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Abstract. This note presents some properties of the variety of planes F2(X) ⊂ G(3,7) of a cubic
5-fold X ⊂ P

6. A cotangent bundle exact sequence is first derived from the remark made by Iliev
and Manivel that F2(X) sits as a Lagrangian subvariety of the variety of lines of a cubic 4-fold,
which is a hyperplane section of X. Using the sequence, the Gauss map of F2(X) is then proven
to be an embedding. The last section is devoted to the relation between the variety of osculating
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1. Introduction

To understand the topology and the geometry of smooth complex hypersurfaces X ⊂ P(V ∗) ≃ P
n+1,

various auxiliary manifolds have been introduced in the past century, of which the intermediate Jacobian

Jn(X) := (Hk−1,k+2(X)⊕ · · · ⊕H0,n)/Hn(X,Z)/ torsion

when n = 2k+1 is odd is one of the most widely known since the seminal work of Clemens–Griffiths ([CG72])
on the cubic 3-fold.

Cubic 5-folds are classically (cf. [Gri69]) known to be the only hypersurfaces of dimension greater than 3
for which the intermediate Jacobian, which is in general just a (polarised) complex torus, is a (non-trivial)
principally polarised abelian variety.

Another interesting series of varieties classically associated to X are the varieties Fm(X) ⊂ G(m+1,V ) of
m-planes contained in X.

Starting from Collino ([Col86]), some properties of the variety of planes F2(X) ⊂ G(3,V ) of a cubic 5-fold
X have been studied in connection with the 21-dimensional intermediate Jacobian J5(X). In loc. cit., the
following is proven.

Theorem 1.1. For a general cubic X ⊂ P(V ∗) ≃ P
6, F2(X) is a smooth irreducible surface, and the Abel–Jacobi

map of the family of planes ΦP : F2(X)→ J5(X) is an immersion; i.e., the associate tangent map is injective and
induces an isomorphism of abelian varieties

φP : Alb(F2(X))
∼−−→ J5(X),

where P ∈ CH5(F2(X) ×X) is the universal plane over F2(X). Equivalently, q∗p∗ : H3(F2(X),Z)/ torsion →
H5(X,Z) is an isomorphism of Hodge structures, where the maps are defined by

P
q
//

p
��

X

F2(X).

In the present note, we investigate some additional properties of F2(X).
In the first section, we establish the following cotangent bundle exact sequence.

Theorem 1.2. Let X ⊂ P(V ∗) be a smooth cubic 5-fold for which F2(X) is a smooth irreducible surface. Then the
cotangent bundle ΩF2(X) fits in the exact sequence

(1.1) 0 −→Q∗3|F2(X) −→ Sym2E3|F2(X) −→ΩF2(X) −→ 0,
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where the tautological rank 3 quotient bundle E3 and the other bundle appear in the exact sequence

(1.2) 0 −→Q3 −→ V ∗ ⊗OG(3,V ) −→ E3 −→ 0

and the first map (of (1.1)) is the contraction with an equation eqX ∈ Sym3V ∗ defining X, i.e. for any [P ] ∈ F2(X),
v 7→ eqX(v, ·, ·)|P .

Classically associated to the Albanese map albF2 : F2(X)→ Alb(F2(X)) of F2(X), there is the Gauss map

G : albF2(F2(X)) −d G
(
2,TAlb(F2(X)),0

)
t 7−→ TalbF2 (F2(X))−t,0

where albF2(F2(X))− t designates the translation of albF2(F2(X)) ⊂ Alb(F2(X)) by −t ∈ Alb(F2(X)). The
map G is defined on the smooth locus of albF2(F2(X)).

In the second section of the note, we prove the following.

Theorem 1.3. The Albanese map is an embedding. In particular, the Gauss map is defined everywhere. Moreover,
G is an embedding, and its composition with the Plücker embedding

G
(
2,Alb(F2(X)),0

)
≃ G

(
2,H0

(
ΩF2

)∗)
⊂ P

 2∧
H0

(
ΩF2(X)

)∗
is the composition of the degree 3 Veronese of the natural embedding F2(X) ⊂ G(3,V ) ⊂ P(

∧3V ∗) followed by a
linear projection.

The last section is concerned with some properties of the variety of osculating planes of a cubic 4-fold,
namely

(1.3) F0(Z) := {[P ] ∈ G(3,H), ∃ℓ ⊂ P line s.t. P ∩Z = ℓ (set-theoretically)},

where Z ⊂ P(H ∗) ≃ P
5 is a smooth cubic 4-fold containing no plane.

This variety admits a natural projection to the variety of lines F1(Z) of Z whose image (under that
projection) has been studied, for example, in [GK21]. The interest of the authors there for the variety F0(Z)
stems from its image in F1(Z) being the fixed locus of the Voisin self-map of F1(Z) (see [Voi04]), a map that
plays an important role in the understanding of algebraic cycles on the hyper-Kähler 4-fold F1(Z) (see for
example [SV16]).

In [GK21], it is proven that for Z general, F0(Z) is a smooth irreducible surface, and some of its invariants
are computed.

We compute some more invariants of F0(Z) using its link with the variety of planes F2(XZ ) of the
associated cyclic cubic 5-fold: to a smooth cubic 4-fold Z = {eqZ = 0} ⊂ P

5, one can associate the cubic
5-fold XZ = {X3

6 +eqZ(X0, . . . ,X5)} which (by linear projection) is the degree 3 cyclic cover of P5 ramified
over Z .

Theorem 1.4. For Z general, F0(Z) is a smooth irreducible surface, and

(1) F2(XZ ) is a degree 3 étale cover of F0(Z),
(2) b1(F0(Z)) = 0, h2(OF0(Z)) = 1070, h1(ΩF0(Z)) = 2207,
(3) ℑ(F0(Z)→ F1(Z)) is a (non-normal ) Lagrangian surface of F1(Z).

Remark 1.5. As mentioned by the referee and Frank Gounelas, in [GK21], it is proven that [ℑ(F0(Z)→
F1(Z))] = 21[F1(Z ∩H)] in CH2(F1(Z)), where Z ∩H is a cubic 3-fold obtained as a general hyperplane
section, which implies that [ℑ(F0(Z)→ F1(Z))] is Lagrangian (see [Huy23, Lemma 6.4.5], for example).
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2. Cotangent bundle exact sequence

Let X ⊂ P(V ∗) ≃ P
6 be a smooth cubic 5-fold. Its variety of planes F2(X) ⊂ G(3,V ) is the zero locus of

the section of Sym3E3 (where E3 is defined by (1.2)) induced by an equation eqX ∈H0(O
P

6(3)) of X.
Let us gather some basic properties of F2(X) before proving Theorem 1.2.
It is proven in [Col86, Proposition 1.8] that F2(X) is connected for any X, so that by Bertini-type theorems,

for X general, F2(X) is a smooth irreducible surface.
As such an F2(X) is cut out of G(3,V ) by a regular section of the rank 10 vector bundle Sym3E3, the

Koszul resolution says that the structure sheaf OF2(X) is quasi-isomorphic to the complex

(2.1) 0 −→∧10Sym3E∗3 −→∧
9Sym3E∗3 −→ ·· · −→ Sym3E∗3 −→OG(3,V ) −→ 0,

where the differentials are given by the section of Sym3E3. By the adjunction formula,

KF2(X) ≃ KG(3,V ) ⊗det(Sym3E3|F2(X)) ≃ OG(3,V )(3)|F2(X) := OF2(X)(3).

Theorem 1.1 (see also Theorem 3.1 below) implies that h1,0(F2(X)) = h0(ΩF2(X)) = h
2,3(X) = 21, and we

can use software to compute the other Hodge numbers (see also [Gam]). We use the package Schubert2 of
Macaulay2:

(1) The Koszul resolution of OF2(X) gives χ(OF2(X)) =
∑10
i=0(−1)iχ(∧i Sym

3E∗3). We can get the result
χ(OF2(X)) = 3213 using the following code:

loadPackage "Schubert2"
G=flagBundle{4,3}
(Q,E)= bundles G
F=symmetricPower(3,dual(E))
chi(exteriorPower(0,F))-chi(exteriorPower(1,F))+chi(exteriorPower(2,F))
-chi(exteriorPower(3,F))+chi(exteriorPower(4,F))-chi(exteriorPower(5,F))
+chi(exteriorPower(6,F))-chi(exteriorPower(7,F))+chi(exteriorPower(8,F))
-chi(exteriorPower(9,F))+chi(exteriorPower(10,F))

Then we get h0,2(F2(X)) = χ(OF2(X))− 1+ h
0,1(F2(X)) = 3233.

(2) Next, Noether’s formula reads χtop(F2(X)) = 12χ(OF2(X))−
∫
F2(X)

c1(KF2(X))
2, and as∫

F2(X)
c1

(
KF2(X)

)2
=

∫
F2(X)

c1
(
OG(3,V )(3)|F2(X)

)2
=

∫
G(3,V )

[F2(X)] · c1
(
OG(3,V )(3)

)2
= 9

∫
G(3,V )

c10
(
Sym3E3

)
· c1

(
OG(3,V )(1)

)2
,

the number
∫
F2(X)

c1(KF2(X))
2 = 32 × 2835 = 25515 can be obtained using the code

loadPackage "Schubert2"
G=flagBundle{4,3}
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(Q,E)= bundles G
F=symmetricPower(3,E)
cycle=chern(1,exteriorPower(3,E))*chern(1,exteriorPower(3,E))*chern(10,F)
integral cycle

Then we get b2(F2(X)) = χtop(F2(X))−2+2b1(F2(X)) = 13041−2+4×21 = 13123 and h1,1(F2(X)) =
b2(F2(X))− 2h0,2(F2(X)) = 6657.

Associated to X, there is also its variety of lines F1(X) ⊂ G(2,V ). It is a smooth Fano variety of dimension
6 which is cut out by a regular section of Sym3E2, where E2 is the tautological rank 2 quotient bundle
appearing in an exact sequence

0 −→Q2 −→ V ∗ ⊗OG(2,V ) −→ E2 −→ 0.

Let us examine the relation between the two auxiliary varieties by introducing the flag variety

Fl(2,3,V )

t
��

e // Gr(2,V )

Gr(3,V ),

where t : Fl(2,3,V ) ≃ P(∧2E3)→ Gr(3,V ) and e : Fl(2,3,V ) ≃ P(Q2)→ Gr(2,V ). For the tautological
quotient line bundles, we have Ot(1) ≃ e∗OGr(2,V )(1) and Oe(1) ≃ t∗OGr(3,V )(1)⊗ e∗OGr(2,V )(−1).

On Fl(2,3,V ), the relation between the two tautological bundles is given by the exact sequence

(2.2) 0 −→ e∗OG(2,V )(−1)⊗ t∗OG(3,V )(1) −→ t∗E3 −→ e∗E2 −→ 0.

We can restrict the flag bundle to get

PF2 := P

(
∧2E3|F2(X)

) eF2 //

tF2
��

F1(X)

F2(X).

We have the following property.

Proposition 2.1. The tangent map T eF2 of eF2 is injective; i.e., eF2 is an immersion. Moreover, the “normal
bundle” N

PF2 /F1(X)
:= e∗F2TF1(X)/TPF2 of PF2 admits the following description:

(2.3) 0 −→ t∗F2(Q
∗
3|F2(X))⊗Oe(1) −→ t∗F2 Sym

2E3 ⊗Oe(1) −→N
PF2 /F1(X)

−→ 0.

Proof. (1) Let us first prove that eF2 is an immersion. Let us recall the natural isomorphism between the two
presentations of the tangent space of Fl(2,3,V ): looking at t, we can write

TFl(2,3,V ),([ℓ],[P ]) ≃Hom(⟨P ⟩,V /⟨P ⟩)⊕Hom(⟨ℓ⟩,⟨P ⟩/⟨ℓ⟩),

and looking at e, we have

TFl(2,3,V ),([ℓ],[P ]) ≃Hom(⟨ℓ⟩,V /⟨ℓ⟩)⊕Hom(⟨P ⟩/⟨ℓ⟩,V /⟨P ⟩),

where we denote by ⟨K⟩ ⊂ V the linear subspace whose projectivisation is K ⊂ P(V ∗). For a given
decomposition ⟨P ⟩ ≃ ⟨ℓ⟩ ⊕ ⟨P ⟩/⟨ℓ⟩, the isomorphism takes the following form:

Hom(⟨P ⟩,V /⟨P ⟩)⊕Hom(⟨ℓ⟩,⟨P ⟩/⟨ℓ⟩) −→ Hom(⟨ℓ⟩,V /⟨ℓ⟩)⊕Hom(⟨P ⟩/⟨ℓ⟩,V /⟨P ⟩).

(f , g) 7−→
(
f |⟨ℓ⟩ + g, f |⟨P ⟩/⟨ℓ⟩

)
Notice that, by definition, we haveℑ(f )∩ℑ(g) = {0}, so that in proving that T([ℓ],[P ])eF2 is injective, we
can examine the two components separately.
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Now we have the exact sequence

0 −→Nℓ/P −→Nℓ/X −→NP /X |ℓ −→ 0,

from which we get

(2.4) 0 −→H0(Oℓ(1))
≃⟨ℓ⟩∗

−→H0(Nℓ/X) −→H0(NP /X |ℓ) −→ 0 =H1(Oℓ(1)),

and we have TF1(X),[ℓ] ≃H
0(Nℓ/X).

A linear form on P defining ℓ is given by any generator of (⟨P ⟩/⟨ℓ⟩)∗ ⊂ ⟨P ⟩∗, so that

T
P(∧2E3|F2(X)),([ℓ],[P ]) ≃ TF2(X),[P ]︸   ︷︷   ︸

≃H0(NP /X )

⊕⟨P ⟩∗/(⟨P ⟩/⟨ℓ⟩)∗︸            ︷︷            ︸
≃⟨ℓ⟩∗

.

The second summand is readily seen to inject into TF1(X),⟨ℓ⟩ by (2.4).
Next, we have the exact sequence

0 −→NP /X(−1) −→NP /X −→NP /X |ℓ −→ 0,

which gives rise to

(2.5) 0 −→H0 (NP /X(−1)) −→H0 (NP /X) −→H0 (NP /X |ℓ) −→H1 (NP /X(−1)) −→H1 (NP /X) .

To prove that T([ℓ],[P ])eF2 is injective, it is thus sufficient to prove that H0(NP /X(−1)) = 0.
Consider the exact sequence

(2.6) 0 −→NP /X −→ NP /P6︸︷︷︸
≃(V /⟨P ⟩)⊗OP (1)

α−→NX/P6 |P︸   ︷︷   ︸
≃OP (3)

−→ 0.

Up to a projective transformation, we can assume P = {X0 = · · · = X3 = 0}, so that eqX has the following
form:

(2.7) X0Q0 +X1Q1 +X2Q2 +X3Q3 +
6∑
i=4

XiDi(X0,X1,X2,X3) +R(X0,X1,X2,X3)

where R is a homogeneous cubic polynomial, the Di , 4 ≤ i ≤ 6, are homogeneous quadratic polynomials in
the variables (Xk)k≤3 and the Qi , 0 ≤ i ≤ 3, are homogeneous quadratic polynomials in (Xi)4≤i≤6. With this
notation, X is smooth along P if and only if Span((Qi |P )i=0,...,3) is base-point-free. We recall the following
result found in [Col86, Proposition 1.2 and Corollary 1.4].

Proposition 2.2. For X smooth along P , the following properties are equivalent:

(1) The variety F2(X) is smooth at [P ].
(2) The set (Q0, . . . ,Q3) is linearly independent.
(3) The map H0(α) : H0(NP /P6) ≃ (V /⟨P ⟩) ⊗H0(OP (1))→ H0(NX/P6 |P ) ≃ H0(OP (3)), (L0, . . . ,L3) 7→∑

i LiQi is surjective.

Now tensoring (2.6) by OP (−1), we get the long exact sequence

(2.8) 0 −→H0(NP /X(−1)) −→ V /⟨P ⟩
H0(α(−1))
−−−−−−−−−→H0(OP (2)) −→H1(NP /X(−1)) −→ 0 =H1(OP )⊕4.

The map H0(α(−1)) is given by the quadrics (Q0, . . . ,Q3). As F2(X) is smooth by assumption, the latter
are linearly independent; thus H0(α(−1)) is injective; i.e., we have H0(NP /X(−1)) = 0. In particular,
H0(NP /X) ⊂H0(NP /X |ℓ); hence, looking at (2.6) and (2.4), we see that T([ℓ],[P ])eF2 is injective.
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(2) We want now to establish the exact sequence (2.3). Pulling back the natural exact sequence of locally
free sheaves, we get the commutative diagram

0 // T
PF2

//

T eF2
��

TFl(2,3,V )|PF2
//

T e|
PF2

��

(t∗Sym3E3)|PF2
//

T e|
PF2

��

0

0 // e∗F2TF1(X)
// e∗F2TGr(2,V )|F1(X) // e∗F2 Sym

3E2|F1(X) // 0,

which by the snake lemma yields

0 −→ Ker
(
T e|

PF2

)
−→ Ker

(
T e|

PF2

)
−→ coker

(
T eF2

)
−→ 0.

By the definition of the normal bundle, we get coker(T eF2) ≃ NPF2 /F1(X)
. The restriction of the exact

sequence of locally free sheaves

0 −→ TFl(2,3,V )/Gr(2,7) −→ TFl(2,3,V ) −→ e∗TGr(2,V ) −→ 0

still being exact, we get ker(T e|
PF2

) ≃ TFl(2,3,V )/Gr(2,V )|PF2 . The relative tangent bundle appears in the exact
sequence:

0 −→OFl(2,3,V ) −→ e∗V /E∗2 ⊗Oe(1) −→ TFl(2,3,V )/Gr(2,V ) −→ 0.

The sequence (2.2) also yields

0 −→ t∗OGr(3,V )(−1)⊗ e∗OGr(2,V )(1) −→ V /E∗2 −→ V /E∗3 −→ 0,

from which, after twisting that last sequence by Oe(1), we get TFl(2,3,V )/Gr(2,V )|PF2 ≃ t
∗
F2
V /E∗3 ⊗Oe(1).

Next, taking the symmetric power of (2.2) we get the exact sequence

0 −→ e∗OGr(2,V )(−1)⊗ t∗OGr(3,V )(1)⊗ t∗Sym2E3 −→ t∗Sym3E3 −→ e∗Sym3E2 −→ 0,

so that ker(T e|
PF2

) ≃ (e∗OGr(2,V )(−1)⊗ t∗OGr(3,V )(1)⊗ t∗Sym2E3)|PF2 . Putting everything together, we get
the desired exact sequence. □

For any plane P0 ⊂ X, looking for example at the associated quadric bundle

X̃P0
γ̃

""E
EE

EE
EE

EE
� � //

P(E4)

γ

��
B,

where B ≃ {[Π] ∈ G(4,V ), P0 ⊂Π} ≃ P
3, E4 ≃ ⟨P ⟩∗ ⊗OP

3 ⊕O
P

3(1) and X̃P0 ∈ |Oγ (2)⊗ γ
∗O

P
3(1)|, we see

that the locus of quadrics of rank at most 2 has codimension (at most)
(4−2+1

2
)
= 3. Moreover, by the

Harris–Tu formula ([HT84, Theorem 1 and Theorem 10]), there are (at least) 2
∣∣∣∣ c2(E4⊗L) c3(E4⊗L)c0(E4⊗L) c1(E4⊗L

∣∣∣∣ = 31 of these

quadrics (where L has to be thought of as a formal square root of O
P

3(1)).
In particular, the locus Γ = {([ℓ], [P ]) ∈ PF2 , ∃[P

′] , [P ], ([ℓ], [P ′]) ∈ PF2} has codimension 2 in PF2
(above the general plane [P ] ∈ F2(X), there are finitely many lines that belong to another planes P ′ ⊂ X).

To any hyperplane H ⊂ P(V ∗) such that Y := X ∩H is a smooth cubic 4-fold containing no plane, we
can attach the morphism jH : F2(X)→ F1(Y ) defined by [P ] 7→ [P ∩H].

The subvariety F1(Y ) ⊂ F1(X) is the zero locus of the regular section of E2|F1(X) induced by the equation
of H ⊂ P(V ∗). For any such Y (containing no plane), e−1(F1(Y )) is obviously a section ZH of PF2 → F2(X),
[P ] 7→ ([P ∩H], [P ]). The smooth surface ZH ≃ F2(X) is thus the zero locus of a regular section of e∗F2E2|F1(X).
By Bertini-type theorems, for H general, ZH ∩ Γ is 0-dimensional.

As a result, as noticed in [IM08, Proposition 7] (the published version corrects the preprint, in which
it is wrongly claimed that jH is an embedding, as underlined in [Huy23]), jH : ZH ≃ F2(X)→ F1(Y ) is
isomorphic to its image outside a 0-dimensional subset of F2(X).
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The following diagram is commutative:

0 // TZH
//

��

T
PF2
|ZH //

��

NZH /PF2
//

��

0

0 // (e∗F2TF1(Y ))|ZH
// (e∗F2TF1(X))|ZH

// (e∗F2NF1(Y )/F1(X))|ZH
// 0.

As ZH ⊂ PF2 is the zero locus of a regular section of e∗F2E2|F1(X), we have NZH /PF2 ≃ (e∗F2E2|F1(X))|ZH , so
that the last vertical arrow in the diagram is an isomorphism. As the second vertical arrow is injective by
Proposition 2.1, the first is injective as well. So the snake lemma gives (e∗F2TF1(Y ))|ZH /TZH ≃NPF2 /F1(X)

|ZH .
According to [IM08, Proposition 4],ℑ(jH ) is a (non-normal) Lagrangian surface of the hyper-Kähler

manifold F1(Y ). In particular, outside a codimension 2 subset of F2(X), we have

ΩZH ≃
(
e∗F2TF1(Y )

)
ZH
/TZH .

As both sheaves are locally free, the isomorphism holds globally; i.e.,

(2.9) ΩF2(X) ≃NPF2 /F1(X)
|ZH .

We can now prove Theorem 1.2

Proof of Theorem 1.2. Looking at (2.9) and (2.3), we see that we only have to check that Oe(1)|ZH ≃ OZH .
For a (general) hyperplane H ⊂ P(V ∗), we have a rational map ϕ : Gr(3,V )d Gr(2,⟨H⟩), P 7→ P ∩H

whose indeterminacy locus is Gr(3,⟨H⟩). The morphism jH : F2(X) ≃ ZH → F1(Y ) is the restriction of the
map ϕ to F2(X). To get the result, we will show more generally that ϕ∗OGr(2,⟨H⟩)(−1)⊗OGr(3,V )(1) restricts
to the trivial line bundle on the open set where ϕ is defined, i.e., on Gr(3,V )\Gr(3,⟨H⟩).

The subvariety Gr(3,⟨H⟩) ⊂ Gr(3,V ) is the zero locus of a regular section of E3, so that
NGr(3,⟨H⟩)/Gr(3,V ) ≃ E3|Gr(3,⟨H⟩). After blowing up this locus, we get

Eτ
� � j

//

��

˜Gr(3,V )

τ
��

ϕ̃

&&LL
LLL

LLL
LLL

Gr(3,⟨H⟩) �
� i // Gr(3,V )

ϕ
//___ Gr(2,⟨H⟩),

where the exceptional divisor Eτ is isomorphic to P(E∗3) ≃ P(∧2E3 ⊗det(E3)−1). So Eτ is isomorphic to the
flag variety Fl(2,3,⟨H⟩), and ϕ̃ ◦ j correspond to the projection on the Grassmannian of lines; hence

OEτ (1) ≃ j
∗ϕ̃∗OGr(2,⟨H⟩)(1)⊗ τ∗Eτ i

∗OGr(3,V )(−1) in Pic(Eτ ) .

As the restriction Pic(Gr(3,V ))→ Pic(Gr(3,⟨H⟩)) is an isomorphism, so is Pic( ˜Gr(3,V ))→ Pic(Eτ ); thus

O ˜Gr(3,V )(−E) ≃ ϕ̃
∗OGr(2,⟨H⟩)(1)⊗ τ∗OGr(3,V )(−1) in Pic

(
˜Gr(3,V )

)
.

Now pushing forward by τ the short exact sequence defining E, we get

τ∗ϕ̃
∗OGr(2,⟨H⟩)(1)⊗OGr(3,V )(−1) ≃ τ∗O ˜Gr(3,V )(−E) ≃ IGr(3,⟨H⟩)/Gr(3,V ),

which is indeed trivial on Gr(3,V )\Gr(3,⟨H⟩). □

3. Gauss map of F2(X)

Let X ⊂ P(V ∗) ≃ P
6 be a smooth cubic hypersurface such that F2(X) is a smooth (irreducible) surface.

We begin this section with the following.
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Theorem 3.1. The following sequence is exact:

(3.1) 0 −→H1
(
OF2(X)

)
−→ Sym2V ⊗det(V )

ϕeqX⊗iddet(V )
−−−−−−−−−−−→ V ∗ ⊗det(V ) −→ 0,

where ϕeqX is defined to be ei + ej 7→ eqX(ei , ej , ·).
Moreover, we have an inclusion

∧2H1(OF2(X)) ⊂ H2(OF2(X)), which by Hodge symmetry yields∧2H0(ΩF2(X)) ⊂H
0(KF2(X)).

Proof. As OF2(X) admits the Koszul resolution (2.1), to understand the cohomology groups H i(OF2(X)), we
can use the spectral sequence

E
p,q
1 =Hq

(
G(3,V ),∧−p Sym3E∗3

)
=⇒Hp+q

(
OF2(X)

)
.

As a reminder, we borrow from [Jia12] (see also [Spa03]) the following elementary presentation of the
Borel–Weil–Bott theorem for a G(3,W ) with dim(W ) = d.

For any vector space L of dimension f and any decreasing sequence of integers a = (a1, . . . , af ), there is
an irreducible GL(L)-representation (Weyl module) denoted by Γ (a1,...,af )L.

To two decreasing sequences a = (a1, . . . , ad−e) and b = (b1, . . . , be), we can associate the sequence

(φ1, . . . ,φd) = φ(a,b) := (a1 − 1, a2 − 2, . . . , ad−e − (d − e),b1 − (d − e+1), . . . , be − d).

We measure how far φ(a,b) is from being decreasing by introducing i(a,b) := #{α < β, φα > φβ}.
Finally, let us denote by φ(a,b)+ = (φ+

1 , . . . ,φ
+
d ) a re-ordering of φ(a,b) to make it non-increasing and set

ψ(a,b) := (φ+
1 +1, . . . ,φ+

d + d).
The Borel–Weil–Bott theorem reads as follows.

Theorem 3.2. We have

(1) Hq(G(3,W ),Γ aQ∗3 ⊗ Γ bE
∗
3) = 0 for q , i(a,b),

(2) H i(a,b)(G(3,W ),Γ aQ∗3 ⊗ Γ bE
∗
3) = Γ ψ(a,b)W ,

where Q3 and E3 are defined by (1.2) and Γ ψ(a,b)W = 0 if ψ(a,b) is not decreasing.

Now, we want to apply this theorem to compute the E
p,q
1 of the spectral sequence. Using Sage with the

code

R=WeylCharacterRing("A2")
V=R(1,0,0)
for k in range(11): print k, V.symmetric_power(3).exterior_power(k)

we get the decompositions into irreducible modules of ∧k Sym3E∗3. Then by the Borel–Weil–Bott theorem,
we have

(0) ⊕12i H
i
(
OG(3,V )

)
= ⊕iH i

(
Γ (0,...,0)Q∗3 ⊗ Γ

(0,0,0)E∗3
)

=H0
(
OG(3,V )

)
= Γ (0,...,0)V ≃C,

(1) ⊕12i H
i
(
Sym3E∗3

)
= ⊕12i H

i
(
Γ (3,0,0)E∗3

)
= 0,

(2) ⊕iH i
(
∧2Sym3E∗3

)
= ⊕iH i

(
Γ (3,3,0)E∗3 ⊕ Γ

(5,1,0)E∗3
)

=H4
(
Γ (5,1,0)E∗3

)
= Γ (1,...,1,0)V ≃ ∧6V ,

(3) ⊕iH i
(
∧3Sym3E∗3

)
= ⊕iH i

(
Γ (3,3,3)E∗3 ⊕ Γ

(5,3,1)E∗3 ⊕ Γ
(6,3,0)E∗3 ⊕ Γ

(7,1,1)E∗3
)

=H4
(
Γ (7,1,1)E∗3

)
= Γ (3,1,...,1)V ≃ Sym2V ⊗det(V ),

(4) ⊕iH i
(
∧4Sym3E∗3

)
= ⊕iH i

(
Γ (6,3,3)E∗3 ⊕ Γ

(6,4,2)E∗3 ⊕ Γ
(6,6,0)E∗3 ⊕ Γ

(7,4,1)E∗3 ⊕ Γ
(8,3,1)E∗3

)
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=H8
(
Γ (6,6,0)E∗3

)
= Γ (2,...,2,0)V

≃ Sym2V ∗ ⊗det(V )⊗2,

(5) ⊕iH i
(
∧5Sym3E∗3

)
≃ ⊕iH i

(
Γ (6,6,3)E∗3 ⊕ Γ

(7,4,4)E∗3 ⊕ Γ
(7,6,2)E∗3 ⊕ Γ

(8,4,3)E∗3 ⊕ Γ
(8,6,1)E∗3

⊕Γ (9,4,2)E∗3
)

=H8
(
Γ (7,6,2)E∗3 ⊕ Γ

(8,6,1)E∗3
)

= Γ (3,2,...,2)V ⊕ Γ (4,2...,2,1)V

≃
(
Sym2V ⊗V ∗

)
⊗det(V )⊗2,

(6) ⊕iH i
(
∧6Sym3E∗3

)
≃ ⊕iH i

(
Γ (7,7,4)E∗3 ⊕ Γ

(8,6,4)E∗3 ⊕ Γ
(9,6,3)E∗3 ⊕ Γ

(9,7,2)E∗3 ⊕ Γ
(10,4,4)E∗3

)
=H8

(
Γ (9,7,2)E∗3

)
≃ Γ (5,3,2...,2)V ≃

(
∧2Sym2V

)
⊗det(V )⊗2,

(7) ⊕iH i
(
∧7Sym3E∗3

)
≃ ⊕iH i

(
Γ (7,7,7)E∗3 ⊕ Γ

(9,7,5)E∗3 ⊕ Γ
(9,9,3)E∗3 ⊕ Γ

(10,7,4)E∗3
)

=H12
(
Γ (7,7,7)E∗3

)
≃ Γ (3,...,3)V ≃ det(V )⊗3,

(8) ⊕iH i
(
∧8Sym3E∗3

)
≃ ⊕iH i

(
Γ (10,7,7)E∗3 ⊕ Γ

(10,9,5)E∗3
)

=H12
(
Γ (10,7,7)E∗3

)
= Γ (6,3,...,3)V ≃ Sym3V ⊗det(V )⊗3,

(9) ⊕iH i
(
∧9Sym3E∗3

)
≃ ⊕iH i

(
Γ (10,10,7)E∗3

)
=H12

(
Γ (10,10,7)E∗3

)
≃ Γ (6,6,3,...,3)V ,

(10) ⊕iH i
(
∧10Sym3E∗3

)
≃ ⊕iH i

(
Γ (10,10,10)E∗3

)
=H12

(
Γ (10,10,10)E∗3

)
≃ Γ (6,6,6,3...,3)V .

To understand H1(OF2(X)), we have to examine the E−i,i+1∞ for i = 0, . . . ,10. As E−i,i+11 = 0 for any i , 3,

we get E−i,i+1∞ = 0 for i , 3.
On the other hand, for r ≥ 2, E−3,4r is defined as the (middle) cohomology of

E
−(2+r),2+r
r−1

dr−1−−−→ E−3,4r−1
dr−1−−−→ E−4+r,6−rr−1 .

From the above computations, we see that E−i,i1 = 0 for i ≥ 3, so that E−i,ir = 0 for any i ≥ 3 and r ≥ 1.
So we get E−3,42 = Ker(d1 : E

−3,4
1 → E−2,41 ).

As E−1,31 = 0, we have E−1,32 = 0, so that E−3,43 ≃ E−3,42 .

As E0,2
1 = 0, we have E0,2

3 = 0, so that E−3,44 ≃ E−3,42 .

As Ea,b1 = 0 for any a > 0, we get E−3,4∞ ≃ E−3,42 ; i.e., the following sequence is exact:

0 −→H1
(
OF2(X)

)
−→ E−3,41

d−3,41−−−−→ E−2,41 .

Now, d−3,41 is given by contracting with the section defined by eqX , so that, choosing a basis (e0, . . . , e6)
of V , we have

d−3,41 : Sym2V ⊗det(V ) −→ ∧6 V ≃ V ∗ ⊗det(V ).

(ei + ej )⊗ (e0 ∧ · · · ∧ e6) 7−→
∑
k

eqX(ei , ej , ek)êk = eqX(ei , ej , ·)⊗ (e0 ∧ · · · ∧ e6)
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If this map is not surjective, we can choose the basis so that e∗0 ⊗ (e0 ∧ · · · ∧ e6) <ℑ(d−3,41 ). Then we get
eqX(ei , ej , e0) = 0 for any i, j, which means that the cubic hypersurface X is a cone with vertex [e0].

So for a smooth cubic, d−3,41 is surjective, so (3.1) is exact.
Before tackling the case of H2(OF2(X)), we notice that the exterior square of (3.1) gives the following exact

sequence:

(3.2)
0 −→∧2H1(OF2(X)) −→ (∧2Sym2V )⊗det(V )⊗2

ϕeqX⊗idSym2 V⊗det(V )
−−−−−−−−−−−−−−−−−→ Sym2V ⊗V ∗ ⊗det(V )⊗2

ϕeqX⊗idV ∗⊗det(V )
−−−−−−−−−−−−−−→ Sym2V ∗ ⊗det(V )⊗2 −→ 0.

To understand H2(OF2(X)), we have to examine the E−i,i+2∞ for i = 0, . . . ,10. As E−i,i+21 = 0 for i , 2,6,10,

we have E−i,i+2∞ = 0 for i , 2,6,10.

Analysis of E−2,4∞ . As E−1,41 = 0, E−2,42 is the cokernel of d−3,41 , which has just been proven to be surjective

when X is smooth. So E−2,42 = 0, from which we get E−2,4∞ = 0.

Analysis of E−6,8∞ . Each E−6,8r is the middle cohomology of

E
−(5+r),6+r
r−1

dr−1−−−→ E−6,8r−1
dr−1−−−→ E−7+r,10−rr−1 .

From the above computations of the cohomology groups, we see that E
−(5+r),6+r
1 = 0 for any r ≥ 2, so

E
−(5+r),6+r
r−1 = 0 for any r ≥ 2.
So E−6,82 = Ker(d−6,81 : E−6,81 → E−5,81 ).
We see that E−7+r,10−r1 = 0 for any r ≥ 3, so that E−7+r,10−rr−1 = 0 for any r ≥ 3. As a result, we get

E−6,8∞ = E−6,82 .
From (3.2), we get that Coker(d−6,81 : E−6,81 → E−5,81 ) ≃ Sym2V ∗ ⊗ det(V )⊗2 and E−6,8∞ = Ker(d−6,81 :

E−6,81 → E−5,81 ) ≃ ∧2H1(OF2(X)).
Now, the spectral sequence computes the graded pieces of a filtration

0 = F1 ⊂ F0 ⊂ · · · ⊂ F−10 ⊂ F−11 =H2
(
OF2(X)

)
,

and we have seen (E−2,4∞ = 0) that all the graded pieces are trivial, but GrF−6 ≃ E
−6,8
∞ and (a priori)

GrF−10 ≃ E
−10,12
∞ . As a result, we get ∧2H1(OF2(X)) ≃ E

−6,8
∞ = F−6 = · · · = F−9 ⊂ F10 ⊂H2(OF2(X)), proving

the inclusion. □

Moreover, we have the following proposition.

Proposition 3.3. We have H0(Q3|∗F2(X)) ≃H
0(Q∗3) ≃ V and H0(Sym2E3|F2(X)) ≃H

0(Sym2E3) ≃ Sym2V ∗,
and the following sequence is exact:

(3.3) 0 −→H0
(
Q∗3|F2(X)

)
−→H0

(
Sym2E3|F2(X)

)
−→H0

(
ΩF2(X)

)
−→ 0,

where the first map is given by v 7→ eqX(v, ·, ·).

Proof. To understand H0(Q∗3|F2(X)), we use again the Koszul resolution (2.1) tensored by Q∗3. We have the
spectral sequence

E
p,q
1 =Hq

(
G(3,V ),Q∗3 ⊗∧

−p Sym3E∗3
)
=⇒Hp+q

(
Q∗3|F2(X)

)
.

We again use the Borel–Weil–Bott theorem 3.2 to compute the cohomology groups on G(3,V ). The
decompositions of the ∧i SymE∗3’s into irreducible modules have already been obtained in Theorem 3.1. So
we get

(0) ⊕iH i (Q∗3) ≃ ⊕iH
i
(
Γ (1,0,0,0)Q∗3

)
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=H0
(
Γ (1,0,0,0)Q∗3

)
= V ,

(1) ⊕iH i
(
Q∗3 ⊗ Sym

3E∗3
)
≃ ⊕iH i

(
Γ (1,0,0,0)Q∗3 ⊗ Γ

(3,0,0)E∗3
)
= 0,

(2) ⊕iH i
(
Q∗3 ⊗∧

2Sym3E∗3
)
≃ ⊕iH i

(
Γ (1,0,0,0)Q∗3 ⊗

(
Γ (3,3,0)E∗3 ⊕ Γ

(5,1,0)E∗3
))

= 0,

(3) ⊕iH i
(
Q∗3 ⊗∧

3Sym3E∗3
)
≃ ⊕iH i

(
Γ (1,0,0,0)Q∗3 ⊗

(
Γ (3,3,3)E∗3 ⊕ Γ

(5,3,1)E∗3 ⊕ Γ
(6,3,0)E∗3

⊕Γ (7,1,1)E∗3
))

=H4
(
Γ (1,0,0,0)Q∗3 ⊗ Γ

(7,1,1)E∗3
)
≃ Γ (3,2,1,...,1)V ,

(4) ⊕iH i
(
Q∗3 ⊗∧

4Sym3E∗3
)
≃ ⊕iH i

(
Γ (1,0,0,0)Q∗3 ⊗

(
Γ (6,3,3)E∗3 ⊕ Γ

(6,4,2)E∗3 ⊕ Γ
(6,6,0)E∗3

⊕Γ (7,4,1)E∗3 ⊕ Γ
(8,3,1)E∗3

))
= 0,

(5) ⊕iH i
(
Q∗3 ⊗∧

5Sym3E∗3
)
≃ ⊕iH i

(
Γ (1,0,0,0)Q∗3 ⊗

(
Γ (6,6,3)E∗3 ⊕ Γ

(7,4,4)E∗3 ⊕ Γ
(7,6,2)E∗3

⊕Γ (8,4,3)E∗3 ⊕ Γ
(8,6,1)E∗3 ⊕ Γ

(9,4,2)E∗3
))

= 0,

(6) ⊕iH i
(
Q∗3 ⊗∧

6Sym3E∗3
)
≃ ⊕iH i

(
Γ (1,0,0,0)Q∗3 ⊗

(
Γ (7,7,4)E∗3 ⊕ Γ

(8,6,4)E∗3 ⊕ Γ
(9,6,3)E∗3

⊕Γ (9,7,2)E∗3 ⊕ Γ
(10,4,4)E∗3

))
=H8

(
Γ (1,0,0,0)Q∗3 ⊗ Γ

(9,7,2)E∗3
)

≃ Γ (5,3,3,2,...,2)V ,

(7) ⊕iH i
(
Q∗3 ⊗∧

7Sym3E∗3
)
≃ ⊕iH i

(
Γ (1,0,0,0)Q∗3 ⊗

(
Γ (7,7,7)E∗3 ⊕ Γ

(9,7,5)E∗3 ⊕ Γ
(9,9,3)E∗3

⊕Γ (10,7,4)E∗3
))

= 0,

(8) ⊕iH i
(
Q∗3 ⊗∧

8Sym3E∗3
)
≃ ⊕iH i

(
Γ (1,0,0,0)Q∗3 ⊗

(
Γ (10,7,7)E∗3 ⊕ Γ

(10,9,5)E∗3
))

= 0,

(9) ⊕iH i
(
Q∗3 ⊗∧

9Sym3E∗3
)
≃ ⊕iH i

(
Γ (1,0,0,0)Q∗3 ⊗ Γ

(10,10,7)E∗3
)
= 0,

(10) ⊕iH i
(
Q∗3 ⊗∧

10Sym3E∗3
)
≃ ⊕iH i

(
Γ (1,0,0,0)Q∗3 ⊗ Γ

(10,10,10)E∗3
)

=H12
(
Γ (1,0,0,0)Q∗3 ⊗ Γ

(10,10,10)E∗3
)
≃ Γ (6,6,6,4,3,3,3)V .

The graded pieces of the filtration on H0(Q∗3|F2(X)) are given by E−i,i∞ , i = 0, . . . ,10. From the above

calculations, we see that E−i,i1 = 0 for any i ≥ 1; thus E−i,i∞ = 0 for any i ≥ 1.
On the other hand, E0,0

1 = H0(Q∗3) = V , and as Ea,br = 0 for any a > 0, we have E0,0
r =

Coker(dr−1 : E
−(r−1),r−2
r−1 E0,0

r−1) for any r ≥ 2. But the above calculations give E−r,r−11 = 0 for r ≥ 0,
so that E−r,r−1r = 0 for any r ≥ 1. Thus E0,0

∞ = E0,0
1 , proving that H0(Q∗3|F2(X)) ≃H

0(Q∗3) ≃ V .
Now, let us examine H0(Sym2E3|F2(X)) using the spectral sequence

E
p,q
1 =Hq

(
Sym2E3 ⊗∧−p Sym3E∗3

)
=⇒Hp+q

(
Sym2E3|F2(X)

)
.

Using Sage with the code

R=WeylCharacterRing("A2")
V=R(1,0,0)
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W=R(0,0,-1)
for k in range(11): print k,

W.symmetric_power(2)*V.symmetric_power(3).exterior_power(k)↪→

and the Borel–Weil–Bott theorem 3.2, we get

(0) ⊕iH i
(
Sym2E3

)
≃ ⊕iH i

(
Γ (0,0,−2)E∗3

)
=H0

(
Γ (0,0,−2)E∗3

)
≃ Γ (0,...,0,−2)V ≃ Sym2V ∗,

(1) ⊕iH i
(
Sym2E3 ⊗ Sym3E∗3

)
≃ ⊕iH i

(
Γ (1,0,0)E∗3 ⊕ Γ

(2,0,−1)E∗3 ⊕ Γ
(3,0,−2)E∗3

)
= 0,

(2) ⊕iH i
(
Sym2E3 ⊗∧2Sym3E∗3

)
≃ ⊕iH i

((
Γ (3,1,0)E∗3

)⊕2
⊕ Γ (3,2,−1)E∗3 ⊕ Γ

(3,3,−2)E∗3

⊕Γ (4,0,0)E∗3 ⊕ Γ
(4,1,−1)E∗3 ⊕ Γ

(5,1,−2)E∗3 ⊕ Γ
(5,0,−1)E∗3

)
=H4

(
Γ (5,1,−2)E∗3 ⊕ Γ

(5,0,−1)E∗3
)

≃ Γ (1,...,1,−2)V ⊕ Γ (1,...,1,0,−1)V ,

(3) ⊕iH i
(
Sym2E3 ⊗∧3Sym3E∗3

)
≃ ⊕iH i

((
Γ (3,3,1)E∗3

)⊕2
⊕ Γ (4,2,1)E∗3 ⊕

(
Γ (4,3,0)E∗3

)⊕2
⊕
(
Γ (5,1,1)E∗3

)⊕2
⊕
(
Γ (5,2,0)E∗3

)⊕2
⊕
(
Γ (5,3,−1)E∗3

)⊕2
⊕
(
Γ (6,1,0)E∗3

)⊕2
⊕ Γ (6,2,−1)E∗3 ⊕ Γ

(6,3,−2)E∗3
⊕Γ (7,1,−1)E∗3

)
=H4

((
Γ (5,1,1)E∗3

)⊕2
⊕
(
Γ (6,1,0)E∗3

)⊕2
⊕ Γ (7,1,−1)E∗3

)
≃ det(V )⊕2 ⊕

(
Γ (2,1,...,1,0)V

)⊕2
⊕ Γ (3,1,...,1,−1)V ,

(4) ⊕iH i
(
Sym2E3 ⊗∧4Sym3E∗3

)
≃ ⊕iH i

(
Γ (4,3,3)E∗3 ⊕ Γ

(4,4,2)E∗3 ⊕
(
Γ (5,3,2)E∗3

)⊕2
⊕
(
Γ (5,4,1)E∗3

)⊕2
⊕ Γ (6,2,2)E∗3 ⊕

(
Γ (6,3,1)E∗3

)⊕4
⊕
(
Γ (6,4,0)E∗3

)⊕3
⊕ Γ (6,5,−1)E∗3 ⊕ Γ

(6,6,−2)E∗3

⊕
(
Γ (7,2,1)E∗3

)⊕2
⊕
(
Γ (7,3,0)E∗3

)⊕2
⊕ Γ (7,4,−1)E∗3

⊕Γ (8,1,1)E∗3 ⊕ Γ
(8,2,0)E∗3 ⊕ Γ

(8,3,−1)E∗3
)

=H4
(
Γ (8,1,1)E∗3

)
︸           ︷︷           ︸
≃Sym3V⊗det(V )

⊕H8
(
Γ (6,6,−2)E∗3

)
︸            ︷︷            ︸
≃Γ (2,...,2,−2)V

,

(5) ⊕iH i
(
Sym2E3 ⊗∧5Sym3E∗3

)
≃ ⊕iH i

(
Γ (5,4,4)E∗3 ⊕

(
Γ (6,4,3)E∗3

)⊕3
⊕
(
Γ (6,5,2)E∗3

)⊕2
⊕
(
Γ (6,6,1)E∗3

)⊕3
⊕ Γ (7,3,3)E∗3 ⊕

(
Γ (7,4,2)E∗3

)⊕4
⊕
(
Γ (7,5,1)E∗3

)⊕2
⊕
(
Γ (7,6,0)E∗3

)⊕2
⊕
(
Γ (8,3,2)E∗3

)⊕2
⊕
(
Γ (8,4,1)E∗3

)⊕3
⊕ Γ (8,5,0)E∗3 ⊕ Γ

(8,6,−1)E∗3
⊕Γ (9,2,2)E∗3 ⊕ Γ

(9,3,1)E∗3 ⊕ Γ
(9,4,0)E∗3

)
=H8

((
Γ (6,6,1)E∗3

)⊕3
⊕
(
Γ (7,6,0)E∗3

)⊕2
⊕ Γ (8,6,−1)E∗3

)
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≃
(
Γ (2,...,2,1)V

)⊕3
⊕
(
Γ (3,2,...,2,0)V

)⊕2
⊕ Γ (4,2,...,2,−1)V ,

(6) ⊕iH i
(
Sym2E3 ⊗∧6Sym3E∗3

)
≃ ⊕iH i

(
Γ (6,6,4)E∗3 ⊕

(
Γ (7,5,4)E∗3

)⊕2
⊕
(
Γ (7,6,3)E∗3

)⊕3
⊕
(
Γ (7,7,2)E∗3

)⊕2
⊕
(
Γ (8,4,4)E∗3

)⊕2
⊕
(
Γ (8,5,3)E∗3

)⊕2
⊕
(
Γ (8,6,2)E∗3

)⊕3
⊕ Γ (8,7,1)E∗3 ⊕

(
Γ (9,4,3)E∗3

)⊕2
⊕
(
Γ (9,5,2)E∗3

)⊕2
⊕
(
Γ (9,6,1)E∗3

)⊕2
⊕ Γ (9,7,0)E∗3

⊕Γ (10,4,2)E∗3
)

=H8
((
Γ (7,7,2)E∗3

)⊕2
⊕
(
Γ (8,6,2)E∗3

)⊕3
⊕ Γ (8,7,1)E∗3

⊕
(
Γ (9,6,1)E∗3

)⊕2
⊕ Γ (9,7,0)E∗3

)
≃

(
Γ (3,3,2,...,2)V

)⊕2
⊕
(
Γ (4,2,...,2)V

)⊕3
⊕ Γ (4,3,2,...,2,1)V

⊕
(
Γ (5,2,...,2,1)V

)⊕2
⊕ Γ (5,3,2...,2,0)V ,

(7) ⊕iH i
(
Sym2E3 ⊗∧7Sym3E∗3

)
≃ ⊕iH i

((
Γ (7,7,5)E∗3

)⊕2
⊕ Γ (8,6,5)E∗3 ⊕

(
Γ (8,7,4)E∗3

)⊕2
⊕ Γ (9,5,5)E∗3 ⊕

(
Γ (9,6,4)E∗3

)⊕2
⊕
(
Γ (9,7,3)E∗3

)⊕3
⊕ Γ (9,8,2)E∗3 ⊕ Γ

(9,9,1)E∗3 ⊕ Γ
(10,5,4)E∗3

⊕Γ (10,6,3)E∗3 ⊕ Γ
(10,7,2)E∗3

)
=H8

(
Γ (9,8,2)E∗3 ⊕ Γ

(9,9,1)E∗3 ⊕ Γ
(10,7,2)E∗3

)
≃ Γ (5,4,2...,2)V ⊕ Γ (5,5,2,...,2,1)V ⊕ Γ (6,3,2,...,2)V ,

(8) ⊕iH i
(
Sym2E3 ⊗∧8Sym3E∗3

)
≃ ⊕iH i

(
Γ (8,7,7)E∗3 ⊕ Γ

(9,7,6)E∗3 ⊕ Γ
(9,8,5)E∗3

⊕ Γ (9,9,4)E∗3 ⊕
(
Γ (10,7,5)E∗3

)⊕2
⊕ Γ (10,8,4)E∗3

⊕Γ (10,9,3)E∗3
)

=H12
(
Γ (8,7,7)E∗3

)
≃ Γ (4,3,...,3)V ,

(9) ⊕iH i
(
Sym2E3 ⊗∧9Sym3E∗3

)
≃ ⊕iH i

(
Γ (10,8,7)E∗3 ⊕ Γ

(10,9,6)E∗3 ⊕ Γ
(10,10,5)E∗3

)
=H12

(
Γ (10,8,7)E∗3

)
≃ Γ (6,4,3,...,3)V ,

(10) ⊕iH i
(
Sym2E3 ⊗∧10Sym3E∗3

)
≃ ⊕iH i

(
Γ (10,10,8)E∗3

)
=H12

(
Γ (10,10,8)E∗3

)
≃ Γ (6,6,4,3,...,3)V .

The graded pieces of the filtration on H0(Sym2E3|F2(X)) are given by the E−i,i∞ . We have E−i,i∞ = 0 for any

i , 0,4 since E−i,i1 = 0 for i , 0,4.
As Ea,br = 0 for any a > 0 and E−r,r−1r = 0 (because E−r,r−11 = 0) for any r ≥ 1, we have E0,0

∞ = E0,0
1 .

In particular, H0(Sym2E3) ≃ E
0,0
∞ ⊂H0(Sym2E3|F2(X)). As h

0(Sym2E3) = dim(Sym2V ∗) = 28, we have
h0(Sym2E3|F2(X)) ≥ 28. By Hodge symmetry, h0(ΩF2(X)) = h1(OF2(X)) = 21 (see Theorem 3.1). So the
exactness of the sequence

0 −→H0
(
Q∗3|F2(X)

)
−→H0

(
Sym2E3|F2(X)

)
−→H0

(
ΩF2(X)

)
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implies H0(Sym2E3) =H0(Sym2E3|F2(X)) and the surjectivity of the last map. □

According to Theorem 3.1,
∧2H0(ΩF2(X)) ⊂ H0(KF2(X)). As KF2(X) ≃ OG(3,V )(3)|F2(X), the map

ρ : F2(X) d |
∧2H0(ΩF2(X))| is the composition of the degree 3 Veronese of the natural embedding

F2(X) ⊂ G(3,V ) followed by a linear projection. Moreover, we have the following.

Lemma 3.4.

(1) The canonical bundle KF2(X) is generated by the sections in
∧2H0(ΩF2(X)) ⊂H

0(KF2(X)). In particular,
|
∧2H0(ΩF2(X))| is base-point-free.

(2) For any [P ] ∈ F2(X), the following sequence is exact:

0 −→K[P ] −→H0
(
ΩF2(X)

) ev([P ])
−−−−−−→ΩF2(X),[P ] −→ 0,

where K[P ] = {Q ∈H0(O
P

6(2)), P ⊂ {Q = 0}}/ Span((eqX(x, ·, ·))x∈⟨P ⟩).

Proof. (1) As E3|F2(X) is globally generated (as a restriction of E3, which is globally generated, by (1.2)),
Sym2E3|F2(X) is also globally generated. The same holds for Q∗3|F2(X) (by (1.2)). So applying the evaluation
to (3.3), we get the commutative diagram

0 // H0
(
Q3|∗F2(X)

)
⊗OF2(X) //

ev1
��

H0
(
Sym2E3|F2(X)

)
⊗OF2(X) //

ev2��

H0
(
ΩF2(X)

)
⊗OF2(X) //

ev3
��

0

0 // Q∗3|F2(X) // Sym2E3|F2(X) // ΩF2(X)
// 0,

where the bottom row is (1.1). As ev2 is surjective, we get that ev3 is also surjective; i.e., ΩF2(X) is globally
generated. Then taking the exterior square of ev3, we get that ∧2 ev3 is surjective:

2∧
H0

(
ΩF2(X)

)
⊗OF2(X)

∧2 ev3−−−−−→→∧2ΩF2(X).

Now a base point of |
∧2H0(ΩF2(X))| would be a point where ∧2 ev3 fails to be surjective. So

|
∧2H0(ΩF2(X))| is base-point-free.
(2) As H0(Q∗3|F2(X)) ≃H

0(Q∗3) ≃ V by Proposition 3.3, (1.2) yields ker(ev1) ≃ E∗3|F2(X), so the snake lemma
gives the exact sequence. □

Now, let us come back to the Gauss map of F2(X), that we have defined to be

G : albF2(F2(X)) −d G
(
2,TAlb(F2(X)),0

)
,

t 7−→ TalbF2 (F2(X))−t,0

where albF2(F2(X))− t is the translation of albF2(F2(X)) ⊂ Alb(F2(X)) by −t ∈ Alb(F2(X)). It is defined on
the smooth locus of albF2(F2(X)).

According to [Col86, Section (III)], T albF2 is injective. So the indeterminacies of G are resolved by the
pre-composition with albF2 , i.e.,

F2(X) −→ G
(
2,TAlb(F2(X)),0

)
t 7−→ T−albF2 (t)Translate(−albF2(t))

(
Tt albF2

(
TF2(X),t

))
.

We have the Plücker embedding

G
(
2,TAlb(F2(X)),0

)
≃ G

(
2,H0

(
ΩF2(X)

)∗)
⊂ P

 2∧
H0

(
ΩF2(X)

)∗
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and the commutative diagram

F2(X)
albF2 //

ρ

��

albF2(F2(X))

G
��

G
(
2,H0(ΩF2(X))

∗
)

� _

��∣∣∣∣∧2H0
(
ΩF2(X)

)∣∣∣∣ � //
P

(∧2H0
(
ΩF2(X)

)∗)
.

The following proposition completes the proof of Theorem 1.3.

Proposition 3.5. The morphism ρ is an embedding, which implies that albF2 is an isomorphism unto its image
and G is an embedding.

Proof. Let us denote by JX the Jacobian ideal of X, i.e., the ideal of the polynomial ring generated by(
∂eqX
∂Xi

)
i=0,...,6

and by JX,2 its homogeneous part of degree 2. By Proposition 2.2, for any [P ] ∈ F2(X),

dim(JX,2|P ) = 4, so that dim(JX ∩ {Q ∈H0(O
P

6(2)), P ⊂ {Q = 0}}) = 3. We have the following.

Lemma 3.6.

(1) For [P ] ∈ G(3,V ), the codimension of L2P := {Q ∈ H0(O
P

6(2)), P ⊂ {Q = 0}} in H0(O
P

6(2)) is 6. For
[P ] , [P ′] ∈ G(3,V ), the codimension of L2P ,P ′ := {Q ∈H

0(O
P

6(2)), P ,P ′ ⊂ {Q = 0}} in L2P is
(a) 6 if P ∩ P ′ = ∅,
(b) 5 if P ∩ P ′ = {pt},
(c) 3 if P ∩ P ′ = {line}.

(2) For [P ] , [P ′] ∈ F2(X) such that P∩P ′ = {line}, we have dim(JX∩L2P ,P ′ ) ≥ 1, and if X is general, we even
have dim(JX∩L2P ,P ′ ) ≥ 2. So L2P /(JX∩L

2
P )+L

2
P ,P ′ ⊊ L

2
P , and for X general, dim(L2P /(JX∩L

2
P )+L

2
P ,P ′ ) ≥ 2.

Proof. (1) This follows from a direct calculation.
(2) Up to a projective transformation, we can assume P = {X0 = · · · = X3 = 0} and P ′ = {X0 = X1 = X2 =

X4 = 0}. Then eqX is of the form (2.7) with the additional conditions Q3(0,X5,X6) = 0, D5(0,0,0,X3) = 0,
D6(0,0,0,X3) = 0, R(0,0,0,X3) = 0.

By definition, the quadrics of the Jacobian ideal are ∂eqX
∂Xi

, and according to Proposition 2.2,
(
∂eqX
∂Xi
|P
)
i=0,...,3

are linearly independent, so that

JX ∩L2P = Span
((
∂eqX
∂Xi

|P
)
i=4,5,6

)
.

For i ∈ {4,5,6},
∂eqX
∂Xi

= X0
∂Q0

∂Xi
+X1

∂Q1

∂Xi
+X2

∂Q2

∂Xi
+X3

∂Q3

∂Xi
+Di

which, when restricted to P ′ , gives ∂eqX
∂Xi
|P ′ = X3

∂Q3
∂Xi

(0,X5,X6) +Di(0,0,0,X3). But since Q3(0,X5,X6) = 0,

we have ∂Q3
∂Xi

(0,X5,X6) = 0 for i = 5,6, so that ∂eqX∂X5
|P ′ = 0 = ∂eqX

∂X6
|P ′ , i.e.,

∂eqX
∂X5

, ∂eqX∂X6
∈ L2P ,P ′ ∩ JX . For X

general, those two quadric polynomials are independent.
We have dim(JX ∩L2P +L

2
P ,P ′ ) = dim(JX ∩L2P ) + dim(L2P ,P ′ )−dim(JX ∩L2P ,P ′ ), which, by the first item of

the lemma, yields the result. □

According to Lemma 3.6, for [P ] , [P ′] ∈ F2(X), we can always find a quadric Q ∈H0(O
P

6(2)) such that
0 ,Q ∈ L2P /(JX ∩L

2
P +L

2
P ,P ′ ); in particular, Q|P = 0 but Q|P ′ , 0. Pick another Q′ ∈H0(O

P
6(2))\(L2P ∪L

2
P ′ )
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(i.e., Q′ |P , 0, Q′ |P ′ , 0) such that Q′ |P ′ is independent of Q|P ′ and Q and Q′ are independent modulo JX,2
(dim(H0(O

P
6(2))/(JX,2 ⊕C[Q])) = 5).

By Proposition 3.3, such quadrics give rise to 1-forms on F2(X). Then Q∧Q′ ∈
∧2H0(ΩF2(X)) vanishes

at [P ] but not at [P ′]; i.e., |
∧2H0(ΩF2(X))| separates points.

Now, given a [P ] ∈ F2(X), we recall that

T[P ]F2(X) = {u ∈Hom(⟨P ⟩,V /⟨P ⟩), eqX(x,x,u(x)) = 0 ∀x ∈ ⟨P ⟩}

(the first order of eqX(x+u(x),x+u(x),x+u(x)) is 0 for all x ∈ ⟨P ⟩).
Let Q ∈ L2P be such that 0 , Q ∈ H0(O

P
6(2))/JX,2 and T[P ]F2(Q)∩ T[P ]F2(X) = {0}. Pick a non-zero

Q
′ ∈H0(O

P
6(2))/JX,2 such that Q′ |P , 0; then Q∧Q′ ∈

∧2H0(ΩF2(X)) and (Q∧Q′)|P = 0.
Moreover, given a u ∈ T[P ]F2(X), we have d[P ]Q(u)∧Q′ |P +Q|P ∧ d[P ]Q′(u) = d[P ]Q(u)∧Q′ |P , where

d[P ]Q(u) is the quadratic form x 7→ eqQ(x,u(x)) and is non-trivial since T[P ]F2(Q)∩ T[P ]F2(X) = {0}. Then
for Q generic (containing P and such that T[P ]F2(Q)∩ T[P ]F2(X) = {0}), d[P ]Q(u) is linearly independent
of Q′ |P , so that Q ∧Q′ does vanish along the tangent vector u. So |

∧2H0(ΩF2(X))| separates tangent
directions. □

4. Variety of osculating planes of a cubic 4-fold

In (1.3), we have previously introduced, for a smooth cubic 4-fold containing no plane Z ⊂ P(H ∗) ≃ P
5,

the variety of osculating planes F0(Z) := {[P ] ∈ G(3,H), ∃ℓ ⊂ P line s.t. P ∩Z = ℓ (set-theoretically)}.
The variety F0(Z) lives naturally in Fl(2,3,H), i.e.,

F0(Z) = {([ℓ], [P ]) ∈ Fl(2,3,H), P ∩Z = ℓ (set-theoretically)},

and from the exact sequence (2.2):

0 −→ e∗OG(2,H)(−1)⊗ t∗OG(3,H)(1) −→ t∗E3 −→ e∗E2 −→ 0,

we see that e∗OG(2,H)(−1)⊗ t∗OG(3,H)(1) is, for ([ℓ], [P ]) ∈ Fl(2,3,H), the bundle of equations of ℓ ⊂ P . As
a result, F0(Z) is the zero locus on Fl(2,3,H) of a section of the rank 9 vector bundle F defined by the
exact sequence

(4.1) 0 −→ e∗OG(2,H)(−3)⊗ t∗OG(3,H)(3) −→ t∗Sym3E3 −→ F −→ 0.

In particular (since F is globally generated by the sections induced by H0(t∗Sym3E3)), by Bertini-type
theorems, for Z general, F0(Z) is a smooth surface with KF0(Z) ≃ (t∗OG(3,H)(3))|F0(Z). Its link to the surface
of planes of a cubic 5-fold is the following.

Proposition 4.1. Denoting by XZ = {X3
6 − eqZ(X0, . . . ,X5) = 0} the cyclic cubic 5-fold associated to Z , the linear

projection with center p0 := [0 : · · · : 0 : 1] induces a degree 3 étale cover π : F2(XZ )→ F0(Z) given by the torsion
line bundle (e∗OG(2,H)(−1)⊗ t∗OG(3,H)(1))|F0(Z).
In particular, when F0(Z) is smooth, F2(XZ ) and F0(Z) are smooth and irreducible.

Proof. (1) The point p0 does not belong to XZ . In particular, any [P ] ∈ F2(XZ ) is sent by πp0 : P(V
∗)d P(H ∗)

to a plane in P(H ∗), where V =H ⊕C · p0. The restriction of πp0 (also denoted by πp0 ) to X is a degree 3
cyclic cover of P5 ramified over Z . Let us denote by τ : [a0 : · · · : a6] 7→ [a0 : · · · : a5 : ξa6], with ξ a primitive
third root of 1, the cover automorphism.

For any [P ] ∈ F2(XZ ), πp0 : π
−1
p0 (πp0(P ))→ πp0(P ) is a degree 3 cyclic cover ramified over the cubic

curve πp0(P )∩Z . It contains the three sections P ,τ(P ), τ
2(P ), which in turn all contain (set-theoretically)

the ramification curve πp0(P )∩Z, so it is a line; i.e., ([{πp0(P )∩Z}red], [πp0(P )]) ∈ F0(Z).
Conversely, for any ([ℓ], [P ]) ∈ F0(Z), π−1p0 |XZ (P ) → P is a degree 3 cyclic cover ramified over {ℓ}3,

so it consists of three surfaces isomorphic each to P , i.e., three planes. To make it even more explicit,
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if P = {X0 = X1 = X2 = 0} and ℓ = {X0 = X1 = X2 = X3 = 0}, then π−1p0 |XZ (P ) is defined in π−1p0 (P ) ≃
Span(P ,p0) ≃ P

3 by X3
6 − aX

3
3 for some a , 0 (since Z contains no plane), and we have X3

6 − aX
3
3 =

(X6 −bX3)(X6 −b′X3)(X6 −b′′X3), where b,b′ ,b′′ are the distinct roots of y3 = a. So π : F2(XZ )→ F0(Z) is
étale of degree 3.

(2) The equation eqZ defines a section σeqZ ∈H
0(t∗Sym3E3) ≃H0(Sym3E3) and by projection in (4.1) a

section σeqZ of F whose zero locus is F0(Z). Restricting (4.1) to F0(Z), we see that σeqZ induces a section of
(e∗OG(2,H)(−3)⊗ t∗OG(3,H)(3))|F0(Z) which vanishes nowhere since Z contains no plane. Thus(

e∗OG(2,H)(−3)⊗ t∗OG(3,H)(3)
)
|F0(Z) ≃ OF0(Z).

Now if (e∗OG(2,H)(−1) ⊗ t∗OG(3,H)(1))|F0(Z) ≃ OF0(Z), since (e∗OG(2,H)(−1) ⊗ t∗OG(3,H)(1))|F0(Z) is the
bundle of equation of ℓx ⊂ Px for any x = ([ℓx], [Px]) ∈ F0(Z), for any nowhere-vanishing section s of
(e∗OG(2,H)(−1)⊗t∗OG(3,H)(1))|F0(Z), we would be able to define three distinct sections of π : F2(XZ )→ F0(Z),
namely (symbolically) [x 7→ {X6 − ξks(x)}Span(Px ,p0)], k = 0,1,2. But according to [Col86, Proposition 1.8],
F2(X) is connected for any X. Hence we have a contradiction. So (e∗OG(2,H)(−1)⊗ t∗OG(3,H)(1))|F0(Z) is a
non-trivial 3-torsion line bundle.

Moreover, we readily see that for any [P ] ∈ F2(XZ ), X6|P , 0 is an equation of the line P ∩P(H ∗); i.e.,
π∗(e∗OG(2,H)(−1)⊗ t∗OG(3,H)(1))|F0(Z) has a nowhere-vanishing section, hence is trivial.

(3) When F0(Z) is smooth, since π is étale, F2(XZ ) is also smooth. As F2(XZ ) is connected (by [Col86,
Proposition 1.8]), F2(XZ ) is irreducible, and π(F2(XZ )) = F0(Z) is also irreducible. □

Remark 4.2. That F0(Z) is smooth and irreducible, for Z general, is proven in [GK21, Lemma 4.3] without
reference to F2(XZ ).

In [GK21], the interest for the image e(F0(Z)) ⊂ F1(Z) stems from e(F0(Z)) being the fixed locus of a
rational self-map of the hyper-Kähler 4-fold F1(Z) defined by Voisin (cf. [Voi04]).

Proposition 4.3. For Z general, the tangent map of eF0 := e|F0(Z) : F0(Z)→ F1(Z) is injective, and eF0 is the
normalisation of eF0(F0(Z)) and is an isomorphism unto its image outside a finite subset of F0(Z).
Moreover, eF0(F0(Z)) is a (non-normal ) Lagrangian surface of the hyper-Kähler 4-fold F1(Z).

Proof. (1) That eF0 is injective outside a finite number of points follows from a simple dimension count:
let us introduce I := {(([ℓ], [P ]), [Z]) ∈ Fl(2,3,H) × |O

P
5(3)|, ℓ ⊂ Z and Z ∩ P = ℓ set-theoretically}

and I2 := {(([ℓ], [P1], [P2]), [Z]) ∈ P(Q2) ×G(2,H) P(Q2)\∆P(Q2) × |OP
5(3)|, ℓ ⊂ Z and Z ∩ Pi = ℓ, i =

1,2 set-theoretically}. As Fl(2,3,H) and P(Q2) ×G(2,H) P(Q2)\∆P(Q2) are homogeneous, the fibers of
p : I → Fl(2,3,H) (resp. p2 : I2 → P(Q2) ×G(2,H) P(Q2)\∆P(Q2)) are isomorphic to each other and are
sub-linear systems of |O

P
5(3)|.

Notice that, since F0(Z) is a surface for Z general, we know that dim(I) = dim(|O
P

5(3)|+2.
Let us analyse the fiber of p2. To do so, we can assume ℓ = {X2 = · · · = X5 = 0}, P1 = {X3 = X4 = X5 = 0}

and P2 = {X2 = X4 = X5 = 0}. Then the condition Z ∩ P1 = ℓ implies that eqZ is of the form

(4.2) eqZ = αX3
2 +X3Q3 +X4Q4 +X5Q5 +

2∑
i=0

XiDi(X3,X4,X5) +R(X3,X4,X5),

where the Qi(X0,X1,X2) are quadratic forms in X0,X1,X2, the Di are quadratic forms in X3,X4,X5 and R
is a cubic form in X3,X4,X5. Notice that this is the general form of a member of the fiber p−1([ℓ], [P1]), in
particular, dim(p−1([ℓ], [P1])) = dim(|O

P
5(3)|) + 2−dim(Fl(2,3,H)) = dim(|O

P
5(3)|)− 9.

The additional condition Z ∩ P2 = ℓ implies that Q3(X0,X1,0) = 0, D0(X3,0,0) = 0, D1(X3,0,0) = 0,
which gives 3+1+1 = 5 constraints. So dim(p−12 (([ℓ], [P1], [P2]))) = dim(p−1([ℓ], [P1]))−5 = dim(|O

P
5(3)|)−

14, hence dim(I2) = dim(p−12 (([ℓ], [P1], [P2])))+2×3+dim(G(2,H)) = dim(|O
P

5(3)|). As a result, the general
fiber of I2→ |OP

5(3)| is finite. In other words, for [Z] ∈ |O
P

5(3)| general, there are only finitely many ℓ ⊂ Z
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such that there are at least two planes P1, P2 ⊂ P
5 such that Z ∩ Pi = ℓ, i = 1,2, i.e., there is a finite set

γ ⊂ F0(Z) such that e|F0 : F0(Z)\γ → F1(Z) is a bijection unto its image.
(2) Let us give a description of TF0(Z),([ℓ],[P ]). We recall that the two projective bundle structures on

Fl(2,3,H) given by e : Fl(2,3,H) ≃ P(Q2)→ G(2,H) and t : Fl(2,3,H) ≃ P(∧2E3)→ G(3,H) yield the
following descriptions of the tangent bundle:

TFl(2,3,H),([ℓ],[P ]) ≃Hom(⟨ℓ⟩,H/⟨ℓ⟩)⊕Hom(⟨P ⟩/⟨ℓ⟩,H/⟨P ⟩)

and

TFl(2,3,H),([ℓ],[P ]) ≃Hom(⟨P ⟩,H/⟨P ⟩)⊕Hom(⟨ℓ⟩,⟨P ⟩/⟨ℓ⟩).
The isomorphism between the two takes the form

Hom(⟨ℓ⟩,H/⟨ℓ⟩)⊕Hom(⟨P ⟩/⟨ℓ⟩,H/⟨P ⟩) −→Hom(⟨P ⟩,H/⟨P ⟩)⊕Hom(⟨ℓ⟩,⟨P ⟩/⟨ℓ⟩) ,

(ϕ,ψ) 7−→
(
ϕ⊥ +ψ,ϕ∥

)
where ϕ = (ϕ∥,ϕ⊥) is the decomposition corresponding to the choice of a decomposition H/⟨ℓ⟩ ≃ ⟨P ⟩/⟨ℓ⟩ ⊕
H/⟨P ⟩ coming from a decomposition ⟨P ⟩ ≃ ⟨ℓ⟩ ⊕ ⟨P ⟩/⟨ℓ⟩.

Around ([ℓ], [P ]) ∈ F0(Z), the points of Fl(2,3,H) are of the form ([(id⟨ℓ⟩+ϕ)(⟨ℓ⟩)], [(id⟨P ⟩+ϕ⊥ +
ψ)(⟨P ⟩)]). Let us choose an equation λ ∈ ⟨P ⟩∗ (a generator of (⟨P ⟩/⟨ℓ⟩)∗) of ℓ ⊂ P such that eqZ(x,x,x) =
λ(x)3 for any x ∈ ⟨P ⟩.

The first-order deformation of this equation to an equation of (id⟨ℓ⟩+ϕ)(⟨ℓ⟩) ⊂ (id⟨P ⟩+ϕ⊥ +ψ)(⟨P ⟩) is
given by λ−ϕ∗(λ), so that the point associated to (ϕ,ψ) belongs to F0(Z) if and only if

eqZ(x+ϕ⊥(x) +ψ(x),x+ϕ⊥(x) +ψ(x),x+ϕ⊥(x) +ψ(x)) = (1 + c(ϕ,ψ))(λ(x)−ϕ∗(λ)(x))3 ∀x ∈ ⟨P ⟩

for some term c(ϕ,ψ) =O(ϕ,ψ) constant on ⟨P ⟩. So at the first order, we get

(4.3) eqZ(x,x,ϕ⊥(x) +ψ(x)) = −λ(x)
2ϕ∗(λ)(x) +

1
3
c(ϕ,ψ)λ(x)3 ∀x ∈ ⟨P ⟩.

The differential of the projection eF0(Z) : F0(Z)→ F1(Z) is simply given by (ϕ,ψ) 7→ ϕ.
Let us introduce

J := {(([ℓ], [P ]), [Z]) ∈ Fl(2,3,H)× |O
P

5(3)|, ℓ ⊂ Z, Z ∩ P = ℓ and T([ℓ],[P ])e|F0 is not injective}

and analyse the fibers of pJ : J → Fl(2,3,H), which are isomorphic to each other by the homogeneity of
Fl(2,3,H).

So we can assume ℓ = {X2 = · · · = X5 = 0} and P = {X3 = · · · = X5 = 0}, so that eqZ is of the form (4.2)
with Qi = aiX

2
0 + biX

2
1 + ciX

2
2 + diX0X1 + eiX0X2 + fiX1X2, i = 3,4,5, for some ai , . . . , fi . We recall that for

ϕ =
(u2 v2
u3 v3
u4 v4
u5 v5

)
∈Hom(⟨ℓ⟩,H/⟨ℓ⟩) and ψ =

(w3
w4
w5

)
∈Hom(⟨P ⟩/⟨ℓ⟩,H/⟨P ⟩), the associated subspaces are

ℓ(ϕ,ψ) = [λ,µ,λu2 +µv2, . . . ,λu5 +µv5], [λ,µ] ∈ P1,

P(ϕ,ψ) = [λ,µ,ν,λu3 +µv3 + νw3,λu4 +µv4 + νw4,λu5 +µv5 + νw5], [λ,µ,ν] ∈ P2.

Now, if (0,ψ) ∈ TF0(Z),([ℓ],[P ]), we have at the first order

eqZ |P(0,ψ) = αν
3 +

5∑
i=3

νwi(aiλ
2 + biµ

2 + ciν
2 + diλµ+ eiλν + fiµν) +O

(
(ϕ,ψ)2

)
= (α + c3w3 + c4w4 + c5w5)ν

3 + [(e3w3 + e4w4 + e5w5)λ+ (f3w3 + f4w4 + f5w5)µ]ν
2

+ (a3w3 + a4w4 + a5w5)λ
2ν + (b3w3 + b4w4 + b5w5)µ

2

+ (d3w3 + d4w4 + d5w5)λµν +O
(
(ϕ,ψ)2

)
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so that looking at (4.3), we see that (0,ψ) ∈ TF0(Z),([ℓ],[P ]) if and only if

rank


a3 a4 a5
b3 b4 b5
d3 d4 d5
e3 e4 e5
f3 f4 f5

 ≤ 2,

which defines a subset of codimension (3− 2)(5− 2) = 3.
So J ⊂ I has codimension 3. As dim(I) = dim(|O

P
5(3)|) + 2, J does not dominate |O

P
5(3)|; i.e., for the

general Z, eF0 is an immersion.
(3) Let us prove that eF0(F0(Z)) is a Lagrangian surface of F1(Z). In [IM08], the following explicit

description of the symplectic form C ·Ω = H2,0(F1(Z)) is given: let us introduce the following quadratic
form on ∧2TF1(Z),[ℓ] with values in Hom((∧2⟨ℓ⟩)⊗2,∧4(H/⟨ℓ⟩):

K(u ∧ v,u′ ∧ v′) = u(x)∧u′(y)∧ v(x)∧ v′(y)−u(y)∧u′(y)∧ v(x)∧ v′(x)
+u(y)∧u′(x)∧ v(y)∧ v′(x)−u(x)∧u′(x)∧ v(y)∧ v′(y),

where (x,y) is a basis of ⟨ℓ⟩. Let us also introduce the following skew-symmetric form:

ω : ∧2 TF1(Z),[ℓ] −→ (∧2⟨ℓ⟩)⊗3

u ∧ v 7−→ eqZ(x,x,u(y))eqZ(y,y,v(x))− eqZ(x,x,v(y))eqZ(y,y,u(x))
+ 2eqZ(x,y,u(y))eqZ(x,x,v(y))− 2eqZ(x,x,u(y))eqZ(x,y,v(y))
+ 2eqZ(y,y,u(x))eqZ(x,y,v(x))− 2eqZ(x,y,u(x))eqZ(y,y,v(x)).

According to [IM08, Theorem 1], for u,v ∈ TF1(Z),[ℓ],

K(u ∧ v,u ∧ v) = w(u ∧ v)Ω[ℓ](u,v).

As for a general point ([ℓ], [P ]) ∈ F0(Z), ℓ ⊂ Z is of the first type; i.e., in reference to the above presentation

(4.2) for ℓ = {X2 = · · · = X5 = 0}, P = {X3 = X4 = X5 = 0},
∣∣∣∣∣a3 b3 d3a4 b4 d4
a5 b5 d5

∣∣∣∣∣ , 0, it is sufficient to prove the vanishing

of Ω[ℓ](ℑ(T([ℓ],[P ])eF0),ℑ(T([ℓ],[P ])eF0)) for such a line. So we can assume α = 1 and

Q3 = X
2
0 + e3X0X2 + f3X1X2 + c3X

2
2 ,

Q4 = X0X1 + e4X0X2 + f4X1X2 + c4X
2
2 ,

Q5 = X
2
1 + e5X0X2 + f5X1X2 + c5X

2
2 .

Then as above, for ϕ =
(u2 v2
u3 v3
u4 v4
u5 v5

)
∈Hom(⟨ℓ⟩,H/⟨ℓ⟩) and ψ =

(w3
w4
w5

)
∈Hom(⟨P ⟩/⟨ℓ⟩,H/⟨P ⟩), we have

eqZ |P(ϕ,ψ) = ν
3 +

5∑
i=3

(λui +µvi + νw3)Qi +O((ϕ,ψ)2)

= (1 + c3w3 + c4w4 + c5w5)ν
3 + (c3u3 + e3w3 + c4u4 + e4w4 + c5u5 + e5w5)λν

2

+ (c3v3 + f3w3 + c4v4 + f4w4 + c5v5 + b5w5)µν
2

+ (w3 + e3u3 + e4u4 + e5u5)λ
2ν + (w5 + f3v3 + f4v4 + f5v5)µν

2

+ (w4 + f3u3 + e3v3 + f4u4 + e4v4 + f5u5 + e5v5)λµν

+u3λ
3 + v5µ

2 + (v4 +u5)λµ
2 + (v3 +u4)λ

2µ+O
(
(ϕ,ψ)2

)
,
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so that the description (4.3) of TF0(Z),([ℓ],[P ]) yields

c3u3 + e3w3 + c4u4 + e4w4 + c5u5 + e5w5 = −u2
c3v3 + f3w3 + c4v4 + f4w4 + c5v5 + b5w5 = −v2

w3 + e3u3 + e4u4 + e5u5 = 0

w5 + f3v3 + f4v4 + f5v5 = 0

w4 + f3u3 + e3v3 + f4u4 + e4v4 + f5u5 + e5v5 = 0

v4 = −u5; v3 = −u4 u3 = 0 v5 = 0.

The seven last equations yield w3 = −(e4u4 + e5u5), w4 = (e3 − f4)u4 + (e4 − f5)u5, w5 = f3u4 + f4u5. Thus
the first two give a system  αu4 + βu5 = −u2,

−δu4 −αu5 = −v2,
where α = c4 − e4f4 + e5f3, β = c5 − e3e5 + e24 − e4f5 + e5f4 and δ = e3f4 − f 24 − e4f3 + f3f5 − c3. In particular,
the determinant ∆ = −α2 − βδ of the 2 × 2 system is non-zero for a general choice of the (ei , fi , ci) and
u4 = 1

∆
(αu2 + βv2), u5 = 1

∆
(δu2 − αv2). So a basis of TF1(Z),([ℓ],[P ]) is given by ((u2 = 1,v2 = 0) and

(u2 = 0,v2 = 1)):

ϕu2 : ϵ0 7−→ ϵ2 +
α
∆
ϵ4 +

δ
∆
ϵ5,

ϵ1 7−→ −
α
∆
ϵ3 −

δ
∆
ϵ4

and

ϕv2 : ϵ0 7−→
β

∆
ϵ4 −

α
∆
ϵ5,

ϵ1 7−→ ϵ2 −
β

∆
ϵ3 +

α
∆
ϵ4,

where (ϵ0, . . . ,ϵ5) is the (dual) basis associated to the choice of the coordinates Xi . Then we readily compute

K(ϕu2 ∧ϕv2) =

∣∣∣∣∣∣∣∣∣∣∣∣
1 0 0 1
0 −α

∆
0 − β

∆
α
∆
− δ
∆

β
∆

α
∆

δ
∆

0 −α
∆

0

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

and ω(ϕu2 ∧ϕv2) =
5
∆
, 0, hence Ω[ℓ](ϕu2 ,ϕv2) = 0. □

Remark 4.4. In [GK21], it is also proven that F0(Z)→ e(F0(Z)) is the normalisation and that e(F0(Z)) has
3780 non-normal isolated singularities.

As for Z general, eF0 is an immersion, NF0(Z)/F1(Z) := e
∗
F0
TF1(Z)/TF0(Z) is locally free. Moreover, since eF0

is, outside a codimension 2 subset of F0(Z), an isomorphism unto its image and that image is a Lagrangian
subvariety of F1(Z), we get (outside a codimension 2 subset, thus globally) an isomorphism

ΩF0(Z) ≃NF0(Z)/F1(Z).

Notice that F0(Z) naturally lives in P(Q2|F1(Z)) ⊂ Fl(2,3,H). We have the following.

Lemma 4.5. The following sequence is exact:

0 −→ e∗F1OF1(Z)(−3)⊗ t
∗
F1
OG(3,H)(3) −→ e∗F1OF1(−1)⊗ t

∗
F1
(Sym2E3 ⊗OG(3,H)(1))|F1(Z)
−→NF0(Z)/P(Q2|F1(Z)) −→ 0,

where eF1 : P(Q2|F1(Z))→ F1(Z) and tF1 : P(Q2|F1(Z))→ G(3,H).
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Proof. We have seen that F0(Z) ⊂ Fl(2,3,H) is the zero locus of a section of F appearing in the sequence
(4.1). Taking the symmetric power of (2.2), we have the following commutative diagram with exact rows:

0 // e∗OG(2,H)(−3)⊗ t∗OG(3,H)(3) //

��

e∗OG(2,H)(−3)⊗ t∗OG(3,H)(3) //

��

0 //

��

0

0 // e∗OG(2,H)(−1)⊗ t∗(Sym2E3 ⊗OG(3,H)(1)) // t∗Sym3E3 // e∗Sym2E2 // 0.

The projection to e∗Sym2E2 of the section σeqZ ∈H
0(t∗Sym3E3) induced by eqZ vanishes on F1(Z) by the

definition of F1(Z). So it induces a section of

e∗F1OF1(Z)(−1)⊗ t
∗
F1
(Sym2E3 ⊗OG(3,H)(1)) ≃ (e∗OG(2,H)(−1)⊗ t∗(Sym2E3 ⊗OG(3,H)(1)))|P(Q2|F1(Z)).

Now the snake lemma in the above diagram gives the result. □

The snake lemma in the diagram with exact rows

0 // TF0(Z)
//

�
��

T
P(Q2|F1(Z))|F0(Z)

//

��

NF0(Z)/P(Q2|F1(Z))
//

��

0

0 // TF0(Z)
// e∗F0TF1(Z)

// NF0(Z)/F1(Z)
// 0

and the description of the relative tangent bundle of eF1 give the following.

Proposition 4.6. The following sequence is exact:

0 −→OF0 −→ e∗F0(Q2|F1(Z) ⊗OF1(Z)(−1))⊗ t
∗
F0
(OG(3,H)(1))|F0 −→NF0(Z)/P(Q2|F1(Z)) −→ΩF0(Z) −→ 0.

We finish this section by computing the Hodge numbers of F0(Z).

Proposition 4.7. We have H1(F0(Z),Z) = 0 for any Z for which F0(Z) is smooth.

Proof. For the universal variety of planes runiv : F2(X )→ |OP
6(3)|, R3runiv,∗Q is a local system over the

open subset {[X] ∈ |O
P

6(3)|, F2(X) is smooth} which, by Proposition 4.1, contains an open subset of the
locus of cyclic cubic 5-folds.

As a consequence, the Abel–Jacobi isomorphism q∗p
∗ : H3(F2(X),Q) ∼−→H5(X,Q) given by the result of

Collino (Theorem 1.1) for general X extends to the case of the general cyclic cubic 5-fold.
But, as noticed in the proof of Proposition 4.1, for any [P ] ∈ F0(Z), the associated cycle q(p−1(π−1([P ])))

on XZ is the complete intersection cycle Span(P ,p0)∩XZ , which belongs to a family of cycles parametrised
by a rational variety, namely {[Π] ∈ G(4,V ), p0 ∈Π} ≃ G(3,H). Now, as an abelian variety contains no
rational curve, the Abel–Jacobi map Φ : G(3,H)→ J5(XZ ), [P ] 7→ [Span(P ,p0)∩XZ ]− [Span(P0,p0)∩XZ ]
([P0] being a reference point) is constant. Hence the restriction Φ(π∗,idXZ )P(E3) : F0(Z)→ J5(XZ ) of Φ to the
sub-family (π∗, idXZ )P(E3) ⊂ F0(Z)×XZ (of planes P such that Span(P ,p0)∩XZ consists of three planes) is
constant; i.e., q∗p

∗π∗ : H3(F0(Z),Z)→H5(XZ ,Z) is trivial.
As π is étale, π∗ : H3(F0(Z),Q) → H3(F2(XZ ),Q) is injective, so that the trivial map q∗p

∗π∗ is the
composition of a injective map followed by an isomorphism. □

We can then compute the rest of the Hodge numbers:

(1) Again using the package Schubert2 of Macaulay2, we can use the Koszul resolution of OF0(Z) by
∧iF ∗ (where F is defined by (4.1)) to compute χ(OF0(Z)) = 1071 with the following code:

loadPackage "Schubert2"
G=flagBundle{3,3}
(Q,E)=bundles G
wE=exteriorPower(2,E)
P=projectiveBundle' wE
p=P.StructureMap
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pl=exteriorPower(3,E)
pol=p^*pl**dual(OO_P(1))
F=p^*symmetricPower(3,E)-symmetricPower(3,pol)
chi(exteriorPower(0,dual(F)))-chi(exteriorPower(1,dual(F)))
+chi(exteriorPower(2,dual(F)))-chi(exteriorPower(3,dual(F)))
+chi(exteriorPower(4,dual(F)))-chi(exteriorPower(5,dual(F)))
+chi(exteriorPower(6,dual(F)))-chi(exteriorPower(7,dual(F)))
+chi(exteriorPower(8,dual(F)))-chi(exteriorPower(9,dual(F)))

so we get h2(OF0(Z)) = 1070.

(2) Then as π is étale of degree 3, we get χtop(F0(Z)) =
1
3χtop(F2(XZ )) = 4347. So h1,1(F0(Z)) = 2207.
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