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1. Introduction

1.1. Dual statements of the Kodaira embedding theorem

Let X be a compact Kähler manifold of dimension n. The celebrated Kodaira embedding theorem asserts
that if the Kähler cone K (X) of X contains a rational cohomology class, then X is projective; cf. [Kod54].
Now consider the dual Kähler cone

K (X)∨ =
{
α ∈Hn−1,n−1(X,R) :=Hn−1,n−1(X)∩H2n−2(X,R)

∣∣∣ ⟨α,ω⟩ ≥ 0 for every ω ∈K (X)
}

of X, where
⟨ , ⟩ : Hn−1,n−1(X,R)⊗H1,1(X,R) −→ R

is the perfect pairing defined by Poincaré duality. As the closure K (X) of K (X) in H1,1(X,R) is a salient
cone, the dual K (X)∨ has non-empty interior Int(K (X)∨) in Hn−1,n−1(X,R). The following problem was
first asked and studied by Oguiso and Peternell [OP00, OP04] in search of a dual statement of the Kodaira
embedding theorem.

Problem 1.1 (Oguiso–Peternell). Let X be a compact Kähler manifold of dimension n such that Int(K (X)∨)
contains an element of H2n−2(X,Q). How algebraic is X? For instance, what are the possible algebraic dimensions
of X?

Here is another problem dual to the Kodaira embedding theorem that we can formulate. The closure
K (X) of the Kähler cone is called the nef cone of X. Thanks to Demailly and Păun, we know that the
Poincaré dual of K (X) is the closed convex cone in Hn−1,n−1(X,R) generated by the classes of closed
positive currents of type (n−1,n−1); cf. [BDP+13, Theorem 2.1]. The analog of such a cone in H1,1(X,R) is
the pseudoeffective cone Psef(X), defined as the closed convex cone in H1,1(X,R) generated by the classes of
closed positive currents of type (1,1). From this point of view, if Psef(X)∨ ⊂ Hn−1,n−1(X,R) denotes the



On the dual positive cones and the algebraicity of compact Kähler manifolds 3On the dual positive cones and the algebraicity of compact Kähler manifolds 3

Poincaré dual of Psef(X) and Int(Psef(X)∨) its interior in Hn−1,n−1(X,R), then the following can also be
considered as a dual problem to the Kodaira embedding theorem.

Problem 1.2. Let X be a compact Kähler manifold of dimension n such that Int(Psef(X)∨) contains an element
of H2n−2(X,Q). Is X always projective? If not, how algebraic is X?

We say that a compact Kähler manifold X of dimension n satisfies the dual Kodaira condition (K) if
Int(K (X)∨) contains an element of H2n−2(X,Q). The dual Kodaira condition (P) is defined similarly with
Int(K (X)∨) replaced by Int(Psef(X)∨).

We can compare the dual Kodaira conditions (K) and (P), together with the condition in the Kodaira
embedding theorem, as follows. On the one hand if ω ∈K (X), then ωn−1 ∈ Int(Psef(X)∨), so condition (P)
is weaker than the condition in the Kodaira embedding theorem. On the other hand since K (X) ⊂ Psef(X),
condition (P) is stronger than condition (K). It is still unknown whether these conditions are equivalent.

In [OP04], a similar problem had also been studied by Oguiso and Peternell.

Problem 1.3 (Oguiso–Peternell). Let X be a compact Kähler manifold of dimension n such that X contains a
smooth curve with ample normal bundle. How algebraic is X?

The two Oguiso–Peternell problems (Problems 1.1 and 1.3) could be related by the conjecture that if C ⊂ X
is a smooth curve with ample normal bundle, then [C] ∈ Int(K (X)∨); cf. [OP04, Conjecture 0.3]. All the
problems introduced above aim at understanding the algebraicity of compact Kähler manifolds containing
some positive rational Hodge class of bidimension (1,1).

1.2. Main results

In this article, we study the aforementioned problems. Our first result provides the following partial
answer to the Oguiso–Peternell problem (and also to Problem 1.2).

Theorem 1.4. Let X be a compact Kähler manifold. If X satisfies the dual Kodaira condition (K), then the
Albanese torus of X is projective.

For a compact Kähler manifold X as in Problem 1.1, Theorem 1.4 gives a lower bound of the algebraic
dimension a(X) of X, namely the dimension of its Albanese image. In particular, if X has maximal Albanese
dimension (namely, if the Albanese map is generically finite onto its image), then X is projective.

Remark 1.5. If we replace condition (K) in Theorem 1.4 with the existence of a smooth curve C ⊂ X such that
NC/X is ample (hence in the context of Problem 1.3), then the projectivity of Alb(X) simply follows from the
surjectivity of Alb(C)→ Alb(X); cf. [Ott16, Lemma 12].

The essential part of the proof of Theorem 1.4 consists in answering Problem 1.1 for complex tori; see
Proposition 5.1 for the precise statement. As a consequence of Proposition 5.1 (together with Proposition 6.1
about hyper-Kähler manifolds), we also answer Problems 1.1 for Ricci-flat compact Kähler manifolds.

Theorem 1.6. Let X be a compact Kähler manifold with c1(X) = 0 ∈H2(X,R). If X satisfies the dual Kodaira
condition (K), then X is projective.

For a compact Kähler surface S , Huybrechts [Huy99, Huy03b] and independently Oguiso–Peternell [OP00]
proved that if S satisfies the dual Kodaira condition (K), then S is projective. This completely answers
Problem 1.1 and Problem 1.2 in dimension 2. In this article, we answer Problem 1.2 in dimension 3 except for
simple non-Kummer threefolds, which presumably do not exist (see Remark 1.9).

Theorem 1.7. Let X be a smooth compact Kähler threefold. Assume that X is not a simple non-Kummer threefold.
If X satisfies the dual Kodaira condition (P), then X is projective.
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The study of the Oguiso–Peternell problem in the threefold case was initiated by Oguiso and Peternell
in [OP04]. Suppose that X is a compact Kähler threefold which is not simple non-Kummer. They proved that
if Int(K (X)∨) contains an element of H2n−2(X,Q) which is a curve class, then X has algebraic dimension
a(X) ≥ 2. We improve their result by removing the curve class assumption.

Theorem 1.8. Let X be a smooth compact Kähler threefold. Assume that X is not a simple non-Kummer threefold.
If X satisfies the dual Kodaira condition (K), then a(X) ≥ 2.

Remark 1.9. In both Theorems 1.7 and 1.8, the existence of simple non-Kummer threefolds would be excluded
if the abundance conjecture holds for compact Kähler threefolds (see [HP18, Proof of Theorem 6.2]). This is
proven in a very recent paper by Das and Ou [DO23].

If we replace the dual Kodaira condition in Theorem 1.8 with the existence of a smooth curve in X with
ample normal bundle (thus in the context of Problem 1.3), then the same conclusion a(X) ≥ 2 holds; this was
proven by Oguiso and Peternell [OP04, Theorem 0.5]. Oguiso and Peternell have also outlined a strategy to
construct a non-algebraic threefold X such that Int(K (X)∨) contains a curve class (or such that X contains
a smooth curve with ample normal bundle). An explicit construction of such an example is still missing.

While we are still unable to solve Problems 1.1 and 1.3 in dimension 3, we can relate these problems to a
problem about 1-cycles in threefolds. We postpone the discussion to Section 1.4, after we give an outline of
the proofs of Theorems 1.7 and 1.8 about threefolds.

1.3. Outline of the proofs of Theorems 1.7 and 1.8

To prove Theorem 1.8, we have to show that if X is a compact Kähler threefold X of algebraic dimension
a(X) ≤ 1 which is not simple non-Kummer, then Int(K (X)∨)∩H2n−2(X,Q) = ∅. Essentially based on
Fujiki’s descriptions of algebraic reductions of compact Kähler threefolds [Fuj83], those threefolds are
bimeromorphic to one of the following (see Proposition 2.13):

(i) a threefold which dominates a surface,
(ii) a fibration in abelian varieties over a curve,
(iii) a finite quotient of a smooth isotrivial torus fibration over a curve without multi-sections,
(iv) a finite quotient of a 3-torus T .

According to the bimeromorphic invariance of the emptiness of Int(K (X)∨)∩H2n−2(X,Q) (see Proposi-
tion 3.2), it suffices to prove that Int(K (X)∨)∩H2n−2(X,Q) = ∅ for the above four types of varieties. The
first case is an immediate consequence of [OP04, Proposition 2.6]. The proof in cases (ii), (iii), and (iii) will
be carried out in Sections 4, 7, and 5, respectively.

Since K (X) ⊂ Psef(X), Theorem 1.8 also implies that a compact Kähler threefold X as in Theorem 1.7
satisfies a(X) ≥ 2. Therefore, to prove Theorem 1.7 for X, it suffices to exclude the possibility that a(X) = 2.
Compact Kähler threefolds of algebraic dimension 2 are bimeromorphic to elliptic fibrations over a projective
surface, and we will prove Theorem 1.7 for elliptic threefolds in Section 8.

1.4. A question about 1-cycles and the Oguiso–Peternell problem

We now relate Problem 1.1 to a question about 1-cycles in compact Kähler threefolds, which we first
formulate.

Let X be a compact Kähler manifold and Y ⊂ X a complex subvariety of codimension l. Let α ∈
Hk,k(X,Q) be a Hodge class which vanishes in H2k(X\Y ,Q). Since H2k(X,Q) carries a pure Hodge
structure, α belongs to the image of ı∗ : H2k−2l(Ỹ ,Q)→ H2k(X,Q), where ı : Ỹ → X is the composition
of a Kähler desingularization Ỹ → Y of Y with Y ↪→ X (see e.g. Lemma 2.7). If we moreover assume that
X is projective, then based on the existence of polarization on the underlying Q-Hodge structure of (the
summands of the primitive decomposition of) H2k(X,Q), the class α is even the image of a Hodge class
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β ∈ Hk−l,k−l(Ỹ ,Q); cf. [Voi14, Remark 2.30]. Without the projectivity assumption on X, it is yet unknown
whether the latter property still holds, even for 1-cycles in threefolds.

Question 1.10. Let X be a smooth compact Kähler threefold, and let Y ⊂ X be a surface (possibly singular with
several irreducible components). Let ı : Ỹ → X be the composition of a desingularization Ỹ → Y of Y with
the inclusion Y ↪→ X. Given a Hodge class α ∈ H2,2(X,Q) which vanishes in H4(X\Y ,Q), does there exist a
β ∈H1,1(Ỹ ,Q) such that ı∗β = α?

So far, Question 1.10 can be answered in the affirmative if Y is irreducible (see Lemma 8.3). Under the
assumption that Question 1.10 has a positive answer, we are able to answer Problems 1.1 and 1.3 in dimension
3 (except for simple non-Kummer threefolds; see Remark 1.9).

Corollary 1.11. Assume that Question 1.10 has a positive answer. Let X be a smooth compact Kähler threefold
which is not simple non-Kummer. If X satisfies the conditions in Problems 1.1 or 1.3, then X is projective.

1.5. The existence of connecting families of curves and Problem 1.2

We finish this introduction by discussing how one could expect Problem 1.2 to have a positive answer. Let
X be a compact Kähler manifold. The movable cone M (X) ⊂Hn−1,n−1(X,R) of X is defined as the closed
convex cone generated by classes of the form µ∗(ω1 ∧ · · · ∧ωn−1), where µ : X̃ → X is a bimeromorphic
morphism from a compact Kähler manifold X̃ and the ωi are Kähler classes on X̃. Let

M (X)NS := M (X)∩NS(X)R,

where NS(X)R denotes the R-span of Hn−1,n−1(X,Q) in Hn−1,n−1(X,R). As a consequence of [BDP+13,
Theorem 2.4], if we assume that X is projective, then M (X)NS coincides with the closed convex cone
generated by the classes of connecting families of curves (Ct)t∈T (which means that for every general pair of
points x,y ∈ X, there exist t1, . . . , tl ∈ T such that x,y ∈ Ct1 ∪ · · · ∪Ctl and Ct1 ∪ · · · ∪Ctl is connected). One
can ask whether this property remains true without the projectivity assumption.

Question 1.12. Let X be a compact Kähler manifold. Does the Néron–Severi part M (X)NS of the movable cone
coincide with the closed convex cone generated by the classes of a connecting family of curves?

Conjecturally, M (X) is the dual cone of Psef(X); cf. [BDP+13, Conjecture 2.3]. If we assume this
conjecture and that Question 1.12 has a positive answer, then a compact Kähler manifold X satisfying
Int(Psef(X)∨)∩Hn−1,n−1(X,Q) , ∅ would be algebraically connected (see Section 2.6 for the definition).
By Campana’s projectivity criterion (Theorem 2.9), a compact Kähler manifold X as in Problem 1.2 would
then be projective. Together with the evidence provided by threefolds (Theorem 1.7) and Ricci-flat manifolds
(Theorem 1.6), this leads us to conjecture the following.

Conjecture 1.13. Let X be a compact Kähler manifold of dimension n. If X satisfies the dual Kodaira condition
(P), then X is projective.

1.6. Organization of the article

In the next section, we recall and prove some preliminary results that we need in this article. In Section 3,
we prove some results about the invariance of the conditions in Problems 1.1 and 1.2 under dominant maps.
In Section 4, we study smooth isotrivial torus fibrations, which will be useful to prove the main theorems.
We then prove Theorem 1.4 in Section 5 and Theorem 1.6 in Section 6. In Section 7, we study fibrations
in abelian varieties over a curve, similarly to what we do in Section 4 for smooth isotrivial torus fibrations.
Section 8 is devoted to elliptic fibrations. We will conclude the proofs of Theorems 1.7 and 1.8 in Section 9.
Finally, we prove Corollary 1.11 in Section 10, which relates the Oguiso–Peternell problems to Question 1.10.
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2. Preliminaries

2.1. Convention and terminology

In this article, compact complex manifolds and varieties are assumed to be irreducible (but subvarieties
can be reducible). A fibration is a surjective proper holomorphic map f : X → B with connected fibers.
We say that a compact complex variety X is in the Fujiki class C if X is meromorphically dominated by a
compact Kähler manifold.

Let X be a compact complex manifold. The hypercohomology of a bounded complex of sheaves of
abelian groups F • on X is denoted by H•(X,F •). For any subring R ⊂ C, we define Hk,k(X,R) as the
kernel of the composition

H2k(X,R) −→H2k(X,C) ≃H2k(X,Ω•X) −→H2k
(
X,Ω•≤k−1X

)
,

where Ω•X is the holomorphic de Rham complex. Note that we have

Hk,k(X,Q) ≃Hk,k(X,Z)⊗ZQ

(which does not hold in general if Q is replaced by other rings, e.g. R). When X is a compact Kähler
manifold, Hk,k(X,R) is the sub-R-module of H2k(X,R) consisting of elements whose image in H2k(X,C) is
of type (k,k) with respect to the Hodge decomposition. The weight filtration of a mixed Hodge structure H
is denoted by W•H .

We follow [Dem12] for the definition and convention of positive cones, and the reader is referred to op. cit.
for related basic properties.

2.2. Kähler forms on normal complex spaces

Let X be a normal complex space (for instance, the quotient of a complex manifold by a finite group).
A smooth function on X is a continuous function f : X → R such that for some open cover {Ui} of X,
there exist holomorphic embeddings Ui ↪→ CN such that each f|Ui extends to a smooth function on a
neighborhood of Ui in CN . The sheaf of germs of smooth functions on X is denoted by C∞X . Similarly, a
strictly plurisubharmonic (or psh for short) function on X is an upper semi-continuous function with values
in R∪ {−∞} which extends to a strictly psh function on a neighborhood of a local embedding X ↪→ CN .

Let PHX =ℜOX ⊂ C∞X be the subsheaf of pluriharmonic functions (i.e., the real part of OX ). A Kähler
metric on X is a collection of smooth strictly psh functions {φi : Ui → R }i∈I , where {Ui}i∈I is an open cover
of X such that φi |Ui∩Uj −φj |Ui∩Uj ∈ PHX(Ui ∩Uj ). In particular, a Kähler metric on X is an element of

H0(X,C∞X /PHX). The short exact sequences

(2.1) 0 −→ PHX −→ C∞X −→ C∞X /PHX −→ 0

and

(2.2) 0 −→ R
×
√
−1−−−−−→ OX

2·ℜ−−−−→ PHX −→ 0

give the composition

[•] : H0(X,C∞X /PHX) −→H1(X,PHX) −→H2(X,R),
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and a Kähler class [ω] ∈H2(X,R) is the image of a Kähler metric ω ∈H0(X,C∞/PHX). The Kähler classes
form a convex cone K (X) ⊂H2(X,R), and elements in the closure K (X) are called nef classes of X.

The following two lemmas are presumably well known; they are direct consequences of Varouchas’
work [Var84, Var89].

Lemma 2.1. Let f : X→ X/G be the quotient of a compact Kähler manifold X by a finite group G. A G-invariant
nef class [ω] ∈H2(X,R) is the pullback f ∗[ω′] of a nef class [ω′] ∈H2(X/G,R).

Proof. Since f ∗ : H2(X/G,R)→H2(X,R) is injective (because f is finite) and nef classes are limits of Kähler
classes, it suffices to prove that a G-invariant Kähler class [ω] ∈H2(X,R) is the pullback f ∗[ω′] of a Kähler
class [ω′] ∈H2(X/G,R). Let ω be a G-invariant Kähler form representing [ω]. Then we can find an open
cover {Vi} of X/G and C∞-strictly psh functions ui defined over Ui := f −1(Vi) such that ω|Ui = i∂∂̄ui . By
averaging over the G-orbits, we can assume that the functions ui are G-invariant. By [Var89, Lemma II.3.1.2],
the pushforwards vi = f∗ui are still strictly psh, and the vij = (vi − vj )|Vi∩Vj are pluriharmonic. By [Var89,

Theorem 1],(1) there exist C∞-strictly psh functions v′i defined over Vi such that v′i − v
′
j = vij . Therefore,

the Čech 1-cocycle 1
|G| {vij} with coefficients in PHX/G maps to a Kähler class [ω′] ∈H2(X/G,R) under the

connecting morphism of (2.2). Since 1
|G|f

∗vij = (ui −uj )|Ui∩Uj , we have f ∗[ω′] = [ω]. □

Lemma 2.2. Let f : X→ Y be a finite morphism between compact complex manifolds. If [ω] ∈H2(X,R) is a
Kähler class, then f∗[ω] ∈H2(Y ,R) is also a Kähler class.

Proof. Let ω be a Kähler form which represents [ω]. For every y ∈ Y and every x ∈ f −1(y), there exists
a neighborhood U (x) ⊂ X of x such that ω|U (x) is ∂∂̄-exact. Up to shrinking U (x), we can assume that
U (x)∩U (x′) = ∅ whenever x , x′ ∈ f −1(y). Since f is finite, f is open, so U (y) :=

⋂
x∈f −1(y) f (U (x)) is a

neighborhood of y ∈ Y . We form an open cover {Ui}i∈I of Y among these neighborhoods. For each i ∈ I , there
exists by construction a smooth strictly psh function φi : f −1(Ui)→ R such that ω|f −1(Ui ) =

√
−1∂∂̄φi . The

functions ψi : U → R defined by ψi(y) :=
∑
x∈f −1(y)φi(x) (here we regard f −1(y) as a multiset prescribed by

its scheme structure) are strictly psh, see [Var89, Lemma II.3.1.2], and the functions ψij = ψi |Ui∩Uj −ψj |Ui∩Uj
are pluriharmonic. The pushforward f∗[ω] ∈H2(Y ,R) is thus represented by the image of the Čech 1-cocycle
ψij under the connecting morphism induced by (2.2). Again by [Var89, Theorem 1], there exist C∞-strictly

psh functions ψ′i defined over Ui such that ψ′i −ψ
′
j = ψij , so the

√
−1∂∂̄ψ′i glue to a Kähler form on Y which

represents f∗[ω]. □

2.3. Gysin morphisms and projection formula for varieties with quotient singularities

Let f : X → Y be a proper continuous map between two closed rational homology manifolds(2) (e.g.,
complex varieties with at worst quotient singularities; cf. [Bri99, Proposition A.1(iii)]). Then the Poincaré
duality holds for X and Y (see the proof of [Ive86, Section V.3, Poincaré duality 3.2]), which allows us to
define the Gysin morphism

f∗ : H
k(X,Z)

PD−−−→HBM
dimX−k(X,Z)

f∗−−→HBM
dimX−k(Y ,Z)

PD−−−→Hk−r(Y ,Z),

where r = dimX −dimY and PD denotes the Poincaré duality between the cohomology groups and the
Borel–Moore homology groups HBM. The following is the reformulation of the projection formula (see
e.g. [Ive86, IX.3.7]) in terms of Gysin morphism.

Proposition 2.3 (Projection formula). Given α ∈Hk(X,Q) and β ∈H l(Y ,Q), we have

f∗(α · f ∗β) = f∗α · β.
(1)Note that since X/G is reduced, condition (ii) in [Var89, Theorem 1] holds automatically; see [Var89, Remark II.2.2].
(2)A closed rational homology manifold of dimension n is a compact topological space X such that for every x ∈ X, we have

Hi (X,X\{x},Q) ≃Q if i = n and Hi (X,X\{x},Q) = 0 if i , n.
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2.4. An isomorphism statement about Gysin morphisms

Lemma 2.4. Let f : X→U be a surjective proper morphism between complex manifolds with equidimensional
connected fibers. Let n = dimX and m = dimU . Assume that U is affine. Then the Gysin morphism

f∗ : H
2n−m(X,C) −→Hm(U,C)

is an isomorphism.

Proof. Let d := n −m. Let E
p,q
r be the Leray spectral sequence computing H•(X,C) through f . Since

every fiber of f has dimension d, we have Rqf∗C = 0 for every q > 2d. As U is affine, by Artin vanishing,
see [Dim04, Theorem 4.1.26], E

p,q
2 ≃ Hp(U,Rqf∗C) = 0 for every p > m. This implies that the only

non-vanishing E
p,q
2 with p+ q = 2n−m is Hm(U,R2df∗C), and Em,2d2 = Em,2d3 = · · · = Em,2d∞ . So

H2n−m(X,C) ≃Hm(U,R2df∗C).

Let j : U ′ ↪→ U be the inclusion of a non-empty Zariski open over which f is smooth. Since f has
connected fibers of dimension d, (R2df∗C)|U ′ is isomorphic to the constant sheaf C over U ′ by Poincaré
duality. So j∗j

∗(R2df∗C) ≃ C, and the natural morphism

Φ : R2df∗C −→ j∗j
∗(R2df∗C) ≃ C

has kernel K := kerΦ supported on U\U ′ . As f has equidimensional fibers, f has local multi-sections
around every point of U , which implies that Φ is surjective. Since

Hm(U,R2df∗C) ≃H2n−m(X,C)
f∗−−→Hm(U,C)

is isomorphic to the morphism induced by Φ , it suffices to prove that H i(U,K) = 0 for i =m and i =m+1.
Since dimsuppK ≤ dimU −1, by [Dim04, Proposition 5.1.16] we have K[dimU −1] ∈ pD≤0(U ), where p is
the middle perversity. It follows from Artin vanishing, see [Dim04, Corollary 5.2.18], that H i(U,K) = 0 for
every i ≥ dimU =m. □

Remark 2.5. In Lemma 2.4, we need to assume that f is equidimensional. As a counterexample, let C be
any smooth projective curve, and consider the blow-up ˜C ×C2 of C ×C2 at one point. Then ˜C ×C2→ C2

does not satisfy the conclusion of Lemma 2.4.

2.5. Maps between cohomology spaces and Hodge classes

We collect some well-known results about maps between cohomology spaces and include the proofs for
completeness.

Lemma 2.6. Let f : X→ Y be a surjective morphism between compact complex varieties in the Fujiki class C .
Assume that X is smooth. For every integer k, we have

ker
(
f ∗ : Hk(Y ,Q) −→Hk(X,Q)

)
=Wk−1H

k(Y ,Q)

and, dually,
Im(f∗ : Hk(X,Q) −→Hk(Y ,Q)) =W−kHk(Y ,Q).

Proof. Since Hk(X,Q) is a pure Hodge structure of weight k, the first statement follows from [PS08, Corollary
5.43].(3) Taking the dual, we have

coker(f∗ : Hk(X,Q) −→Hk(Y ,Q)) =Hk(Y ,Q)/W−kHk(Y ,Q),

which proves the second statement. □

(3)The existence of Kähler desingularizations of varieties in the Fujiki class C allows one to extend Deligne’s mixed Hodge theory
on complex algebraic varieties to Zariski open subvarieties of compact complex varieties in the Fujiki class C ; cf. [Fuj80, Section 1].
The cited result in [PS08, Chapter 5] proven for complex algebraic varieties generalizes to this larger context.
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Lemma 2.7. Let X be a compact Kähler manifold of dimension n, and let Y ⊂ X be an irreducible closed

subvariety of X. Let ı̃ : Ỹ
ν−→ Y ↪→ X be the composition of a Kähler desingularization of Y with the inclusion

ı : Y ↪→ X. For every k, we have

Im
(
ı̃∗ : H2n−k(Ỹ ,Q) −→Hk(X,Q)

)
= ker

(
Hk(X,Q) −→Hk(X\Y ,Q)

)
.

Proof. We have the exact sequence

(2.3) Hk
Y (X,Q)

ı∗−−→Hk(X,Q) −→Hk(X\Y ,Q),

and by Poincaré duality [Ive86, Proposition II.9.2], ı∗ is isomorphic to

(2.4) ı∗ : H2n−k(Y ,Q) −→H2n−k(X,Q).

Since H2n−k(X,Q) is a pure Hodge structure of weight k − 2n, we have

(2.5) ı∗Wk−2nH2n−k(Y ,Q) = Im(ı∗)

by the strictness of the morphism ı∗ of mixed Hodge structures. Finally, we have

(2.6) Im
(
ν∗ : H2n−k(Ỹ ,Q) −→H2n−k(Y ,Q)

)
=Wk−2nH2n−k(Y ,Q)

by Lemma 2.6. Combining (2.3), (2.4), (2.5), (2.6) proves Lemma 2.7. □

Lemma 2.8. Let X be a compact complex variety in the Fujiki class C , and let ν : X̃→ X be a desingularization
of X. If X has at worst rational singularities, then ker(ν∗ : H2(X̃,C)→H2(X,C)) consists of Hodge classes.

Proof. It suffices to show that, dually,

coker(ν∗ : H2(X,C) −→H2(X̃,C))

consists of Hodge classes. Since X has at worst rational singularities, the image of ν∗ contains H2,0(X̃)
by [BL21, Lemma 2.1]. Hence the above cokernel consists of Hodge classes. □

2.6. Campana’s criterion

A compact complex variety X is called algebraically connected if for every general pair of points x,y ∈ X,
there exists a connected proper curve C ⊂ X such that x,y ∈ C. The following criterion for a variety in the
Fujiki class C to be Moishezon is due to Campana.

Theorem 2.9 (Campana [Cam81a, Section 3, Corollaire du Théorème 6’]). A compact complex variety X in
the Fujiki class C is Moishezon if and only if it is algebraically connected.

We list some direct consequences of Campana’s criterion.

Corollary 2.10. Let X be a compact complex variety in the Fujiki class C , and let f : X → B be a fibration.
Assume that a general fiber of f and B are both Moishezon. Then X is Moishezon if and only if f has a multi-section.

Corollary 2.11 (cf. [Lin21, Corollary 2.12]). Let X be a compact complex variety in the Fujiki class C and
f : X→ B a P1-fibration. If B is Moishezon, then X is Moishezon.

Lemma 2.12. Let X be a compact Kähler manifold with a(X) = dimX − 1. Then the algebraic reduction
f : Xd B of X is almost holomorphic, and its general fiber is an elliptic curve.

Here we recall that a map f : Xd B is called almost holomorphic if there exists a non-empty Zariski open
U ⊂ X such that f|U is well defined and proper onto its image.

Proof. We already know by [Uen75, Theorem 12.4] that any resolution of f is an elliptic fibration. It remains
to show that f is almost holomorphic. Let f̃ : X̃→ B be a resolution of f by a compact Kähler manifold X̃.
Let E ⊂ X̃ be the exceptional divisor of X̃→ X. Since X is not Moishezon and since B is Moishezon and
a general fiber of f̃ is a curve, Corollary 2.10 implies that E does not dominate B. Therefore, f is almost
holomorphic. □
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2.7. Bimeromorphic models of compact Kähler threefolds with a ≤ 1

Bimeromorphic models of compact Kähler threefolds of algebraic dimension a ≤ 1 have essentially been
classified by Fujiki [Fuj83] (see also [Lin21, Proposition 1.9]). In this subsection, we state this classification
result in the following form for our needs.

Proposition 2.13. Let X0 be a compact Kähler threefold such that a(X0) ≤ 1. Assume that X0 is not a simple
non-Kummer threefold. Then X0 is bimeromorphic to a compact complex manifold X in the Fujiki class C ,
satisfying one of the following descriptions:

(i) X is the total space of a P1-fibration X→ S over a smooth compact Kähler surface S .
(ii) X = (S ×F)/G, where S is a non-algebraic smooth Kähler surface, F is a smooth curve, and G is a finite

group acting diagonally on S ×F.
(iii) X is the total space of a fibration f : X → B over a smooth projective curve B whose general fiber is an

abelian variety.
(iv) X = X̃/G, where G is a finite group and X̃ is the total space of a G-equivariant smooth isotrivial fibration

f̃ : X̃→ B̃ in non-algebraic 2-tori without multi-sections.
(v) X is the quotient T /G of a 3-torus by a finite group.

In (i) and (iii), we can choose X to be a compact Kähler manifold.

Proof. First we assume that X0 is uniruled. Since X0 is non-algebraic, the base of the maximally rationally
connected fibration X0d S0 is a surface (see e.g. [CHP16, Proof of Theorem 9.1]). Resolving X0d S0 by
some Kähler desingularizations of X0 and S0 gives rise to a P1-fibration X→ S as in (i). Now assume that
X0 is not uniruled. If a(X0) = 0, then by [Fuj83, Section 1.3, Theorem], since X0 is not a simple non-Kummer
threefold by assumption, necessarily X0 is bimeromorphic to a quotient T /G of a 3-torus T by a finite group
G as in (v).

Assume that a(X0) = 1; then by [Fuj83, Section 1.3, Theorem and Section 11.2, Theorem 3], X0 is
bimeromorphic to a threefold X such that

• either X satisfies (ii);
• or X is the total space of a fibration f : X→ B over a smooth projective curve such that a general
fiber F of f is a 2-torus and f satisfies “Property (A)” (namely, for any fibration g : X ′→ B and any
bimeromorphic map φ : Xd X ′ over B, there exists a Zariski open U ⊂ B such that φ induces an
isomorphism f −1(U ) ≃ g−1(U )).

Consider a fibration f : X→ B as in the second case. By [Fuj83, Lemma 11.1], the fact that f has “Property
(A)” implies that f has no multi-section. It also implies that if X ′→ X is a Kähler desingularization of X,
then a general fiber of the composition X ′ → X→ B is still a 2-torus. Therefore, up to replacing X with
X ′ , we can assume that X is a compact Kähler manifold. Assume that F is not algebraic. Then by [Fuj83,
Remark 13.1], X0 is bimeromorphic to the quotient of the total space of a G-equivariant smooth isotrivial
torus fibration f̃ : X̃→ B̃ by G. This shows that f satisfies description (iv) in Proposition 2.13. Hence the list
of bimeromorphic descriptions of X in Proposition 2.13 is exhaustive. □

3. Dual positive cones under dominant meromorphic maps

3.1. Dual Kähler cones

First we prove that the existence of rational classes in the interior of the dual Kähler cone is invariant
under bimeromorphic modifications (see Proposition 3.2 for a more general statement). The statement can
be reduced to the special case of blow-ups along smooth centers.

Lemma 3.1. Let X be a compact Kähler manifold, and let ν : X̃→ X be the blow-up of X along a submanifold
Y ⊂ X. If Int(K (X)∨)∩H2n−2(X,Q) , ∅, then Int(K (X̃)∨)∩H2n−2(X̃,Q) , ∅.
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In dimension 3, Lemma 3.1 was proven by Oguiso and Peternell in [OP04, Proposition 2.1]. We prove
Lemma 3.1 in arbitrary dimension with a different argument, relying on [Pău98, Théorème 1] as a key
ingredient.

Proof of Lemma 3.1. Let E = ν−1(Y ) be the exceptional divisor, and let ℓ be a line in ν−1(y) for some y ∈ Y .
Then every element γ̃ ∈H1,1(X̃,R) is of the form γ̃ = ν∗γ − rE, where γ := ν∗γ̃ ∈H1,1(X,R) and r is some
real number. Fix α ∈ Int(K (X)∨)∩H2n−2(X,Q). We will construct a q ∈Q>0 satisfying

(3.1) (ν∗α + qℓ)(ν∗γ − rE) > 0

for all γ ∈H1,1(X,R) and r ∈ R such that ν∗γ − rE , 0 is nef; this implies

ν∗α + qℓ ∈ Int(K (X̃)∨)∩H2n−2(X̃,Q).

Note that if ν∗γ − rE is nef, then
r = (ν∗γ − rE) · ℓ ≥ 0.

Also note that if moreover ν∗γ − rE , 0, then γ , 0 because otherwise −rE ∈K (X̃) implies r = 0. For every

γ ∈ ν∗K (X̃) ⊂H1,1(X,R), define

rγ := min { r ∈ R
∣∣∣ ν∗γ − rE is nef } ≥ 0.

Let
C :=

{
γ ∈ ν∗K (X̃)

∣∣∣∣ α ·γ > 0
}
.

Fix a norm ∥ · ∥ on H1,1(X,R). For every subset Σ ⊂H1,1(X,R), define

Σ1 := { σ ∈ Σ | ∥σ∥ = 1 } .

Claim. We have

R := inf
{
rγ

∣∣∣∣∣ γ ∈ (
ν∗K (X̃)

)
1
\C

}
> 0.

Proof. Since rγ ≥ 0 for each γ , we have R ≥ 0. Assume to the contrary that R = 0. Then there exists a

sequence γi in
(
ν∗K (X̃)

)
1
\C such that limi→∞ rγi = 0. Up to extracting a subsequence, we can assume

that γ := limi→∞γi ∈H1,1(X,R)1 exists, so

ν∗γ = lim
i→∞

(ν∗γi − rγiE)

is nef. Thus γ is nef by [Pău98, Théorème 1], so α ·γ > 0 (because α ∈ Int(K (X)∨)). It follows that α ·γi > 0
for i≫ 0, contradicting γi < C . Hence R > 0. □

Let M < 0 be such that M ≤ α · c for all c ∈H1,1(X,R)1. By the above claim, we can find a q ∈Q>0 such
that

M + qR > 0.

Let γ ∈H1,1(X,R) and r ∈ R be such that ν∗γ − rE , 0 is nef (so γ ∈ ν∗K (X̃), γ , 0, and r ≥ 0). If γ ∈ C ,
then

(ν∗α + qℓ)(ν∗γ − rE) = α ·γ + qr > 0.

Suppose that γ < C ; then

(ν∗α + qℓ)(ν∗γ − rE) = ∥γ∥
(
α ·

γ

∥γ∥
+ q

r
∥γ∥

)
≥ ∥γ∥

(
M + qrγ/∥γ∥

)
≥ ∥γ∥ (M + qR) > 0,

where the first inequality follows from the nefness of ν∗ γ∥γ∥ −
r
∥γ∥E and the second inequality from γ

∥γ∥ ∈(
ν∗K (X̃)

)
1
\C . Hence (3.1) holds regardless of whether or not γ ∈ C , which finishes the proof. □
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Proposition 3.2. Let f : X d Y be a dominant meromorphic map between compact Kähler manifolds. If X
satisfies the dual Kodaira condition (K), then so does Y .

Proof. Let X
ν←− X̃

f̃
−→ Y be a resolution of f by a sequence of blow-ups ν : X̃ → X along smooth centers.

By Lemma 3.1, there exists an α̃ ∈ Int(K (X̃)∨)∩H2(X̃,Q). We conclude by [OP04, Proposition 2.5] that
f̃∗α̃ ∈ Int(K (Y )∨)∩H2(Y ,Q). □

We also have the following for dual Kähler cones.

Lemma 3.3. Let f : X→ Y be a finite morphism between compact Kähler manifolds. If α ∈ Int(K (Y )∨), then
f ∗α ∈ Int(K (X)∨).

Proof. Fix a Kähler class ωY ∈ H2(Y ,R) on Y . Since f is finite, f ∗ωY is a Kähler class on X. Thus
for every non-zero nef class ω ∈ K (X), we have (f∗ω) ·ωn−1Y = ω · f ∗ωn−1Y > 0, where n = dimX, so

f∗ω , 0 in H2(Y ,R). By Lemma 2.2, we have f∗ω ∈K (Y ). It follows that f ∗α ·ω = α · f∗ω > 0. Hence
f ∗α ∈ Int(K (X)∨). □

3.2. Dual pseudoeffective cones

We start with the easy observation that the interior of the dual pseudoeffective cone is stable under
pushforwards by surjective morphisms.

Lemma 3.4. Let f : X→ Y be a surjective map between compact Kähler manifolds. If α ∈ Int(Psef(X)∨), then
f∗α ∈ Int(Psef(Y )∨).

Proof. For every γ ∈ Psef(Y )\{0}, since α ∈ Int(Psef(X)∨) and f ∗γ ∈ Psef(X)\{0}, we have (f∗α) · γ =
α · f ∗γ > 0. Hence f∗α ∈ Int(Psef(Y )∨). □

The following result is the analog of Lemma 3.1 for pseudoeffective cone.

Proposition 3.5. Let X be a compact Kähler manifold, and let ν : X̃ → X be the blow-up of X along a
submanifold Y ⊂ X. If Int(Psef(X)∨)∩H2(X,Q) , ∅, then Int(Psef(X̃)∨)∩H2(X̃,Q) , ∅.

Proof. Fix α ∈ Int(Psef(X)∨)∩H2n−2(X,Q). Let E = ν−1(Y ) be the exceptional divisor, and let ℓ be a
line in ν−1(y) for some y ∈ Y . Then every element γ̃ ∈ H1,1(X̃,R) is of the form γ̃ = ν∗γ + rE for some
γ ∈H1,1(X,R) and r ∈ R. If moreover γ̃ ∈ Psef(X̃), then γ = ν∗γ̃ is also pseudoeffective. Therefore to prove
the proposition, it suffices to find a q ∈Q>0 such that (ν∗α − qℓ) · (ν∗γ + rE) > 0 for every γ ∈ Psef(X) and
r ∈ R such that ν∗γ + rE ∈ Psef(X̃)\{0}.

Fix a norm ∥ · ∥ on H2(X,R), and let

Psef(X)1 = Psef(X)∩
{
γ ∈H2(X,R) | ∥γ∥ = 1

}
.

For every γ ∈ Psef(X)1, let rγ = inf
{
r ∈ R | ν∗γ + rE ∈ Psef(X̃)

}
. Since ν∗γ ∈ Psef(X̃), we have rγ ≤ 0. As

α ·γ > 0 for every γ ∈ Psef(X)1 and both γ 7→ α ·γ and γ 7→ rγ are continuous functions defined on the
compact set Psef(X)1, there exists a q ∈Q>0 such that

α ·γ + qrγ > 0

for all γ ∈ Psef(X)1.
Now let γ ∈ Psef(X) and r ∈ R be such that ν∗γ + rE ∈ Psef(X̃)\{0}. If γ = 0, then r > 0, so

(ν∗α − qℓ) · (rE) = qr > 0.

If γ , 0, then r
∥γ∥ ≥ rγ/∥γ∥, so we also have

(ν∗α − qℓ) · (ν∗γ + rE) = α ·γ + qr = ∥γ∥
(
α ·

γ

∥γ∥
+ q

r
∥γ∥

)
≥ ∥γ∥

(
α ·

γ

∥γ∥
+ qrγ/∥γ∥

)
> 0. □
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Remark 3.6. In the setting of Proposition 3.5, it is not true that α ∈ Int(Psef(X)∨) implies ν∗α ∈
Int(Psef(X̃)∨) (which is already false when ν is the blow-up of P2 along a point). However, note that
for any generically finite surjective morphism f : X → Y between compact Kähler manifolds, since
f∗Psef(X) ⊂ Psef(Y ), we always have f ∗Psef(Y )∨ ⊂ Psef(X)∨.

As an immediate consequence of Lemma 3.4 and Proposition 3.5, we have the following.

Corollary 3.7. Let f : Xd Y be a dominant meromorphic map between compact Kähler manifolds. If X satisfies
the dual Kodaira condition (P), then so does Y .

Proof. Let X
ν←− X̃

f̃
−→ Y be a resolution of f by a sequence of blow-ups ν : X̃ → X along smooth centers.

By Proposition 3.5, there exists an α̃ ∈ Int(Psef(X̃)∨) ∩ H2(X̃,Q). We conclude by Lemma 3.4 that
f̃∗α̃ ∈ Int(Psef(Y )∨)∩H2(Y ,Q). □

4. Smooth torus fibrations

In this section, we study the Oguiso–Peternell problem for smooth torus fibrations. The argument involves
the Deligne cohomology in an essential way, and the reader is referred to, e.g., [EZZ84, Sections 2 and 3] for
a reference. See also [Cla18, Section 2].

Let f : X → B be a smooth torus fibration such that X and B are compact Kähler manifolds, and let
g = dimX −dimB. Recall that the (absolute) Deligne complex DX(g) is defined as

· · ·0 −→ ZX
×(2π

√
−1)g

−−−−−−−−−→ OX
d−−−→Ω1

X
d−−−→ ·· · d−−−→Ω

g−1
X −→ 0 −→ ·· · ,

where ZX is placed at the 0th degree. The Deligne cohomology group of degree 2g is defined by

H
2g
D (X,Z(g)) =H2g(X,DX(g)). We have the short exact sequence of complexes

(4.1) 0 −→Ω
•≤g−1
X [−1] −→DX(g) −→ ZX −→ 0

which gives rise to the regulator map

(4.2) cl : H2g
D (X,Z(g)) =H2g(X,DX(g)) −→H2g(X,Z)

with image equal to

ker
(
H2g(X,Z) −→H2g(X,Ω•≤g−1X )

)
=Hg,g(X,Z).

Similarly, the relative Deligne complex DX/B(g) is defined as

· · ·0 −→ ZX
×(2π

√
−1)g

−−−−−−−−−→ OX/B
d−−−→Ω1

X/B
d−−−→ ·· · d−−−→Ω

g−1
X/B −→ 0 −→ ·· · ,

and we have the short exact sequence of complexes

(4.3) 0 −→Ω
•≤g−1
X/B [−1] −→DX/B(g) −→ ZX −→ 0.

Applying Rf∗ to (4.3), together with the vanishing R2gf∗Ω
•≤g−1
X/B = 0 (because f is smooth of relative

dimension g), we obtain a short exact sequence

(4.4) 0 −→J −→ R2gf∗DX/B(g) −→ R2gf∗ZX ≃ ZB −→ 0,

where

J := coker
(
R2g−1f∗ZX −→ R2g−1f∗Ω

•≤g−1
X/B

)
.
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The natural map Ω•X →Ω•X/B of de Rham complexes induces a morphism of exact sequences from (4.1)
to (4.3), which further induces the commutative diagram

(4.5)

H
2g
D (X,Z(g)) Hg,g(X,Z)

H0(B,R2gf∗DX/B(g)) H0 (B,Z) H1(B,J ),

cl

f∗

δ

where the vertical arrow on the left is the composition of H
2g
D (X,Z(g))→H2g(X,DX/B(g)) induced by the

natural map DX(g)→ DX/B(g) with H2g(X,DX/B(g))→ H0(B,R2gf∗DX/B(g)) and the second row is an
exact sequence induced by (4.4).

Finally, the sheaf J is isomorphic to the sheaf of germs of sections of the Jacobian fibration p : J → B
associated to f . Set η(f ) := δ(1) ∈H1(B,J ). This defines a bijection

(4.6) η : { Isomorphism classes of J-torsors } ∼−−→H1(B,J ),

and η(f ) is torsion if and only if f has a multi-section (which can be chosen étale over B); cf. [Cla18,
Propositions 2.1 and 2.2].

Lemma 4.1. Let f : X→ B be a smooth torus fibration of relative dimension g over a compact complex manifold.
If f∗ : Hg,g(X,Q)→H0(B,Q) is surjective, then f has an étale multi-section.

Proof. It suffices to show that η(f ) is torsion. Since f∗ : Hg,g(X,Q)→H0(B,Q) is surjective, there exists an
α ∈Hg,g(X,Z) such that f∗α ∈H0(B,Z) is non-zero. By (4.5), f∗α lifts to an element of H0(B,R2gf∗DX/B(g)),
so δ(f∗α) = 0. Hence η(f ) = δ(1) is torsion. □

Proposition 4.2. Let X0 be a compact Kähler manifold of dimension n such that Int(K (X0)∨) contains a
rational class α ∈H2n−2(X0,Q). Assume that X0 is bimeromorphic to X/G, where G is a finite group and X is
the total space of a G-equivariant smooth torus fibration f : X→ B over a smooth curve B. Then f has an étale
multi-section.

Proof. Let X0← X̃→ X/G be a resolution of a bimeromorphic map X0d X/G by a sequence of blow-ups

X̃→ X0 along smooth centers. By Lemma 3.1, Int(K (X̃)∨) contains a rational class β. Let X
p
←− X̃ ′

q
−→ X̃

be a resolution of the meromorphic map X→ X/Gd X̃ by a compact Kähler manifold X̃ ′ . The situation is
summarized in the commutative diagram

X̃ ′ X B

X̃ X/G B/G.

p

q

f

r

f̃

With the notation therein,

r∗f∗p∗q
∗β = f̃∗q∗q

∗β = deg(q) · f̃∗β , 0 ∈H0(B/G,Q),

where the non-vanishing follows from [OP04, Proposition 2.5]. In particular, if α := p∗q∗β, then f∗α , 0 in
H0(B,Q). Therefore, f∗ : Hn−1,n−1(X,Q)→H0(B,Q) is surjective, and we apply Lemma 4.1 to conclude. □

5. Algebraicity of the Albanese torus

The aim of this section is to prove Theorem 1.4, answering Problem 1.1 in terms of the Albanese torus for
every compact Kähler manifold.

First we study the Oguiso–Peternell problem for complex tori (and their finite quotients for later use).
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Proposition 5.1. Let T be a complex torus of dimension n and G a finite group acting on T . If there exists a

β ∈Hn−1,n−1(T ,Q)G such that β ·ω , 0 for every ω , 0 ∈K (T )
G
, then T is projective.

We will need the following lemma.

Lemma 5.2 (Poincaré’s formula). Let L be a line bundle on the complex torus T of dimension n. Assume that

d :=
c1(L)n

n!
, 0,

and let

cL :=
c1(L)n−1

(n− 1)!d
∈H2n−2(T ,Q).

Then for every integer p ∈ [0,n], we have

c1(L)p

p!
= d

c
⋆n−p
L

(n− p)!
∈H2p(T ,Q),

where ⋆ is the Pontryagin product on H•(T ,Q).

This lemma is well known; we provide a proof for the sake of completeness.

Proof. Let λ1, . . . ,λn,µ1, . . . ,µn be a symplectic basis of H1(T ,Z) for L (see [BL04, Section 3.1]), and let
dx1, . . . ,dxn,dy1, . . . ,dyn be the associated dual basis of H1(T ,Z). Assume that L is of type (d1, . . . ,dn).
By [BL04, Lemma 3.6.4], we have

(5.1) c1(L) = −
n∑
i=1

di · dxi ∧ dyi

and also

(5.2) d = (−1)sd1 · · ·dn
by [BL04, Theorem 3.6.1], where s is number of negative eigenvalues of the Hermitian form associated to L.
A computation thus shows that

(5.3) cL =
c1(L)n−1

(n− 1)!d
=

n∑
i=1

(−1)s+n−1

di
̂dxi ∧ dyi ,

where
̂dxi ∧ dyi := (dx1 ∧ dy1)∧ · · · ∧ (dxi−1 ∧ dyi−1)∧ (dxi+1 ∧ dyi+1)∧ · · · ∧ (dxn ∧ dyn).

Let PD: H•(T ,Z)→H2n−•(T ,Z) denote the Poincaré duality morphism. For every subset I of [1,n]∩Z,
we deduce from [BL04, Lemmas 3.6.5 and 4.10.1] that

(5.4) PD

∧
i∈I

(dxi ∧ dyi)

 = (−1)n+s⋆
i∈I◦

(λi ⋆ µi),

where I◦ := [1,n]∩Z\I . It follows from (5.3) and (5.4) that

PD

 c⋆n−pL

(n− p)!

 = PD(cL)⋆n−p

(n− p)!
= (−1)n−p

∑
I

∏
i∈I

di

−1⋆
i∈I

(λi ⋆ µi),

where I in the sum runs through all subsets of [1,n]∩Z of cardinal n− p, and thus

c
⋆n−p
L

(n− p)!
= (−1)s−p

∑
I

∏
i∈I

di

−1∧
i∈I◦

(dxi ∧ dyi),
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again by (5.4). Hence

d ·
c
⋆n−p
L

(n− p)!
= (−1)p

∑
I

∏
i∈I◦

di

∧
i∈I◦

(dxi ∧ dyi) =
c1(L)p

p!

by (5.2) and (5.1). □

Proof of Proposition 5.1. We can assume that the group action is trivial. Indeed, if β satisfies the assumption
of Proposition 5.1, then the same β satisfies

β ·ω =
1
|G|

∑
g∈G

g∗β ·ω = β · 1
|G|

∑
g∈G

g∗ω , 0

for every ω , 0 ∈K (T ). Up to replacing β with some non-zero multiple of it, we can also assume that β is
the image of some element of Hn−1,n−1(T ,Z) (still denoted by β).

We first prove Proposition 5.1 assuming T is a simple torus (in the sense that T does not contain any
non-trivial sub-torus). Let n = dimT , and let T̂ be the dual of T . Let

F : H2n−k(T ,Z) ∼−−→Hk(T̂ ,Z)

be the Fourier transformation. Up to sign, F is the composition of the Poincaré duality morphism
H2n−k(T ,Z) ∼−−→ Hk(T ,Z)∨ with the isomorphism Hk(T ,Z)∨ ∼−−→ Hk(T̂ ,Z) induced by the natural perfect
pairing H1(T ,Z)⊗H1(T̂ ,Z)→ Z, cf. [Bea83a, Proposition 1], and it follows that

F (γ1 ⋆ γ2) = ±F (γ1) ·F (γ2) and F (γ1 ·γ2) = ±F (γ1) ⋆F (γ2).

The map F is an isomorphism of Hodge structures, so there exists a line bundle L on T̂ such that
c1(L) = F (β); let φL : T̂ → T be the homomorphism induced by L. Since T is simple, ker(φL) is either
T̂ or finite. In other words, either c1(L) = 0, or φL is finite; cf. [BL04, Lemma 2.4.7]. As β , 0, we have

c1(L) = F (β) , 0. It follows from [BL04, Corollary 3.6.2 and Theorem 3.6.3] that
(
c1(L)n

n!

)2
= degφL , 0. So

c1(L)n , 0, and β⋆n = ±F−1(c1(L)n) , 0. In particular, β⋆(n−1) , 0.
Let L′ be a line bundle over T such that c1(L′) = β⋆(n−1). By the same argument, we have c1(L′)n , 0, so

the Hermitian form h on H1(T ,C) which corresponds to c1(L′) is non-degenerate. Let (p,q) be the signature
of h. There exist dz1, . . . ,dzn ∈H1(T ,C) such that dz1, . . . ,dzn,dz̄1, . . . ,dz̄n form a basis of H1(T ,C) and

c1(L
′) =
√
−1

n∑
j=1

cj dzj ∧ dz̄j ∈H1(T ,R)

with c1, . . . , cp > 0 and cp+1, . . . , cn < 0. Define

ω :=
√
−1

q ·
p∑
j=1

cj dzj ∧ dz̄j − p ·
n∑

j=p+1

cj dzj ∧ dz̄j

 ,
which is a Kähler form.

Assume that p,q , n. Then ω · c1(L′)n−1 = 0 by an elementary computation. Since c1(L′) = β⋆(n−1)

and β⋆n , 0, we have F̂ (c1(L′)) = ±F̂ (β)n−1 and F̂ (β)n , 0, where F̂ : H•(T̂ ,Z)→H•(T ,Z) denotes the
Fourier transform of T̂ . So by Lemma 5.2, there exists a C ∈Q\{0} such that

F̂ (c1(L
′)n−1) = ±F̂ (c1(L

′))⋆(n−1) = ±
(
F̂ (β)n−1

)⋆(n−1)
= CF̂ (β),

and therefore
c1(L

′)n−1 = Cβ.

It follows that
ω · c1(L′)n−1 = C (ω · β) , 0,
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where the non-vanishing follows from the assumption on β and ω ∈K (T ). This contradicts the equality
ω · c1(L′)n−1 = 0. Hence either p = n, or q = n, so either L′ or L′∨ is ample. Thus T is projective.

Now we prove Proposition 5.1 by induction on dimT . When dimT = 1, T is always projective. Assume
that dimT > 1 and that Proposition 5.1 is proven for every complex torus of dimension strictly less than
dimT endowed with a finite group action. By what we have proven, we can assume that T is not simple.
Then T is the total space of a smooth isotrivial torus fibration π : T → T ′ over a simple complex torus T ′

with 0 < dimT ′ < dimT . For every ω′ ∈K (T ′)\{0}, we have π∗ω′ ∈K (T )\{0}, so

π∗β ·ω′ = β ·π∗ω′ , 0

by assumption. Thus T ′ is projective by the induction hypothesis. Moreover, π∗β , 0 ∈H2(T ′ ,Z), and since
T ′ is simple, the previous argument showing that β⋆n , 0 (when T is simple) also proves that

π∗(β
⋆dimT ′ ) = (π∗β)

⋆dimT ′ , 0 ∈H0(T ′ ,Z),

so π has an étale multi-section Σ ⊂ T by Lemma 4.1. It follows that there exists a finite étale cover
τ : T̃ → T , together with a surjective homomorphism π′ : T̃ → F over a fiber F ⊂ T of π : T → T ′ . For
every ω′′ , 0 ∈K (F), we have τ∗π

′∗ω′′ , 0 ∈K (T ), so

π′∗τ
∗β ·ω′′ = β · τ∗π′∗ω′′ , 0.

Thus F is projective as well by the induction hypothesis. Since π : T → T ′ is a fibration with a multi-section
such that T ′ and the fibers of π are projective, by Corollary 2.10, T is also projective. □

Before we prove Theorem 1.4, let us prove some immediate consequences of Proposition 5.1.

Corollary 5.3. Let X be a compact Kähler manifold which is bimeromorphic to the quotient T /G of a complex
torus T by a finite group G. If X satisfies the dual Kodaira condition (K), then X is projective.

Proof. Let n := dimX. Let α ∈ Int(K (X)∨)∩H2n−2(X,Q). Fix a bimeromorphic map p : Xd T /G. Up
to resolving p by successive blow-ups of X along smooth centers, by Lemma 3.1 we can assume that p is

holomorphic. Let q : T → T /G be the quotient map. For every ω , 0 ∈K (T )
G

, there exists by Lemma 2.1
a nef class ω′ , 0 ∈H2(T /G,R) such that ω = q∗ω′ . As ω′ is nef, the pullback p∗ω′ is also nef. So if we set
β := q∗p∗α ∈Hn−1,n−1(T ,Q)G, then since α ∈ Int(K (X)∨)∩H2n−2(X,Q), we have

(5.5) β ·ω = q∗p∗α ·ω = q∗(p∗α ·ω′) = q∗p∗(α · p∗ω′) > 0,

where the last equality follows from the projection formula (cf. Proposition 2.3). It follows from Proposition 5.1
that T is projective; hence X is also projective. □

Corollary 5.4. Let X be compact Kähler manifold which satisfies the dual Kodaira condition (K). If a(X) = 0,
then b1(X) = 0.

Proof. It is equivalent to show that Alb(X) is a point. Since a(X) = 0, the Albanese map X → Alb(X)
is surjective and a(Alb(X)) = 0; cf. [Uen75, Lemma 13.1]. So the dual Kodaira condition (K) implies that
Int(K (Alb(X))∨) contains a rational class as well by Proposition 3.2. It follows from Proposition 5.1 that
Alb(X) is projective; hence Alb(X) is a point. □

We finish this section with a proof of Theorem 1.4.

Proof of Theorem 1.4. Let alb: X→ T be the Albanese map of X.

Claim. For every [ω] ∈K (T )\{0}, we have alb∗[ω] ∈K (X)\{0}.
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Proof of the claim. Clearly, alb∗[ω] ∈ K (X). It remains to show that alb∗[ω] , 0. As [ω] is nef, we can
assume that [ω] is represented by ω =

√
−1

∑n
j=1 cj dzj ∧ dz̄j for some complex coordinates (z1, . . . , zn) of

H1(T ,C) and some cj ≥ 0 such that cj , 0 for some j = 1, . . . ,n. It follows that alb∗ω is semi-positive, so it
suffices to show that alb∗ω , 0.

Assume to the contrary that alb∗ω = 0. Let Y := alb(X), and let Y ◦ ⊂ Y be a non-empty Zariski open
over which alb: X→ Y is smooth. Then for any point y ∈ Y ◦ and any vector v ∈ TY ,y , we have ω(v∧ v̄) = 0.
Since Y is the Albanese image of X, if we regard each TY ,y as a subspace of TT ,o by translation, where
o ∈ T is a chosen origin of T , the subspaces TY ,y generate TT ,o, where y runs through Y ◦. As ω|o is positive
semi-definite, we thus have ω|o = 0, contradicting the assumption that ω , 0. Hence alb∗ω , 0. □

Now let α ∈ Int(K (X)∨)∩H2n−2(X,Q). By the above claim, we have [ω] · alb∗α = alb∗[ω] ·α > 0 for
every [ω] ∈K (T )\{0}. We conclude by Proposition 5.1 that T is projective. □

6. Ricci-flat manifolds

In this section, we prove Theorem 1.6, answering Problem 1.1 for Ricci-flat compact Kähler manifolds. Let
us start with the special case of hyper-Kähler manifolds.

6.1. Hyper-Kähler manifolds

In this article, a compact hyper-Kähler manifold is a simply connected compact Kähler manifold X
such that H0(X,Ω2

X) is generated by a nowhere degenerate holomorphic 2-form. The reader is referred
to [Huy03a] for basic results about compact hyper-Kähler manifolds.

Let X be a compact hyper-Kähler manifold. Let qX be the Beauville–Bogomolov–Fujiki quadratic form on
H2(X,R), and let

ΦX : H
2(X,R) ≃H2n−2(X,R)

be the isomorphism (of Hodge structures) sending α ∈H2(X,R) to the Poincaré dual of qX(α, ·) ∈H2(X,R)∨.
For every cone C ⊂H1,1(X,R), its dual with respect to qX is denoted by

C∗ :=
{
α ∈H1,1(X,R) | qX(α,β) ≥ 0 for every β ∈ C

}
.

We have

ΦX(C
∗) = C∨,

where C∨ ⊂Hn−1,n−1(X,R) is the Poincaré dual of C.
For a compact hyper-Kähler manifold X, there are two other natural positive cones that we can define in

H1,1(X,R): the birational Kähler cone BK (X) and the positive cone C (X). Recall that

BK (X) :=
⋃

f : XdX ′
f ∗K (X ′) ⊂H1,1(X,R),

where the union runs through all bimeromorphic maps f from X to another compact hyper-Kähler manifold
and C (X) is defined to be the connected component of{

α ∈H1,1(X,R) | qX(α,α) > 0
}

containing K (X).
We are able to answer Problem 1.1 for hyper-Kähler manifolds based on Huybrechts’ description of their

nef cones.

Proposition 6.1. Let X be a compact hyper-Kähler manifold. If X satisfies the dual Kodaira condition (K), then
X is projective.
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Proof. Let n := dimX. We show that if X is not projective, then Int(K (X)∨)∩Hn−1,n−1(X,Q) = ∅. Let
V ⊂H1,1(X,R) be the subspace generated by Φ−1X (Hn−1,n−1(X,Q)). Since X is assumed to be non-projective,
we have qX(α,α) ≤ 0 for every α ∈H1,1(X,Q); cf. [Huy03a, Proposition 26.13]. In particular, qX |V is negative
semi-definite. As the signature of qX on H1,1(X,R) is (1,h1,1(X)), there exists an ω ∈H1,1(X,R)\{0} such
that qX(ω,ω) ≥ 0 and qX(ω,α) = 0 for every α ∈ V . It follows that ω · β = 0 for every β ∈Hn−1,n−1(X,Q).

Since qX(ω,ω) ≥ 0, up to replacing ω with −ω, we can assume that ω ∈ C (X). For every ra-
tional curve C ⊂ X, since [C] ∈ Hn−1,n−1(X,Q), we have ω · C = 0. It follows from [Huy03a,
Proposition 28.2] that ω ∈ K (X). Since ω · β = 0 for every β ∈ Hn−1,n−1(X,Q), we conclude that
Int(K (X)∨)∩Hn−1,n−1(X,Q) = ∅. □

6.2. Ricci-flat manifolds

We finish this section with a proof of Theorem 1.6.

Proof of Theorem 1.6. Let n := dimX. By [Bea83b, Théorème 2], there exists a finite étale cover X̃→ X such
that X̃ = T ×Y ×

∏
i Zi , where T is a complex torus, Y is a compact Kähler manifold with H0(Y ,Ω2

Y ) = 0,
and each Zi is a hyper-Kähler manifold. By Lemma 3.3, we have Int(K (X̃)∨)∩H2n−2(X̃,Q) , ∅. It follows
from Proposition 3.2 that Int(K (T )∨)∩H2dimT−2(T ,Q) , ∅ and Int(K (Zi)∨)∩H2dimZi−2(Zi ,Q) , ∅.
Thus T and the Zi are projective by Theorem 1.4 and Proposition 6.1, respectively. Since Y is also projective
(because H0(Y ,Ω2

Y ) = 0), we conclude that X is projective. □

7. Fibrations in abelian varieties

In this section, we study the Oguiso–Peternell problem for fibrations in abelian varieties over a curve. A
positive answer to the Oguiso–Peternell problem will be obtained as a consequence of the following result,
which is an analog of Lemma 4.1.

Proposition 7.1. Let f : X→ B be a fibration over a smooth projective curve B whose general fiber is an abelian
variety of dimension g . Assume that X is a compact Kähler manifold and f has local sections (for the Euclidean
topology) at every point of B. If there exists an α ∈Hg,g(X,Z) such that f∗α , 0 ∈H0(B,Z), then X is projective.
In particular, if X satisfies the dual Kodaira condition (K), then X is projective.

Before we prove Proposition 7.1, let us first recall some properties of the fibration f : X → B follow-
ing [Lin22, Section 4]; these properties partially generalize the discussion in Section 4.

Given a fibration f : X→ B as in Proposition 7.1, assume that every fiber of f is a normal crossing divisor.
Since a general fiber of f is Moishezon and f is a proper surjective morphism between compact Kähler
manifolds, every fiber of f is Moishezon; cf. [Cam81b, Corollaire 2]. It follows from [CP00, Theorem 10.1]
that f is locally projective. Let j : B⋆ ↪→ B be the inclusion of a non-empty Zariski open of B over which f
is smooth, and let ı : X⋆ := f −1(B⋆) ↪→ X. Let D := f −1(B\B⋆). The relative Deligne complex DX/B(g) is
defined to be the cone of the composition

Rı∗Z
×(2π

√
−1)g

−−−−−−−−−→ Rı∗C ≃Ω•X(logD) −→Ω
•≤g−1
X/B (logD)

shifted by −1. Applying Rf∗ to the distinguished triangle

(7.1) DX/B(g) −→ Rı∗Z −→Ω
•≤g−1
X/B (logD) −→DX/B(g)[1]

and breaking up the associated long exact sequence at R2gf∗DX/B(g), we obtain a short exact sequence
(see [Lin22, (4.6)])

(7.2) 0 −→ J̄ −→ R2gf∗DX/B(g) −→H g,g(X/B) −→ 0,
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where J̄ is the canonical extension of the sheaf of germs of sections of the Jacobian fibration associated
to X⋆ → B⋆ and the quotient H g,g(X/B) in (7.2) is isomorphic to R2g(f ◦ ı)∗Z; cf. [Lin22, Lemma 4.6]. By
construction, the restriction of (7.2) to B⋆ is the short exact sequence (4.4) defined for the smooth torus
fibration X⋆ → B⋆ . The natural map Ω•X →Ω•X/B(logD) induces a map DX(g)→DX/B(g), which further
induces

H
2g
D (X,Z(g)) =H2g(X,DX(g)) −→H2g(X,DX/B(g)) −→H0(B,R2gf∗DX/B(g)),

fitting into the commutative diagram

(7.3)

H
2g
D (X,Z(g)) Hg,g(X,Z)

H0(B,R2gf∗DX/B(g)) H0(B,H g,g(X/B)) H1(B,J̄ ),δ

where the second row is an exact sequence induced by (7.2) and the vertical arrow on the right is the
composition

(7.4) Hg,g(X,Z) ↪−−→H2g(X,Z)
f∗−−→H0(B,R2gf∗Z)

γ
−−→H0(B,R2g(f ◦ ı)∗Z) ≃H0 (B,H g,g(X/B)) .

The commutative diagram (7.3) is the analog of (4.5) with the presence of singular fibers.
Let J → B⋆ be the Jacobian fibration associated to f ⋆ = f|X⋆ : X⋆ → B⋆ . Let E (B,J) be the set of

bimeromorphic classes of fibrations g : Y → B in abelian varieties over B such that

(i) g is locally bimeromorphically Kähler over B;
(ii) g has local sections at every point of B;

(iii) g is smooth over B⋆ , and the Jacobian fibration associated to g−1(B⋆)
g
−→ B⋆ is J → B⋆ .

Elements of E (B,J) are called bimeromorphic J-torsors. There exists a map

Φ : H1(B,J̄ ) −→ E (B,J)

which is a generalization of the inverse of (4.6); cf. the text after the proof of [Lin22, Lemma 4.9]. By
construction, the map Φ sends 0 ∈H1(B,J̄ ) to the bimeromorphic class of a compactification J̄ → B of the
Jacobian fibration J → B⋆ associated to f ⋆ = f|X⋆ : X⋆ → B⋆ such that the closure in J̄ of the 0-section of
J → B⋆ is a 0-section of J̄ → B.

Finally, for every m ∈ Z>0 and η ∈H1(B,J̄ ), if f : X→ B is a bimeromorphic J-torsor representing Φ(η),
then there exists a bimeromorphic J-torsor fm : Xm→ B representing Φ(mη), together with a generically
finite map m : Xd Xm over B; cf. [Lin22, Lemma-Definition 4.12 and p.91]. The bimeromorphic J-torsor
fm : Xm→ B is called the multiplication-by-m of f : X→ B.

Proof of Proposition 7.1. Up to replacing f with a Kähler log-desingularization of (X,D), where D ⊂ X is the
union of singular fibers of f , we can assume that every fiber of f is a normal crossing divisor. Since the
second row of (7.3) is exact and the horizontal arrow in (7.3) on the top is surjective, we have

δ(γ(f∗α)) = 0 ∈H1(B,J̄ ),

where f∗ and γ are defined in (7.4). It follows from [Lin22, Lemma 4.14] that for some m ∈ Z>0, the
multiplication-by-m of f : X → B is bimeromorphic to J̄ → B. Hence we have a generically finite map
m : Xd J̄ over B, and the pre-image of the 0-section of J̄ → B under m gives a multi-section of f : X→ B.
We conclude by Corollary 2.10 that X is Moishezon, hence projective (because X is Kähler).

Finally, if α ∈ Hn−1,n−1(X,Q)∩ Int(K (X)∨), then f∗α , 0 ∈ H0(B,Z) by [OP04, Proposition 2.5]. It
follows from the main statement of Proposition 7.1 that X is projective. □

Corollary 7.2. Let X be a compact Kähler manifold which satisfies the dual Kodaira condition (K). Assume that
X is bimeromorphic to a compact Kähler manifold X ′ which is the total space of a fibration f : X ′ → B over a
smooth projective curve B whose general fiber is an abelian variety. Then X is projective.
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Proof. Let n := dimX. As X ′ is bimeromorphic to X and Int(K (X)∨)∩Hn−1,n−1(X,Q) , ∅, there exists
an α ∈Hn−1,n−1(X ′ ,Q)∩ Int(K (X ′)∨) by Proposition 3.2. Since the fibers of f are Moishezon and X ′ is
Kähler, f is locally projective; cf. [CP00, Theorem 10.1]. In particular, f has local multi-sections around every
point of B, so there exists a finite morphism r : B̃→ B from a smooth curve B̃ such that X ′ ×B B̃→ B̃ has
local sections around every point of B̃. Let X̃→ X ′ ×B B̃ be a Kähler desingularization, and let q : X̃→ X ′

and f̃ : X̃→ B̃ be the projections. The situation is summarized in the commutative diagram

X̃ X ′

B̃ B.

q

f̃ f

r

Since r∗f̃∗q
∗α = f∗q∗q∗α = deg(q) · f∗α , 0, where the non-vanishing follows from [OP04, Proposition 2.5],

we have f̃∗q
∗α , 0. Since f̃ has local sections around every point of B̃ by construction, we deduce from

Proposition 7.1 that X̃ is projective. Hence X ′ and therefore X are projective. □

8. Elliptic fibrations

The main result of this section is the following proposition.

Proposition 8.1. Let f : X→ B be an elliptic fibration from a smooth compact Kähler threefold X. If X satisfies
the dual Kodaira condition (P), then X is projective.

Let us first prove some auxiliary results, starting with an analogous statement of Proposition 8.1 for
surfaces.

Lemma 8.2. Let S be a smooth connected compact Kähler surface, and let f : S→ B be a surjective map onto a
projective curve. If there exists an α ∈H1,1(S,Q) such that f∗α , 0 ∈H0(B,Q), then S is projective.

Proof. Up to replacing α with a multiple of it, we can assume that α = c1(L ) for some line bundle L

on S . Since α · [F] = f∗α , 0 ∈ H0(B,Q) ≃ Q, where F is a fiber of f , we have c1(L ⊗ O(mF))2 =
c1(L )2 +2mα · [F] > 0 for m≫ 0 or m≪ 0. Thus S is projective by [BHP+04, Theorem IV.6.2]. □

The next lemma concerns 1-cycles vanishing away from an irreducible surface, giving a partial answer to
Question 1.10 in the affirmative.

Lemma 8.3. Let X be a compact Kähler manifold of dimension n and Y ⊂ X an irreducible surface. Let ı̃ : Ỹ → X
be the composition of a desingularization of Y with the inclusion ı : Y ↪→ X. There exists a sub-Q-Hodge structure
L of H2(Ỹ ,Q) such that

H2(Ỹ ,Q) = ker
(
ı̃∗ : H

2(Ỹ ,Q) −→H2n−2(X,Q)
)
⊕L.

In particular, if α ∈Hn−1,n−1(X,Q) is a Hodge class which belongs to the image of ı̃∗ (or, equivalently, vanishes
in H2n−2(X\Y ,Q) by Lemma 2.7 ), then α = ı̃∗β for some β ∈H1,1(Ỹ ,Q).

We start with an easy lemma.

Lemma 8.4. Let φ : L→M be a morphism of Q-Hodge structures. Assume that L has a pairing Q such that
(L,Q)⊗R is a direct sum of polarized R-Hodge structures (Li ,Qi). If ker(φ) ⊂ Li for some i, then there exists a
sub-Q-Hodge structure L′ ⊂ L such that φ|L′ is an isomorphism onto Im(φ).

Proof. As Q ⊗ R is a direct sum of polarizations of R-Hodge structures, the orthogonal complement
L′ := ker(φ)⊥ of ker(φ) with respect to Q is a sub-Q-Hodge structure of L, and we have dimker(φ)⊥ +
dimker(φ) = dimL (because Q⊗R is non-degenerate). Thus to prove Lemma 8.4, it suffices to show that
ker(φ)∩ker(φ)⊥ = 0, or equivalently ker(φR)∩ker(φR)⊥ = 0.
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Since (Li ,Qi) is a polarized R-Hodge structure, the orthogonal complement L′i of ker(φR) with respect to
Qi satisfies ker(φR)∩L′i = 0. Hence

ker(φR)∩ker(φR)
⊥ = ker(φR)∩

L′i ⊕⊕
j,i

Lj

 = 0. □

Proof of Lemma 8.3. Fix a Kähler class ω ∈H2(X,R), and let H = (ı̃∗ω)⊥ ⊂H2(Ỹ ,R), where the orthogonal
is defined with respect to the intersection product on H2(Ỹ ,R). Since ı̃∗ω2 , 0, we have

H2(Ỹ ,R) = Rı̃∗ω⊕H.

We verify that the restriction of the intersection product to H is a polarization of the R-Hodge structure H :
the induced pairing on H is non-degenerate, and the Hodge decomposition H ⊗C =H2,0 ⊕H1,1 ⊕H0,2 is
orthogonal with respect to the Hermitian form h(β,γ) := β · γ̄ . The restriction of h to H2,0⊕H0,2 is positive
definite. Since Y is irreducible, H1,1(Ỹ ) is of signature (1,dimH1,1(Ỹ )− 1). As ı̃∗ω2 > 0, the restriction of
h to H1,1 is negative definite.

We have ker(ı̃∗) ⊂H . Indeed, let ξ ∈ ker(ı̃∗), and write ξ = a · ı̃∗ω+ β with a ∈ R and β ∈H . Then

0 = ı̃∗(a · ı̃∗ω+ β) ·ω = a[Y ] ·ω2 + ı̃∗(β · ı̃∗ω) = a[Y ] ·ω2.

As [Y ] ·ω2 , 0, we have a = 0, so ξ ∈ H . It follows from Lemma 8.4 that there exists a sub-Q-Hodge
structure L of H2(Ỹ ,Q) such that H2(Ỹ ,Q) = ker(ı̃∗)⊕L, which proves the main statement of Lemma 8.3.
The last statement of Lemma 8.3 follows from the observation that ı̃∗|L : L→H2n−2(X,Q) is an isomorphism
of Q-Hodge structures onto Im(ı̃∗). □

The bimeromorphic models of elliptic threefolds in the following statement will be useful in our proof of
Proposition 8.1.

Theorem 8.5 (cf. [Nak02, Theorem A.1]). Let f : X→ B be an elliptic fibration with X being a compact Kähler
threefold. Then f is bimeromorphic to an elliptic fibration f ′ : X ′→ B′ over a compact normal surface B′ satisfying
the following properties:

• X ′ has at worst terminal singularities.
• f ′ has equidimensional fibers.

Proof. Up to replacing X and B with some Kähler desingularizations of them, we can assume that both X
and B are smooth, X is Kähler, and the discriminant locus of f is a normal crossing divisor of B. Under
these assumption, f is locally projective by [Nak02, Theorem 3.3.3]. Theorem 8.5 is then a consequence
of [Nak02, Theorem A.1]. □

Now we prove Proposition 8.1.

Proof of Proposition 8.1. Let f ′ : X ′ → B′ be an elliptic fibration bimeromorphic to f as in Theorem 8.5.
Note that since dimX ′ = 3 and dimB′ = 2, both X ′ and B′ have at worst isolated singularities. Let

Z := Sing(B′)∪ f ′(Sing(X ′)),

which is a finite subset of B′ .
By Corollary 3.7, we can freely replace X with any smooth bimeromorphic model of it. Up to replacing

f : X → B with a bimeromorphic model of it by resolving the bimeromorphic map X d X ′ and taking
Kähler desingularizations, we can assume that both X and B are compact Kähler manifolds, and f fits into
the commutative diagram

(8.1)
X X ′

B B′ ,

ν

f f ′

µ
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where the horizontal arrows are bimeromorphic morphisms.
Since Int(Psef(X)∨) contains a rational class α, we have f∗α ∈ Int(Psef(B)∨) by Lemma 3.4. In particular,

the surface B satisfies the dual Kodaira condition, so B is projective. Thus f∗α ∈ H1,1(B,Q) is ample by
Kleiman’s criterion. Up to replacing α with a positive multiple of it, we can assume that f∗α = c1(L ) ∈
H1,1(B,Q) for some very ample line bundle L on B. Up to further replacing α with a multiple of it, we can
find a linear system T ⊂ |L | such that a general member C of T satisfies the following properties:

• C is smooth and irreducible.
• C′ := µ(C) is a curve containing Z ⊂ B′ (as Z is finite).
• D ′ := f ′−1(C′) is irreducible (as f ′ is equidimensional).
• A general pair of points of B is connected by a chain of general members of T .

Let C be a general member of T (satisfying the above properties). We have the commutative diagram

(8.2)

H2(D ′ ,Q) H2(X ′ ,Q) HBM
2 (X ′\D ′ ,Q)

H2(C′ ,Q) H2(B′ ,Q) HBM
2 (B′\C′ ,Q),

ı′∗

(f ′|D′ )∗ f ′∗ ≀ (f ′|X′ \D′ )∗

where the rows of (8.2) are part of the long exact sequences of Borel–Moore homology groups induced by
the open embeddings, cf. [Ive86, Section IX.2, (2.1)], and the vertical arrows between them are induced by
f ′ : X ′→ B′ .

Lemma 8.6. The map (f ′|X ′\D ′ )∗ in (8.2) is an isomorphism.

Proof. As C′ = µ(C) contains Z := Sing(B′)∪ f ′(Sing(X ′)), both X ′\D ′ and B′\C′ are smooth. So (f ′|X ′\D ′ )∗
is identified with (

f ′|X ′\D ′
)
∗
: H4(X ′\D ′ ,Q) −→H2(B′\C′ ,Q)

through Poincaré duality. Let C̃ := µ−1(C′) ⊂ B. Then C̃ = C∪C1 for some curve C1 ⊂ B. As m(m′C+C1) is
very ample for m,m′ ≫ 0, the complement B′\C′ ≃ B\C̃ = B\(C ∪C1) is affine. As f ′ has equidimensional
connected fibers, it follows from Lemma 2.4 that (f ′|X ′\D ′ )∗ is an isomorphism. □

Let D̃ be a desingularization of the proper transform of the divisor D ′ under ν, and let

D̃ X

D ′ X ′

ı

ν

ı′

be the induced commutative diagram. Since

f ′∗ ν∗α = µ∗f∗α = [C′] ∈H2(B
′ ,Q),

by (8.2) and Lemma 8.6 we have ν∗α ∈ Im(ı′∗ : H2(D ′ ,Q)→H2(X ′ ,Q)). As α ∈H2(X,Q), which is a pure
Hodge structure of weight −2, we have ν∗α ∈W−2H2(X ′ ,Q), so by the strictness of ν∗, we have ν∗α = ı′∗α0
for some α0 ∈W−2H2(D ′ ,Q). Since D̃→D ′ is a desingularization of D ′ , α0 ∈W−2H2(D ′ ,Q) can be lifted
to α1 ∈H2(D̃,Q) by Lemma 2.6, so

ν∗ı∗α1 = ν∗α ∈H2(X
′ ,Q).

Since X ′ has at worst rational singularities, Lemma 2.8 implies that ı∗α1 −α ∈H2(X,Q) is a Hodge class.
As α is a Hodge class, so is ı∗α1. Since D̃ is irreducible, by Lemma 8.3 there exists an α2 ∈H1,1(D̃,Q) such
that ı∗α2 = ı∗α1. By construction, f (ı(D̃)) = C, so we have the factorization

f ◦ ı : D̃
p
−−→ C

ȷ
↪−−→ B.
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We have
µ∗f∗ı∗α2 = f

′
∗ ν∗ı∗α2 = f

′
∗ ν∗ı∗α1 = f

′
∗ ν∗α = µ∗f∗α = [C′] , 0,

so
ȷ∗p∗α2 = f∗ı∗α2 , 0,

and thus p∗α2 , 0 ∈H0(C,Q). It follows from Lemma 8.2 that D̃ is a projective surface, so D := ı(D̃) ⊂ X
is algebraically connected.

As a general pair of points of B is connected by a chain of general members C of T , when C varies in T ,
the divisors D thus connect X by construction. Hence X is projective by Theorem 2.9. □

Thanks to Proposition 8.1, we can exclude threefolds of algebraic dimension 2 in Problem 1.2.

Corollary 8.7. Let X be a smooth compact Kähler threefold. If X satisfies the dual Kodaira condition (P), then
a(X) , 2.

Proof. Assume that a(X) = 2. Then the algebraic reduction of X is bimeromorphic to an elliptic fibration
f : X ′→ B; cf. [Uen75, Theorem 12.4]. By desingularization, we can assume that X ′ is smooth and Kähler. As
Int(Psef(X)∨) contains a rational class, Int(Psef(X ′)∨) contains a rational class α as well by Corollary 3.7.
Thus X ′ is projective by Proposition 8.1, which contradicts a(X) = 2. Hence a(X) , 2. □

9. Proofs of Theorems 1.7 and 1.8

Proof of Theorem 1.8. Let X be a compact Kähler threefold as in Theorem 1.8. Assume to the contrary
that a(X) ≤ 1. Then X is bimeromorphic to a variety X ′ satisfying one of the descriptions listed in
Proposition 2.13. We will rule out these descriptions case by case and therefore obtain a contradiction.
Suppose that X ′ is in case (i), namely X ′ is a P1-fibration X ′→ S over a smooth compact Kähler surface.
Then S is projective by [OP04, Proposition 2.6], so X ′ is Moishezon by Corollary 2.11, which is impossible. If
X ′ is in case (ii), then the projection (S ×B)/G→ S/G induces a dominant meromorphic map X d S/G.
Once again, [OP04, Proposition 2.6] implies that S/G is projective, contradicting the fact that S is non-
algebraic. Cases (iii) and (iv) are ruled out by Corollary 7.2 and Proposition 4.2, respectively. Finally, we rule
out case (v) by Corollary 5.3. □

Proof of Theorem 1.7. Let X be a compact Kähler threefold as in Theorem 1.7. Since K (X) ⊂ Psef(X),
Theorem 1.8 already implies that a(X) ≥ 2. The case a(X) = 2 is excluded by Corollary 8.7; hence X is
projective. □

10. One-cycles in compact Kähler threefolds and the Oguiso–Peternell
problem

In this final section, we work under the assumption that Question 1.10 has a positive answer and prove
that every compact Kähler threefold X as in Problem 1.1 or 1.3 is projective (cf. Corollary 1.11), except for
simple non-Kummer threefolds which presumably do not exist (see Remark 1.9). Already by Theorem 1.8, we
know that such a threefold X has algebraic dimension a(X) ≥ 2, so the proof consists in excluding the case
a(X) = 2. We will deduce the latter as a consequence of the following result.

Proposition 10.1. Let f : X → B be an elliptic fibration over a smooth projective surface B. Suppose that X
is a smooth compact Kähler threefold and that Question 1.10 has a positive answer for X. If there exists an
α ∈H2,2(X,Q) such that f∗α ∈H1,1(B,Q) is big, then X is projective.

Proof. As f∗α ∈ H1,1(B,Q) is big, f∗α is the sum of an ample curve class and an effective curve class;
cf. [Laz04a, Corollary 2.2.7]. We have the following more precise statement.
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Lemma 10.2. Up to replacing α by a positive multiple of it, there exist a very ample line bundle L , integral
curves E1, . . . ,El ⊂ B, and positive integers n1, . . . ,nl such that

f∗α = c1(L ) +
l∑
i=1

ni[Ei] ∈H1,1(B,Q)

and that c1(L ) does not lie in the subspace of H2(B,Q) spanned by [E1], . . . , [El].

Proof. Since f∗α ∈H1,1(B,Q) is big, up to replacing α by a positive multiple of it, there exist a very ample
line bundle L ′ , integral curves E1, . . . ,El ⊂ B, and n′1, . . . ,n

′
l ∈ Z>0 such that

f∗α = c1(L
′) +

l∑
i=1

n′i[Ei] ∈H
1,1(B,Q).

Suppose that c1(L ′) =
∑l
i=1mi[Ei] for some mi ∈Q. Then

(10.1) ml · f∗α = (n′l +ml)c1(L
′) +

l−1∑
i=1

(
mln

′
i −n

′
lmi

)
[Ei].

Up to reordering the indices, we can assume that ml
n′l
≥ mi

n′i
(so mln

′
i −n

′
lmi ≥ 0) for every i = 1, . . . , l. As L ′

is ample, we have mj > 0 for at least one j , so ml > 0. Therefore, up to replacing α by a positive multiple of
it, (10.1) gives a new expression

(10.2) f∗α = c1(L
′′) +

l′∑
i=1

n′′i [Ei] ∈H
1,1(B,Q)

for some l′ < l and n1, . . . ,nl′ ∈ Z>0 together with another very ample line bundle L ′′ .
We can repeat the same procedure as long as c1(L ′′) ∈

∑l′
i=1Q[Ei]. Since the integer l′ in (10.2) decreases

strictly, this procedure eventually stops, which gives an expression f∗α = c1(L ) +
∑l
i=1ni[Ei] satisfying the

properties in Lemma 10.2. □

Let Z ⊂ B be the subset such that dimf −1(z) > 1 for every z ∈ Z . As f is a surjective morphism from an
irreducible threefold to a surface, Z is finite.

We write f∗α = c1(L ) +
∑l
i=1ni[Ei] as in Lemma 10.2. Up to further replacing α with a multiple of it, we

can find a linear system T ⊂ |L | such that a general member C of T satisfies the following properties:

• C is smooth and irreducible.
• C , Ei for every i, and C contains Z ⊂ B (as Z is finite).
• A general pair of points of B is connected by a chain of general members of T .

Let C be a general member of T , and let E := ∪iEi . Let D := f −1(C) and D ′ := f −1(E). We have the
commutative diagram

(10.3)

H2(D ∪D ′ ,Q) H2(X,Q) HBM
2 (X\(D ∪D ′),Q)

H2(C ∪E,Q) H2(B,Q) HBM
2 (B\(C ∪E),Q),

ı∗

f∗ ≀ (f|X\(D∪D′ ))∗

where the rows of (10.3) are part of the long exact sequences of Borel–Moore homology groups induced
by the open embeddings, cf. [Ive86, Section IX.2, (2.1)], and the vertical arrows between them are induced
by f : X → B. The same argument proving Lemma 8.6 shows that the map (f|X\(D∪D ′))∗ in (10.3) is an
isomorphism.

Let D̃ (resp. D̃ ′) be a desingularization of D (resp. D ′), and let

ı̃ : D̃ ⊔ D̃ ′ −→D ∪D ′ ↪−−→ X
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be the composition of the desingularizations and inclusion. Since f∗α ∈ H2(B,Q) is supported on C ∪E,
by (10.3) we have

α ∈ Im(ı∗ : H2(D ∪D ′ ,Q) −→H2(X,Q)) .

As we assume that Question 1.10 has a positive answer for X, there exist β ∈H1,1(D̃,Q) and β′ ∈H1,1(D̃ ′ ,Q)
such that ı̃∗(β + β′) = α. By construction, we have the factorization

f ◦ ı̃ : D̃ ⊔ D̃ ′
p⊔p′
−−−−→ C ∪E

ȷ
↪−−→ B,

so

(10.4) ȷ∗p∗β + ȷ∗p
′
∗β
′ = f∗ ı̃∗(β + β

′) = f∗α = c1(L ) +
l∑
i=1

ni[Ei]

in H2(B,Q). As ȷ∗p∗β is supported on C and ȷ∗p
′
∗β
′ supported on ∪iEi , we have

ȷ∗p∗β ∈Q · [C] =Q · c1(L ) ⊂H2(B,Q) and ȷ∗p
′
∗β
′ ∈

∑
i

Q · [Ei] ⊂H2(B,Q).

Since c1(L ) <
∑
iQ · [Ei] by Lemma 10.2, it follows from (10.4) that ȷ∗p∗β , 0 and thus p∗β , 0 ∈H0(C,Q).

Therefore, D̃ is projective by Lemma 8.2, so D is algebraically connected.
As a general pair of points of B is connected by a chain of general members C of T , when C varies in T ,

the divisors D connects X by construction. It follows from Theorem 2.9 that X is projective. □

Proof of Corollary 1.11 for Problem 1.1. As we mentioned before, Theorem 1.8 implies that a(X) = 2, so X
is bimeromorphic to an elliptic fibration f : X ′ → B over a projective surface. By desingularization, we
can assume that both X ′ and B are smooth and X ′ is Kähler. As Int(K (X)∨) contains a rational class,
Int(K (X ′)∨) contains a rational class α as well, cf. [OP04, Proposition 2.1], and we have f∗α ∈ Int(K (B)∨)
by [OP04, Proposition 2.5]. Since B is a smooth projective surface, f∗α ∈ H1,1(B,Q) is big by Kleiman’s
criterion. Applying Proposition 10.1 to the elliptic fibration f : X ′→ B shows that X ′ is projective. Hence X
is projective. □

Finally, we prove Corollary 1.11 for Problem 1.3. Before we start the proof, let us first recall and prove
some statements about subvarieties with ample normal bundles. The first one is a theorem due to Fulton
and Lazarsfeld, asserting that a subvariety with ample normal bundle intersects non-negatively with other
subvarieties.

Theorem 10.3 (Fulton–Lazarsfeld [Laz04b, Corollary 8.4.3]). Let X be a compact complex manifold, and let
Y ⊂ X be a local complete intersection subvariety of dimension k. Assume that NY /X is ample. Then for every
subvariety Z ⊂ X of codimension k, we have Y ·Z ≥ 0. Moreover, if Y ∩Z , ∅, then Y ·Z > 0.

While the pullback of an effective cycle does not necessarily remain effective, in some situations the
ampleness of the normal bundle of a subvariety Y ⊂ X ensures that the pullback of the cycle class of Y is
still effective.

Lemma 10.4. Let µ : Y → X be a bimeromorphic morphism between smooth compact Kähler threefolds, and let
C ⊂ X be a smooth irreducible curve. If NC/X is ample, then µ

∗[C] ∈H4(Y ,Q) is an effective curve class. More
precisely, there exists an irreducible curve C̃ on Y such that µ(C̃) = C and mµ∗[C] = [C̃]+ [C′] for some m ∈ Z>0
and some effective curve class [C′] ∈H4(Y ,Q).

We need to first prove a technical lemma before proving Lemma 10.4. Let X be a compact complex variety.
A curve C ⊂ X is called displaceable if for every point x ∈ X and every irreducible component C′ of C, we can
find a curve C′′ ⊂ X such that C′′ is deformation equivalent to C′ and x < C′′ . For any subvariety Y ⊂ X, we
say that C is displaceable in Y if C ⊂ Y and in the previous definition, C′′ is deformation equivalent to C′ in Y.
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Lemma 10.5. Let ν : X̃→ X be the blow-up of a compact Kähler threefold X along an irreducible smooth center
Z ⊂ X. Let C ⊂ X be a displaceable curve. Then ν∗[C] ∈ H4(X̃,Q) can be represented by a displaceable curve
C̃ ⊂ X̃.
If moreover C has an irreducible component C0 which is displaceable in some surface S ⊂ X, then ν∗[C] ∈

H4(X̃,Q) can be represented by a displaceable curve C̃ ⊂ X̃ which contains an irreducible component C̃0 such that
ν(C̃0) is deformation equivalent to C0 in S and C̃0 is displaceable in the strict transform S̃ ⊂ X̃ of S .

Proof. Let C0, . . . ,Ck be the irreducible components of C. The blow-up center Z is either a point or a curve.
If Z is a point (resp. a curve), then since C is displaceable, we can choose a general deformation C′i ⊂ X of
Ci such that C′i ∩Z = ∅ (resp. C′i ∩Z = ∅ or dimC′i ∩Z = 0). For the irreducible component C0, we choose a
general deformation C′0 of C0 which moreover remains in S . By the blow-up formula [Ful98, Theorem 6.7],
we have

ν∗[C] =
∑
i

ν∗[C′i] =
∑
i

[C̃′i] +m[F] ∈H4(X̃,Q)

for some m ∈ Z≥0, where C̃′i ⊂ X̃ is the strict transform of C′i and F is a fiber of ν−1(Z)→ Z .
Clearly, F is displaceable. Since each C′i (resp. C′0) is a general deformation of the displaceable curve

Ci (resp. C0), the strict transform C̃′i is displaceable (resp. displaceable in S̃). Finally, since C̃′0 is the strict
transform of C′0 under ν, the image ν(C̃′0) = C′0 is deformation equivalent to C0 in S by assumption. □

Proof of Lemma 10.4. Let q : X ′ → X be the blow-up of X along C. We resolve the bimeromorphic map
µ−1 ◦ q : X ′ d Y by a sequence of blow-ups along smooth centers ν : X̃ → X ′ and let p : X̃ → Y be the
induced bimeromorphic morphism. The following commutative diagram summarizes the situation:

X̃ X ′

Y X.

ν

p q

µ

Since µ∗[C] = p∗ν∗q∗[C], it suffices to prove Lemma 10.4 for the bimeromorphic morphism q ◦ ν.
Let E = q−1(C) and g = q|E : E→ C. By the blow-up formula [Ful98, Proposition 6.7(a)], we have

(10.5) q∗[C] = j∗c1 (g
∗NC/X) + j∗c1 (OE/C(1)) ,

where j : E ↪→ X ′ is the inclusion. As NC/X is ample, c1(g∗NC/X) + c1(OE/C(1)) is an ample class in E. Let
m ∈ Z>0 be such that L := (det(g∗NC/X)⊗OE/C(1))

⊗m is very ample. We can therefore find an irreducible
curve C1 ∈ |L | which is displaceable in E. As ν is a sequence of blow-ups of threefolds along smooth centers,
applying Lemma 10.5 to these blow-ups yields an irreducible curve C̃ ⊂ X̃ such that ν(C̃) is deformation
equivalent to C1 in E and ν∗[C1] = [C̃]+[C′] for some effective curve class [C′] in X̃. Since m ·q∗[C] = [C1]
by (10.5) and the construction of C1, we have m · ν∗q∗[C] = [C̃] + [C′]. Finally, since ν(C̃) is deformation
equivalent to C1 in E and g(C1) = C, necessarily q(ν(C̃)) = g(ν(C̃)) = C. This proves Lemma 10.4 for the
bimeromorphic morphism q ◦ ν. □

Proof of Corollary 1.11 for Problem 1.3. By [OP04, Corollary 4.8], we have a(X) ≥ 2.
Assume that a(X) = 2. By Lemma 2.12, the algebraic reduction f : Xd B of X is almost holomorphic,

and its general fiber F is an elliptic curve. Let Σ be the irreducible component of the Douady space of X
containing F, and let

C X

Σ

q

p

denote the universal family. Since X is a compact Kähler manifold, Σ is compact (cf. [Fuj79]), and so is C . As

2 = dimB ≤ dimΣ ≤H0(F,NF/X) =H
0(F,O2

F ) = 2,
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the generically injective meromorphic map τ : Bd Σ induced by the almost holomorphic fibration Xd B
is bimeromorphic. Consequently, q is bimeromorphic.

Let ν : Σ′→ Σ be the normalization of Σ, and let C ′ := C ×Σ Σ′ . We have the commutative diagram

C̃ C ′ C X

Σ̃ Σ′ Σ,

ν̃

q̃

p̃ p′

q′

□

q

p

ν′ ν

where ν′ (resp. ν̃) is a desingularization of Σ′ (resp. C ′). Since C is a smooth curve and NC/X is ample, the
irreducible components of C have ample normal bundles as well, so we can assume that C is irreducible.
By Lemma 10.4, there exist an m ∈ Z>0 and an irreducible curve C̃ ⊂ C̃ such that q̃(C̃) = C and mq̃∗[C] =
[C̃] + [C′] ∈H4(C̃ ,Q) for some effective curve class [C′].

Now we show that p̃∗([C̃] + [C′]) is big. Since p̃∗([C̃] + [C′]) is effective, it suffices to show that(
p̃∗([C̃] + [C′])

)2
> 0. First we note that if F′ is a fiber of p′ , then C 1 q′(F′). Indeed, if C ⊂ q′(F′),

then since p′ is flat and a general fiber of p is an elliptic curve, we would have g(C) ≤ 1. So X would be
projective by [OP04, Corollary 4.6], contradicting a(X) = 2. It follows from C 1 q′(F′) that ν′(p̃(C̃)) ⊂ Σ′ is
a curve.

Claim. The analytic subset D := q̃
(
p̃−1(p̃(C̃))

)
has a divisorial component D ′ containing C.

Proof. Let E ⊂ Σ̃ be the exceptional divisor of ν′ , and let U := Σ̃\E. Since ν′ is a bimeromorphic morphism
between normal surfaces and since ν′(p̃(C̃)) ⊂ Σ′ is a curve, we have C◦ := p̃(C̃)∩U , ∅, which is a curve,
and ν(ν′(C◦)) is a curve as well. As p : C → Σ is the universal family of the Douady space Σ, the complex
subspace

D ′ := q′(p′−1(ν′(C◦))) = q(p−1(ν(ν′(C◦)))) ⊂ X,

which is the union of curves parameterized by ν(ν′(C◦)), is a divisor and D ′ contains C. Finally, note that
since ν′|U is isomorphic onto its image, we have p′−1(ν′(C◦)) ⊂ ν̃(p̃−1(C◦)). Hence D ′ ⊂D . □

By the above claim, it follows from Theorem 10.3 that

[C] · q̃∗p̃∗p̃∗([C̃] + [C′]) ≥ [C] · [D] ≥ [C] · [D ′] > 0,

so (
p̃∗([C̃] + [C′])

)2
= ([C̃] + [C′]) · p̃∗p̃∗([C̃] + [C′])

=mq̃∗[C] · p̃∗p̃∗([C̃] + [C′]) =m[C] · q̃∗p̃∗p̃∗([C̃] + [C′]) > 0,
(10.6)

which shows that p̃∗([C̃] + [C′]) is big.
Since p̃ is bimeromorphic to p, p̃ is an elliptic fibration. As p̃∗([C̃] + [C′]) is big, it follows from Proposi-

tion 10.1 that C̃ is projective, which contradicts the assumption that a(X) = 2 because X is bimeromorphic
to C̃ . Hence X is projective. □

References

[BL21] B. Bakker and C. Lehn, A global Torelli theorem for singular symplectic varieties, J. Eur. Math. Soc.
( JEMS) 23 (2021), no. 3, 949–994.

[BHP+04] W. P. Barth, K. Hulek, C. A. M. Peters, and A. Van De Ven, Compact complex surfaces, 2nd ed.,
Ergeb. Math. Grenzgeb. (3), vol. 4, Springer-Verlag, Berlin, 2004.



On the dual positive cones and the algebraicity of compact Kähler manifolds 29On the dual positive cones and the algebraicity of compact Kähler manifolds 29

[Bea83a] A. Beauville, Quelques remarques sur la transformation de Fourier dans l’anneau de Chow d’une
variété abélienne, in: Algebraic geometry (Tokyo/Kyoto 1982), pp. 238–260, Lecture Notes Math.,
vol. 1016, Springer-Verlag, Berlin, 1983.

[Bea83b] , Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18
(1983), no. 4, 755–782.

[BL04] C. Birkenhake and H. Lange, Complex abelian varieties, 2nd ed., Grundlehren math. Wiss., vol.
302, Springer-Verlag, Berlin, 2004.
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