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Coholomogy class of complex approximable algebras

Catriona Maclean

Abstract. In his work on arithmetic Fujita approximation, Huayi Chen introduces the notion of
an approximable graded algebra, which he uses to prove a Fujita-type theorem in the arithmetic
setting, and asks if any such algebra is the graded ring of a big line bundle on a projective variety.
This was proved to be false by the author in a previous work. A subsequent paper showed that,
whilst the approximable algebra is not necessarily a subalgebra of the algebra of graded sections of
a big line bundle, it is a full-dimensional subalgebra of the algebra of sections of an infinite Weil
divisor. This paper also proved that over C, if an infinite Weil divisor has a finite numerical class,
then its section ring is approximable, and the same is true for any full-dimensional subalgebra.

This note proves that the converse is true: any approximable algebra over C is associated to an
infinite Weil divisor whose numerical class converges.
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1. Introduction

The Fujita approximation theorem, [Fuj94], is an important result in algebraic geometry. It states that
whilst the section ring associated to a big line bundle L on an algebraic variety X

R(L)
def
= ⊕mH0(mL,X)

is typically not a finitely generated algebra, it can be approximated arbitrarily well by finitely generated
algebras. More precisely, we have the following.

Theorem 1.1 (Fujita). Let X be an algebraic variety, and let L be a big line bundle on X. For any ϵ > 0 there exist
a birational modification

π : X̂ −→ X

and a decomposition of Q-divisors π∗(L) = A+E such that

• A is ample and E is effective,
• vol(A) ≥ (1− ϵ)vol(L).

In [LM09], Lazarsfeld and Mustaţă use the Newton–Okounkov body associated to A to give a simple
proof of Fujita approximation.

In [Che10], Chen uses Lazarsfeld and Mustaţă’s work on Fujita approximation to prove a Fujita-type
approximation theorem in the arithmetic setting. In the course of this work, he defines the notion of
approximable graded algebras, which are exactly those algebras for which a Fujita-type approximation
theorem holds.

Definition 1.2. An integral graded algebra B = ⊕mBm with B0 = k a field is approximable if and only if the
following conditions are satisfied:

(1) All the graded pieces Bm are finite-dimensional over k.
(2) For all sufficiently large m the space Bm is non-empty.
(3) For any ϵ there exists a p0 such that for all p ≥ p0 we have that

liminf
n→∞

dim(Im(SnBp→ Bnp))

dim(Bnp)
> (1− ϵ).

In his paper [Che10], Chen asks whether any graded approximable algebra is in fact a subalgebra of the
algebra of sections of a big line bundle. A counter-example to this is given in [Mac17a], where the graded
approximable algebra is equal to the section ring of an infinite divisor.(1) The subsequent paper [Mac17b]
shows that any approximable algebra is indeed a subalgebra of the section ring of such a divisor. Moreover,
it is established that if X is a smooth complex algebraic variety of dimension d and D =

∑∞
i=1 aiDi is an

(1)Infinite in this context means an infinite formal sum of Weil divisors with real coefficients
∑

i aiDi .
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infinite Weil divisor on X such that the sum of divisor classes
∑∞

i=1 ai[Di] converges in the Néron–Severi
space NS(X) to a finite real big cohomology class [D], then the algebra ⊕mH0(mD) is approximable.

The main result of this note proves that the converse is true.

Theorem 1.3. Let B be an approximable algebra over C, and let X(B) and D(B) =
∑∞

i=1 aiDi be the smooth
complex variety and infinite Weil divisor constructed in [Mac17b] such that B is a full-dimensional subalgebra of
the section ring of D(B). The sum of cohomology classes

∑∞
i=1 ai[Di] in NS(X), the Néron–Severi space of X, is

then a convergent series.

In Section 2, we set notation and recall such results from [Mac17b] as will be necessary. Section 3 contains
the proof of Theorem 1.3.

2. Notation and two preliminary results

In this section, we fix some notation and recall some essential preliminary results.
In this paper, we consider a graded approximable algebra B = ⊕mBm such that B0 =C. For any natural

numbers k and n we denote by Symn(Bk) the nth symmetric power of the vector space Bk and by Sn(Bk)
the image of Symn(Bk) in Bnk .

We say that a graded, not a priori approximable, algebra ⊕mBm is of dimension d and has volume v if the
sequence

lim
n→∞

(
rk(Bn)
nd/d!

)
converges to the strictly positive real number v. It is proved by Chen in [Che10] that such numbers exist for
any approximable algebra B.

We now recall the construction from [Mac17b] of the smooth variety X(B) and the infinite Weil divisor
D(B) such that B is a subalgebra of the section ring of D(B).

2.1. Construction of X(B) and D(B)

The variety X(B) is defined up to birational equivalence using the homogeneous field of fractions of
B = ⊕mBm, which we now define.

Definition 2.1. Let B = ⊕mBm be a graded algebra over C. Then we define its homogeneous fraction field
by

Khom(B) =
{
b1
b2
| ∃m such that b1,b2 ∈ Bm,b2 , 0

}
/ ∼

where ∼ is the equivalence relation
b1
b2
∼ c1

c2
⇐⇒ b1c2 = c1b2.

Note that Khom(B) is a field extension of C.
Choose n large enough that Bn and Bn+1 are both non-trivial. Choose f1 ∈ Bn and f2 ∈ Bn+1. For any m

we can then identify Bm with a subspace of Khom(B) via the inclusion

im : Bm ↪−−→ Khom(B), bm 7−→
bmf

m
1

f m
2

.

(Note that this inclusion depends on the choice of f1 and f2). Throughout what follows, we assume that we
have fixed f1 ∈ Bn and f2 ∈ Bn+1 for some choice of n and that there is therefore for every m a fixed inclusion
im : Bm ↪→ Khom(B). These inclusions satisfy im(bm)ir(br ) = im+r(bmbr ) for any bm ∈ Bm and br ∈ Br .

This field is proved in [Mac17b] to be finitely generated, enabling the following definition of X(B).

Definition 2.2. The variety X(B) is a smooth projective complex variety such that K (X(B)) = Khom(B).
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Remark 2.3. The variety X(B) is defined only up to birational equivalence. It can be chosen smooth by
Hironaka resolution.

We now recall the definition of the infinite Weil divisor D(B), which is constructed as the limit of the
sequence of divisors Dm/m, where the divisors Dm are poles of the rational functions bm ∈ Bm. More
precisely, for any bm ∈ Bm let (bm)X =

∑∞
i=1 aiDi be the principal divisor(2) on X(B) cut out by the rational

function bm. We let (bm)−X =
∑

i|ci<0−ciDi be the poles divisor of bm and let (bm)
+
X =

∑
i|ci>0 ciDi be the

zeros divisor of bm, so that
(bm)X = (bm)

+
X − (bm)

−
X .

We can now define Dm.

Definition 2.4. For any m such that Bm is non-empty, we define the effective divisor Dm on X(B) by

Dm = sup
bm∈Bm

(
(bm)

−
X
)
,

where the supremum is taken with respect to the natural partial order on Weil(X(B)).

It is proved in [Mac17b] that this supremum is a maximum and moreover that for every m such that Bm is
non-empty, there exists a bm such that Dm is the poles divisor of im(bm). We can now define D(B).

Definition 2.5. We set D(B) = limm→∞
(
Dm
m

)
.(3)

In the next section, we prove that the infinite divisor D(B) has a finite cohomology class.

3. Finiteness of the cohomology class [D(B)]

We now give a proof of Theorem 1.3. Note that if Bq = ⊕nBnq, then D(Bq) = qD(B), so without loss of
generality, we may assume that B1 is non-zero. Our proof depends on the following observation.

Lemma 3.1. Let X be a smooth complex variety, and let H be an ample divisor on X. Equip NS(X), the Néron–
Severi group of X, with a norm denoted by | · |. Then there is a constant C > 0 such that for any pseudo-effective
divisor E on X, we have that

E ·Hd−1 > C|[E]|.

Proof. Suppose not. Then there exists a sequence of pseudo-effective divisor classes [En] such that |[En]| = 1
for all n and En ·Hd−1→ 0. Passing to a convergent subsequence, we may assume that in the Néron–Severi
space, [En] converges to a non-zero pseudo-effective cohomology class [E] such that Hd−1 ·E = 0, but this is
impossible. This completes the proof of Lemma 3.1. □

This lemma enables us to give a numerical criterion for convergence of the sequence [Dm/m].

Lemma 3.2. Let B be an approximable algebra over C, let X(B) be the associated variety, and consider the
divisors Dm/m defined above, converging to an infinite Weil divisor D(B). Let NS(X) be the Néron–Severi space
of X. Let H be an ample divisor on X.
The sequence [Dm/m] converges in NS(X) if and only if the numerical sequence (Dm ·Hd−1)/m converges.

Proof. The fact that convergence of [Dm/m] implies convergence of (Dm ·Hd−1)/m is immediate. We assume
now that the sequence (Dm ·Hd−1)/m converges, and we will show that the sequence of cohomology classes
[Dm/m] also converges. Throughout what follows, we write [D1] ≥ [D2] if and only if [D1 −D2] is the
cohomology class of a pseudo-effective divisor.

(2)Here, the Di are prime divisors, and the sum is finite.
(3)It is proved in [Mac17b] that this limit exists and that for any k the divisor ⌊kD⌋ is finite.
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We first show that if the sequence [Dm!/(m!)] converges to a limit [D], then so does the sequence [Dm/m].
For any integer m1 and any ϵ > 0, there exists an integer M1 such that if m >M1, then

(3.1) [Dm/m] ≥ (1− ϵ)[Dm1!/(m1!)].

We also have that

(3.2) [Dm/m] ≤ [Dm!/(m!)] ≤ [D]

since the sequence [Dm!/(m!)] is increasing in m. (The last equality is immediate because we have defined
the partial order ≤ in terms of pseudo-effective divisors rather than effective divisors).

It follows from (3.1) that for all m >M1 we have that

[D −Dm/m] ≤ [(D − (1− ϵ)Dm1!/(m1!)]

and hence
Hd−1 · (D −Dm/m) ≤ [H]d−1 · [D − (1− ϵ)Dm1!/(m1!)]).

Since the right-hand side can be made arbitrarily small by an appropriate choice of ϵ and m1, we deduce
that

[H]d−1 · ([D −Dm/m]) −→m→0 0.

Since [D −Dm/m] is pseudo-effective by Equation (3.2), it follows from Lemma 3.1 that

[Dm/m] −→m→∞ [D].

It remains only to show that the sequence Dm!/m! is convergent. We note that this sequence of divisors is
monotone increasing. In particular, if we set

Rm =Dm!/(m!)−D(m−1)!/(m− 1)!,

then Rm is effective and hence pseudo-effective for all m. We have assumed that the sequence
∑∞

m=1H
d−1 ·Rm

is convergent. By Lemma 3.1, the series
∑∞

m=1[Rm] is also convergent. This completes the proof of
Lemma 3.2. □

A final lemma will be necessary before completing the proof of Theorem 1.3.

Lemma 3.3. There are constants p, k and N such that for any m > N divisible by p and any n such that n ≥ km,
there are polynomials T1 and T2 in Sn(Bp) such that im(bm) = T1/T2. In particular, such polynomials T1 and T2
exist in Skm(Bp).

Proof. The proof of Lemma 3.3 is similar to that of [Mac17b, Proposition 1]. In [Che10], Chen shows that if B
is approximable, then there exist a constant d and another constant M such that

dim(Bn) ∼Mnd .

In particular, there exist a constant N and another constant k such that for any m1,m2 > N ′ such that
m2 > km1, we have that

dim
(
Bm1+m2

)
≤ 4

3

(
dim

(
Bm2

))
.

Pick now a p and n0 such that we have both of the following:

(1) p > N ,
(2) dim(Sn(Bp)) ≥ 2

3dim(Bnp) for all n > n0.

Now consider an element bm in Bm for some m >max{N,n0p}. We assume furthermore that m is divisible
by p; i.e. m = k′p. Our aim is to give a bound on the poles of im(bm) which depends linearly on m.

Choose n such that np ≥ km. We note that in particular np ≥N . We may assume that im(bm) =
bm
b′m

for
some bm,b

′
m ∈ Bm since we have assumed that B1 , {0}. Note that

dim(bm · Sn(Bp)) = dim(Sn(Bp)) >
2(dim(Bnp))

3
>
dim(Bnp+m)

2
.
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Similarly,

dim(b′m · Sn(Bp)) = dim(Sn(Bp)) >
2(dim(Bnp))

3
>
dim(Bnp+m)

2
,

from which it follows that
bm · Sn(Bp))∩ b′m · Sn(Bp)) , {0}

and hence
bm
b′m

=
T1
T2

for some T1,T2 ∈ Sn(Bp). This completes the proof of Lemma 3.3. □

We can now complete the proof of Theorem 1.3. Fix n such that np = km. For j = 1,2 we set

(D(inp(Tj ))) = Zj − Pj ,

where Zj and Pj are effective divisors that do not have any common component; since inp(Tj ) is a rational
function, we have in particular that Zj and Pj are numerically equivalent. Note that by the definition of Dp,
we have that

Pj ≤ (km)Dp,

and it follows that, numerically,
Zj ·Hd−1 ≤ (km)Dp ·Hd−1.

But now if we consider the poles divisor of im(bp), we have that

P (im(bm)) ≤ P1 +Z2

and hence
P (im(bm)) ·Hd−1 < 2(km)Dp ·Hd−1.

We know that there exists a bm such that P (im(bm)) =Dm and hence

Dm

m
·Hd−1 ≤ 2km

m
Dp ·Hd−1 ≤ 2kDp ·Hd−1,

and hence this sequence is bounded since k and p were fixed.
It follows that the sequence Dm

m ·H
d−1 is bounded and hence convergent, so that by Lemma 3.2, the

sequence [Dm/m] is also convergent in NS(X). This completes the proof of Theorem 1.3. □
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