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Affine subspace concentration conditions

Kuang-Yu Wu

Abstract. We define a new notion of affine subspace concentration conditions for lattice polytopes
and prove that these conditions hold for smooth and reflexive polytopes with barycenter at the
origin. Our proof involves considering the slope stability of the canonical extension of the tangent
bundle by the trivial line bundle with the extension class c1(TX ) on Fano toric varieties.
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1. Introduction

Subspace concentration conditions for polytopes and more generally for convex bodies have been of
interest to convex geometers recently. One main reason is its close relation to the logarithmic Minkowski
problem, which asks what finite Borel measure on Sn−1 is the cone-volume measure of a convex body in R

n.
In terms of polytopes, given v1, . . . , vm ∈ Sn−1 and V1, . . . ,Vm ∈ (0,∞), the problem asks if there is a polytope
P ⊆R

n that contains the origin and has exactly m facets F1, . . . ,Fm such that the normal vector of each facet
Fk is exactly vk and the volume of the cone over each Fk with vertex at the origin is exactly Vk . As it turns
out, subspace concentration conditions give a sufficient condition for a positive answer to the logarithmic
Minkowski problem. See, for example, [BLY+13, Zhu14, CLZ19].

In this paper, we introduce new conditions of the same type, which we call the affine subspace concentration
conditions, and we prove that these conditions hold for smooth and reflexive lattice polytopes with barycenter
at the origin.

Theorem A (=Theorem 4.4, Affine subspace concentration conditions). Let P ⊆R
n be a smooth and reflexive

lattice polytope with barycenter at the origin, and denote its facets by P1, . . . , Pm. For each facet Pk , let vk ∈Zn be
its primitive inner normal vector, and let vol(Pk) be its lattice volume with respect to the intersection of Zn and
the affine span of Pk .
Then, for every proper affine subspace A ( R

n, the following inequality holds:

1
dimA+1

∑
k :vk∈A

vol(Pk) ≤
1

n+1

m∑
k=1

vol(Pk).

In addition, whenever equality holds for some A, equality also holds for some affine subspace A′ complementary
to A.

This theorem is inspired by [HNS22], in which the subspace concentration properties are shown for
polytopes with the same assumptions.

Proposition 1.1 (cf. [HNS22, Corollary 1.7]). Let P ⊆ R
n be a smooth and reflexive lattice polytopes with

barycenter at the origin. Then, for every proper linear subspace F ( R
n, the following inequality holds:

1
dimF

∑
k :vk∈F

vol(Pk) ≤
1
n

m∑
k=1

vol(Pk).

In addition, whenever equality holds for some F, equality also holds for some subspace F′ complementary to F.

In fact, our result is neither stronger nor weaker than the original subspace concentration conditions;
specifically, our result gives something new whenever A is not a linear subspace of Rn.
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Similar subspace concentration conditions have also been studied in more general settings. The subspace
concentration conditions are proved in [HL14] for centered polytopes and more generally in [BH16] for
centered convex bodies.

Example 1.2. Let P be a reflexive lattice triangle. The affine subspace concentration conditions hold for P
if and only if the lattice length of each side of P does not exceed one third of the perimeter and the total
lattice length of any two sides of P does not exceed two thirds of the perimeter. This is equivalent to all
three sides of P having the same lattice length.

Figure 1a is the unique smooth and reflexive lattice triangle, up to change of basis. Its barycenter is clearly
at the origin. The affine subspace concentration conditions are indeed satisfied since each of its sides has
lattice length 3.

Figure 1b is one example of polytopes for which the affine subspace concentration conditions fail. The
lattice lengths of its sides are 1, 1, and 2. Note that the triangle is reflexive but not smooth, and its barycenter
is not at the origin.

We do not claim that the converse to our main theorem holds. In fact, Figure 1c is a lattice triangle that
has its barycenter at the origin and is reflexive but not smooth. However, it satisfies the affine subspace
concentration conditions since all three sides has lattice length 1.

(a) (b) (c)

Figure 1. Reflexive lattice triangles

1.1. Idea of the proof

As in [HNS22], our proof of the main result relies on toric geometry as well as some Kähler geometry.
First, let X be the smooth Fano toric variety corresponding to the polytope P . We consider the canonical

extension
0 −→O −→ E −→ TX −→ 0

with the extension class c1(TX) ∈ Ext1(TX ,O). The main work we will do is in Section 3, where we show that
this rank n+1 extension E can be made a toric vector bundle and compute its corresponding filtrations in
the sense of Klyachko’s classification theorem of toric vector bundles.

Proposition B (=Proposition 3.1). There is a T -action on the extension E that makes it a toric vector bundle
whose corresponding filtrations Eρ(i) of the (n+1)-dimensional C-vector space E �C

n+1 are given by

Eρk (i) =


E, i ≤ 0,

span
C
{(vk ,−1)}, i = 1,

0, i > 2.

Then we insert some Kähler geometry. Since P has its barycenter at the origin, it is known that X admits
a Kähler–Einstein metric; see [WZ04, Mab87]. A theorem of Tian [Tia92] then implies that the canonical
extension E admits a Hermitian–Einstein metric, and by the easy direction of the Donaldson–Uhlenbeck–Yau
theorem, this implies the slope polystability of E with respect to OX(−KX).
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Combining this with Proposition B and a proposition in [HNS22] which characterizes the stability of toric
vector bundles, we prove the affine subspace concentration conditions in Section 4.
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2. Preliminaries

Here we list some definitions and facts regarding toric varieties and toric vector bundles that we will use in
this article. One may refer to [CLS11, Ful93] for more details about toric varieties and to [Kly90, Per04, Pay08]
for more details about toric vector bundles.

2.1. Toric varieties

We work throughout over C. By a toric variety, we mean an irreducible and normal algebraic variety X
containing a torus T � (C∗)n as a Zariski open subset such that the action of T on itself (by multiplication)
extends to an algebraic action of T on X.

Let M be the group of characters of T and N the group of 1-parameter subgroups of T . Both M and N
are lattices of rank n (equal to the dimension of T ), i.e., isomorphic to Z

n, and they are dual to each other.
Explicitly, the character corresponding to u = (a1, . . . , an) ∈Zn is given by

χu : T −→ C
∗, (t1, . . . , tn) 7−→ ta11 · · · t

an
n ,

and the 1-parameter subgroup corresponding to v = (b1, . . . , bn) ∈Zn is given by

λv : C∗ −→ T , t 7−→ (tb1 , . . . , tbn).

The pairing of M and N is denoted by 〈·, ·〉 : M ×N → Z. We have χu(λv(t)) = t〈u,v〉 for all u ∈M and
v ∈N .

Every toric variety X is associated to a fan ∆ in N
R
:= N ⊗

Z
R (� R

n). Each cone σ corresponds to a
T -invariant open affine subset of X, denoted by Uσ . One has Uσ � SpecC[σ∨ ∩M], where σ∨ is the dual
cone of σ in M

R
:=M ⊗

Z
R

A fan ∆ is said to be complete if it supports on the whole N
R
and is said to be smooth if every cone in ∆ is

generated by a subset of a Z-basis of N . A toric variety X is complete if and only if its associated fan ∆ is
complete, and X is smooth if and only if ∆ is smooth.

There is an inclusion-reversing bijection between the cones σ ∈ ∆ and the T -orbits in X. Let Oσ be the
orbit corresponding to σ . The dimension of σ is equal to the codimension of Oσ in X.

Fix a cone σ ∈ ∆, and let v be a lattice point in the relative interior of σ . The 1-parameter subgroup λv

approaches a point pσ in the orbit Oσ as t→ 0. This point pσ is called the distinguished point corresponding
to σ .

Given a 1-dimensional cone ρ ∈ ∆, the closure of Oρ ⊆ X is a Weil divisor, which we denote by Dρ.
Suppose X is smooth. The canonical divisor KX of X is equal to −

∑
ρDρ, where the sum is taken over all

1-dimensional cones ρ ∈ ∆.

2.2. Polytopes and toric varieties

Let M
R
:=M ⊗

Z
R � R

n. A lattice polytope P in M
R
is the convex hull in M

R
of finitely many points

in M . The dimension of P is the dimension of the affine span of P . When dimP = dimM
R
, we say that P

is full-dimensional.
Let P ⊆M

R
be a full-dimensional lattice polytope, and let P1, . . . , Pm be the facets of P , i.e., codimension

1 faces of P . For each facet Pk , there exist a unique primitive lattice point vk ∈ N and a unique integer
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ck ∈Z such that
Pk = {u ∈ P | 〈u,vk〉 = −ck}

and 〈u,vk〉 ≥ −ck for all u ∈ P .
Denote the (inner) normal fan of P by ∆P . The 1-dimensional cones in ∆P are exactly the rays generated

by vk . The toric variety X∆P
associated to ∆P is called the toric variety of P and denoted by XP . Let Dk be

the divisor corresponding to the 1-dimensional cone generated by vk . Then we may define a divisor on X
by DP :=

∑m
k=1 ckDk . Such a divisor DP is necessarily ample.

This process is reversible, and there is a 1-to-1 correspondence between full-dimensional lattice polytopes
P ⊆M

R
and pairs (X,D) of a complete toric variety X together with an ample T -invariant divisor D on X.

Fix a vertex u of P . Let u1, . . . ,un be the next lattice points on the n edges (i.e., 1-dimensional faces of P )
containing u. We say that P is smooth if {u1 −u, . . . ,un −u} is a Z-basis of M for all vertices u of P . The
toric variety XP of P is smooth if and only if P is smooth.

A polytope P is called reflexive if the integers ck (k = 1, . . . ,m) defined above are all equal to 1, and
a smooth variety X is said to be Fano if its anticanonical divisor −KX is ample. A reflexive and smooth
polytope P corresponds to a smooth Fano toric variety X = XP together with its anticanonical divisor −KX .

2.3. Toric vector bundles

A vector bundle π : E → X over a toric variety X = X∆ is said to be toric (or equivariant) if there is a
T -action on E such that t ◦π = π ◦ t for all t ∈ T .

Let E → X be a toric vector bundle. Fix a cone σ ∈ ∆, and let Uσ ⊆ X be the corresponding open affine
subset. The T -action on E induces a T -action on sections given by

(t · s)(p) := t · (s(t−1 · p)),

where t ∈ T , p ∈ Uσ , and s ∈ Γ (Uσ ,E). A section s ∈ Γ (Uσ ,E) is called a T -eigensection if there exists a
u ∈M such that t · s = χu(t) · s for all t ∈ T . For each u ∈M, let Γ (Uσ ,E)u be the set of T -eigensections s
with t · s = χu(t) · s.

Let t0 ∈ T be the identity and E = Et0 the fiber over t0. The evaluation at t0 defines an injection
Γ (Uσ ,E)u ↪→ E for each u ∈M . Define Eσu ⊆ E to be the image of Γ (Uσ ,E)u under this injection.

Given a u′ ∈ M that lies in the dual of σ , defined by σ∨ := {u ∈ M | 〈u,v〉 ≥ 0 for all v ∈ σ }, the
character χu

′
of T extends to a regular function on Uσ . Then, the multiplication by χu

′
gives a map

Γ (Uσ ,E)u → Γ (Uσ ,E)u−u′ and in turn induces an inclusion Eσu ⊆ Eσu−u′ . If u′ further satisfies 〈u,v〉 = 0 for
all v ∈ σ (i.e., u′ ∈ σ⊥), then −u′ also lies in σ∨, and we obtain Eσu = Eσu−u′ . Therefore, E

σ
u depends only on

the class of u in Mσ :=M/(M ∩ σ⊥).
Let ρ be a 1-dimensional cone in ∆. In this case, Mρ is isomorphic to Z. Let vρ ∈ N be the primitive

generator of ρ. For each i ∈Z, take one ui ∈M such that 〈ui ,vρ〉 = i, and define Eρ(i) := E
ρ
ui . Then, we get

a decreasing filtration of E
· · · ⊇ Eρ(i) ⊇ Eρ(i − 1) ⊇ · · · .

These filtrations corresponding to the 1-dimensional cones in fact contain all information about a toric
vector bundle according to the following classification theorem of Klyachko.

Klyachko’s classification theorem (cf. [Kly90, Theorem 2.2.1]). The category of toric vector bundles on a toric
variety X = X(∆) is naturally equivalent to the category of finite-dimensional vector spaces E with collections
of decreasing filtrations {Eρ(i)} indexed by the 1-dimensional cones in ∆, satisfying the following compatibility
condition: for each cone σ ∈ ∆, there is a decomposition E =

⊕
[u]∈Mσ

E[u] such that

Eρ(i) =
∑

[u]:〈u,vp〉≥i
E[u]

for all ρ � σ and i ∈Z.
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Another way to consider a toric vector bundle E is to restrict it to open affine sets. To discuss this, let σ
be a cone in ∆ and Uσ ⊆ X the corresponding open affine set. On Uσ , the toric vector bundle E splits
equivariantly into a direct sum of toric line bundles whose underlying line bundles are trivial; see [Pay08,
Proposition 2.2]. Collecting non-vanishing sections of these toric line bundles, one can get a local frame
consisting of T -eigensections.

Lemma 2.1. Let ρ be a 1-dimensional cone contained in σ and vρ ∈ ρ∩N the primitive generator of ρ. Suppose
that E has a local frame {s1, . . . , sr} on Uσ such that t · sk = χuk (t) · sk for some u1, . . . ,ur ∈ M, and define
Lk := span{sk(t0)} ⊆ E for each k = 1, . . . , r . Then, we have

Eρ(i) =
∑

k:〈uk ,vρ〉≥i
Lk .

Proof. By assumption, we have

E|Uσ �
r⊕
k=1

Lk ,

where Lk is the trivial line bundle Uσ ×C spanned by sk equipped with the T -action defined by

t · (p,sk(p)) = (t · p,χu(t) · sk(p)).

By Klyachko’s classification theorem, each toric line bundle Lk on Uσ also corresponds to a collection of
filtrations of Lk indexed by the 1-dimensional cones contained in σ . The filtration corresponding to ρ is
given by

(Lk)
ρ(i) =

Lk , i ≤ 〈uk ,vρ〉,
0, i > 〈uk ,vρ〉.

Then, adding these filtrations together, we obtain the desired filtration of E. �

3. The canonical extension

Let X be a smooth Fano variety of dimension n. The first Chern class c1(X) of X lies in the (1,1)-
Dolbeault cohomology H1,1(X), which is naturally isomorphic to the sheaf cohomology H1(X,Ω1

X) by
Dolbeault’s theorem. The cotangent bundle Ω1

X is the dual of the tangent bundle TX , so we have

H1(X,Ω1
X) =H

1(X,T ∗X) � Ext1(OX ,T ∗X) � Ext1(TX ,OX)

by for example [Har77, Propositions 6.3 and 6.7]. Thus, c1(X) can be viewed as an extension class in
Ext1(TX ,OX) and in turn corresponds to an extension E of the tangent bundle TX by the structure sheaf OX
given by

0 −→OX −→ E −→ TX −→ 0.

In this section, we will show that if X is toric, then E can be made a toric vector bundle, and we will
compute its corresponding filtrations in the sense of Klyachko’s classification theorem of toric vector bundles.

Let ∆X be the corresponding fan of X in N
R
�R

n. Denote the 1-dimensional cones in ∆X by ρ1, . . . ,ρm,
and let v1, . . . , vm ∈N be the primitive generators of these 1-dimensional cones, respectively.

Proposition 3.1. There is a T -action on the extension E that makes it a toric vector bundle whose corresponding
filtrations Eρ(i) of the (n+1)-dimensional C-vector space E :=N

C
⊕C �C

n+1 are given by

Eρk (i) =


E, i ≤ 0,

span
C
{(vk ,−1)}, i = 1,

0, i > 2.
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To prove this, we will use the following construction of the extension E . First, embed X into a projective
space P

N with the very ample divisor c1(TX) = −KX . Next, further embed P
N into P

N+1. Fix a point
p̃0 ∈ P

N+1\PN , and let Y ⊆ P
N+1 be the cone over X with vertex p̃0. Then E will be exactly the

restriction of the logarithmic tangent sheaf TY (− logX) of Y to X. A proof of this can be found in [Wah76,
Proposition 3.3].

In the following, we will first construct Y as a toric variety and get an induced toric action on the
logarithmic tangent sheaf. Then, we will make E a toric vector bundle.

3.1. The logarithmic tangent sheaf

Since X is a smooth and Fano toric variety, its anticanonical divisor −KX is very ample. Let P be
the polytope corresponding to (X,−KX). Then the vector space Γ (X,OX(−KX)) of the global sections
of OX(−KX) is spanned by the characters corresponding to the lattice points in P , i.e., Γ (X,−KX) =⊕

u∈P∩MC ·χu .
Let N = dimΓ (X,−KX) − 1. Then the embedding X ↪→ P

N can be explicitly given by x 7→
[χu(x)]u∈P∩M . In particular, the restriction of the embedding to the torus T ⊆ X is given by
(t1, . . . , tn) 7→ [χu(t1, . . . , tn)]u∈P∩M .

Without loss of generality, we may assume that the embedding of PN in P
N+1 is given by

[Z0 : · · · : ZN ] 7−→ [Z0 : · · · : ZN : 0]

so that PN is identified with the hyperplane in P
N+1 where the last coordinate vanishes. Also, we may set

p̃0 = [0 : · · · : 0 : 1]. Then the cone over X ⊆ P
N with vertex p̃0 is given by

Y =
{
[x : ZN+1] ∈ PN+1

∣∣∣x ∈ X,ZN+1 ∈C
}
∪ {p̃0}.

There is a dense (n+1)-dimensional torus T̃ := T ×C∗ in Y , and we may let it act on Y by

(t1, . . . , tn, tn+1) · [x : ZN+1] := [(t1, . . . , tn) · x : tn+1ZN+1].

We have now made Y a toric variety.
We will denote the character lattice of T̃ by M̃ �M ⊕Z. We also let Ñ be the dual lattice of M̃ and

define Ñ
R
:= Ñ ⊗

Z
R.

Lemma 3.2. The fan ∆Y corresponding to Y is one in Ñ
R
�N

R
⊕R �R

n+1 that contains exactly the following
cones:

(a) the origin, and the 1-dimensional cone generated by (0, . . . ,0,1);
(b) for each subset {vk1 , . . . , vkd } ⊆ {v1, . . . , vm} that generates a cone σ in the fan ∆X of X, a d-dimensional

cone σ− generated by {(vkl ,−1) | l = 1, . . . ,d}, and a (d +1)-dimensional cone σ+ generated by {(vkl ,−1) |
l = 1, . . . ,d} ∪ {(0, . . . ,0,1)};

(c) the (n+1)-dimensional cone generated by {(vk ,−1) |k = 1, . . . ,m}.

Proof. First, to determine the 1-dimensional cones in ∆Y , consider the T̃ -orbits of codimension 1 in Y , i.e.,
the n-dimensional orbits. There are exactly m+ 1 of them, the torus T in X and Ok ×C∗ (k = 1, . . . ,m),
where the Ok are the (n−1)-dimensional T -orbits in X corresponding to the 1-dimensional cones ρk in ∆X .
For simplicity, define Õk :=Ok ×C∗.

The distinguished points on T and Õk are, respectively, [1 : · · · : 1 : 0] and [qk : 1], where qk ∈ X ⊆ P
N is

the distinguished point on Ok .
Now, consider the limits of the 1-parameter subgroups of T̃ corresponding to the lattice points (0, . . . ,0,1)

and (vk ,−1) (k = 1, . . . ,m) in Ñ . Let f be the embedding X ↪→ P
N and g the composition of f and the

embedding P
N ↪→ P

N+1.
First, we have

lim
t→0

g
(
λ
(0,...,0,1)
T̃

(t)
)
= lim
t→0

[1 : · · · : 1 : t] = [1 : · · · : 1 : 0],
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so that the 1-dimensional cone corresponding to the orbit T ⊆ Y is generated by (0, . . . ,0,1).
Next, since vk generates the 1-dimensional cone ρk in ∆X , we have

qk = lim
t→0

f
(
λ
vk
T (t)

)
= lim
t→0

[χu (tvk )]u∈P∩M = lim
t→0

[
t〈u,vk〉

]
u∈P∩M

.

Because P is reflexive, we also have that

min
u∈P∩M

{〈u,vk〉} = −1.

Then, we obtain

lim
t→0

g
(
λ
(vk ,−1)
T̃

(t)
)
= lim
t→0

[
[χu(tvk )]u∈P∩M : t−1

]
= lim
t→0

[[
t〈u,vk〉

]
u∈P∩M

: t−1
]
= [qk : 1],

which implies that (vk ,−1) generates the 1-dimensional cone corresponding to Õk .
More generally, fix vk1 , . . . , vkd (d > 0) that generate a cone σ ∈ ∆X . Denote by Oσ the T -orbit in X

corresponding to σ and, by abuse of notation, its image in Y under X ↪→ Y . Also, define Õk :=Ok ×C∗ ⊆ Y .
Clearly, Ok , Õk are both T̃ -orbits in Y . The claim is that Ok corresponds to the cone σ+ generated by
{(vkl ,−1) | l = 1, . . . ,d}∪{(0, . . . ,0,1)} and Õk corresponds to the cone σ− generated by {(vkl ,−1) | l = 1, . . . ,d}.

Define vσ := vk1 + · · ·+ vkd ∈N . Let qσ ∈ X be the distinguished point on Ok ⊆ X, so that

qσ = lim
t→0

f
(
λ
vσ
T (t)

)
= lim
t→0

[
t〈u,vσ 〉

]
u∈P∩M

.

Then the distinguished points on Ok , Õk ⊆ Y are, respectively, [qσ : 0], [qσ : 1]. Take lattice points
(vσ ,0), (vσ ,−d) lying in the relative interiors of σ+,σ−, respectively. Then, we have

lim
t→0

g(λ(vσ ,0)
T̃

(t)) = lim
t→0

[[
t〈u,vσ 〉

]
u∈P∩M

: 1
]
= [qk : 0],

lim
t→0

g(λ(vσ ,−d)
T̃

(t)) = lim
t→0

[[
t〈u,vσ 〉

]
u∈P∩M

: t−d
]
= [qk : 1],

where the last equality of each line is because

min
u∈P∩M

{〈u,vσ 〉} = −d,

where the minimum is attained on the face of P corresponding to σ .
Finally, the (n+1)-dimensional cone generated by {(vk ,−1) |k = 1, . . . ,m} corresponds to the cone point

p̃0 = [0 : · · · : 0 : 1] as

lim
t→0

g
(
λ
(0,...,0,−1)
T̃

(t)
)
= lim
t→0

[1 : · · · : 1 : t−1] = [0 : · · · : 0 : 1]. �

It is convenient to remove the vertex p̃0 and consider Y ′ := Y \{p̃0} instead of the cone Y . Since p̃0 is a
fixed point under the T̃ -action, Y ′ is still a toric variety. In addition, we know that the fan of Y ′ is equal to
∆Y with the maximal cone

σ̃ := Cone((v1,−1), . . . , (vm,−1))

corresponding to the fixed point p̃0 removed; i.e., ∆Y ′ = ∆Y \{σ̃ }. One can easily see that Y ′ is smooth
either by checking that the fan ∆Y ′ is smooth or by observing that Y ′ is the total space of the line bundle
OX(−KX), which follows from Lemma 3.2 together with [CLS11, Proposition 7.3.1].

Then, instead of the logarithmic tangent sheaf TY (− logX) on Y , we consider its restriction on Y ′ , which
is the same as TY ′ (− logX) since p̃0 < X. Note that TY ′ (− logX) is then locally free since Y ′ is smooth; we
will view it as a vector bundle on Y ′ .

The toric action of Y ′ induces a natural toric action on the vector bundle, which we describe as follows.
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Fix an open affine set Ũj ⊆ Y ′ corresponding to a maximal cone σ̃j in ∆Y ′ . The cone σ̃j and its dual
cone (σj )∨ must be of the formσ̃j = Cone

(
(vk1 ,−1), . . . , (vkn ,−1), (0, . . . ,0,1)

)
,

(σ̃j )∨ = Cone
(
(uk1 ,0), . . . , (ukn ,0), (uk1 + · · ·+ukn ,1)

)
,

where vk1 , . . . , vkn ∈N are generators of a maximal cone σj in ∆X and uk1 , . . . ,ukn ∈M are generators of its
dual cone (σj )∨ with

〈uk ,vk′〉 =

1, if k = k′ ,

0, if k , k′

for k,k′ ∈ {k1, . . . , kn}. Note that Ũj is isomorphic to C
n+1 since σ̃j is a smooth cone. Let z1, . . . , zn, z be

the local coordinates on Ũj corresponding to the generators of (σ̃j )∨ given by (uk1 ,0), . . . , (ukn ,0), (u,1),
respectively. Then, explicitly, the T̃ -action on Ũj �C

n+1 is given by

(t1, . . . , tn, tn+1) · (z1, . . . , zn, z) = (χuk1(t1, . . . , tn) · z1, . . . ,χukn(t1, . . . , tn) · zn,χu(t1, . . . , tn) · tn+1 · z) .

Now, the bundle TY ′ (− logX) trivializes on Ũj and has a local frame given by{
∂
∂z1

, . . . ,
∂
∂zn

, z
∂
∂z

}
.

In terms of the local frame, the T̃ -action on TY ′ (− logX) is given by
(t1, . . . , tn, tn+1) ·

∂
∂zl

∣∣∣∣∣
p̃
= χukl(t1, . . . , tn) ·

∂
∂zl

∣∣∣∣∣
(t1,...,tn,tn+1).p̃

for l = 1, . . . ,n,

(t1, . . . , tn, tn+1) ·
(
z
∂
∂z

)∣∣∣∣∣∣
p̃

=
(
z
∂
∂z

)∣∣∣∣∣∣
(t1,...,tn,tn+1).p̃

,

where (t1, . . . , tn, tn+1) ∈ T̃ and p̃ ∈ Ũj . The first line is simply the T̃ -action on tangent vectors, and the
second line can be obtained by first considering points p̃ with nonzero z-coordinate and then extending the
action to points with zero z-coordinate by continuity.

3.2. The canonical extension as a restriction of the logarithmic tangent sheaf

Now, we restrict the toric vector bundle TY (− logX) back to X to get the extension E .

Proof of Proposition 3.1. First, we define a T -action on E . Define ι : T → T̃ by

(t1, . . . , tn) 7−→ (t1, . . . , tn,1),

and set

t · e := ι(t) · e
for t ∈ T and e ∈ E , where the left-hand side is the T̃ -action on TY (− logX). Note that i ◦ t = ι(t) ◦ i for all
t ∈ T , where i is the inclusion X ↪→ Y . Thus, this T -action on E is equivariant.

Fix a maximal cone σj in ∆X , and let σ̃j ,Uj , Ũj ,vkl ,ukl , zl , z be defined as in the previous section. Note
that Uj ⊆ Ũj . Restricting the local frame of TY (− logX) on Ũj to Uj yields a local frame of E on Uj given

by
{
∂
∂z1
, . . . , ∂∂zn

, z ∂∂z
}
. Explicitly, the T -action on E|Uj is given by
(t1, . . . , tn) ·

∂
∂zl

∣∣∣∣∣
p
= χukl(t1, . . . , tn) ·

∂
∂zl

∣∣∣∣∣
(t1,...,tn).p

for l = 1, . . . ,n,

(t1, . . . , tn) ·
(
z
∂
∂z

) ∣∣∣∣∣
p
=

(
z
∂
∂z

) ∣∣∣∣∣
(t1,...,tn).p

.
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Then, the sections ∂
∂z1
, . . . , ∂∂zn

, z ∂∂z are T -eigensections with
(t1, . . . , tn) ·

∂
∂zl

= χukl(t1, . . . , tn)
∂
∂zl

for l = 1, . . . ,n,

(t1, . . . , tn) ·
(
z
∂
∂z

)
= z

∂
∂z

= χ(0,...,0)(t1, . . . , tn) ·
(
z
∂
∂z

)
.

Now, we apply Lemma 2.1 to get the filtrations. Let t0 = (1, . . . ,1) ∈ T be the identity. Note that
∂
∂z1

∣∣∣
t0
, . . . , ∂∂zn

∣∣∣
t0
,
(
z ∂∂z

) ∣∣∣
t0
form a basis of E = Et0 . We may choose a set of coordinates of E so that

∂
∂zl

∣∣∣∣∣
t0

= (vkl ,−1) for l = 1, . . . ,n and

(
z
∂
∂z

) ∣∣∣∣∣
t0

= (0, . . . ,0,1).

Then, we obtain

Eρkl (i) =


E, i ≤ 0,

span
C
{(vkl ,−1)}, i = 1,

0, i > 2

for 1-dimensional cones ρk1 , . . . ,ρkn contained in σj .
To show the same for other 1-dimensional cones, let σj ′ ∈ ∆X be another maximal cone, and define

σ̃j ′ ,Uj ′ , Ũj ′ ,vk′l ,uk′l , z
′
l , z
′ in the same way. Similarly to above,

{
∂
∂z′1
, . . . , ∂∂z′n

, z′ ∂∂z′
}
is a local frame of E on Uj ′

consisting of T -eigensections with
(t1, . . . , tn) ·

∂

∂z′l
= χ

uk′l(t1, . . . , tn)
∂

∂z′l
for l = 1, . . . ,n,

(t1, . . . , tn) ·
(
z′
∂
∂z′

)
= z′

∂
∂z′

= χ(0,...,0)(t1, . . . , tn) ·
(
z′
∂
∂z′

)
.

The claim is that ∂
∂z′l

∣∣∣
t0

(where l = 1, . . . ,n) and z′ ∂∂z′
∣∣∣
t0

are exactly (vk′l ,−1) and (0, . . . ,0,1) in terms

of the coordinates we have chosen for E. In that case, Lemma 2.1 will imply that the filtrations E
ρk′l (i)

corresponding to the 1-dimensional cones ρk′l in σj ′ are also as desired. The proof will then be done since
every 1-dimensional cone is contained in a maximal cone (by the fact that ∆X is complete).

Now, to prove the claim, we first consider the change of basis matrix between the two bases of E,{
(vkl ,−1), (0, . . . ,0,1)

}
and

{
(vk′l ,−1), (0, . . . ,0,1)

}
. The change of basis matrix between their dual bases,{

(ukl ,0), (u,1)
}
and

{
(uk′l ,0), (u

′ ,1)
}
, can be written as
(uk′1 ,0)
...

(uk′n ,0)
(u′ ,1)

 =


0

A
...
0

b1 · · · bn 1



(uk1 ,0)
...

(ukn ,0)
(u,1)

 ,
where A ∈ Zn×n is the change of basis matrix between {ukl } and {uk′l } and the bl are integers such that
u′ = u +

∑n
l=1 blukl . Taking the dual of this relation, we get
(vk′1 ,−1)

...
(vk′n ,−1)
(0, . . . ,0,1)

 =



0

A
...
0

b1 · · · bn 1


T 
−1

(vk1 ,−1)
...

(vkn ,−1)
(0, . . . ,0,1)

 =


b1

AT
...
bn

0 · · · 0 1


−1

(vk1 ,−1)
...

(vkn ,−1)
(0, . . . ,0,1)

 .
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On the other hand, let Ujj ′ :=Uj ∩U ′j , and consider the transition function

gj ′j : E
∣∣∣∣
Uj

∣∣∣∣
Ujj′
−→ E

∣∣∣∣
Uj

∣∣∣∣
Ujj′
.

Note that the transition function g̃j ′j of TY (− logX) is given by
g̃j ′j

 ∂
∂zl0

∣∣∣∣∣
p̃

 = n∑
l′=1

al′ l0 · z−1l0,p̃ · n∏
l=1

zal
′ l

l,p̃ ·
∂

∂z′l′

∣∣∣∣∣
p̃′

+ bl0 · z−1l0,p̃ ·
(
z′
∂
∂z′

) ∣∣∣∣∣
p̃′
,

g̃j ′j

(z ∂∂z
) ∣∣∣∣∣
p̃

 = (
z′
∂
∂z′

) ∣∣∣∣∣
p̃′
,

where p̃ = (z1,p̃, . . . , zn,p̃, zp̃) ∈ Ũj ∩ Ũj ′ and p̃′ is the point in Ũj ′ corresponding to p̃. Restricting this to E
and noting that t0 ∈ T ⊆Uj corresponds to the point (z1, . . . , zn, z) = (1, . . . ,1,0) ∈ Ũj , we have

gj ′j

(
∂
∂zl

∣∣∣∣∣
t0

)
=

n∑
l′=1

(
al′ l ·

∂

∂z′l′

∣∣∣∣∣
t0

)
+ bl ·

(
z′
∂
∂z′

) ∣∣∣∣∣
t0

for l0 = 1, . . . ,n,

gj ′j

((
z
∂
∂z

) ∣∣∣∣∣
t0

)
=

(
z′
∂
∂z′

) ∣∣∣∣∣
t0

or, in terms of matrices, 

∂
∂z1

∣∣∣
t0
...

∂
∂zn

∣∣∣
t0(

z ∂∂z
) ∣∣∣
t0


=


b1

AT
...
bn

0 · · · 0 1





∂
∂z′1

∣∣∣
t0
...

∂
∂z′n

∣∣∣
t0(

z′ ∂∂z′
) ∣∣∣
t0


.

Equivalently, we have 

∂
∂z′1

∣∣∣
t0
...

∂
∂z′n

∣∣∣
t0(

z′ ∂∂z′
) ∣∣∣
t0


=


b1

AT
...
bn

0 · · · 0 1



−1 

∂
∂z1

∣∣∣
t0
...

∂
∂zn

∣∣∣
t0(

z ∂∂z
) ∣∣∣
t0


,

which matches the change of basis matrix we computed above. Thus, we have proved the claim, and the
proof is done. �

4. Affine subspace concentration conditions

LetM (�Z
n) be a rank n lattice, and defineM

R
:=M⊗

Z
R �R

n. Let P ⊆M
R
be a smooth and reflexive

lattice polytope with barycenter at the origin. By replacing M
R
with its subspace spanned by P , we may

assume that P is full-dimensional, i.e., dimP = n.
Such a polytope corresponds to an n-dimensional smooth Fano toric variety X = XP , together with its

anticanonical divisor −KX . The fan ∆X of X in N
R
is the inner normal fan of P , where N is the dual lattice

of M and N
R
:=N ⊗

Z
R �R

n.
Denote the 1-dimensional cones in ∆X by ρ1, . . . ,ρm. For each k = 1, . . . ,m, let vk ∈N be the primitive

generator of ρk and Pk the facet of P corresponding to ρk . We also define vol(Pk) to be the lattice volume of
the facet Pk with respect to the intersection of M with the affine span of Pk .

We will use the following proposition from [HNS22] which characterizes the stability of toric vector
bundles.
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Proposition 4.1 (cf. [HNS22, Proposition 2.3]). Let (X,OX(D)) be a polarized smooth toric variety and Q ⊆M
R

the corresponding polytope. For each 1-dimensional cone ρ in the fan of X, let Qρ be the facet of Q corresponding
to ρ and vol(Qρ) the lattice volume of the facet Qρ with respect to the intersection of M with the affine span
of Qρ. A toric vector bundle E on X corresponding to filtrations Eρ(i) is (semi-)stable with respect to OX(D) if
and only if the following inequality holds for every proper C-linear subspace F ( E and Fρ(i) = Eρ(i)∩F:

(∗) 1
dimF

∑
i,ρ

i · f [ρ](i) · vol(Qρ)
(≤)
<

1
dimE

∑
i,ρ

i · e[ρ](i) · vol(Qρ),

where f [ρ](i) := dimFρ(i)−dimFρ(i +1) and e[ρ](i) := dimEρ(i)−dimEρ(i +1).

It turns out that to check the stability of toric vector bundle, it suffices to consider equivariant reflexive
subsheaves F of E corresponding to a C-linear subspace F of E together with the filtrations {Fρ(i) :=
F ∩Eρ(i)}. Then the equation (∗) is equivalent to the statement that µ(F ) ≤ µ(E).

In our setting, we consider the anticanonical polarization D = −KX and the canonical extension E of TX
by OX with the extension class c1(TX) ∈ Ext1(OX ,TX).

Proposition 4.2. Let E :=N
C
⊕C �C

n+1. For every proper C-linear subspace F ( E, we have

1
dim

C
F

∑
k : (vk ,−1)∈F

vol(Pk) ≤
1

n+1

m∑
k=1

vol(Pk).

In addition, whenever equality holds for some F, equality also holds for some subspace F′ ( E complementary to F.

Proof. First, since the barycenter of P is at the origin, by [WZ04, Corollary 1.3] and [Mab87, Corollary 5.5],
we have that X admits a Kähler–Einstein metric. Then, applying [Tia92, Theorem 1.1] and the easy direction
of the Donaldson–Uhlenbeck–Yau theorem, we obtain that E is polystable with respect to OX(−KX). In
particular, E is semistable with respect to OX(−KX).

Define Fρk (i) := F ∩Eρk (i). Then, by Proposition 3.1, for all k = 1, . . . ,m, we have Fρk (i) = F for i ≤ 0,
Fρk (i) = 0 for i ≥ 2, and

Fρk (1) =

spanC{(vk ,−1)} if (vk ,−1) ∈ F,
0 if (vk ,−1) < F.

Thus, using the notation in Proposition 4.1, we have f [ρk](i) = 0 for all i , 0,1 and

f [ρk](1) =

1 if (vk ,−1) ∈ F,
0 if (vk ,−1) < F.

The inequality then follows from Proposition 4.1.
To see the second part, note that a proper C-linear subspace F ( E such that equality holds corresponds

to a proper subbundle F of E that has the same slope as E . Since E is polystable, E has another (proper)
subbundle F ′ with the same slope such that E � F ⊕ F ′ . Then the subspace F′ corresponding to F ′ is
exactly the desired subspace. �

Next, we replace the complex vector space E with a real one.

Corollary 4.3. Let V :=N
R
⊕R �R

n+1. For every proper R-linear subspace W ( V , we have

1
dim

R
W

∑
k : (vk ,−1)∈W

vol(Pk) ≤
1

n+1

m∑
k=1

vol(Pk).

In addition, whenever equality holds for some W , equality also holds for some subspace W ′ ( V complementary
to W .
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Proof. First, view the C-vector space E defined in the previous proposition as V ⊗
R
C. Embed V into E

by w 7→ w⊗ 1. By abuse of notation, we will also use V to denote its image in E, and similarly for (real)
subspaces of V .

An important observation is that the vectors (vk ,−1) are all in V . Thus, given a C-linear subspace E′ ⊆ E,
we have (vk ,−1) ∈ E′ if and only if (vk ,−1) ∈ (E′ ∩V ).

Now, to prove the inequality, consider F := W ⊗
R
C, which is a C-linear subspace of E. We have

dim
C
F = dim

R
W . Also, by the observation above, we have (vk ,−1) ∈ F if and only if (vk ,−1) ∈W . Then,

the inequality simply follows from Proposition 4.2.
Next, to show the second part of the corollary, suppose the equality holds for some real subspace W ( V .

Similarly to above, consider F :=W ⊗
R
C. Note that the equality in Proposition 4.2 holds for F. Then, the

second part of Proposition 4.2 gives a C-linear subspace F′ of E which is complementary to F and for which
the equality in Proposition 4.2 holds.

Consider W ′ := F′ ∩V . Note that W ′ ⊗
R
C ⊆ F′ , which implies dim

R
W ′ ≤ dim

C
F′ . By the observation

above, {(vk ,−1)} ∩F′ = {(vk ,−1)} ∩W ′ . Therefore, we obtain

1
dimW ′

∑
k : (vk ,−1)∈W ′

vol(Pk) ≥
1

dimF′

∑
k : (vk ,−1)∈F′

vol(Pk) =
1

n+1

m∑
k=1

vol(Pk).

But we have proved the opposite inequality in the first part. Hence, equality must hold here. Moreover, W ′

is complementary to W since we have W ∩W ′ ⊆ F ∩F′ = 0 and

dim
R
W ′ = dim

C
F′ = n−dim

C
F = n−dim

R
W. �

Finally, we deduce the affine subspace concentration conditions.

Theorem 4.4 (Affine subspace concentration conditions). For every proper affine subspace A (N
R
�R

n, the
following inequality holds:

1
dim

R
A+1

∑
k :vk∈A

vol(Pk) ≤
1

n+1

m∑
k=1

vol(Pk).

In addition, whenever equality holds for some A, equality also holds for some affine subspace A′ complementary
to A.

Proof. Let xn+1 be the last coordinate of V = N
R
⊕R (� R

n+1), and let W0 be the hyperplane {xn+1 = 0}
in V . Embed N

R
into V via v 7→ (v,−1). By abuse of notation, we also use N

R
to denote the image of this

embedding, i.e., the hyperplane {xn+1 = −1} in V one unit below W0. Note that this embedding maps each
vk ∈NR

to (vk ,−1) ∈ V .
There is a one-to-one correspondence between the affine subspaces of N

R
and the linear subspaces of V

that are not contained in W0. Given a linear subspace W ⊆ V that is not contained in W0, we can get an
affine subspace in N

R
by taking the intersection A :=W ∩N

R
. On the other hand, given an affine subspace

A ⊆N
R
, we can take the linear span of A (and the origin 0 ∈ V ) to recover the linear subspace W .

Note that if a linear subspace W ⊆ V corresponds to an affine subspace A ⊆ N
R
, then dim

R
W =

dim
R
A+1. Then, it is easy to see that the inequality here follows from Corollary 4.3.

The second part also almost follows directly from Corollary 4.3, but we need to show that the comple-
mentary linear subspace W ′ ⊆ V obtained from the corollary cannot be contained in W0. Indeed, since
W0 does not contain any of the vectors (vk ,−1), every linear subspace of W0 will give us 0 on the left-hand
side of the inequality in Corollary 4.3. However, the right-hand side of the inequality is positive, so equality
cannot hold for any linear subspace of W0. Therefore, W

′ is not contained in W0, and its intersection with
N

R
gives the desired complementary affine subspace A′ . �
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