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1. Introduction

In our previous paper [LM23], we introduced and studied some invariants intended to measure how far
from birationally isomorphic two given varieties X and Y of the same dimension might be. These were
defined by studying the minimal birational complexity of correspondences between X and Y . Following
a suggestion of Jordan Ellenberg, the present note continues this line of thought by investigating self-
correspondences of a given variety.

Let X be a smooth complex projective variety of dimension n. By an auto-correspondence of X, we
understand a smooth projective variety Z of dimension n sitting in a diagram

(1.1)

Z
a

��

b

��
X X

with a and b dominant and hence generically finite. We assume that Z maps birationally to its image in
X ×X (so that general fibers of a and b are identified with subsets of X). The auto-correspondence degree of X
is defined to be

(1.2) autocorr(X) = min
Z,∆
{deg(a) ·deg(b)} ,

the minimum being taken over all such Z excluding those that map to the diagonal. Thus autocorr(X) = 1
if and only if X admits non-trivial birational automorphisms. By considering the fiber square of a rational
covering Xd Pn, one sees that

autocorr(X) ≤ (irr(X)− 1)2 ,
where the degree of irrationality irr(X) is defined to be the least degree of such a covering (see Section 2,
below). Our intuition is that equality holding means that X is “as far as possible" from having any interesting
self-correspondences of low degree.

Our main results are as follows.

Proposition A. If X is a very general curve of genus g ≥ 3, then

autocorr(X) = (gon(X)− 1)2 ,

and minimal correspondences arise from the fiber square of a gonal map.

Theorem B. Let X ⊆ Pn+1 be a very general hypersurface of degree d ≥ 2n+2. Then

autocorr(X) = (d − 2)2 = (irr(X)− 1)2 ,

and again minimal correspondences are birational to the fiber square of projection from a point.
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In fact, we classify all self-correspondences in a slightly wider numerical range: see Theorem 4.
If X is a hyperelliptic curve of genus g , then autocorr(X) = 1 since X has a non-trivial automorphism

whose graph is a non-diagonal copy of X sitting in X × X. David Rhyd asked whether there are any
unexpected hyperelliptic curves in this product. Our final result asserts that there are not.

Theorem C. Let X be a very general hyperelliptic curve of genus g ≥ 2. The only hyperelliptic curves in X ×X are

• the fibers of the projection maps,
• the diagonal, and
• the graph of the hyperelliptic involution.

In particular, the image of any hyperelliptic curve in X ×X under the Abel–Jacobi map is geometrically degenerate
in J(X)× J(X); i.e., it generates a proper subtorus of that product.

By a hyperelliptic curve in X ×X, we mean an irreducible curve Z ⊆ X ×X whose normalization is
hyperelliptic.

As pointed out by the referee, Theorem C is closely related to work of Schoen from [Sch90]. In particular,
[Sch90, Proposition 4.1(2)] implies Theorem C for genus 2 curves. Schoen also gives examples of hyperelliptic
curves X such that X ×X contains finitely many hyperelliptic curves (see [Sch90, Lemma 1.5 and Proposition
2.2]).

A consequence of the proof of Theorem C (see Proposition 7) is that given a very general hyperelliptic
curve X and any hyperelliptic curve C whose Jacobian dominates J(X), we have

Hom(J(C), J(X)) �Z.

This rigidity statement complements recent results of Naranjo and Pirola concerning dominant morphisms
from hyperelliptic Jacobians (see [NP18, Theorems 1.4 and 1.6]).

We work throughout over the complex numbers.
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2. Preliminaries and proof of Proposition A

We start with some general remarks about the auto-correspondence degree. Given a smooth complex
projective variety X of dimension n, its auto-correspondence degree autocorr(X) is defined as in the
introduction. Evidently, this is a birational invariant of X.

Note that if X admits a rational covering Xd Pn of degree δ, then

(∗) autocorr(X) ≤ (δ − 1)2.

In fact, replacing X with a suitable birational model, we can suppose that X→ Pn is an actual morphism.
Then

X ×Pn X ⊆ X ×X
contains the diagonal ∆X as an irreducible component. The union of the remaining components Z ′ ⊆ X×PnX
has degree δ − 1 over each of the factors, and (∗) follows. In particular,

(2.1) autocorr(X) ≤ (irr(X)− 1)2,
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where irr(X) denotes the minimal degree of such a rational covering Xd Pn. Our main results assert that
in several circumstances equality holds in (2.1) and that the minimal correspondences arise as just described.
We will say in this case that Z is residual to the fiber square of a minimal covering of Pn.

As in the earlier works [BCDP14, BDP+17, LM23], the action of a correspondence on cohomology plays a
central role. In the situation of diagram (1.1), Z gives rise to endomorphisms

Z∗ = b∗ ◦ a∗, Z∗ = a∗ ◦ b∗

of the Hodge structure Hn(X). We denote by

Zn,0∗ = Trb ◦a∗, Z∗n,0 = Tra◦b∗

the corresponding endomorphisms of the space Hn,0(X) of holomorphic n-forms on X. In the cases of
interest, these will act as a multiple of the identity, allowing us to use a variant of the arguments from the
cited papers involving Cayley–Bacharach.

We now turn to the proof of Proposition A. We then suppose that X is a very general curve of genus g ≥ 3
and that Z→ X ×X is a correspondence as in (1.1) that computes the auto-correspondence degree of X. The
generality hypothesis on X implies first of all that

Pic(X ×X) = a∗Pic(X) ⊕ b∗Pic(X) ⊕ Z ·∆,

and hence the image of Z in X ×X is defined by a section of

(2.2) (B ⊠ A) (−m∆)

for some line bundles A,B on X and some m ∈ Z. Note that then

deg(a) = deg(A)−m, deg(b) = deg(B)−m.

Moreover, both maps
Z1,0
∗ , Z∗1,0 : H1,0(X) −→H1,0(X)

are multiplication by −m.
We start by proving that

deg(a), deg(b) ≥ gon(X)− 1,
which will imply that autocorr(X) = (gon(X)− 1)2. We may suppose that m , 0, for if m = 0, then we are
in the setting of [LM23, Example 1.7] and deg(a),deg(b) ≥ gon(X). Now fix a general point y ∈ X, and
suppose that

b−1(y) = x1 + . . .+ xδ,

where δ = deg(b). Then for any ω ∈H1,0(X), we have

ω(x1) + . . .+ω(xδ) = Z1,0
∗ (ω)(y) = −m ·ω(y).

It follows that the δ +1 points y,x1, . . . ,xδ do not impose independent conditions on H1,0(X), and hence
they move in at least a pencil. In other words, deg(b) + 1 ≥ gon(X) and similarly deg(a) + 1 ≥ gon(X), as
required.

Assuming that deg(a) = deg(b) = gon(X) − 1, it remains to show that a minimal correspondence
arises from the fiber square of a pencil. For this, we first of all rule out the possibility that m < 0. In
fact, by intersecting Z with the diagonal, one finds that deg(A) + deg(B) ≥ −m · (2g − 2), and hence
deg(a)+deg(b) ≥ −m · (2g). But unless g = 3, this is impossible if m < 0 since 2 · (gon(X)−1) ≤ g+1. When
g = 3, one needs to rule out the existence of line bundles A,B of degree 2 such that r (A(y)) = r (B(y)) ≥ 1
for every y ∈ X, and this follows from the well-known description of pencils of degree 3 on a smooth plane
quartic. (See also Remark 1.)

Returning to the setting of (2.2), now assume that m > 0. Then for every x ∈ X,

a−1(x) ∈ |A(−m · x) |, b−1(x) ∈ |B(−m · x) |,
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which implies that

(2.3) r(A), r(B) ≥ m.

We will use this to show that deg(a) and deg(b) are minimized when A and B move in pencils.
In fact, write d = deg(A). If A is non-special, then r(A) = d − g , so deg(a) = d −m ≥ g thanks to (2.3),

and we get a map of smaller degree from a gonal pencil.(1) Therefore assume that A is special, so that

A ∈ Wm
d (X).

We may suppose that X is Brill–Noether general, in which case

ρ(m,d,g) = g − (m+1)(g − d +m) ≥ 0.

It follows that
(m+1)d ≥ mg +m(m+1)

and

d ≥
( m
m+1

)
g +m,

so that

deg(a) = d −m ≥
( m
m+1

)
g.

This is minimized when m = 1 and similarly for B. Thus we can assume that r(A) = r(B) = 1 and that the
image of Z lies in the linear series

|(B ⊠ A) (−∆) |
on X ×X. But this series is empty unless A = B, in which case it consists exactly of the residual to the
diagonal in the fiber square of the pencil defined by A. This completes the proof.

Remark 1. Suppose that X ⊆ P2 is a smooth plane curve of degree d > 3; then the correspondence defined
as the closure of

{(x,y) ∈ X ×X | y , x is in the embedded tangent line to X at x}
dominates the first factor with degree d − 2 but fails to arise from the fiber square of projection from a point
on X. The degree of the second projection is d(d − 1), which is much greater than d − 1 = gon(X).

Remark 2. As the referee remarks, the preceding result leads to two interesting questions to which we don’t
know the answers. First, if X is a very general k-gonal curve, is it true that

autocorr(X) = (k − 1)2?

We suspect that this should be the case. Second, does Proposition A hold if we replace “very general” with
“general”?

3. Proof of Theorem B

In this section we prove the following refinements of Theorem B from the introduction.

Theorem 3. Let X ⊆ Pn+1 be a very general hypersurface of degree d ≥ 2n+2, and consider a self-correspondence
Z as in diagram (1.1):

Z
a

��

b

  
X X.

(1)The case g = 3 requires a special argument here that we leave to the reader.
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Assume that Z does not map to the diagonal. Then

deg(a) ≥ d − 2, deg(b) ≥ d − 2,

and hence autocorr(X) = (d − 2)2.

Theorem 4. In the situation of Theorem 3, assume in addition that deg(a) ≤ 2d − 2n− 3.
(i) If deg(b) ≤ d −2, then deg(a) = d −2 and Z is birationally residual to the fiber square of projection from
a point x0 ∈ X.

(ii) If deg(b) = d − 1, then either
(a) Z is birational to the fiber product of two rational mappings φ1,φ2 : Xd Pn, or
(b) there exist an n-fold Y and a dominant rational mapping φ : X d Y of degree d such that Z is

birationally residual to the diagonal in the fiber product X × YX.

Remark 5. The various possibilities in Theorem 4 actually occur. For example, in (a) one considers projection
from two different points in X, while (b) arises for a general projection X→ Pn from a point off X.

Turning to the proofs, the arguments follow the line of attack of [BCDP14, BDP+17, LM23], so we will be
relatively brief. Fix X and Z as above, and write

δa =def deg(a) and δb =def deg(b).

The first point to observe is that we may—and do—assume that the endomorphism ring of the Hodge
structure Hn

pr(X,Z) is Z.

Lemma 6. If X is a very general hypersurface in Pn+1, then

End(Hn
pr(X,Z)) =Z · Id .

Equivalently, Hdgn,n(X ×X) is generated by the classes of the diagonal and the products hi1h
n−i
2 (1 ≤ i ≤ n),

where hj = pr∗j c1(O(1)|X).

Proof. The lemma follows from the computation of the algebraic monodromy group for the corresponding
variations of Hodge structures (see [Bea86] or [PS08, Section 10.3]). In the cases d = 1,2, the primitive
cohomology has rank 0 and 1, respectively, so the statement holds trivially. For larger d, an element of
GL(Hn

pr(X,Z)) is a morphism of Hodge structures if and only if it commutes with the orthogonal group
(n even) or the symplectic group (n odd). The centralizer of both of these subgroups is Z · Id. Alternative
arguments were shown to us by Radu Laza and Mark Green. □

It follows from Lemma 6 that
Zn,0∗ : Hn,0(X) −→Hn,0(X)

is multiplication by some integer c. Note that then Z∗n,0 : Hn,0(X)→Hn,0(X) is multiplication by the same
integer c. In fact, abusively writing [Z] for the class of the image of Z in H ∗(X ×X), one has

[Z] ∈ Hdgn,n(X ×X) =
〈
∆ , hi1h

n−i
2 |1 ≤ i ≤ n

〉
Q

,

and of these classes, only ∆ gives rise to a non-zero map

Hn,0(X) −→Hn,0(X)

under the identification
Hdgn,n(X ×X) � EndQ−HS(H

n(X)).

Moreover,
∆∗ = ∆∗ = IdHn,0(X) .

As in the previous section, we will need to distinguish between the cases c = 0 and c , 0.
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We start by showing that
δa, δb ≥ d − 2,

by an argument parallel to that appearing in Section 2. First, observe that

(3.1) δa , δb ≥

d −n if c = 0,

d −n− 1 if c , 0.

Indeed, if c = 0, then Z is a traceless correspondence, so given general x,y ∈ X, the sets a−1(x) and b−1(y)
both satisfy the Cayley–Bacharach condition with respect to Hn,0(X). Similarly, when c , 0, the cycle Z − c∆
is a traceless correspondence, and hence for general x,y ∈ X, the sets a−1(x)∪{x} and b−1(y)∪{x} also both
satisfy the Cayley–Bacharach condition. Inequality (3.1) then follows from [BCDP14, Theorem 2.4].

We next assume that δb ≤ d − 1, aiming for a contradiction when δb ≤ d − 3. Fix a general point y ∈ X.
The fiber of Z over y sits naturally as a subset of X and hence also Pn+1:

Zy = {x1, · · · ,xδb } =def b
−1(y) ⊆ X ⊆ Pn+1.

Note that if y is general, then the points xj are distinct. Since δb +1 ≤ 2d − 2n+1, it follows from [BCDP14,
Theorem 2.5] and the vanishing of (Z − c ·∆)∗ that the finite set Zy spans a line ℓy ⊆ Pn+1. In a similar
fashion, the generic fiber a−1(x) spans a line xℓ. Furthermore, if c , 0, the point y lies on ℓy and x lies on xℓ.

Write

X · ℓy =
r∑
i=1

aizi ;

we denote by m(z) the multiplicity of z in X · ℓy , and we note that the xj appear among these points.
Observe that m(xj ) does not depend on j . Indeed, if m(xj ) were to vary, picking out the xj with the highest
multiplicity for each y ∈ X would define a non-trivial multisection of the generically finite map

b : Z −→ X,

thereby violating the irreducibility of Z . Moreover, m(xj ) = 1 for every j . Indeed, if c = 0, then δb ≥ d −n
and thus 2δb > d. Since

∑
m(xj ) ≤ d, we see that m(xj ) = 1. If c , 0, then δb ≥ d − n− 1 and 2δb +1 > d.

Since y is in the support of X · ℓy , we get

1+
∑

m(xj ) ≤ d,

which shows m(xj ) = 1 for all i.
Let ψ : XdG(1,n+1) be the rational map that associates to a generic y ∈ X the line ℓy , and denote by

Γψ ⊂ X ×G(1,n+1) the graph of ψ. Consider the incidence correspondence

I = {(x,ℓ) : x ∈ ℓ} ⊆ X ×G(1,n+1).

We can assume that X does not contain any lines, and hence the projection I →G(1,n+1) is finite. Consider
the cycle

A =def prX×X,∗
(
pr∗G(1,n+1)×X Γ

t
ψ ·pr

∗
X×G(1,n+1) I

)
on X×X. So the support of A is the set {(x,y) | x ∈ ℓy}. The image Z of Z in X×X and possibly the diagonal
∆ are among the irreducible components of this cycle, and denoting by R the remaining components, we
have

A = Z + m∆ + R.

By construction, R dominates the second factor, and we assert that it cannot dominate the first. Indeed,
were R to dominate both factors, it would define a correspondence violating the degree bounds in (3.1).

Next, observe that A acts as the composition

[A]∗ = [I]∗ ◦ψ∗ : Hn,0(X) −→H•(G(1,n+1)) −→Hn,0(X),
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and this composition is zero since H•(G(1,n+1)) is Hodge–Tate. Furthermore,

[R]∗ = 0: Hn,0(X) −→Hn,0(X)

since R does not dominate the first factor. Therefore m = −c, and in particular c ≤ 0. If c , 0, we contend
that c = −1. Indeed, given a general point (x,y) ∈ Z, the lines xℓ and ℓy pass through x and y and thus

xℓ = ℓy .

Consequently, xℓ ·X = ℓy ·X and by the statements above, we see that x and y both appear with multiplicity
1 in this intersection. Accordingly, the diagonal must appear with multiplicity 1 in A, and thus c = −1.

To finish the proof, we need the following.

Claim. Every irreducible component of (the support of ) R is of the form x0 ×X for some x0 ∈ X.

Proof. The proof proceeds exactly as the proof of [LM23, Theorem A]. In brief, if the projection of an
irreducible component of R to the first factor is S, one shows that sections of the canonical bundle of a
desingularization of S do not birationally separate many points. This contradicts computations of Ein
[Ein88] and Voisin [Voi96] if dimS > 0. □

The claim implies that R must be irreducible and reduced since lines meeting X in any fixed zero-
dimensional subscheme of X of length 2 do not meet a general point of X. It follows that δb ≥ d −2, and by
symmetry that δa ≥ d − 2.

Theorem 4 also follows from this claim as follows.

Proof of Theorem 4. (i) If δb = d − 2, we must have c = −1 and R = x0 ×X for some x0 ∈ X. Then we have
the equality

Z = closure {(x,y) | x , x0, y , x,x0, and x ∈ x0y} .

Indeed, every irreducible component of the right-hand side must dominate the second factor, and the degree
of the projection of the right-hand side to the second factor is d − 2.

(ii) If δb = d − 1 and c = 0, we will show that (a) is satisfied. There is a point x0 ∈ X such that R = x0 ×X.
Consider (x,y) ∈ Z general, and let

xℓ∩X = {yj | 0 ≤ j ≤ d − 1} and ℓy ∩X = {xj | 0 ≤ j ≤ δa},

where x = x1 and y = y1, so that (x1, y), . . . , (xd−1, y) and (x,y1), . . . , (x,yδa) are in Z . Since (x,y) ∈ Z was
chosen generically, b−1(y2) consists of d − 1 points, one of which is x. Moreover, b−1(y2) is contained in a
line passing through x0, and thus is contained in the line through x0 and x. It follows that

b−1(y2) = {(xi , y2) | 1 ≤ i ≤ d − 1}.

The same reasoning shows that

{(xi , yj ) | 1 ≤ i ≤ d − 1,1 ≤ j ≤ δa} ⊂ Z.

Let ϕ1 : Xd Pn be the projection from x0, and consider the map

ϕ2 : X −dG(1,n+1)

x 7−→ xℓ.

The maps ϕ1 and ϕ2 are generically finite of degree d − 1 and at least δa, respectively. Considering
degrees in the following diagram, we see that ϕ2 had degree δa and that (ϕ1 ×ϕ2)(Z) ⊂ Pn ×ℑ(ϕ2) maps
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birationally to each factor:

Z

X X

(ϕ1 ×ϕ2)(Z)

Pn ℑ(ϕ2).

a b

ϕ1 ϕ2

pr1 pr2

Hence, the subvariety

(ϕ1 ×ϕ2)(Z) ⊂ Pn ×ℑ(ϕ2)

is the graph of a birational isomorphism ψ : Pndℑ(ϕ2). Accordingly, Z is the fiber product of ϕ1 and
ψ−1 ◦ϕ2.

Finally, if δb = d − 1 and c , 0, we show that (b) is satisfied. We must have c = −1 and deg(a) = d − 1.
Consider the rational map

ϕ : X −dG(1,n+1)

y 7−→ ℓy .

Denoting by U an open on which ϕ is defined, we contend that

Z = {(x,y) ∈U2 : x , y,ϕ(x) = ϕ(y)} ⊂ X ×X.

Given a generic (x,y) ∈ Z, the line ℓy coincides with the line xℓ as they both pass through x and y. Write

xℓ∩X = ℓy ∩X = {zj : 1 ≤ j ≤ d},

where z1 = x and z2 = y. For any j > 1, the point (x,zj ) is on Z, and b−1(zj ) is contained in ℓzj = xℓ = ℓy ,
so that

b−1(zj ) = ℓy ∩X \ {zj}

and

{(zi , zj ) : i , j} ⊂ Z.

It follows that ℓx = xℓ for a generic x ∈ X and that

Z = {(x,y) ∈U2 : x , y,ϕ(x) = ϕ(y), } ⊂ X ×X. □

4. Proof of Theorem C

Theorem C from the introduction follows easily from the following result.

Proposition 7. Let X be a very general hyperelliptic curve of genus g ≥ 3, and let Z ⊆ X ×X be a hyperelliptic
curve. Then the image of (the normalization of ) Z under the Abel–Jacobi map is geometrically degenerate; i.e., it
generates a proper subtorus of J(X)× J(X).

Note that we do not assume that Z is smooth; to say it is hyperelliptic means that its normalization is so.
We note that some genericity condition is necessary in Theorem C. For example, given a hyperelliptic

curve X, the graph of an automomorphism X → X which is neither the identity nor the hyperelliptic
involution is a hyperelliptic curve sitting in X×X. The fact that such graphs map to geometrically degenerate
curves in J(X)× J(X), together with Proposition 7, suggests the following.
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Question. Given an arbitrary hyperelliptic curve X (resp. hyperelliptic curves X and Y ), does every hyper-
elliptic curve Z ⊆ X ×X (resp. Z ⊂ X × Y ) map to a geometrically degenerate curve in J(X)× J(X) (resp.
J(X)× J(Y ))?

Let us first show how Theorem C follows from Proposition 7.
Consider a very general hyperelliptic curve X and a hyperelliptic curve Z ⊂ X ×X with normalization

Z ′ . Abusing notation, we will call the image in Z of Weierstrass points of Z ′ Weierstrass points of Z . Such
points map to Weierstrass points of X under each projection. Consider a Weierstrass point (x0, y0) ∈ Z and
the embedding

X ×X −→ J(X)× J(X)
(x,y) 7−→ ([x]− [x0], [y]− [x0]).

By Proposition 7, a translate of the image of Z in J(X) × J(X) is contained in an abelian subvariety of
J(X)× J(X). Since the image of Z passes through

τ =def (0, [y0]− [x0]) ∈ J(X)[2]× J(X)[2],

it is in fact contained in τ +A for some proper abelian subvariety A ⊂ J(X)× J(X). Moreover, since X is
very general, the automorphism group of the Jacobian of X is Z, and thus there are integers m,n ∈ Z, m ≥ 0,
such that Z is contained in the image of

J(X) −→ J(X)× J(X)
x 7−→ (mx,nx) + τ.

Hence,
Z ⊂ {(x,x′) ∈ X ×X : nx+ x0 =mx

′ + y0 ∈ J(X)} ⊂ X ×X.
Equivalently, Z is contained in the fiber of the following map over y0 − x0:

X ×X −→ J(X)

(x,x′) 7−→mx −nx′ .

Considering the differential of the map above and the fact that the Gauss map of X embedded in its Jacobian
has degree 2, it is easy to see that the only possibility is n = ±m and x0 = y0.

We have thus shown that Z is contained either in the diagonal of J(X) or in the anti-diagonal of J(X). This
completes the proof as the diagonal of J(X) intersects X ×X along the diagonal of X and the anti-diagonal
of J(X) intersects X ×X along the graph of the hyperelliptic involution of X.

Finally, we give the proof of Proposition 7.

Proof of Proposition 7. Consider X /S , a locally complete family of hyperelliptic curves of genus g , and

Z ⊂ J(X /S)×S J(X /S),

a family of hyperelliptic curves such that for very general s ∈ S, the curve Zs generates J(Xs)× J(Xs). The
idea is to arrive at a contradiction to the observation of Pirola [Pir89] that hyperelliptic curves on abelian
varieties are rigid up to translation.

Specifically, specialize to loci Sλ ⊂ S along which J(Xs) is isogenous to Aλs ×E, where E is a fixed elliptic
curve and Aλ→ Sλ is a family of abelian (g − 1)-folds. For each λ, we have a map

pλ : Zs −→ E ×E

which is the composition of the inclusion of Zs in J(Xs)× J(Xs) with the isogeny and the projection to the
E ×E factor.

Claim. The image of Zs in E ×E varies with s ∈ Sλ.
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But as we noted, this is impossible thanks to [Pir89], completing the proof.
The claim is established along the lines of [Voi18] and [Mar20]. Denoting by G/S the relative Grassmanian

of (g − 1)-planes in TJ(Xs),0, [CP90] proves the density of the set

{TAλs ,0 ⊆ TJ(Xs),0 | s ∈ Sλ} ⊆ G.

(In fact, [CP90] shows that the locus {TE,0 ⊂ TJ(Xs),0 | s ∈ Sλ} is dense in the relative Grassmanian of lines
in TJ(Xs),0. However, one can use the fact that Jacobians are isomorphic to their duals to get the stated

assertion.) By a density argument, one can construct families of smooth curves Z̃ → G′ and Z̃′→G′ over a
generically finite cover G′ of G and a morphism

p : Z̃ −→ Z̃′

satisfying the following:

• Denoting by π the map G′→ S , the curve Z̃s is the normalization of Zπ(s).
• For s ∈ G′ such that π(s) ∈ Sλ ⊂ S , the maps

pλ : Zs −→ pλ(Zs)

and

p : Z̃s −→ Z̃′s
agree birationally.

Now consider the composition

(4.1) Pic0(J(Xs)× J(Xs)) −→ Pic0(Z̃s)
p∗−−→ Pic0(Z̃′s),

where the first map is the pullback by the composition

Z̃s −→Zs −→ J(Xs)× J(Xs).

One easily checks that the composition (4.1) cannot be zero. Since J(Xs) is simple for generic s ∈ G′ , we
deduce that the abelian variety Pic0(Z̃′s) contains an abelian subvariety isogenous to J(Xs) for all s in an
open set U ⊂ G′ .

Finally, consider λ such that π−1(Sλ)∩U , ∅. If pλ(Zs) does not vary with s ∈ Sλ, the fixed abelian
variety Pic0(Z̃′s) contains an abelian subvariety isogenous to J(Xs) for all s ∈ Sλ. This cannot be since the
family J(XSλ/Sλ) is not isotrivial.

□
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