-zero residues). In a special case (Sym2 of the Hodge structures of elliptic curves), the
boundary and convergence analysis was carried out successfully in [Fun02] and indeed found to give mock
modular forms.

(8)Note that our d
2h2

= 1
2

(
`− `·h

h2
h
)2

, see (6.7), corresponds to Garcia’s 1
2 〈v,v〉, see [Gar18, Theorem 1.2], on setting v = `− `·h

h2
h ∈

Λ∗ to be the projection of ` to 〈h〉⊥ ⊗Q.
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In particular, taking account of reducible and non-reduced D at the boundary of |O(n)| will necessarily
add cross-terms involving all non-trivial decompositions

D = D1 + · · ·+Dk for all divisors D ∈ |O(n)|.

This is the same data used in (6.5) to generate the non-holomorphic mock modular completions ĥ of
the generating series h from (6.3). So it seems reasonable to expect the Noether–Lefschetz story to be
compatible with, or one day even prove, S-duality. Gholampour and Sheshmani have been exploring example
calculations along related lines in recent years; see for instance [GST14, GS18].

Remark 6.1. In our modularity discussions of the last two sections, two issues have arisen which we consider
to be related. In Section 6.1 it was not clear we had the right stability condition for our invariants Ω(vn) to
be the MSW invariants. In both Sections 6.1 and 6.2 there was the issue that our description of MX,H (vn) in
Theorem 1 was only valid for bounded m ≤M(n).

Given the discussion in this section, it seems natural to suggest the solution to both problems should be
the following. We should take moduli spaces of sheaves ι∗(L⊗ IZ ) (6.6) for any m and n, and their invariants
should have mock modular generating series. In other words, we expect that the physicists’ attractor stable
objects should be precisely the sheaves (6.6) with rank 1 on their support, independently of m,n. (When D is
non-reduced or irreducible, we should also use a stability condition on the line bundle L, probably νH -slope
stability.) Their virtual counts would then be the MSW invariants.

For small m ≤ M(n) Theorem 1 gives precisely the sheaves ι∗(L ⊗ IZ ) (6.6) with L∗ effective.(9) For
m ∈ (M1(n),M2(n)], we find MX,H (vn) parameterises sheaves of the same form ι∗(L⊗ IZ ), see (6.6), but with
L = OD(C1 −C2) possibly non-effective; this is proved in [Tod12] when PicX =Z and [Fey22] in general. For
m >M2(n) we expect to have to change the stability condition to get a moduli space consisting of only the
sheaves (6.6) and to get the MSW invariants.

References

[AFK+23] S. Alexandrov, S. Feyzbakhsh, A. Klemm, B. Pioline and T. Schimannek, Quantum geometry,
stability and modularity, preprint arXiv:2301.08066 (2023).

[AMP20] S. Alexandrov, J. Manschot and B. Pioline, S-duality and refined BPS indices, Comm. Math. Phys.
380 (2020), 755–810.

[BMS16] A. Bayer, E. Macrì and P. Stellari, The space of stability conditions on abelian threefolds, and on
some Calabi-Yau threefolds, Invent. Math. 206 (2016), 869–933.

[BMT14] A. Bayer, E. Macrì and Y. Toda, Bridgeland stability conditions on threefolds I: Bogomolov-Gieseker
type inequalities, J. Algebraic Geom. 23 (2014), 117–163.

[Beh09] K. Behrend, Donaldson-Thomas invariants via microlocal geometry, Ann. of Math. 170 (2009),
1307–1338.

[BBB+15] O. Ben-Bassat, C. Brav, V. Bussi and D. Joyce, A ‘Darboux Theorem’ for shifted symplectic structures
on derived Artin stacks, with applications, Geom. Topol. 19 (2015), 1287–1359.

[Bri07] T. Bridgeland, Stability conditions on triangulated categories, Ann. of Math. 166 (2007), 317–345.

[Bri08] , Stability conditions on K3 surfaces, Duke Math. J. 141 (2008), 241–291.

[dBCD+06] J. de Boer, M. Cheng, R. Dijkgraaf, J. Manschot and E. Verlinde, A Farey tail for attractor black
holes, J. High Energy Phys. 11 (2006), 024.

(9)The notation is different; here L∗ is the line bundle corresponding to the divisorial part of C in (1.4) and Theorem 1. Since we
are assuming H2(X,Z) =Z, the line bundles L,T in Theorem 1 are trivial.

https://arxiv.org/abs/2301.08066


24 S. Feyzbakhsh and R. P. Thomas24 S. Feyzbakhsh and R. P. Thomas
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