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1. Introduction

Let c,d be nonnegative integers and let X be a smooth projective complex variety of dimension n := c+d.
An important geometric invariant of X is the subgroup H2c(X,Z)alg ⊂H2c(X,Z) of algebraic cohomology
classes, which is generated by the cycle classes of codimension c algebraic subvarieties Y ⊂ X. Since the
subvarieties Y may be singular, the following question going back to Borel and Haefliger [BH61, Section 5.17]
naturally arises.

Question 1.1. Is the group H2c(X,Z)alg generated by classes of smooth subvarieties of X?

The answer to Question 1.1 is obviously positive if d = 0 or if c ≤ 1. Further positive answers were
obtained by Hironaka [Hir68, Theorem, Section 5, p. 50] when d ≤min(3, c − 1) and by Kleiman [Kle69,
Theorem 5.8] when c = 2 and d ∈ {2,3}; the answer is therefore positive for all n ≤ 5.

A first counterexample was then constructed by Hartshorne, Rees, and Thomas [HRT74, Theorem 1]
when c = 2 and d ≥ 7 (and their method should yield counterexamples for all c ≥ 2 and d ≫ c). Other
counterexamples were given by Debarre [Deb95, Théorème 6] when c = 2 and d ≥ 5, and by Benoist [Ben20,
Theorem 0.3] when d ≥ c and α(c+1) ≥ 3 (where α(m) denotes the number of ones in the binary expansion
of m).

In this article, we build on the counterexample given in [Deb95]. There, Debarre considers the Jacobian X
of a smooth projective complex curve C of genus n, polarized by its theta divisor class θ ∈H2(X,Z). The
minimal cohomology class θc

c! ∈ H
2c(X,Z) is the cycle class of the image Wn−c(C) ⊂ X of the symmetric

power C(n−c) by the Abel–Jacobi map, hence is algebraic. However, when n ≥ 2c+2, the variety Wn−c(C)
is singular and there is no general reason why its class θc

c! should be a Z-linear combination of classes of
smooth subvarieties of X. Debarre shows that this is indeed not the case if n ≥ 7, c = 2, and X is very
general.

Our main theorem extends this result to many other values of (c,n). Recall that α(m) is the number of
ones in the binary expansion of m.

Theorem 1.2 (Theorem 3.7). Let (X,θ) be a very general complex Jacobian of dimension n. Let c be a nonnegative
integer such that α(c+α(c)) > α(c) and n ≥ 4c − 2. Then the integral classes λθcc! with λ odd are algebraic but
are not Z-linear combinations of cycle classes of smooth subvarieties of X.

The weird condition α(c+α(c)) > α(c) springs naturally from our proof. It holds for integers c in the set
{2,4,5,8,9,12,16,17, . . . }. We have nothing to say when c = 3: we do not know if there exist Jacobians (X,θ)
such that θ

3

3! is not a Z-linear combination of cycle classes of smooth subvarieties of X. Applied with c = 2
and n = 6, Theorem 1.2 implies the following result.
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Corollary 1.3. There exists a smooth projective complex variety X of dimension 6 such that H4(X,Z)alg is not
generated by classes of smooth subvarieties of X.

As noted above, the groups of algebraic cohomology classes of smooth projective varieties of dimension
at most 5 are generated by classes of smooth subvarieties. The dimension of the variety X in Corollary 1.3 is
thus the lowest possible. We do not know, however, if Question 1.1 has a positive answer if c = d = 3.

The proof of Theorem 1.2 when c = 2 and n ≥ 7 given in [Deb95] relies on a Barth–Lefschetz-type theorem
for abelian varieties, on the Hirzebruch–Riemann–Roch theorem, and on the Serre construction. We can still
rely on the same Barth–Lefschetz-type theorem under our more general hypotheses. However, computations
based on the Hirzebruch–Riemann–Roch theorem become untractable in high codimension (and do not
yield a proof when c = 2 and n = 6), and we cannot use the Serre construction in general because it is
specific to codimension 2 subvarieties.

Both difficulties are overcome by resorting to complex cobordism, whose use in the theory of algebraic
cycles was pioneered by Totaro [Tot97]. We replace the integrality results derived from the Hirzebruch–
Riemann–Roch theorem with divisibility properties of Chern numbers (Proposition 2.5). Those are obtained
in Section 2 as a consequence of a detailed understanding of the structure of the complex cobordism ring.
In [Deb95], the Serre construction was used to infer restrictions on the cohomology class of a smooth
subvariety Y ⊂ X. Instead, we consider the class of Y in the complex cobordism of X and use the description
of the complex cobordism of an abelian variety (in Sections 3.1–3.2). These tools are combined in Section 3.3
to prove Theorem 1.2.

In low codimension, a different method based on complex topological K-theory and on the Grothendieck–
Riemann–Roch theorem, closer to the one used in [Deb95], gives small improvements on Theorem 1.2. We
use this method in Section 4 to prove the following.

Theorem 1.4 (Theorem 4.3). Let (X,θ) be a very general complex Jacobian of dimension n. Then λθ
4

4! is algebraic
but not a Z-linear combination of classes of smooth subvarieties of X

(a) if n ≥ 12 and λ is odd;
(b) if n ≥ 14 and λ is not divisible by 4.

Conventions

A complex variety is a separated scheme of finite type over C. If M is a compact oriented manifold of
dimension d, we let [M] ∈Hd(M,Z) be the fundamental class of M and denote by degM : Hd(M,Z)→Z

the morphism ω 7→ deg(ω⌢ [M]). We let α(m) denote the number of ones in the binary expansion of m.

2. Congruences of Chern numbers

2.1. The Hurewicz morphism of MU

In this paragraph, we recall the structure of the Hurewicz morphism

(2.1) H : π∗(MU) −→H∗(MU,Z)

of the spectrum MU representing complex cobordism.
The computation of the cohomology of complex Grassmannians and the Thom isomorphism combine

to show that H∗(MU,Z) is a polynomial ring with integral coefficients with one generator in degree 2i for
each i ≥ 1 (see [Ada74, Section I.3]). A deep theorem of Milnor shows that π∗(MU) is also a polynomial ring
with integral coefficients with one generator in degree 2i for each i ≥ 1 and that H is injective (see [Ada74,
Theorem II.8.1 and Corollary II.8.11]). Quillen’s theorem identifying π∗(MU) with the coefficient ring of the
universal formal group law [Ada74, Theorem II.8.2] and Hazewinkel’s explicit construction of a universal
formal group law [Haz78] allow us to be more precise.
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Proposition 2.1. For each i ≥ 1, there exist ui ∈ π2i(MU) and vi ∈H2i(MU,Z) such that

(a) π∗(MU) =Z[ui]i≥1;
(b) H∗(MU,Z) =Z[vi]i≥1;
(c) H(ui) = λivi , where λi = p if i = pt − 1 for some t ≥ 1 and some prime number p, and λi = 1 otherwise.

Proof. Let ui ∈ π2i(MU) be the polynomial generators of π∗(MU) specified in [Haz78, Section 34.4.1].
Induction on i using the formula [Haz78, (34.4.3)] shows that there exist vi ∈ H2i(MU,Z) such that
H(ui) = λivi . It then follows from [Ada74, Lemmas II.7.9(iii) and II.8.10] that vi generates H2i(MU,Z)
modulo its decomposable elements. Consequently, H∗(MU,Z) =Z[vi]i≥1. □

For each e ≥ 1, define the ideal Ie ⊂ π∗(MU) to be the kernel of the composition

π∗(MU)
H−−−→H∗(MU,Z) −−→H∗(MU,Z)/2e

of H and the reduction modulo 2e. Working in the monomial bases associated with the ui and the vi given
by Proposition 2.1 shows at once the following result.

Lemma 2.2. One has I1 = ⟨2,u2t−1⟩t≥1 and Ie = (I1)e.

2.2. Chern numbers

Let MU∗ be the complex cobordism ring, whose degree d elements are complex cobordism classes of
d-dimensional compact stably almost complex manifolds. The Thom–Pontrjagin construction gives an
identification

(2.2) ξ : MU∗
∼−−→ π∗(MU)

(apply [Koc96, Theorem 1.5.10] with B = BU).
Consider the polynomial ring Z[cj ]j≥1 in the Chern classes cj , graded so that cj has degree j . A degree i

element P ∈Z[cj ]j≥1 may be evaluated on a 2i-dimensional compact stably almost complex manifold M
by setting P (M) B degM(P (cj(M))). This integer only depends on the complex cobordism class of M
(see [Koc96, Section 4.3, p. 135], with B = BU and E the ordinary integral cohomology spectrum), so we
get a morphism P : MU2i → Z, called the Chern number associated with P . The following lemma is an
immediate consequence of [Koc96, Proposition 4.3.8].

Lemma 2.3. Let i ≥ 0. A morphism MU2i →Z is a Chern number if and only if it may be written as ψ ◦H ◦ξ
for some group morphism ψ : H2i(MU,Z)→Z, where H and ξ are as in (2.1) and (2.2).

We define the Segre classes si ∈Z[cj ]j≥1 to be the unique elements such that si has degree i and

(2.3)
(∑

j
cj

)(∑
i
si

)
= 1.

The Chern numbers associated with si have the following properties.

Lemma 2.4.

(a) If x ∈MU2i and x
′ ∈MU2i′ , then si+i′ (xx′) = si(x)si′ (x′).

(b) For i ≥ 0 and h ≥ 1, the function si : MU2i →Z is divisible by 2h if and only if α(i + h− 1) > 2h− 2.
(c) For i ≥ 1, the function si : MU2i → Z only takes even values and only takes values divisible by 4 on

decomposable elements.
(d) For i = 2t − 1 ≥ 1 and ui ∈MU2i as in Proposition 2.1, si(ui) ≡ 2 (mod 4).

Proof. For assertion (a), see [Ben20, Lemma 3.3]. Assertions (b) and (c) follow from a theorem of Rees and
Thomas ([RT77, Theorem 3]; see [Ben20, Theorem 3.4 and Corollary 3.5] for these exact statements). The
same result of Rees and Thomas ([RT77, Theorem 3] applied with r = 0 and n = 2t − 1) shows that not all
the values of si : MU2i →Z are divisible by 4 if i = 2t − 1. This fact combined with (c) implies (d). □
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2.3. A congruence result for the top Segre class

The next proposition is the main goal of this section. It simultaneously generalizes the theorem of Rees
and Thomas recalled in Lemma 2.4(b) (when e = 0) and [Ben20, Theorem 3.6] (when e = 1).

Proposition 2.5. Fix e ≥ 0, h ≥ 1, and i ≥ 1. The following assertions are equivalent:

(i) There exists a degree i element Q ∈Z[cj ]j≥1 such that the Chern number

si +2hQ : MU2i −→Z

only takes values divisible by 2e+h.
(ii) One has α(i + e+ h− 1) > e+2h− 2.

Proof. Assertion (i) implies that si : MU2i →Z is divisible by 2h. So does assertion (ii) by Lemma 2.4(b). We
may thus assume that the function si : MU2i →Z is indeed divisible by 2h.

Identify MU2i and π2i(MU) using (2.2). Consider the following statements:

(a) The function si
2h : MU2i →Z coincides modulo 2e with a Chern number.

(b) The function si
2h : MU2i →Z/2e factors through H2i(MU,Z) via H .

(c) The function si
2h : MU2i →Z/2e factors through H2i(MU,Z)/2e via H .

(d) The function si
2h : MU2i →Z/2e vanishes on (Ie)2i .

(e) The function si : MU2i →Z only takes values divisible by 2e+h on (Ie)2i .
(f) If i = (

∑e′
k=12

tk − 1) + j for some e′ ≤ e, then sj : MU2j →Z is divisible by 2h.

The equivalence (i)⇔(a) is clear, and (a)⇔(b) follows from Lemma 2.3. The equivalence (b)⇔(c) holds
because MU2i is Z-free. The implication (c)⇒(d) is a consequence of the definition of Ie, and the converse
holds because Z/2e is an injective Z/2e-module [Wei94, Exercise 2.3.1]. The equivalence (d)⇔(e) is
elementary. As for (e)⇔(f), it is a consequence of the description of Ie given in Lemma 2.2 and of the
properties of the Segre classes given in Lemma 2.4(a) and (d). Finally, applying Lemma 2.4(b) shows the
equivalence (f)⇔(ii). □

3. Smooth cycles on abelian varieties

3.1. Complex cobordism

We denote by MU∗(X) the complex cobordism homology theory represented by the spectrum MU,
evaluated on a topological space X. The group MUd(X) has a geometric interpretation as the group of
complex cobordism classes of continuous maps f : M → X, where M is a d-dimensional compact stably
almost complex manifold (see for instance [Swi75, Proposition 12.35]). We denote by [f ] ∈MUd(X) the class
of f . When X is a point, one recovers the ring MU∗ = π∗(MU) which we studied in Sections 2.1 and 2.2. In
general, the group MU∗(X) is naturally an MU∗-module.

If f : M → X is as above and if P ∈ Z[cj ]j≥1 of degree p and ω ∈ Hd−2p(X,Z) are given, the integer

degM
(
P (cj(M)) · f ∗ω

)
only depends on [f ] ∈MUd(X) (the argument found in [Con79, Section 17, p. 54]

for unoriented cobordism also works for complex cobordism). It is called the characteristic number of f
associated with P and ω.

Fix a point o ∈ S1. The compatibility of the homology theory MU∗ with suspension shows that MU∗(S1)
is free of rank 2 over MU∗, generated by the classes of the inclusion {o} → S

1 and of the identity S
1→ S

1

(where S
1 is endowed with the stably almost complex structure induced by a trivialization of its tangent

bundle). For N ≥ 0 and E ⊂ {1, . . . ,N }, we consider the inclusion fE : TE ↪→ (S1)N of the subtorus
TE B

∏
e∈ES

1 ×
∏
e∈{1,...,N }\E{o}.

Lemma 3.1. Fix N ≥ 1. When E describes the set of all subsets of {1, . . . ,N },
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(a) the fE,∗[TE] ∈H|E|((S1)N ,Z) form an additive basis of H∗((S1)N ,Z);
(b) the [fE] ∈MU|E|((S1)N ) form an MU∗-basis of MU∗((S1)N ).

Proof. The first assertion follows from the Künneth formula in ordinary homology and the second assertion
from the Künneth formula in complex cobordism (apply [Swi75, Theorem 13.75 i)] with E =MU). □

Lemma 3.2. Let x ∈MU2i , and let E ⊂ {1, . . . ,N } be such that |E| = d − 2i. Fix P ∈Z[cj ]j≥1 of degree l and
ω ∈ Hd−2l((S1)N ,Z). The characteristic number of x · [fE] ∈MUd((S1)N ) associated with P and ω is equal
to 0 if l , i and to P (x)deg(S1)N

(
fE,∗(1) ·ω

)
if l = i.

Proof. Let M be a 2i-dimensional compact stably almost complex manifold representing x ∈MU2i . Let
gE : M×TE → X be the composition of the second projection and fE : TE → X. We will also let hE : M×TE →
M denote the first projection. Since the stably almost complex structure on the tangent bundle on the
torus TE is stably trivial, one has cj(TE) = 0 for j > 0. It follows from the Whitney sum formula that
P (cj(M × TE)) = h∗EP (cj(M)) ∈ H2l(M × TE ,Z). As a consequence, P (cj(M × TE)) · g∗Eω ∈ H

d(M × TE ,Z)
vanishes unless l = i. When l = i, we use the projection formula to compute

degM×TE
(
P (cj(M × TE)) · g∗Eω

)
= degM×TE

(
h∗EP (cj(M)) · g∗Eω

)
= degM

(
P (cj(M))

)
degTE

(
f ∗Eω

)
= P (x)deg(S1)N

(
fE,∗(1) ·ω

)
. □

3.2. Complex cobordism of abelian varieties

Now let X be a complex abelian variety of dimension n with a principal polarization θ ∈H2(X,Z). We
identify X and (S1)N for N = 2n by means of a Lie group isomorphism X ≃ (S1)N . By Lemma 3.1(a), there
exists for each k ≥ 0 a unique Z-linear combination

(3.1) τk =
∑

E⊂{1,...,N }
|E|=2k

µE[fE] ∈MU2k(X)

such that
∑
|E|=2k µEfE,∗[TE] ∈H2k(X,Z) is Poincaré-dual to the integral class θn−k

(n−k)! or, in other words, such
that

(3.2)
∑
|E|=2k

µEfE,∗(1) =
θn−k

(n− k)!
.

Proposition 3.3. Let (X,θ) be a principally polarized complex abelian variety of dimension n. Assume that the
group Hdg2k(X,Z) of Hodge classes is generated by θ

k

k! for each k ≥ 0, and let τk ∈MU2k(X) be as in (3.1). Let
f : Y → X be a morphism of smooth projective varieties with Y of pure dimension d. Then there exists, for each
i ∈ {0, . . . ,d}, an element xi ∈MU2i such that

(3.3) [f ] =
d∑
i=0

xi · τd−i ∈MU2d(X).

Proof. Let Ri be the rank of the free Z-module MU2i , and let (yi,r )1≤r≤Ri be a Z-basis of it. Since the
MU∗-module MU∗(X) is free with basis ([fE])E⊂{1,...,N } by Lemma 3.1(b), there exist unique integers νi,r,E
such that

(3.4) [f ] =
d∑
i=0

Ri∑
r=1

yi,r · ∑
|E|=2d−2i

νi,r,E[fE]

 ∈MU2d(X).
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Fix 0 ≤ i ≤ d and 1 ≤ r ≤ Ri . As MU2i
∼−−→ π2i(MU)

H−−→ H2i(MU,Z) is an inclusion of free Z-modules
of the same rank Ri by Proposition 2.1, it follows from Lemma 2.3 that there exists a degree i element
P ∈ Z[cj ]j≥1 such that P (yi,s) is nonzero if and only if s = r . In view of Lemma 3.2 and the projection
formula, the characteristic number of (3.4) associated with P and ω ∈H2d−2i(X,Z) reads

degX
(
f∗(P (cj(Y ))) ·ω

)
= P (yi,r )degX

 ∑
|E|=2d−2i

νi,r,E · fE,∗(1) ·ω

 .
As ω is arbitrary, Poincaré duality on X implies

(3.5) f∗(P (cj(Y ))) = P (yi,r )
∑

|E|=2d−2i
νi,r,EfE,∗(1) ∈H2n−2d+2i(X,Z).

The left side of (3.5) is algebraic, hence is a Hodge class. As a consequence, so is the right side. Since
P (yi,r ) , 0, we deduce from our hypothesis that the class

∑
|E|=2d−2i νi,r,EfE,∗(1) is an integral multiple of

θn−d+i

(n−d+i)! . Equation (3.2) now implies
∑
|E|=2d−2i νi,r,E[fE] = ξi,rτd−i for some ξi,r ∈Z.

It finally follows from (3.4) that (3.3) holds with xi =
∑Ri
r=1ξi,ryi,r . □

Proposition 3.4. Keep the hypotheses and notation of Proposition 3.3. Let P ∈Z[cj ]j≥1 be of degree l for some
0 ≤ l ≤ d. Then,

degY

(
P (cj(Y )) · f ∗

(
θd−l

(d − l)!

))
=

(
n
d − l

)
P (xl).

Proof. Let us compute the characteristic number of f associated with P and θd−l

(d−l)! . Combining (3.3), (3.1),
and Lemma 3.2 shows that it is

degY

(
P (cj(Y )) · f ∗

(
θd−l

(d − l)!

))
= P (xl)

∑
|E|=2d−2l

µE degX

(
fE,∗(1) ·

θd−l

(d − l)!

)

= P (xl)degX

(
θn−d+l

(n− d + l)!
· θ

d−l

(d − l)!

)
.

Since degX(θ
n) = n!, the proposition is proven. □

3.3. Smooth subvarieties of abelian varieties

The next proposition is an application of a Barth–Lefschetz-type theorem proved by Sommese [Som82].

Proposition 3.5. Let (X,θ) be a principally polarized complex abelian variety of dimension n such that
Hdg2k(X,Z) is generated by θ

k

k! for all k ≥ 0. Let f : Y → X be the inclusion of a smooth projective subvariety of
pure codimension c. Assume that n ≥ 4c − 2l for some l ≥ 1. Then there exist a0, . . . , ac−l , ac ∈Z such that

(a) si(Y ) = aif ∗(
θi
i! ) for i ∈ {0, . . . , c − l, c};

(b) f∗[Y ] is Poincaré-dual to ac
θc
c! ∈H

2c(X,Z).

Proof. Since the subvariety Y ⊂ X is algebraic, the homology class f∗[Y ] is Poincaré-dual to a Hodge class,
which is necessarily of the form ac

θc
c! by hypothesis. This proves (b). By the self-intersection formula [Ful98,

Corollary 6.3], the top Chern class of the normal bundle NY /X is acf
∗(θ

c

c! ). Since the tangent bundle TX is
trivial, one has c(NY /X) = c(Y )−1 = s(Y ). This shows (a) for i = c.

If the abelian variety X were not simple, pulling back an ample divisor from a nontrivial quotient would
produce a nonample divisor on X, contradicting the fact that Hdg2(X,Z) is generated by θ. We deduce
that X is simple. One may thus apply [Som82, Corollary 3.5 and (3.6.1)] with B = Y to obtain πj(X,Y ,y) = 0
for j ≤ n− 2c+1 and all y ∈ Y . It follows from the version [Hat02, Theorem 4.37] of the Hurewicz theorem,
from the universal coefficient theorem, and from the long exact sequence of relative cohomology of the
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pair (X,Y ) that the restriction map H j(X,Z)→H j(Y ,Z) is an isomorphism for j ≤ n−2c. For 0 ≤ i ≤ c− l,
one may apply this fact with j = 2i because n ≥ 4c − 2l. This shows that the class si(Y ) ∈H2i(Y ,Z), which
is Hodge because it is algebraic, is the restriction to Y of a class in Hdg2i(X,Z). The latter is necessarily of
the form ai

θi
i! by hypothesis. The proof is now complete. □

Proposition 3.6. Keep the hypotheses and notation of Proposition 3.5, assume that l = 1, and suppose in addition
that α(c+α(c)) > α(c). Then ac is even.

Proof. Let Q ∈Z[cj ]j≥1 be the degree c homogeneous polynomial obtained by applying Proposition 2.5 with
i = c, e = α(c), and h = 1. Applying Proposition 3.4 with l = c and P = sc +2Q yields the identity

(3.6) degY

(
P (cj(Y )) · f ∗

(
θn−2c

(n− 2c)!

))
=

(
n

n− 2c

)
P (xc).

Using that Chern classes may be expressed as polynomials with integral coefficients in Segre classes
by (2.3), it follows from Proposition 3.5(a) that Q(cj(Y )) ∈ H2c(Y ,Z) is an integral multiple of f ∗(θ

c

c! ), say
Q(cj(Y )) = bf ∗(

θc
c! ) for some b ∈ Z. Applying Proposition 3.5(a) again, we get P (cj(Y )) = (ac + 2b)f ∗(θ

c

c! ).
Rewriting the left side of (3.6) using the projection formula and Proposition 3.5(b), we obtain

degX

(
ac
θc

c!
· (ac +2b)

θc

c!
· θ

n−2c

(n− 2c)!

)
=

(
n

n− 2c

)
P (xc).

Using degX(θ
n) = n!, we finally get

(3.7) P (xc) =
(
2c
c

)
ac(ac +2b).

Our choice of Q implies that the left side of (3.7) is divisible by 2α(c)+1. The formula for the 2-adic valuation
of the factorial given in [Rob00, Lemma, Section 5.3.1, p. 241] implies that the 2-adic valuation of

(2c
c

)
is

equal to α(c). We deduce that ac(ac +2b) is even, hence that ac is even. □

Theorem 3.7. Let (X,θ) be a very general complex Jacobian of dimension n. Let c ≥ 0 be such that α(c+α(c)) >
α(c) and n ≥ 4c − 2. Then the classes λθcc! with λ odd are algebraic but are not Z-linear combinations of cycle
classes of smooth subvarieties of X.

Proof. The integral class θc
c! is algebraic by [BL04, Poincaré’s formula 11.2.1].

The hypothesis that Hdg2k(X,Z) is generated by θk

k! for all k ≥ 0 is satisfied by [BL04, Theorem 17.5.1]

and because the integral class θk

k! is primitive. One may thus combine Propositions 3.5(b) and 3.6 to show
that the cycle classes of smooth codimension c subvarieties Y ⊂ X are even multiples of θ

c

c! . This concludes
the proof. □

Remarks 3.8.

(i) In Theorem 3.7, the hypothesis that (X,θ) is very general is only used to ensure that Hdg2k(X,Z) is
generated by θk

k! for k ≥ 0. As there exist Jacobians over Q whose Mumford–Tate group is the full symplectic
group (see [And96, Théorème 5.2 3) and Remarque (vii) below it] which apply as all Hodge classes on abelian
varieties are absolute Hodge by [Del82, Main Theorem 2.11]), one may find such an (X,θ) that is defined
over Q.

(ii) The proof of Theorem 3.7 actually shows that the class of any smooth subvariety of codimension c
of X is divisible by 2 in the group H2c(X,Z)alg.
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4. Codimension 4 cycles

Theorem 3.7 is not optimal in several respects. When c is fixed, it is sometimes possible to give stronger
restrictions on the cycle classes of smooth subvarieties of codimension c of X or results for lower values of
the dimension n of X.

To obtain such improvements, one may work with complex topological K-theory instead of complex
cobordism and replace the divisibility result for Chern numbers given in Proposition 2.5 with an application of
the Grothendieck–Riemann–Roch theorem and an integrality property of the Chern character (cf. Lemma 4.1).
This works well when c is low but becomes intractable for high values of c. We illustrate the method
when c = 4.

We start with a lemma. Let X be a topological space, and let K∗(X) = K0(X) ⊕ K1(X) be its Z/2-
graded complex topological K-theory defined in [AH61, Section 1.9]. We consider the Chern character
ch : K∗(X)→H ∗(X,Q) as in [AH61, Section 1.10].

Lemma 4.1. For N ≥ 1, the Chern character ch : K∗((S1)N ) → H ∗((S1)N ,Q) is an isomorphism onto
H ∗((S1)N ,Z).

Proof. First, suppose that N = 1. The morphism ch : K0(S1)→ H0(S1,Q) = Q has image Z because it
associates with each vector bundle its rank, and it is injective because K0(S1) ≃ Z. That ch : K1(S1)→
H1(S1,Q) is an isomorphism onto H1(S1,Z) follows from the definition of this morphism using suspension
and Bott periodicity (see [AH61, Section 1.10]) and from the fact the Chern character sends the Bott element
which is a generator of K̃0(S2) to a generator of H2(S2,Z) (see [AH61, Section 1.10, p. 206]).

It now follows from the Künneth formula in cohomology and in complex topological K-theory (for
which see [Ati62, Lemma 1]) and from the multiplicativity of the Chern character that ch : K∗((S1)N )→
H ∗((S1)N ,Q) is an isomorphism onto H ∗((S1)N ,Z). □

Proposition 4.2. Let (X,θ) be a principally polarized complex abelian variety of dimension n such that
Hdg2k(X,Z) is generated by θ

k

k! for all k ≥ 0. Let Y ⊂ X be a smooth projective subvariety of pure codimension 4.

(a) If n ≥ 12, the cohomology class of Y is an integral multiple of 2θ
4

4! .

(b) If n ≥ 14, the cohomology class of Y is an integral multiple of 4θ
4

4! .

Proof. Let f : Y → X be the inclusion map. Proposition 3.5 shows the existence of integers ai such that
si(Y ) = aif ∗(

θi
i! ) for i ∈ {0,1,2,4} (if n ≥ 12), or i ∈ {0,1,2,3,4} (if n ≥ 14), and such that, in addition, the

cohomology class of Y in X is equal to a4
θ4

4! . As the class f∗s3(Y ) is Hodge, we may also write f∗s3(Y ) = b
θ7

7!
for some b ∈Z.

As noted during the proof of Proposition 3.5, one has c(−NY /X) = s(Y )−1, hence

c(−NY /X) = 1− a1f ∗θ + (a21 − a2/2)f
∗θ2 + ((a1a2 − a31)f

∗θ3 − s3(Y ))

+ ((a41 − 3a
2
1a2/2+ a

2
2/4− a4/24)f

∗θ4 +2a1s3(Y )f
∗θ) + · · · .

One can then compute the Todd class (see [Ful98, Example 3.2.4]):

(4.1)
td(−NY /X) = 1− a1f ∗θ/2+ (4a21 − a2)f

∗θ2/24+ (a1a2 − 2a31)f
∗θ3/48

+ (144a41 − 108a
2
1a2 +12a22 + a4)f

∗θ4/17280− a1s3(Y )f ∗θ/720+ · · · .

Let χ ∈ K0(X) be the image in complex topological K-theory of the algebraic K-theory class f∗[OY ]. The
Grothendieck–Riemann–Roch theorem [Ful98, Theorem 15.2] applied to the inclusion f and to the algebraic
K-theory class [OY ] shows that ch(χ) = f∗ td(−NY /X). Since f∗f ∗ is the cup-product with the cohomology
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class of Y which equals a4
θ4

4! , this identity may be combined with (4.1) to give

(4.2)
ch(χ) = a4θ

4/24− a1a4θ5/48+ (4a21 − a2)a4θ
6/576+ (a1a2 − 2a31)a4θ

7/1152

+ (144a41 − 108a
2
1a2 +12a22 + a4)a4θ

8/414720− ba1θ8/3628800+ · · · .

By Lemma 4.1, which applies because X is diffeomorphic to (S1)2n, the left side ch(χ) of (4.2) is an integral
cohomology class, hence so is its right side.

Assume by way of contradiction that a4 is odd. The integrality of the class ch5(χ) = a1a4θ5/48 implies
that a1 is even, and the integrality of the class ch6(χ) = (4a21 − a2)a4θ6/576 shows that a2 is divisible by 4.
All terms appearing in the expression for ch8(χ) given in (4.2) are multiples of θ

8

8! with coefficients a rational

number of nonnegative 2-adic valuation, with the exception of a24θ
8/414720 = 7a24

72
θ8

8! since a4 is assumed
to be odd. It follows that ch8(χ) is not an integral cohomology class, which gives a contradiction. This
proves (a).

Now suppose n ≥ 14. Then bθ7/7! = f∗s3(Y ) = f∗f ∗(a3θ3/3!) = a3a4θ7/144, so that b = 35a3a4. Assume
by way of contradiction that a4 is not divisible by 4. By the integrality of ch5(χ) = a1a4θ5/48, we see
that a1a4 is even. The integrality of ch6(χ) = (4a21 − a2)a4θ6/576 shows that a2 is even. These pieces of
information imply that in the right side of the equality

ch8(χ) = (144a41 − 108a
2
1a2 +12a22 + a4)a4θ

8/414720− 35a1a3a4θ8/3628800,

all terms are multiples of θ
8

8! with coefficients a rational number of nonnegative 2-adic valuation, with the

exception of a24θ
8/414720 = 7a24

72
θ8

8! since we assumed that a4 is not a multiple of 4. This contradicts the
integrality of ch8(χ) and proves (b). □

Combining Proposition 4.2 with [BL04, 11.2.1 and Theorem 17.5.1], we get the following.

Theorem 4.3. Let (X,θ) be a very general complex Jacobian of dimension n. For λ ∈Z, the class λθ4

4! is algebraic
but is not a Z-linear combination of classes of smooth subvarieties of X

(a) if n ≥ 12 and λ is odd;
(b) if n ≥ 14 and λ is not divisible by 4.
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