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Abstract. We investigate algebraically coisotropic submanifolds X in a holomorphic symplectic
projective manifold M . Motivated by our results in the hypersurface case, we raise the following
question: when X is not uniruled, is it true that up to a finite étale cover, the pair (X,M) is a
product (Z × Y ,N × Y ), where N,Y are holomorphic symplectic and Z ⊂ N is Lagrangian? We
prove that this is indeed the case when M is an Abelian variety and give a partial answer when the
canonical bundle KX is semiample. In particular, when KX is nef and big, X is Lagrangian in M
(using a recent text of Taji, we could also obtain this for X of general type). We also remark that
Lagrangian submanifolds do not exist on a sufficiently general Abelian variety, in contrast to the
case when M is irreducible hyperkähler.
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1. Introduction and main results

1.1. Algebraically coisotropic submanifolds

Let M be a complex projective manifold equipped with a holomorphic symplectic form σ . In particular,
M is of even dimension 2n. Let X be an irreducible complex submanifold of M . By linear algebra, at every
x ∈ X, the corank of the restriction σ |X at x is at most c = codim(X). Equality holds exactly when TX,x

contains its σ -orthogonal.

Definition 1.1. The submanifold X is coisotropic if the corank of σ |X is equal to c at each(1) point of X. In
this case, the kernel of σ |X defines a regular foliation(2) F of rank c on X, and the rank of σ |X is 2(n− c).
The foliation F is called the characteristic foliation of X.

It follows from the definition that the codimension c of a coisotropic subvariety X is at most n, and if
it is equal to n, then the restriction of σ to X is zero. In this case, X is called Lagrangian. Also recall
that a subvariety Y is isotropic if σ |Y = 0; the dimension of an isotropic subvariety is at most n, and to be
Lagrangian is the same as to be isotropic and coisotropic at the same time.

In general, the set of the coisotropic submanifolds of M depends on the choice of the form σ ; when σ is
not specified, we say that a submanifold of M is coisotropic when it is coisotropic for some σ on M . One
important and most studied case is when M is irreducible holomorpic symplectic (IHS ), or hyperkähler : that
is, M is simply connected and h2,0 is 1-dimensional. In this case, obviously the notion of the coisotropy is
independent of the form. When M is a product of IHS manifolds, by the Künneth formula, any symplectic
form is a product of forms lifted from the factors, and so the notion of coisotropy does not depend on the
choices in the case when X is itself a compatible product.

A regular foliation on an algebraic manifold is said to be algebraic (or algebraically integrable) if its leaves
are algebraic submanifolds. If the characteristic foliation on X is algebraic, X is said to be algebraically
coisotropic. In this case, there is a fibration f : X→ B which has the leaves of F as fibres. This fibration is
“quasi-smooth” in the sense that all of its fibres have smooth reduction. We call it the characteristic fibration
of X.

(1)This definition coincides with those of [Saw09] and [Voi16] for X smooth. More generally, when X is a possibly singular
subvariety, one calls X coisotropic when TX,x contains its σ -orthogonal for every smooth point x ∈ X.

(2)A priori only a distribution, it is a foliation because σ is d-closed. See [Saw09, Section 2.1].
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Example 1.2. Any smooth hypersurface D of M is coisotropic since σ |D is of even rank and therefore
degenerate.

Lagrangian subvarieties of M are algebraically coisotropic: the characteristic foliation then has a single
leaf, X itself. In particular, curves on a holomorphic symplectic surface (either K3 or Abelian) are
algebraically coisotropic.

1.2. Divisors

It is easy to see that a smooth uniruled hypersurface is algebraically coisotropic with rational curves as
leaves. On the opposite side, Hwang and Viehweg [HV10] have shown that a smooth algebraically coisotropic
hypersurface of general type is a curve in a holomorphically symplectic surface. Several important
observations have been made in [Saw09]. In [AC17], we have described the algebraically coisotropic divisors
as follows.

Theorem 1.3. A smooth algebraically coisotropic hypersurface D in a holomorphic symplectic manifold M is either
uniruled or, up to a finite étale cover of M, of the form D = C × Y ⊂M = S × Y , where Y is a holomorphic
symplectic manifold, S is a holomorphic symplectic surface and C is a curve on S .

1.3. Higher codimension

It is natural to ask whether a similar description is still valid for algebraically coisotropic subvarieties of
higher codimension.

The analogues of curves in holomorphically symplectic surfaces are Lagrangian subvarieties. The most
optimistic higher-codimensional analogue of Theorem 1.3 would be a positive answer to the following.

Question 1.4. Let X ⊂M be a non-uniruled algebraically coisotropic submanifold in a projective holomorphic
symplectic manifold M . Up to a finite étale cover, do we have X = L×Y and M =N ×Y , where Y and N
are holomorphically symplectic and L ⊂N is Lagrangian in N ?

In particular, is X Lagrangian if KX is big? Is X Lagrangian if M is either a simple Abelian variety or an
irreducible hyperkähler manifold?

Remark 1.5. While every hypersurface is coisotropic, most higher-codimensional submanifolds are not; in
fact, coisotropy is a cohomological condition (see [Voi16, Lemma 1.4]). Notice however that not all coisotropic
submanifolds are of the type described in Question 1.4; e.g. when M is irreducible hyperkähler, a complete
intersection of two hypersurfaces with zero Beauville–Bogomolov intersection is coisotropic, essentially by
definition of the Beauville–Bogomolov form. In particular, when M has a Lagrangian fibration f : M→ P

n,
the inverse image of a codimension 2 complete intersection (and, more generally, of any submanifold) Y ⊂ P

n

is coisotropic. See Proposition 4.1 for a result on its characteristic foliation.

Remark 1.6. A positive answer to Question 1.4 would reduce the description of algebraically coisotropic
X ⊂M to that of the Lagrangian submanifolds of symplectic manifolds. Up to a finite covering, these are
products M = ΠiMi , where the Mi are either simple Abelian varieties or IHS manifolds. However, the
symplectic form does not need to be a product of forms on the factors if there is a non-trivial torus part (see
[AC17]).

The aim of this note is to prove several very partial results on these questions. Concerning Lagrangian
submanifolds, we provide a brief survey on IHS manifolds in Section 4 and make some remarks on Abelian
varieties in Section 5.

Theorem 1.7. Let X be an algebraically coisotropic submanifold of a holomorphic symplectic manifold M . Let
f : X→ B be its characteristic fibration. Suppose that KX is semiample. Then f is isotrivial, and κ(X) = κ(F),
where F is a smooth fibre of f .
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The proof of Theorem 1.7 is a direct adaptation of the one given in [AC17] as the main step of the proof of
Theorem 1.3.

Using [Taj23], one can weaken the semiampleness condition as follows.

Theorem 1.8. Let X be an algebraically coisotropic submanifold of a holomorphic symplectic manifold M . Let
f : X→ B be its characteristic fibration. Suppose that the smooth fibres of f have good minimal models. Then f is
isotrivial, and κ(X) = κ(F), where F is a smooth fibre of f .

One may expect that the pseudo-effectivity of KX is sufficient for the conclusions of Theorem 1.8, but new
techniques are certainly required. See Remark 4.3 for a related question.

Corollary 1.9. Let M be a holomorphic symplectic manifold and X ⊂M an algebraically coisotropic submanifold.
Assume that KX is nef and big, or more generally that X is of general type. Then X is Lagrangian.

Indeed, if KX is nef and big, then so is KF = KX |F , and the Kawamata base-point-free theorem implies
that KF is semiample. Hence κ(X) = κ(F), and by the bigness of KX , we must have X = F; that is, X is
Lagrangian. If X is of general type, so is F; in particular, it has a good minimal model, and we obtain the
same conclusion from Theorem 1.8.

Note that this is exactly the analogue of the Hwang–Viehweg theorem in higher codimension.

Corollary 1.10. If M is a simple Abelian variety and X ⊂M is algebraically coisotropic, then X is Lagrangian.

Indeed, all positive-dimensional submanifolds in a simple Abelian variety have ample canonical bundle
(see [Har71, Proposition 4.1]).

Examples of Lagrangian submanifolds in simple Abelian varieties of dimension 2n ≥ 4 seem difficult to
construct. O. Debarre and C. Voisin have informed us of one such construction for n = 2, due to Schoen;
see [Sch07, CMLR15]. We do not know any higher-dimensional examples. They do not exist on sufficiently
general (“Hodge-general”) Abelian varieties, by Corollary 5.5.

The answer to Question 1.4 is positive when M is an Abelian variety.

Theorem 1.11. Let M be an Abelian variety and X ⊂M an algebraically coisotropic submanifold. Then after a
finite étale cover, there are subtori D,N,C,P of M such that M = D ×C ×N × P and a submanifold Z ⊂ N
such that

(1) Z generates N ;
(2) X =D ×C ×Z;
(3) the restriction σN of σ to N is symplectic, and Z is Lagrangian in N ;
(4) the characteristic fibration of X is the projection f : X→D with fibres C ×Z, and the restriction σD is

symplectic;
(5) dim(C) = dim(P ); in particular, if X generates M, then C = 0 and moreover σ = σD ⊕ σN .

Conversely, given the tori D,C,N,P , the symplectic forms σN and σD , and a σN -Lagrangian submanifold of
general type Z generating N , then X =D ×C ×Z is algebraically coisotropic in D ×C ×N × P for a suitable σ
which restricts as σN , resp. σD , to N , resp. D .

Remark 1.12. We shall describe all such σ in the proof of Theorem 1.11.
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2. Proofs of Theorems 1.7 and 1.8

The proofs of these theorems use several auxiliary results. First of all, let us recall some general
background. We follow [AC17], where we considered only algebraically coisotropic hypersurfaces, but many
starting remarks are valid in general.

Let X be algebraically coisotropic; then the family of leaves of the characteristic foliation F defines a
morphism from X to its Chow variety. Normalizing the image if necessary, we obtain a fibration f : X→ B
with fibres which are leaves of F (the “characteristic fibration”). We recall that the codimension c of X is
equal to the relative dimension of f , and we usually denote by F the general fibre of f . Each (set-theoretic)
fibre is smooth, but some of them can be multiple as f is not necessarily a smooth morphism. Equivalently,
some leaves of f have non-trivial holonomy. The base B can be singular at the corresponding points but
has only quotient singularities. In fact, all holonomy groups of the foliation are finite, and locally in the
neighbourhood of the fibre F0, the variety X is diffeomorphic to the quotient of T × F by the holonomy
group G, where F is the Galois covering of F0 with Galois group G, T is a local transverse and G acts
diagonally. This result is known in foliation theory as Reeb stability. In the neighbourhood of F0, the map f
is the projection to T /G.

Complex-analytically, it is not always true that a neighbourhood of F0 in X is a quotient of the product
because the complex structure on the general leaves F can vary, but it remains true that the quotient T /G
gives a local model for B.

The following lemma is due to Sawon (see [Saw09, Lemma 6] for the case of hypersurfaces). The argument
is purely local on X, depending only on the d-closedness of σ .

Lemma 2.1. Let X be smooth and algebraically coisotropic, and let f : X → B be the characteristic fibration.
Denote by f : X0→ B0 the restriction to the smooth locus (that is, B0 = B−E, where b ∈ E if and only if the fibre
Xb is a multiple fibre ). Then there is a holomorphic symplectic form η on B0 with f ∗η = σ |X .

Proof. As in [Saw09], we remark that the restriction of σ gives a holomorphic symplectic form on any local
transverse and that if U1 and U2 are two local transverses over the same small U ⊂ B0, then the natural
isomorphism φ : U1 → U2 (sending the intersection point of U1 with some leaf L to that of U2 with L)
can be viewed as a t = 1 map of a flow φt preserving σ |X . Using the d-closedness of σ , one obtains as in
[Saw09] that the forms agree on local models: σ |U1

= φ∗σ |U2
, yielding a global holomorphic symplectic form

η on B0. □

The next result has been obtained for hypersurfaces in [AC17, Lemma 2.3], and its proof in the general
case is analogous.

Proposition 2.2. In the situation of Lemma 2.1, the fibration f has no multiple fibres in codimension 1, so that σ
descends to a symplectic form η outside of a subset of codimension at least 2 in B. Moreover, the highest exterior
power α = ηn−c trivializes KB, and B has only canonical singularities. Therefore:

(1) Any smooth model of B has κ = 0, and in particular B is not uniruled.
(2) The smooth locus B0 of B is special in the sense of [AC18].

Proof. The argument for the absence of multiple fibres in codimension 1 is that of [AC17, Lemma 2.3]; we
only adapt the notation. We set ω = σn−c, so that f ∗α =ω over B0. Suppose there is a divisor of multiple
fibres; then, replacing B with a small open neighbourhood of a general point of the image E of this divisor,
we may assume that B is a polydisk with coordinates (u1, . . . ,u2(n−c)) = (u,u′) and E is given by u = 0 (here
u′ denotes the (2(n− c)− 1)-tuple of remaining coordinates) . Moreover, we can choose local coordinates
(z1, . . . , z2(n−c),w2(n−c)+1, . . . ,w2n−c) = (z,z′ ,w) on X such that f is locally given by u = zm, u′ = z′ . Then
the same calculation as in [AC17, Lemma 2.3] shows that m = 1.
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Hence α is a non-vanishing holomorphic 2(n − c)-form defined over a complement of a subset of
codimension at least 2, and by definition it trivializes KB. Moreover, since B has only quotient singularities,
a lemma due to Freitag [Fre71] shows that α extends to any resolution r : B′→ B of B, and so the singularities
of B are canonical; hence κ(B′) = 0. If E is the reduced exceptional set of r, then h0(B′ ,m(KB′ + E)) =
h0(B′ ,mE′) = 1 for each m > 0 since KB′ + E := E′ ≥ E is an effective divisor supported on E. Thus
κ(B′ ,KB′ +E) = 0, and (B′ ,E) is special. □

Also notice that in the exact sequence 0→F → TX →NF → 0, the normal bundle NF is equipped with
a non-degenerate 2-form; hence it has trivial determinant. It follows that KF = KX .

Proof of Theorem 1.7. When KF is semiample, the results Theorem 5.1 and Corollary 5.2 of [AC18] apply, yield-
ing that f is an isotrivial fibration. Moreover, by Proposition 2.2, f has no multiple fibre in codimension 1.
Therefore, KX = KX/B + f ∗KB. By the same proposition, KB is trivial and so KX = KX/B.

By isotriviality, the family f : X→ B trivializes after a finite covering B′→ B: the base change f ′ : X ′→ B′

is the projection from X ′ = F ×B′ to the second factor. Let g be the natural base-change morphism from
X ′ to X and h the projection from X ′ to F. Then h∗(KF) = KX ′/B′ = g∗KX/B. Hence κ(F) equals the Iitaka
dimension of KX/B, which is equal to κ(X). □

Proof of Theorem 1.8. We repeat the preceding arguments, replacing [AC18, Theorem 5.1, Corollary 5.2] with
[Taj23, Theorem 1.1], applied to the special base B0. □

Proof of Corollary 1.10. The structure of a submanifold of an Abelian variety is described in [Uen75]: if X is
such a submanifold, then there exists an Abelian subvariety A ⊂M such that X = p−1(Z), where p is the
projection from M to the quotient Abelian variety L =M/A and Z ⊂ L is a subvariety of general type. Now
if M is simple, then A is trivial and Z = X, so that Corollary 1.9 applies (note that KZ is nef and big, and
even ample when M is simple). □

3. Proof of Theorem 1.11

Let M be an Abelian variety, and let X be an algebraically coisotropic submanifold of M . We derive from
Ueno’s classification result [Uen75, Theorem 10.9] that KX is semiample: indeed, in the notation right above,
KX is the inverse image of KZ , which is nef and big, hence semiample by Kawamata base-point-freeness.
Clearly, in the same notation, the restriction g : X → Z of the projection p : M → L = M/A is the Iitaka
fibration of X, the fibres of g are isomorphic to A, and κ(X) = κ(Z) = dim(Z). Denote by N the subtorus
of L generated by Z .

Since KX is semiample, Theorem 1.7 applies. Let f : X → B be the characteristic fibration on X; it
is isotrivial with general fibre F. Since κ(X) = κ(F), the restriction of g to F is the Iitaka fibration of F.
Applying Ueno’s theorem again, we see that the fibre of g |F is a subtorus C of A.

Now Poincaré complete reducibility yields that passing to a finite étale covering, we may assume A =D×C,
L = N × P and M = D ×C ×N × P , so that Z ⊂ N induces the embedding of X = D ×C ×Z into M, and
g : X =D ×C ×Z→ Z and f : D ×C ×Z→D are natural projections.

We shall now analyze the form σ according to the decomposition M = D ×C ×N × P . We view any
torus as the quotient of its tangent space by a lattice, and by abuse of notation, denote by the same letter a
subtorus of M and its tangent space at any point. By the coisotropy condition, C + TZ,z is orthogonal (with
respect to σ ) to C +D at each point z ∈ Z . Thus C and D are orthogonal, and C +D is orthogonal to TZ,z
for all z ∈ Z . Since Z generates the subtorus N , the spaces TZ,z ⊂N generate the vector space N (that is,
TN ), by the Gauss map. Thus C +N and C +D are orthogonal. Equivalently, C is isotropic, and C, N and
D are pairwise orthogonal.

The Künneth formula then implies that σ = σD ⊕ σN ⊕ σP ⊕ s, where σN is the restriction of σ to N , and
similarly for D and P , and s comes from an element in H1,0(P )⊗H1,0(D×C×N ). This means the following:
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we have a pairing s(p,q) =
∑

i αi(p)βi(q) for p ∈ P , q ∈ Q := D ×C ×N and linear forms αi , βi , and we
associate to it the alternating bilinear form s′ on P ×Q defined by s′(p+ q,p′ + q′) := s(p,q′)− s(p′ ,q).

Observe that the restriction σD of σ to D is a symplectic form, for example by Lemma 2.1. The following
claim is crucial.

Claim 3.1. The restriction σN of σ to N is a symplectic form, and Z is coisotropic in N .

Proof. Indeed, let K be the kernel of σN . It gives a foliation K on N , which is a trivial subbundle in
the tangent bundle TN . The orthogonality relations established above imply that K is contained in the
σ -orthogonal to D ×C ×N , hence also in the σ -orthogonal to TX at any point x ∈ X. So K is also contained
in the σN -orthogonal to TZ at any point z ∈ Z . In other words, K|Z ⊂ TZ (that is, Z is invariant by the
foliation K). But since Z is of general type, it has only finitely many automorphisms. So H0(Z,TZ ) = 0 and
TZ cannot have a trivial subbundle of positive rank; hence K = 0 and σN is symplectic.

To deduce the second part of the claim, consider the restriction σ ′ of σ to D × C ×N . Since the
σ ′-orthogonal to TX is contained in its σ -orthogonal, X is also coisotropic with respect to σ ′ (by definition,
we say that X is coisotropic with respect to an arbitrary, not necessarily non-degenerate, form σ ′ if TX
contains its σ ′-orthogonal). By the orthogonality relations above, this implies that Z is σN -coisotropic in N ,
finishing the proof of the claim. □

We now give two different proofs of the fact that Z ⊂N is Lagrangian and dim(C) = dim(P ). The first
one is shorter, the second one additionally gives information on σ .

First proof. We start by recalling that X is σ -coisotropic in M and note that Q =D×C×N is σ -coisotropic
in M as well: indeed, since X ⊂Q, the σ -orthogonal to Q is contained in the σ -orthogonal to TX at every
point of X, so it is also contained in Q at every point of X. By the triviality of the tangent bundle of a torus,
the orthogonal to a subtorus at a point does not depend on this point. Hence the σ -orthogonal to Q is
contained in Q at every point, meaning that Q is coisotropic.

By the definition of coisotropy, the codimension of Q = D × C ×N in M is equal to the corank of
the restriction of σ to D × C × N ; that is, dim(P ) = dim(C). In the same way, the coisotropy of X
in M gives dim(C × Z) = codim(X,M) (indeed, the fibre of the coisotropic fibration is C × Z), hence
dim(C) + dim(Z) = codim(Z,N ) + dim(P ) and so again dim(Z) = codim(Z,N ), meaning that Z is σN -
Lagrangian in N .

Second proof

Lemma 3.2. The restriction sP×C is symplectic on P ×C; hence dim(C) = dim(P ) and Z ⊂N is σN -Lagrangian.

Proof. We fix x ∈ X and compute the σ -orthogonal TX⊥x of TXx, which is, by assumption, C × TZz if
z is the Z-component of x. This orthogonal consists of the quadruples (d,c,n,p) ∈ D ×C ×N × P such
that σ ((d,c,n,p), (d′ , c′ ,n′)) = 0 for all (d′ , c′ ,n′) ∈ D ×C × TZz. This value of σ is equal to σD(d,d′) +
σN (n,n′)+ s(p, (d′ , c′ ,n′)). By the linearity of this expression, for (d,c,n,p) fixed, in (d′ , c′ ,n′), this vanishing
is equivalent to the following system of equations:

(1) s(p,c′) = 0 for all c′ ∈ C,
(2) σD(d,d′) + s(p,d′) = 0 for all d′ ∈D,
(3) σN (n,n′) + s(p,n′) = 0 for all n′ ∈ TZz.

Assume the first equation had a non-zero solution p. Since σN and σD are symplectic, this solution p
could be uniquely lifted to a solution d (resp. n) of the second (resp. third) equation, and we would have
elements (d,c,n,p , 0), with c ∈ C arbitrary, in TX⊥x . We have a contradiction since TX⊥ ⊂ TX ⊂ Q.
The only solution p to the first equation is thus p = 0. The map from P to the dual of TC induced by
sP×C is therefore injective, and so dim(P ) ≤ dim(C). Since moreover s(c,c′) = 0 for c,c′ ∈ C, the kernel of
sP×C is zero; that is, sP×C is symplectic. As C is isotropic for sP×C , we also have dim(C) ≤ dim(P ); hence
dim(C) = dim(P ).
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Since p = 0 if (d,c,n,p) ∈ TX⊥x , from the second and third equations, we get d = 0, and n is any element
of the σN -orthogonal of TZz, c ∈ C being arbitrary. We thus also get C × TZz = TX⊥x = C × TZ⊥z , where
the first equality follows from the characteristic fibration and TZ⊥z is the σN -orthogonal. We deduce that
TZz = TZ⊥z , so that Z is Lagrangian. □

Conversely, if we are given any Z, N , D, C, P , σN , σD , σP , s with

(1) σN , σD symplectic;
(2) Z ⊂N , Z of general type generating N and σN -Lagrangian (so that dim(N ) is even);
(3) s(p,c) symplectic on P ×C and C, P maximal isotropic (so that dim(C) = dim(P ));

then X :=D ×C ×Z is σ -coisotropic, with characteristic fibration f : X→D . This is easy to check, using
the preceding arguments.

4. The irreducible hyperkähler case

4.1. Some known examples of Lagrangian submanifolds

Lagrangian submanifolds of IHS manifolds have been studied to some extent, especially when the
dimension of the ambient IHS manifold is 4. Many examples are exhibited in [Voi92]. Voisin also shows
that the codimension, in the component of the deformation space of an IHS manifold M , of the locus where
the Lagrangian submanifold X ⊂M deforms together with M is equal to the rank of the restriction map
H2(M,Q)→H2(X,Q). In particular, a Lagrangian P

n ⊂M deforms together with M in codimension 1.
For instance, the Hilbert square of a K3 surface S of genus 2 contains a Lagrangian P

2; indeed, S is a
double covering of a plane, and the fibres of the covering define a plane in the Hilbert square. In the same
spirit, an Enriques surface S ′ has a K3 covering S, and so one obtains an embedding of S ′ into S[2] with
Lagrangian image (because S ′ does not carry holomorphic 2-forms).

Within M , a Lagrangian P
n is isolated. But there are also examples of dominating families of Lagrangian

submanifolds. It is easy to see that any Lagrangian torus deforms in a covering family (and in fact is a
fibre of a Lagrangian fibration, see [Ame12] for dimension 4 and [HW13] in general). One can also have a
dominating family of Lagrangian submanifolds of general type.(3) Indeed, the variety of lines M = F(V ) of
a cubic fourfold V is an IHS fourfold of K3 type, and the surface of lines SY contained in a hyperplane
section Y of V is Lagrangian. This results from the fact that [σ ] comes from a class η ∈ H3,1(V ) via
the “Abel–Jacobi map”, that is, the composition of the pullback to the universal family of lines on V with
subsequent projection to F(V ) (see e.g. [AV08]). One also computes that these surfaces are of general
type, using the fact that these are zero-loci of sections of the restriction of the universal bundle from the
Grassmannian to M . Notice that the surfaces SY cover F(V ).

Another source of examples is described in [Bea11]: the fixed locus of an antisymplectic involution of
a holomorphic symplectic manifold is Lagrangian. This applies for instance to the double EPW sextic (a
double covering of a sextic of a certain type in P

5 which turns out to be an IHS fourfold of K3 type, see
e.g. [O’G06]). The fixed locus of the covering involution is a smooth Lagrangian surface Σ of general type
which does not move in a family. However, E. Macri communicated to us that there is a covering family of
Lagrangian surfaces in the cohomology class 2[Σ].

In conclusion, on IHS manifolds we know a considerable variety of Lagrangian submanifolds, with
negative, zero, torsion or positive canonical class. These submanifolds can move or be fixed. The situation is
very different for Abelian varieties. See Section 5.

(3)E. Macri informed us of a conjecture stating that actually every projective IHS manifold is covered by Lagrangian submanifolds.
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4.2. Lagrangian fibrations

Let f : M→ B be a Lagrangian fibration on an IHS manifold M, with discriminant hypersurface ∆ ⊂ B.
Let X be a “vertical” smooth subvariety; that is, X = f −1(S) for some S ⊊ B. Assume that X is algebraically
coisotropic. If Question 1.4 has a positive answer, then X must be a smooth fibre of f . Indeed, a stronger
statement holds under the following hypothesis (this is essentially due to Abugaliev [Abu19]).

Proposition 4.1. In the notation above, assume that π1(S − (S ∩∆)) surjects onto π1(B−∆). If X = f −1(S) is a
vertical submanifold, then the leaves of the characteristic foliation of X are Zariski dense in the fibres of f . In
particular, X cannot be algebraically coisotropic unless S is a point.

Proof. We briefly sketch the proof and refer to [Abu19] for details (he treats the case codim(X) = 1, but the
general one is analogous). It is easy to see that the leaves are tangent to the fibres of f and the closures of
the leaves in the smooth fibres are subtori. When these subtori are proper, this gives a fibration in subtori
on a smooth fibre F ⊂ X, and this family of subtori is invariant under the monodromy π1(S − (S ∩∆)).
By a remark of Oguiso (who combined results by Voisin and Matsushita) from [Ogu09], the image of the
restriction map H2(M,Q)→ H2(F,Q) is 1-dimensional; hence, up to proportionality, only one class in
H2(F,Q) can be invariant under π1(B−∆). This is the restriction of an ample class on M , itself ample. On
the other hand, a fibration of F into proper subtori as above provides a nef non-ample class in H2(F,Q),
invariant under π1(S − (S ∩∆)) (the pullback of an ample class on the base). Therefore, the closure of a
general leaf must be the whole fibre of f . □

4.3. Nefness and non-uniruledness

A recent observation by Abugaliev and Pereira shows that a smooth non-nef hypersurface D in a
holomorphic symplectic M is uniruled (see [Abu21, Theorem 8.4]); if M is an IHS manifold, the Beauville–
Bogomolov square of such a D is negative (see [Abu21, Corollary 8.5]). In general, for a submanifold X ⊂M
of higher codimension, the non-nefness of KX implies the existence of rational curves by bend-and-break.
It would be interesting to see whether for algebraically coisotropic X, the non-nefness of KX implies
uniruledness as well.

5. Lagrangian submanifolds on Abelian varieties

There are obvious “linear” examples of Lagrangian submanifolds (subtori), as well as other trivial ones
(curves in surfaces and products of such). In addition to Schoen’s Lagrangian surfaces in certain simple
Abelian fourfolds (see [Sch07]), which we have mentioned in the introduction, some non-trivial examples
have been constructed using correspondences between K3 surfaces (see [BT00]) or Galois closures of certain
coverings (see [BPS10]). In these examples the Abelian variety is not simple. However, in [BPS10] the authors
show that the square of a sufficiently general (1,2)-polarized Abelian surface admits a Lagrangian surface
of general type, not fibered in curves (see [BPS10, Theorem 0.2]). The following problem is interesting but
probably difficult and out of scope of this note.

Problem 5.1. Find examples (if any) of Lagrangian submanifolds in simple Abelian varieties of dimension at
least 6.

5.1. Hodge-general Abelian varieties

The purpose of this section is to remark that a sufficiently general Abelian variety M does not have
Lagrangian submanifolds. The genericity condition is stronger than simpleness and is of Hodge-theoretic
nature (see Definition 5.3).
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Notice the sharp contrast with the case of projective IHS manifolds. Indeed, we know that in some
maximal families of projective IHS, every manifold is covered by Lagrangian submanifolds. The reason is as
follows: on a Lagrangian submanifold of a sufficiently general manifold (Abelian or IHS), all holomorphic
2-forms must vanish, and on an Abelian variety, there are too many 2-forms for this (see Corollary 5.5 and
its proof).

We now give the details (see e.g. [BL04, Section 17] for more).
Let M be an Abelian variety of dimension g equipped with a polarization and V its first cohomology

H1(X,Q) equipped with its polarized Hodge structure. We view the polarization as a skew form φ on V .
There is a natural representation h : S1→ SL(V

R
) associated to the Hodge structure on V ; here S1 is the

unit circle acting with weight 1 on H1,0 and −1 on H0,1.

Definition 5.2. The Hodge group Hg(M) is the smallest algebraic subgroup of SL(V ) defined over Q such
that its group of R-points contains h(S1).

The Hodge group is always an algebraic subgroup of Sp(V ,φ)) (see [BL04, Proposition 17.3.2]). We say
that M is Hodge general when Hg(M) is as large as possible.

Definition 5.3. A polarized Abelian variety M is Hodge general if Hg(M) = Sp(V ,φ).

By [BL04, Proposition 17.4.2], M is Hodge general outside of a countable union of strict analytic subsets of
the Siegel upper half-plane parametrizing n-dimensional Abelian varieties with a polarization H of a given
type (see [BL04, Section 8.1]; this coarse version is sufficient for our purpose). Moreover, the Jacobian of a
sufficiently general curve is Hodge general. Many explicit examples of Hodge-general Jacobians, even for
particular types of curves (e.g. hyperelliptic curves) have been constructed by Zarhin (see for instance [Zar12]).

A Hodge-general Abelian variety is simple, and its Picard number is 1. This immediately follows from the
following more precise statement.

Proposition 5.4. Let (M,H) be a polarized Abelian variety. Denote by H2(M,Q)prim the primitive part of the
cohomology, that is, the orthogonal complement to H ∈H2(X,Q) for the pairing induced by the polarization. If
(M,H) is Hodge general, then QH and H2(M,Q)prim are the only Hodge substructures in H2(M,Q).

Proof. Since H2(M,Q) = ∧2H1(M,Q) as polarized Hodge structures, one only needs to check that
H2(M,Q)prim is an irreducible Sp(M,H)-module. This follows for example from [FH91, Section 17, p. 260],
which asserts that for the standard representation W of the symplectic group, the kernel of the natural
contraction map ∧kW →∧k−2W is irreducible (take k = 2). □

Corollary 5.5. LetM be a Hodge-general Abelian variety (for some polarization H) and σ a non-zero holomorphic
2-form on M . Let X be an irreducible subvariety of M of dimension at least 2 and j : X ′→M the natural map
of a desingularization of X to M . Then the holomorphic 2-form j∗σ on X ′ is non-zero. In particular, M does not
contain any Lagrangian subvariety when dim(M) > 2.

Proof. The natural morphism j∗ : H2(M,Q)→H2(X ′ ,Q) is a morphism of Hodge structures, so its kernel
is a Hodge substructure of H2(M,Q). If M is Hodge general, there are only two Hodge substructures in
H2(M,Q). So in this case, if j∗σ = 0, this substructure must be H2(M,Q)prim, and so all holomorphic
2-forms on M vanish on X ′ . This is not possible if d = dim(X) ≥ 2. Indeed, if x ∈ X is a smooth point and
(z1, . . . , zn) are global coordinates on M (i.e. linear on its universal cover) such that the tangent space of X at
x is defined by dzd+1 = · · · = dzn = 0, the global 2-form dz1 ∧ dz2 on M does not vanish on X. □

Remark 5.6. The same argument proves that if f : Y →M is a morphism to a Hodge general M, then
f ∗σ , 0 unless dim(f (Y )) ≤ 1.
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5.2. Products of simple Abelian varieties

Now consider a productM =ΠiMi of Abelian varieties, where the factorsMi are pairwise non-isogeneous,

and each Mi = Sdi
i is a power of a simple Abelian variety Si . We would like to ask the following questions:

(1) For which di and dim(Si) such that di dim(Si) is even can Mi contain a Lagrangian subvariety (for
some symplectic σ )?

(2) If none of the Mi contains a Lagrangian subvariety, can M contain some?

As a variant, one may assume Si to be Hodge general (for a certain polarization) instead of just simple.
Examples for (1) indeed exist (see [BPS10]) if dim(Si) = 2 and di = 2, also with Hodge general Si equipped

a (1,2)-polarization. It is shown in [BPS10] that such Abelian surfaces admit a map γ : S d F of degree
3 to a Hirzebruch surface F. The component T of S ×F S ⊂ S × S residual to the diagonal is smooth and
Lagrangian for a suitable symplectic 2-form on S × S .

Let us note that T can also be described as arising from a rational (hence Lagrangian) surface F′ in the
generalized Kummer IHS K [2](S). Indeed, let us consider the Zariski closure T ′ in S3 of the set of pairwise
distinct triples (p,q, r) which form a fibre of γ : Sd F. By definition, T ′ is invariant by the symmetric group
S3 acting on S3 by permutation of the factors. Thus T ′/S3 � F′ ⊂ S3/S3 is Lagrangian in S3/S3, and so is
T ′ in S3. The image of T ′/S3 is contained in a fibre of S3/S3→ S deduced from the addition on S : indeed,
since F is rational, the sum in S of such a triple is constant. Since K [2](S) is birational to a fibre of the
Albanese map of S3/S3, we get the claim.

5.3. Relation to fundamental groups

This is also related to the questions about the fundamental groups of d-dimensional submanifolds X ⊂M
when M is a 2d-dimensional simple Abelian variety with d ≥ 2.

Recall that if aX : X→ AX is the Albanese map of a complex projective manifold, it induces a natural
map H2(AX ,C) = ∧2H1(X,C)→H2(X,C). The kernel of this map describes the nilpotent completion(4) of
π1(X). Examples of X ⊂M with torsion-free nilpotent but non-Abelian π1(X) have been produced this way
(see [SVdV86, Cam95]). These examples all have AX not simple. Moreover, the kernels are then contained
in H1,1(M). Abelian fourfolds M containing an X such that there is a non-zero holomorphic 2-form in this
kernel and such that X is not fibered over a curve of general type,(5) are constructed in [BT00, BPS10, Sch07].
The following is suggested by [Cam95, Remarque 1.5].

Corollary 5.7. LetM be a general Abelian variety, and let h : X→M be a holomorphic map. If dim(h(X)) ≥ 2,
h∗ : H2(M,C)→H2(X,C) is injective, and either

(1) q(X) = dim(M), and any torsion-free nilpotent quotient of π1(X) is equal to H1(X,Z)/Torsion; or
(2) q(X) > dim(M), and AX is not simple.

Proof. Notice that h(X) generates M since M is simple. The injectivity claim is Remark 5.6. Assume that
q(X) = dim(M). We then have an isogeny: u : AX →M such that h = u ◦ aX ; we thus get the injectivity of
a∗X : H2(AX ,C)→H2(X,C), and so the conclusion in case (1), by [Cam95, Théorème 3.10]. In case (2), we
still have a factorization h = u ◦ aX as before, but then the kernel of u : AX →M is a positive-dimensional
Abelian subvariety of AX , which is therefore not simple. □

More generally, we ask the following.

Question 5.8. Let M be a simple Abelian variety of even dimension 2n > 2. Are there restrictions on the
fundamental groups of its smooth submanifolds Y of dimension n?

(4)Said differently, this is the tower of torsion-free nilpotent quotients of π1(X).
(5)This property is remarkable because X admits a fibration over a curve of genus g ≥ 2 if and only if a decomposable 2-form on

AX vanishes on the image of X, by the Castelnuovo–de Franchis theorem.
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When dim(Y ) > n, the fundamental group of Y is Abelian (isomorphic to π1(AY )), by [Som79]. When
dim(Y ) < n, there does not seem to be any restriction on π1(Y ) (take the inverse image of a suitable Z
by a finite projection M→ P

2n). In middle dimension, no example of unusual π1(Y ) seems to be known
if M = AY is simple, possibly due to the fact that most of them are not computed. If M is simple, the
Sommese–Van de Ven construction, based on the sporadic Horrocks–Mumford Abelian surfaces, gives
examples in dimension 4, but with M , AY .

6. A non-projective example

Proposition 6.1. There exist 2-dimensional (non-projective) complex tori T admitting an automorphism g such
that g∗(σ ) = λ.σ for any symplectic 2-form σ on T , with λ a complex number not a root of unity.

Remark 6.2. We have |λ| = 1, and T cannot be projective; see [Uen75, Section 14].

Corollary 6.3. Let T ,λ be as in Proposition 6.1 above, and let S be the smooth Kummer surface associated to T .
Let s be a symplectic form on either T or S . On T × T and S × S , there exist smooth Lagrangian surfaces for the
symplectic form (s,λs).

Proof. Take the graph of g in T × T and its image in S × S . □

Remark 6.4. We do not know if there exist an Abelian surface T and a Lagrangian surface S ⊂ T × T for a
symplectic form (s,λs) with λ of infinite order in C

∗.

Proof of Proposition 6.1. The construction follows closely the one due to Iitaka in dimension 3, as exposed in
[Uen75, Remark 14.6, p. 179].

Let P (X) := X4 +X +1; it is irreducible over Q by reduction modulo 2. The roots a, ā,b, b̄ of P (X) in C

are all distinct and non-real. We define T =C
2/R as the quotient of C2 with C-basis (e,e′) by the lattice R

generated over Z by the four elements Ri := ai .e+ bi .e′ , i = 0,1,2,3. That R is indeed a lattice follows from
the fact that otherwise, there would exist a non-zero polynomial Q(X) ∈R[X] of degree less that 4 vanishing
on a and b. Thus Q had to vanish on their conjugates and so be divisible by P (X), so that deg(Q) ≥ 4,
giving a contradiction.

The torus T has an automorphism g acting by multiplication by a on e and by b on e′ , and so g acts on
any symplectic form σ on T by multiplication by λ := ab. We have |ab| = 1 since the constant coefficient of
P (X) is 1 = |ab|2. It remains to see that λ is not a root of unity, or equivalently that λ has a Galois conjugate
not of modulus 1. It is a standard exercise to check that the Galois group G of P (X) is S4. There is thus an
element of G which fixes a and sends b to ā. Thus ab is G-conjugate to aā. If |a|2 = 1, then ab = 1 since it is
a G-conjugate of aā, and so ā = b. This gives a contradiction. □

Remark 6.5. The torus T just constructed is simple of algebraic dimension 0. Indeed, since T is not
projective, if its algebraic dimension were 1 (or equivalently, if it were not simple), it would have a quotient
fibration f : T → B = T /E for elliptic curves E, B. This fibration would be preserved by Aut(T ), which is a
finite extension of Aut0(T ) since Aut(E) and Aut(B) have finitely many components.
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