Torus actions on quotients of affine spaces

Ana-Maria Brecan and Hans Franzen

Abstract

We study the locus of fixed points of a torus action on a GIT quotient of a complex vector space by a reductive complex algebraic group which acts linearly. We show that, under the assumption that G acts freely on the stable locus, the components of the fixed point locus are again GIT quotients of linear subspaces by Levi subgroups.

Keywords. Geometric quotients, torus actions, torus fixed points, destabilizing one-parameter subgroups

2020 Mathematics Subject Classification. 14L30

[^0]
Contents

1. Introduction. 2
2. Setup 3
3. Optimal destabilizing one-parameter subgroups 5
4. Lifts of fixed points 7
5. An embedding of quotients. 10
6. Analysis of the fixed point locus. 12
7. A necessary condition for a non-empty fixed point component 13
8. Application: Quiver moduli 14
9. Application: Torus quotients 19
References 24

1. Introduction

In this paper, we are concerned with actions of tori on geometric quotients of linear actions of reductive complex algebraic groups on vector spaces. Such geometric quotients appear very often. One prominent class of examples are moduli spaces of quivers without relations; see e.g. [Rei08] for an overview of this theory. Geometric quotients of vector spaces arise in other contexts as well. For example, every toric variety whose fan satisfies some mild hypotheses can be realized as such a quotient; see [Cox97, Theorem 2.1]. Other instances where GIT quotients of vector spaces are investigated are [ES89, Hal10, Hos14].

We study actions of a torus \mathscr{T} on a GIT quotient of the form $V^{\text {st }}(G, \theta) / G$, where G is a reductive complex algebraic group, V is a finite-dimensional representation of G, and θ is a character of G. We assume that this torus action comes from a linear \mathscr{T}-action on V that commutes with the action of G. Our main objective in this paper is to determine the locus of fixed points of this torus action.

In the case of quiver moduli, this question has been studied by Weist in [Weil3]. More precisely, he considers torus actions on moduli spaces of stable quiver representations which are given by scaling of the maps along the arrows of the quiver. He shows that the fixed point locus of such a torus action decomposes into irreducible components, each of which is isomorphic to a moduli space of stable representations of a covering quiver.

We generalize this result to GIT quotients of the form $V^{\text {st }}(G, \theta) / G$. We need to make the assumption that the action of G on the stable locus is free. This is automatically satisfied in the context of quiver moduli spaces.

Our main result, Theorem 6.3, asserts that, under the assumption from the previous paragraph, the fixed point locus of the action of a torus on $V^{s t}(G, \theta) / G$ decomposes into irreducible components, each of which is again a stable GIT quotient of a linear subspace of V by a Levi subgroup of G. More precisely, we fix a maximal torus T in G and let W be its Weyl group. For every morphism $\rho: \mathscr{T} \rightarrow T$ of algebraic groups, we set $V_{\rho}=\{v \in V \mid t . v=\rho(t) v($ all $t \in \mathscr{T})\}$ and define G_{ρ} to be the centralizer in G of im ρ.

Theorem (Theorem 6.3). The \mathscr{T}-fixed point locus $\left(V^{\text {st }}(G, \theta) / G\right)^{\mathscr{T}}$ decomposes into connected components $\bigsqcup_{\rho} F_{\rho}$ indexed by a full set of representatives of morphisms of tori $\rho: \mathscr{T} \rightarrow T$ up to conjugation with W. The component F_{ρ} equals the image of $V_{\rho} \cap V^{\text {st }}(G, \theta)$ in $V^{\text {st }}(G, \theta) / G$, it is irreducible, and it is isomorphic to

$$
V_{\rho}^{\text {st }}\left(G_{\rho}, \theta\right) / G_{\rho} .
$$

The index set of this disjoint union is infinite, but there are only finitely many ρ for which F_{ρ} is non-empty. This is discussed in Section 7.

There are two main ingredients of the proof of the above main result. The first is concerned with the description of the intersection of the (semi-)stable locus with V_{ρ}.

Theorem (Theorem 4.6). Let $\rho: \mathscr{T} \rightarrow G$ be a morphism of algebraic groups. Then
(1) $V_{\rho} \cap V^{\text {sst }}(G, \theta)=V_{\rho}^{\text {sst }}\left(G_{\rho}, \theta\right)$;
(2) $V_{\rho} \cap V^{\text {st }}(G, \theta)=V_{\rho}^{\text {st }}\left(G_{\rho}, \theta\right)$.

The proof of the first statement uses Kempf's theory of optimal destabilizing one-parameter subgroups [Kem78]. For the second statement, we need to define, associated with a one-parameter subgroup λ of G and a vector $v \in V$, a Zariski-closed subset $Y_{[\lambda]}(v)$ of G / P_{λ} and find a \mathscr{T}-fixed point of it. The definition of $Y_{[\lambda]}(v)$ can be found in Section 3.

The second major auxiliary result is Theorem 5.1.
Theorem (Theorem 5.1). The induced morphism $i_{\rho}: V_{\rho}^{\text {st }}\left(G_{\rho}, \theta\right) / G_{\rho} \rightarrow V^{\text {st }}(G, \theta) / G$ is a closed immersion.
To show this, it is enough to prove that i_{ρ} is proper, injective (on \mathbb{C}-valued points) and that it induces an injective map on tangent spaces. We show all three assertions in Section 5. Properness is shown using a result of Luna.

Throughout the paper, we work over the field of complex numbers. All results hold over an algebraically closed field of characteristic zero, though. In positive characteristic, Lemma 4.1, which is used to assign to every component of the fixed point locus a morphism $\rho: \mathscr{T} \rightarrow G$ of algebraic groups, fails; see Example 4.2. Therefore, we do not know how to describe the fixed point locus over a field of positive characteristic.

The paper is organized as follows. In Section 2, we fix the setup. Section 3 recalls Kempf's theory of optimal destabilizing one-parameter subgroups; we define the sets $Y_{[\lambda]}(v)$. In Section 4, we show that lifts of fixed points induce a morphism $\rho: \mathscr{T} \rightarrow G$, and we prove Theorem 4.6. Section 5 is devoted to the proof of Theorem 5.1. In Section 6, the main result is stated and proved. Section 7 is concerned with finiteness conditions on the index set of the irreducible components of the fixed point locus. In Sections 8 and 9 , we apply our theory to some classes of quotients. We discuss quiver moduli and show how to derive Weist's result [Weil3, Theorem 3.8] from ours in Section 8. In Section 9, we discuss the case where G is a torus and compare our description of the fixed point locus with the characterization in terms of the toric fan.

Acknowledgments

We are grateful to Michel Brion, Alan Huckleberry, and Markus Reineke for interesting conversations and insightful remarks on this subject. We would like to thank Sergey Mozgovoy, who suggested an argument that made it possible to get rid of an extra assumption. We thank the referee for various helpful comments that improved the exposition and for interesting questions.

2. Setup

Let us introduce the setup with which we are going to work throughout the article. We are interested in GIT quotients of complex vector spaces by actions of reductive complex algebraic groups. As references for actions of algebraic groups and (geometric) invariant theory, the reader may consult, for instance, [Bril0, Dol03, MFK94].

We work over the complex numbers. Let G be a connected reductive algebraic group. Let V be a finite-dimensional representation of G. For the action of an element $g \in G$ on a vector $v \in V$, we write $g v$. We consider V as an affine space, and we are interested in GIT quotients for this action. Let $X^{*}(G)$ be the group of characters of G. For $\chi \in X^{*}(G)$, we define

$$
\mathbb{C}[V]^{G, \chi}=\{f \in \mathbb{C}[V] \mid f(g v)=\chi(g) f(v) \text { all } g \in G, v \in V\}
$$

and call $f \in \mathbb{C}[V]^{G, \chi}$ a χ-semi-invariant function. Fix $\theta \in X^{*}(G)$.
Definition 2.1. Let $v \in V$.
(1) We call v a θ-semi-stable point if there exist $n>0$ and $f \in \mathbb{C}[V]^{G, n \theta}$ such that $f(v) \neq 0$. Let $V^{\text {sst }}(G, \theta) \subseteq V$ be the subset of θ-semi-stable points.
(2) The point v is called θ-stable if v is θ-semi-stable and has finite stabilizer and $G \cdot v$ is closed in $V^{\text {sst }}(G, \theta)$. Let $V^{\text {st }}(G, \theta)$ be the set of θ-stable points.
(3) We call v a θ-unstable point if v is not θ-semi-stable. Let $V^{\text {unst }}(G, \theta)$ be the set of θ-unstable points.

Remark 2.2. For a character $\chi \in X^{*}(G)$, we define the G-linearized line bundle $L(\chi)$ as the trivial line bundle together with the G-action on the total space $G \times V \times \mathbb{C} \rightarrow V \times \mathbb{C}$ given by $g \cdot(v, z)=(g v, \chi(g) z)$. Then

$$
H^{0}(V, L(\chi))^{G}=\mathbb{C}[V]^{G, \chi} ;
$$

i.e. G-invariant sections of $L(\chi)$ are the same as χ-semi-invariant functions. This shows that a point $v \in V$ is θ-semi-stable if and only if it is semi-stable with respect to $L(\theta)$ in the sense of Mumford (see [MFK94, Definition 1.7]). Our notion of θ-stability agrees with proper stability with respect to $L(\theta)$, as defined in [MFK94, Definition 1.8].

We define the graded ring $\mathbb{C}[V]_{\theta}^{G}:=\bigoplus_{n \geq 0} \mathbb{C}[V]^{G, n \theta}$. We obtain a good categorical quotient

$$
\pi: V^{\text {sst }}(G, \theta) \longrightarrow V^{\text {sst }}(G, \theta) / / G:=V / /_{L(\theta)} G=\operatorname{Proj}\left(\mathbb{C}[V]_{\theta}^{G}\right)
$$

We also define $V^{\text {st }}(G, \theta) / G:=\pi\left(V^{\text {st }}(G, \theta)\right)$. The restriction of π gives a geometric quotient.
Let us recall the Hilbert-Mumford criterion for (semi-)stability from [MFK94]. We are using the form stated in King's paper [Kin94, Proposition 2.5].

Theorem 2.3 (Hilbert-Mumford criterion). Let $v \in V$.
(1) The point v is θ-semi-stable if and only if $\langle\theta, \eta\rangle \geq 0$ for every one-parameter subgroup $\eta: \mathbb{C}^{\times} \rightarrow G$ for which $\lim _{z \rightarrow 0} \eta(z) v$ exists.
(2) The pointv is θ-stable if and only if $\langle\theta, \eta\rangle>0$ for every non-trivial one-parameter subgroup $\eta: \mathbb{C}^{\times} \rightarrow G$ for which $\lim _{z \rightarrow 0} \eta(z) v$ exists.

We will assume the following to hold throughout the text.
Assumption 2.4. We suppose that G acts freely on $V^{\text {st }}(G, \theta)$.
Assumption 2.4 guarantees that $\pi: V^{\text {st }}(G, \theta) \rightarrow V^{\text {st }}(G, \theta) / G$ is a principal G-bundle in the étale topology. This follows from Luna's slice theorem [Lun73, Section III.1]. Étale local triviality implies smoothness of $V^{\text {st }}(G, \theta) / G$.

Consider a torus \mathscr{T} := $\left(\mathbb{C}^{\times}\right)^{r}$. Suppose that \mathscr{T} acts linearly on V in such a way that the actions of G and \mathscr{T} commute.

Lemma 2.5. The subsets $V^{\text {st }}(G, \theta)$ and $V^{\text {sst }}(G, \theta)$ are \mathscr{T}-invariant.
Proof. Both assertions are easily proved using the Hilbert-Mumford criterion. We will only show the \mathscr{T}-invariance of the stable locus. The invariance of the semi-stable locus is entirely analogous.

Let $v \in V^{\text {st }}(G, \theta)$ and $t \in \mathscr{T}$. Suppose that $\eta: \mathbb{C}^{\times} \rightarrow G$ is a one-parameter subgroup for which $\lim _{z \rightarrow 0} \eta(z) t . v$ exists. As the actions of \mathscr{T} and G commute, we get $\eta(z) t \cdot v=t . \eta(z) v$, and hence

$$
\lim _{z \rightarrow 0} \eta(z) v=t^{-1} \cdot \lim _{z \rightarrow 0} \eta(z) t \cdot v
$$

exists. The stability of v implies $\langle\theta, \eta\rangle>0$.
This implies that the \mathscr{T}-action descends to an action on the quotient $V^{\text {sst }}(G, \theta) / / G$ and to $V^{\text {st }}(G, \theta) / G$. We are going to describe the fixed point locus of the latter action.

Remark 2.6. As we work in characteristic zero, the group G is linearly reductive, so the finite-dimensional representation V decomposes into irreducible representations, say $V \cong V_{1}^{n_{1}} \oplus \ldots \oplus V_{l}^{n_{l}}$, where V_{1}, \ldots, V_{l} are pairwise non-isomorphic irreducible representations of G. An application of Schur's lemma shows that $t \in \mathscr{T}$ leaves the summand $V_{i}^{n_{i}}$ invariant. Moreover, as \mathbb{C} is algebraically closed, Schur's lemma also tells us that t acts on $V_{i}^{n_{i}} \cong V_{i} \otimes \mathbb{C}^{n_{i}}$ as an element of $\mathrm{GL}_{n_{i}}(\mathbb{C})$. The thus obtained \mathscr{T}-action on $\mathbb{C}^{n_{i}}$ can be diagonalized: we find a basis $e_{i, 1}, \ldots, e_{i, n_{i}}$ of $\mathbb{C}^{n_{i}}$ such that \mathscr{T} operates on $e_{i, a}$ with weight $w_{i, a} \in X^{*}(\mathscr{T}) \cong \mathbb{Z}^{r}$. This means that every vector $v \in V$ can be decomposed in a unique way as $v=\sum_{i=1}^{l} \sum_{a=1}^{n_{i}} v_{i, a} \otimes e_{i, a}$ with $v_{i, a} \in V_{i}$ and a torus element $t \in \mathscr{T}$ acts on v by

$$
t . v=\sum_{i=1}^{l} \sum_{a=1}^{n_{i}} w_{i, a}(t) v_{i, a} \otimes e_{i, a} .
$$

The irreducible representations of G are completely classified. Choose a maximal torus T of G. Let $D \subseteq X^{*}(T)$ be the set of dominant weights. For every $\lambda \in D$, there exists a unique representation $M_{G}(\lambda)$ of G whose highest weight is λ. For a weight $\mu \in X^{*}(T)$, the dimension $d_{\lambda, \mu}$ of the weight space $M_{G}(\lambda)_{\mu}$ is combinatorially determined as the number of ways to write $\lambda-\mu$ as a sum of positive roots.

Let T be a maximal torus of G. Let $\mu \in X^{*}(T)$. By $V_{\mu}(T)$ we denote the weight space of weight μ. In the same vein, for $w \in X^{*}(\mathscr{T})$, we let $V_{w}(\mathscr{T})$ be the weight space of weight w with respect to the \mathscr{T}-action. As the actions commute, we obtain an action of $T \times \mathscr{T}$. The weight space $V_{(\mu, w)}(T \times \mathscr{T})$ agrees with $V_{\mu}(T) \cap V_{w}(\mathscr{T})$. Let $N_{T}(V)=\left\{\mu \in X^{*}(T) \mid V_{\mu}(T) \neq 0\right\}$ be the set of weights of the T-action on V. Define $N_{\mathscr{T}}(V)$ and $N_{T \times \mathscr{T}}(V)$ in just the same way.

3. Optimal destabilizing one-parameter subgroups

The theory of optimal destabilizing one-parameter subgroups is developed by Kempf in [Kem78]; see also [Kem18] for a transcript of a preliminary version of the article which contains simpler, more accessible versions of the main results. Kempf's theory is used by Hesselink [Hes78], Kirwan [Kir84], and Ness [Nes84] to give a stratification of the unstable locus. A treatment of Kempf's theory for instability with respect to a character can be found in Hoskin's paper [Hos14]. We are going to recall the basics of this theory for the convenience of the reader.

Assume that v is unstable with respect to the G-action and the stability condition θ. Then, by the Hilbert-Mumford criterion, there exists a one-parameter subgroup η of G such that $\lim _{z \rightarrow 0} \eta(z) v$ exists and $\langle\theta, \eta\rangle<0$.

Kempf shows in [Kem78] how to find a one-parameter subgroup which is "most responsible" for the instability of v. To this end, we again fix a maximal torus $T \subseteq G$ and choose an inner product (,${ }^{\prime}$) on the vector space $X_{*}(T)_{\mathbb{R}}$ which is W-invariant (i.e. $\left(w \lambda w^{-1}, w \mu w^{-1}\right)=(\lambda, \mu)$ for all $\left.\lambda, \mu \in X_{*}(T)_{\mathbb{R}}\right)$ and for which $(\lambda, \lambda) \in \mathbb{Z}$ provided that $\lambda \in X_{*}(T)$. We thus obtain a W-invariant norm $\left\|_\right\|$on $X_{*}(T)_{\mathbb{R}}$ whose square takes integral values on $X_{*}(T)$. For any $\eta \in X_{*}(G)$, there exists a $g \in G$ such that $g \eta g^{-1} \in X_{*}(T)$. By the Weyl group invariance of the norm, setting

$$
\|\eta\|:=\left\|g \eta g^{-1}\right\|
$$

is well defined. By definition, the value of $\|\eta\|$ is invariant under conjugation by G.
Now for any $v \in V$, we set

$$
m_{G}^{\theta}(v):=\inf \left\{\left.\frac{\langle\theta, \eta\rangle}{\|\eta\|} \right\rvert\, 1 \neq \eta \in X_{*}(G) \text { such that } \lim _{z \rightarrow 0} \eta(z) v \text { exists }\right\} .
$$

Obviously, $v \in V^{\text {unst }}(G, \theta)$ if and only if $m_{G}^{\theta}(v)<0$.
Definition 3.1. Let $v \in V^{\text {unst }}(G, \theta)$. A one-parameter subgroup $\lambda \in X_{*}(G)$ is called adapted to v if

- $\lim _{z \rightarrow 0} \lambda(z) v$ exists, and
- $\frac{\langle\theta, \lambda\rangle}{\|\lambda\|}=m_{G}^{\theta}(v)$.

We call a one-parameter subgroup λ primitive if it is not divisible by any integer $d \geq 2$. Let

$$
\Lambda_{G}^{\theta}(v):=\left\{\lambda \in X_{*}(G) \mid \lambda \text { is primitive and adapted to } v\right\} .
$$

Let G_{λ} be the centralizer of the image of λ inside G, and let P_{λ} be the closed subgroup

$$
P_{\lambda}=\left\{g \in G \mid \lim _{z \rightarrow 0} \lambda(z) g \lambda(z)^{-1} \text { exists }\right\} .
$$

Then P_{λ} is a parabolic subgroup of G with Levi factor G_{λ}. It can also be described as the closed subgroup whose Lie algebra ρ_{λ} is the sum of the non-negative weight spaces $\bigoplus_{n \geq 0} \mathfrak{g}_{n}^{\lambda}$ with respect to the adjoint action of λ on the Lie algebra \mathfrak{g}. The following result is [Kem78, Theorem 2.2]; we use the form stated in [Hos14, Theorem 2.15].
Theorem 3.2 (Kempf). Let $v \in V^{\text {unst }}(G, \theta)$. Then:
(1) We have $\Lambda_{G}^{\theta}(v) \neq \emptyset$.
(2) We have $\Lambda_{G}^{\theta}(g v)=g \Lambda_{G}^{\theta}(v) g^{-1}$.
(3) For any two $\lambda, \lambda^{\prime} \in \Lambda_{G}^{\theta}(v)$, the parabolic subgroups P_{λ} and $P_{\lambda^{\prime}}$ agree. We denote this subgroup by P_{v}.
(4) The subset $\Lambda_{G}^{\theta}(v) \subseteq X_{*}(G)$ is a P_{v}-conjugacy class.
(5) For every maximal torus $H \subseteq P_{v}$, there exists a unique $\lambda \in \Lambda_{G}^{\theta}(v) \cap X_{*}(H)$.

Remark 3.3. If the vector v is θ-semi-stable, then we have $\Lambda_{G}^{\theta}(v) \neq \emptyset$ as well, and for a given torus H, there is still a primitive one-parameter subgroup λ of H which is adapted to v, but λ need not be unique. This is because [Kem18, Lemma 1] requires a certain function to attain a positive value somewhere, which is not necessarily true if v is semi-stable. Hence, we cannot conclude that $P_{\lambda}=P_{\lambda^{\prime}}$, nor will $\Lambda_{G}^{\theta}(v)$ be a conjugacy class.

For our purposes, we need some further results of this kind. Fix a one-parameter subgroup $\lambda_{0} \in X_{*}(G)$. Denote by $P_{0}:=P_{\lambda_{0}}$ its associated parabolic subgroup of G. Let $\left[\lambda_{0}\right]:=\left[\lambda_{0}\right]_{G}$ be the G-conjugacy class inside $X_{*}(G)$. Define

$$
f:\left[\lambda_{0}\right] \longrightarrow G / P_{0}
$$

by $f(\lambda)=P_{\lambda}$. Note that we have identified the closed points of G / P_{0} with the set of all parabolic subgroups of G which are conjugate to P_{0}. The map f is well defined as for $\lambda=g \lambda_{0} g^{-1}$, we have $f(\lambda)=P_{\lambda}=g P_{0} g^{-1}$. The above argument also shows that f is G-equivariant and surjective.
Lemma 3.4. The fiber of f in $P \in G / P_{0}$ is a single P-conjugacy class.
Proof. Let $\lambda, \mu \in\left[\lambda_{0}\right]$ be such that $f(\lambda)=f(\mu)=P$. Choose $g, h \in G$ such that $\lambda=g \lambda_{0} g^{-1}$ and $\mu=h \lambda_{0} h^{-1}$. Then $P=g P_{0} g^{-1}=h P_{0} h^{-1}$ and thus $p_{0}:=g^{-1} h \in P_{0}$. We see that

$$
\mu=h \lambda_{0} h^{-1}=g p_{0} \lambda_{0} p_{0}^{-1} g^{-1}=(\underbrace{g p_{0} g^{-1}}_{=: p \in P}) g \lambda_{0} g^{-1}\left(g p_{0} g^{-1}\right)^{-1}=p \lambda p^{-1} .
$$

Conversely, if $f(\lambda)=P$ and $\mu=p \lambda p^{-1}$ for some $p \in P$, then it is easy to see that $f(\mu)=P$.

Now let $v \in V$ and consider the set

$$
L_{G}(v):=\left\{\lambda \in X_{*}(G) \mid \lim _{z \rightarrow 0} \lambda(z) v \text { exists }\right\} .
$$

This set can be described as follows. Consider V as a representation $V(\lambda)$ of \mathbb{C}^{\times}via λ, and consider the weight space decomposition $V(\lambda)=\bigoplus_{n \in \mathbb{Z}} V_{n}(\lambda)$, i.e.

$$
V_{n}(\lambda):=\left\{w \in V \mid \lambda(z) w=z^{n} w\left(\text { all } z \in \mathbb{C}^{\times}\right)\right\}
$$

Decompose the vector v as $v=\sum_{n \in \mathbb{Z}} v_{n}(\lambda)$ with $v_{n}(\lambda) \in V_{n}(\lambda)$. We obtain $L_{G}(v)=\left\{\lambda \in X_{*}(G) \mid v_{n}(\lambda)=\right.$ $0($ all $n<0)\}$.

Remark 3.5. For $\lambda \in L_{G}(v)$ and $p \in P_{\lambda}$, we have $p \lambda p^{-1} \in L_{G}(v)$.
Definition 3.6. We define $Y_{\left[\lambda_{0}\right]}(v):=f\left(\left[\lambda_{0}\right] \cap L_{G}(v)\right)$.
Proposition 3.7. The set $Y_{\left[\lambda_{0}\right]}(v)$ is a Zariski-closed subset of G / P_{0}.
Proof. To show this proposition, we consider the subset

$$
X_{\left[\lambda_{0}\right]}(v):=\left\{g \in G \mid \lim _{z \rightarrow 0} g \lambda_{0}(z) g^{-1} v \text { exists }\right\}
$$

Evidently, $X_{\left[\lambda_{0}\right]}(v)$ is the inverse image of $Y_{\left[\lambda_{0}\right]}(v)$ under the quotient map $\pi: G \rightarrow G / P_{0}$. This shows that $X_{\left[\lambda_{0}\right]}(v)$ is P_{0}-invariant. As π maps P_{0}-invariant closed subsets of G to closed subsets of G / P_{0}, the proposition will follow from the lemma below.

Lemma 3.8. The subset $X_{\left[\lambda_{0}\right]}(v)$ is Zariski closed in G.
Proof. We introduce some notation. Let $V_{n}:=V_{n}\left(\lambda_{0}\right)$ and $V_{\geq 0}:=\bigoplus_{m \geq 0} V_{m}$. For $g \in G$, we let

$$
V_{n}^{(g)}:=V_{n}\left(g \lambda_{0} g^{-1}\right)=g V_{n}
$$

and $v_{n}^{(g)}=v_{n}\left(g \lambda_{0} g^{-1}\right) \in V_{n}^{(g)}$, so $v=\sum_{n \in \mathbb{Z}} v_{n}^{(g)}$. Then

$$
\begin{aligned}
X_{\left[\lambda_{0}\right]}(v) & =\left\{g \in G \mid v_{n}^{(g)}=0(\text { all } n<0)\right\} \\
& =\left\{g \in G \mid g^{-1} v \in V_{\geq 0}\right\} .
\end{aligned}
$$

This can be translated into a fiber product diagram

which shows that $X_{\left[\lambda_{0}\right]}(v)$ is indeed closed.

4. Lifts of fixed points

Let $y \in\left(V^{\text {st }}(G, \theta) / G\right)^{\mathscr{T}}$, and let $x \in V^{\text {st }}(G, \theta)$ be such that $\pi(x)=y$. Then for every $t \in \mathscr{T}$ there exists a unique $g \in G$ such that $t . x=g x$ (recall that the G-action on the stable locus is assumed to be free). This yields a map $\rho=\rho_{x}: \mathscr{T} \rightarrow G$. Note that ρ depends on x and not just on y. The following argument can also be found in [Weil3, Lemma 3.1]. We give it for completeness.

Lemma 4.1. The map ρ is a morphism of algebraic groups.

Proof. Let $H=\{(g, t) \in G \times \mathscr{T} \mid t . x=g x\}$. This is a closed subgroup of $G \times \mathscr{T}$. The projection $p_{2}: H \rightarrow \mathscr{T}$ is surjective, and it is also injective by Assumption 2.4. As we work in characteristic 0 , this means that p_{2} is an isomorphism. Let $p_{1}: H \rightarrow G$ be the projection to the first component. Then ρ is given by $\rho=p_{1} \circ p_{2}^{-1}$.

Example 4.2. The following example shows that Lemma 4.1 fails in positive characteristic. Let k be an algebraically closed field of characteristic $p>0$. Let $V=\mathbb{A}^{2}$ and $G=\mathbb{G}_{m}$, which acts on V via $g \cdot\left(v_{1}, v_{2}\right)=\left(g^{p} v_{1}, g^{p} v_{2}\right)$. For the character $\theta=\mathrm{id}$, the stable locus is $V^{\text {st }}(G, \theta)=\mathbb{A}^{2} \backslash\{(0,0)\}$. The group G acts freely on the stable locus because the characteristic is p. The quotient $V^{s t}(G, \theta) / G$ is isomorphic to \mathbb{P}^{1}.

Let $\mathscr{T}=\mathbb{G}_{m}$ act on V by $t .\left(v_{1}, v_{2}\right)=\left(v_{1}, t v_{2}\right)$. This action commutes with the G-action, and the fixed points of the induced action on \mathbb{P}^{1} are $[1: 0]$ and $[0: 1]$. For the lift $x=(0,1)$, we consider the group

$$
H:=\{(g, t) \in G \times \mathscr{T} \mid t . x=g \cdot x\}=\left\{(g, t) \in G \times \mathscr{T} \mid t=g^{p}\right\}
$$

and the projections $p_{1}: H \rightarrow G$ and $p_{2}: H \rightarrow \mathscr{T}$. We argue that p_{2} is not an isomorphism. We observe that p_{1} is an isomorphism; its inverse is given by $p_{1}^{-1}(g)=\left(g, g^{p}\right)$. The composition $p_{2} \circ p_{1}^{-1}: G \rightarrow \mathscr{T}$ maps g to g^{p}. This is a bijective morphism which is not an isomorphism. Therefore, p_{2} is not an isomorphism either.

Via ρ, we obtain an action of \mathscr{T} on every G-representation; for a representation W of G, we denote the representation of \mathscr{T} obtained via ρ by ${ }_{\rho} W$. We may in particular consider ${ }_{\rho} V$. This new \mathscr{T}-action by ρ differs in general from the \mathscr{T}-action on V that we started with. We look at the subset

$$
V_{\rho}:=\{v \in V \mid t \cdot v=\rho(t) v \text { for all } t \in \mathscr{T}\}
$$

on which these two \mathscr{T}-actions agree. The following properties of V_{ρ} are obvious.
Lemma 4.3. Let y, x, and $\rho=\rho_{x}$ be as above.
(1) V_{ρ} is a linear subspace of V.
(2) V_{ρ} is a \mathscr{T}-subrepresentation of both V (with the initial \mathscr{T}-action) and ${ }_{\rho} V$.
(3) We have $x \in V_{\rho}$.
(4) We have $y \in \pi\left(V_{\rho} \cap V^{\text {st }}(G, \theta)\right) \subseteq\left(V^{\text {st }}(G, \theta) / G\right)^{\mathscr{T}}$.

The last statement of Lemma 4.3 is the reason to consider V_{ρ} in the first place. Let us define

$$
F_{\rho}:=\pi\left(V_{\rho} \cap V^{s t}(G, \theta)\right) .
$$

We will see in the following that F_{ρ} is actually a closed subset of $V^{\text {st }}(G, \theta) / G$ and is moreover the connected/irreducible component of y inside $\left(V^{\text {st }}(G, \theta) / G\right)^{\mathscr{T}}$. We will also give a more intrinsic description of F_{ρ}. For this description, it will not be important that ρ comes from the lift of a fixed point.

Fix a morphism of algebraic groups $\rho: \mathscr{T} \rightarrow G$. Let G_{ρ} be the centralizer of $\operatorname{im}(\rho)$.
Lemma 4.4. The subspace V_{ρ} is G_{ρ}-invariant.
Proof. Let $v \in V_{\rho}$ and $g \in G_{\rho}$. To show that $g v \in V_{\rho}$, consider $t \in \mathscr{T}$. We compute

$$
t . g v=g t . v=g \rho(t) v=\rho(t) g v
$$

which shows the claim.
Remark 4.5. Let T be a maximal torus which contains the image of ρ. Recall the notation from the last paragraph of Section 2. Regarding V_{ρ} as a representation of T, we obtain $\left(V_{\rho}\right)_{\mu}(T)=V_{\mu}(T) \cap V_{\rho^{*}(\mu)}(\mathscr{T})$. Consequently,

$$
N_{T}\left(V_{\rho}\right)=\left\{\mu \in X^{*}(T) \mid\left(\mu, \rho^{*}(\mu)\right) \in N_{T \times \mathscr{T}}(V)\right\} .
$$

We now move to the central result of this section.
Theorem 4.6. Let $\rho: \mathscr{T} \rightarrow G$ be a morphism of algebraic groups. Then
(1) $V_{\rho} \cap V^{\text {sst }}(G, \theta)=V_{\rho}^{\text {sst }}\left(G_{\rho}, \theta\right)$;
(2) $V_{\rho} \cap V^{\text {st }}(G, \theta)=V_{\rho}^{\text {st }}\left(G_{\rho}, \theta\right)$.

Proof. (1) Suppose that $v \in V_{\rho} \cap V^{\text {sst }}(G, \theta)$. Then the Hilbert-Mumford criterion shows at once that v belongs to $V_{\rho}^{\text {sst }}\left(G_{\rho}, \theta\right)$.

For the converse inclusion, we employ Kempf's theory of optimal one-parameter subgroups; see Section 3. Let $v \in V_{\rho}^{\text {sst }}\left(G_{\rho}, \theta\right)$. Assume that $v \in V^{\text {unst }}(G, \theta)$. Choose a primitive adapted one-parameter subgroup $\lambda \in \Lambda_{G}^{\theta}(v)$. Let $t \in \mathscr{T}$, and consider $\rho(t) \lambda \rho(t)^{-1} \in X_{*}(G)$. It is primitive, and we get

$$
\rho(t) \lambda(z) \underbrace{\rho(t)^{-1} v}_{=t^{-1} \cdot v}=\rho(t) t^{-1} .(\lambda(z) v) \xrightarrow{z \rightarrow 0} \rho(t) t^{-1} \cdot\left(\lim _{z \rightarrow 0} \lambda(z) v\right) .
$$

Moreover,

$$
\frac{\left\langle\theta, \rho(t) \lambda \rho(t)^{-1}\right\rangle}{\left\|\rho(t) \lambda \rho(t)^{-1}\right\|}=\frac{\langle\theta, \lambda\rangle}{\|\lambda\|}=m_{G}^{\theta}(v),
$$

which shows $\rho(t) \lambda \rho(t)^{-1} \in \Lambda_{G}^{\theta}(v)$. By Theorem 3.2, there exists a $p \in P_{\lambda}$ such that

$$
\begin{equation*}
p \lambda p^{-1}=\rho(t) \lambda \rho(t)^{-1} \tag{*}
\end{equation*}
$$

We re-write this identity as

$$
\lambda(z) \rho(t)^{-1} \lambda(z)^{-1}=\rho(t)^{-1} p \lambda(z) p^{-1} \lambda(z)^{-1}
$$

which, as p^{-1} lies in P_{λ}, converges as $z \rightarrow 0$. This shows that $\rho(t)$ itself belongs to P_{λ}. As $\rho(t)$ is a semi-simple element, it is contained in a maximal torus T^{\prime} of P_{λ}; in fact, the whole image of ρ lies in some maximal torus T^{\prime}. For the same reason, λ is contained in a maximal torus $T^{\prime \prime} \subseteq G_{\lambda} \subseteq P_{\lambda}$. The two maximal tori are P_{λ}-conjugate, so we find a $q \in P_{\lambda}$ such that $q T^{\prime} q^{-1}=T^{\prime \prime}$. In particular, $q \rho(t) q^{-1} \in T^{\prime \prime} \subseteq G_{\lambda}$, which implies

$$
q \rho(t) q^{-1} \lambda(z)=\lambda(z) q \rho(t) q^{-1}
$$

for all $t \in \mathscr{T}$ and all $z \in \mathbb{C}^{\times}$. As this identity holds for every t, we find $q^{-1} \lambda(z) q \in G_{\rho}$ for every z. As $q \in P_{\lambda}$, we obtain

$$
\lambda^{\prime}:=q^{-1} \lambda q \in \Lambda_{G}^{\theta}(v) \cap X_{*}\left(G_{\rho}\right) .
$$

This says λ^{\prime} is a one-parameter subgroup of G_{ρ} for which the limit $\lim _{z \rightarrow 0} \lambda^{\prime}(z) v$ exists and $\left\langle\theta, \lambda^{\prime}\right\rangle=$ $\left\|\lambda^{\prime}\right\| m_{G}^{\theta}(v)<0$. This gives a contradiction to $v \in V_{\rho}^{\text {sst }}\left(G_{\rho}, \theta\right)$.
(2) Again, as in the first item, the inclusion from left to right follows readily from the Hilbert-Mumford criterion.

Now to the converse inclusion. Let $v \in V_{\rho}^{\text {st }}\left(G_{\rho}, \theta\right)$, and assume v is not θ-stable for the G-action on V. By (1), we know that v is at least θ-semi-stable for the G-action. So there must be a non-trivial one-parameter subgroup $\lambda \in X_{*}(G)$ for which $\lim _{z \rightarrow 0} \lambda(z) v$ exists-so $\lambda \in L_{G}(v)$-and such that $\langle\theta, \lambda\rangle=0$. Then $\left\langle\theta, g \lambda g^{-1}\right\rangle=0$ for every $g \in G$, and as in (1) we see that $\rho(t) \lambda \rho(t)^{-1} \in L_{G}(v)$ for every $t \in \mathscr{T}$. Therefore, \mathscr{T} acts via ρ on $[\lambda] \cap L_{G}(v)$, and by the G-equivariance of the map $f:[\lambda] \cap L_{G}(v) \rightarrow G / P_{\lambda}$, the Zariski-closed subset $Y_{[\lambda]}(v) \subseteq G / P_{\lambda}$ (see Proposition 3.7) is \mathscr{T}-invariant. By Borel's fixed point theorem, there is a fixed point for the \mathscr{T}-action on $Y_{[\lambda]}(v)$. Let P be a \mathscr{T}-fixed point in $Y_{[\lambda]}(v)$. Then there exists a $\mu \in[\lambda] \cap L_{G}(v)$ such that $P=P_{\mu}$. By the fixed point property, we get

$$
f\left(\rho(t) \mu \rho(t)^{-1}\right)=f(\mu)
$$

As the fiber $f^{-1}\left(P_{\mu}\right)$ is a P_{μ} conjugacy class (see Lemma 3.4), we find a $p \in P_{\mu}$ such that $p \mu p^{-1}=\rho(t) \mu \rho(t)^{-1}$. Now we are in equation $\left(^{*}\right.$) of the proof of (1). We may conclude in the same way that $q^{-1} \mu q \in L_{G}(v) \cap X_{*}\left(G_{\rho}\right)=$ $L_{G_{\rho}}(v)$ for some $q \in P_{\mu}$. But $\left\langle\theta, q^{-1} \mu q\right\rangle=\langle\theta, \mu\rangle=\langle\theta, \lambda\rangle=0$, which contradicts $v \in V_{\rho}^{\text {st }}\left(G_{\rho}, \theta\right)$.

5. An embedding of quotients

We now look at the inclusion of the linear subspace V_{ρ} into V. The intersection with $V^{\text {st }}(G, \theta)$ yields a closed embedding $V_{\rho}^{\text {st }}\left(G_{\rho}, \theta\right) \rightarrow V^{\text {st }}(G, \theta)$. It is G_{ρ}-invariant. We obtain a morphism $i_{\rho}: V_{\rho}^{\text {st }}\left(G_{\rho}, \theta\right) / G_{\rho} \rightarrow$ $V^{\text {st }}(G, \theta) / G$. We will show the following in this section.

Theorem 5.1. The induced morphism $i_{\rho}: V_{\rho}^{\text {st }}\left(G_{\rho}, \theta\right) / G_{\rho} \rightarrow V^{\text {st }}(G, \theta) / G$ is a closed immersion.
In a previous version of this paper, the above theorem was only shown under the assumption that there were no T-invariants for a maximal torus T of G. Sergey Mozgovoy suggested to us an argument to get rid of this assumption. It goes along the lines of [Moz23, Lemma 6.6] and uses the machinery of étale slices. After we received his suggestion, we found a related but different argument which allows us to show a finiteness statement on the affine quotients, which might be of independent interest. This is Proposition 5.4. From this proposition and two other lemmas, Theorem 5.1 will follow.

We use the following criterion for closed immersions. It can be stated in greater generality. We have adapted it to our situation. A proof of (a more general version of) the criterion below is due to Osserman.

Proposition 5.2. Let $f: X \rightarrow Y$ be a morphism of complex varieties. If
(1) f is proper,
(2) f is injective on closed points, and
(3) the induced map $d_{x} f: T_{x} X \rightarrow T_{f(x)} Y$ is injective for every closed point $x \in X$, then f is a closed immersion.

We will prove these three properties for the morphism i_{ρ}. We need some auxiliary results. The following is the main result of [Lun75].

Theorem 5.3 (Luna). Let X be an affine variety, G a reductive algebraic group which acts on X, and $H \subseteq G a$ closed reductive subgroup. Then $N_{G}(H)$ is reductive, and $X^{H} / / N_{G}(H) \rightarrow X / / G$ is a finite morphism.

The proof uses the machinery of étale slices, which requires the ground field to be algebraically closed of characteristic zero. Let us mention that a version of this result exists in positive characteristic as well; see [BGM19, Theorem 1.1]. We use Luna's result to show the following.

Proposition 5.4. The morphism $V_{\rho} / / G_{\rho} \rightarrow V / / G$ is finite.
Proof. Let $X=V \times \mathbb{C}^{r}$, where r is the rank of \mathscr{T}. On X we consider the action of $\bar{G}=G \times \mathscr{T}$ via

$$
(g, t) *(v, w)=(g t . v, t w) .
$$

Consider the reductive subgroup $\Delta_{\rho}:=\left\{\left(\rho(t)^{-1}, t\right) \mid t \in \mathscr{T}\right\}$ of \bar{G}. We see that $N_{\bar{G}}\left(\Delta_{\rho}\right)=G_{\rho} \times \mathscr{T}$ and $X^{\Delta_{\rho}}=V_{\rho} \times\{0\}$. The action of $G_{\rho} \times \mathscr{T}$ on $V_{\rho} \times\{0\}$ is given by $(g, t) *(v, 0)=(g t . v, 0)=(g \rho(t) v, 0)$. This shows that

$$
\mathbb{C}\left[V_{\rho} \times\{0\}\right]^{G_{\rho} \times \mathscr{T}} \cong \mathbb{C}\left[V_{\rho}\right]^{G_{\rho}}
$$

We obtain the following commutative diagram:

The right-hand map comes from $V \rightarrow V \times \mathbb{C}^{r}, v \mapsto(v, 0)$. The bottom map is a finite morphism by Luna's result, so the top map is as well.

Lemma 5.5. The morphism i_{ρ} is proper.

Proof. Consider the commutative diagram

Both vertical morphisms are projective, in particular proper. The bottom map is proper by Proposition 5.4. Therefore, $V_{\rho}^{\text {sst }}\left(G_{\rho}, \theta\right) / / G_{\rho} \rightarrow V^{\text {sst }}(G, \theta) / / G$ is proper. As, by Theorem 4.6, i_{ρ} arises as the base change of this morphism, i_{ρ} is also proper.

Lemma 5.6. The map i_{ρ} is injective on closed points.
Proof. Let $v_{1}, v_{2} \in V_{\rho}^{\text {st }}\left(G_{\rho}, \theta\right)$ be such that $i_{\rho}\left(v_{1}\right)=i_{\rho}\left(v_{2}\right)$. Then there exists a $g \in G$ such that $g v_{1}=v_{2}$. We need to show that $g \in G_{\rho}$, so we take $t \in \mathscr{T}$ and show g commutes with $\rho(t)$. We see that

$$
\rho(t) g v_{1}=\rho(t) v_{2}=t \cdot v_{2}=t . g v_{1}=g t \cdot v_{1}=g \rho(t) v_{1} .
$$

We have used that v_{1} and v_{2} belong to V_{ρ}. We deduce that the commutator of g and $\rho(t)$ lies in the stabilizer $\operatorname{Stab}_{G}\left(v_{1}\right)$. As v_{1} lies in $V^{\text {st }}(G, \theta)$ by Theorem 4.6 and as stable points have trivial stabilizers by Assumption 2.4, we obtain the desired commutativity.

We now consider the tangent spaces. The tangent space of a G-principal bundle quotient $Y=X / G$ at a point $y=\pi(x)$ may be identified as

$$
T_{y} Y \cong T_{x} X / \operatorname{im}\left(d_{e} \operatorname{act}_{G}\left(_, x\right)\right),
$$

where act $_{G}: G \times X \rightarrow X$ is the action map and d_{e} act ${ }_{G}\left(_, x\right): \mathfrak{g} \rightarrow T_{X} X$ is the derivative at e of the map $G \rightarrow X, g \mapsto g x$. Here, $X=V^{\text {st }}(G, \theta)$ is open in a vector space, so $T_{x} X \cong V$. As the action is linear, V becomes a \mathfrak{g}-module via the derivative $d_{e} \sigma: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$. We see that

$$
\left(\left(d_{e} \sigma\right)(\xi)\right)(v)=\left(d_{e} \operatorname{act}_{G}\left(_, v\right)\right)(\xi)
$$

for all $\xi \in \mathfrak{g}$ and $v \in V$. We write $\xi \cdot v$ for $\left(\left(d_{e} \sigma\right)(\xi)\right)(v)$. For $g \in G, \xi \in \mathfrak{g}$, and $v \in V, g(\xi \cdot v)=\operatorname{Ad}_{g}(\xi) \cdot g v$ holds; see for instance [Kra84, Section II.2.3].

Lemma 5.7. Let $v \in V_{\rho}^{\text {st }}\left(G_{\rho}, \theta\right)$. Then the induced map

$$
d_{\pi_{\rho}(v)} i_{\rho}: T_{\pi_{\rho}(v)}\left(V_{\rho}^{\text {st }}\left(G_{\rho}, \theta\right) / G_{\rho}\right) \longrightarrow T_{\pi(v)}\left(V^{\text {st }}(G, \theta) / G\right)
$$

is injective.
Proof. Abbreviate $Y:=V^{\text {st }}(G, \theta) / G$ and $Y_{\rho}:=V_{\rho}^{\text {st }}\left(G_{\rho}, \theta\right) / G_{\rho}$. Let $x:=\pi_{\rho}(v)$ and $y:=\pi(v)=i_{\rho}(x)$. We have already argued that

$$
\begin{aligned}
T_{y} Y \cong V / \operatorname{im}\left(d_{e} \operatorname{act}_{G}\left(_, v\right)\right), \\
T_{x} Y_{\rho} \cong V_{\rho} / \operatorname{im}\left(d_{e} \operatorname{act}_{G_{\rho}}\left(_, v\right)\right) .
\end{aligned}
$$

Let K be the kernel of $d_{x} i_{\rho}$. We have the following commutative diagram with exact rows and columns:

The snake lemma then tells us that there exists a linear map $K \rightarrow \mathfrak{g} / \mathfrak{g}_{\rho}$ such that the sequence

$$
0 \longrightarrow K \longrightarrow \mathfrak{g} / \mathfrak{g}_{\rho} \longrightarrow V / V_{\rho}
$$

is exact. In order to show that $K=0$, it suffices to check that $\mathfrak{g} / \mathfrak{g}_{\rho} \rightarrow V / V_{\rho}$ is injective.
The Lie algebra \mathfrak{g}_{ρ} is given as follows. Recall that G_{ρ} is the centralizer of the image of ρ. Therefore,

$$
\mathfrak{g}_{\rho}=\left\{\xi \in \mathfrak{g} \mid \operatorname{Ad}_{\rho(t)}(\xi)=\xi \text { for all } t \in \mathscr{T}\right\} .
$$

Now let $\xi \in \mathfrak{g}$, and suppose that $\xi \cdot v \in V_{\rho}$. We show that this implies $\xi \in \mathfrak{g}_{\rho}$, which concludes the proof. To this end, let $t \in \mathscr{T}$, and consider $\operatorname{Ad}_{\rho(t)}(\xi)$. We apply this element to $\rho(t) v$ and obtain

$$
\begin{aligned}
\operatorname{Ad}_{\rho(t)}(\xi) \cdot \rho(t) v & =\rho(t) \cdot(\xi \cdot v) \\
& =t \cdot(\xi \cdot v) \\
& =\xi \cdot(t \cdot v) \\
& =\xi \cdot(\rho(t) v)
\end{aligned}
$$

as both v and $\xi \cdot v$ belong to V_{ρ}. This shows that $\operatorname{Ad}_{\rho(t)}(\xi)-\xi$ lies in the Lie algebra of the stabilizer $\operatorname{Stab}_{G}(\rho(t) v)$. By the stability of $\rho(t) v$ and Assumption 2.4, the stabilizer is trivial. Hence we may conclude that $\operatorname{Ad}_{\rho(t)}(\xi)=\xi$, which finishes the proof.

Proof of Theorem 5.1. We have established the three requirements of Proposition 5.2. This proves Theorem 5.1.

6. Analysis of the fixed point locus

In this section, we will prove the main result of the paper, a description of the torus fixed point locus of the stable quotient. First, we are concerned with the index set of the decomposition of the fixed point locus into irreducible components.

Lemma 6.1. Let $\rho_{1}, \rho_{2}: \mathscr{T} \rightarrow G$ be morphisms such that $F_{\rho_{1}} \cap F_{\rho_{2}} \neq \emptyset$. Then ρ_{1} and ρ_{2} are G-conjugate, and $F_{\rho_{1}}=F_{\rho_{2}}$.

Proof. First of all, if ρ_{1} and ρ_{2} are G-conjugate, then it is immediate that $F_{\rho_{1}}$ and $F_{\rho_{2}}$ agree.

Concerning the other assertion, let $y \in F_{\rho_{1}} \cap F_{\rho_{2}}$. Then there exist $x_{i} \in V_{\rho_{i}} \cap V^{\text {st }}(G, \theta)$ such that $\pi\left(x_{i}\right)=y$ for $i=1,2$. As π is a geometric quotient, we find a $g \in G$ such that $x_{2}=g x_{1}$. Then

$$
t . x_{2}=\rho_{2}(t) x_{2}=\rho_{2}(t) g x_{1}
$$

and on the other hand

$$
t \cdot x_{2}=t \cdot g x_{1}=g t \cdot x_{1}=g \rho_{1}(t) x_{1}
$$

This implies that $g^{-1} \rho_{2}(t) g x_{1}=\rho_{1}(t) x_{1}$, and the stability of x_{1} implies that $\rho_{1}(t)=g^{-1} \rho_{2}(t) g$ as the G-action on the stable locus is free.

We fix a maximal torus $T \subseteq G$. Let $W=N_{G}(T) / T$ be the corresponding Weyl group. Now observe that for any $g \in G$, we get $F_{\rho_{x}}=F_{\rho_{g x}}$ and $\rho_{g x}=g \rho_{x} g^{-1}$. The image of the morphism ρ_{x} is a torus; it is therefore contained in a maximal torus of G. As far as the sets $F_{\rho_{x}}$ are concerned, we may hence without loss of generality assume the image of ρ_{x} to be contained in the fixed maximal torus $T \subseteq G —$ for if not, we may replace x with $g x$ for a suitable g as all maximal tori are conjugate. By a slight abuse of notation, we also denote the morphism $\mathscr{T} \rightarrow T$ by ρ.

Lemma 6.2. Let $\rho_{1}, \rho_{2}: \mathscr{T} \rightarrow T$ be morphisms. Assume that there exists an $h \in G$ such that $\rho_{2}=h \rho_{1} h^{-1}$. Then there exists a $g \in N_{G}(T)$ such that $\rho_{2}=g \rho_{1} g^{-1}$.

Proof. Let $s_{1}, s_{2} \in T$, and suppose they are conjugate. Then, by [Car93, Proposition 3.7.1], there exists a $g \in N_{G}(T)$ such that $s_{2}=g s_{1} g^{-1}$. The book [Car93] deals with finite groups of Lie type, but the proposition holds true for every algebraic group which has a BN pair.

Hence for every $t \in \mathscr{T}$, there exists a $g_{t} \in N_{G}(T)$ such that $\rho_{2}(t)=g_{t} \rho_{1}(t) g_{t}^{-1}$. The element g_{t} is unique up to $N_{G}(T) \cap C_{G}\left(\rho_{1}(t)\right)$. Let $U=\left\{t \in \mathscr{T} \mid C_{G}\left(\rho_{1}(t)\right)=C_{G}\left(\rho_{1}\right)\right\}$. This is an open dense subset of \mathscr{T}. Recall that $C_{G}\left(\rho_{1}\right)=G_{\rho_{1}}$. We obtain a map $U \rightarrow N_{G}(T) /\left(N_{G}(T) \cap G_{\rho_{1}}\right)$. This map is locally constant, and the irreducibility of U forces it to be constant, say of value w. We choose a lift g of w to $N_{G}(T)$. Then $\rho_{2}(t)=g \rho_{1}(t) g^{-1}$ for all t in the dense subset U. This proves the lemma.

We now state our main result, the description of the components of the fixed point locus of $V^{\text {st }}(G, \theta) / G$ under the action of \mathscr{T}.

Theorem 6.3. The \mathscr{T}-fixed point locus $\left(V^{\text {st }}(G, \theta) / G\right)^{\mathscr{T}}$ decomposes into connected components $\bigsqcup_{\rho} F_{\rho}$ indexed by a full set of representatives of morphisms of tori $\rho: \mathscr{T} \rightarrow T$ up to conjugation with W. The component F_{ρ} equals $\pi\left(V_{\rho} \cap V^{\mathrm{st}}(G, \theta)\right)$, it is irreducible, and it is isomorphic to

$$
V_{\rho}^{\text {st }}\left(G_{\rho}, \theta\right) / G_{\rho}
$$

Proof. We have seen that every fixed point is contained in some subset F_{ρ} which was defined as $\pi\left(V_{\rho} \cap V^{\text {st }}(G, \theta)\right)$. By Lemma 6.1, different conjugacy classes yield disjoint F_{ρ}. It suffices to consider morphisms $\rho: \mathscr{T} \rightarrow T$ up to Weyl group action by Lemma 6.2 and the reasoning before the lemma. By Theorem 4.6, $F_{\rho}=\pi\left(V_{\rho}^{\text {st }}\left(G_{\rho}, \theta\right)\right)$, and by Theorem 5.1, the morphism i_{ρ} provides an isomorphism from $V_{\rho}^{\text {st }}\left(G_{\rho}, \theta\right) / G_{\rho}$ onto its image, which is F_{ρ}, and which is closed. A variety of the form $V_{\rho}^{\text {st }}\left(G_{\rho}, \theta\right) / G_{\rho}$ is obviously irreducible.

7. A necessary condition for a non-empty fixed point component

The index set of the disjoint union in Theorem 6.3 is infinite; however, there are just finitely many ρ for which F_{ρ} is non-empty. It seems hard in this generality to give a necessary and sufficient condition for $F_{\rho} \neq \emptyset$. Still, it is possible to find a necessary condition which leaves us with just finitely many possibilities.

Recall the notation $N_{T}(V)$ for the set of weights of the action of T on V. We also want to introduce the symbol $\mathscr{N}_{T}(V)$ for the \mathbb{Q}-linear subspace of $X^{*}(T)_{\mathbb{Q}}$ which is spanned by $N_{T}(V)$.

Lemma 7.1. If there exists a vector $v \in V$ with a finite stabilizer, then $\mathscr{N}_{T}(V)=X^{*}(T)_{\mathbb{Q}}$.
Proof. Assume there are $\mu \in X^{*}(T)-\left(\mathscr{N}_{T}(V) \cap X^{*}(T)\right)$. Let $N_{T}(V)=\left\{\mu_{1}, \ldots, \mu_{r}\right\}$. Then we find a oneparameter subgroup $\lambda: \mathbb{C}^{\times} \rightarrow T$ such that $\langle\mu, \lambda\rangle \neq 0$ while $\left\langle\mu_{i}, \lambda\right\rangle=0$ for $i=1, \ldots, r$. The subgroup $\lambda\left(\mathbb{C}^{\times}\right)$ acts trivially on V, and as λ is non-trivial, this subgroup $\lambda\left(\mathbb{C}^{\times}\right)$is infinite.

In particular, we see that $\mathscr{N}_{T}(V)=X^{*}(T)_{\mathbb{Q}}$ is necessary for the existence of stable points for the G-action (with respect to any stability parameter θ).

Proposition 7.2.

(1) Let $\rho: \mathscr{T} \rightarrow T$ be a morphism. If $F_{\rho} \neq \emptyset$, then $\mathscr{N}_{T}\left(V_{\rho}\right)=X^{*}(T)_{\mathbb{Q}}$.
(2) The set $\left\{\rho: \mathscr{T} \rightarrow T\right.$ morphism $\left.\mid \mathscr{N}_{T}\left(V_{\rho}\right)=X^{*}(T)_{\mathbb{Q}}\right\}$ is finite.

Proof. The first assertion follows from Lemma 7.1 and the characterization of F_{ρ} as $V_{\rho}^{\text {st }}\left(G_{\rho}, \theta\right) / G_{\rho}$. The second claim follows from the identity $N_{T}\left(V_{\rho}\right)=\left\{\mu \in X^{*}(T) \mid\left(\mu, \rho^{*}(\mu)\right) \in N_{T \times \mathscr{T}}(V)\right\}$ (see Remark 4.5) and the following lemma.

Lemma 7.3. Let X and Y be lattices. Let $E \subseteq X \times Y$ be a finite subset. For a \mathbb{Z}-linear map $f: X \rightarrow Y$, consider $E_{f}:=\{x \in X \mid(x, f(x)) \in E\}$. Then the set

$$
\left\{f \in \operatorname{Hom}_{\mathbb{Z}}(X, Y) \mid\left\langle E_{f}\right\rangle_{\mathbb{Q}}=X_{\mathbb{Q}}\right\}
$$

is finite.
Proof. Let F be the set in question. Let E_{X} and E_{Y} be the images of E under the projections $X \times Y \rightarrow X$ and $X \times Y \rightarrow Y$. Assume that $F \neq \emptyset$. Then $\left\langle E_{X}\right\rangle_{\mathbb{Q}}=X_{\mathbb{Q}}$.
We equip $X_{\mathbb{R}}$ and $Y_{\mathbb{R}}$ with norms, both denoted by $\|\cdot\|$. For $f \in \operatorname{Hom}\left(X_{\mathbb{R}}, Y_{\mathbb{R}}\right)$, let $\|f\|=\max _{\|x\| \leq 1}\|f(x)\|$ be the operator norm associated with these two norms. Define

$$
R:=\max _{y \in E_{Y}}\|y\| .
$$

Let $B \subseteq E_{X}$ be a subset which is an \mathbb{R}-basis of $X_{\mathbb{R}}$. Then we find a unique scalar product on $X_{\mathbb{R}}$ for which B is an orthonormal basis. Let $\|\cdot\|_{B}$ be the associated norm on $X_{\mathbb{R}}$, and let $\|f\|_{B}=\max _{\|x\|_{B} \leq 1}\|f(x)\|$ be the corresponding operator norm on $\operatorname{Hom}\left(X_{\mathbb{R}}, Y_{\mathbb{R}}\right)$. As $\operatorname{Hom}\left(X_{\mathbb{R}}, Y_{\mathbb{R}}\right)$ is finite-dimensional, this norm is equivalent to the operator norm $\|\cdot\|$ from above. We find $d_{B}, D_{B}>0$ such that $d_{B}\|f\| \leq\|f\|_{B} \leq D_{B}\|f\|$ for all $f \in \operatorname{Hom}\left(X_{\mathbb{R}}, Y_{\mathbb{R}}\right)$. Let $d>0$ be the minimum of all d_{B}, where B ranges over all bases $B \subseteq E_{X}$.

Now let $f \in F$. Then $\left\langle E_{f}\right\rangle_{\mathbb{R}}=X_{\mathbb{R}}$ and $f\left(E_{f}\right) \subseteq E_{Y}$. Choose a basis $B=\left\{x_{1}, \ldots, x_{n}\right\} \subseteq E_{f}$ of $X_{\mathbb{R}}$. Let $x=\sum \lambda_{i} x_{i} \in X$ be such that $\|x\|_{B} \leq 1$. This implies $\|\lambda\|_{2}^{2}=\sum\left|\lambda_{i}\right|^{2} \leq 1$, where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. It is well known that $\|\lambda\|_{1} \leq \sqrt{n}\|\lambda\|_{2}$. Now

$$
\|f(x)\| \leq \underbrace{\sum_{i=1}^{n}\left|\lambda_{i}\right|}_{\leq \sqrt{n}} \underbrace{\mid f\left(x_{i}\right) \|}_{\leq R} \leq R \sqrt{n}
$$

and therefore $\|f\|_{B} \leq R \sqrt{n}$. This tells us $\|f\| \leq \frac{1}{d_{B}}\|f\|_{B} \leq \frac{R \sqrt{n}}{d}$. We have shown that the set $\{f \in$ $\left.\operatorname{Hom}\left(X_{\mathbb{R}}, Y_{\mathbb{R}}\right) \mid\left\langle E_{f}\right\rangle_{\mathbb{R}}=X_{\mathbb{R}}\right\}$ is bounded. The set F is the set of lattice points of this set and is therefore finite.

8. Application: Quiver moduli

Before we discuss the general theory of torus actions on quiver moduli, let us look at a well-known example first.

Example 8.1. Let $G=\mathrm{GL}_{m}(\mathbb{C})$, which acts on $V=M_{m \times n}(\mathbb{C})$, the space of $m \times n$ matrices, by left multiplication. Let $V_{0}=\mathbb{C}^{m}$ be the natural representation of $\mathrm{GL}_{m}(\mathbb{C})$. Then $V \cong V_{0} \otimes \mathbb{C}^{n}$.

Assume that $m \leq n$. Let $\theta=\operatorname{det} \in X^{*}(G)$. The ring $\mathbb{C}[V]^{G, \operatorname{det}}$ is generated by the maximal minors of an $m \times n$ matrix. This shows that a matrix A is θ-semi-stable if and only if its rank is m. Every semi-stable point is therefore stable. The quotient $V^{\text {st }}(G, \theta) / G$ identifies with the Grassmannian $\mathrm{Gr}_{n-m}\left(\mathbb{C}^{n}\right)$ by assigning to a matrix A of full rank its kernel. Fix the maximal torus T of diagonal matrices. The character lattice is $X^{*}(T)=\mathbb{Z} \varepsilon_{1} \oplus \ldots \oplus \mathbb{Z} \varepsilon_{m}$, where $\varepsilon_{i}\left(\operatorname{diag}\left(s_{1}, \ldots, s_{m}\right)\right)=s_{i}$. Note that the first fundamental weight is $\omega_{1}=\varepsilon_{1}$ and the natural representation V_{0} has highest weight ω_{1}.

Let $\mathscr{T}=\mathbb{C}^{\times}$. We choose integers w_{1}, \ldots, w_{n}. We let \mathscr{T} act on V by right multiplication with $\operatorname{diag}\left(t^{w_{1}}, \ldots, t^{w_{n}}\right)$. Let us assume that $w_{1} \geq \ldots \geq w_{n}$, and let $0=p_{0}<p_{1}<\ldots<p_{k}=n$ be such that

$$
w_{1}=\cdots=w_{p_{1}}>w_{p_{1}+1}=\cdots=w_{p_{2}}>\cdots>w_{p_{k-1}+1}=\cdots=w_{n}
$$

Define $q_{j}=p_{j}-p_{j-1}$ for $j=1, \ldots, k$.
We now consider the fixed point components. Let $\rho: \mathbb{C}^{\times} \rightarrow T$ be a one-parameter subgroup; it is given by $\rho(t)=\operatorname{diag}\left(t^{r_{1}}, \ldots, t^{r_{m}}\right)$. As we consider one-parameter subgroups up to conjugation by $W=S_{m}$, we may assume $r_{1} \geq \ldots \geq r_{m}$. Let $0=s_{0}<s_{1}<\ldots<s_{l}=m$ be such that

$$
r_{1}=\cdots=r_{s_{1}}>r_{s_{1}+1}=\cdots=r_{s_{2}}>\cdots>r_{s_{l-1}+1}=\cdots=r_{m},
$$

and define $t_{i}=s_{i}-s_{i-1}$ for $i=1, \ldots, l$. We get $G_{\rho}=\mathrm{GL}_{t_{1}}(\mathbb{C}) \times \cdots \times \mathrm{GL}_{t_{l}}(\mathbb{C})$, viewed as block-diagonal matrices in $\mathrm{GL}_{m}(\mathbb{C})$. The linear subspace $V_{\rho} \subseteq V$ by definition consists of all matrices $A=\left(a_{i j}\right)$ for which right multiplication with $\operatorname{diag}\left(t^{w_{1}}, \ldots, t^{w_{n}}\right)$ agrees with left multiplication with $\operatorname{diag}\left(t^{r_{1}}, \ldots, t^{r_{m}}\right)$. This forces $a_{i j}=0$ whenever $r_{i} \neq w_{j}$. Let $I \subseteq\{1, \ldots, l\}$ be the subset of those i for which there exists a $j \in\{1, \ldots, k\}$ such that

$$
r_{s_{i}}=w_{p_{j}}
$$

Such an index j is unique. Let $I=\left\{i_{1}<\cdots<i_{u}\right\}$. The index corresponding to i_{v} will be denoted by j_{v}. We hence obtain an increasing sequence $j_{1}<\cdots<j_{u}$. As a G_{ρ}-representation, the subspace V_{ρ} is isomorphic to

$$
\bigoplus_{v=1}^{u} M_{t_{i_{v} \times q_{j v}}}(\mathbb{C}),
$$

where G_{ρ} acts on the $v^{\text {th }}$ summand by left multiplication with the $i_{v}^{\text {th }}$ factor in G_{ρ}.
For $F_{\rho} \neq \emptyset$, it is necessary by Proposition 7.2 that $\mathscr{N}_{T}\left(V_{\rho}\right)=X^{*}(T)_{\mathbb{Q}}$, which says that a matrix in V_{ρ} must have no zero rows. Thus $I=\{1, \ldots, l\}$. (This tallies with the observation that an $m \times n$ matrix with rank m cannot have zero rows.) We get $i_{v}=v$ and $k \geq l$. A matrix $A \in V_{\rho}$ therefore has the following block shape:

$$
\left(\begin{array}{ccccccc}
\cdots & \boxed{t_{1} \times q_{j_{1}}} & \cdots & & & & \\
& & \cdots & \boxed{t_{2} \times q_{j_{2}}} & \cdots & & \\
& & & & \ddots & & \\
& & & & & \cdots & \boxed{t_{l} \times q_{j_{l}}}
\end{array}\right) \cdots .
$$

A matrix of this block shape can only have maximal rank if $q_{j_{i}} \geq t_{i}$ for all $i=1, \ldots, l$. If this is satisfied, then the fixed point component is, by Theorem 6.3, isomorphic to

$$
F_{\rho} \cong \prod_{i=1}^{l} \operatorname{Gr}_{t_{i}}\left(\mathbb{C}^{q_{j_{i}}}\right)
$$

The one-parameter subgroups ρ which occur are parametrized by the following finite set of data:

- a number $l \leq \min \{m, k\}$ and a sequence $0=s_{0}<s_{1}<\cdots<s_{l}=m$,
- a sequence $1 \leq j_{1}<\cdots<j_{l} \leq k$
such that $t_{i}:=s_{i}-s_{i-1} \leq q_{j_{i}}$ for every $i=1, \ldots, l$.
Torus actions on quiver moduli contain Example 8.1 as a special case. Let Q be a quiver, i.e. an oriented graph. Formally, Q consists of two sets Q_{0} and Q_{1} and two maps $s, t: Q_{1} \rightarrow Q_{0}$. The set Q_{0} is the set of vertices of Q, the set Q_{1} is the set of arrows, and for $a \in Q_{1}$, the vertices $s(a)$ and $t(a)$ are the source and target of a, respectively. We assume that for any two vertices i and j, there are just finitely many $a \in Q_{1}$ such that $s(a)=i$ and $t(a)=j$. A representation M of Q is a collection of complex vector spaces $\left(M_{i}\right)_{i \in Q_{0}}$ together with \mathbb{C}-linear maps $\left(M_{a}\right)_{a \in Q_{1}}$ such that $M_{a}: M_{s(a)} \rightarrow M_{t(a)}$. If $\bigoplus_{i \in Q_{0}} M_{i}$ is finite-dimensional, we say that M is finite-dimensional and call $\operatorname{dim} M:=\left(\operatorname{dim}_{\mathbb{C}} M_{i}\right)_{i \in Q_{0}} \in \mathbb{Z}_{\geq 0}^{Q_{0}}$ the dimension vector of M. Given two representations M and N of Q, a homomorphism $f: M \rightarrow N$ is a collection $f_{i}: M_{i} \rightarrow N_{i}$ of linear maps such that $N_{a} f_{s(a)}=f_{t(a)} M_{a}$ holds for all $a \in Q_{1}$. In this way we obtain a \mathbb{C}-linear abelian category. We refer to [ASS06, Chapter II] for more details.

Let $\Lambda(Q)=\left\{\alpha=\left(\alpha_{i}\right)_{i \in Q_{0}} \in \mathbb{Z}^{Q_{0}} \mid \alpha_{i}=0\right.$ for all but finitely many $\left.i\right\}$, and let $\Lambda_{+}(Q)=\Lambda(Q) \cap \mathbb{Z}_{\geq 0}^{Q_{0}}$. Fix a vector $\alpha \in \Lambda_{+}(Q)$. Fix complex vector spaces V_{i} of dimension α_{i}. Consider the (finite-dimensional) vector space

$$
V:=R(Q, \alpha):=\bigoplus_{a \in Q_{1}} \operatorname{Hom}\left(V_{s(a)}, V_{t(a)}\right) .
$$

An element of V can be regarded as a representation of Q of dimension vector α. The group $G_{\alpha}=$ $\prod_{i \in Q_{0}} \mathrm{GL}\left(V_{i}\right)$ acts on V by change of basis. Two elements of V are isomorphic as representations if and only if they lie in the same G_{α}-orbit. The central subgroup $\Delta:=\mathbb{C}^{\times}$. id acts trivially on V. Therefore, the action descends to an action of $G:=P G_{\alpha}:=G_{\alpha} / \Delta$.

We will make a connection between weights of the action of a maximal torus of G and the support $\operatorname{supp}(\alpha)=\left\{i \in Q_{0} \mid \alpha_{i} \neq 0\right\}$ of the dimension vector. To this end, fix a basis of every vector space V_{i}. Let T_{α} be the maximal torus of G_{α} of diagonal matrices with respect to our choices of bases. The image of T_{α} under $G_{\alpha} \rightarrow P G_{\alpha}=G$ is a maximal torus T of G. For $i \in Q_{0}$ and $r \in\left\{1, \ldots, \alpha_{i}\right\}$, let $y_{i, r} \in X^{*}\left(T_{\alpha}\right)$ be the character which selects from $t=\left(t_{i}\right)_{i \in Q_{0}}$ the $r^{\text {th }}$ diagonal entry of the matrix t_{i}. Then $X^{*}\left(T_{\alpha}\right)$ is the free abelian group generated by the basis elements $y_{i, r}$, and

$$
X^{*}(T)=\left\{\sum_{i \in Q_{0}} \sum_{r=1}^{\alpha_{i}} a_{i, r} y_{i, r} \mid \sum_{i \in Q_{0}} \sum_{r=1}^{\alpha_{i}} a_{i, r}=0\right\} \subseteq X^{*}\left(T_{\alpha}\right) ;
$$

it is generated as an abelian group by all differences $y_{j, s}-y_{i, r}$. Recall that $N_{T}(V)$ is the set of weights of the T-action on V and $\mathscr{N}_{T}(V)$ is its \mathbb{Q}-linear span inside $X^{*}(T)_{\mathbb{Q}}$. As G acts by conjugation, we have

$$
N_{T}(V)=\left\{y_{t(a), s}-y_{s(a), r} \mid a \in Q_{1}, r \in\left\{1, \ldots, \alpha_{s(a)}\right\}, s \in\left\{1, \ldots, \alpha_{t(a)}\right\}\right\} .
$$

Lemma 8.2. The full subquiver supported on $\operatorname{supp}(\alpha)$ is connected if and only if $\mathscr{N}_{T}(V)=X^{*}(T)_{\mathbb{Q}}$.
Proof. We may without loss of generality assume that $\operatorname{supp}(\alpha)=Q_{0}$. To show the direction from left to right, assume that Q is connected. This means that for any two vertices i and j, there exists an unoriented path which connects them. More precisely, there exist arrows a_{1}, \ldots, a_{k} and signs $\varepsilon_{1}, \ldots, \varepsilon_{k} \in\{ \pm 1\}$ such that

$$
s\left(a_{1}^{\varepsilon_{1}}\right)=i, \quad t\left(a_{1}^{\varepsilon_{1}}\right)=s\left(a_{2}^{\varepsilon_{2}}\right), \quad \ldots, \quad t\left(a_{k-1}^{\varepsilon_{k-1}}\right)=s\left(a_{k}^{\varepsilon_{k}}\right), \quad t\left(a_{k}^{\varepsilon_{k}}\right)=j .
$$

Here, $a^{1}:=a$ and a^{-1} is a formal symbol for which we define $s\left(a^{-1}\right)=t(a)$ and $t\left(a^{-1}\right)=s(a)$. Given a character $y_{j, s}-y_{i, r}$, we choose an unoriented path connecting i and j as above and indices $r_{1}, \ldots, r_{k}, s_{1}, \ldots, s_{k}$ with $r_{v} \in\left\{1, \ldots, \alpha_{s\left(a_{v}^{\varepsilon_{v}}\right)}\right\}$ and $s_{v} \in\left\{1, \ldots, \alpha_{t\left(a_{v}^{\varepsilon_{v}}\right)}\right\}$ such that

$$
r_{1}=r, \quad s_{1}=r_{2}, \quad \ldots, \quad s_{k-1}=r_{k}, \quad s_{k}=s .
$$

This yields

$$
y_{j, s}-y_{i, r}=\sum_{v=1}^{k}\left(y_{t\left(a_{\nu}^{\varepsilon_{\nu}}\right), s_{v}}-y_{s\left(a_{\nu}^{\varepsilon_{\nu}}\right), r_{v}}\right) \in \mathscr{N}_{T}(V) .
$$

Suppose conversely that Q is not connected. Then there exist two non-empty disjoint subsets $C, D \subseteq Q_{0}$ such that $C \sqcup D=Q_{0}$ and such that there are no arrows from one to the other. We let \mathbb{C}^{\times}act on V_{i} by weight 0 if $i \in C$ and by weight 1 if $i \in D$. This provides us with a morphism $\varphi: \mathbb{C}^{\times} \rightarrow T$; let $\varphi^{*}: X^{*}(T) \rightarrow \mathbb{Z}$ be the induced homomorphism on characters. If $i \in C$ and $j \in D$, then

$$
\varphi^{*}\left(y_{j, s}-y_{i, r}\right)=1
$$

for any $r \in\left\{1, \ldots, \alpha_{i}\right\}$ and $s \in\left\{1, \ldots, \alpha_{j}\right\}$. But as all arrows in Q start and end in either C or D, we see that $N_{T}(V) \subseteq \operatorname{ker}\left(\varphi^{*}\right)$. Therefore, $y_{j, s}-y_{i, r} \notin \mathscr{N}_{T}(V)$.

Let $\theta=\left(\theta_{i}\right)_{i \in Q_{0}} \in \mathbb{Z}^{Q_{0}}$ be such that $\theta^{T} \cdot \alpha=\sum_{i} \theta_{i} \alpha_{i}=0$. We may interpret θ as a character of G_{α} by the assignment $g \mapsto \prod_{i \in Q_{0}} \operatorname{det}\left(g_{i}\right)^{\theta_{i}}$. The vanishing condition guarantees that it descends to a character of G; by a slight abuse of notation, we also denote this character by θ. By [Kin94, Proposition 3.1] a representation $M \in V$ is semi-stable with respect to θ if and only if $\theta(U) \geq 0$ for all subrepresentations $U \subseteq M$; here $\theta(U)$ is by definition $\theta^{T} . \underline{\operatorname{dim} U} U$. Moreover, M is θ-stable if and only if $\theta(U)>0$ for all non-zero proper subrepresentations U of M. As the θ-stable representations are the simple objects in an appropriate abelian category (see [Rei03, Lemma 2.3]), Schur's lemma tells us that the automorphism group of a θ-stable representation M is \mathbb{C}^{\times}. Therefore, G acts freely on the stable locus $V^{\text {st }}(G, \theta)$. Assumption 2.4 is hence fulfilled. Set

$$
M^{\theta-\mathrm{st}}(Q, \alpha):=V^{\mathrm{st}}(G, \theta) / G
$$

Now assume that Q_{0} (and hence also Q_{1}) is a finite set. Let $\mathscr{T}=\left(\mathbb{C}^{\times}\right)^{Q_{1}}$. Let a group element $t=\left(t_{a}\right)_{a \in Q_{1}} \in \mathscr{T}$ act on $M=\left(M_{a}\right)_{a \in Q_{1}} \in V$ by

$$
t . M=\left(t_{a} M_{a}\right)_{a \in Q_{1}} .
$$

It commutes with the G-action, so we obtain a \mathscr{T}-action on $M^{\theta-\text { st }}(Q, \alpha)$. This action was studied by Weist in [Wei13]. We recall his result and show how it follows from our description.

Let \widehat{Q} be the (infinite) quiver given by $\widehat{Q}_{i}=Q_{i} \times X^{*}(\mathscr{T})$ for $i=0,1$ and \widehat{s}, \widehat{t} be defined by

$$
\widehat{s}(a, \chi)=(s(a), \chi), \quad \widehat{t}(a, \chi)=\left(t(a), \chi+x_{a}\right) .
$$

Here, $x_{a}: \mathscr{T} \rightarrow \mathbb{C}^{\times}$is the character given by $x_{a}(t)=t_{a}$. A vector $\beta \in \Lambda_{+}(\widehat{Q})$ is called a cover of α if $\sum_{\chi} \beta_{i, \chi}=\alpha_{i}$ for every $i \in Q_{0}$. On $\Lambda_{+}(Q)$ there is an action of the group $X^{*}(\mathscr{T})$ given by $\xi . \beta=\left(\beta_{i, \chi+\xi}\right)_{i, \chi}$. We call two vectors translates of one another if they lie in the same orbit. We define

$$
\widehat{\theta}=\left(\widehat{\theta}_{i, \chi}\right)_{(i, \chi) \in \widehat{Q}_{0}} \in \mathbb{Z}^{\widehat{Q}_{0}}
$$

by $\widehat{\theta}_{i, \chi}=\theta_{i}$. The following is [Weil3, Theorem 3.8].
Theorem 8.3 (Weist). The fixed point locus $M^{\theta-s t}(Q, \alpha)^{\mathscr{G}}$ is the disjoint union $\bigsqcup_{\beta} F_{\beta}$ which ranges over all $\beta \in \Lambda_{+}(Q)$ which cover α, up to translation. The component F_{β} is isomorphic to

$$
M^{\widehat{\theta}-\mathrm{st}}(\widehat{Q}, \beta) .
$$

The index set of the disjoint union is infinite, but if F_{β} is non-empty, then the support of β is connected. This reduces the consideration to a finite subset.

Choose a basis of each of the vector spaces V_{i}. Let $T_{\alpha} \subseteq G_{\alpha}$ be the maximal torus of tuples of invertible diagonal matrices. Let $T=T_{\alpha} / \Delta$. It is a maximal torus of G. Let $\rho: \mathscr{T} \rightarrow T$ be a morphism. Then

$$
V_{\rho}=\left\{M \in V \mid t_{a} M_{a}=\rho(t)_{j} M_{a} \rho(t)_{i}^{-1} \text { for all } a: i \rightarrow j\right\} .
$$

Via ρ, the torus \mathscr{T} operates on V_{i}, inducing a weight space decomposition $V_{i}=\sum_{\chi} V_{i, \chi}$. The same argument as in [Weil3, Lemma 3.4] shows that M lies in V_{ρ} if and only if we have $M_{a}\left(V_{i, \chi}\right) \subseteq V_{j, \chi+\varepsilon_{a}}$. This shows that $V_{\rho}=R(\widehat{Q}, \beta)$, where $\beta_{i, \chi}=\operatorname{dim} V_{i, \chi}$. The group G_{β} is identified with the subgroup
$\left\{g \in G_{\alpha} \mid g_{i}\left(V_{i, \chi}\right) \subseteq V_{i, \chi}\right.$ for all $\left.i, \chi\right\}$ of G_{α}. This is precisely the centralizer of ρ : Let $g \in G_{\beta}, t \in \mathscr{T}$. To show that g_{i} commutes with $\rho(t)_{i}$, we apply it to $v \in V_{i}$. Write v as $v=\sum_{\chi} v_{\chi}$ with $v_{\chi} \in V_{i, \chi}$. Then

$$
\begin{aligned}
& g_{i} \rho(t)_{i} v=\sum_{\chi} g_{i} \rho(t)_{i} v_{\chi}=\sum_{\chi} \chi(t) g_{i} v_{\chi}, \\
& \rho(t)_{i} g_{i} v=\sum_{\chi} \rho(t)_{i} \underbrace{g_{i} v_{\chi}}_{\in V_{i, \chi}}=\sum_{\chi} \chi(t) g_{i} v_{\chi} .
\end{aligned}
$$

Conversely, suppose that $g \in G_{\alpha}$ commutes with ρ. Let $v \in V_{i, \chi}$. We want to show that $g_{i} v \in V_{i, \chi}$. Let $t \in \mathscr{T}$, and compute

$$
\rho(t)_{i} g_{i} v=g_{i} \rho(t)_{i} v=g_{i} \chi(t) v=\chi(t) g_{i} v .
$$

We have shown that $V_{\rho}^{\text {st }}\left(G_{\rho}, \theta\right) / G_{\rho} \cong M^{\widehat{\theta}-\text { st }}(\widehat{Q}, \beta)$.
Lemma 8.2 shows that the support of β is connected if and only if $\mathscr{I}_{T}\left(V_{\rho}\right)=X^{*}(T)_{\mathbb{Q}}$ holds.
Example 8.4. Let Q be the quiver

the so-called 3-Kronecker quiver. Fix the dimension vector $\alpha=(2,3)$. Then $V=M_{3 \times 2}(\mathbb{C})^{3}$, and G is the quotient of $G_{\alpha}=\mathrm{GL}_{2}(\mathbb{C}) \times \mathrm{GL}_{3}(\mathbb{C})$ by the central one-parameter subgroup $\Delta=\left\{(t \mathrm{id}, t \mathrm{id}) \mid t \in \mathbb{C}^{\times}\right\}$. A representative (g, h) of an element in G acts on $(A, B, C) \in V$ by

$$
(g, h) \cdot(A, B, C)=\left(h A g^{-1}, h B g^{-1}, h C g^{-1}\right) .
$$

Let $\theta \in X^{*}(G)$ be the character defined by $\theta(g, h)=\operatorname{det}(g)^{-3} \operatorname{det}(h)^{2}$. An application of [Kin94, Proposition 3.1] yields that θ-semi-stability and θ-stability agree and that a representation (A, B, C) is θ-stable if and only if $\operatorname{dim}\langle A x, B x, C x\rangle \geq 2$ for every $x \in \mathbb{C}^{2} \backslash\{0\}$. The θ-stable moduli space $M^{\theta-\text {-st }}(Q, \alpha)=V^{\text {st }}(G, \theta) / G$ has dimension six.

Let $\mathscr{T}=\left(\mathbb{C}^{\times}\right)^{3}$, which acts linearly on V by

$$
\left(t_{a}, t_{b}, t_{c}\right) \cdot(A, B, C)=\left(t_{a} A, t_{b} B, t_{c} C\right)
$$

We will describe the fixed points under this torus action. We fix the maximal torus T_{α} of G_{α} of invertible diagonal matrices and the induced maximal torus $T=T_{\alpha} / \Delta$ of G. The Weyl group is $W=S_{2} \times S_{3}$. By Theorem 6.3 the \mathscr{T}-fixed point locus of the quotient $V^{\text {st }}(G, \theta) / G$ is the disjoint union $\bigsqcup_{\rho} F_{\rho}$, where $F_{\rho}=V_{\rho}^{\text {st }}\left(G_{\rho}, \theta\right) / G_{\rho}$; the union ranges over all morphisms $\rho: \mathscr{T} \rightarrow T$ which satisfy $\mathscr{N}_{T}\left(V_{\rho}\right)=X^{*}(T)_{\mathbb{Q}}$, up to W-conjugation. There are three types of such morphisms:
(1) The morphism $\rho: \mathscr{T} \rightarrow T$ is defined by

$$
\rho\left(t_{a}, t_{b}, t_{c}\right)=\left(\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right),\left(\begin{array}{lll}
t_{a} & & \\
& t_{b} & \\
& & t_{c}
\end{array}\right)\right) .
$$

For V_{ρ} and G_{ρ}, we obtain

$$
V_{\rho}=\left\{\left(\left({ }^{*} *\right),(* r)\left({ }^{*}\right),{ }_{*} \quad *\right)\right\}, \quad G_{\rho}=\mathrm{GL}_{2}(\mathbb{C}) \times\left(\mathbb{C}^{\times}\right)^{3} .
$$

The fixed point component $F_{\rho}=V_{\rho}^{\text {st }}\left(G_{\rho}, \theta\right) / G_{\rho}$ consists of a single point.
(2) For $m_{1}, \ldots, m_{4} \in\{a, b, c\}$ with $m_{1} \neq m_{2} \neq m_{3} \neq m_{4}$, let $\rho: \mathscr{T} \rightarrow T$ be defined by

$$
\rho\left(t_{a}, t_{b}, t_{c}\right)=\left(\left(\begin{array}{ll}
1 & \\
& t_{m_{2}} t_{m_{3}}^{-1}
\end{array}\right),\left(\begin{array}{ccc}
t_{m_{1}} & & \\
& t_{m_{2}} & \\
& & t_{m_{2}} t_{m_{3}}^{-1} t_{m_{4}}
\end{array}\right)\right) .
$$

The morphism associated with $\left(m_{1}, \ldots, m_{4}\right)$ is W-conjugate to the morphism associated with $\left(m_{4}, \ldots, m_{1}\right)$. Up to this symmetry, there are 12 such quadruples, namely
abab, abac, abca, abcb, acab, acac, acbc, babc, bacb, bcac, bcbc, cabc.
The associated morphisms are pairwise not W-conjugate. For all such $\rho, G_{\rho}=T$ holds. The subspaces V_{ρ} are all four-dimensional. For instance for $m_{1} \ldots m_{4}=a b a c$, we get

$$
V_{\rho}=\left\{\left(\left({ }^{*} *\right),(*),(\quad *)\right)\right\} \text {. }
$$

In all of the 12 cases, the fixed point component F_{ρ} consists of a single point.
(3) For $m_{1}, \ldots, m_{4} \in\{a, b, c\}$ such that $\left\{m_{1}, m_{2}, m_{3}\right\}=\{a, b, c\}$ and $m_{4} \neq m_{3}$, let $\rho: \mathscr{T} \rightarrow T$ be defined by

$$
\rho\left(t_{a}, t_{b}, t_{c}\right)=\left(\left(\begin{array}{ll}
1 & \\
& t_{m_{3}} t_{m_{4}}^{-1}
\end{array}\right),\left(\begin{array}{lll}
t_{m_{1}} & & \\
& t_{m_{2}} & \\
& & t_{m_{3}}
\end{array}\right)\right) .
$$

The morphisms obtained from $\left(m_{1}, m_{2}, m_{3}, m_{4}\right)$ and $\left(m_{2}, m_{1}, m_{3}, m_{4}\right)$ are W-conjugate. Up to this symmetry we are left with the following six quadruples (which lead to pairwise non- W-conjugate morphisms):
$a b c a, a b c b, a c b a, a c b c, b c a b, b c a c$.
For all of those morphisms, $G_{\rho}=T$ holds. The subspaces V_{ρ} are four-dimensional. For example for $a b c b$, it looks as follows:

$$
V_{\rho}=\left\{\left(\left({ }^{*}\right),\left(\begin{array}{ll}
* & \\
& *
\end{array}\right),\left(\begin{array}{ll}
* & \\
&
\end{array}\right)\right\} .\right.
$$

However, although $\mathscr{N}_{T}\left(V_{\rho}\right)=X^{*}(T)_{\mathbb{Q}}$, the fixed point component for this morphism ρ, and all others of the third type, is empty because V_{ρ} does not intersect $V^{\text {st }}(G, \theta)$. Indeed, for $a b c b$ the span $\left\langle A e_{2}, B e_{2}, C e_{2}\right\rangle$ is one-dimensional for every $(A, B, C) \in V_{\rho}$.
The above considerations show that \mathscr{T} acts on $V^{\text {st }}(G, \theta) / G$ with 13 isolated fixed points.

9. Application: Torus quotients

We are going to discuss quotients $V^{\text {st }}(G, \theta) / G$ in the case when G is a torus. In this case, $V^{\text {st }}(G, \theta) / G$ is a toric variety. We will first describe the toric structure of $V^{\text {st }}(G, \theta) / G$. We believe this should be well known, but we could not find it in the literature in the form we need it for our purposes. As a reference for toric geometry we use Fulton's book [Ful93].

Let V be a vector space of dimension m and $G=\left(\mathbb{C}^{\times}\right)^{r}$ a torus which we assume to act linearly on V. Let $a: G \rightarrow \mathrm{GL}(V)$ be the induced morphism of algebraic groups. Decompose V into weight spaces $V=\bigoplus_{\chi \in X^{*}(G)} V_{\chi}$. Let $\chi_{1}, \ldots, \chi_{p}$ be the characters which occur in this decomposition, and let $e_{s, 1}, \ldots, e_{s, m_{s}}$ be a basis of $V_{\chi_{s}}$ for $s=1, \ldots, p$. Let T be the maximal torus of $\mathrm{GL}(V)$ which corresponds to the basis $\left(e_{1,1}, \ldots, e_{1, m_{1}}, \ldots, e_{p, 1}, \ldots, e_{p, m_{p}}\right)$ of V. Then a factors through a morphism of tori $G \rightarrow T$, which we also call a. Concretely,

$$
a(g)=(\underbrace{\chi_{1}(g), \ldots, \chi_{1}(g), \ldots, \underbrace{\chi_{p}(g), \ldots, \chi_{p}(g)}_{m_{p} \text { times }}) .}_{m_{1} \text { times }}
$$

Let $x_{s, k} \in X^{*}(T)$ be the respective coordinate function.
Let $\theta \in X^{*}(G)$. We describe the semi-stable and the stable locus with respect to θ. Let

$$
I=\left\{(s, k) \mid s \in\{1, \ldots, p\}, k \in\left\{1, \ldots, m_{s}\right\}\right\} .
$$

Write a vector $v \in V$ as $\sum_{(s, k) \in I} v_{s, k} e_{s, k}$. We define $\operatorname{supp}(v)=\left\{(s, k) \in I \mid v_{s, k} \neq 0\right\}$. Let $\eta: \mathbb{C}^{\times} \rightarrow G$ be a one-parameter subgroup. Then

$$
\eta(z) v=\sum_{(s, k) \in I} z^{\left\langle\chi_{s}, \eta\right\rangle} v_{s, k} e_{s, k}
$$

so the limit $\lim _{z \rightarrow 0} \eta(z) v$ exists if and only if $\left\langle\eta, \chi_{s}\right\rangle \geq 0$ for all $(s, k) \in \operatorname{supp}(v)$. This is a condition which depends just on the support of v, so θ-semi-stability and θ-stability do as well. Let us be more precise. Let pr: $I \rightarrow\{1, \ldots, p\}$ be the projection to the first coordinate. For $S \subseteq I$, we define

$$
\tau_{S}:=\operatorname{cone}\left(\chi_{S}\right)_{s \in \operatorname{pr}(S)} \subseteq X^{*}(G)_{\mathbb{R}}
$$

It is a rational convex polyhedral cone. Its dual

$$
\begin{aligned}
\tau_{S}^{\vee} & =\left\{y \in X_{*}(G)_{\mathbb{R}} \mid\langle x, y\rangle \geq 0\left(\text { all } x \in \tau_{S}\right)\right\} \\
& =\left\{y \in X_{*}(G)_{\mathbb{R}} \mid\left\langle\chi_{S}, y\right\rangle \geq 0(\text { all } s \in \operatorname{pr}(S))\right\}
\end{aligned}
$$

is again a rational convex polyhedral cone. Denote by θ^{\vee} the dual of the ray through θ, and let $\theta^{+}=\{y \in$ $\left.X_{*}(G) \mid\langle\theta, y\rangle>0\right\}$. The Hilbert-Mumford criterion tells us the following.

Lemma 9.1. Let $v \in V$ and $S:=\operatorname{supp}(v)$.
(1) The vector v is θ-semi-stable if and only if $\tau_{S}^{\vee} \subseteq \theta^{\vee}$.
(2) The vector v is θ-stable if and only if $\tau_{S}^{\vee} \backslash\{0\} \subseteq \theta^{+}$.

We say a subset $S \subseteq I$ is θ-semi-stable if $\tau_{S}^{\vee} \subseteq \theta^{\vee}$, and we say S is θ-stable if $\tau_{S}^{\vee} \backslash\{0\} \subseteq \theta^{+}$. The notions of (semi-)stability depend only on $\operatorname{pr}(S)$.

Lemma 9.2. If $S \subseteq I$ is θ-stable, then $\left(\chi_{s}\right)_{(s, k) \in S}$ spans $X^{*}(G)_{\mathbb{R}}$.
Proof. Assume that the \mathbb{R}-linear span U of $\left(\chi_{s}\right)_{(s, k) \in S}$ is a proper subspace of $X^{*}(G)_{\mathbb{R}}$. Then there exists a $y \in X_{*}(G) \backslash\{0\}$ such that $\langle x, y\rangle=0$ for all $x \in U$. Therefore, both y and $-y$ lie in $\tau_{S}^{\vee} \backslash\{0\} \subseteq \theta^{+}$, which implies $\langle\theta, y\rangle>0$ and $\langle\theta,-y\rangle>0$, giving a contradiction.

We call S minimally θ-stable if S is θ-stable and if no proper subset of S is θ-stable.
Lemma 9.3. For a θ-stable subset $S \subseteq I$, the following are equivalent:
(1) The subset S is minimally θ-stable.
(2) We have $|S|=r$.
(3) The set $\left(\chi_{s}\right)_{(s, k) \in S}$ is a basis of $X^{*}(G)_{\mathbb{R}}$.

Proof. Let us assume S is minimally stable, and let us show that $\left(\chi_{s}\right)_{(s, k) \in S}$ is a basis of $X^{*}(G)_{\mathbb{R}}$. By Lemma 9.2, it is enough to prove linear independence. Assume there are $\left(s^{\prime}, k^{\prime}\right) \in S$ such that $\chi_{s^{\prime}}$ lies in the span of the χ_{s} with $(s, k) \in S^{\prime}:=S \backslash\left\{\left(s^{\prime}, k^{\prime}\right)\right\}$. Then $\tau_{S^{\prime}}^{\vee}=\tau_{S}^{\vee}$, and therefore S^{\prime} is also stable. This contradicts the minimality of S.

Now let $\left(\chi_{S}\right)_{(s, k) \in S}$ be a basis of $X^{*}(G)_{\mathbb{R}}$. As $\operatorname{dim} X(G)_{\mathbb{R}}=\operatorname{dim} G=r$, it is obvious that $|S|=r$.
Finally, if $|S|=r$, then there can be no proper θ-stable subset S^{\prime} of S because the span of $\left(\chi_{s}\right)_{(s, k) \in S^{\prime}}$ is a proper subspace of $X^{*}(G)_{\mathbb{R}}$.

Lemma 9.1 shows in particular that $V^{\text {sst }}(G, \theta)$ and $V^{\text {st }}(G, \theta)$ are T-invariant. The torus T acts with a dense open orbit, isomorphic to T, on $V^{\text {st }}(G, \theta)$ and $V^{\text {sst }}(G, \theta)$, provided that these loci are non-empty. We obtain an action of T on the semi-stable and stable quotient.

We are going to assume in the following that $V^{\text {st }}(G, \theta)$ is non-empty and that G acts freely on the stable locus. Assumption 2.4 is hence fulfilled.

Let \mathscr{T} be the cokernel of $a: G \rightarrow T$. It is a torus of $\operatorname{rank} \operatorname{dim} V-\operatorname{dim} G$. We obtain a short exact sequence

$$
1 \longrightarrow G \xrightarrow{a} T \xrightarrow{\pi} \mathscr{T} \longrightarrow 1 ;
$$

note that Assumption 2.4 implies that a is injective. The T-action on $V^{\text {sst }}(G, \theta) / / G$ and on $V^{\text {st }}(G, \theta) / G$ descends to an action of \mathscr{T}. The torus \mathscr{T} acts on both with a dense open orbit isomorphic to \mathscr{T}. The quotients are therefore toric varieties. Let us describe the toric fan of $V^{\text {st }}(G, \theta) / G$. Let $M:=X^{*}(\mathscr{T})$ and $N:=X_{*}(\mathscr{T})$. Consider the short exact sequence of the lattices of one-parameter subgroups

$$
0 \longrightarrow X_{*}(G) \xrightarrow{a_{*}} X_{*}(T) \xrightarrow{\pi_{*}} N \longrightarrow 0 .
$$

We have $X_{*}(T)=\bigoplus_{(s, k) \in I} \mathbb{Z} \varepsilon_{s, k}$, where $\varepsilon_{s, k}: \mathbb{C}^{\times} \rightarrow T$ is defined by

$$
\varepsilon_{s, k}(z) e_{t, l}= \begin{cases}z e_{s, k} & \text { if }(s, k)=(t, l) \\ e_{t, l} & \text { otherwise }\end{cases}
$$

Note that the map $a_{*}: X_{*}(G) \rightarrow X_{*}(T)$ is given by $a_{*}(\eta)=\sum_{(s, k) \in I}\left\langle\chi_{s}, \eta\right\rangle \varepsilon_{s, k}$; we write $X_{*}(T)$ additively here. For a subset $J \subseteq I$, we define $\sigma_{J}:=\operatorname{cone}\left(\pi_{*} \varepsilon_{s, k}\right)_{(s, k) \in J}$, a rational convex polyhedral cone in $N_{\mathbb{R}}$. We define

$$
\begin{aligned}
\Phi & :=\Phi^{\text {st }}(\theta):=\left\{J \subseteq I \mid \tau_{J^{c}}^{\vee} \backslash\{0\} \subseteq \theta^{+}\right\}=\left\{J \subseteq I \mid J^{c} \text { is } \theta \text {-stable }\right\} \\
\Delta & :=\Delta^{\text {st }}(\theta):=\left\{\sigma_{J} \mid J \in \Phi\right\}
\end{aligned}
$$

In the above equation, $J^{c}=I \backslash J$.
Lemma 9.4. Let $J \in \Phi$.
(1) The elements $\pi_{*} \varepsilon_{s, k}$ with $(s, k) \in J$ are linearly independent over \mathbb{R}. Therefore, σ_{J} is a simplex of dimension $|J|$.
(2) If $J^{\prime} \subseteq J$, then $J^{\prime} \in \Phi$ and $\sigma_{J^{\prime}}$ is a face of σ_{J}. Every face of σ_{J} is of this form.
(3) For $J_{1}, J_{2} \in \Phi$, we get $\sigma_{J_{1}} \cap \sigma_{J_{2}}=\sigma_{J_{1} \cap J_{2}}$.

Proof. (1) Assume there are $\lambda=\sum_{(s, k) \in J} a_{s, k} \varepsilon_{s, k} \in X_{*}(T)$ with $\lambda \neq 0$ such that $\pi_{*} \lambda=0$. Then there exists an $\eta \in X_{*}(G) \backslash\{0\}$ such that $\lambda=a_{*} \eta$. For all $(s, k) \notin J$, we have

$$
\left\langle\chi_{s}, \eta\right\rangle=\left\langle a^{*} x_{s, k}, \eta\right\rangle=\left\langle x_{s, k}, \lambda\right\rangle=0
$$

because λ is supported on J. Therefore, $\left\langle\chi_{s}, \eta\right\rangle=0$ for all $s \in \operatorname{pr}\left(J^{c}\right)$. In particular, $\eta \in \tau_{J^{c}}^{\vee}$. As $J \in \Phi$, we obtain $\langle\theta, \eta\rangle>0$. But by the same argument, we also obtain $-\eta \in \tau_{J^{c}}^{\vee}$, which implies $\langle\theta,-\eta\rangle>0$, giving a contradiction.
(2) The cone σ_{J}, is the intersection of σ_{J} with the supporting hyperplanes $\left(\pi_{*} \varepsilon_{s, k}\right)^{\perp}$, where (s, k) ranges over $J \backslash J^{\prime}$. Now let σ be a face of σ_{J}. Then there exists a $u \in \sigma_{J}^{\vee}$ such that $\sigma=\sigma_{J} \cap u^{\perp}$. It is then easy to see that $\sigma=\sigma_{J^{\prime}}$, where $J^{\prime}=J \cap \operatorname{supp}\left(\pi^{*} u\right)$.
(3) Assume there are

$$
\lambda_{1}=\sum_{(s, k) \in J_{1}} a_{s, k} \varepsilon_{s, k}, \quad \lambda_{2}=\sum_{(s, k) \in J_{2}} b_{s, k} \varepsilon_{s, k}
$$

with $a_{s, k}, b_{s, k} \in \mathbb{R}_{\geq 0}$ such that $\lambda_{1} \neq \lambda_{2}$ but $\pi_{*} \lambda_{1}=\pi_{*} \lambda_{2}$. Then there exists an $\eta \in X_{*}(G)$ such that $a_{*} \eta=\lambda_{1}-\lambda_{2}$. For all $(s, k) \in J_{2}^{c}$, we then have

$$
\left\langle\chi_{s}, \eta\right\rangle=\left\langle x_{s, k}, \lambda_{1}-\lambda_{2}\right\rangle=a_{s, k}-b_{s, k}=a_{s, k} \geq 0
$$

As $J_{2} \in \Phi$, this implies $\langle\theta, \eta\rangle>0$. But the same argument shows that we also have $\langle\theta,-\eta\rangle>0$. We therefore again have a contradiction.

Proposition 9.5. The toric fan of $V^{\text {st }}(G, \theta) / G$ is $\Delta^{\text {st }}(\theta)$.
Proof. For $J \in \Phi$, let us define $\sigma_{J}^{+}=\operatorname{cone}\left(\varepsilon_{s, k}\right)_{(s, k) \in J}$. The affine toric variety associated with the simplex σ_{J}^{+} is

$$
U_{\sigma_{J}^{+}}=\left\{v \in V \mid J^{c} \subseteq \operatorname{supp}(v)\right\} .
$$

For $v \in U_{\sigma_{J}^{+}}$with $S:=\operatorname{supp}(v)$, we get $\tau_{S}^{\vee} \backslash\{0\} \subseteq \tau_{J^{c}}^{\vee} \backslash\{0\} \subseteq \theta^{+}$, so v is θ-stable by Lemma 9.1. We define $\Delta^{+}=\left\{\sigma_{J}^{+} \mid J \in \Phi\right\}$. We have argued that the toric variety $X_{\Delta^{+}}$associated with the fan Δ^{+}is the stable locus $V^{\text {st }}(G, \theta)$. It is enough to show that there is a map $\pi: X_{\Delta^{+}} \rightarrow X_{\Delta}$ which is a categorical G-quotient. Consider the map

$$
\pi_{J}: U_{\sigma_{J}^{+}} \longrightarrow U_{\sigma_{J}}
$$

induced by $\pi: T \rightarrow \mathscr{T}$. By definition and an easy verification,

$$
U_{\sigma_{J}}=\operatorname{Spec} \mathbb{C}\left[M \cap \sigma_{J}^{\vee}\right]=\operatorname{Spec} \mathbb{C}\left[M \cap\left(\pi_{*} \sigma_{J}^{+}\right)^{\vee}\right]=\operatorname{Spec} \mathbb{C}\left[M \cap\left(\pi^{*}\right)^{-1}\left(\left(\sigma_{J}^{+}\right)^{\vee}\right)\right]
$$

The ring $\mathbb{C}\left[M \cap\left(\pi^{*}\right)^{-1}\left(\left(\sigma_{J}^{+}\right)^{\vee}\right)\right]$ agrees with $\mathbb{C}\left[X^{*}(T) \cap\left(\sigma_{J}^{+}\right)^{\vee}\right]^{G}$, and therefore π_{J} is a universal categorical G-quotient. By Lemma $9.4(3)$, the maps π_{J} and $\pi_{J^{\prime}}$ agree on the intersection and therefore glue to $\pi: X_{\Delta^{+}} \rightarrow X_{\Delta}$ which, also by Lemma $9.4(3)$, is a categorical G-quotient.

We return to the action of \mathscr{T}. By general theory [Ful93, Section 3.1], the torus \mathscr{T} acts on $V^{\text {st }}(G, \theta) / G=X_{\Delta}$ with finitely many orbits. The orbits are labeled by the faces of Δ. In our case, the orbit corresponding to σ_{J} is

$$
O_{\sigma_{J}}=\left\{\pi(v) \mid v \in V \text { such that } \operatorname{supp}(v)=J^{c}\right\} / G
$$

The dimension of $O_{\sigma_{J}}$ is $\operatorname{dim} V-\operatorname{dim} G-\operatorname{dim} \sigma_{J}=m-r-|J|$. The fixed points of the \mathscr{T}-action are therefore the orbits $O_{\sigma_{J}}$ associated with those $J \in \Phi$ for which $|J|=m-r$. By Lemma 9.3 , a set J with cardinality $m-r$ is maximal in Φ, and every maximal member of Φ has cardinality $m-r$.

We should like to apply our results to this setup and compare them with the description of the fixed points coming from the toric fan. In order to do so, we need \mathscr{T} to act linearly on V. For this we choose, once and for all, a section $c: \mathscr{T} \rightarrow T$ of $\pi: T \rightarrow \mathscr{T}$. Then \mathscr{T} acts on V via $t . v=c(t) v$. This \mathscr{T}-action automatically commutes with the G-action, and the induced \mathscr{T}-action on $V^{\text {st }}(G, \theta) / G$ agrees with the \mathscr{T}-action coming from the T-action on V.

The group G is already a torus. Let $\rho: \mathscr{T} \rightarrow G$ be a morphism of algebraic groups. We get $G_{\rho}=G$ and

$$
\begin{aligned}
V_{\rho} & =\{v \in V \mid t . v=\rho(t) \cdot v(\text { all } t \in \mathscr{T})\} \\
& =\{v \in V \mid c(t) v=a \rho(t) v(\text { all } t \in \mathscr{T})\} .
\end{aligned}
$$

For $(s, k) \in I$, let $c_{s, k}: \mathscr{T} \rightarrow \mathbb{C}^{\times}$be such that $c(t)=\left(c_{s, k}(t)\right)_{(s, k) \in I} \in T=\left(\mathbb{C}^{\times}\right)^{I}$. Then $c(t) v=a \rho(t) v$ holds if and only if $c_{s, k}(t) v_{s, k}=\chi_{s}(\rho(t)) v_{s, k}$ for all $(s, k) \in I$. Define the set $S_{\rho} \subseteq I$ as

$$
S_{\rho}=\left\{(s, k) \in I \mid c_{s, k}(t)=\chi_{s}(\rho(t))(\text { all } t \in \mathscr{T})\right\} .
$$

We see that $V_{\rho}^{\text {st }}(G, \theta) \neq \emptyset$ if and only if S_{ρ} is θ-stable.
Proposition 9.6. Let $\rho: \mathscr{T} \rightarrow G$ be a morphism of algebraic groups.
(1) If S_{ρ} is θ-stable, then S_{ρ} is minimally θ-stable.
(2) If $\rho_{1}, \rho_{2}: \mathscr{T} \rightarrow G$ are two morphisms of algebraic groups such that $S_{\rho_{1}}=S_{\rho_{2}}$, then $\rho_{1}=\rho_{2}$.
(3) For every minimally θ-stable subset $S \subseteq I$, there exists a morphism $\rho: \mathscr{T} \rightarrow G$ such that $S_{\rho}=S$.

Proof. (1) Let $S:=S_{\rho}$. By Lemma 9.3, it is enough to show that $|S| \leq r$. Let U be the \mathbb{R}-linear span of $\left(x_{s, k}\right)_{(s, k) \in S}$ inside $X^{*}(T)_{\mathbb{R}}$. This is an $|S|$-dimensional subspace. Consider the commutative diagram

whose bottom row is exact. We know that $\operatorname{dim} U=\operatorname{dim} a^{*}(U)+\operatorname{dim}\left(U \cap \operatorname{ker} a^{*}\right)$. Let $u \in U \cap \operatorname{ker} a^{*}=$ $U \cap \operatorname{im} \pi^{*} ;$ write it as $u=\pi^{*} v$. Then $v=c^{*} \pi^{*} v=c^{*} u=\rho^{*} a^{*} u=0$ as $u \in \operatorname{ker} a^{*}$. Therefore, $U \cap \operatorname{ker} a^{*}=0$ and thus

$$
|S|=\operatorname{dim} U=\operatorname{dim} a^{*}(U) \leq \operatorname{dim} X^{*}(G)_{\mathbb{R}}=r
$$

(2) Let $S:=S_{1}=S_{2}$. We have $\chi_{s}\left(\rho_{1}(t)\right)=c_{s, k}(t)=\chi_{s}\left(\rho_{2}(t)\right)$ for all $(s, k) \in S$. Let $\varepsilon_{1}, \ldots, \varepsilon_{r}$ be a basis of $X_{*}(G)$. It is enough to show that $\rho_{1} \varepsilon_{i}=\rho_{2} \varepsilon_{i}$ for all $i=1, \ldots, r$. Consider $\eta_{i} \in X_{*}(G)$ defined by

$$
\eta_{i}(z)=\rho_{1}\left(\varepsilon_{i}(z)\right) \rho_{2}\left(\varepsilon_{i}(z)\right)^{-1}
$$

Then $\left\langle\chi_{s}, \eta_{i}\right\rangle=0$ for all $(s, k) \in S$. This implies that both η_{i} and $-\eta_{i}$ belong to τ_{S}^{\vee}. If η_{i} is non-trivial, it follows that $\left\langle\theta, \eta_{i}\right\rangle>0$ and $\left\langle\theta,-\eta_{i}\right\rangle>0$, giving a contradiction. We have shown that $\rho_{1} \varepsilon_{i}=\rho_{2} \varepsilon_{i}$.
(3) If S is minimally θ-stable, then $\left(\chi_{s}\right)_{(s, k) \in S}$ is a basis of $X^{*}(G)_{\mathbb{R}}$ and therefore also a basis of $X^{*}(G)_{\mathbb{Q}}$. Consider the homomorphism of abelian groups $\mathbb{Z}^{S}=X^{*}\left(\left(\mathbb{C}^{\times}\right)^{S}\right) \rightarrow X^{*}(G)$ which maps the basis vector $x_{s, k}$ to χ_{s}, i.e. the restriction of a^{*}. It induces a homomorphism of bialgebras

$$
\mathbb{C}\left[\mathbb{Z}^{S}\right]=\mathbb{C}\left[\left(\mathbb{C}^{\times}\right)^{S}\right] \longrightarrow \mathbb{C}\left[X^{*}(G)\right]=\mathbb{C}[G]
$$

This yields a morphism of algebraic groups, which on closed points is given as

$$
a_{S}: G \longrightarrow\left(\mathbb{C}^{\times}\right)^{S}, \quad g \longmapsto\left(\chi_{S}(g)\right)_{(s, k) \in S}
$$

As $\mathbb{C}\left[\left(\mathbb{C}^{\times}\right)^{S}\right] \rightarrow \mathbb{C}[G]$ is injective, a_{S} is dominant. Moreover, because $\left(\chi_{s}\right)_{(s, k) \in S}$ generates $X^{*}(G)_{\mathbb{Q}}$, the morphism a_{S} is finite. This implies that a_{S} is surjective. By our Assumption 2.4, G acts freely on the non-empty set

$$
\left\{v \in V^{\mathrm{st}}(G, \theta) \mid \operatorname{supp}(v)=S\right\}
$$

As a consequence, a_{S} is also injective. In characteristic zero, a bijective morphism of algebraic groups is an isomorphism. We define

$$
\rho:=a_{S}^{-1} \operatorname{pr}_{S} c
$$

where $\mathrm{pr}_{S}: T \rightarrow\left(\mathbb{C}^{\times}\right)^{S}$ is the projection. Then

$$
a_{S} \rho=a_{S} a_{S}^{-1} \operatorname{pr}_{S} c=\operatorname{pr}_{S} c
$$

which means $\chi_{s}(\rho(t))=c_{s, k}(t)$ for all $(s, k) \in S$. We have shown that $S \subseteq S_{\rho}$. But S is θ-stable, so S_{ρ} is as well. By (1), it is then minimally θ-stable, which forces $S=S_{\rho}$.

Proposition 9.6 shows that the description of the fixed points using the toric fan agrees with our description. More precisely, we have the following.

Corollary 9.7. The assignment $\rho \mapsto S_{\rho}^{c}$ defines a bijection between the set

$$
\left\{\rho: \mathscr{T} \rightarrow G \mid \rho \text { morphism of algebraic groups such that } V_{\rho}^{\text {st }}(G, \theta) \neq \emptyset\right\}
$$

and the set of maximal members of $\Phi^{\text {st }}(\theta)$. Moreover, for every $\rho: \mathscr{T} \rightarrow G$ for which $V_{\rho}^{\text {st }}(G, \theta) \neq \emptyset$, let $J:=S_{\rho}^{c}$. Then the subsets $V_{\rho}^{\mathrm{st}}(G, \theta) / G$ and $O_{\sigma_{J}}$ of $V^{\mathrm{st}}(G, \theta) / G$ agree and consist of a single point.

Proof. The bijectivity of $\rho \mapsto S_{\rho}^{c}$ was already established in Proposition 9.6. The second statement follows from the description (\#) of $O_{\sigma_{J}}$ and from

$$
V_{\rho}^{\text {st }}(G, \theta)=\left\{v \in V \mid \operatorname{supp}(v)=S_{\rho}\right\}
$$

We finish this section, and the paper, with an example.

Example 9.8. Fix a number $d \in \mathbb{Z}_{\geq 0}$. Consider the vector space $V=\mathbb{C}^{4}$ with the action of $G=\left(\mathbb{C}^{\times}\right)^{2}$ given by

$$
(g, h) \cdot\left(x_{0}, x_{1}, y, z\right)=\left(g x_{0}, g x_{1}, h y, g^{d} h z\right)
$$

This means, as a G-representation, $V=\mathbb{C}(1,0)^{2} \oplus \mathbb{C}(0,1) \oplus \mathbb{C}(d, 1)$. Let $\theta: G \rightarrow \mathbb{C}^{\times}$be the character given by $\theta(g, h)=g^{d+1} h$. Using the Hilbert-Mumford criterion, we can show that

$$
V^{\text {sst }}(G, \theta)=V^{\text {st }}(G, \theta)=\left\{v=\left(x_{0}, x_{1}, y, z\right) \mid\left(x_{0}, x_{1}\right) \neq(0,0) \neq(y, z)\right\} .
$$

We see that the quotient $V^{\text {st }}(G, \theta) / G$ is isomorphic to $\mathbb{P}\left(\mathscr{O}_{\mathbb{P}^{1}} \oplus \mathscr{O}_{\mathbb{P}^{1}}(d)\right)$, the $d^{\text {th }}$ Hirzebruch surface.
Observe that G acts freely on the stable locus. So Assumption 2.4 is fulfilled. We get $T=\left(\mathbb{C}^{\times}\right)^{4}$, and the morphism $a: G \rightarrow T$ is given by

$$
a(g, h)=\left(g, g, h, g^{d} h\right)
$$

The morphism $\pi: T \rightarrow \mathscr{T}=\left(\mathbb{C}^{\times}\right)^{2}$ defined by $\pi\left(z_{1}, \ldots, z_{4}\right)=\left(z_{1} z_{2}^{-1}, z_{3} z_{2}^{d} z_{4}^{-1}\right)$ is a cokernel of a. Let $I=\{1, \ldots, 4\}$ and $\varepsilon_{1}, \ldots, \varepsilon_{4}$ be the basis of $X_{*}(T)$ consisting of the embeddings in the $i^{\text {th }}$ diagonal entry. We read off

$$
\Phi=\{J \subseteq\{1, \ldots, 4\} \mid\{1,2\} \nsubseteq J \supsetneq\{3,4\}\}
$$

and by Proposition 9.5, the toric fan is $\Delta=\left\{\operatorname{cone}\left(\pi^{*} \varepsilon_{i}\right)_{i \in J} \mid J \in \Phi\right\}$. The maximal elements of Φ are $\{1,3\}$, $\{2,3\},\{1,4\}$, and $\{2,4\}$. They correspond to the fixed points

$$
\pi(0,1,0,1), \quad \pi(1,0,0,1), \quad \pi(0,1,1,0), \quad \pi(1,0,1,0)
$$

A section of π is given by $c: \mathscr{T} \rightarrow T$, which sends $\left(t_{1}, t_{2}\right)$ to $\left(t_{1}, 1, t_{2}, 1\right)$. For $\rho: \mathscr{T} \rightarrow G$, we obtain

$$
V_{\rho}=\{v \in V \mid c(t) v=a \rho(t) v(\text { all } t \in \mathscr{T})\}
$$

Let $\rho(t)=\left(t_{1}^{m_{1}} t_{2}^{m_{2}}, t_{1}^{n_{1}} t_{2}^{n_{2}}\right)$. Then for $v=\left(v_{1}, \ldots, v_{4}\right)$, the condition $c(t) v=a \rho(t) v$ is equivalent to the four equations

$$
\begin{aligned}
t_{1} v_{1} & =t_{1}^{m_{1}} t_{2}^{m_{2}} v_{1}, \\
v_{2} & =t_{1}^{m_{1}} t_{2}^{m_{2}} v_{2}, \\
t_{2} v_{3} & =t_{1}^{n_{1}} t_{2}^{n_{2}} v_{3}, \\
v_{4} & =t_{1}^{d m_{1}+n_{1}} t_{2}^{d m_{2}+n_{2}} v_{4} .
\end{aligned}
$$

There are four possibilities for ρ which admit a non-empty stable locus $V_{\rho}^{\text {st }}(G, \theta)$. They are $\rho_{1}(t)=\left(t_{1}, t_{2}\right)$, $\rho_{2}(t)=\left(1, t_{2}\right), \rho_{3}(t)=\left(t_{1}, t_{1}^{-d}\right)$, and $\rho_{4}(t)=(1,1)$. They give the fixed points

$$
\pi(1,0,1,0), \quad \pi(0,1,1,0), \quad \pi(1,0,0,1), \quad \pi(0,1,0,1) .
$$

References

[ASS06] I. Assem, D. Simson, and A. Skowroński, Elements of the representation theory of associative algebras. Vol. 1, London Math. Soc. Stud. Texts, vol. 65, Cambridge Univ. Press, Cambridge, 2006,
[BGM19] M. Bate, H. Geranios, and B. Martin, Orbit closures and invariants, Math. Z. 293 (2019), no. 3-4, 1121-1159.
[Bril0] M. Brion, Introduction to actions of algebraic groups, Les cours du CIRM 1 (2010), no. 1, 1-22.
[Car93] R. W. Carter, Finite groups of lie type. Conjugacy classes and complex characters (reprint of the 1985 original), Wiley Classics Lib., Wiley-Intersci. Publ., John Wiley \& Sons, Ltd., Chichester, 1993.
[Cox97] D. A. Cox, Recent developments in toric geometry, in: Algebraic geometry (Santa Cruz, 1995), pp. 389436, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997.
[Dol03] I. Dolgachev, Lectures on invariant theory, London Math. Soc. Lecture Note Ser., vol. 296, Cambridge Univ. Press, Cambridge, 2003.
[ES89] G. Ellingsrud and S. A. Strømme, On the Chow ring of a geometric quotient, Ann. of Math. (2) 130 (1989), no. 1, 159-187.
[Ful93] W. Fulton, Introduction to toric varieties, Ann. of Math. Stud., vol. 131, William Roever Lectures Geom., Princeton Univ. Press, Princeton, NJ, 1993.
[Hal10] M. Halic, Cohomological properties of invariant quotients of affine spaces, J. Lond. Math. Soc. (2) 82 (2010), no. 2, 376-394.
[Hes78] W.H. Hesselink, Uniform instability in reductive groups, J. reine angew. Math. 303/304 (1978), 74-96.
[Hos14] V. Hoskins, Stratifications associated to reductive group actions on affine spaces, Q. J. Math. 65 (2014), no. 3, 1011-1047.
[Kem78] G. R. Kempf, Instability in invariant theory, Ann. of Math. (2) 108 (1978), no. 2, 299-316.
[Kem18] , Instability in invariant theory (transcribed by I. Morrison), preprint, arXiv:1807.02890 (2018).
[Kin94] A.D. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 180, 515-530.
[Kir84] F. C. Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Math. Notes, vol. 31, Princeton Univ. Press, Princeton, NJ, 1984.
[Kra84] H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspects Math., D1, Friedr. Vieweg \& Sohn, Braunschweig, 1984.
[Lun73] D. Luna, Slices étales, in: Sur les groupes algébriques, pp. 81-105, Bull. Soc. Math. France Mém. 33 (1973).
[Lun75] _ Adhérences d'orbite et invariants, Invent. Math. 29 (1975), no. 3, 231-238.
[MFK94] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergeb. Math. Grenzgeb. (2), vol. 34, Springer-Verlag, Berlin, 1994.
[Moz23] S. Mozgovoy, Translation quiver varieties, J. Pure Appl. Algebra 227 (2023), no. 1, 107156.
[Nes84] L. Ness, A stratification of the null cone via the moment map (with an appendix by D. Mumford), Amer. J. Math. 106 (1984), no. 6, 1281-1329.
[Rei03] M. Reineke, The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli, Invent. Math. 152 (2003), no. 2, 349-368.
[Rei08] , Moduli of representations of quivers, in: Trends in representation theory of algebras and related topics, pp. 589-637, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008.
[Wei13] T. Weist, Localization in quiver moduli spaces, Represent. Theory 17 (2013), 382-425.

[^0]: Received by the Editors on September 22, 2022, and in final form on March 6, 2023.
 Accepted on June 6, 2023.
 Ana-Maria Brecan
 e-mail: ana-maria.brecan@uni-bayreuth.de
 University of Bayreuth, Faculty of Mathematics, Physics, and Computer Science, Universitätsstraße 30, 95447 Bayreuth, Germany
 Hans Franzen
 e-mail: hans.franzen@math.upb.de
 Paderborn University, Institute of Mathematics, Warburger Straße 100, 33098 Paderborn, Germany
 While this research was conducted, H.F. was supported by the DFG SFB TR 191 "Symplektische Strukturen in Geometrie, Algebra und Dynamik".
 © by the author(s)
 This work is licensed under http://creativecommons.org/licenses/by-sa/4.0/

