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Abstract. We introduce the notion of categorical absorption of singularities: an operation that
removes from the derived category of a singular variety a small admissible subcategory responsible
for singularity and leaves a smooth and proper category. We construct (under appropriate
assumptions) a categorical absorption for a projective variety X with isolated ordinary double
points. We further show that for any smoothing X/B of X over a smooth curve B, the smooth
part of the derived category of X extends to a smooth and proper over B family of triangulated
subcategories in the fibers of X.
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1. Introduction

Resolution of singularities is a very important instrument in algebraic geometry, that allows one to
replace complicated geometry of singular schemes by much more tractable geometry of smooth varieties. Its
categorical version – categorical resolution of singularities – has been defined in [Kuz08, KL15].

Let X be a singular proper scheme over a field k. One associates with it the pair (Dperf(X),Db(X)) of
triangulated categories, where Dperf(X) is the category of perfect complexes on X (this category is proper
but not smooth) and Db(X) is the bounded derived category of coherent sheaves on X (this category is
smooth but not proper). Categorical resolution allows one to replace this pair with a single smooth and proper
triangulated category D.

Such a category D is “larger” than Db(X) and Dperf(X) in the sense that Db(X) is (expected to be) a
localization of D and Dperf(X) is a subcategory of D. In this paper we look at the problem from a different
angle suggesting to replace (when possible) the categories Db(X) and Dperf(X) by a “smaller” smooth and
proper triangulated category in the following sense.

Definition 1.1. We say that a triangulated subcategory P ⊂Db(X) absorbs singularities of X if P is admissible
in Db(X) and both orthogonals P⊥ and ⊥P are smooth and proper.

Note that since we assume P to be admissible, we have an equivalence P⊥ ≃ ⊥P induced by the mutation
functors, so in the definition of absorption, it suffices to assume that either of the orthogonals is smooth and
proper. Furthermore, if P absorbs singularities of a Gorenstein scheme X, it is easy to check (see Lemma 4.3)
that the smooth and proper category D B ⊥P (which is equivalent to P⊥) is contained in Dperf(X) and
admissible in both Dperf(X) and Db(X); in this sense the operation replacing Db(X) and Dperf(X) by D is
“opposite” to the categorical resolution operation.

There is a trivial example P = Db(X), so that D = 0, which of course is not interesting. Therefore, the
idea is to make P as small as possible, so that D maximally reflects the geometry of X.

The following geometric example of absorption illustrates the idea. Let σ : X→ Y be an “antiresolution”: a
proper morphism, where X is singular, Y is smooth, and both X and Y are proper, and assume σ∗(OX) � OY ,
where σ∗ : Db(X)→Db(Y ) is the derived pushforward functor. Let

PB Ker(σ∗) ⊂Db(X).
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We claim that P absorbs the singularities of X. Indeed, the two adjoint functors σ∗ : Db(Y ) → Db(X)
and σ! : Db(Y )→Db(X) of σ∗ are fully faithful and provide semiorthogonal decompositions

Db(X) = ⟨P,σ∗(Db(Y ))⟩ = ⟨σ!(Db(Y )),P⟩;

in particular, the category P⊥ ≃Db(Y ) ≃ ⊥P is smooth and proper.

Example 1.2. Let us further consider two special cases of this situation:

(a) Y is a smooth and proper surface, Z = Spec(k[ϵ0]/ϵ2
0) ⊂ Y , X = BlZ(Y ), and σ : X → Y is the

blowup morphism. Let E � P
1 ⊂ X be the exceptional locus taken with the reduced scheme structure

(notice that the exceptional divisor 2E is Cartier, while E is only a Weil divisor).
(b) Y = P

1, X = Y ∪y0
E, where E � P

1 intersects Y transversely at a point y0, and σ : X→ Y is the
contraction of E to {y0}, so that E is again, in a sense, the exceptional locus of σ.

A simple computation shows that in both cases P = ⟨OE(−1)⟩, but while in case (a) we have

(1.1) P ≃Db
(
k[ϵ0]/ϵ2

0

)
≃Dperf(k[θ1])

by the blowup formula (note that Z is a local complete intersection), in case (b) we have

(1.2) P ≃Db
(
k[ϵ1]/ϵ2

1

)
≃Dperf(k[θ2]),

where ϵp is a variable of degree −p, θq is a variable of degree q, and the second equivalences in (1.1) and (1.2)
are given by the Koszul duality (see Proposition 2.2 for details). The difference in the structure of P in
these two cases leads to a completely different behaviour with respect to smoothings of X, where we use the
following.

Definition 1.3. We say that a flat projective morphism f : X→ B to a smooth pointed curve (B,o) is a
smoothing of X if:

• the central scheme fiber of f is isomorphic to X; i.e., Xo � X;
• the morphism f is smooth away from the central fiber; and
• the total space X is smooth.

In the case of Example 1.2(a), a smoothing of X can be obtained as follows. Let Y→ B be any smooth
deformation of Y (e.g., Y = Y ×B), let Z→ B be a double covering ramified over the central point o ∈ B (so
that the central fiber Zo is isomorphic to Z) with smooth Z, and let Z ↪→ Y be a closed embedding over B
(coinciding with the embedding Z ↪→ Y over the point o). Then X B BlZ(Y) is a smoothing of X. The
blowup formula gives in this case a B-linear semiorthogonal decomposition

Db(X) = ⟨Db(Z),Db(Y)⟩,
and for each point b , o in B we obtain by base change (see [Kuz11]) a semiorthogonal decomposition

Db(Xb) = ⟨Db(Zb),Db(Yb)⟩.

So, in this case we see that both components P = Db(Z) and ⊥P = Db(Y ) of Db(X) deform simultaneously
to a pair of smooth and proper categories; thus, in a sense, the smoothing of X is achieved through a
smoothing of the singular component P.

In the case of Example 1.2(b). the situation is quite different. In this case X is a singular conic, so any
smoothing of X is a conic bundle X→ B with X = Xo being the only singular fiber. Note that E ⊂ X is a
smooth rational curve (one of the components of the central fiber), and a standard computation shows that
its normal bundle is OE(−1). Therefore, the curve E ⊂ X can be contracted; i.e., there is a smooth surface Y

with a point y0 ∈ Y such that X = Bly0
(Y) with E being the exceptional divisor. Then Y→ B is a smooth

P
1-fibration (with Yo � Y ), and the blowup formula gives a B-linear semiorthogonal decomposition

(1.3) Db(X) = ⟨OE(−1),Db(Y)⟩.
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Its first component is generated by the exceptional sheaf OE(−1) supported in the central fiber of the conic
bundle; therefore, it disappears after base change to any point b , o in B, and we obtain an equivalence

Db(Xb) ≃Db(Yb).

So, in this case the component P does not deform away from the central fiber; thus, a smoothing of X is
achieved by dropping “the singular part” P of Db(X) and deforming its “smooth part” ⊥P ≃ Db(Yo). In
Definition 1.4 we axiomatize this remarkable situation.

First, we recall some notation. For a set of objects S in a triangulated category T, we denote by ⟨S⟩ ⊂ T

the smallest triangulated and by thick(S) ⊂ T the smallest thick (i.e., triangulated and closed under direct
summands) subcategory of T containing S .

Definition 1.4. Let f : X→ B be a smoothing of X, and let ι : X ↪→ X be the embedding of the central fiber.
We say that a triangulated subcategory P ⊂ Db(X) provides a deformation absorption of singularities (with
respect to the smoothing X ) if P absorbs singularities of X and the triangulated subcategory ⟨ι∗P⟩ ⊂Db(X)
generated in Db(X) by the pushforwards of objects of P is admissible.

Similarly, we say that P ⊂Db(X) provides a thick deformation absorption (with respect to the smoothing X)
if P absorbs singularities of X and the triangulated subcategory thick(ι∗P) ⊂Db(X) is admissible.

We say that P provides a universal (thick) deformation absorption of singularities of X if the corresponding
property holds for any smoothing of X.

If P provides a deformation absorption, so that ⟨ι∗P⟩ ⊂Db(X) is admissible, then thick(ι∗P) = ⟨ι∗P⟩, so
we will uniformly use the notation thick(ι∗P) for the resulting admissible subcategory of Db(X).

To clarify the definition, note that the category thick(ι∗P) is contained in Db
X(X), the subcategory

of Db(X) formed by objects with set-theoretical support on X. Moreover, by [KS22, Theorem 1.1] the
category thick(ι∗P) is always admissible in Db

X(X). Thus, the deformation absorption property amounts to
the assumption that thick(ι∗P) keeps being admissible in the larger category Db(X).

Using the base change technique, cf. [Kuz11], it is easy to see that Definition 1.4 leads to the following
result.

Theorem 1.5. Let X be a projective variety, and let P ⊂ Db(X) provide a (thick) deformation absorption of
singularities of X with respect to a smoothing f : X→ B. Then the subcategory

DB ⊥(thick(ι∗P)) ⊂Db(X)

is B-linear, and there is a B-linear semiorthogonal decomposition

Db(X) = ⟨thick(ι∗P),D⟩.

Moreover, the central fiber Do of D can be described as

(1.4) Do ≃ ⊥P ⊂Db(X),

and if b , o, then Db ≃Db(Xb). In particular, D is smooth and proper over B.

Remark 1.6. In the situation of Example 1.2(b), if a smoothing of X is given by a conic bundle X/B
obtained from a P

1-bundle Y/B as X = Bly0
(Y) with exceptional divisor E, then the object ι∗OE(−1) is

exceptional on X, so the subcategory it generates in Db(X) is admissible. This means that the subcate-
gory P = ⟨OE(−1)⟩ ⊂Db(X) is an example of a subcategory providing a universal deformation absorption
of singularities. Furthermore, in this case the semiorthogonal decomposition (1.3) implies that for the
subcategory D ⊂Db(X) defined in Theorem 1.5, we have D ≃Db(Y).

Next, we observe that the deformation absorption phenomenon of Example 1.2(b) is not specific to the
concrete geometric situation, but rather a consequence of the equivalence (1.2). To state this result we
introduce the following definition.
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Definition 1.7. Let q ≥ 1. An object P ∈Db(X) is called a P
∞,q-object if

Ext•(P,P) � k[θ],

where deg(θ) = q. When we do not want to specify the parameter q, we just say that P is a P
∞-object.

Since Ext•(P,P) is infinite-dimensional, P∞-objects can only exist on singular varieties. In the body of
the paper we define P

∞,q-objects in the general situation of arbitrary triangulated categories, and then the
definition becomes a bit more technical (see Definition 2.6), but in the geometric situation it is equivalent to
the one stated above (see Remark 2.7). Our main emphasis is on P

∞,1- and P
∞,2-objects because, as we will

see, they are geometrically meaningful. Moreover, we prove that P∞,q-objects with q , 1,2 do not exist on
smoothable varieties; see Corollary 4.6.

As (1.2) shows, the situation of Example 1.2(b) corresponds to a P
∞,2-object. In this case we have the

following result, which we formulate in a slightly more general situation.

Theorem 1.8. Let X be a projective variety. Let (P1, . . . ,Pr ) be a semiorthogonal collection of P
∞,2-objects

in Db(X) such that the subcategory
PB ⟨P1, . . . ,Pr⟩

absorbs singularities of X. Then for any smoothing X → B of X the collection ι∗P1, . . . , ι∗Pr in Db(X) is
exceptional. In particular, P provides a universal deformation absorption of singularities of X.

If we combine Theorem 1.8 with Theorem 1.5, we obtain a smooth and proper over B category D, and
following the analogy of Remark 1.6, we consider passing from Db(X) to D as a categorical incarnation of
the contraction X→ Y.

We have a similar generalization of the situation of Example 1.2(a), which by (1.1) corresponds to a P
∞,1-

object. Again, we state the result in a slightly more general situation.

Theorem 1.9. Let X be a projective variety. Let (P1, . . . ,Pr ) be a semiorthogonal collection of P
∞,1-objects

in Db(X) such that the subcategory
PB ⟨P1, . . . ,Pr⟩

absorbs singularities of X. Then for any smoothing X→ B of X after an étale base change, there are r double
coverings Zi → B, 1 ≤ i ≤ r, étale over B \ {o}, and a B-linear semiorthogonal decomposition

Db(X) = ⟨Db(Z1), . . . ,Db(Zr ),D⟩,

where D is smooth and proper over B, Do = ⊥P ⊂ Db(X), and Db(Zi)o = ⟨Pi⟩. Moreover, a semiorthogonal
decomposition of Db(X) with these properties is unique Zariski locally around o ∈ B.

In the paper, besides proving the above results (see Section 4.2), we discuss possible approaches to
absorbing singularities by P

∞,q-objects for q ∈ {1,2} and obtaining smooth and proper families of categories
out of them. One possibility here is to use the intrinsic structure of the category ⟨P⟩ generated by a P

∞,q-
object; we call such a category the categorical ordinary double point and discuss its properties in detail
in Section 2.

Another approach is to start with a resolution of singularities π : X̃→ X and find appropriate admissible
subcategory P̃ ⊂Db(X̃) such that Ker(π∗) ⊂ P̃ and the Verdier localization

PB P̃/ Ker(π∗) ⊂Db(X)

is equivalent to a categorical ordinary double point (or has a semiorthogonal decomposition into several
categorical ordinary double points). Then the category P⊥ ≃ P̃⊥ (see Theorem 4.2) is equivalent to an
admissible subcategory in the derived category of a smooth and proper variety X̃, so it is smooth and proper,
and hence P absorbs singularities of X. This approach works well when Ker(π∗) is generated by a spherical
object K ∈Db(X̃) and P̃ is generated by an exceptional pair (E,E′) such that

dimExt•(E,K) = 1
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(we say in this case that E is adherent to K; see Definition 3.9; this generalizes the notion introduced
in [KKS22]) and E′ is obtained from E by the spherical twist functor associated with K. We check in
Lemma 3.10 that in this case the pair (E,E′) is indeed exceptional with

Ext•(E,E′) � k⊕k[−q], q ≥ 1.

We call the category generated by such a pair the graded Kronecker quiver category and discuss its properties
in Section 3. The main result here is Proposition 3.7, where we show that the Verdier localization of the
graded Kronecker quiver category by the spherical object K is equivalent to the categorical ordinary double
point.

However, if π : X̃ → X is a resolution, the condition that Ker(π∗) is generated by spherical objects is
very restrictive, and for most singularities such resolutions do not exist. So, to circumvent this problem, we
replace a geometric resolution with a categorical resolution of singularities in the sense of [Kuz08, KL15]. In
other words, we consider a smooth and proper triangulated category T̃ and a functor

π∗ : T̃ −→Db(X)

that behaves as the derived pushforward for a geometric resolution. There are several ways to make this
assumption precise: one is to assume that π∗ is a Verdier localization, but we prefer a slightly weaker
assumption that was introduced by Efimov in [Efi20].

Definition 1.10. We say that a functor π∗ : T̃→ T is a categorical contraction if it factors as

T̃ −↠ T̃/ Ker(π∗) ↪−→ T,

where the first arrow is a Verdier localization and the second arrow is a dense embedding (i.e., a fully faithful
functor such that every object of T is a direct summand of an object of T̃/ Ker(π∗)).

Remark 1.11. In [Efi20, Definition 3.7] the same notion is called a localization. We find this confusing and
change the terminology to avoid possible misunderstanding.

As we mentioned above, it is useful for our goals to have a categorical contraction π∗ : T̃→Db(X) such
that the subcategory Ker(π∗) ⊂ T̃ is generated by spherical objects. Using Serre duality we observe that this
condition implies the following property, discussed in more detail in [KS22, Section 5] (in fact, the definition
of crepancy [KS22, Definition 5.6] is different from the definition given below, but [KS22, Lemma 5.7] says
that these definitions are equivalent when T̃ is smooth and proper).

Definition 1.12. We say that a categorical contraction π∗ : T̃→ T from a smooth and proper category T̃ is
crepant if the orthogonals Ker(π∗)⊥ ⊂ T̃ and ⊥Ker(π∗) ⊂ T̃ of the kernel Ker(π∗) ⊂ T̃ coincide.

In the last part of the paper we show that the approach to the construction of absorption of singularities
via crepant categorical contractions can be made completely effective. Actually, in Section 5 for a variety X
of dimension at least two whose singularities are ordinary double points, we construct an admissible subcate-
gory D ⊂Db(X̃) in the derived category of the blowup π : X̃→ X of the singular locus of X such that the
restriction π∗|D : D→Db(X) of the pushforward functor for the blowup morphism is a crepant categorical
contraction and Ker(π∗|D) is generated by spherical objects; see Theorem 5.8. When this paper was finished
we learned about the work [CGL+23], where the same crepant categorical resolutions of nodal varieties have
been independently constructed.

In the last section, Section 6, we combine the above results by making explicit the adherence condition in
the constructed crepant categorical resolution of a nodal variety X (see Theorem 6.1). In particular, we show
that if the adherence condition is satisfied, then Db(X) has a semiorthogonal collection of P∞,p+1-objects
absorbing singularities of X, where p ∈ {0,1} is the parity of dim(X). This allows us to apply Theorem 1.9
when dim(X) is even, or Theorem 1.8 when dim(X) is odd. As a baby example we discuss the case of nodal
quadrics in Proposition 6.4.
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Furthermore, in Section 6.2 we show that the singularity category of a variety that admits an absorption
by categorical ordinary double points is idempotent complete, and using this observation we deduce explicit
necessary conditions for the existence of such absorption for nodal varieties of dimension at most 3;
see Proposition 6.12. In the case of threefolds, this condition is the maximal nonfactoriality condition
from [KPS21]; see Definition 6.10. We also check in Corollary 6.18 that for a projective threefold X
with H>0(X,OX) = 0 and a single ordinary double point, the maximal nonfactoriality condition is also
sufficient for the existence of absorption.

We conclude the paper with a few geometric applications of our results; see Section 6.3. Namely, we
consider nodal curves (Section 6.3.1), nodal threefolds in general (Section 6.3.2), and nodal quintic del
Pezzo threefolds in particular (Section 6.3.3). Even more interesting examples of prime Fano threefolds are
discussed in a separate companion paper [KS23].

When we worked on this paper, one of our principles was to separate the geometric aspects from the
categorical ones, and to a large extent Sections 2–3 are categorical, Section 4 combines categories with
geometry, while Sections 5–6 are mostly geometric. On the other hand, we managed to develop the
categorical aspects much further than our geometric applications required. We feel these developments are
interesting and might be useful for further research; curious readers can find these in [KS22].

In fact, [KS22] includes a systematic treatment of the notion of homologically finite-dimensional objects,
briefly mentioned in Lemma 2.10, with an emphasis on the relation between semiorthogonal decompositions
of a triangulated category and the category of its homologically finite-dimensional objects, that leads to a
relation between semiorthogonal decompositions of Db(X) and Dperf(X). It also contains a development of
the concept of categorical contractions and crepancy, and a generalization of the relation between P

∞,2-
objects on the special fiber X and exceptional objects on the total space X of a smoothing (observed in
Theorem 1.8) to any admissible subcategories of Db(X).

We would also like to mention that the results of the present paper are related to the big project aimed
at the study of semiorthogonal decompositions of algebraic varieties in degenerating families. We refer
to [Kuz23] for a survey of other results in this direction.

Notation. Throughout the paper k denotes a base field. All schemes are assumed to be of finite type
over k, and all algebras and categories we work with are k-linear.

We write Cop and Top for the opposite dg-algebra or category, respectively.
For a dg-algebra C we denote by

• D(C) the unbounded derived category of right dg-modules over C;
• Dperf(C)B thick(C) ⊂D(C) the subcategory of perfect dg-modules, i.e., the smallest thick subcate-

gory of D(C) containing the free dg-module C;
• Db(C) ⊂D(C) the subcategory of dg-modules with finite-dimensional total cohomology.

Similarly, for a projective scheme X we write Dqc(X) for the unbounded derived category of quasicoherent
sheaves, while Dperf(X) ⊂Dqc(X) and Db(X) ⊂Dqc(X) stand for the category of perfect complexes and the
bounded derived category of coherent sheaves, respectively.

We write T = ⟨A1, . . . ,Am⟩ for a semiorthogonal decomposition with components A1, . . . ,Am, and we
write LAi

, RAi
for the left and right mutation functors with respect to the component Ai , provided it is both

left and right admissible.
All pullback, pushforward, and tensor product functors are derived (unless specified otherwise).
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2. Categorical ordinary double points and P
∞-objects

In this section we define categorical ordinary double points and P
∞,q-objects in arbitrary triangulated

categories and explain how to construct fully faithful functors with admissible image from a categorical
ordinary double point into a given triangulated category. Here we work over an arbitrary field k.

2.1. Categorical ordinary double points

For p ≥ 0 and q ≥ 1 consider the following differential graded algebras;

Ap B k[ϵ]/(ϵ2), deg(ϵ) = −p, d(ϵ) = 0,

Bq B k[θ], deg(θ) = q, d(θ) = 0.

As the differentials are zero, we will sometimes consider these dg-algebras simply as graded algebras.
In this subsection we study the derived categories of dg-modules over Ap and Bq and their relation. Recall

that a graded algebra C is called intrinsically formal if for every dg-algebra C′ such that H•(C′) � C, there
is a quasi-isomorphism C � C′ . The following lemma is well known (see, e.g., [KYZ09, Section 2]).

Lemma 2.1. For p ≥ 0 and q ≥ 1 the graded algebras Ap and Bq are intrinsically formal.

Proof. For Bq there is a standard argument. Let B be any dg-algebra with H•(B) � k[θ]. Let θ ∈ Bq be any
lift of θ ∈Hq(B). Since Bq is a free associative (graded) algebra, there is a unique homomorphism of graded
algebras Bq→ B, θ 7→ θ. It follows from the Leibniz rule that it is a homomorphism of dg-algebras, and it
is obvious that it induces an isomorphism on the cohomology; therefore, it is a quasi-isomorphism.

For Ap we argue as follows. First, any dg-algebra A with H•(A) � k[ϵ]/(ϵ2) corresponds to an A∞-
structure on k[ϵ]/(ϵ2). But for n ≥ 3 the degree of the operation mn is negative, so mn(ϵ, . . . ,ϵ) = 0. Thus,
any A∞-structure on A is trivial, so that A is quasi-isomorphic to its cohomology. □

Recall that

• a dg-algebra C is proper if dim(H•(C)) <∞, where H•(C) is the total cohomology of C;
• a dg-algebra C is smooth if the diagonal bimodule ∆C is perfect, i.e., ∆C ∈Dperf(C ⊗Cop).

Here and below tensor products of dg-algebras are taken over k.
Similarly, a dg-category T is proper if dim(H•(HomT(T1,T2))) <∞ for any objects T1,T2 ∈ T, and T is

smooth if ∆T ∈Dperf(T ⊗Top), where ∆T is the diagonal dg-bimodule over T. Note that a dg-algebra C is
proper or smooth if and only if the dg-category T = Dperf(C) has the same property.

Recall that Db(Ap) ⊂ D(Ap) and Db(Bq) ⊂ D(Bq) are the categories of dg-modules over respective dg-
algebras which have total finite-dimensional cohomology over k. We also denote by kA and kB the simple
(1-dimensional) dg-modules over Ap and Bq, respectively.

Proposition 2.2. Let p ≥ 0 and q ≥ 1.

(i) The dg-algebra Bq is smooth (but not proper ), and ⟨kB⟩ = Db(Bq) ≃Dperf(Aq−1).
(ii) The dg-algebra Ap is proper (but not smooth ), and ⟨kA⟩ = Db(Ap) ≃Dperf(Bp+1).

Moreover, the categories Dperf(Ap) and Dperf(Bq) are generated by the free modules Ap and Bq as triangulated
categories, i.e., without additional idempotent completion.

Proof. (i) The smoothness of the dg-algebra Bq is evident: the diagonal bimodule can be written as

∆Bq
� Cone

(
Bq ⊗Bq[−q]

θ′−θ′′−−−−−−→ Bq ⊗Bq
)
,

where θ′ and θ′′ are the generators of the first and second factor, respectively.
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The containment ⟨kB⟩ ⊂Db(Bq) is evident, and to prove the converse containment, let M ∈Db(Bq). We
prove M ∈ ⟨kB⟩ by induction on dim(H•(M)). Let i be the maximal integer such that Hi(M) , 0 (it exists
because H•(M) is finite-dimensional). Using the distinguished triangle

(2.1) Bq[−q]
θ−−→ Bq −−→ kB

and the equality Ext•Bq
(Bq,M) = H•(M), we obtain an exact sequence

· · · −→ Exti(kB,M) −→Hi(M) −→Hi+q(M) −→ ·· · .

Since q > 0, the group Hi+q(M) is zero, so any class from Hi(M) lifts to Exti(kB,M). Clearly, the
corresponding morphism kB[−i]→M induces an embedding on Hi . If M ′ is the cone of this morphism, we
have dim(H•(M ′)) = dim(H•(M))− 1. By induction M ′ ∈ ⟨kB⟩, so also M ∈ ⟨kB⟩. Thus, Db(Bq) = ⟨kB⟩.

Finally, applying the functor Ext•(−,kB) to (2.1), we obtain

Ext•Bq
(kB,kB) � k⊕k[q − 1],

and denoting by ϵ a generator of the second summand, it is easy to see that ϵ2 = 0. Now, since Db(Bq)
is generated by kB, we obtain an equivalence Db(Bq) ≃ Dperf(RHom(kB,kB)) from Keller’s Morita the-
ory [Kel07, Theorem 8.5(c)], and the proof is finished since Lemma 2.1 implies that RHom(kB,kB) is
quasi-isomorphic to Aq−1.

(ii) The dg-algebra Ap is proper because it is finite-dimensional, and the equality ⟨kA⟩ = Db(Ap) can
be obtained easily by using the standard t-structure (constructed, e.g., in [HKM02, Theorem 1.3]). Thus, it
remains to check that Ext•Ap

(kA,kA) � Bp+1 and apply Lemma 2.1 as in (i). We postpone the computation

of Ext•Ap
(kA,kA) till Lemma 2.4(iii) below.

Assume that Ap is smooth. Then the dg-module kA is perfect by [Lun10, Lemmas 3.5 and 3.6] and [Orl16,
Theorem 3.18], and since Ap is proper, the space Ext•Ap

(kA,kA) must be finite-dimensional. But this space is

actually isomorphic to Bp+1, hence infinite-dimensional. Therefore, Ap is not smooth.
The last statement of Proposition 2.2 follows from the fact that Db(Bq) and Db(Ap) are generated by the

simple modules kB and kA, without additional idempotent completions, and from the equivalences of (ii)
and (i) since under these equivalences, simple modules go to free modules. □

The module kA is not contained in Dperf(Ap) and thus cannot be directly expressed in terms of Ap;
to compute Ext•Ap

(kA,kA) we use an interpretation of kA as homotopy colimit. Recall from [BN93] that

the homotopy colimit of an infinite chain of morphisms F1
φ1−−−−→ F2

φ2−−−−→ ·· · in a cocomplete (i.e., admitting
arbitrary direct sums) triangulated category is defined as

hocolimFi B Cone


∞⊕
i=1

Fi

id−
∞
⊕
i=1

φi

−−−−−−−−−→
∞⊕
i=1

Fi

 .
Let T̂ be a cocomplete triangulated category. Recall that a set of objects Gα ∈ T̂ is a set of compact

generators if the functors Hom(Gα ,−) commute with direct sums for each α and the right orthogonal of
all Gα in T̂ is zero, i.e., Ext•(Gα ,F) = 0 for F ∈ T̂ and all α implies F = 0.

Lemma 2.3. Let T̂ be a cocomplete triangulated category with a set of compact generators Gα ∈ T̂. If for an
object F ∈ T̂ the complex Ext•(Gα ,F) is bounded above for each α, then hocolimF[si] = 0 for any strictly
increasing sequence {si} of integers and any chain of morphisms F[s1]→ F[s2]→ ·· · .

Proof. Since Gα is compact in T̂, the functor RHom(Gα ,−) commutes with homotopy colimits by [Kuz11,
Lemma 2.11], so [BN93, Remark 2.2] gives for each n ∈Z an isomorphism

Extn(Gα ,hocolimF[si]) � colimExtn(Gα ,F[si]).
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The right-hand side is zero because Ext•(Gα ,F) is bounded above. Thus, hocolimF[si] is right orthogonal
to all Gα and therefore is zero. □

Note that by the definition of Ap, we have a distinguished triangle

(2.2) Ap −→ kA −→ kA[p+ 1].

The computation of Ext•Ap
(kA,kA) is based on using (2.2) iteratively and passing to the homotopy colimit.

Lemma 2.4. Let p ≥ 0.

(i) There are a chain of morphisms Ap = A(1)
p → A(2)

p → ·· · in Dperf(Ap) such that

A(i+1)
p = Cone

(
Ap[i(p+ 1)− 1]→ A(i)

p

)
and a sequence of morphisms A(i)

p → kA compatible with the chain maps A
(i−1)
p → A(i)

p such that

(2.3) Cone
(
A(i)
p → kA

)
� kA[i(p+ 1)].

(ii) In D(Ap) one has hocolimkA[i(p+ 1)] = 0 and hocolimA(i)
p � kA.

(iii) One has Ext•Ap
(kA,kA) � Bp+1.

Proof. (i) We construct the chain inductively. Consider the composition

Ap[i(p+ 1)− 1] −→ kA[i(p+ 1)− 1] −→ A(i)
p ,

where the first arrow is the (shifted) morphism from (2.2) and the second arrow is the connecting morphism

in (2.3), and define A(i+1)
p as the cone of the composition Ap[i(p+ 1)− 1]→ A(i)

p . Then (2.3) for i + 1 follows
easily from the octahedral axiom.

(ii) As p+ 1 > 0, we have hocolimkA[i(p+ 1)] = 0 by Lemma 2.3 because Ext•Ap
(Ap,kA) � k is bounded

above and Ap is a compact generator for D(Ap). To compute hocolimA(i)
p we apply the functor hocolim to

the chain of morphisms A(i)
p → kA constructed in (i). From (2.3) and the exactness of the homotopy colimit,

we deduce a distinguished triangle

hocolimA(i)
p −→ hocolimkA −→ hocolimkA[i(p+ 1)],

and since the last term was shown to be zero, we have hocolimA(i)
p � hocolimkA � kA.

(iii) Applying the functor Ext•Ap
(−,kA) to the triangle A(i)

p → A(i+1)
p → Ap[i(p+ 1)], we deduce that

Ext•Ap

(
A(i)
p ,kA

)
� k[θ]/θi , where deg(θ) = p+ 1.

Now passing to the homotopy colimit and using the isomorphism of (ii), we conclude that

Ext•Ap
(kA,kA) � Ext•Ap

(
hocolimA(i)

p ,kA

)
� holimExt•Ap

(
A(i)
p ,kA

)
� holimk[θ]/θi ,

where holim is the homotopy limit defined as holimFi B Cone(
∏
Fi →

∏
Fi)[−1], analogously to the

homotopy colimit.
It follows that Ext•Ap

(kA,kA) � k[θ] as graded vector spaces, and it remains to identify the algebra

structure. For this, using (2.2), we obtain a distinguished triangle

Ext•Ap
(kA,kA)[−p − 1]

θ−−→ Ext•Ap
(kA,kA) −−→ k,

which implies that the multiplication by θ is injective, so Ext•Ap
(kA,kA) � k[θ] as algebras. □

Later we will use the following simple observation.
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Corollary 2.5. The category Dperf(Ap) is thickly generated by A(2)
p ; i.e., Dperf(Ap) = thick(A(2)

p ).

Proof. Recall the defining triangle Ap[p]
ϵ−→ Ap −−→ A(2)

p , and consider the composition

A(2)
p [−1− p] −→ Ap −→ A(2)

p ,

where the first arrow is a shift of the connecting morphism in the above triangle. Using the octahedral axiom,

it is easy to see that its cone is isomorphic to the cone of the morphism Ap[p]
ϵ2

−−→ Ap[−p], and as ϵ2 = 0,

it is isomorphic to Ap[−p]⊕Ap[p + 1]. Thus, Ap belongs to the thick subcategory generated by A(2)
p , and

hence the latter thickly generates Dperf(Ap). □

2.2. P∞-objects

As by Proposition 2.2 the category Db(Ap) ≃Dperf(Bp+1) is generated by the simple module kA, to embed
it into another triangulated category T, we need to find in T an object that could serve as the image of kA.
Looking at the properties of kA proved in Lemma 2.4, we arrive at the following.

Definition 2.6. Let q ≥ 1. An object P in a triangulated category T is called a P
∞,q-object if

(a) Ext•(P,P) � k[θ], where deg(θ) = q, and

(b) hocolim(P
θ−→ P[q]

θ−→ P[2q]
θ−→ ·· · ) = 0,

where the homotopy colimit in (b) is taken in any cocomplete category T̂ containing T. For instance, if T is a
small triangulated dg-category, we can take T̂ = D(T).

When we do not want to specify the parameter q, we just say that P is a P
∞-object.

Remark 2.7. When T = Db(X), property (b) is satisfied automatically by Lemma 2.3 because if P ∈Db(X),
then Ext•(G,P) is bounded above for any compact (i.e., perfect) object G ∈ Dqc(X). On the other hand,
there are examples of objects for which (a) is true but (b) fails. The simplest such example (maybe somewhat
unexpectedly) is the free module Bq in T = Dperf(Bq). Indeed, in this case

B̂q B hocolim
(
Bq

θ−−→ Bq[q]
θ−−→ Bq[2q]

θ−−→ ·· ·
)
� k[θ,θ−1].

On the other hand, one can check that the object Cone(Bq→ B̂q) � θ−1
k[θ−1] is a P

∞,q-object.

Definition 2.8. For any P
∞,q-object P ∈ T we define another object M from the distinguished triangle

(2.4) M −−→ P
θ−−→ P[q].

We call M ∈ T the canonical self-extension of P.

It follows easily from (2.4) and Definition 2.6(a) that

(2.5) Ext•(M,P) � k.

Furthermore, the following computation is obvious.

Lemma 2.9. If a pair of objects (M,P) in a triangulated category T satisfies (2.4) and (2.5), then

(2.6) Ext•(M,M) � Aq−1.

In these terms we can state a criterion for a full embedding of a categorical double point into a k-linear
dg-enhanced triangulated category T. We will say that an object F ∈ T is left or right homologically finite-
dimensional if Ext•(F,T ) or Ext•(T ,F), respectively, is finite-dimensional over k for any T ∈ T (cf. [KS22,
Section 4.1]).
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Lemma 2.10. Let T be a dg-enhanced triangulated category, and let (M,P) be a pair of objects in T satisfying (2.5)
and such that Cone(M→ P) � P[q] and hocolimP[iq] = 0 for the chain from Definition 2.6(b).

(i) We have RHomT(M,M) � Aq−1, and the functor

ΦM : D(Aq−1) −→D(T), F 7−→ F ⊗Aq−1
M

is fully faithful, with ΦM(Aq−1) �M and ΦM(kA) � P. Furthermore,

ΦM

(
Db(Aq−1)

)
= ⟨P⟩ ⊂ T and ΦM

(
Dperf(Aq−1)

)
= ⟨M⟩ ⊂ T.

In particular, P is a P∞,q-object, and M is its canonical self-extension.
(ii) The functor ΦM|Db(Aq−1) : Db(Aq−1)→ T has a right adjoint if and only if the subcategory ⟨P⟩ ⊂ T is

right admissible, which holds if and only if M is left homologically finite-dimensional.
(iii) The functor ΦM|Db(Aq−1) : Db(Aq−1)→ T has a left adjoint if and only if the subcategory ⟨P⟩ ⊂ T is left

admissible, and if T ≃ Top, this is equivalent to M being right homologically finite-dimensional.

In particular, if T = Db(X), X is a projective Gorenstein scheme, and M ∈ Dperf(X), then ⟨P⟩ ⊂ Db(X) is
admissible.

Proof. (i) By Lemma 2.9 a combination of (2.5) with the assumption Cone(M→ P) � P[q] implies (2.6).
Using Lemma 2.1 we deduce RHomT(M,M) � Aq−1, so M is a Aq−1 -T-bimodule, and it gives a continuous
(i.e., commuting with arbitrary direct sums) fully faithful derived tensor product functor

ΦM : D(Aq−1) −→D(T), F 7−→ F ⊗Aq−1
M;

see [Kel06, Section 3.8]. Obviously, ΦM(Aq−1) �M. Furthermore, it follows from the continuity of ΦM and
Lemma 2.4 that

ΦM(kA) � ΦM(hocolimA(i)
q−1) � hocolimM(i),

where M(i) B ΦM(A(i)
q−1). Using the inductive construction of the objects A(i)

q−1 in Lemma 2.4 and the
octahedral axiom, it is easy to find distinguished triangles

(2.7) M(i) −→ P
θi−−−→ P[iq]

for all i ≥ 1 such that the maps M(i)→ P are compatible with the chain maps M(1)→M(2)→ ·· · . Therefore,
taking the homotopy colimit of the above triangles, we obtain the triangle

hocolimM(i) −→ hocolimP −→ hocolimP[iq],

and since the last term is zero by assumption, we obtain an isomorphism ΦM(kA) � hocolimP � P. As the
functor ΦM is fully faithful, we conclude from Lemma 2.4(iii) that P is a P

∞,q-object.
Finally, since by Proposition 2.2 the categories Db(Aq−1) and Dperf(Aq−1) are generated by the objects kA

and Aq−1, respectively, we conclude that their images are ⟨P⟩ and ⟨M⟩.
(ii) Since the functor ΦM is fully faithful, right admissibility of ⟨P⟩ is equivalent to the existence of a right

adjoint for ΦM on Db(Aq−1); this proves the first equivalence.
Now note that the functor ΦM on D(Aq−1) always has the right adjoint given by

RHomT(M,−) : D(T) −→D
(
Aq−1

)
;

see [Kel06, Section 3.8]. If M is left homologically finite-dimensional, this functor takes T to Db(Aq−1), so it
gives a right adjoint to ΦM on T. Conversely, if a right adjoint functor Φ !

M : T→Db(Aq−1) exists, then for
any T ∈ T

Ext•T(M,T ) � Ext•T
(
ΦM

(
Aq−1

)
,T

)
� Ext•Aq−1

(
Aq−1,Φ

!
M(T )

)
�H•

(
Φ !

M(T )
)

is finite-dimensional, so M is left homologically finite-dimensional. This proves the second equivalence.
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(iii) We apply (ii) to the opposite categories, using an equivalence Aop
q−1 ≃ Aq−1 (which holds because Aq−1

is commutative) and the equivalence T ≃ Top. Passing to opposite categories swaps left and right adjoints
and left and right homological finite-dimensionality, and the result follows.

The final statement is a combination of parts (ii) and (iii) because left homological finite-dimensionality
for an object M ∈ Db(X) is equivalent to the condition M ∈ Dperf(X), see [Orl06, Proposition 1.11], and
when X is Gorenstein, the Grothendieck duality implies that the same is true for right homological finite-
dimensionality. □

We conclude this section with an obvious consequence of Corollary 2.5.

Corollary 2.11. Under the assumptions of Lemma 2.10, we have M ∈ thick(M(2)) ⊂ T.

We will also need the following simple consequence of (2.7), generalizing (2.5).

Corollary 2.12. We have Ext•(M(i),P) � k[θ]/θi .

Despite the apparent symmetry between the algebras Ap and Bq and their derived categories, the category
we will use mostly is the category Db(Ap). In particular, in Section 6 we will show that varieties with ordinary
double points often admit subcategories equivalent to Db(Ap) in their bounded derived categories. For this
reason we call Db(Ap) the categorical ordinary double point of degree p.

3. Kronecker quiver and categorical ordinary double points

In this section we introduce the graded Kronecker quiver category, study its properties, and show that
the categorical ordinary double point can be obtained as its Verdier localization with respect to a spherical
object. Also, we explain how to construct fully faithful functors with admissible image from the graded
Kronecker quiver category. We keep working over an arbitrary field k.

3.1. The graded Kronecker quiver

Let q ≥ 1 be a positive integer. We define the graded Kronecker quiver of degree q as the dg-quiver

(3.1) Krq B

 •
αq

))

α0

55•, deg(α0) = 0, deg(αq) = q, d(α0) = d(αq) = 0

 .
We will also use the same notation Krq for the path dg-algebra of this quiver.

Remark 3.1. The same definition makes sense for any q, not necessarily positive. However, for q < 0
the resulting dg-algebra Krq is Morita equivalent to Kr−q, while for q = 0 the derived category of Kr0 is
equivalent to the derived category of the projective line P

1 (cf. the proof of Lemma 3.5).

Lemma 3.2. The dg-algebra Krq is intrinsically formal, smooth, and proper.

Proof. The intrinsic formality is proved by the argument of Lemma 2.1; see also [Kuz21, proof of Proposi-
tion A.3]. The smoothness is clear since the quiver (3.1) is directed, and the properness is evident. □

A combination of the smoothness and properness of the dg-algebra Krq implies that the cate-
gory Dperf(Krq) of perfect dg-modules over Krq coincides with the category Db(Krq) of dg-modules with
bounded total cohomology. We denote this category by

Krq BDperf
(
Krq

)
= Db

(
Krq

)
and call it the graded Kronecker quiver category of degree q.
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The vertices of the quiver provide two idempotents in Krq, and since the quiver is directed, the corre-
sponding direct summands of the free module form an exceptional pair (E,E′) in Krq generating the category.
In other words, we have a semiorthogonal decomposition

Krq B ⟨E,E′⟩,

with exceptional objects E and E′ and

(3.2) Ext•(E,E′) = k⊕k[−q].

The intrinsic formality (Lemma 3.2) of the dg-algebra Krq has the following useful consequence.

Corollary 3.3. Every dg-enhanced triangulated category T generated by an exceptional pair (E,E′) satisfying (3.2)
is equivalent to Krq.

We define the objects K+,K− ∈Krq from the distinguished triangles

K+ −−→ E
α0−−−−→ E′ ,(3.3)

K− −−→ E
αq
−−−−→ E′[q].(3.4)

Lemma 3.4. The Ext-groups between the objects K−,E,E′ ,K+ ∈Krq are given in the table below

K− E E′ K+

K− k⊕k[q − 1] k k 0
E k[q − 1] k k⊕k[−q] k[−q − 1]
E′ k[q − 1] 0 k k[−1]
K+ 0 k k[−q] k⊕k[−q − 1]

where each entry shows the Ext-groups from the object in the given row to the object in the given column.

Proof. These are easily computed from the defining triangles (3.3) and (3.4), using the exceptionality of the
pair (E,E′) and (3.2). □

Recall that an object K ∈ T in a triangulated category with a Serre functor ST is r-spherical, cf. [ST01], if

Ext•(K,K) = k⊕k[−r] and ST(K) � K[r].

Note that since the Kronecker quiver category Krq is generated by an exceptional pair, it has a Serre functor
(e.g., by [BK89, Proposition 3.8]).

Lemma 3.5. The objects K+ and K− in Krq are (1 + q)-spherical and (1− q)-spherical, respectively.

Proof. The spaces Ext•(K+,K+) and Ext•(K−,K−) have already been computed in Lemma 3.4, so it remains
to compute SKrq (K±). We start with a few remarks about the structure of the category Krq, which is very

similar to the structure of Db(P1) ≃ Kr0 (e.g., the objects Ei constructed below are analogous to the line
bundles O(i), while K+ and K− are analogous to the structure sheaves of the points 0,∞∈ P1).

Consider the infinite sequence of exceptional objects Ei ∈Krq, i ∈Z, defined by

E0 = E, E1 = E′ , Ei+1 = REi
(Ei−1)[1− q], Ei−1 = LEi

(Ei+1)[q − 1],

where R and L stand for the right and left mutation functors. Spelling out the definition of E2, we have a
distinguished triangle (which is analogous to the Euler sequence on P

1)

(3.5) E0
(α0,αq)
−−−−−−−→ E1 ⊕E1[q] −→ E2[q].
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It follows from this that Ext•(E1,E2) � k ⊕ k[−q] � Ext•(E0,E1). Since both (E0,E1) and (E1,E2) are
exceptional pairs generating Krq, Corollary 3.3 implies that there is an autoequivalence

τ : Krq→Krq such that τ(E0) = E1 and τ(E1) = E2

(analogous to the O(1)-twist in Db(P1)), and upon replacing (3.5) with an isomorphic triangle, we may
assume that the second arrow in (3.5) takes the form (−τ(αq), τ(α0)). Then it follows from the definition of
the sequence Ei that

(3.6) τ(Ei) � Ei+1 for all i ∈Z.

Also note that the octahedral axiom applied to (3.5) implies that

Cone
(
E1[q]

τ(α0)
−−−−−−→ E2[q]

)
� Cone

(
E0

α0−−−−→ E1

)
� K+[1],(3.7)

Cone
(
E1

τ(αq)
−−−−−−→ E2[q]

)
� Cone

(
E0

αq
−−−−→ E1[q]

)
� K−[1];(3.8)

hence τ(K+) � K+[−q], τ(K−) � K−, and therefore, we have distinguished triangles

(3.9) K+[−iq] −−→ Ei
τ i (α0)
−−−−−−−→ Ei+1 and K− −−→ Ei

τ i (αq)
−−−−−−−→ Ei+1[q]

for any i ∈Z. On the other hand, it follows from (3.5) that Ext•(E2,E0) � k[q − 1], and therefore

Ext•(E0,SKrq (E2)) � Ext•(E2,E0)∨ � k[1− q], Ext•(E1,SKrq (E2)) � Ext•(E2,E1)∨ = 0.

Since the category Krq is generated by the exceptional pair (E0,E1), the above isomorphisms imply
that SKrq(E2) � E0[1− q]. Since the Serre functor commutes with any autoequivalence, we conclude from
this and (3.6) that for all i ∈Z we have

SKrq (Ei) � Ei−2[1− q].

Applying this to triangle (3.3) and using the first triangle in (3.9) for i = −2, we conclude that

SKrq (K+) � Cone
(
SKrq (E0) −→ SKrq (E1)

)
[−1] � Cone(E−2[−q] −→ E−1[−q]) � K+[1 + q].

Thus, K+ is (1 + q)-spherical, and a similar computation shows K− is (1− q)-spherical. □

Remark 3.6. The category Krq also has a topological interpretation (see [BBD82] and [dCM09] for the
required material). Let Sq+1 be a (q + 1)-dimensional real sphere with a point {P } ↪→ Sq+1 and its open
complement U �R

q+1 ↪→ Sq+1. Then Krq is equivalent to the category of complexes of sheaves of k-vector
spaces on Sq+1 constructible with respect to the stratification {P ,U }. Under this equivalence the object K+
corresponds to the constant sheaf kSq+1 .

Note that this interpretation gives an alternative explanation for the fact that K+ = kSq+1 is spherical.
Indeed, the self Ext-algebra of the constant sheaf kSq+1 is isomorphic to the cohomology of the sphere, and
using Verdier duality one can show that the Serre functor of Krq+1 acts on kSq+1 as the shift [q+ 1].

In fact, in [KY18] a more general “orbifold version” of the graded Kronecker quiver has been studied. Its
special case, the graded quiver Γ (1,1, r) defined in [KY18, Theorem 1.1], is isomorphic to the quiver Krr , and
Lemma 3.5 can be deduced from [KY18, Theorem 1.2(a)].
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3.2. Localization and adherence

The next proposition relates the graded Kronecker quiver category Krp+1 to the categorical double
point Db(Ap).

Proposition 3.7. There is an equivalence

Krp+1/⟨K+⟩ ≃Db(Ap)

between the Verdier localization of the Kronecker quiver category and the categorical double point such that the
corresponding localization functor ρ∗ : Krp+1→Db(Ap) satisfies

(i) ρ∗(E) � ρ∗(E′) = kA, ρ∗(α0) = id
kA
∈HomAp

(kA,kA), ρ∗(αp+1) = θ ∈ Extp+1
Ap

(kA,kA);
(ii) ρ∗(K−) = Ap.

Proof. Set TBKrp+1/⟨K+⟩, and let ρ∗ : Krp+1→ T be the localization functor. We will use Lemma 2.10 to
construct the equivalence T ≃Db(Ap). So, let

PB ρ∗(E) � ρ∗(E
′) ∈ T, MB ρ∗(K−) ∈ T

(the isomorphism ρ∗(E) � ρ∗(E′) follows from (3.3); it is induced by ρ∗(α0)). Since Krp+1 is generated by E

and E′ , it follows that T is generated by P. By Lemma 3.4 the object K− is orthogonal to K+, so by the
definition of Verdier localization, we have

Ext•T(M,P) � Ext•Krp+1
(K−,E) � k,

where the second isomorphism follows again from Lemma 3.4. Furthermore, applying ρ∗ to (3.4) we
conclude that Cone(M→ P) � P[p+ 1], with the morphism P→ P[p+ 1] given by ρ∗(αp+1). Finally, note
that hocolimE[i(p + 1)] = 0 in D(Krp+1) by Lemma 2.3 because E and E′ compactly generate D(Krp+1),
and since ρ∗ induces a continuous (i.e., commuting with arbitrary direct sums) functor D(Krp+1)→D(T), it
follows that hocolimP[i(p+ 1)] = 0.

Now applying Lemma 2.10(i) we obtain a fully faithful functor ΦM : Db(Ap)→ T that takes kA to P.
Since T is generated by P, this functor is essentially surjective, so it is an equivalence. This completes the
proof of the first statement of the proposition.

Since θ ∈ Extp+1(kA,kA) is taken by the functor ΦM to a nontrivial element in Hom(P,P[p + 1]), we
conclude that, rescaling θ if necessary, we obtain ρ∗(αp+1) = θ. This proves (i). Similarly, since ΦM takes Ap

to M, comparing with the definition of M, we deduce (ii). □

Remark 3.8. Since Ker(ρ∗) = ⟨K+⟩ is generated by a spherical object, the functor ρ∗ is an example of a
crepant categorical contraction (see Definitions 1.10 and 1.12). One can also show that ρ∗ has a left adjoint
functor ρ∗ : Dperf(Ap)→ Krp+1 such that ρ∗(Ap) � K− and (Krp+1,ρ

∗,ρ∗) is a weakly crepant categorical
resolution in the sense of [Kuz08].

Conversely, it is easy to check that the dg-algebra Krp+1 is Morita equivalent to the Auslander resolution of
the dg-algebra Ap; see the definition in [KL15, Section 5] for the case of algebras, [Orl20, Section 2.3] for the
case of dg-algebras, and [KL15, Example 5.3] for a computation in the case p = 0. Therefore, the graded
Kronecker quiver category Krp+1 provides a categorical resolution in the sense of [KL15] for the categorical
ordinary double point Db(Ap).

We conclude this section by explaining how an admissible subcategory equivalent to Krq can be embedded
into a given triangulated category. For this the following definition, generalizing [KKS22, Definition 3.6], is
convenient.

Definition 3.9. Let T̃ be a proper triangulated category with a Serre functor, and let K ∈ T̃ be a spherical
object. We say that an exceptional object E ∈ T̃ is adherent to K if

(3.10) dimExt•(K,E) = dimExt•(E,K) = 1.
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Note that the first equality follows from Serre duality and the definition of a spherical object.

Recall that a spherical object K in a dg-enhanced proper triangulated category T̃ gives rise to an
autoequivalence

(3.11) TK(−)B Cone
(
RHom•(K,−)⊗K

ev−−−→ −
)
,

which is called a spherical twist; cf. [ST01].

Lemma 3.10. Let T̃ be a dg-enhanced proper triangulated category with a Serre functor ST̃ , and let K ∈ T̃ be
a (p+ 2)-spherical object with p ≥ 0. If an exceptional object E ∈ T̃ is adherent to K, then

(3.12) (E,TK(E))

is an exceptional pair and the subcategory ⟨E,TK(E)⟩ ⊂ T̃ generated by (3.12) is equivalent to Krp+1 and admissible
in T̃.

Proof. Shifting K appropriately (note that this does not affect the corresponding spherical twist), we may
assume Ext•(K,E) = k. Since TK is an autoequivalence, TK(E) is also an exceptional object. Furthermore,
by definition (3.11) of the spherical twist, we have a distinguished triangle

K −→ E −→ TK(E).

Applying the functor Ext•(−,E) to this triangle, we see that the pair (E,TK(E)) is exceptional. On the other
hand, using Serre duality in T̃, we obtain

Ext•(E,K) � Ext•(S−1
T̃

(K),E)∨ � Ext•(K[−p − 2],E)∨ = k[−p − 2],

and so, applying Ext•(E,−) to the above triangle, we see that the Ext-groups between E and TK(E) are
those of the graded Kronecker quiver of degree p+ 1. Thus, by Corollary 3.3 the subcategory in T̃ generated
by the pair (E,TK(E)) is equivalent to Krp+1, and since this subcategory is generated by an exceptional pair
in a proper triangulated category, it is admissible. □

In Section 6 we will present several geometric applications of Lemma 3.10 (or rather of Theorem 4.2 that
relies on it), where the category T̃ will be taken to be a crepant categorical resolution of Db(X). Here we
mention the following simpler example; see [KKS22, Example 2.14] for details.

Example 3.11. Let T̃ = Db(X̃), where X̃ is a smooth projective surface such that H>0(X̃,OX̃) = 0. If E ⊂ X̃
is a (−2)-curve, then K = OE(−1) is a 2-spherical object. Furthermore, if D ∈ Pic(X̃) is a divisor class
satisfying D ·E = 1, then the exceptional object E = OX̃(D) is adherent to K and TK(E) = O(E +D). In this
situation Lemma 3.10 says that the subcategory

⟨OX̃(D),OX̃(E +D)⟩

is admissible in Db(X̃) and is equivalent to Kr1.

4. Adherence and categorical absorption of singularities

In this section we relate the notion of adherence introduced in Definition 3.9 to the notion of categorical
absorption of singularities from Definition 1.1. After that we prove Theorems 1.5, 1.8, and 1.9 from the
introduction. We keep working over an arbitrary field k.
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4.1. From adherence to categorical absorption

The following result allows us to descend semiorthogonal decompositions along Verdier localizations.

Proposition 4.1. Let π∗ : T̃→ T be a Verdier localization with the kernel category KB Ker(π∗) ⊂ T̃. Let

T̃ =
〈
T̃1, . . . , T̃n

〉
be a semiorthogonal decomposition compatible with K, i.e., such that the subcategories Ki BK∩ T̃i form a
semiorthogonal decomposition K = ⟨K1, . . . ,Kn⟩. Then there is a semiorthogonal decomposition

T = ⟨T1, . . . ,Tn⟩

with Ti B π∗(T̃i) ⊂ T, and the restriction π∗|T̃i
: T̃i → Ti is a Verdier localization with kernel Ki .

Proof. We assume n = 2, as the general case follows by induction. The natural functors

Ti ≃ T̃i/Ki ↪−→ T̃/K = T

are fully faithful by [Orl06, Lemma 1.1]. Moreover, it also follows that the subcategories Ti are semiorthogonal;
see [Orl06, Proposition 1.11]. Indeed, the semiorthogonality of T̃1 and T̃2 can be rephrased by saying that
the left adjoint functor for the embedding T̃1 ↪→ T̃ vanishes on the subcategory T̃2, and [Orl06, Lemma 1.1]
then implies that the left adjoint functor for the embedding T1 ↪→ T vanishes on T2, which implies the
semiorthogonality of T1 and T2. Finally, the categories Ti generate T because π∗ is essentially surjective and
the T̃i generate T̃. Thus, T = ⟨T1,T2⟩ is a semiorthogonal decomposition. □

We now explain how to construct subcategories absorbing singularities. Let δij be the Kronecker delta.
Recall the definition of a crepant categorical contraction (Definitions 1.10 and 1.12).

Theorem 4.2. Let T̃ be a dg-enhanced smooth and proper triangulated category, and let K1, . . . ,Kr ∈ T̃ be
a collection of r completely orthogonal (p + 2)-spherical objects with p ≥ 0. Assume that there is a (nonfull )
exceptional collection E1, . . . ,Er in T̃ such that

(4.1) dimExt•(Ei ,Kj ) = δij ;

in particular, Ei is adherent to Ki for each i. Set KB ⟨K1, . . . ,Kr⟩ ⊂ T̃, and consider the localization

π∗ : T̃ −→ TB T̃/K.

Then the following hold:

(i) For each 1 ≤ i ≤ r the triangulated subcategory

P̃i B ⟨Ei ,TKi
Ei⟩

generated in T̃ by Ei and TKi
(Ei) (or, equivalently, by Ei and Ki ) is equivalent to the graded Kronecker

quiver category Krp+1 and is admissible in T̃. Moreover, the collection of subcategories P̃1, . . . , P̃r ⊂ T is
semiorthogonal in T̃, and the subcategory

P̃B
〈
P̃1, . . . , P̃r

〉
is admissible in T̃.

(ii) For each i the object Pi B π∗(Ei) is a P∞,p+1-object, and the category Pi B π∗(P̃i) = ⟨Pi⟩ is equivalent
to the categorical ordinary double point Db(Ap) and is admissible in T. Moreover, the collection P1, . . . ,Pr

is semiorthogonal in T, the subcategory

PB ⟨P1, . . . ,Pr⟩ = ⟨P1, . . . ,Pr⟩

is equal to π∗(P̃) and absorbs singularities of T, and the functor π∗ induces equivalences

(4.2) ⊥P̃ ≃ ⊥P, P̃⊥ ≃ P⊥.
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(iii) The functor π∗ is a crepant categorical contraction.

Proof. (i) By Lemma 3.10 the subcategory P̃i ⊂ T̃ is equivalent to Krp+1 and admissible. To check that
the subcategories P̃1, . . . , P̃r ⊂ T̃ are semiorthogonal, it is enough to note that the generating sets of these
subcategories are semiorthogonal; i.e., for all i > j we have

Ext•(Ei ,Ej ) = 0, Ext•(Ei ,Kj ) = 0, Ext•(Ki ,Ej ) = 0, Ext•(Ki ,Kj ) = 0.

Indeed, the first holds for i > j since the collection E1, . . . ,Er is exceptional, the second holds for i , j
by (4.1), the third follows from the second and Serre duality since Ki is spherical, and the last holds for
all i , j since the spherical objects are assumed to be orthogonal. Since each P̃i is admissible in T̃, the
subcategory P̃ is admissible as well.

(ii) Consider the semiorthogonal decompositions

T̃ =
〈
P̃1, . . . , P̃r ,

⊥P̃
〉
, T̃ =

〈
P̃⊥, P̃1, . . . , P̃r

〉
.

Applying Proposition 4.1 to the subcategories ⟨K1⟩ ⊂ P̃1, . . . , ⟨Kr⟩ ⊂ P̃r and 0 ⊂ ⊥P̃ or 0 ⊂ P̃⊥ (and
defining K ⊂ T̃ as KB ⟨K1, . . . ,Kr⟩), we obtain semiorthogonal decompositions

T̃/K =
〈
P1, . . . ,Pr ,

⊥P
〉
, T̃/K =

〈
P⊥,P1, . . . ,Pr

〉
,

where Pi = π∗(P̃i) ≃ P̃i/⟨Ki⟩, P = π∗(P̃) ⊂ T/K is the subcategory generated by P1, . . . ,Pr , and the functor π∗
induces equivalences (4.2). Furthermore, we deduce the equivalence Pi ≃Db(Ap) from Proposition 3.7, and
since π∗|P̃i

is isomorphic to the localization functor ρ∗ from Proposition 3.7, we also conclude that Pi B π∗(Ei)
is the P

∞,p+1-generator of Pi .
To show that Pi is right admissible, we consider the semiorthogonal decomposition

T̃ =
〈
ST̃

(
P̃i+1

)
, . . . ,ST̃

(
P̃n

)
, P̃⊥, P̃1, . . . , P̃i

〉
,

where ST̃ is the Serre functor of T̃, and note that since the objects Kj are spherical, we have

⟨ST̃(Ki+1), . . . ,ST̃(Kn),0,K1, . . . ,Ki⟩ = ⟨Ki+1, . . . ,Kn,0,K1, . . . ,Kn⟩ = K.

Hence the above arguments provide a semiorthogonal decomposition of T = T̃/K, where Pi = P̃i/⟨Ki⟩ stands
on the right, so it is right admissible. Similarly, using the semiorthogonal decomposition

T̃ =
〈
P̃i , . . . , P̃n,

⊥P̃,S−1
T̃

(
P̃1

)
, . . . ,S−1

T̃

(
P̃i−1

)〉
and the spherical property of the objects Kj , we show that Pi is left admissible.

Finally, P absorbs singularities of T because ⊥P and P⊥ are equivalent to admissible subcategories ⊥P̃
and P̃⊥ in the smooth and proper category T̃, so they are smooth and proper.

(iii) This is obvious because Ker(π∗) is generated by spherical objects. □

See Section 6, in particular Theorem 6.1, for geometric applications of Theorem 4.2 to nodal varieties.
Meanwhile, just note that in the situation of Example 3.11, if π : X̃→ X is the contraction of E, we obtain a
fully faithful embedding Db(A0) ↪→Db(X); cf. [KKS22, Example 3.17].

4.2. Absorption and deformation absorption

Recall the notion of absorption from Definition 1.1. We will need the following observation. Let ω•X be the
dualizing complex of X.

Lemma 4.3. Assume that P ⊂Db(X) absorbs singularities of a projective scheme X, and let ⊥P,P⊥ ⊂Db(X) be
its orthogonals in Db(X). Then

⊥P ⊂Dperf(X) and P⊥ ⊂Dperf(X)⊗ω•X ,

and these embeddings are admissible.
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Proof. Let F ∈ ⊥P. Then Ext•(F,F′) is finite-dimensional for any F′ ∈ ⊥P because ⊥P is proper,
and Ext•(F,P ) = 0 for any P ∈ P by the definition of the orthogonal. Therefore, Ext•(F,G) is finite-
dimensional for any G ∈Db(X), and hence F is perfect by [Orl06, Proposition 1.11], and the first inclusion is
proved. The second inclusion follows from the first and Grothendieck duality.

Finally, since the category ⊥P ≃ P⊥ is smooth, it is equivalent to the derived category of a dg-algebra, see,
e.g., [Toë12, Lemma 2.6], so it has a strong generator by [Lun10, Lemmas 3.5 and 3.6(a)]. Since ⊥P ≃ P⊥ is
also proper and idempotent complete, it is saturated by [BVdB03, Theorem 1.3]. Therefore, its image in the
proper categories Dperf(X) and Dperf(X)⊗ω•X is admissible. □

Example 4.4. Assume that P absorbs singularities of a projective Gorenstein variety X. Then ω•X is a
shift of a line bundle, and by Lemma 4.3 we have ⊥P,P⊥ ⊂Dperf(X). If in addition P has an admissible
semiorthogonal decomposition

(4.3) P = ⟨Db(R1), . . . ,Db(Rm)⟩,

where the Ri are finite-dimensional associative algebras, then ⟨P⊥,P⟩ is a “Kawamata semiorthogonal
decomposition” in the sense of [KPS21]. Conversely, a Kawamata semiorthogonal decomposition provides
absorption of singularities. For examples of Kawamata decompositions, see [KPS21, PS21a, Xie23].

Recall the definitions of smoothing and (thick) deformation absorption from Definitions 1.3 and 1.4,
respectively. Given a smoothing f : X→ B of X, we denote by ι : X ↪→ X the embedding of the central
fiber. Note that since X is a hypersurface in a smooth variety X, it follows that X has (at worst) Gorenstein
singularities. Furthermore, since X ⊂ X is a Cartier divisor with trivial normal bundle, for each F ∈Db(X)
we have the standard distinguished triangle

(4.4) F[1] −→ ι∗ι∗(F) −→ F −→ F[2].

Recall the definition of a P
∞,q-object (Definition 2.6) and its canonical self-extension (Definition 2.8). Also

recall the objects M(i) defined in the proof of Lemma 2.10.

Lemma 4.5. Let X be a Gorenstein projective variety with a smoothing f : X→ B, and let ι : X ↪→ X be the
embedding of the central fiber. If P ∈Db(X) is a P∞,q-object, then q ∈ {1,2}. Moreover,

• if q = 2, the morphism P→ P[2] in (4.4) for F = P is given by θ and ι∗ι∗P �M, and
• if q = 1, the morphism P→ P[2] in (4.4) for F = P is given by θ2 and ι∗ι∗P �M(2),

where M is the canonical self-extension of P and the object M(2) is defined in (2.7). In both cases M is a perfect
complex on X.

Proof. First, we note that the smoothness of X implies that ι∗P ∈Db(X) is a perfect complex, so

ι∗ι∗P ∈Dperf(X).

On the other hand, consider the triangle (4.4) for F = P. Since P itself is not perfect (because Ext∗(P,P) is
infinite-dimensional), it follows that the connecting morphism P→ P[2] is nonzero. By the definition of
a P
∞,q-object, it follows that q ≤ 2 and, moreover, if q = 2, the connecting morphism is isomorphic to θ, and

if q = 1, it is isomorphic to θ2. Finally, if q = 2, it follows that M � ι∗ι∗P is perfect, and if q = 1, it follows
that M(2) � ι∗ι∗P is perfect, so M is also perfect by Corollary 2.11. □

We would like to emphasize the following consequence.

Corollary 4.6. If X is a smoothable projective variety and P ∈Db(X) is a P∞,q-object, then q ∈ {1,2}.

We are ready to prove Theorem 1.5. Recall that for a variety X/B a subcategory D ⊂ Db(X) is called
B-linear if it is closed under tensor products with pullbacks of perfect complexes on B. Given a B-linear
triangulated category D ⊂Db(X) and a morphism ϕ : B′→ B, the base change category DB′ ⊂Db(X×B B′)
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is defined in [Kuz11, Theorem 5.6] under appropriate assumptions (admissibility of D and of either of its
orthogonals and finiteness of cohomological amplitude of the projection functor to D) as

(4.5) DB′ B hocolim
〈
ϕ̃∗(D∩Dperf(X))

〉
∩Db(X×B B′),

where ϕ̃ : X ×B B′ → X is the morphism induced by ϕ. In other words, first one considers “the perfect
part” D∩Dperf(X) of D, then one considers the triangulated hull of the pullback ϕ̃∗(D∩Dperf(X)) along ϕ̃
(this gives “the perfect part” of the base change category DB′ ), and finally one considers all homotopy
colimits contained in Db(X×B B′) of chains of morphisms of objects in ⟨ϕ̃∗(D∩Dperf(X))⟩.

In the special case where B′ is a point b ∈ B, this defines the fiber Db of D.

Proof of Theorem 1.5. By the definition of deformation absorption, the subcategory thick(ι∗P) ⊂ Db(X) is
admissible, so we have a semiorthogonal decomposition

(4.6) Db(X) = ⟨thick(ι∗P),D⟩.

Its first component is supported set-theoretically on the central fiber of X over B, so it is B-linear. By [Kuz06,
Lemma 2.36] the second component DB ⊥(thick(ι∗P)) is B-linear as well. The components of (4.6) are
both admissible because X is smooth over k and proper over B, and their projection functors have finite
cohomology amplitude by [Kuz08, Proposition 2.5] since X is smooth and quasiprojective. Therefore,
by [Kuz11, Theorem 5.6] we can talk about base change of the B-linear category D; in particular, the
fibers Db and Do are defined.

Now the equality Db = Db(Xb) for b , o follows from base change along the point embedding {b} ↪→ B
applied to (4.6) since the base change of the first component of (4.6) is zero (because the support of any object
in it does not intersect the fiber Xb). Similarly, by base change we have a semiorthogonal decomposition

Db(X) = ⟨thick(ι∗P)o,Do⟩.

Thus, we need to identify its first component with P.
On the one hand, since ι is the embedding of a fiber, [Kuz11, Corollary 5.7] shows that

thick(ι∗P)o = {F ∈Db(X) | ι∗F ∈ thick(ι∗P)}.

It follows immediately that P ⊂ thick(ι∗P)o.
On the other hand, triangle (4.4) applied to an object F ∈ P shows that ι∗ι∗F ∈ P. Since the functor ι∗

is triangulated, we have ι∗G ∈ P for any G in ⟨ι∗P⟩, and since P is idempotent complete, we have ι∗G ∈ P
for any G ∈ thick(ι∗P). This proves that ι∗(thick(ι∗P) ∩Dperf(X)) = ι∗(thick(ι∗P)) is contained in P.
Furthermore, since P is closed under homotopy colimits contained in Db(X) (because by Lemma 4.3 the
category P is an orthogonal to a subcategory consisting of perfect objects), we have the inclusion

hocolim(P)∩Db(X) ⊂ P.

Combining the two inclusions proved above with (4.5), we see that thick(ι∗P)o ⊂ P, and comparing it with
the opposite inclusion proved above, we obtain the equality P = thick(ι∗P)o.

Finally, the smoothness and properness of D over B follow from [Kuz22, Theorem 2.10]. □

Proof of Theorem 1.8. Let f : X→ B be a smoothing of X, and recall that ι : X→ X denotes the embedding
of the central fiber. Consider the distinguished triangle (4.4) for F = Pi . Applying Lemma 4.5 we conclude
that

ι∗ι∗(Pi) �Mi

is the canonical self-extension of Pi . As a consequence, using adjunction and (2.5), we obtain

Ext•(ι∗(Pi), ι∗(Pi)) � Ext•(ι∗ι∗(Pi),Pi) � Ext•(Mi ,Pi) � k,

which means that ι∗(Pi) ∈Db(X) is an exceptional object. Similarly, if i > j, we have

Ext•(ι∗(Pi), ι∗(Pj )) � Ext•(ι∗ι∗(Pi),Pj ) � Ext•(Mi ,Pj ),
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and using the triangle (2.4) for Mi and Pi , we see that Ext•(Mi ,Pj ) = 0. Thus, ι∗(P1), . . . , ι∗(Pr ) is an
exceptional collection of compactly supported objects in Db(X), so

⟨ι∗P⟩ = ⟨ι∗(P1), . . . , ι∗(Pr )⟩ ⊂Db(X)

is admissible in Db(X), and therefore, P provides a deformation absorption for X. Since this is true for any
smoothing of X, the subcategory P ⊂Db(X) provides a universal deformation absorption. □

Remark 4.7. The fact that ι∗P is an exceptional object on the total space of a smoothing is an analogue and
the limiting case of the fact that the direct image of a P

n-object with respect to the embedding into the total
space of an appropriate deformation is a (2n+ 1)-spherical object; see [HT06].

Combining Theorem 1.8 with Theorem 4.2, we obtain the following.

Corollary 4.8. Under the conditions of Theorem 4.2, if T ≃Db(X) for a projective variety X and p = 1, then the
category P constructed therein provides a universal deformation absorption of singularities of X.

Finally, we prove Theorem 1.9.

Proof of Theorem 1.9. Let f : X→ B be a smoothing of X, and recall that ι : X→ X denotes the embedding
of the central fiber. Consider the stack Db

pug(X/B) of universally gluable B-perfect complexes on X as defined
in [Lie06, Section 2.1]. Note that under the assumption of smoothness of the base B, an object F ∈Dqc(X) is
B-perfect if and only if F ∈Db(X). Also recall that the “gluability condition” for an object F ∈Db(X) is just

f∗RHom(F,F) ∈Db(B)≥0,

where the right-hand side stands for the subcategory of objects with zero sheaf cohomology in negative
degrees, and “universal gluability” is gluability after arbitrary base change.

For each 1 ≤ i ≤ r consider the canonical self-extension Mi ∈Db(X) of the P
∞,1-object Pi ∈Db(X). By

Lemma 4.5 we have Mi ∈Dperf(X), and by Lemma 2.9 we have

Ext•(Mi ,Mi) � A0 � k[ϵ]/ϵ2, deg(ϵ) = 0,

so Mi gives a k-point of the stack Db
pug(X/B) over the point o ∈ B. Moreover, the stack Db

pug(X/B) is locally
of finite presentation by [Lie06, Theorem 4.2.1], and it follows from [Lie06, Theorem 3.1.1] that the natural
morphism of stacks

Db
pug(X/B) −→ B

is smooth at the point [Mi]. Therefore, étale locally this morphism admits a section passing through [Mi].
In other words, after an étale base change, there is an object Mi ∈Db(X) such that

ι∗(Mi) �Mi ,

and applying [Kuz22, Corollary 2.12], we conclude that, shrinking B, we may assume Mi ∈Dperf(X).
Now consider the object

Ri B f∗RHom(Mi ,Mi) � f∗
(
Mi ⊗OX

M∨i
)
∈Db(B).

Since the morphism f is flat, using base change we obtain an isomorphism

Ri |o � (f∗RHom(Mi ,Mi))|o �H•(X, ι∗RHom(Mi ,Mi)) �H•(X,RHom(Mi ,Mi)) � RHom(Mi ,Mi),

where the left side is the derived restriction of Ri to the point o and the right side is isomorphic to A0; in
particular, it is a 2-dimensional vector space sitting in degree zero. Therefore, shrinking B further, we may
assume that Ri is a locally free sheaf of rank 2.

By construction Ri is a sheaf of OB-algebras. Consider the adjoint pair of B-linear functors

ΦMi
: D(B,Ri) −→D(X), F 7−→ f ∗F⊗f ∗Ri

Mi ,

Φ !
Mi

: D(X) −→D(B,Ri), G 7−→ f∗RHom(Mi ,G).
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Using the containment Mi ∈Dperf(X), the projection formula, and the definition of Ri , we compute

f∗RHom
(
Mi , f

∗F⊗f ∗Ri
Mi

)
� f∗

(
f ∗F⊗f ∗Ri

Mi ⊗OX
M∨i

)
� F⊗Ri

f∗
(
Mi ⊗OX

M∨i
)
� F⊗Ri

Ri � F

for any F ∈D(B,Ri). Thus, Φ !
Mi
◦ΦMi

� id, so ΦMi
is fully faithful.

Also note that the functor ΦMi
is B-linear and takes the free module A0⊗Oo at point o ∈ B to ι∗Mi . Using

the notation of Section 2 and a simple induction, it is easy to check that ΦMi
(A(j)

0 ⊗Oo) � ι∗M
(j)
i . Now, since

the functors ΦMi
and ι∗ commute with direct sums, and hence also with homotopy colimits, we conclude

that

ΦMi
(kA ⊗Oo) � ΦMi

(
hocolimA

(j)
0 ⊗Oo

)
� hocolim ι∗M

(j)
i � ι∗Pi ,

where we used Lemma 2.4(ii) and an argument of Lemma 2.10.
Next, we interpret this computation geometrically. Since the rank of the sheaf of OB-algebras Ri is 2,

the sheaf is commutative, so we can consider the B-scheme Zi B SpecB(Ri). Then D(Zi) ≃D(B,Ri) and
the simple module kA ⊗Oo corresponds to the structure sheaf of the unique point zi ∈ Zi over o. Abusing
notation, we will write ΦMi

for the induced functor D(Zi) ≃D(B,Ri)→D(X) and Φ !
Mi

for its adjoint. Then
the above computation gives an isomorphism ΦMi

(Ozi ) � ι∗Pi . Using the full faithfulness of the functor ΦMi
,

Lemma 4.5, and Corollary 2.12, we therefore obtain

Ext•Zi

(
Ozi ,Ozi

)
� Ext•X(ι∗Pi , ι∗Pi) � Ext•X(ι∗ι∗Pi ,Pi) � Ext•X

(
M(2)

i ,Pi

)
� k[θ]/θ2.

Since deg(θ) = 1, we conclude that the scheme Zi is smooth at zi , so, shrinking B further, we may assume
that Zi is smooth everywhere.

Finally, since both Zi and X are smooth over k and proper over B, the restricted Fourier–Mukai
functor ΦMi

|Db(Zi ) has both adjoints, and therefore the subcategory ΦMi
(Db(Zi)) ⊂ Db(X) is admissible.

Since the objects Pi , 1 ≤ i ≤ n, are semiorthogonal, shrinking B further, we may assume that the subcate-
gories ΦMi

(Db(Zi)) ⊂Db(X) are semiorthogonal (see the argument of [FK18, Proposition 2.16]). Thus, we
obtain a B-linear semiorthogonal decomposition

(4.7) Db(X) = ⟨Db(Z1), . . . ,Db(Zr ),D⟩,

where the last component D is the orthogonal complement of the other components.
Now, consider the base change of this decomposition to any geometric point b , o. We obtain

Db (Xb) =
〈
Db ((Z1)b) , . . . ,Db ((Zr )b) ,Db

〉
.

On the one hand, Db((Zi)b) ≃ Db((Ri)b), where (Ri)b is a 2-dimensional algebra. On the other hand,
since this is a semiorthogonal component in the derived category of a smooth projective variety Xb, the
algebra should have finite homological dimension, so it should be étale over the residue field of the point b.
Therefore, Zi → B is étale over B \ {o}. Moreover, Db is also a smooth and proper category.

Furthermore, by construction the base change of Db(Zi) to the point o coincides with the subcate-
gory ⟨Pi⟩ ⊂Db(X), so Do ≃ ⊥P; in particular, it is smooth and proper. Finally, we use [Kuz22, Theorem 2.10]
to conclude that D is smooth and proper over B.

It remains to prove the uniqueness of (4.7). For this we note that if F ∈ Db(X) is an object such
that ι∗F ∈ Db(Zi)o for some 1 ≤ i ≤ r, then there is a Zariski neighbourhood U ⊂ B of o such that the
pullback of F to XU = X×BU is contained in Db(Zi ×BU ) ⊂Db(XU ). Indeed, if Fj ∈Db(Zj ) and FD ∈D
are the components of F with respect to (4.7), then the assumption means that

ι∗Fj = 0 for j , i and ι∗FD = 0.

Then the objects Fj for j , i and FD vanish on a Zariski neighbourhood of X ⊂ X. But since f : X→ B is
proper, any Zariski neighbourhood of X contains XU for an appropriate Zariski neighbourhood U ⊂ B of o.
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Therefore, the pullbacks of Fj for j , i and FD to XU vanish, and hence the pullback of F to XU is equal to
the pullback of Fi . Thus, the pullback of F to XU is contained in Db(Zi ×BU ).

Now, if
Db(X) =

〈
Db(Z′1), . . . ,Db(Z′r ),D

′
〉

is another B-linear semiorthogonal decomposition such that its base change to o gives the decomposi-
tion Db(X) = ⟨P1, . . . ,Pr ,

⊥P⟩, then applying the above observation to generators G1, . . . ,Gr of the compo-
nents Db(Z′1), . . . ,Db(Z′r ), we find Zariski neighbourhoods U1, . . . ,Ur ⊂ B of o such that the pullback of Gi

to X×BUi is contained in Db(Zi ×BUi). Taking U = U1 ∩ · · · ∩Ur , we deduce that

Db
(
Z′i ×BU

)
⊂Db(Zi ×BU )

for all i. The same argument shows the opposite inclusion (possibly after shrinking the base further), and
therefore we finally obtain an equality Db(Z′i ×BU ) = Db(Zi ×BU ). □

5. Crepant categorical resolutions for nodal varieties

In this section we construct crepant categorical resolutions for varieties with ordinary double points or
nodal varieties. In Section 5.1 we consider the blowup morphism π : Blx(X)→ X for an ordinary double
point x ∈ X and check that the pushforward functor π∗ : Db(Blx(X))→ Db(X) is a Verdier localization.
In Section 5.2, we consider a nodal variety with singular points x1, . . . ,xr ∈ X and find an admissible subcat-
egory D ⊂Db(Blx1,...,xr (X)) such that π∗|D : D→Db(X) is a crepant categorical resolution and Ker(π∗|D)
is generated by a completely orthogonal collection of spherical objects.

Starting from Section 5.2, we work over an algebraically closed field k of characteristic not equal to 2.

5.1. Bondal–Orlov localization

It is a conjecture of Bondal and Orlov (see [BO02, Section 5] and [Efi20, Conjecture 1.9]) that if X is a variety
with rational singularities and π : X̃→ X is a resolution, then the pushforward functor π∗ : Db(X̃)→Db(X)
is a Verdier localization. The main advance in this direction was obtained in [Efi20]; we prove a slight
extension of his results in a convenient form.

Recall from Definition 1.10 the notion of a categorical contraction.

Lemma 5.1. A functor π∗ : T̃→ T is a Verdier localization if and only if it is a categorical contraction and the
induced map on the Grothendieck groups K0(T̃)→ K0(T) is surjective.

Proof. If π∗ is a categorical contraction and K0(T̃)→ K0(T) is surjective, then K0(Im(π∗)) = K0(T) and by
Thomason’s theorem on classification of dense subcategories [Tho97, Theorem 2.1], we have the equiva-
lence T̃/ Ker(π∗) ≃ Im(π∗) = T. The other implication is obvious. □

If X is a variety with rational singularities over a field k of characteristic zero, π : X̃→ X is a resolution
of singularities, and π∗ : Db(X̃)→Db(X) is the pushforward functor, the surjectivity of the induced map
of the Grothendieck groups was proved recently in [MS23, Theorem 1.2]. Consequently, the functor π∗ is a
Verdier localization if and only if it is a categorical contraction; see [MS23, Corollary 1.3].

We denote by
G0(X)B K0(Db(X))

the Grothendieck group of the bounded derived category of X.

Theorem 5.2 (cf. [Efi20]). Let π : X̃→ X be a proper birational morphism. Let ζ : Z ↪→ X be a closed subscheme
such that E B π−1(Z) is a Cartier divisor and the restriction π : X̃ \E→ X \Z is an isomorphism. Assume the
following isomorphisms for the derived pushforwards of the sheaves OX̃(−mE):

(5.1) π∗OX̃(−mE) � JmZ for all m ≥ 0.
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Let p : E→ Z and η : E ↪→ X̃ be the natural morphisms so that we have a Cartesian square

E

p
��

� � η // X̃

π
��

Z �
� ζ // X.

If p∗ : Db(E)→Db(Z) is a Verdier localization or a categorical contraction, then π∗ : Db(X̃)→Db(X) is also
a Verdier localization or a categorical contraction, respectively. In both cases the category Ker(π∗) is generated
by η∗(Ker(p∗)).

Proof. Assume that p∗ is a categorical contraction. Then the conditions of [Efi20, Theorem 8.22] (recall the
difference in terminology mentioned in Remark 1.11) are satisfied, so that π∗ is also a categorical contraction
and Ker(π∗) is thickly generated by η∗(Ker(p∗)).

To show that Ker(π∗) is generated by η∗(Ker(p∗)) as a triangulated category, by Thomason’s theorem (see
the proof of Lemma 5.1) it suffices to check that the induced map on the Grothendieck groups

(5.2) K0(Ker(p∗))
η∗−−−→ K0(Ker(π∗))

is surjective. For this we consider the diagram of categories

Ker(p∗)

η∗

��

// Db(E)

η∗
��

p∗ // Db(Z)

ζ∗
��

Ker(π∗) // Db
E(X̃)

π∗ // Db
Z(X),

where Db
E(X̃) ⊂Db(X̃) and Db

Z(X) ⊂Db(X) are the full subcategories of objects set-theoretically supported
on E and Z, respectively. Its rows are “exact sequences”, i.e., the left arrows are fully faithful, and the right
arrows are categorical contractions. Indeed, for the top row this is the assumption of the theorem, and for
the bottom row this is proved in [Efi20, Theorem 8.22(2)]. Now we apply Schlichting’s K-theory machinery as
explained in [PS21b, Section 1.2] to this diagram; in this way we obtain a commutative diagram of K-groups

G1(E)

η∗
��

p∗ // G1(Z)

ζ∗
��

// K0(Ker(p∗))

η∗
��

// G0(E)

η∗
��

p∗ // G0(Z)

ζ∗
��

K1(Db
E(X̃))

π∗ // K1(Db
Z(X)) // K0(Ker(π∗)) // K0(Db

E(X̃))
π∗ // K0(Db

Z(X)).

Applying Quillen’s devissage (see [Qui73, Section 5, Theorem 4] and [Orl11, Lemma 2.1]), we conclude that
the first two and the last two vertical arrows in the diagram are isomorphisms, so the middle arrow (5.2) is
also an isomorphism.

Assume that p∗ is a Verdier localization. By Lemma 5.1 we only need to show that the map

(5.3) π∗ : G0(X̃) −→G0(X)

is surjective. For any coherent sheaf F on X the natural morphism F→ R0π∗(L0π
∗F)→ π∗(L0π

∗F) is an
isomorphism on the complement of Z, so it is enough to show that the classes of sheaves set-theoretically
supported at Z are in the image of (5.3). Since any such sheaf is filtered by sheaves scheme-theoretically
supported on Z and p∗ : G0(E) → G0(Z) is surjective (again by Lemma 5.1), we conclude that (5.3) is
surjective as well. □

Let x ∈ X be a k-point which is a normal isolated singularity, and let π : X̃ B Blx(X)→ X be the blowup
of x ∈ X with exceptional divisor E ⊂ X; we denote by OE(1)B OE(−E) its conormal bundle. We will use
the following definition to verify the assumption (5.1).
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Definition 5.3. We say that a normal isolated singularity x ∈ X with the maximal ideal mX,x ⊂ OX,x is
acyclic projectively normal if the following conditions hold for all m ≥ 0:

(a) The canonical map mm
X,x/m

m+1
X,x →H0(E,OE(m)) is an isomorphism.

(b) The vanishining Hi(E,OE(m)) = 0 holds for all i > 0.

Example 5.4. If X is a cone over a smooth Fano complete intersection of positive dimension, or more
generally x ∈ X is an isolated singular point such that the projective tangent cone CX,x is a Fano complete
intersection, then x ∈ X is acyclic projectively normal. Indeed, complete intersections are projectively normal;
combining this with [Har77, Exercise II.5.14], we obtain (a). The vanishing in (b) follows easily from the
standard computation of cohomology of line bundles on a complete intersection; cf. the proof of Lemma 5.7.

Lemma 5.5. Let x ∈ X be an acyclic projectively normal singularity. Then π∗(OX̃) � OX ; in particular, if X̃ is
smooth, then (X,x) is a rational singularity. Moreover, condition (5.1) is satisfied for Z = {x}.

Proof. Let m ≥ 1. The structure sheaf OmE B OX̃ /I
m
E of the mth infinitesimal neighbourhood of the

exceptional divisor E of the blowup has a filtration with factors IkE/I
k+1
E � OE(k), 0 ≤ k ≤m− 1; all these

sheaves have no higher cohomology by Definition 5.3(b), so

H>0
(
X̃,OmE

)
= 0

for all m ≥ 1. It follows from the formal functions theorem [Har77, Theorem III.11.1] that

R>0π∗ (OX̃) = 0.

Since X is normal near x and π is an isomorphism over the complement of x, we have R0π∗(OX̃) � OX , so
that π∗(OX̃) � OX .

Let JX,x ⊂ OX be the ideal sheaf of x. We now prove that π∗(OX̃(−mE)) � JmX,x by induction on m ≥ 0.
The base of induction, m = 0, is proved above. Now assume that the claim is proved for some m ≥ 0, and
consider the exact sequence

0 −→ OX̃(−(m+ 1)E) −→ OX̃(−mE) −→ OE(m) −→ 0.

Applying π∗ and using the induction hypothesis and Definition 5.3(b), we obtain a distinguished triangle

π∗(OX̃(−(m+ 1)E)) −→ JmX,x −→H0(E,OE(m))⊗Ox.

The second arrow in it factors as the composition

JmX,x −↠ JmX,x/J
m+1
X,x = mm

X,x/m
m+1
X,x −→H0(E,OE(m)).

By Definition 5.3(a) the last arrow is an isomorphism, so π∗(OX̃(−(m+ 1)E)) � Jm+1
X,x . □

Now we deduce the Bondal–Orlov localization conjecture for acyclic projectively normal singularities.
Note that when x is a k-point, Definition 5.3 for m = 0 ensures that OE is an exceptional object in Db(E), so
we have a semiorthogonal decomposition Db(E) = ⟨O⊥E ,OE⟩; its first component O⊥E plays the crucial role.

Corollary 5.6. Let π : X̃ = Blx(X)→ X be the blowup of an acyclic projectively normal k-point x ∈ X. Then
the functor π∗ : Db(X̃)→ Db(X) is a Verdier localization, and the subcategory Ker(π∗) ⊂ Db(X̃) is generated
by η∗(O

⊥
E ) ⊂Db(X̃), where η : E→ X̃ is the embedding of the exceptional divisor.

Moreover, the map π∗ : G0(X̃)→G0(X) is surjective with kernel generated by η∗(K0(O⊥E )) ⊂G0(X̃).

Proof. Since OE ∈Db(E) is an exceptional object, the pushforward p∗ : Db(E)→Db(Spec(k)) is a Verdier
localization with Ker(p∗) = O⊥E . By Lemma 5.5 the conditions of Theorem 5.2 are satisfied for π, so π∗ is
a Verdier localization with kernel generated by η∗(O

⊥
E ). Finally, the statement about G0 follows from the

localization exact sequence

K0(Ker(π∗)) −→ K0

(
Db(X̃)

)
−→ K0

(
Db(X)

)
−→ 0;

see [SGA5, Proposition VIII.3.1]. □
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5.2. Crepant localization for ordinary double points

From now on we work over an algebraically closed field k of characteristic not equal to 2.
Recall that an isolated singularity x ∈ X is an ordinary double point or a node if it is a hypersurface

singularity and the exceptional divisor E ⊂ Blx(X) of the blowup is a smooth quadric with conormal
bundle OE(−E) isomorphic to the hyperplane line bundle OE(1). Since E is a Cartier divisor, it follows
that Blx(X) is smooth along E.

Lemma 5.7. An ordinary double point of dimension n ≥ 2 is an acyclic projectively normal singularity.

Proof. Let (X,x) be an ordinary double point. Since the question is étale local at x and (X,x) is a hypersurface
singularity, we can assume that X is a hypersurface in the affine space A

n+1 with equation f = 0 and x ∈ X
is the origin. Then it is easy to see that the exceptional divisor of Blx(X) is given in P

n by the lowest-degree
homogeneous component of f . Since this is a smooth quadric by assumption, we have f = f2 + f≥3, where f2
is a nondegenerate quadratic form and f≥3 is the sum of components of higher degree. Then, denoting by zi
coordinates on A

n+1, it is easy to see that

mm
X,x/m

m+1
X,x = k[z0, z1, . . . , zn]m/f2 ·k[z0, z1, . . . , zn]m−2 �H0(E,OE(m)),

so (a) is satisfied. Condition (b) is evident since E is a quadric of dimension n− 1 ≥ 1. □

Let X be a variety of dimension n ≥ 2 with ordinary double points, and let π : X̃→ X be the blowup of its
singular locus. A combination of Lemma 5.7 with Corollary 5.6 shows that the functor π∗ : Db(X̃)→Db(X)
is a Verdier localization. However, unless n = 2, the functor π∗ is not crepant (see Definition 1.12). The goal
of this subsection is to construct a crepant categorical resolution of X in all dimensions n ≥ 2.

To state our result we need to recall some properties of spinor bundles on quadrics following [Ott88].
Let E be a smooth quadric over an algebraically closed field of characteristic not equal to 2. In the case
where dim(E) = n− 1 is odd, we let S be the spinor bundle on E, and if dim(E) = n− 1 is even, we let S be
one of the two spinor bundles on E and denote the other by S′ . We have

(5.4) N B rk(S) = 2⌊(n−2)/2⌋.

For example rk(S) = 1 when E is 1-dimensional or 2-dimensional, in which case S = O(−1) on E � P
1

and S = O(−1,0) or O(0,−1) on E � P
1 ×P1.

All statements which follow are symmetric with respect to the swap of S and S′ .
The twists and duals of spinor bundles are related by [Ott88, Theorem 2.8]:

(5.5)


S∨ � S(1) if dim(E) ≡ 1 mod 2,

S∨ � S(1), S′∨ � S′(1) if dim(E) ≡ 0 mod 4,

S∨ � S′(1), S′∨ � S(1) if dim(E) ≡ 2 mod 4.

Moreover, by [Ott88, Theorem 2.8] if dim(E) is odd, there is an exact sequence

(5.6) 0 −→ S −→ O⊕2N −→ S(1) −→ 0,

and if dim(E) is even, there are exact sequences

(5.7) 0 −→ S′ −→ O⊕2N −→ S(1) −→ 0 and 0 −→ S −→ O⊕2N −→ S′(1) −→ 0,

where N is defined in (5.4).
By [Kap88] spinor bundles are exceptional, completely orthogonal to each other if dim(E) is even and

can be used to construct a full exceptional collection in Db(E). For our purposes the following collections
are convenient:

(5.8) Db(E) =

⟨OE(1−dim(E)), . . . ,OE(−2),OE(−1),S,OE⟩ if dim(E) is odd,

⟨OE(1−dim(E)), . . . ,OE(−2),S(−1),OE(−1),S,OE⟩ if dim(E) is even;
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see [KPe21, Lemma 2.4]. When dim(E) is odd, the above collection coincides with the one from [Kap88,
Section 4], while if dim(E) is even, Kapranov’s collection takes the form

(5.9) Db(E) = ⟨OE(1−dim(E)), . . . ,OE(−2),OE(−1),S′ ,S,OE⟩,

and to pass between these two, one can use the mutation given by a twist of (5.7).
For future reference, we also record that if dim(E) is odd, we have

(5.10) Ext•(S(1),S) � k[−1].

and if dim(E) is even, then

(5.11) Ext•(S(1),S′) � Ext•(S′(1),S) � k[−1].

These isomorphisms follow from (5.6) and (5.7), respectively, using exceptionality of the spinor bundle S and
the vanishing Ext•(OE ,S) = 0 which is a part of semiorthogonality of (5.8).

Now we are ready to state the main result of this subsection.

Theorem 5.8. Let X be a variety of dimension n ≥ 2 over an algebraically closed field k of characteristic not
equal to 2 with ordinary double points x1, . . . ,xr and no other singularities. Let

π : X̃ = Blx1,...,xr (X) −→ X

be the blowup of all singular points, let ηi : Ei ↪→ X̃ be the embedding of the exceptional divisor over xi , and let Si
be a spinor bundle on Ei . Then the subcategory

(5.12) DB
{
F ∈Db(X̃) | η∗iF ∈ ⟨Si ,OEi

⟩ for each 1 ≤ i ≤ r
}

is admissible in Db(X̃). Moreover,

(i) the induced functor π∗ : D→Db(X) is a crepant Verdier localization;
(ii) the kernel Ker(π∗|D) is generated by completely orthogonal spherical objects K1, . . . ,Kr ∈D, where each Ki

is 2-spherical when dim(X) is even and 3-spherical when dim(X) is odd.

We note that in the case where X is a cone over a smooth quadric Q, the category D appeared in [KPe23]
under the name of the categorical cone over Q.

Remark 5.9. Note that the category D is smooth over k and proper over X because it is an admissible
subcategory of Db(X̃). Therefore, by [Kuz08] it provides a crepant categorical resolution for Db(X).

The proof of the theorem takes most of this subsection. In what follows we construct the objects Ki

explicitly. To start with, consider the case r = 1. In this case we denote by E the only exceptional divisor
of π, by η : E ↪→ X̃ its embedding, and by S a spinor bundle chosen on E. Then by [Kuz08, Proposition 4.1]
applied to (5.8), the category D defined by (5.12) is a part of the semiorthogonal decomposition

(5.13) Db(X̃) =

⟨η∗OE(1−dim(E)), . . . ,η∗OE(−2),η∗OE(−1),D⟩ if dim(E) is odd,

⟨η∗OE(1−dim(E)), . . . ,η∗OE(−2),η∗OE(−1),η∗S′ ,D⟩ if dim(E) is even.

To define the object K, consider the natural distinguished triangle

(5.14) η∗η∗S −→ S −→ S(1)[2]

(which uses the isomorphism OE(−E) � OE(1)). If dim(E) is odd, using adjunction and (5.10) we obtain

(5.15) Ext•(η∗S,η∗S) � k⊕k[−2].

If dim(E) is even, we have

(5.16) Ext•(η∗S,η∗S) � k, Ext•(η∗S,η∗S
′) � Ext•(η∗S

′ ,η∗S) � k[−2],

where the first isomorphism follows from (5.13) as the object η∗S
′ (and by symmetry also η∗S) is exceptional,

and the second and third isomorphisms follow as in the odd-dimensional case using (5.11) instead of (5.10).
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Now we define the object K ∈Db(X̃) as follows:

KB η∗S if dim(E) is odd,(5.17)

K −→ η∗S −→ η∗S
′[2] if dim(E) is even,(5.18)

where in (5.18) the second arrow is nontrivial (see (5.16)).
The following lemma provides the key computation for the proof of the theorem.

Lemma 5.10. The object K has the following properties:

(i) K is the projection of η∗S ∈Db(X̃) to D with respect to (5.13); in particular, K ∈D.
(ii) Ker(π∗|D) = ⟨K⟩.
(iii) The object K is (p+ 2)-spherical, where p ∈ {0,1} is the parity of dim(X).

Proof. (i) If dim(E) is odd, then by the definition (5.12) of D, we must check that η∗η∗S ∈ ⟨S,O⟩. Using (5.14)
we see that it is enough to check that S(1) ∈ ⟨S,O⟩, which follows immediately from (5.6).

If dim(E) is even, we use (5.13) instead of (5.12). Note that K is orthogonal to the exceptional collection

η∗OE(1−dim(E)), . . . ,η∗OE(−2),η∗OE(−1)

(because both η∗S, η∗S
′ are, the latter by (5.13), and the former by symmetry). Furthermore, by (5.16) the

triangle (5.18) realizes K as the right mutation of η∗S with respect to η∗S
′ ; therefore, K is orthogonal to η∗S

′

as well, and hence (5.13) implies that K is the projection of η∗S to D̃.
(ii) First, note that Ker(π∗|D) = Ker(π∗)∩D and that (5.13) implies a semiorthogonal decomposition

Ker(π∗) =

⟨η∗OE(1−dim(E)), . . . ,η∗OE(−2),η∗OE(−1),Ker(π∗)∩D⟩ if dim(E) is odd,

⟨η∗OE(1−dim(E)), . . . ,η∗OE(−2),η∗OE(−1),η∗S′ ,Ker(π∗)∩D⟩ if dim(E) is even,

just because all components of (5.13) except for the last one are contained in Ker(π∗). Therefore,

Ker(π∗|D) = prD(Ker(π∗)),

where prD is the projection to D with respect to (5.13).
On the other hand, recall from Corollary 5.6 that Ker(π∗) is generated by pushforwards to X̃ of objects

from O⊥E . The latter category has a full exceptional collection induced by the first row in (5.8) if dim(E)
is odd or by (5.9) if dim(E) is even. Therefore, Ker(π∗|D) is generated by the projections to D of the
objects η∗OE(1 − dim(E)), . . . , η∗OE(−1), η∗S (and additionally of η∗S

′ if dim(E) is even). But all these
objects project to zero except for η∗S, which projects to K by part (i). Thus, Ker(π∗|D) = ⟨K⟩.

(iii) The description of Ext•(K,K) is given by (5.15) in the odd case, and in the even case it can be
computed as follows. It follows from (i) that Ext•(K,η∗S

′) = 0, so that applying the functor Ext•(K,−)
to (5.18), we get Ext•(K,K) � Ext•(K,η∗S), and the latter group is computed easily using (5.18) and (5.16).

To check that K is spherical, it remains to show that SD(K) � K[p+ 2], where recall p ∈ {0,1} is the parity
of dim(X) and SD is the Serre functor of D. Let us write d = dim(E) = dim(X)− 1.

We first consider the case where d is odd, so p = 0. Let ωX̃ be the canonical line bundle of X̃. Since by
adjunction formula ωX̃ |E � O(1− d), the Serre functor SX̃ of X̃ acts on K = η∗S as

SX̃(η∗S) � η∗(S(1− d))[d + 1].

On the other hand, by (5.13) the Serre functor SD is equal to the composition

SD � R⟨η∗OE(1−d),...,η∗OE(−2),η∗OE(−1)⟩ ◦SX̃ |D,

where R stands for the right mutation functor. Twisting the sequence (5.6) by OE(−i) with 1 ≤ i ≤ d − 1 and
pushing it forward to X̃, we obtain a chain of morphisms

η∗S[2] −→ η∗S(−1)[3] −→ ·· · −→ η∗(S(1− d))[d + 1]
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with cones isomorphic to shifts of η∗OE(−1)⊕2N , . . . , η∗OE(1 − d)⊕2N , so the cone of the composition is
contained in the subcategory ⟨η∗OE(1 − d), . . . ,η∗OE(−2),η∗OE(−1)⟩ = D⊥ ⊂ Db(X̃). Since, on the other
hand, η∗S ∈ D as we proved in (i), we conclude that η∗S[2] is the right mutation of η∗(S(1 − d))[d + 1]
through D⊥. Thus, we have

SD(η∗S) � η∗S[2],

and K � η∗S is 2-spherical.
In the case where d is even, so that p = 1, we can refer to [Kuz22, Proposition 3.15(iii)]. Alternatively, we

can argue in a way similar to that in the odd case. Let prD be the projection functor to D with respect to
the second decomposition in (5.13), so that applying SD � prD◦SX̃ |D to (5.18), we obtain the triangle

(5.19) SD(K) −→ prD(η∗S(1− d))[d + 1] −→ prD(η∗S
′(1− d))[d + 3].

As before, we have prD = Rη∗S
′ ◦R⟨η∗OE(1−d),...,η∗OE(−2),η∗OE(−1)⟩. Using twists of (5.7) repeatedly as in the odd

case to project to ⟨η∗OE(1− d), . . . ,η∗OE(−2),η∗OE(−1)⟩⊥, we obtain

prD(η∗S (1− d))[d + 1] � Rη∗S
′ (η∗S

′[2]) = 0,

prD(η∗S
′(1− d))[d + 3] � Rη∗S

′ (η∗S [4]) � K[4],

where in the last isomorphism we used (i). Thus, (5.19) implies that SD(K) � K[3]. □

Now we are ready to prove the theorem.

Proof of Theorem 5.8. Recall that π : X̃ = Blx1,...,xr (X)→ X is the blowup of a variety with r ordinary double
points xi (in particular, X̃ is smooth), ηi : Ei → X̃, 1 ≤ i ≤ r , is the embedding of the exceptional divisor over
the point xi , Si is a spinor bundle on Ei , and the category D is defined by (5.12). By [Kuz08, Proposition 4.1],
the category D is admissible in Db(X̃) and comes with a semiorthogonal decomposition analogous to (5.13),
where the left orthogonal to D is generated by the exceptional objects ηi∗OEi

(−s) with 1 ≤ s ≤ dim(Ei)− 1
(and also by ηi∗S

′
i if dim(Ei) is even) and 1 ≤ i ≤ r . Since all these objects are contained in Ker(π∗), it

follows from Corollary 5.6 and Proposition 4.1 that π∗|D : D→Db(X) is a Verdier localization. Furthermore,
the arguments of Lemma 5.10 show that

Ker(π∗|D) = ⟨K1, . . . ,Kr⟩,

where Ki = prD(ηi∗Si) is a (p+ 2)-spherical object, and as each of these objects is defined by the isomor-
phism (5.17) or the triangle (5.18) for the corresponding divisor Ei , their supports are disjoint, so they are
completely orthogonal. Finally, we have

Ker(π∗|D)⊥ =
r⋂

i=1

K⊥i =
r⋂

i=1

⊥(SDKi) =
r⋂

i=1

⊥Ki = ⊥Ker(π∗|D),

so the localization π∗|D is crepant by Definition 1.12. □

If dim(X) = 2, decomposition (5.13) shows that the category D from Theorem 5.8 coincides with Db(X̃),
and if dim(X) = 3, we prove below that D is equivalent to the derived category of a small resolution of X.
In higher dimensions D should be considered as a categorical version of a small resolution.

Recall that if x ∈ X is a 3-dimensional node and π : X̃→ X is the blowup of x, the exceptional divisor
of π is E � P

1 ×P1, and its normal bundle is NE/X̃ � OE(−1,−1). The two contractions E→ P
1 induce

two factorizations of the blowup morphism that fit into a commutative diagram of algebraic spaces

X̃
σ−
��

σ+
��

π

��

X̂−

ϖ− ��

X̂+

ϖ+��
X.
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The algebraic spaces X̂± are smooth (they are known as the small resolutions of X), the exceptional loci
of the maps ϖ± : X̂±→ X are smooth rational curves C± ⊂ X̂±, the maps σ± : X̃→ X̂± are the blowups of
these curves, and the birational isomorphism σ+ ◦ σ−1

− = ϖ−1
+ ◦ϖ− : X̂−d X̂+ is the Atiyah flop.

Similarly, if X is a nodal threefold with nodes x1, . . . ,xr , one can choose one of the two small resolutions
for each of the nodes independently and obtain 2r small resolutions in the category of algebraic spaces.
Some of these small resolutions may also exist in the category of projective varieties.

Corollary 5.11. If X is a nodal threefold, π : X̃ → X is the blowup of the nodes, and ϖ : X̂ → X is a small
resolution by an algebraic space X̂, then for an appropriate choice of spinor bundles on the exceptional divisors
of π, we have a canonical equivalence D ≃Db(X̂) such that π∗|D � ϖ∗. Under this equivalence the 3-spherical
object Ki corresponds to OCi

(−1), where Ci is the exceptional curve in X̂ over xi ∈ X.

Proof. To simplify the notation, assume that x ∈ X is the only ordinary double point of X. Then the
blowup π : X̃→ X of x ∈ X admits a factorization through the small resolution

X̃
σ−−−→ X̂

ϖ−−−→ X,

where σ is the blowup of the exceptional curve C ⊂ X̂. Let E � P1 ×P1 be the exceptional divisor of σ (it
coincides with the exceptional divisor of π). Note that σ |E : P1 ×P1→ P1 is the projection to the first factor.
Therefore, the blowup formula applied to σ gives

Db(X̃) =
〈
OE(−1,−1),OE(0,−1),σ ∗

(
Db(X̂)

)〉
.

Since the spinor bundles on E are precisely the line bundles S = OE(−1,0) and S′ = OE(0,−1), comparing
the decomposition above with the description of D given in (5.13), we obtain the equivalence σ∗ : D ≃Db(X̂).

Finally, let us compute σ∗(K). Applying σ∗ to (5.18) and using the fact that σ ◦η : P1 ×P1→ P1 is the
projection p1 onto the first factor, we obtain the distinguished triangle

σ∗(K) −→ p1∗OE(−1,0) −→ p1∗OE(0,−1)[2].

But we have p1∗OE(−1,0) � OC(−1) and p1∗OE(0,−1) = 0, hence σ∗(K) � OC(−1). □

If dim(X) is odd and X has r ordinary double points, the definition of D in (5.12) depends on a choice of
one of the two spinor bundles on each of the quadrics Ei , so we have constructed 2r categorical resolutions.
However, all these resolutions are equivalent and related by categorical flops, see [Kuz22, Proposition 3.15],
which are analogous to Atiyah flops relating 2r small resolutions in the 3-dimensional case. On the other
hand, if dim(X) is even, the constructed categorical resolution D is canonical; i.e., it does not depend on
any choice.

6. Absorption of singularities for nodal varieties

In this section we combine the results obtained in the previous sections and apply them for nodal
varieties. In Section 6.1 we construct (under appropriate assumptions) an absorption of singularities for a
nodal variety X, in Section 6.2 we discuss an obstruction to the existence of absorption of singularities by
categorical ordinary double points, and in Section 6.3 we demonstrate how our approach works for nodal
curves and threefolds.

We keep working over an algebraically closed field k of characteristic not equal to 2.

6.1. Absorption for nodal varieties

First, we apply the construction of Theorem 4.2 to the crepant Verdier localization of Theorem 5.8. Recall
that for an exceptional divisor E of the blowup of an ordinary double point, we write OE(1) for the conormal
bundle OE(−E) and denote by S a spinor bundle on E; we also write S′ for the other spinor bundle if dim(E)
is even, or for the same spinor bundle if dim(E) is odd.
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Theorem 6.1. Let X be a proper variety of dimension n ≥ 2 with ordinary double points x1, . . . ,xr and no
other singularities. Let π : X̃ = Blx1,...,xr (X)→ X be the blowup, and let ηi : Ei ↪→ X̃ be the embedding of the
exceptional divisor over xi . Let p ∈ {0,1} be the parity of n.
Assume that there exists a (nonfull ) exceptional collection E1, . . . ,Er ∈Db(X̃) such that

(6.1) η∗j(Ei) �

Sj or S′j(1) if i = j,

Vi,j ⊗OEj
if i , j,

for Vi,j ∈Db(k) and some choice of spinor bundles Sj on Ej . Then the following statements hold:

(i) Each Pi B π∗(Ei) ∈Db(X) is a P∞,p+1-object, and each Pi B ⟨Pi⟩ ⊂Db(X) is an admissible subcategory,
equivalent to the categorical ordinary double point of degree p.

(ii) The collection P1, . . . ,Pr is semiorthogonal, the subcategory PB ⟨P1, . . . ,Pr⟩ ⊂Db(X) absorbs singulari-
ties of X, and the categories ⊥P and P⊥ are equivalent to admissible subcategories in Db(X̃).

(iii) If n is odd and X projective, P provides a universal deformation absorption of singularities for X.

Note that (6.1) implies that Ei must be locally free of rank 2⌊(n−2)/2⌋ in a neighbourhood of the divisor Ei .

Proof. Consider the crepant categorical resolutions π∗ : D → Db(X) constructed in Theorem 5.8 and
associated with the choice Sj of spinor bundles on Ej determined by (6.1). Let K1, . . . ,Kr ∈ D be the
corresponding (completely orthogonal) sequence of (p+ 2)-spherical objects.

To start with, note that the assumptions (6.1) together with (5.6) and (5.7) imply that

η∗j(Ei) ∈ ⟨Sj ,OEj
⟩

for all i, j . Comparing with the definition (5.12) of D, we see that Ei ∈D for each 1 ≤ i ≤ r . Furthermore,
if prD denotes the projection functor to D with respect to (5.13) (or its obvious analogue if r > 1), it follows
from Lemma 5.10 that

Ext•D
(
Ei ,Kj

)
� Ext•D

(
Ei ,prD

(
ηj∗Sj

))
� Ext•

X̃

(
Ei ,ηj∗Sj

)
� Ext•Ej

(
η∗j(Ei),Sj

)
.

Using (6.1) together with (5.10), (5.11), and the exceptionality of Sj , we see that the graded space Ext•(Ei ,Ki)
is 1-dimensional, and using the semiorthogonality of the pair (Sj ,OEj

) (see (5.8)), we see that Ext•(Ei ,Kj ) = 0

for j , i. Thus, the adherence assumption (4.1) is satisfied. Also note that Db(X) = D/⟨K1, . . . ,Kr⟩ by
Theorem 5.8. Therefore, Theorem 4.2(ii) applies to this situation and implies parts (i) and (ii). Similarly,
part (iii) follows from Corollary 4.8. □

We observe the following nice homological property of the P
∞-objects Pi constructed in Theorem 6.1.

Recall from [Buc21, Definition 4.2.1] that a coherent sheaf F on a Gorenstein variety X is called maximal
Cohen–Macaulay if Exti(F,OX) = 0 for i > 0.

Proposition 6.2. Under the assumptions of Theorem 6.1, assume that Ei is a locally free sheaf on X̃. Then
each P∞-object Pi = π∗(Ei) on X is a maximal Cohen–Macaulay sheaf locally free on X \ {xi}.

To prove Proposition 6.2, we use a simple criterion for the pushforward of a sheaf F on X̃ to be a sheaf.

Lemma 6.3. Let X be an n-dimensional variety with an ordinary double point x ∈ X, and let η : E ↪→ X̃ be the
exceptional divisor of the blowup π : X̃ = Blx(X)→ X. If a sheaf F on X̃ has the property

H>0(E,η∗F(m)) = 0 for m ≥ 0,

then R>0π∗(F) = 0. In particular, this holds when η∗F � S(a) with a ≥ 2−n.

Proof. Consider the exact sequence

0 −→ F(−(m+ 1)E) −→ F(−mE) −→ η∗(η
∗F(m)) −→ 0.
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Since H>0(E,η∗F(m)) = 0 for m ≥ 0 by assumption, it follows that the sheaf Riπ∗F(−(m + 1)E) surjects
onto Riπ∗F(−mE) for all i ≥ 1 and m ≥ 0. On the other hand, R>0π∗(F(−mE)) = 0 for m≫ 0 because −E
is relatively ample for π. Therefore, R>0π∗(F(−mE)) = 0 for all m ≥ 0.

For the second part we just note that H>0(E,S(m)) = 0 for m ≥ 2−n by [Ott88, Theorem 2.3] and Serre
duality, so the first part applies. □

Proof of Proposition 6.2. The maximal Cohen–Macaulay property of π∗E is local with respect to X, so we
may assume that X has a single ordinary double point. We will also assume that η∗E � S (the case
where η∗E � S′(1) is similar).

First, we apply Lemma 6.3 to F = E and a = 0; since n ≥ 2 it implies that PB π∗E is a sheaf. Next, taking
into account that ωX̃/X � OX̃((n− 2)E) and using the Grothendieck duality, we obtain

RHom (π∗E,OX) � π∗RHom
(
E,π!OX

)
� π∗

(
E∨ ⊗ωX̃/X

)
� π∗

(
E∨((n− 2)E)

)
.

It remains to note that η∗(E∨((n − 2)E)) � S∨(2 − n), and by (5.5) this is isomorphic either to S(3−n) or
to S′(3−n); in both cases using Lemma 6.3 with a = 3− n, we conclude that π∗(E∨((n− 2)E)) is a sheaf.
Therefore, π∗E is maximal Cohen–Macaulay.

The fact that Pi is locally free on X \ {xi} follows from the triviality of Ei on the exceptional divisors Ej

for i , j; see, e.g., the argument of [KKS22, Lemma 2.5]. Indeed, this claim is local around the points xj
for j , i, so we may again assume that X has a single ordinary double point x and E is trivial on the
exceptional divisor E of its blowup X̃ = Blx(X). Then, on the level of the unbounded from below categories,
we have a semiorthogonal decomposition

D−(X̃) = ⟨Ker(π∗),π
∗(D−(X))⟩,

and since Ker(π∗) ⊂D−(X̃) is generated by η∗(O
⊥
E ) (where the orthogonal is taken in D−(E)), the triviality

of η∗E implies that E � π∗F for F ∈ D−(X) (alternatively, the same result follows from [KS22, Proposi-
tion 5.5(ii)]). Finally, using the isomorphisms Ext•(E,Ox̃) � Ext•(F,Ox) for x̃ ∈ E, it is easy to deduce that F
is locally free at x if E is locally free along E, and it remains to note that F � π∗E. □

The following proposition shows an example of an application of Theorem 6.1.

Proposition 6.4. Let X ⊂ P
n+1 be a nodal n-dimensional projective quadric with node x ∈ X, i.e., a cone

over a smooth quadric Qn−1 of dimension n − 1. Assume n ≥ 2, and let S be a spinor bundle on Qn−1.
If ρ0 : X \ {x} → Qn−1 is the natural projection, the sheaf ρ∗0(S) has a unique maximal Cohen–Macaulay
extension P to X. The sheaf P is a P

∞,p+1-object on X, where as usual p ∈ {0,1} is the parity of n, it absorbs
singularities of X, and if n is odd, this is a universal deformation absorption.

Proof. Let π : X̃→ X be the blowup of x. Then

X̃ � PQn−1(O⊕O(−1)).

Note that the exceptional divisor E of the blowup is the section of the projection ρ : X̃→Qn−1 corresponding
to the summand O in the bundle O⊕O(−1) above. Since ρ is a P

1-bundle, the functor ρ∗ is fully faithful, so
the bundle

EB ρ∗(S)

is exceptional and satisfies (6.1). Therefore, Theorem 6.1 implies that PB π∗(E) is a P
∞,p+1-object on X which

absorbs singularities of X, and when n is odd, this is a universal deformation absorption. Further, Proposi-
tion 6.2 shows that P is maximal Cohen–Macaulay, and since π induces an isomorphism X̃ \E � X \ {x}
compatible with the projections ρ and ρ0, it follows that P|X\{x} � ρ∗0(S). On the other hand, since maximal
Cohen–Macaulay sheaves are reflexive by [Buc21, Lemma 4.2.2(iii)], the sheaf P is isomorphic to the pushfor-
ward of the sheaf ρ∗0(S) along the inclusion X \ {x} ↪→ X. Thus, P is a maximal Cohen–Macaulay extension
of ρ∗0(S), and its unicity is obvious. □
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The maximal Cohen–Macaulay extension P of ρ∗0(S) is known as a spinor sheaf on X.

Remark 6.5. Another approach to constructing the same absorption of singularities for X relies on homo-
logical projective duality. Indeed, consider X as a singular hyperplane section X = Y ∩H of a smooth
quadric Y ⊂ P

n+2. Then by [KPe21, Theorem 1.1] the homological projective dual Y ♮ of Y is

• either the projectively dual quadric of Y , if n is odd,
• or the double covering of P̌n+2 ramified over the projectively dual quadric of Y , if n is even.

Therefore, applying the main theorem of homological projective duality [Kuz07, Theorem 6.3], we obtain
a semiorthogonal decomposition of Db(X), where one of the components is equivalent to the (derived)
fiber (Y ♮)H of Y ♮ over the point [H] ∈ P̌n+2 of the dual projective space. The above description of Y ♮

implies that Db((Y ♮)H ) ≃Db(Ap), where recall that the right-hand side is a categorical ordinary point of
degree p, where p ∈ {0,1} is the parity of n.

6.2. Obstructions

If the category Db(X) is indecomposable (e.g., if X is a Calabi–Yau variety or, more generally, if X is a
projective Cohen–Macaulay variety and the dualizing sheaf ωX has small base locus, see [Spe22], [LMSdS23],
or [KS22, Corollary 6.7] for details), then X admits no nontrivial absorption. This shows that the existence
of nontrivial absorption is a global condition on X, not a local condition around singularities. In this
subsection we discuss obstructions to absorption of singularities by categorical ordinary double points. To
state our obstruction in the most general form, we recall the following definition.

Let T be a triangulated category with finite-dimensional Hom-spaces. Then the triangulated singularity
category Tsg is defined in [Orl06, Definition 1.7] (see also [KS22, Remark 4.9]) as the Verdier localization

Tsg B T/Thf,

where Thf ⊂ T is the subcategory of left homologically finite-dimensional objects. Note that for this notion to
behave well, it is better to assume that T is hfd-closed in the sense of [KS22, Definition 4.1]. On the other
hand, any admissible subcategory of Db(X) is hfd-closed if X is projective over a perfect field; see [KS22,
Propositions 6.1(ii) and 4.6(iii)].

Lemma 6.6. Let T be a triangulated category with finite-dimensional Hom-spaces.

(i) If T = ⟨T1, . . . ,Tm⟩ is a semiorthogonal decomposition with admissible components, then

Tsg =
〈
(T1)sg, . . . , (Tm)sg

〉
.

(ii) If T is proper, then Tsg = 0.

Proof. Part (i) is [Orl06, Proposition 1.10], and part (ii) is obvious because Thf = T if T is proper. □

Using this and Proposition 6.4, we can state the general obstruction. In the case of varieties of dimension
at most 3, it will be later reformulated as an explicit numerical condition (see Proposition 6.12).

Proposition 6.7. If p ∈ {0,1}, the singularity category Db(Ap)sg of the categorical ordinary double point Db(Ap)
is idempotent complete.

Proof. By Proposition 6.4 the categorical ordinary double point Db(Ap) absorbs singularities of a nodal
quadric X of dimension n = 2k + p for any k ≥ 1; i.e., there is a semiorthogonal decomposition

Db(X) =
〈
T,Db

(
Ap

)〉
,

where T is smooth and proper. Applying Lemma 6.6 we conclude that

Db
(
Ap

)
sg
≃Db(X)sg,
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so it is enough to check that Db(X)sg is idempotent complete. Indeed, by Knörrer periodicity (cf. [Orl04,
Theorem 2.1]) we may assume k = 0, and then in the case p = 0, the category Db(X)sg is described
explicitly in [Orl04, Section 3.3] (as additive category it is equivalent to the category of vector spaces), and
its idempotent completeness is obvious. In the case p = 1, idempotent completeness is proved in [KPS21,
Lemma 2.20 and Proposition 3.1]. □

Remark 6.8. In fact, the same result holds for any p ≥ 0; indeed, one can identify the category Db(Ap)sg
with the additive category of Z/(p+ 1)-graded finite-dimensional vector spaces (where the shift functor acts
as the shift of grading), see [Kel05, Section 7.1], so it is obviously idempotent complete.

Corollary 6.9. Let X be a projective variety. If there exists a semiorthogonal collection of admissible sub-
categories P1, . . . ,Pr ⊂ Db(X), each equivalent to a categorical ordinary double point and such that the cate-
gory PB ⟨P1, . . . ,Pr⟩ absorbs singularities of X, then the category Db(X)sg is idempotent complete.

Proof. Since the category P⊥ is smooth and proper, Lemma 6.6 gives a semiorthogonal decomposition

Db(X)sg =
〈
(P1)sg, . . . , (Pr )sg

〉
.

By Proposition 6.7 and Remark 6.8, every component in the right-hand side is idempotent complete,
so Db(X)sg is idempotent complete as well; see [KPS21, Lemma 2.2]. □

In the rest of this subsection we will make the criterion of Corollary 6.9 explicit for nodal varieties of
small dimension. In dimension 3 we use the notion of maximal nonfactoriality, cf. [KPS21], which we state
in terms of the blowup π : X̃→ X of the singular locus with exceptional divisors E1, . . . ,Er . Note that for
each i we have Ei � P

1 ×P1 and

(6.2) OEi
(Ei) � O

P
1×P1(−1,−1),

hence Pic(Ei)/[OEi
(Ei)] �Z, and the two choices of isomorphism correspond to two contractions Ei → P

1.

Definition 6.10 (cf. [KPS21]). A nodal threefold X is maximally nonfactorial (respectively, Q-maximally
nonfactorial) if the morphism

(6.3) Pic(X̃) −→
r⊕

i=1

Pic(Ei) −→
r⊕

i=1

(Pic(Ei)/[OEi
(Ei)]) �Z

r

is surjective (respectively, has finite cokernel).

Remark 6.11. The map (6.3) factors through the quotient Cl(X) � Pic(X̃)/(⊕ri=1Z · [Ei]), and the induced
homomorphism from Cl(X) to the right-hand side of (6.3) can be identified with the restriction map to the
sum of the class groups of the completions of X at the singular points. Thus, Definition 6.10 is equivalent to
that of [KPS21].

We denote by Br(X) the Brauer group of X.

Proposition 6.12. Let X be a nodal projective variety. If there exists a semiorthogonal collection of admissible
subcategories P1, . . . ,Pr ⊂ Db(X), each equivalent to a categorical ordinary double point and such that the
category PB ⟨P1, . . . ,Pr⟩ absorbs singularities of X, then the following hold:

(i) If dim(X) = 1, the dual graph of X is a tree.
(ii) If dim(X) = 2, then Br(X) = 0. If in addition X is a rational surface, then Cl(X) is torsion-free.
(iii) If dim(X) = 3, X is maximally nonfactorial.

Proof. We use [KPS21, Corollary 3.3] in the case dim(X) = 1, [KPS21, Proposition 3.7] and [KKS22, Proposi-
tion 4.4] in the case dim(X) = 2, and [KPS21, Corollary 3.8] in the case dim(X) = 3. □
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We conclude this subsection with a discussion of the geometric meaning of maximal nonfactoriality.
Recall from Section 5.2 a description of small resolutions of a nodal threefold. The following Proposition 6.13
shows in particular that Q-maximal nonfactoriality implies that all 2r small resolutions of X are projective.

Proposition 6.13. Let X be a nodal projective threefold with r nodes. Consider the following properties:

(a) Db(X)sg is idempotent complete.
(b) X is maximally nonfactorial.
(c) X is Q-maximally nonfactorial.
(d) X admits 2r projective small resolutions.
(e) X admits a projective small resolution.
(f) X is nonfactorial.

We have the following implications: (a) ⇐⇒ (b) =⇒ (c) ⇐⇒ (d) =⇒ (e) =⇒ (f). If, moreover, X has a single
node, i.e., r = 1, then (c) ⇐⇒ (d) ⇐⇒ (e) ⇐⇒ (f).

We do not know if the equivalence (b) ⇐⇒ (c) always holds for nodal threefolds. However, in [KS23,
Proposition A.14] we prove the equivalence (b) ⇐⇒ (c) for complex nodal Fano threefolds.

Proof. The equivalence (a) ⇐⇒ (b) is [KPS21, Corollary 3.8]. The implication (b) =⇒ (c) is trivial.
For the equivalence (c) ⇐⇒ (d) we consider the blowup X̃ of X at all the nodes and note that each

exceptional divisor Ei � P
1 ×P1 has two P

1-bundle structures pi,± : Ei → P
1, and by (6.2) the conormal

bundle OEi
(−Ei) is relatively ample for both of them. We will use the following criterion: if I ⊂ {1, . . . , r} is a

subset, then there is a contraction σI : X̃→ X̂ over X to a smooth projective variety X̂ such that

σI |Ei
=

pi,+ for i ∈ I,
pi,− for i < I

if and only if there is a globally generated line bundle L on X̃ such that

(6.4) L|Ei
�

p∗i,+OP
1(di), di > 0, for i ∈ I,

p∗i,−OP
1(di), di > 0, for i < I

(more precisely, the “if” part is proved in [Ish77, Theorem 1], while the “only if” part is obvious).
Now, assume that X is Q-maximally nonfactorial. Since the cokernel of (6.3) is finite, an appropriate

positive multiple of any vector is in the image of (6.3), so for each subset I we can find a line bundle L

satisfying (6.4), and twisting it by the pullback of a sufficiently ample line bundle on X, we can assume that
it is globally generated. Thus, X admits 2r projective small resolutions. This proves (c) =⇒ (d).

Conversely, assume that X is not Q-maximally nonfactorial, i.e., the map (6.3) has infinite cokernel. Then
there is a nonzero linear function υ :

⊕r
i=1(Pic(Ei)/[OEi

(Ei)])→Z such that the image of (6.3) is contained
in Kerυ. Let I± be the sets of i ∈ {1, . . . , r} such that υ([p∗i,±OP

1(1)]) > 0. By (6.2) the elements [p∗i,±OP
1(1)]

are opposite in Pic(Ei)/[OEi
(Ei)], so the sets I+ and I− are disjoint; moreover, since υ , 0, at least one of

these sets is nonempty. Now consider the small resolution X̂→ X such that the restriction of the factorization
map σ : X̃→ X̂ to Ei coincides with pi,± if i ∈ I±; in other words, σ = σI as above with I+ ⊂ I and I∩I− = ∅.
If X̂ is projective, the above criterion shows the existence of a line bundle L on X̃ satisfying (6.4), and then
the value of υ on the image of L is positive. Indeed, if I+ , ∅, then the positivity follows from I+ ⊂ I , and
if I− , ∅, the positivity follows from I ∩ I− = ∅. This contradiction proves (d) =⇒ (c).

The implication (d) =⇒ (e) is trivial. Finally, the implication (e) =⇒ (f) follows from the fact that factorial
nodal threefolds admit no projective small resolutions (indeed, if X̂ → X is a small projective resolution,
then Pic(X) ⊊ Pic(X̂) = Cl(X̂) = Cl(X), so X is not factorial).

Now assume that X has a single node. It suffices to show (f) =⇒ (c). This implication is equivalent to the
statement that the map in (6.3) is nonzero if and only it has finite cokernel, which is obvious because its
target is Z. □
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Finally, we state a criterion for a nodal threefold X to be maximally nonfactorial in terms of a small
resolution by an algebraic space.

Lemma 6.14. Let X̃
σ−−−→ X̂

ϖ−−−→ X be a factorization of the blowup π through a small algebraic space resolution.
Let Ci = σ (Ei) � P

1 be the exceptional curves of ϖ. Then the map (6.3) factors as the composition

Pic
(
X̃
) σ∗−−−→ Pic

(
X̂
)
−−→

r⊕
i=1

Pic(Ci) −−−→∼
r⊕

i=1

(Pic(Ei)/[OEi
(Ei)]),

where the first map is surjective, the second map is given by the restriction, and the last map is induced
by the pullbacks (σ |Ei

)∗. In particular, X is maximally nonfactorial if and only if there exist divisor
classes D1, . . . ,Dr ∈ Pic(X̂) such that

Di ·Cj = δij .

Proof. The map σ : X̃ → X̂ is the blowup of the curves C1, . . . ,Cr with exceptional divisors E1, . . . ,Er ,
so Pic(X̃) = σ ∗(Pic(X̂))⊕ (⊕Z[Ei]). Thus, it is enough to check that the maps agree on σ ∗(Pic(X̂)) and
on the Ei . The first follows from the equalities σ∗(σ ∗(D)) = D (which also proves the surjectivity of σ∗)
and σ ∗(D)|Ei

= (σ |Ei
)∗(D |Ci

), and the second is obvious as Ei is taken to zero by both maps. □

6.3. Curves and threefolds

In this subsection we collect examples of absorption for nodal curves and threefolds. We do not discuss the
case of nodal surfaces because it essentially reduces to the results obtained in [KKS22]; see also Example 3.11.

6.3.1. Curves. We start with the case of nodal curves.

Proposition 6.15. Assume that C = C′ ∪C′′ is a reducible Gorenstein curve, where C′ � P
1 and the scheme

intersection C′ ∩C′′ is a single point x which is smooth on C′′ . Let r ′ : C′→ C be the embedding. Then for any
line bundle L′ on C′ the object

PB r ′∗L
′ ∈Db(C)

is a P∞,2-object. Moreover, the subcategory PB ⟨P⟩ ⊂Db(C) is admissible, and

(6.5) ⊥P ≃Db(C′′).

In particular, if C′′ is smooth, then P provides a universal deformation absorption for C.

Proof. For any line bundle L on C we have an exact sequence

0 −→ L −→ L|C′ ⊕L|C′′ −→ L|x −→ 0

(obtained by tensor product of L with 0→ OC → OC′ ⊕OC′′ → Ox→ 0). Conversely, for any pair of line
bundles L′ on C′ and L′′ on C′′ we can define

LB Ker(L′ ⊕L′′ −→ Ox),

where the map is given by trivializations of L′ and L′′ at x, and it is easy to see that L is a line bundle.
This shows that restriction of line bundles gives an isomorphism

(6.6) Pic(C) = Pic(C′)⊕Pic(C′′).

In particular, any line bundle on C′ is obtained by restriction from C, so, twisting by a line bundle on C if
necessary, we may assume L′ = OC′ (−1).

Now consider the line bundle L0 on C which restricts to C′ as OC′ (−1) and to C′′ as OC′′ , and the line
bundle L1 which restricts to C′′ as OC′′ (−x) and to C′ as OC′ . Then we have exact sequences

0 −→ OC′′ (−x) −→ L0 −→ OC′ (−1) −→ 0 and 0 −→ OC′ (−1) −→ L1 −→ OC′′ (−x) −→ 0.
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Merging these we obtain a long exact sequence

0 −→ OC′ (−1) −→ L1 −→ L0 −→ OC′ (−1) −→ 0.

This exact sequence can be considered as triangle (2.4) with P = OC′ (−1), M = Cone(L1→ L0), and q = 2.
Applying Ext•(−,OC′ (−1)) to the triangle L1 → L0 →M, we obtain Ext•(M,P) = k. Besides, the condi-
tion hocolimP[2i] = 0 follows from Lemma 2.3 (see Remark 2.7). Therefore, P is a P

∞,2-object, and the
subcategory PB ⟨P⟩ is admissible in Db(C) by Lemma 2.10 as C is Gorenstein and M ∈Dperf(C).

Now consider the contraction σ : C→ C′′ of the component C′ to the point x ∈ C′′ . Since x is a smooth
point on C′′ , we have a well-defined functor σ ∗ : Db(C′′)→Db(C) which is left adjoint to σ∗, and since the
curve C′ is rational, we have σ∗(OC) � OC′′ , hence σ∗ ◦ σ ∗ � id. Thus, σ ∗ is fully faithful, and we have a
semiorthogonal decomposition

(6.7) Db(C) =
〈
Ker(σ∗),σ

∗
(
Db(C′′)

)〉
.

A standard argument (see [KKS22, Lemma 2.1]) shows that Ker(σ∗) is generated by P = OC′ (−1). This
proves (6.5).

The last statement follows from Theorem 1.8. □

Example 6.16 (cf. [KPS21]). Let C be a nodal tree of smooth rational curves with r + 1 components. Then
choosing an appropriate ordering for the components of C (removing rational tails one by one) and using
Proposition 6.15 inductively, we obtain an admissible semiorthogonal decomposition of Db(C) with r
components generated by P

∞,2-objects and one component equivalent to Db(P1) (hence generated by two
exceptional objects).

Note that conversely, by Proposition 6.12, if X is a nodal curve which admits absorption of its singularities
by a semiorthogonal collection of admissible subcategories generated by P

∞-objects, then the dual graph
of X is a tree.

6.3.2. Threefolds. The most interesting case for our applications in the sequel [KS23] to this paper is
the case of nodal threefolds. Recall that δij is the Kronecker delta and TOCi

(−1) are the spherical twists.

Theorem 6.17. Let X be a threefold with ordinary double points x1, . . . ,xr and no other singularities, and
let ϖ : X̂→ X be a small resolution by an algebraic space with exceptional curves C1, . . . ,Cr . Assume that there is
a (nonfull ) exceptional collection E1, . . . ,Er in Db(X̂) such that

(6.8) Ei |Cj
� OCj

(
±δij

)
.

Then X̂ is a projective variety, and

(i) each Pi B ϖ∗(Ei) ∈Db(X) is a P∞,2-object, and each Pi B ⟨Pi⟩ ⊂Db(X) is an admissible subcategory,
equivalent to a categorical ordinary double point;

(ii) the collection P1, . . . ,Pr is semiorthogonal, the subcategory PB ⟨P1, . . . ,Pr⟩ ⊂Db(X) provides a universal
deformation absorption of singularities for X, and the functor ϖ∗ induces equivalences

⊥P ≃ ⊥
〈
E1,TOC1 (−1)(E1), . . . ,Er ,TOCr (−1)(Er )

〉
,

P⊥ ≃
〈
E1,TOC1 (−1)(E1), . . . ,Er ,TOCr (−1)(Er )

〉⊥
,

where the orthogonals on the left-hand side are taken in Db(X) and the orthogonals on the right-hand side are
taken in Db(X̂).

Proof. The projectivity of X̂ follows from Lemma 6.14 and Proposition 6.13. The remaining part of the
theorem is a special case of Theorem 6.1; indeed, by Corollary 5.11 there is an equivalence D �Db(X̂)
such that the objects Ki correspond to OCi

(−1) and the functor π∗|D corresponds to ϖ∗. Moreover, we
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have S = OE(−1,0), S′ = OE(0,−1), S′(1) = OE(1,0), and it is clear that condition (6.8) on X̂ translates into
condition (6.1) in D. Therefore, Theorems 6.1 and 4.2 give the required results. □

Condition (6.8) is subtle in general, but in the case of a single node, it simplifies.

Corollary 6.18. Let X be a projective threefold with Hi(X,OX) = 0 for i > 0 and a single node. Assume that X is
maximally nonfactorial. Then Db(X) contains a categorical ordinary double point subcategory P ⊂Db(X) which
provides a universal deformation absorption of singularities for X.

Proof. Since X is a maximally nonfactorial threefold, Proposition 6.13 ensures the existence of a projective
small resolution X̂ → X. Let C ⊂ X̂ be its exceptional curve. Then Lemma 6.14 shows that there is a
divisor class D ∈ Pic(X̂) such that D · C = 1. Therefore, Theorem 6.17 applied to the exceptional line
bundle E = OX̂(D) implies the corollary. □

In the rest of this section we discuss del Pezzo threefolds over an algebraically closed field k of
characteristic zero. In this case a combination of Proposition 6.12 with [PS21a, Theorem 1.1] proves that
nodal del Pezzo threefolds of degree d ≤ 4 do not admit absorption by categorical ordinary double points.
Therefore, we concentrate on the case of quintic del Pezzo threefolds. Similar results in terms of Kawamata
decompositions have been obtained by [Xie23] and [PS21a].

6.3.3. Quintic del Pezzo threefolds. Let X be a quintic del Pezzo threefold, i.e., a complete intersection

X BGr(2,5)∩P6 ⊂ P
9.

If X has isolated singularities, then all of them are nodes, see [Fuj86, Theorem 2.9], the number r of nodes
is 1 ≤ r ≤ 3, and for each such r there is a unique (up to isomorphism) quintic del Pezzo threefold X with r
nodes; see [KPr23, Theorem 7.1].

Proposition 6.19. Let X be a nodal quintic del Pezzo threefold with r nodes over an algebraically closed field k
of characteristic zero. Then there is a semiorthogonal decomposition

Db(X) = ⟨P1, . . . ,Pr ,C⟩,

where the Pi are completely orthogonal P
∞,2-objects which provide a universal deformation absorption of singulari-

ties and C is a smooth and proper category. Moreover, each Pi is a maximal Cohen–Macaulay sheaf on X locally
free on the complement of the corresponding node.

Proof. It is well known (see, e.g., [KPr23, Theorem 7.1]) that for each 1 ≤ r ≤ 3 there is a diagram

X̂
σ

��

ϖ

��
Y X,

where the following hold:

• If r = 1, then Y = P
2, the map σ is the projectivization of the vector bundle V on P

2 defined by the
exact sequence

0 −→ V −−→Ω(1)⊕O(−1)⊕O(−1)
ϕ
−−−→ O⊕2 −→ 0,

and the map ϖ contracts a smooth rational curve C ⊂ P(V) which projects isomorphically to a line
in P

2. In this case we take E1 B O(−H), where H is the pullback of the hyperplane class of Y = P
2.

• If r = 2, then Y � Fl(1,2;3), the map σ is the blowup of a point y ∈ Y , and the map ϖ contracts
the strict transforms C1,C2 ⊂ X̂ of the fibers of the two projections Fl(1,2;3)→ P

2 passing through
the point y. In this case we take Ei = O(−Hi), i = 1,2, where Hi is the pullback of the divisor class
on Fl(1,2;3) inducing the projection Fl(1,2;3) ⊂ P

2 ×P2→ P
2 to the ith factor.
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• If r = 3, then Y � P
3, the map σ is the blowup of three points y1, y2, y3 ∈ Y , and the map ϖ

contracts the strict transforms C1,C2,C3 ⊂ X̂ of the lines connecting the points (we label the lines
in such a way that yi does not lie on σ(Ci)). In this case we take Ei B O(H −Di), where H is the
pullback of the hyperplane class of Y = P

3 and Di is the exceptional divisor of σ over yi .

In all these cases it is easy to see that condition (6.8) of Theorem 6.17 is satisfied for any ordering of
the singular points, so we obtain the completely orthogonal collection of P∞,2-objects Pi B ϖ∗(Ei). The
objects Pi are maximal Cohen–Macaulay sheaves by Proposition 6.2. □

Remark 6.20. Similarly to Remark 6.5, one can use homological projective duality to obtain another
description of the P

∞,2-objects Pi . Indeed, any X is a linear section of Gr(2,5) ⊂ P
9 by an appropriate

linear subspace P
6 ⊂ P

9, and the homological projective dual variety of the Grassmannian is the dual
Grassmannian Gr(3,5) ⊂ P̌

9; see [Kuz06, Section 6.1]. Thus, the objects Pi correspond to natural generators
of the (derived) intersection Gr(3,5)∩P2 (which consists of 1, 2, or 3 reduced points, respectively) by the
linear subspace P

2 ⊂ P̌
9 orthogonal to P

6 ⊂ P
9.
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