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Filtered formal groups, Cartier duality,
and derived algebraic geometry

Tasos Moulinos

Abstract. We develop a notion of formal groups in the filtered setting and describe a duality
relating these to a specified class of filtered Hopf algebras. We then study a deformation to the
normal cone construction in the setting of derived algebraic geometry. Applied to the unit section
of a formal group Ĝ, this provides a Gm-equivariant degeneration of Ĝ to its tangent Lie algebra.
We prove a unicity result on complete filtrations, which, in particular, identifies the resulting
filtration on the coordinate algebra of this deformation with the adic filtration on the coordinate
algebra of Ĝ. We use this in a special case, together with the aforementioned notion of Cartier
duality, to recover the filtration on the filtered circle introduced by the author, Robalo, and Toën in
a 2019 paper. Finally, we investigate some properties of Ĝ-Hochschild homology, set out in that
paper and describe “lifts” of these invariants to the setting of spectral algebraic geometry.
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7. Ĝ-Hochschild homology . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8. Liftings to spectral deformation rings . . . . . . . . . . . . . . . . . . . . . 29
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1. Introduction

The starting point of this work arises from the construction in [MRT22] of the filtered circle, an object
of algebro-geometric nature, capturing the k-linear homotopy type of S1, the topological circle. This
construction is motivated by the schematization problem due to Grothendieck, stated most generally in
finding a purely algebraic description of the Z-linear homotopy type of an arbitrary topological space X.

In the process of doing this, the authors realized that there was an inextricable link between this
construction and the theory of formal groups and Cartier duality, as set out in [Car62]. We briefly review
the relationship. The filtered circle is obtained as the classifying stack BH, where H is a Gm-equivariant
family of group schemes parametrized by the affine line, A1. This family of schemes interpolates between
two affine group schemes, Fix and Ker; these can be traced to the work of [SS01], where they are shown to
arise via Cartier duality from the formal multiplicative and formal additive groups, Ĝm and Ĝa, respectively.
The filtered circle S1

fil is then obtained as BH, the classifying stack over A
1/Gm of H. By taking the

derived mapping space out of S1
fil in A

1/Gm-parametrized derived stacks, one recovers precisely Hochshild
homology together with a functorial filtration.

There is no reason to stop at Ĝm or Ĝa, however. In [SS01], the authors proposed, given an arbitrary
1-dimensional formal group Ĝ, the following generalized notion of Hochshild homology of simplicial
commutative rings:

HHĜ(−) : sCAlgk −→ sCAlgk , A 7−→HHĜ(A) := RΓ (MapdStkk
(BĜ∨,SpecA)).

The right-hand side is the derived mapping space out of BĜ∨, the classifying stack of the Cartier dual of Ĝ.
For Ĝ = Ĝm one recovers Hochshild homology via a natural equivalence of derived schemes

Map(BFix,X) −→Map(S1,X),
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and for Ĝ = Ĝa one recovers the derived de Rham algebra (cf. [TV11]) via an equivalence

Map(BKer,X) ≃ TX |k[−1] = Spec(Sym(LX |k[1])

with the shifted (negative) tangent bundle. One may now ask the following natural questions: if one replaces
Ĝm with an arbitrary formal group Ĝ, does one obtain a degeneration over A1/Gm similar to that in the
previous paragraph? Is there a sense in which such a degeneration is canonical?

The overarching aim of this paper is to address some of these questions by further systematizing some of
the above ideas, particularly using further ideas from spectral and derived algebraic geometry.

1.1. Filtered formal groups

The first main undertaking of this paper is to introduce a notion of filtered formal group over a (discrete)
ring R. For now, we give the following rough definition, postponing the full definition to Section 4.

Definition 1.1 (cf. Definition 4.23). Let R be a discrete commutative ring. A filtered formal group is an
abelian cogroup object A in the category of complete filtered algebras CAlg(F̂ilR) (see Definition 4.6 for an
explanation of the notation F̂ilR) which are discrete at the level of underlying algebras.

Heuristically, these give rise to stacks
Ĝ −→A

1/Gm,

for which the pullback π∗(Ĝ) along the smooth atlas π : A1→A
1/Gm is a formal group over A1 in the

classical sense.
From the outset we restrict to a full subcategory of complete filtered algebras, for which there exists

a well-behaved duality theory. Our setup is inspired by the framework of [Lur18b] and the notion of
smooth coalgebra therein. Namely, we restrict to complete filtered algebras that arise as the duals of smooth
filtered coalgebras (cf. Definition 4.10). The abelian cogroup structure on a complete filtered algebra A then
corresponds to the structure of an abelian group object on the corresponding coalgebra. As everything in
sight is discrete, hence 1-categorical (cf. Remark 3.4), this is precisely the data of a comonoid in smooth
coalgebras, i.e., a filtered Hopf algebra. Inspired by the classical Cartier duality correspondence over a field
between formal groups and affine group schemes, we refer to this as filtered Cartier duality.

Remark 1.2. We acknowledge that the phrase “Cartier duality” has a variety of different meanings throughout
the literature (e.g., duality between finite group schemes, p-divisible groups, etc.) For us, this will always
mean a contravariant correspondence between (certain full subcategories of) formal groups and affine group
schemes, originally observed by Cartier over a field in [Car62].

Remark 1.3. In this paper we are concerned with filtered formal groups Ĝ→ A
1/Gm whose “fiber over

Spec(R)→A
1/Gm” recovers a classical (discrete) formal group. We conjecture that the duality theory of

Section 4 holds true in the filtered, spectral setting. Nevertheless, as this takes us away from our main
applications, we have stayed away from this level of generality.

As it turns out, the notion of a complete filtered algebra, and hence ultimately the notion of a filtered
formal group, is of a rigid nature. To this effect, we demonstrate the following unicity result on complete
filtered algebras A∗ with a specified associated graded (before taking any group structure into account). In
order to state this, we recall that given any commutative ring A with ideal I , there exists a filtered object
F∗I (A), the adic filtration on A.

Theorem 1.4. Let A be a commutative ring which is complete with respect to the I-adic topology induced by some
ideal I ⊂ A. Let A∗ ∈ CAlg(F̂ilR) be a (discrete) complete filtered algebra with underlying object A. Suppose there
is an inclusion

A1 −→ I
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of A-modules inducing an equivalence

gr(A∗) ≃ gr(F∗I (A))

of graded objects, where I/I2 is of pure weight 1. Then A∗ = F∗IA; namely, the filtration in question is the I-adic
filtration.

For example, if A is an augmented algebra, complete with respect to the augmentation ideal I , there can
only be one (multiplicative) filtration on A satisfying the conditions of Theorem 1.4, the I-adic filtration.

We will observe that the comultipliciation on the coordinate algebra of a formal group preserves this
filtration, so that the formal group structure lifts uniquely as well.

1.2. Deformation to the normal cone

Our next order of business is to study a deformation to the normal cone construction in the setting of
derived algebraic geometry. In essence this takes a closed immersion X→ Y of classical schemes and gives
a Gm-equivariant family of formal schemes over A1, generically equivalent to the formal completion ŶX
which degenerate to the normal bundle of NX|Y formally completed at the identity section. When applied to

a formal group, Ĝ produces a Gm-equivariant 1-parameter family of formal groups over the affine line.

Remark 1.5. A construction of deformation to the normal cone of a similar nature has already appeared in
the book of Rozenblyum and Gaitsgory, cf. [GR17], in characteristic zero. Here we make no such restrictions
on characteristic, and therefore the following result does not follow directly from their work.

Theorem 1.6. Let f : Spec(R) → Ĝ be the unit section of a formal group Ĝ. Then there exists a stack
Def

A
1/Gm

(Ĝ)→A
1/Gm such that there is a map

A
1/Gm −→Def

A
1/Gm

(
Ĝ

)
whose fiber over 1 ∈A1/Gm is

Spec(k) −→ Ĝ

and whose fiber over 0 ∈A1/Gm is

Spec(R) −→ T̂
Ĝ|R ≃ Ĝa,

the formal completion of the tangent Lie algebra of Ĝ.

We would like to point out that the constructions occur in the derived setting, but the outcome is a
degeneration between formal groups, which belongs to the realm of classical geometry. One may then apply
the aforementioned filtered Cartier duality to this construction to obtain a group scheme Def

A
1/Gm

(Ĝ)∨ over

A
1/Gm, thereby equipping the cohomology of the (classical) Cartier dual Ĝ∨ with a canonical filtration.
By [Mou21, Proposition 7.3], O(Def

A
1/Gm

(Ĝ)) acquires the structure of a complete filtered algebra
(completeness follows by Proposition 5.12). We have the following characterization of the resulting filtration
on O(Def

A
1/Gm

(Ĝ) relating the deformation to the normal cone construction with the I-adic filtration of
Theorem 1.4.

Corollary 1.7. Let Ĝ be a formal group over k. Then there exists a unique filtered formal group with O(Ĝ) as its
underlying object. In particular, there is an equivalence

O(Def
A

1/Gm

(
Ĝ

)
≃ F∗IA

of abelian cogroup objects in CAlg(F̂ilk). Here the right-hand side denotes the I-adic filtration on the coordinate
ring A, for I the augmentation ideal corresponding to the inclusion of the unit in Ĝ.
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Hence the deformation to the normal cone construction applied to a formal group Ĝ produces a filtered
formal group.

Next, we specialize to the case of the formal multiplicative group Ĝm. By putting Cartier duality together
with Corollary 1.7, we recover the filtration on the group scheme

Fix := Ker(F − 1: W(−) −→W(−))

of Frobenius fixed points on the Witt vector scheme. In particular, we show that this filtration arises, via
Cartier duality, from a certain Gm-equivariant family of formal groups over A1. As a consequence, the
formal group defined is precisely an instance of the deformation to the normal cone of the unit section
Spec(k)→ Ĝm.

Theorem 1.8 (cf. Corollary 6.1). LetH→A
1/Gm be the filtered group scheme of [MRT22]. This arises as the

Cartier dual Def
A

1/Gm
(Ĝm)∨ of the deformation to the normal cone of the unit section Spec(k)→Gm. Namely,

there exists an equivalence of group schemes over A1/Gm

Def
A

1/Gm
(Gm)∨ −→H.

Together with Corollary 1.7, this implies that the HKR filtration on Hochschild homology is functorially induced,
via filtered Cartier duality, by the I-adic filtration on O(Ĝm) ≃ k[[t]].

Remark 1.9. As a consequence of the uniqueness of Corollary 1.7, the filtration on O(Ĝm) coming from
the deformation to the normal cone coincides with the filtration due to Sekiguchi–Suwa in [SS01] given
by the formal completion of the degeneration of Gm to Ga. Together with Theorem 1.8, this implies that
the deformation to the normal cone is, via the filtered Cartier duality constructed in this paper, the key
geometric source of the filtration on Hochschild homology.

1.3. Filtration on Ĝ-Hochschild homology

One may of course apply the deformation to the normal cone construction to an arbitrary formal group
over any base commutative ring. As a consequence, one obtains a canonical filtration on the aforementioned
Ĝ-Hochschild homology.

Corollary 1.10 (cf. Theorem7.3). Let Ĝ be an arbitrary formal group. The functor

HHĜ(−) : sCAlgR −→ModR

admits a refinement to the ∞-category of filtered R-modules

˜

HHĜ(−) : sCAlgR −→Modfilt
R

such that

HHĜ(−) ≃ colim(Z,≤)
˜

HHĜ(−).

In other words, HHĜ(A) admits an exhaustive filtration for any formal group Ĝ and simplicial commutative
algebra A.

Remark 1.11. Let Ĝ be a 1-dimensional formal group. Then in this case, the associated graded of the filtration

on HHĜ(A) will be exactly the derived global sections on Map(BĜa,Spec(A)), which is none other than

the de Rham algebra Sym(LA|k[1]). Thus, we see that HHĜ(−) agrees with ordinary Hochshchild homology
at the level of associated gradeds of the respective HKR filtrations. Any differences are thus detected via
extensions.
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1.4. A family of group schemes over the sphere

We now shift our attention over to the topological context. In [Lur18b], Lurie defines a notion of formal
groups intrinsic to the setting of spectral algebraic geometry. We explore a weak notion of Cartier duality
in this setup, between formal groups over an E∞-ring and affine group schemes, interpreted as group-like
commutative monoids in the category of spectral schemes. Leveraging this notion of Cartier duality, we
demonstrate the existence of a family of spectral group schemes for each height n. Since Cartier duality is
compatible with base change, one rather easily sees that these spectral schemes provide lifts of various affine
group schemes.

In the following statement, Run
Ĝ

denotes the spectral deformation ring of the formal group Ĝ, studied in
[Lur18b]. This corepresents the formal moduli problem (in the setting of spectral algebraic geometry) sending
a complete (Noetherian) E∞ ring A to the space of deformations of Ĝ to A and is a spectral enhancement of
the classical deformation rings of Lubin and Tate.

Theorem 1.12. Let Ĝ be a formal group of height n over Spec(k), for k a finite field. Let D(Ĝ) := Ĝ
∨ be its

Cartier dual affine group scheme. Then there exists a functorial lift φ : D(Ĝun)→ Spec(Run
Ĝ

) giving the following
Cartesian square of affine spectral schemes:

D(Ĝ)

φ′

��

p′
// D(Ĝun)

φ

��
Spec(Fp)

p
// Spec(Run

Ĝ

).

Moreover, D(Ĝun) will be a group-like commutative monoid object in the ∞-category of spectral stacks sStkRun
Ĝ

over Run
Ĝ

.

The spectral group scheme D(Ĝun) of the theorem arises as the weak Cartier dual of the universal
deformation of the formal group Ĝ; this naturally lives over Run

Ĝ

.
We remark that a key example to which the above theorem applies is the restriction to Fp of the subgroup

scheme Fix of fixed points on the Witt vector scheme, in height 1.

1.5. Liftings of Ĝ-twisted Hochshild homology

Finally, we study an E∞ (as opposed to simplicial commutative) variant of Ĝ-Hochshild homology. For an

E∞ k-algebra, this will be defined in an analogous manner to HHĜ(A) (see Definition 9.1). We conjecture
that for a simplicial commutative algebra A with underlying E∞-algebra, denoted by θ(A), this recovers
the underlying E∞-algebra of the simplicial commutative algebra HHĜ(A). In the case of the formal
multiplicative group Ĝm, we verify this to be true, so that one recovers Hochschild homology.

These theories now admit lifts to the associated spectral deformation rings.

Theorem 1.13. Let Ĝ be a height n formal group over a finite field k of characteristic p, and let Run
Ĝ

be the
associated spectral deformation E∞-ring. Then there exists a functor

THHĜ : CAlgRun
Ĝ

−→ CAlgRun
Ĝ

defined as

THHĜ(A) := RΓ (MapsStkRun
Ĝ

(BD(Ĝun),Spec(A)),O).

This lifts the E∞-variant of Ĝ-Hochshild homology in the sense that if A is a k-algebra for which there exists a
Run
Ĝ

-algebra lift Ã with

Ã⊗Run
Ĝ

k ≃ A,
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then there is a canonical equivalence, cf. Theorem 9.6,

THHĜ(Ã)⊗Run
Ĝ

k ≃HHĜ

E∞
(A).

Remark 1.14. When Ĝ = Ĝm, we show in Theorem 9.9 that THHĜm recovers the usual THH.

We tie the various threads of this work together in the speculative final section where we discuss the

question of lifting the filtration on HHĜ(−), defined in Section 7 as a consequence of the degeneration of Ĝ

to A
1/Gm, to a filtration on the topological lift THHĜ(−). To this end, we conclude with a negative result

in the case Ĝ = Ĝm (cf. Proposition 10.1) about lifting the filtered formal group Def
A

1/Gm
(Ĝm) to the sphere

spectrum.

1.6. Future work

We work over a ring of integers OK in a local field extension K ⊃Qp. In this setting, one obtains a formal
group, known as the Lubin–Tate formal group, which is canonically associated to a choice of uniformizer
π ∈ OK . In future work, we investigate analogs of the construction of H in [MRT22], which will be related
by Cartier duality to this Lubin–Tate formal group. By the results of this paper, these filtered group schemes
will have a canonical degeneration arising from the deformation to the normal cone construction of the
Cartier dual formal groups.

In another vein, we expect the study of these spectral lifts THHĜ(−) to be an interesting direction. For

example, there is the question of filtrations, and to what extent they lift to THHĜ(−). One could try to base
change this along the map to the orientation classifier

Run
Ĝ

−→ Ror
Ĝ

;

cf. [Lur18b]. Roughly, this is a complex orientable E∞-ring with the universal property that it classifies
oriented deformations of the spectral formal group Ĝ

un; these are oriented in that they coincide with the
formal group corresponding to a complex orientation on the underlying E∞-algebra of coefficients. For
example, one obtains p-complete K-theory in height 1. It is conceivable questions about filtrations and the
like would be more tractable over this ring.

Outline. We begin in Section 2 with a short overview of the perspective on formal groups which we adopt.
In Section 3, we describe some preliminaries from derived algebraic geometry. In Section 4, we construct the
deformation to the normal cone and apply it to the case of the unit section of a formal group. In Section 5,
we apply this construction to the formal multiplicative group Ĝm and relate the resulting degeneration of
formal groups to constructions in [MRT22]. In Section 6, we study resulting filtrations on the associated
Ĝ-Hochshild homologies. We begin Section 7 with a brief overview of the ideas which we borrow from
[Lur18b] in the context of formal groups spectral algebraic geometry, and we describe a family of spectral
group schemes that arise in this setting that correspond to height n formal groups over characteristic p finite

fields. In Section 8, we study lifts THHĜ(−) of Ĝ-Hochschild homology to the sphere, with a key input the
group schemes of the previous section. Finally, we end with a short speculative discussion in Section 9 about

potential filtrations on THHĜ(−).

Conventions. We often work over the p-local integers Z(p), and so we typically use k to denote a fixed
commutative Z(p)-algebra. If we use the notation R for a ring or ring spectrum, then we are not necessarily
working p-locally. In another vein, we work freely in the setting of ∞-categories and higher algebra from
[Lur17]. We would also like to point out that our use of the notation Spec(−) depends on the setting; in
particular, when we work with spectral schemes, Spec(A) denotes the spectral scheme corresponding to the
E∞-algebra A. We will always be working in the commutative setting, so we implicitly assume all relevant
algebras, coalgebras, formal groups, etc. are (co)commutative. Finally, for a fixed commutative ring R, we use
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the notation CAlgR to denote the ∞-category of all E∞-algebras over R, and the notation CAlg♥R to denote
the category of discrete commutative R-algebras.

Acknowledgments

I would like to thank Marco Robalo and Bertrand Toën for their collaboration in [MRT22], which led
to many of the ideas presented in this work. I would also like to thank Bertrand Toën for various helpful
conversations and ideas which have made their way into this paper.

2. Basic notions from derived algebraic geometry

In this section, we review some of the relevant concepts that we will use from the setting of derived
algebraic geometry. We recall that there are two variants, one whose affine objects are connective E∞-rings,
and one whose affine objects are simplicial commutative rings. We review parallel constructions from both
simultaneously, as we will switch between both settings.

Fix a base commutative ring R, and let C = {CAlgcn
R ,sCAlgR} denote either of the ∞-category of

connective R-algebras or the ∞-category of simplicial commutative algebras. Recall that the latter can be
characterized as the completion via sifted colimits of the category of (discrete) free R-algebras. Over a
commutative ring R, there exists a functor

θ : sCAlgR −→ CAlgcn

which takes the underlying connective E∞-algebra of a simplicial commutative algebra. This preserves limits
and colimits so is in fact monadic and comonadic.

In any case, one may define a derived stack via its functor of points, as an object of the ∞-category
Fun(C,S) satisfying hyperdescent with respect to a suitable topology on Cop, e.g., the étale topology. From
here on, we distinguish the context we are working in by letting dStkR denote the ∞-category of derived
stacks and letting sStkR denote the ∞-category of “spectral stacks”.

In either case, one obtains an ∞-topos, which is Cartesian closed, so that it makes sense to talk about
internal mapping objects: given any two X,Y ∈ Fun(C,S), one forms the mapping stack MapC(X,Y ). In
various cases of interest, if the source and/or target is suitably representable by a derived scheme or a
derived Artin stack, then this is the case for MapC(X,Y ) as well.

There is a certain type of base-change result that we will use; cf. [HLP14, Proposition A.1.5] and [Lur18c,
Proposition 9.1.5.7].

Proposition 2.1. Let f : X→ Spec(R) be a geometric stack over Spec(R) (here R is discrete). Assume that one of
the two conditions holds:

• X is a derived scheme.
• The morphism f is of finite cohomological dimension over Spec(R), so that the global sections functor sends

QCoh(X)≥0 to (ModR)≥−n for some positive integer n.

Then, for g : Spec(R′)→ Spec(R), the diagram of stable ∞-categories

ModR

g∗

��

f ∗
// QCoh(X)

g ′∗

��
ModR′

f ′∗
// QCoh(XR′ )

is right adjointable, and so, the Beck–Chevalley natural transformation of functors g∗f∗ ≃ f ′∗ g
′∗ : QCoh(X)→

ModR′ is an equivalence.
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2.1. Formal algebraic geometry and derived formal descent

In this paper, we will often find ourselves in the setting of formal algebraic geometry and formal schemes.
Hence we recall some basic notions in this setting. We end this subsection with a notion of formal descent
which is intrinsic to the derived setting. This phenomenon will be exploited in Section 5.

An (underived) formal affine scheme corresponds to the following piece of data.

Definition 2.2. We define an adic R-algebra to be an R-algebra A together with an ideal I ⊂ A defining a
topology on A. We let CAlg♥,ad

R denote the category of adic R-algebras.

Construction 2.3. Let A be an adic commutative ring having a finitely generated ideal of definition I ⊆ A.
Then there exists a tower · · · → A3→ A2→ A1 with the properties that

(i) each of the maps Ai+1→ Ai is a surjection with nilpotent kernel;
(ii) the canonical map colimMapCAlg♥R

(An,B)→MapCAlg♥R
(A,B) induces an equivalence of the left-hand

side with the summand of MapCAlg♥R
(A,B) consisting of maps φ : A→ B annihilating some power of

the ideal I ;
(iii) each of the rings Ai is finitely projective when regarded as an A-module.

One now defines Spf(A) to be the filtered colimit

colimi Spec(Ai)

in the category of locally ringed spaces. In fact, Spf(A) may be obtained as the left Kan extension of the
Spec(−) functor along the inclusion CAlg♥R→ CAlg♥,ad

R .

Definition 2.4. A formal scheme over R is a functor

X : CAlg♥R −→ Set

which is Zariski locally of the above form. A (commutative) formal group is an abelian group object in the
category of formal schemes. By Remark 3.4, this consists of the data of a formal scheme Ĝ which takes
values in groups, which commutes with direct sums.

There is a rather surprising descent statement one can make in the setting of derived algebraic geometry.
For this we first recall the notion of formal completion.

Definition 2.5. Let f : X→ Y be a closed immersion of locally Noetherian schemes. We define the formal
completion to be the stack ŶX whose functor of points is given by

ŶX(R) = Y (R)×Y (Rred) X(Rred),

where Rred denotes the reduced ring (π0R)red.

Although defined in this way as a stack, this is actually representable by an object in the category of
formal schemes, commonly referred to as the formal completion of Y along X.

We form the nerve N (f )• of the map f : X→ Y , which we recall is a simplicial object that in degree n is
the (n+ 1)-fold product

N (f )n = X ×Y X × · · · ×Y X.

The augmentation map of this simplicial object naturally factors through the formal completion (by the
universal property the formal completion satisfies). We borrow the following key proposition from [Toë14].

Theorem 2.6. The augmentation morphism N (f )•→ ŶX displays ŶX as the colimit of the diagram N (f )• in
the category of derived schemes. This gives an equivalence

MapdStk(ŶX ,Z) ≃ lim
n∈∆

MapdSch(N (f )n,Z)

for any derived scheme.



10 T. Moulinos10 T. Moulinos

Remark 2.7. At its core, this is a consequence of [Car08, Theorem 4.4] on derived completions in stable
homotopy, giving a model for the completion of an A-module spectrum along a map of ring spectra
f : A→ B to be the totalization of a certain cosimplicial diagram of spectra obtained via a certain co-Nerve
construction. See Bhatt’s work on completions and derive de Rham cohomology in [Bha12] for related results.

Warning 2.8. We emphasize that this augmentation N (f )•→ ŶX satisfies a universal property with respect
to mapping to derived schemes, as opposed to derived stacks, as indicated by the equivalence in the statement
of Theorem 2.6.

2.2. Tangent and normal bundles

Let X be a derived stack and E ∈ Perf(X) a perfect complex of Tor-amplitude concentrated in degrees
[0,n]. Then we have the following notion; cf. [Toë14, Section 3].

Definition 2.9. We define the linear stack associated to E to be the space-valued functor with source affine
derived schemes over X

V (E) : dAffop
/X −→ S

defined by

(u : Spec(A) −→ X) 7−→MapModA
(u∗(E),A).

We note that this becomes a derived stack over X as it satisfies étale descent.

Example 2.10. Let OX[n] ∈ Perf(X) be a shift of the structure sheaf. Then V (OX[n]) is simply K(Ga,X ,−n).
For a general perfect complex E, this V (E) may be obtained by taking various twisted forms and finite limits
of these K(Ga,X ,−n).

Definition 2.11. Let f : X→ Y be a map of derived stacks, which we assume to be quasi-smooth. This means
that it is locally of finite presentation and the relative cotangent complex LX |Y has Tor-amplitude (−∞,1].
We define the normal bundle stack to be

TX |Y [1] := V (LX |Y [−1]).

This will be a derived stack over X; if f is a closed immersion of classical schemes, then this will be
representable by the ordinary normal bundle. Furthermore, this can be expressed as the classifying stack of
the tangent bundle stack TX |Y [1].

Example 2.12. Let i : Spec(R)→ Ĝ be the unit section of a formal group. This is an l.c.i. closed immersion;
hence the cotangent complex is concentrated in (homological) degree 1. Via the equivalence

V (E) ≃ Spec(Sym(E))

for E of finite nonnegative (homological) Tor-amplitude (cf. [Toë14, Section 3]), we see that the normal bundle
TSpec(R)|Ĝ[1] is a derived scheme and is in fact equivalent to

T
Ĝ

:= V (Lie(Ĝ)),

the linear stack associated to the Lie algebra of Ĝ. This may be checked at the level of functors of points. If
moreover we are in the 1-dimensional case, and if there is an orientation in the sense that there is a local
equivalence of Lie(Ĝ) ≃ R, then

T
Ĝ
≃ K(Ga,0) = Ga,

the additive group over Spec(R), at least after taking formal completion.
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3. Formal groups and Cartier duality

In this section, we review some ideas pertaining to the theory of (commutative) formal groups which will
be used throughout this paper. In particular, we carefully review the notion of Cartier duality as introduced
by Cartier in [Car62] and also described in [Haz78, Section 37]. We remark that one of the key contributions
of this paper is to introduce filtered analogs of these results.

There are several perspectives one may adopt when studying formal groups. In general, one may think of
them as abelian group objects in the category of formal schemes or representable formal moduli problems.
In this paper, we will be focusing on the somewhat restricted setting of formal groups which arise from
certain types of Hopf algebras. In this setting, one has a particularly well-behaved duality theory which we
will exploit. Furthermore, it is this structure which has been generalized by Lurie in [Lur18b] to the setting
of spectral algebraic geometry.

3.1. Abelian group objects

We start off with the notions of abelian group and commutative monoid objects in an arbitrary∞-category
and review their distinction.

Notation 3.1. For each n ≥ 0, let ⟨n⟩ denote the pointed set {1, . . . ,n,∗}. Now let Fin∗ denote the category
whose objects are the sets ⟨n⟩ and whose morphisms are pointed maps. Finally, for 1 ≤ i ≤ n, let
ρi : ⟨n⟩ → ⟨1⟩ denote the morphism such that ρi(j) = 1 if i = j and ρi(j) = ∗ otherwise.

Definition 3.2. Let C be an ∞-category which admits finite limits. A commutative monoid object is a
functor M : Fin∗ → C with the property that for each n, the natural maps M(ρ(⟨n⟩)→M(ρ⟨1⟩) induce
equivalences M(ρ⟨n⟩) ≃M(⟨1⟩)n in C.

In addition, a commutative monoid M is group-like if for every object C ∈ C, the commutative monoid
π0 Map(C,M) is an abelian group.

We now define the somewhat contrasting notion of abelian group object. This will be part of the relevant
structure on a formal group in the spectral setting.

Definition 3.3. Let C be an ∞-category admitting finite limits. Then the ∞-category Ab(C) of abelian
objects of C is defined to be

Fun×(Latop,C),

the category of product-preserving functors from the category Lat of finite rank, free abelian groups into C.

Remark 3.4. Let C be a small (discrete) category with finite limits. Then an abelian group object A is such
that its representable presheaf hA takes values in abelian groups. Furthermore, in this setting, the two notions
of abelian groups and group-like commutative monoid objects coincide; cf. [Lur18b, Warning 1.3.10]

3.2. Formal groups and Cartier duality over a field

Before setting the stage for the various manifestations of Cartier duality to appear, we say a few things
about Hopf algebras, as they are central to this work. We begin with a brief discussion of what happens over
a field k.

Definition 3.5. For us, a (commmutative, cocommutative) Hopf algebra H over k is an abelian group object
in the category of (discrete) coalgebras over k.

Unpacking the definition, and using the fact the category of coalgebras is equipped with a Cartesian
monoidal structure (it is the opposite category of a category of commutative algebra objects), we see that this
is just another way of identifying bialgebra objects H with an antipode map i : H −→H ; this arises from the
“abelian group structure” on the underlying coalgebra.
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Construction 3.6. Let H be a Hopf algebra. Then one may define a functor

coSpec(H) : CAlg♥k −→ Ab, R 7−→Gplike(H ⊗k R) = {x|∆(x) = x⊗ x},

assigning to a commutative k-algebra R the set of group-like elements of R⊗kH . The Hopf algebra structure
on H endows these sets with an abelian group structure, which is what makes the above an abelian group
object-valued functor. In fact, this will be a formal scheme, and there will be an equivalence

coSpec(H) ≃ Spf
(
H∨

)
,

where H∨, the linear dual of H , is an R-algebra, complete with respect to an I-adic topology induced by
an ideal of definition I ⊂ R. Hence we arrive at our first interpretation of formal groups; these correspond
precisely to Hopf algebras.

Construction 3.7. Let us unpack the previous construction from an algebraic vantage point. Over a field k,
there is an equivalence

cCAlgk ≃ Ind
(
cCAlgfd

k

)
,

where cCAlgfd
k denotes the category of coalgebras whose underlying vector space is finite-dimensional. By

standard duality, there is an equivalence

Ind
(
cCAlgfd

k

)
≃ Pro

(
CAlgfd

k

)
,

where we remark that cCAlgfd
k ≃ (CAlgfd

k )op. This may then be promoted to a duality between abelian
group/cogroup objects

(3.1) Hopfk := Ab
(
cCAlgk

)
≃ coAb

(
Pro

(
CAlgfd

k

))
.

Remark 3.8. The interchange of display (3.1) is precisely the underlying idea of Cartier duality of formal
groups and affine group schemes. Recall that Hopf algebras correspond contravariantly via the Spec(−)
functor to affine group schemes. Hence one has

AffGpop
k ≃ Hopfk ≃ FGk ,

where the left-hand side denotes the category of affine group schemes over k. The functor on the right
is given by the functor coSpec(−) described above. We remark that in this setting, the category of Hopf
algebras over the field k is actually abelian; hence the categories of formal groups and affine group schemes
are themselves abelian.

3.3. Formal groups and Cartier duality over a discrete commutative ring

The key results in this section are Propositions 3.12 and 3.15 and Construction 3.17, which together imply
a duality theory between formal groups and affine group schemes (over a discrete commutative ring). This is
what we refer to as Cartier duality. In addition, by Proposition 3.19 this duality is by taking group maps
to Gm and Ĝm, respectively. In Section 8.1, we will describe a generalization of these ideas over a base
E∞-ring R.

Over a general commutative ring R, the duality theory between formal groups and affine group schemes
is not quite as simple to describe. In practice, one restricts to certain subcategories on both sides, which then
fit under the Ind-Pro duality framework of Construction 3.7. This will be achieved by imposing a condition
on the underlying coalgebra of the Hopf algebras at hand.

Remark 3.9. We study coalgebras following the conventions of [Lur18b, Section 1.1]. In particular, if C is a
coalgebra over R, we always require that the underlying R-module of C is flat. This is done as in [Lur18b] to
ensure that C remains a coalgebra in the setting of higher algebra. Furthermore, we implicitly assume that
all coalgebras appearing in this text are (co)commutative.
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To an arbitrary coalgebra, one may functorially associate a presheaf on the category of affine schemes
given by the cospectrum functor

coSpec: cCAlgR −→ Fun(CAlgR,Set).

Definition 3.10. Let C be a coalgebra. We define coSpec(C) to be the functor

coSpec(C) : CAlgR −→ Set

defined by R 7→Gplike(C ⊗k R) = {x|∆(x) = x⊗ x}.

The coSpec(−) functor is fully faithful when restricted to a certain class of coalgebras. We borrow the
following definition from [Lur18b]. See also [Str99] for a related notion of coalgebra with good basis.

Definition 3.11. Fix R and let C be a (cocommutative) coalgebra over R. We say C is smooth if its underlying
R-module is flat and if it is isomorphic to the divided power coalgebra

Γ ∗R(M) :=
⊕
n≥0

Γ nR (M)

for some projective, finitely generated R-module M . Here, Γ nR (M) denotes the invariants for the action of
the symmetric group Σn on M⊗n.

Given an arbitrary coalgebra C over R, the linear dual C∨ = Map(C,R) acquires a canonical R-algebra
structure. In general, C cannot be recovered from C∨. However, in the smooth case, the dual C acquires
the additional structure of a topology on π0, giving it the structure of an adic R algebra. This allows us to
recover C, via the following proposition; cf. [Lur18b, Theorem 1.3.15].

Proposition 3.12. Let C,D ∈ cCAlgsm
R be smooth coalgebras. Then R-linear duality induces a homotopy

equivalence
MapcCAlgR

(C,D) ≃Mapcont
CAlgR

(C∨,D∨).

Remark 3.13. One can go further and characterize intrinsically all adic R-algebras that arise as duals of
smooth coalgebras. These will be equivalent to ̂Sym∗(M), the completion along the augmentation ideal
Sym≥1(M) for some projective R-module M of finite type.

Remark 3.14. Fix a smooth coalgebra C. There is always a canonical map of stacks coSpec(C)→ Spec(A),
where A = C∨, but it is typically not an equivalence. The condition that C is smooth guarantees precisely
that there is an induced equivalence coSpec(C)→ Spf(A) ⊆ Spec(A), where Spf(A) denotes the formal
spectrum of the adic R-algebra A. In particular coSpec(C) is a formal scheme in the sense of [Lur18c,
Chapter 8].

Proposition 3.15 (Lurie). Let R be an commutative ring. Then the construction C 7→ cSpec(C) induces a fully
faithful embedding of ∞-categories

cCAlgsm
R −→ Fun(CAlg♥R,S).

Moreover, this commutes with finite products and base change.

Proof. This essentially follows from the fact that a smooth coalgebra can be recovered from its adic
algebra. □

Notation 3.16. In the following, CAlgad
R denotes the category of (discrete) adic-R-algebras; these are discrete

R-algebras A with an ideal I for which the topology on A generated by I is complete.

Construction 3.17. As a consequence of the fact that the coSpec(−) functor preserves finite products, this
can be upgraded to a fully faithful embedding of abelian group objects in smooth coalgebras into formal
groups

Ab(cCAlg) −→ Ab(f Sch).
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Unless mentioned otherwise, we will focus on formal groups of this form. Hence we use the notation FGR to
denote the image of the above embedding, and so the term Cartier duality refers to the equivalence between
this and (abelian group objects in) smooth coalgebras. We summarize the above discussion with the following
statement.

Theorem 3.18 (Cartier duality). There exists an equivalence of categories between formal groups FGR and the
category of affine group schemes whose underlying Hopf algebra of functions is smooth as a coalgebra.

We would like to interpret the above correspondence geometrically. Let AffGrpb
R be the subcategory of

affine group schemes corresponding via the Spec(−) functor to the category Hopfsm
R , which we use to denote

the category of Hopf algebras whose underlying coalgebra is smooth. Meanwhile, a cogroup object Ĥ in the
category of adic algebras corepresents a functor

F : CAlgad
R −→Grp, A 7−→HomCAlgad

R
(Ĥ,A),

where the group structure arises from the cogroup structure on H . Essentially by definition, this is exactly the
data of a formal group, so we may identify the category of formal groups with the category coAb(CAlgad

R ).
We have identified the categories in question as those of affine group schemes and formal groups,

respectively; one can further conclude that these dualities are representable by certain distinguished objects
in these categories.

Proposition 3.19 (cf. [Haz78, Propositions 37.3.6 and 37.3.11]). There exist natural bijections

HomHopfsm
A

(A[t, t−1],C ⊗A) �HomCAlgad
R

(D(C),A),

HomCoAb(CAlgad
B )

(
B[[T ]],A⊗̂RB

)
�HomCAlgR

(
DT (A),B

)
.

Here, for a coalgebra C, D(C) is the linear dual, and for any topological algebra A, DT (A) = Mapcont(A,R) is
the continuous dual.

One can put this all together to see that there are duality functors which are moreover represented by the
multiplicative group and the formal multiplicative group, respectively.

One has the following expected base-change property.

Proposition 3.20. Let Ĝ be a formal group over Spec(R), and suppose there is a map f : R→ S of commutative
rings. Let ĜS denote the formal group over Spec(S) obtained by base change. Then there is a natural isomorphism

DT (Ĝ|S ) ≃DT (Ĝ)S

of affine group schemes over Spec(S).

4. Filtered formal groups

We define here a notion of a filtered formal group, along with Cartier duality for these. We discuss here
only (“underived”) formal groups over discrete commutative rings, but we conjecture that these notions
generalize to the case where R is a connective E∞ ring.

4.1. Filtrations and A
1/Gm

We first recall a few preliminaries about filtered modules over E∞-rings.

Definition 4.1. Let R be an E∞-ring. We set

FilR := Fun(Zop,ModR),

where Z is viewed as a category with morphisms given by the partial ordering ≥, and we refer to this as the
∞-category of filtered R-modules.
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Definition 4.2. Let R be an E∞-ring. We set

GrR := Fun(Zds,ModR),

where Z
ds is viewed as discrete space, and we refer to this as the ∞-category of graded R-modules.

Remark 4.3. The ∞-category FilR is symmetric monoidal with respect to the Day convolution product.

Definition 4.4. There exist functors

Und: FilR −→ModR, gr : FilR −→GrR

such that to a filtered R-module M, one associates its underlying object Und(M) = colimn→−∞Mn and
gr(M) = ⊕n cofib(Mn+1→Mn), respectively.

Example 4.5. Let A be a commutative ring and I ⊂ A an ideal of A. We define a filtration F∗I (A) with

Fn
I (A) =

A, n ≤ 0,

In, n ≥ 1.

This is the I-adic filtration on A.

Definition 4.6. There exists a notion of completeness in the setting of filtrations. We say a filtered R-module
M is complete if

lim
n

Mn ≃ 0.

Alternatively, M is complete if limM−∞/Mn ≃ M−∞ = Und(M). We denote the ∞-category of filtered
modules which are complete by F̂ilR. This will be a localization of FilR and will come equipped with a
completed symmetric monoidal, so that the completion functor

(̂−) : FilR −→ F̂ilR

is symmetric monoidal.

Construction 4.7. The category of filtered R-modules, as an R-linear stable ∞-category, can be equipped
with several different t-structures. We will occasionally work with the neutral t-structure on FilR, defined so
that F∗(M) ∈ (FilR)≥0 if Fn(M) ∈ (Modk)≥0 for all n ∈Z. Similarly, F∗(M) ∈ (FilR)≤0 if Fn(M) ∈ (ModR)≤0
for all n ∈Z.

We remark that the standard t-structure on ModR is compatible with sequential colimits (cf. [Lur17,
Definition 1.2.2.12]). This has the consequence that if F∗(M) ∈ Fil♥R, then

colimn→−∞Fn(M) = Und(F∗(M)) ∈Mod♥k .

We occasionally refer to filtered R-modules with are in the heart of this t-structure as discrete.

We now briefly recall the description of filtered objects in terms of quasi-coherent sheaves over the
stack A

1/Gm. This quotient stack may be defined as the quotient of A1 = Spec(R[t]) by the canonical
Gm = Spec(R[t, t−1])-action induced by the inclusion Gm ↪→A

1 of monoid schemes. This comes equipped
with two distinguished points

1: Spec(R) �Gm/Gm −→A
1/Gm, 0: BGm = Spec(R)/Gm −→A

1/Gm,

which we often refer to in this work as the generic and special/closed point, respectively. We remark that
the quotient map π : A1→A

1/Gm is a smooth (and hence fppf) atlas for A1/Gm, making A
1/Gm into an

Artin stack.

Theorem 4.8 (cf. [Mou21, Theorem 1.1]). There exists a symmetric monoidal equivalence

FilR −→QCoh(A1/Gm).

Furthermore, under this equivalence, one may identify the underlying object and associated graded functors with
pullbacks along 1 and 0, respectively.
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4.2. Filtered formal groups

We adopt the approach to formal groups in [Lur18b] described above, where they are in particular smooth
coalgebras C with

C =
⊕
i≥0

Γ i(M),

where M is a (discrete) projective module of finite type. Here, Γ n for each n denotes the nth divided power
functor which for a dualizable module M can be alternatively defined as

Γ n(M) := Symn(M∨)∨,

that is to say, as the dual of the symmetric powers functor.

Construction 4.9. By the results of [BM19, Rak20], these can be extended to the ∞-categories ModR,
Gr(ModR), Fil(ModR) of R-modules, graded R-modules and filtered R-modules, respectively. These are
referred to as the derived divided powers

In particular, the nth (derived) divided power functors

Γ ngr : GrR −→GrR, Γ nfil : FilR −→ FilR

make sense in the graded and filtered contexts as well.

Definition 4.10. A smooth filtered coalgebra is a coalgebra of the form

C =
⊕
n≥0

Γ nfil(M),

for M a filtered R-module whose underlying object is a discrete projective R-module of finite type with
gr(M) concentrated in nonpositive weights. Note that this acquires a canonical coalgebra structure, as in
[Lur18b, Construction 1.1.11]. Indeed, if we apply Γ ∗ to M ⊕M, we obtain compatible maps

Γ n
′+n′′ (M ⊕M) −→ Γ n

′
(M)⊗ Γ n

′′
(M),

where this is to be interpreted in terms of the Day convolution product. As in the unfiltered case in [Lur18b,
Construction 1.1.11], these assemble to give equivalences

Γ ∗(M ⊕M) ≃ Γ ∗(M)⊗ Γ ∗(M).

Via the diagonal map M→M ⊕M (recall Fil(Modk) is stable), this gives rise to a map

∆ : Γ ∗(M) −→ Γ ∗(M ⊕M) ≃ Γ ∗(M)⊗ Γ ∗(M)

which one can verify exhibits Γ ∗(M) as a coalgebra in the category of filtered k-modules.

Proposition 4.11. Let M be a dualizable filtered R-module. Then the formation of divided power coalgebras is
compatible with the associated graded and underlying object functors.

Proof. Let Und: FilR→ModR and gr : FilR→ GrR denote the underlying object and associated graded
functors, respectively. Each of these functors commutes with colimits and is symmetric monoidal. Thus, we
are reduced to showing that each of these functors commutes with the divided power functor Γ nfil(−). For
this, we use the following description of the divided powers (for an arbitrary dualizable object M):

Γ nfil(M) = Symn
fil(M

∨)∨,

which is valid by [BM19, Proposition 3.39]. The statement now follows from the fact that Und and gr, being
symmetric monoidal, commute with dualizable objects and that they commute with Symn, which follows
from the discussion in [Rak20, Remark 4.2.25]. □
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Definition 4.12. The category of smooth filtered coalgebras cCAlg(Filk)sm is the full subcategory of filtered
coalgebras generated by objects of this form. Namely, C ∈ cCAlg(FilR)sm if there exists a filtered module M
which is dualizable, discrete and zero in positive degrees for which

C ≃
⊕
n≥0

Γ nfil(M).

Remark 4.13. The filtered module M in the above definition is of the form

· · · ⊃M−2 ⊃M−1 ⊃M0 ⊃ 0 · · · ,

which is eventually constant.

We now define the notion of a filtered formal group.

Definition 4.14. A filtered formal group is an abelian group object in the category of smooth coalgebras.
That is to say, it is a product-preserving functor

F : Latop −→ cCAlg(FilR)sm.

Construction 4.15. Let M ∈ FilR be a filtered R-module. We denote the (weak) dual Map
fil

(M,R) by M∨.
Note that if M has a commutative coalgebra structure, then this acquires the structure of a commutative
algebra.

Example 4.16. Let C = ⊕Γ nfil(M) be a smooth coalgebra. Then one has an equivalence

C∨ ≃
(⊕

Γ n(M)
)∨
≃
∏
n

Symn
(
M∨

)
.

This is a complete filtered algebra.

Proposition 4.17. Let C be a filtered smooth coalgebra, and let C∨ denote its (filtered ) dual. Then at the level of
the underlying object, there is an equivalence

UndC∨ ≃
∏

Sym∗(N )

for some projective module N of finite type.

Proof. We unpack what the weak dual functor does on the nth filtering degree of a filtered R-module. If
M ∈ FilR, then this may be described as(

M∨
)
n

= Map
Fil

(M,R)n ≃ fib
(
M∨∞ −→M∨1−n

)
,

where M∨∞ is the dual of the underlying R-module. Now let M = C be a smooth coalgebra, so that

C =
⊕

Γ k(N )

for N as in Definition 4.10. Then C is concentrated in negative weights; hence C1−n vanishes as n→−∞, so

Und(C∨) ≃ colimnfib
(
C∨∞ −→ C∨1−n

)
≃ fibcolimn

(
C∨∞ −→ C∨1−n

)
= colimnC

∨
∞.

In particular, since C1−n eventually vanishes, we obtain the colimit of the constant diagram associated to
C∨∞. Hence

Und
(
C∨

)
≃Und(C)∨ ≃

∏
m≥0

Symm
R (N ).

This shows in particular that weak duality of these smooth filtered coalgebras commutes with the underlying
object functor. □

Remark 4.18. Proposition 4.17 justifies the definition of smooth filtered coalgebras which we propose (cf.
Definition 4.10). In general, it is not clear that weak duality commutes with the underlying object functor
(although this of course holds true on dualizable objects).
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4.3. Filtered Cartier duality

The following statement summarizes the results of the rest of this section.

Theorem 4.19 (Filtered Cartier duality). The weak duality functor induces an equivalence

(−)∨ : FFGR ≃ coAb(D)),

where D is a full (discrete) subcategory of the∞-category CAlg(F̂ilR) consisting of commutative algebras in filtered
R-modules.

The first step to proving Theorem 4.19 is the following key proposition which states that the (weak) duality
functor is fully faithful when restricted to the underlying smooth coalgebra of a filtered formal group.

Proposition 4.20. The assignment cCAlgsm(FilR)→ CAlg(F̂ilR) given by

C 7−→ C∨ = Map(C,R)

is fully faithful.

Proof. Let D and C be two arbitrary smooth coalgebras. We would like to display an equivalence of mapping
spaces

(4.1) MapcCAlgsm(FilR)(D,C) ≃MapCAlg(F̂ilR)

(
C∨,D∨

)
.

Each of C and D may be written as a colimit, internally to filtered objects,

C ≃ colimCk , D ≃ colimDm,

where
Ck =

⊕
0≤i≤k

Γ i(M), Dm =
⊕

0≤i≤m
Γ i(N ).

Hence the map (4.1) may be rewritten as a limit of maps of the form

(4.2) MapcCAlgsm(FilR)(Dm,C) −→MapCAlg(F̂ilR)

(
C∨,D∨m

)
.

The left-hand side of this may now be rewritten as

MapcCAlgsm(FilR)(Dm,colimkCk).

Now, the object Dm will be compact by inspection (in fact, its underlying object is just a compact projective
k-module), so that the above mapping space is equivalent to

colimk MapcCAlgsm(FilR)(Dm,Ck).

We would now like to make a similar type of identification on the right-hand side of the map (4.2). For this,
note that as a complete filtered algebra, C∨ ≃ limkC

∨
k . Note that there is a canonical map

colimk Map(C∨k ,Dm) −→Map(limC∨k ,Dm).

By Lemma 4.21 this is an equivalence. Each term C∨k , as a filtered object, is zero in high enough positive
filtration degrees. As limits in filtered objects are created object-wise, one sees that the essential image of the
above map consists of morphisms

lim
k

C∨k −→ C∨j −→Dm

which factor through some C∨j . Since Dm is itself of the same form, then every map factors through some

C∨j . Hence we obtain the desired decomposition on the right-hand side of (4.2). It follows that the morphism
of mapping spaces (4.1) decomposes into maps

Map(Dm,Ck) −→Map
(
C∨k ,D

∨
m

)
.



Filtered formal groups, Cartier duality, and derived algebraic geometry 19Filtered formal groups, Cartier duality, and derived algebraic geometry 19

These are equivalences because Dj and Ck are dualizable for every j,k, and the duality functor (−)∨

gives rise to an anti-equivalence between commutative algebra and commutative coalgebra objects whose
underlying objects are dualizable. Assembling this all, we conclude that (4.1) is an equivalence. □

Lemma 4.21. The canonical map of spaces

colimMapCAlg(F̂ilR)

(
C∨k ,Dm

)
−→MapCAlg(F̂ilR)

(
limkC

∨
k ,Dm

)
induced by the projection maps πk : limkCk→ Ck is an equivalence.

Proof. Fix an index k. We claim that the following is a pullback square of spaces:

(4.3) MapCAlg(F̂ilR)

(
C∨k ,Dm

)
π∗k
��

Und // MapCAlg

(
C∨k ,Dm

)
π∗k
��

MapCAlg(F̂ilR)

(
limkC

∨
k ,Dm

) Und // MapCAlg

(
limkC

∨
k ,Dm

)
.

First note that even though Und(−) does not generally preserve limits, it will preserve these particular limits
by Proposition 4.17. To prove the claim, we see that the pullback

MapCAlg(F̂ilR)

(
limkC

∨
k ,Dm

)
×MapCAlg(limkC

∨
k ,Dm) MapCAlg

(
C∨k ,Dm

)
parametrizes, up to higher coherent homotopy, ordered pairs (f ,g) with

f : limC∨k −→Dm

a map of filtered algebras and

gk : C∨k −→Dm

a map at the level of underlying algebras, such that there is a factorization of the underlying map

Und(f ) ≃ π∗k(gk) = gk ◦πk

along the map πk : limkC
∨
k → C∨k . Recall that πk is also the underlying map of a morphism of filtered

objects; since the composition Und(f ) = gk ◦πk respects the filtration, this means that gk itself must respect
the filtration as well. This in particular gives rise to an inverse

MapCAlg(F̂ilR)

(
limkC

∨
k ,Dm

)
×MapCAlg(limkC

∨
k ,Dm) MapCAlg

(
C∨k ,Dm

)
−→MapCAlg(F̂ilR)

(
C∨k ,Dm

)
of the canonical map

MapCAlg(F̂ilR)

(
C∨k ,Dm

)
−→MapCAlg(F̂ilR)

(
limkC

∨
k ,Dm

)
×MapCAlg(limkC

∨
k ,Dm) MapCAlg

(
C∨k ,Dm

)
induced by the universal property of the pullback, which proves the claim. Now let Pk denote the fiber of the
left vertical map of (4.3). One sees that the fiber of the map

MapCAlg(F̂ilR)

(
limkC

∨
k ,Dm

)
×MapCAlg(limkC

∨
k ,Dm) MapCAlg

(
C∨k ,Dm

)
of the statement is colimPk . We would like to show that this is contractible. By the claim, this is equivalent
to colimP und

k , where P und
k for each k is the fiber of the right-hand vertical map of (4.3). By [Lur18b, Proof

of Theorem 1.3.15], this is contractible. We will be done upon showing that the essential image the map in
the statement is all of MapCAlg(limkC

∨
k ,D). To this end, we note that the essential image consists of maps

limkC
∨
k −→ C∨j −→Dm

which factor through some C∨j . However, since the underlying algebra of Dm is nilpotent, every map factors

through such a C∨j . □
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Remark 4.22. We remark that this is ultimately an example of the standard duality between ind and pro
objects of an ∞-category C. Indeed, one has a duality between algebras and coalgebras in Filk whose
underlying objects are dualizable. The equivalence of Proposition 4.20 is an equivalence between certain full
subcategories of Ind(cCAlgω,fil) and Pro(CAlgω,fil).

Definition 4.23. Let D denote the essential image of the duality functor of Proposition 4.20. Then, we
define the category of (commutative) cogroup objects coAb(D) to just be an abelian group object of the
opposite category (i.e., of the category of smooth filtered coalgebras). As (−)∨ is an anti-equivalence of
∞-categories, this implies that Cartesian products on cCAlg(Filk)sm are sent to coCartesian products on D.
Hence this functor sends group objects to cogroup object. We refer to an object C ∈ coAb(D) as a filtered
formal group.

Remark 4.24. If C∨ is discrete (which is the setting we are primarily concerned with for the moment), then
a commutative cogroup structure on C is none other than a (co)commutative comonoid structure on C∨,
making it into a bialgebra in complete filtered R-modules.

We now complete the proof of Theorem 4.19.

Proof of Theorem 4.19. Let

(−)∨ : cCAlg(FilR)sm −→D
be the equivalence of Proposition 4.20. As described in Definition 4.23 above, this may now be promoted to
an equivalence

(−)∨ : Ab(cCAlg(FilR)sm) −→ CoAb(D).

This gives the desired duality between FFGR and CoAb(D). □

Remark 4.25. We explain our usage of the term filtered Cartier duality. As we saw in Section 3.2, classical
Cartier duality gives rise to an (anti)-equivalence between formal groups and affine groups schemes, at least
in the most well-behaved situation over a field. An abelian group object in smooth filtered coalgebras will
be none other than a filtered Hopf algebra. This is due to the fact that we ultimately still restrict to the a
1-categorical setting where Remark 3.4 applies, so abelian group objects agree with group-like commutative
monoids. Out of this, therefore, one may extract a relative affine group scheme over A1/Gm. Hence the
equivalence of Theorem 4.19 may be viewed as a correspondence between filtered formal groups and a full
subcategory of relatively affine group schemes over A1/Gm.

Next, we prove a unicity result on complete filtered algebra structures with underlying object a commutative
ring A and specified associated graded (cf. Theorem 1.4).

Proposition 4.26. Let A be a discrete R-algebra which is complete with respect to the I-adic topology induced by
some ideal I ⊂ A. Let A∗ ∈ CAlg(F̂ilR) be a complete, exhaustive, multiplicative filtration of A such that there is
an identification ι : gr∗(A∗) = gr∗(F∗I (A)). Suppose the inclusion A1→ A factors through the ideal I ⊂ A so that
there is an inclusion

A1 −→ I

of A-modules. Then this map can be promoted to a multiplicative morphism of filtrations A∗→ F∗I (A) inducing ι.
Hence we may identify A∗ with the I-adic filtration.

Proof. Let A∗ be a complete filtered algebra with these properties. Using the identification of gr∗(A∗), we
inductively extend the map

A1 −→ I

in the hypothesis to a map

A∗ −→ F∗I (A).
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In degree 2, for example, there is an induced map A2 → I2, coming from the fact that the composition
A2→ A1→ I → I/I2 vanishes, which in turn follows from the hypothesis on the associated graded of A∗.

Thus, we obtain a map of complete filtered algebras A∗→ F∗I (A). By construction, this map of filtrations
induces the map ι by passing to the associated graded. Since both filtered objects are complete and since the
associated graded functor is conservative when restricted to complete objects, we deduce that the map

A∗ −→ F∗I (A)

is an equivalence of filtered algebras. □

Remark 4.27. In particular, we may choose A∗ ∈ D, the image of the duality functor from smooth filtered
coalgebras. In this case, I = Sym≥1(M), the augmentation ideal of �Sym(M) for M some projective module
of finite type.

Now let Ĝ be a formal group over Spec(R), and let O(Ĝ) be its complete adic algebra of functions. This
acquires a comultiplication

O
(
Ĝ

)
−→O

(
Ĝ

)
⊗̂O

(
Ĝ

)
and counit

ϵ : O
(
Ĝ

)
−→ R

making O(Ĝ) into a abelian cogroup object in D. Let I = ker(ϵ) denote the augmentation ideal. By
Proposition 4.26, there exists a unique filtration with I in filtering degree 1 and associated graded gr∗(FI (A)),
where FI (A) is the I-adic filtration on A. This will be exactly the I-adic filtration FI (A) itself.

We show that this filtered algebra inherits the cogroup structure as well.

Corollary 4.28. The comultiplication

∆ : O
(
Ĝ

)
−→O

(
Ĝ

)
⊗̂O

(
Ĝ

)
can be promoted to a map of filtered complete algebras. Thus, there is a unique filtered formal group—i.e., an
abelian cogroup object in the category D with associated graded free on a module concentrated in weight 1 and
with underlying object is O(Ĝ)—whose underlying formal group is Ĝ.

Proof. We need to show that the comultiplication

∆ : O
(
Ĝ

)
−→O

(
Ĝ

)
⊗̂O

(
Ĝ

)
preserves the adic filtration. Let us first assume that the formal group is 1-dimensional and oriented so that
O(G) ≃ R[[x]]. We remark that every formal group is locally oriented. In this case, the formal group law is
given in coordinates by the power series

f (x1,x2) = x1 + x2 +
∑
i,j≥1

ai,jx
iyj

with suitable ai,j . In particular, the image of the ideal commensurate with the filtration is contained in

I⊗2 = (x1,x2), the ideal commensurate with the filtration on O(Ĝ)⊗̂O(Ĝ) � R[[x1,x2]]. Note that this is
itself the (x1,x2)-adic filtration on R[[x1,x2]]. By multiplicativity, ∆(In) ⊂ I⊗2n for all n. This shows that ∆
preserves the filtration, giving F∗IA a unique coalgebra structure compatible with the formal group structure
on Ĝ. The same argument works in higher dimensions. □
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5. The deformation of a formal group

5.1. Deformation to the normal cone

To a pointed formal moduli problem X (such as a formal group), one may associate an equivariant family
over A1 whose fiber over λ , 0 recovers X. We will use this construction further on to produce filtrations on
the associated Hochschild homology theories. The author would like to thank Bertrand Toën for the idea
behind this construction, and in fact related constructions appear in [Toë20a]. A variant of this construction
in the characteristic zero setting also appears in [GR17, Chapter IV.5]. We would also like to point out [KR18].

The construction pertains to more than just formal groups. Indeed, let X→ Y be a closed immersion
of locally Noetherian schemes. We construct a filtration on ŶX, the formal completion of Y along X, with
associated graded the shifted tangent complex TX|Y[1].

The first, and key, ingredient underlying all this is a cogroupoid object S0,•
fil . We remark that the Spec(−)

functor here is to be taken in the sense of affine stacks; cf. [Toë06].

Construction 5.1. Let ι : BGm→A
1/Gm. Let

φ : O
A

1/Gm
−→ 0∗

(
OBGm

)
be the unit map of commutative algebra objects in

CAlg(QCoh(A1/Gm)) ≃ CAlg(Fil(Modk)).

Finally, let N (φ)• be the nerve of this map, viewed as a simplicial object in this ∞-category; by construction
this will be a groupoid object in CAlg(Fil(Modk)). We define

(5.1) S0,•
fil := Spec(N (φ)•),

which will be a cogroupoid object in the ∞-category of derived affine schemes over A1/Gm.

Remark 5.2. We now give a more explicit description of this groupoid object in degree 1. In Construction 5.1
above, the structure sheaf O

A
1/Gm

may be identified with the graded polynomial algebra k[t], where t is of
weight 1. In degree 1, one obtains the fiber product

(5.2) O
A

1/Gm
×0∗(OBGm )OA

1/Gm
,

which may be thought of as the graded algebra

k[t1, t2]/(t1 + t2)(t1 − t2)

viewed as an algebra over k[t]. If we apply the Spec(−) functor relative to A
1/Gm, we obtain the scheme

corresponding to the union of the diagonal and antidiagonal in the plane. The pullback of this fiber product
to Modk is

k ×1∗0∗(OBGm ) k ≃ k ×0 k = k ⊕ k.
The pullback to QCoh(BGm) is k[ϵ]/ϵ2, the trivial square-zero extension of k by k. To see this, we pull
back the fiber product (5.2) to QCoh(BGm), which gives the homotopy Cartesian square

k[ϵ]/(ϵ2)

��

// k

��
k // k ⊕ k[1]

in this category. Hence we may define

S0
fil := Spec

A
1/Gm

(
O
A

1/Gm
×0∗(OBGm )OA

1/Gm

)
as the relative spectrum (over A1/Gm).
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Remark 5.3. By construction, this admits a map

S0
fil −→A

1/Gm

making it into a filtered stack, with generic fiber and special fiber described in the above proposition. We
remark that we may think of S0

fil as the degree 1 part of a cogroupoid object S0,•
fil in the∞-category of (derived)

schemes over A1/Gm; indeed, we may apply Spec(−) to the entire Cech nerve of the map (5.1). We can then
take mapping spaces out of this cogroupoid to obtain a groupoid object.

Now let X → Y be a closed immersion of locally Noetherian schemes, as above. We will focus our
attention on the following derived mapping stack, defined in the category dStkY×A1/Gm

of derived stacks
over Y×A1/Gm:

MapY×A1/Gm

(
S0

fil,X×A
1/Gm

)
.

By composing with the projection map Y×A1/Gm→A
1/Gm, we obtain a map

MapY×A1/Gm

(
S0

fil,X
)
−→A

1/Gm

allowing us to view this as a filtered stack. The next proposition identifies its fiber over 1 ∈A1/Gm.

Proposition 5.4. There is an equivalence

1∗
(
Map

(
S0

fil,X
))
≃ X×YX.

Proof. By formal properties of base change of mapping objects of ∞-topoi, there is an equivalence

1∗
(
Map

(
S0

fil,X
))
≃MapY

(
1∗S0

fil,1
∗
(
X×A1/Gm

))
.

The right-hand side is the mapping object out of a disjoint sum of final objects and therefore is directly seen
to be equivalent to X×YX. □

Next we identify the fiber over the “closed point” 0: BGm→A
1/Gm.

Proposition 5.5. There is an equivalence of stacks

0∗
(
Map

(
S0

fil,X
))
≃ TX|Y,

where TX|Y denotes the relative tangent bundle of X→ Y.

Proof. We base change along the map

Spec(k) −→ BGm −→A
1/Gm.

Invoking again the standard properties of base change of mapping objects, we obtain the equivalence

0∗
(
Map

(
S0

fil,X
))
≃MapY

(
0∗S0

fil,0
∗
(
X×A1/Gm

))
.

By construction, we may identify 0∗S0
fil with Spec(k[ϵ]/ϵ2). Of course, this means that the right-hand side

of the above display is precisely the relative tangent complex TX|Y. □

To summarize, we have constructed a cogroupoid object in the category of schemes over A1/Gm, whose
piece in cosimplicial degree 1 is S0

fil, and formed the derived mapping stack

MapY×A1/Gm

(
S0

fil,X×A
1/Gm

)
,

which will in turn be the degree 1 piece of a groupoid object in derived schemes over A1/Gm.
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Construction 5.6. Let M• := MapY×A1/Gm
(S0,•

fil ,X×A
1/Gm). Note that we can interpret the degeneracy

map
X×A1/Gm −→MapY×A1/Gm

(
S0

fil,X×A
1/Gm

)
as the “inclusion of the constant maps.” We reiterate that this is a groupoid object in the ∞-category of
(relative) derived schemes over A1/Gm. We let

Def
A

1/Gm
(X/Y) := colim∆M•

denote the colimit of this groupoid object. Note that the colimit is taken in the ∞-category of derived
schemes over A1/Gm (as opposed to all of derived stacks).

Remark 5.7. We emphasize the point that M• is a groupoid object in relative derived schemes over A1/Gm.
To see this, note that via Propositions 5.4 and 5.5, we have identified the degree 1 piece as a relative derived
scheme. As this is a groupoid object, each term Mn may be written as an n-fold fiber product of relative
derived schemes. Since the ∞-category is closed under fiber products, we now see this fact.

By construction, Def
A

1/Gm
(X/Y) is a derived scheme over A1/Gm. The following proposition identifies

its “generic fiber” with the formal completion ŶX of X in Y.

Proposition 5.8. There is an equivalence

1∗Def
A

1/Gm
(X/Y) ≃ ŶX.

Proof. As pullback commutes with colimits, this amounts to identifying the delooping in the category of
derived schemes over Y. Note again that all objects are schemes and not stacks, so that this statement makes
sense. By the above identifications, delooping the above groupoid corresponds to taking the colimit of the
nerve N (f ) of the map f : X→ Y, a closed immersion. Hence it amounts to proving that

colim∆op N (f ) ≃ ŶX.

This is precisely the content of Theorem 2.6. □

Remark 5.9. As discussed in Warning 2.8, the formal completion ŶX acquires the universal property of the
colimit 1∗Def

A
1/Gm

(X/Y) only upon restricting to derived schemes; i.e., there will be an equivalence

MapdStk

(
ŶX ,Z

)
≃MapdStk

(
1∗Def

A
1/Gm

(X/Y) ,Z
)
≃ lim

n∈∆
MapdSch (1∗Mn,Z)

whenever Z ∈ dSch. For us this will not pose a problem because we will ultimately only be forming mapping
stacks valued in derived schemes.

A consequence of Proposition 5.8 is that the resulting object is pointed by X in the sense that there is a
well-defined map X→ ŶX, arising from the structure map in the associated colimit diagram. This map is
none other than the “inclusion” of X into its formal thickening.

Our next order of business is, somewhat predictably at this point, to identify the fiber over BGm of
Def

A
1/Gm

(X/Y) with the normal bundle of X in Y.

Proposition 5.10. There is an equivalence

0∗Def
A

1/Gm
(X/Y) ≃ ̂

V

(
TX|Y[1]

)
=: �NX|Y

in the ∞-category of derived schemes over BGm of our stack Def
A

1/Gm
(X/Y).

Proof. First, we remark that the right-hand side, being (the formal completion of) a linear stack over X,
acquires a Gm-action. This can be seen as follows: First note that at the level of functors of points,
Gm(A) = MapModA

(A,A). The action for each Spec(A)→ X on V (TX|Y[1]) is thus given by composition:

MapModA
(A,A)×MapModA

(
u∗

(
TX|Y[1]

)
,A

)
−→MapModA

(
u∗

(
TX|Y[1]

)
,A

)
.
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Now we proceed with the proof. As in the proof of the previous proposition, it amounts to understanding
the pullback along Spec(k)→ BGm→A

1/Gm of the groupoid object M•. This is given by

X⇔ TX|Y · · · ,

where we abuse notation and identify TX|Y with V (TX|Y). Note that TX|Y ≃ ΩX(TX|Y[1]), and so we may
identify the above colimit diagram with the simplicial nerve N (f ) of the unit section X→ TX|Y[1] ≃NX|Y.
The result now follows from another application of Theorem 2.6. □

The following statement summarizes the above discussion.

Theorem 5.11. Let f : X → Y be a closed immersion of schemes. Then there exists a filtered stack
Def

A
1/Gm

(X/Y)→A
1/Gm (making it into a relative scheme over A1/Gm) with the property that there exists a

map
X×A1/Gm −→Def

A
1/Gm

(X/Y)

whose fiber over 1 ∈A1/Gm is

X −→ ŶX

and whose fiber over 0 ∈A1/Gm is

X −→�NX|Y,

the formal completion of the unit section of X in its normal bundle.

5.2. Deformation of a formal group to its normal cone

Fix a (classical) formal group Ĝ. We now apply the above construction to the unit section of the formal
group, ι : Spec(k)→ Ĝ. Note that Ĝ is already formally complete along ι. We set

Def
A

1/Gm

(
Ĝ

)
:= Def

A
1/Gm

(
Spec(k)/Ĝ

)
.

This will be a relative scheme over A1/Gm.

Proposition 5.12. Let Spec(k)→ Ĝ be the unit section of a formal group. Then, the stack Def
A

1/Gm
(Ĝ) of

Construction 5.6 is a filtered formal group.

Proof. We will show that there exists a filtered dualizable (and discrete) R-module M for which

O
(
Def

A
1/Gm

(
Ĝ

))
≃ Γ ∗fil(M)∨ ≃ ̂Sym∗fil

(
M∨

)
.

As was shown above, there is an equivalence

Def
A

1/Gm

(
Ĝ

)
1
≃ Ĝ,

where the left-hand side denotes the pullback along Spec(k) → A
1/Gm; hence we conclude that the

underlying object of O(Def
A

1/Gm
(Spec(k)/Ĝ)) is of the form k[[t]] ≃ ̂Sym∗(M) for M a free k-module of

rank n. We now identify the associated graded of the filtered algebra corresponding to O(Def
A

1/Gm
(Ĝ)).

For this, we use the equivalence

Def
A

1/Gm

(
Ĝ

)
0
≃ T̂

G|k

of stacks over BGm. We note that the right-hand side may indeed be viewed as a stack over BGm, arising
from the weight −1 action of Gm by homothety on the fibers. This is the Gm-action which will be compatible
with the grading on the dual numbers k[ϵ] (which appears in Construction 5.1) such that ϵ is of weight 1. In
particular, since Ĝ is an n-dimensional formal group, it follows that the associated graded is none other than

Sym∗gr(M(1)),

the graded symmetric algebra on the graded k-module M(1), which is M concentrated in weight 1.
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Now let Mf (1) be the filtered k-module

Mf (1) =

Mf (1)n = 0, n > 1,

Mf (1)n = M, n ≤ 1.

We claim that there is a map

Mf (1) −→O
(
Def

A
1/Gm

(
Ĝ

))
;

this will follow from the fact that M is projective, and so there will be a lift to F1(O(Def
A

1/Gm
(Ĝ))). Passing

to filtered objects, this means that one has the desired map

Mf (1) −→O
(
Def

A
1/Gm

(
Ĝ

))
.

This then induces a map

Ŝymfil

(
Mf (1)

)
−→O

(
Def

A
1/Gm

(
Ĝ

))
since O(Def

A
1/Gm

(Ĝ)) is a filtered commutative algebra and in fact complete as a filtered object. We now
claim that this map is an equivalence; this follows by completeness and from the fact that the induced map
on associated gradeds is an equivalence.

We would now like to identify the filtered object Ŝymfil(M
f (1)) with the I-adic filtration on �Sym(M).

We remark that we now find ourselves in the setup of a filtered augmented monadic adjunction of [BM19,
Example 5.39, Proposition 5.40]; within this formalism, the functorially defined adic filtration on a free
polynomial algebra will coincide with the filtered Sym construction on Mf (1). This equivalence will persist
upon taking completions. Hence we conclude that the filtration on O(Def

A
1/Gm

(Ĝ)) is none other than the

adic filtration of ̂Sym(M) with respect to the augmentation ideal. Finally, by Corollary 4.28, this acquires a
canonical abelian cogroup structure which is a filtered enhancement of that of Ĝ, making Def

A
1/Gm

(Ĝ) into
a filtered formal group. □

Now we combine this construction with the A
1/Gm-parametrized Cartier duality of Section 4.

Corollary 5.13. Let Ĝ be a formal group over Spec(k), and let Ĝ∨ denote its Cartier dual. Then the cohomology
RΓ (Ĝ∨,O) acquires a canonical filtration.

Proof. By Proposition 5.12, the coordinate algebra O(Def
A

1/Gm
(Ĝ) corresponds via duality to an abelian

group object in smooth filtered coalgebras. As we are in the discrete setting, this is equivalent to the structure
of a group-like commutative monoid in this category. In particular, this is a filtered Hopf algebra object, so
it determines a group stack Def

A
1/Gm

(Ĝ)∨ over A1/Gm. □

6. The deformation to the normal cone of Ĝm

By the above, given any formal group Ĝ, one may define a filtration on its Cartier dual Ĝ∨ = Map(Ĝ,Ĝm)
in the sense of [Mou21]. In the case of the formal multiplicative group, this gives a filtration on its Cartier
dual (Gm)∨ = Fix. In [MRT22], the authors defined a geometric filtration on this affine group scheme (defined
over a Z(p)-algebra R) given by a certain interpolation between the kernel and fixed points of the Frobenius

on the Witt vector scheme. We would like to compare the filtration on Map(Ĝm,Ĝm) with this construction.

Corollary 6.1. The geometric filtration defined on Fix is Cartier dual to the (x)-adic filtration on

O(Ĝm) ≃ R[[x]].

Furthermore, this filtration corresponds to the deformation to the normal cone construction Def
A

1/Gm
(Ĝm) on Ĝm

and coincides with the filtration of [SS01].
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Proof. Let

Gt = Spec(R[X,1/(1 + tX))].

This is an affine group scheme, with multiplication given by

X 7−→ X ⊗ 1 + 1⊗X + tX ⊗X;

one sees by varying the parameter t that this is naturally defined over A1. If t is invertible, then this is
equivalent to Gm; if t = 0, this is just the formal additive group Ga. If we take the formal completion of this
at the unit section, we obtain a formal group Ĝt , with corresponding formal group law

(6.1) F(X,Y ) = X +Y + tXY ,

which we may think of as a formal group over A1. In [SS01], the authors describe the Cartier dual of the
resulting formal group, for every t ∈ R, as the group scheme

ker
(
F − tp−1id : Wp −→Wp

)
.

These assemble, by way of the natural Gm-action on the Witt vector scheme W , to give a filtered group
scheme H→A

1/Gm, cf. [MRT22, Definition 2.3.7], whose classifying stack is the filtered circle. The algebra
of functions O(H) acquires a comultiplication; by results of [Mou21], we may think of this as a filtered Hopf
algebra.

Let us identify this filtered Hopf algebra a bit further; by abuse of notation, we refer to it as O(H). After
passing to underlying objects, it is the divided power coalgebra

⊕
Γ n(R). The algebra structure on this

comes from the multiplication on Ĝm, via Cartier duality. On the graded side, we have the coordinate
algebra of Ker, which by [Dri20, Lemma 3.2.6] is none other than the free divided power algebra

R⟨x⟩ � R

[
x,
x2

2!
, . . .

]
.

One gives this the grading where each 1
n!x

n is of pure weight −n. The underlying graded smooth coalgebra
is ⊕

n

Γgr(R(−1)).

We deduce by weight reasons that there is an equivalence of filtered coalgebras

O(H) ≃
⊕
n

Γ n
(
Rf (−1)

)
,

where Rf (−1) is trivial in filtering degrees n > 1 and equal to R otherwise.
The consequence of the analysis of the above paragraph is that the Hopf algebra structure on O(H)

corresponds to the data of an abelian group object in smooth filtered coalgebras; cf. Section 4. In other
words, this is a filtered formal group, which is uniquely determined by its underlying formal group by
Corollary 5.13. In this case, it will be uniquely determined by Ĝm.

Now we relate this to the deformation to the normal cone construction applied to Ĝm, which also outputs
a filtered formal group. Indeed, by the reasoning of Proposition 5.12, this filtered formal group is itself given
by the adic filtration on R[[t]] together with the filtered coalgebra structure uniquely determined by the
group structure on Ĝm. □

7. Ĝ-Hochschild homology

As an application to the above deformation to the normal cone constructions associated to a formal
group, we further somewhat the following proposal of [MRT22] described in the introduction.
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Construction 7.1. Let R be a Z(p)-algebra. Let Ĝ be a formal group over R. Its Cartier dual Ĝ∨ is an

affine commutative group scheme. We let BĜ∨ denote the classifying stack of the group scheme Ĝ
∨. Let

X = Spec(A) be an affine derived scheme, corresponding to a simplicial commutative R-algebra A. One
forms the derived mapping stack

MapdStkR

(
BĜ∨,X

)
.

If Ĝ = Ĝm, then by the affinization techniques of [Toë06, MRT22], one recovers, at the level of global
sections,

RΓ
(
MapdStkR

(
BĜm

∨
,X

)
,O

)
≃HH(A/R),

the Hochschild homology of A as the global sections of this construction. Following this example one can
make the following definition (cf. [MRT22, Section 6.3]).

Definition 7.2. Let Ĝ be a formal group over R. Let

HHĜ : sCAlgR −→ModR

be the functor defined by

HHĜ(A) := RΓ
(
MapdStk

(
BĜ∨,X

)
,O

)
.

As was shown in Section 5.2, given a formal group Ĝ over a commutative ring R, one can apply a
deformation to the normal cone construction to obtain a formal group Def

A
1/Gm

(Ĝ) over A
1/Gm. By

applying A
1/Gm-parametrized Cartier duality, one obtains a group scheme over A1/Gm.

Theorem 7.3. Let Ĝ be an arbitrary formal group. The functor

HHĜ(−) : sCAlgR −→ModR

admits a refinement to the ∞-category of filtered R-modules
˜

HHĜ(−) : sCAlgR −→Modfilt
R

such that

HHĜ(−) ≃ colim(Z,≤)
˜

HHĜ(−).

Remark 7.4. We remark that for a 1-dimensional Ĝ, one recovers the de Rham algebra Sym(LA|R[1]) as the

associated graded. Thus, the difference between HHĜ in this case and ordinary Hochschild homology will
be detected by extensions.

Proof of Theorem 7.3. Let Def
A

1/Gm
(Ĝ)∨ be the Cartier dual of the deformation to the normal cone

Def
A

1/Gm
(Ĝ). Form the mapping stack

MapdStk/A1/Gm

(
BDef

A
1/Gm

(
Ĝ

)∨
,X ×A1/Gm

)
.

This base changes along the map
1: Spec(R) −→A

1/Gm

to the mapping stack
MapdStkR

(
BĜ∨,X

)
,

which gives the desired geometric refinement. The stack MapdStk/A1/Gm
(BDef

A
1/Gm

(Ĝ)∨,X ×A1/Gm) is a

derived scheme relative to the base A
1/Gm. Indeed, it is nilcomplete and infinitesimally cohesive, and it

admits an obstruction theory by the arguments of [TV08, Section 2.2.6.3]. Finally, its truncation is the
relative scheme t0X ×A1/Gm over A1/Gm—this follows from the identification

t0 Map
(
BĜ∨,X

)
≃ t0 Map

(
BĜ∨, t0X

)
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and from the fact that there are no nonconstant (nonderived) maps BG→ t0X for G a group scheme.
Hence we conclude by the criteria of [TV08, Theorem C.0.9] that this is a relative affine derived scheme.

Since LĜfil(X) → A
1/Gm is a relative affine derived scheme, we conclude that LĜfil(X) → A

1/Gm is of

finite cohomological dimension, and so by Proposition 2.1,
˜

HHĜ(A) defines an exhaustive filtration on

HHĜ(A). □

Remark 7.5. In characteristic zero, all 1-dimensional formal groups are equivalent to the additive formal
group Ĝa, via an equivalence with its tangent Lie algebra. In particular, the above filtration splits canonically;
one obtains an equivalence of derived schemes

MapdStk

(
BĜ∨,X

)
≃ TX |R[−1].

In positive or mixed characteristic, this is of course not true. However, one can view all these theories as
deformations along the map BGm→A

1/Gm of the de Rham algebra DR(A) = Sym(LA|R[1]).

8. Liftings to spectral deformation rings

In this section, we lift the above discussion to the setting of spectral algebraic geometry over various
ring spectra that parametrize deformations of formal groups. These are defined in [Lur18b] in the context
of elliptic cohomology theory. As we will be switching gears now and working in this setting, we will
spend some time recalling and slightly clarifying some of the ideas in [Lur18b]. Namely, we introduce a
correspondence between formal groups over E∞-rings and spectral affine group schemes, and we show it to
be compatible with Cartier duality in the classical setting. We stress that the necessary ingredients already
appear in [Lur18b].

8.1. Formal groups over the sphere

We recall various aspects of the treatment of formal groups in the setting of spectra and spectral algebraic
geometry. The definition is based on the notion of smooth coalgebra studied in Section 3. In particular, the
results of this section are generalizations to spectral algebraic geometry of the ideas of Sections 3.2 and 3.3.

Definition 8.1. Fix an arbitrary E∞-ring R, and let C be a coalgebra over R. Recall that this means that
C ∈ CAlg(Modop

R )op. Then C is smooth if it is flat as an R-module and if π0C is smooth as a coalgebra
over π0(R), as in Definition 3.11.

Given an arbitrary coalgebra C over R, the linear dual C∨ = Map(C,R) acquires a canonical E∞-algebra
structure. In general, C cannot be recovered from C∨. However, in the smooth case, the dual C acquires the
additional structure of a topology on π0, giving it the structure of an adic E∞-algebra. This allows us to
recover C, via the following proposition; cf. [Lur18b, Theorem 1.3.15].

Proposition 8.2. Let C,D ∈ cCAlgsm
R be smooth coalgebras. Then R-linear duality induces a homotopy

equivalence
MapcCAlgR

(C,D) ≃Mapcont
CAlgR

(
C∨,D∨

)
.

Remark 8.3. One can go further and characterize intrinsically all adic E∞-algebras that arise as duals of
smooth coalgebras. These (locally) have a formal power series ring as underlying homotopy groups.

Construction 8.4. Given a coalgebra C ∈ cCAlgR, one may define a functor

cSpec(C) : CAlgcn
R −→ S ;

this associates, to a connective R-algebra A, the space of group-like elements

GLike(A⊗R C) = MapcCAlgA
(A,A⊗R C).
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Remark 8.5. Fix a smooth coalgebra C. There is always a canonical map of stacks coSpec(C)→ Spec(A),
where A = C∨, but it is typically not an equivalence. The condition that C is smooth guarantees precisely
that there is an induced equivalence coSpec(C)→ Spf(A) ⊆ Spec(A), where Spf(A) denotes the formal
spectrum of the adic E∞-algebra A. In particular, coSpec(C) is a formal scheme in the sense of [Lur18c,
Chapter 8].

One has the following proposition, to be compared with Proposition 3.15.

Proposition 8.6 (Lurie). Let R be an E∞-ring. Then the construction C 7→ cSpec(C) induces a fully faithful
embedding of ∞-categories

cCAlgsm
R −→ Fun(CAlgcn

R ,S).

This facilitates the following definition of a formal group in the setting of spectral algebraic geometry.

Definition 8.7. A functor X : CAlgcn
R → S is a formal hyperplane if it is in the essential image of the

coSpec functor; we use the notation HypPlaneR to denote the ∞-category of such objects. We now define a
formal group to be an abelian group object in formal hyperplanes, namely an object of Ab(HypPlaneR).

As is evident from the thread of the above construction, one may define a formal group to be a certain
type of Hopf algebra, but in a somewhat strict sense. Namely, we can define a formal group to be an object
of Ab(cCAlgsm), that is, an abelian group object in the ∞-category of smooth coalgebras. We refer to these
as strict Hopf algebras.

Remark 8.8. The monoidal structure on cCAlgR induced by the underlying smash product of R-modules is
Cartesian; in particular, it is given by the product in this ∞-category. Hence a “commutative monoid object”
in the category of R-coalgebras will be a coalgebra that is additionally equipped with the structure of an
E∞-algebra. In particular, it will be a bialgebra.

Construction 8.9. Let Ĝ be a formal group over an E∞-algebra R. Let H be a strict Hopf algebra H for
which

coSpec(H) = Ĝ.

Let

U : Ab(cCAlgR) −→ CMon(cCAlgR)

be the forgetful functor from abelian group objects to commutative monoids. Since the monoidal structure
on cCAlgR is Cartesian, the structure of a commutative monoid in cCAlgR is that of a commutative algebra
on the underlying R-module, and so we may view such an object as a bialgebra in ModR. Finally, we apply
Spec(−) (the spectral version) to this bialgebra to obtain a group object in the category of spectral schemes.
This is what we refer to as the Cartier dual Ĝ∨ of Ĝ.

Remark 8.10. The above just makes precise, for a strict Hopf algebra H (i.e., an abelian group object), the
association

Spf(H∨) ≃ coSpec(H) 7−→ Spec(H).

Unlike the 1-categorical setting studied so far, there is no equivalence underlying this, as passing between
abelian group objects to commutative monoid objects loses information; hence this is not a duality in
the precise sense. In particular, it is not clear how to obtain a spectral formal group from a group-like
commutative monoid in schemes, even if the underlying coalgebra is smooth.

Proposition 8.11. Let R→ R′ be a morphism of E∞-rings, and let Ĝ be a formal group over Spec(R) and ĜR′

its extension to R′ . Then Cartier duality satisfies base change, so that there is an equivalence

D
(
Ĝ|′R

)
≃D

(
Ĝ

)
|R.
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Proof. Let Ĝ = Spf(A) be a formal group corresponding to the adic E∞-ring A. Then the Cartier dual
is given by Spec(H) for H = A∨, the linear dual of A which is a smooth coalgebra. The linear duality
functor (−)∨ = MapR(−,R)—for example by [Lur18b, Remark 1.3.5]—commutes with base change and is an
equivalence between smooth coalgebras and their duals. Moreover, it preserves finite products and so can be
upgraded to a functor between abelian group objects. □

8.2. Deformations of formal groups

Let us recall the definition of a deformation of a formal group. These are all standard notions.

Definition 8.12. Let Ĝ0 be formal group defined over a finite field of characteristic p. Let A be a complete
Noetherian ring equipped with a ring homomorphism ρ : A→ k, further inducing an isomorphism A/m � k.
A deformation of Ĝ0 along ρ is a pair (Ĝ,α), where Ĝ is a formal group over A and α : Ĝ0→ Ĝ|k is an
isomorphism of formal groups over k.

The data (Ĝ,α) can be organized into a category Def
Ĝ0

(A). The following classic theorem due to Lubin
and Tate asserts that there exists a universal deformation, in the sense that there is a ring which corepresents
the functor A 7→Def

Ĝ0
(A).

Theorem 8.13 (Lubin–Tate). Let k be a perfect field of characteristic p, and let Ĝ0 be a 1-dimensional formal
group of height n <∞ over k. Then there exist a complete local Noetherian ring Rcl

Ĝ

, a ring homomorphism

ρ : Rcl
Ĝ

−→ k

inducing an isomorphism Rcl
Ĝ

/m � k, and a deformation (Ĝ,α) along ρ with the following universal property: for
any other complete local ring A with an isomorphism A � A/m, extension of scalars induces an equivalence

Homk

(
Rcl
Ĝ

,A
)
≃Def

Ĝ0
(A,ρ)

(here, we regard the right-hand side as a category with only identity morphisms).

For the purposes of this text, we can interpret the above as saying that every formal group over a complete
local ring A with residue field k can be obtained from the universal formal group over Rcl

Ĝ

by base change

along the map Rcl
Ĝ

→ A. We let Gun denote the universal formal group over this ring.

Remark 8.14. As a consequence of the classification of formal groups due to Lazard, one has a description

A0 �W (k)[[v1, . . . , vn−1]],

where the map ρ : W (k)[[v1, . . . , vn−1]]→ k has kernel the maximal ideal m = (p,v1, . . . , vn−1).

8.3. Deformations over the sphere

As it turns out, the ring A0 has the special property that it can be lifted to the K(n)-local sphere spectrum.
To motivate the discussion, we restate a classic theorem attributed to Goerss, Hopkins and Miller. We first
set some notation.

Definition 8.15. Let F G denote the category whose

• objects are pairs (k,Ĝ), where k is a perfect field of characteristic p and Ĝ is a formal group over k,
• morphisms from (k,Ĝ) to (k′ ,Ĝ′) are pairs (f ,α), where f : k→ k′ is a ring homomorphism, and
α : Ĝ � Ĝ

′ is an isomorphism of formal groups over k′ .

Theorem 8.16 (Goerss–Hopkins–Miller). There is a functor

E : F G −→ CAlg,
(
k,Ĝ

)
7−→ Ek,Ĝ

such that for every (k,Ĝ), the following hold:



32 T. Moulinos32 T. Moulinos

(i) Ek,Ĝ is even periodic.

(ii) The corresponding formal group over π0Ek,Ĝ is the universal deformation of (k, Ĝ). In particular,
π0Ek,Ĝ � A0 �W(k)[[v1, . . . , vn−1]].

If we let (l,Ĝ) = (Fpn ,Γ ), where Γ is the p-typical formal group of height n, we set

En := E
Fpn ,Γ ;

this is the nth Morava E-theory.

Remark 8.17. The original approach to this uses Goerss–Hopkins obstruction theory. A modern account due
to Lurie can be found in [Lur18b, Chapter 5].

Remark 8.18. As it turns out, this ring Rcl
Ĝ

� π0Ek,Ĝ can be thought of as parametrizing oriented deformations

of the formal group Ĝ. This oriented terminology, introduced in [Lur18b], roughly means that the formal
group in question is equivalent to the Quillen formal group arising from the complex orientation on the base
ring. However, there exists an E∞-algebra parametrizing unoriented deformations of the formal group over k.

Theorem 8.19 (Lurie). Let k be a perfect field of characteristic p, and let Ĝ be a formal group of height n over k.
There exist a morphism of connective E∞-rings

ρ : Run
Ĝ

−→ k

and a deformation of Ĝ along ρ with the following properties:

(i) Run
Ĝ

is Noetherian, the induced map ϵ : π0R
un
Ĝ

→ k is a surjection, and Run
Ĝ

is complete with respect to the
ideal ker(ϵ).

(ii) Let A be a Noetherian ring E∞-ring for which the underlying ring homorphism ϵ : π0(A)→ k is surjective
and A is complete with respect to the ideal ker(ϵ). Then extension of scalars induces an equivalence

MapCAlg/ k

(
Run
Ĝ

,A
)
≃Def

Ĝ
(A).

Remark 8.20. We can interpret this theorem as saying that the ring Run
Ĝ0

corepresents the spectral formal

moduli problem classifying deformations of Ĝ0. Of course, this then means that there exists a universal
deformation (this is nonclassical) over Run

Ĝ0
which base changes to any other deformation of Ĝ.

Remark 8.21. This is actually proven in the setting of p-divisible groups over more general algebras over k.
However, the formal group in question is the identity component of a p-divisible group over k; moreover, any
deformation of the formal group will arise as the identity component of a deformation of the corresponding
p-divisible group (cf. [Lur18b, Example 3.0.5]).

Now fix an arbitrary formal group Ĝ of height n over a finite field k, and take its Cartier dual D(Ĝ) := Ĝ
∨.

From Construction 8.9, we see that this is an affine group scheme over Spec(k).

Theorem 8.22. There exists a spectral scheme D(Ĝun) defined over the E∞-ring R
un
Ĝ

, which lifts D(Ĝ), giving
rise to the following Cartesian diagram of spectral schemes:

D
(
Ĝ

)
φ′

��

p′
// D

(
Ĝ

un
)

φ
��

Spec(k)
p
// Spec

(
Run
Ĝ

)
.
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Proof. By Theorem 8.19 above, given a formal group Ĝ over a perfect field, the functor associating to an
augmented ring A→ k the groupoid of deformations Def(A) is corepresented by the spectral (unoriented)
deformation ring Run

Ĝ

. Hence we obtain a map

Run
Ĝ

−→ k

of E∞-algebras over k. Over Spec(Run
Ĝ

), one has the universal deformation Ĝun. This base changes along

the above map to Ĝ. By definition, this formal group is of the form coSpec(H) for some H ∈ Ab(cCAlgsm
Run
Ĝ

).

Let
U : Ab

(
cCAlgsm

Run
Ĝ

)
−→ CMongp

(
cCAlgsm

Run
Ĝ

)
be the forgetful functor from abelian group objects to group-like commutative monoid objects. We recall
that the symmetric monoidal structure on cocommutative coalgebras is the Cartesian one. Hence group-
like commutative monoids will have the structure of E∞-algebras in the symmetric monoidal ∞-category
of Run

Ĝ

-modules. In particular, we obtain a commutative and cocommutative bialgebra, so we can take
Spec(H); this will be a group-like commutative monoid object in the category of affine spectral schemes
over Spec(Run

Ĝ

). Since Cartier duality commutes with base change (cf. Proposition 8.11), we conclude that

Spec(H) base changes to D(Ĝ) under the map Run
Ĝ

. □

Remark 8.23. One might wonder about the possibility of lifting, to the sphere spectrum, the filtration on
D(Ĝ) given by the deformation to the normal cone. As we will see in Section 10, this is substantially more
subtle and fails for the case Ĝ = Ĝm.

Example 8.24. As a motivating example, consider Ĝ = Ĝm, the formal multiplicative group over Fp. As
described in loc. cit., this formal group is Cartier dual to Fix ⊂Wp, the Frobenius fixed point subgroup
scheme of the Witt vectors Wp(−). This lifts to Run

Ĝm
, which in this case is none other than the p-complete

sphere spectrum Sp̂; cf. [Lur18b, Corollary 3.1.19]. In fact, this object lifts to the sphere itself, by the
discussion in [Lur18b, Section 1.6]. Hence we obtain an abelian group object in the category cCAlg

Sp̂
of

smooth coalgebras over the p-complete sphere. Taking the image of this along the forgetful functor

Ab
(
cCAlg

Sp̂

)
−→ CMon

(
cCAlg

Sp̂

)
,

we obtain a group-like commutative monoid H in cCAlg
Sp̂
, namely a bialgebra in p-complete spectra. We

set Spec(H) = D(Ĝun). Then base changing FixS along the map

Sp̂ −→ τ≤0Sp̂ ≃Zp −→ Fp

recovers precisely the affine group scheme D(Ĝun), by the compatibility of Cartier duality with base change.
One may even go further and base change to the orientation classifier (this is the E∞-ring classifying

oriented deformations of the formal group, which are compatible with a complex orientation; cf. [Lur18b,
Chapter 6, Construction 6.0.1])

Sp̂ ≃ Run
Ĝm
−→ Ror

Ĝm
≃ E1

and recover height 1 Morava E-theory, a complex orientable spectrum. Moreover, in height 1, Morava
E-theory is the p-complete complex K-theory spectrum KUp̂. Applying the above procedure, one obtains
the Hopf algebra corresponding to

C∗
(
CP∞,KUp̂

)
,

whose algebra structure is induced by the abelian group structure on CP∞. We now take the spectrum of
this bialgebra; note that this is to be done in the nonconnective sense (see [Lur18c]) as KUp̂ is nonconnective.
In any case, one obtains an affine nonconnective spectral group scheme

Spec
(
C∗

(
CP∞,KUp̂

))
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which arises via the base change Spec(KUp̂)→ Spec(Run
Ĝm

). We summarize this discussion with the following

diagram of pullback squares in the ∞-category of nonconnective spectral schemes:

Fix

φ′

��

p′
// Spec(H)

φ

��

Spec
(
C∗

(
CP∞,KUp̂

))
��

oo

Spec
(
Fp

) p
// Spec(Run

Ĝ

) Spec
(
KUp̂

)
.oo

Note that we have the factorization
Sp̂ −→ kup̂ −→ KUp̂

through p-complete connective complex K-theory, so these lifts exists there as well.

9. Lifts of Ĝ-Hochschild homology to the sphere

Let Ĝ be a height n formal group over a perfect field k. We study a variant of Ĝ-Hochschild homology
which is more adapted to the tools of spectral algebraic geometry. Roughly speaking, we take mapping
stacks in the setting of spectral algebraic geometry over k, instead of derived algebraic geometry.

Definition 9.1. Let Ĝ be a formal group over k. We define the E∞-Ĝ Hochschild homology to be the functor
defined by

HHĜ

E∞
(A) : CAlgcn

k −→ CAlgcn
k , HHĜ

E∞
(A) = RΓ

(
MapsStkk

(
BĜ∨,Spec(A)

)
,O

)
,

where MapsStkk
(−,−) denotes the internal mapping object of the ∞-topos sStkk .

It is not clear how the two notions of Ĝ-Hochschild homology compare.

Conjecture 9.2. Let Ĝ be a formal group and A a simplicial commutative k-algebra. Then there exists a natural
equivalence

θ(HHĜ(A)) −→HHĜ

E∞
(θ(A))

In other words, the underlying E∞-algebra of the G-Hochschild homology coincides with the E∞ Ĝ-Hochschild
homology of A, viewed as an E∞-algebra.

At least when Ĝ = Ĝm, we know that this is true. In fact, this also recovers Hochschild homology (relative
to the base ring k).

Proposition 9.3. Let A be a simplicial commutative algebra over k. There is a natural equivalence

θ(HH(A/k)) ≃HHĜm
E∞

(θ(A))

of E∞-algebra spectra over k.

Proof. This is a modification of the argument of [MRT22]. We have the (underived) stack Fix ≃ Ĝm
∨
and in

particular a map

S1 −→ BFix ≃ BĜm
∨
.

This can also be interpreted, by Kan extension, as a map of spectral stacks. This further induces a map
between the mapping stacks

MapsStkk
(S1,X) −→MapsStkk

(
BĜm

∨
,X

)
.

We would like to show that this is an equivalence. In order to do this, we reduce to the case where X = A
1
sm,

the (smooth) affine line. Recall that all connective E∞ k-algebras may be expressed as colimits of free
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algebras, and all colimits of free algebras may be expressed as colimits of the free algebra on one generator
k{t}. This follows from [Lur17, Corollary 7.1.4.17], where it is shown that Free(k) is a compact projective
generator for CAlgk . These colimits become limits in the opposite category of derived affine schemes.
As taking mapping stacks commutes with taking limits, we conclude that it is enough to test the above
equivalence in the case where X = A

1
sm; this is the “smooth” affine line, i.e., A1

sm = Spec(k{t}), the spectrum
of the free E∞-k-algebra on one generator. For this we check that there is an equivalence on functors of
points

B 7−→Map
(
BĜm

∨
×B,A1

)
≃Map

(
S1 ×B,A1

)
for each B ∈ CAlgcnk . Each side may be computed as Ω∞(π∗O), where π : BG ×B→ Spec(k) denotes the

structural morphism (where G ∈ {Z,Ĝm
∨
}). The result now follows from the following two facts:

• There is an equivalence of global sections C∗(BFix,O) ≃ kS
1
; cf. [MRT22, Proposition 3.3.2].

• BFix is of finite cohomological dimension; cf. [MRT22, Proposition 3.3.7].

We now obtain an equivalence on B-points

Ω∞
(
π∗

(
BĜm

∨
×B

))
≃Ω∞

(
π∗

(
BĜm

∨)
⊗k B

)
≃Ω∞

(
π∗

(
S1

)
⊗k B

)
≃Ω∞

(
π∗

(
S1 ×B

))
.

Note that the second equivalence follows from the finite cohomological dimension of BĜm
∨
. Applying global

sections RΓ (−,O) to this equivalence gives the desired equivalence of E∞-algebra spectra. □

We now show that Ĝ-Hochschild homology possesses additional structure which is already seen at the
level of ordinary Hochshchild homology. Recall that for an E∞-ring R, its topological Hochschild homology
may be expressed as the tensor with the circle:

THH(R) ≃ S1 ⊗
S
R.

Thus, when applying the Spec(−) functor to the ∞-category of spectral schemes, this becomes a cotensor
over S1. In fact, this coincides with the internal mapping object Map(S1,X), where X = Spec(R). Further-
more, one has the following base-change property of topological Hochshild homology: for a map R→ S of
E∞-rings, there is a natural equivalence

THH(A/R)⊗R S ≃ THH(A⊗R S/S).

In particular, if R is a commutative ring over Fp which admits a lift R̃ over the sphere spectrum, then one
has an equivalence

THH
(
R̃
)
⊗
S
Fp ≃HH

(
R/Fp

)
.

This can be interpreted geometrically as an equivalence of spectral schemes

Map
(
S1,Spec

(
R̃
))
× Spec

(
Fp

)
≃Map

(
S1,Spec(R)

)
over Spec(Fp). Let us show that such a geometric lifting occurs in many instances in the setting of

Ĝ-Hochschild homology.

Construction 9.4. Let Ĝ be a height n formal group over k, and let R be an commutative k-algebra. Let
Ĝun denote the universal deformation of Ĝ, which is a formal group over Run

Ĝ

. As in Section 8.3, we let

D(Ĝun) denote its Cartier dual over this E∞-ring.
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Theorem 9.5. Let Ĝ be a height n formal group over Fp, and let X be an Fp-scheme. Suppose there exists a lift
X̃ over the spectral deformation ring Run

Ĝ

. Then there exists a homotopy pullback square of spectral algebraic stacks

Map
(
BD

(
Ĝ

)
,X

)
φ′

��

p′
// Map

(
BD

(
Ĝ

un
)
, X̃

)
φ
��

Spec
(
Fp

) p
// Spec

(
Run
Ĝ

)
displaying Map(BD(Ĝun), X̃) as a lift of Map(BD(Ĝ),X).

Proof. Given a map p : X→ Y of spectral schemes, there is an induced morphism of ∞-topoi

p∗ : Shvét
Y −→ Shvét

X

Here the notation Shvét
X denotes the big étale site. This pullback functor is symmetric monoidal and moreover

behaves well with respect to the internal mapping objects. Now let X = Spec(Fp) and Y = Spec(Run
Ĝ

), and
let p be the map induced by the universal property of the spectral deformation ring R. In this particular
case, this means there will be an equivalence

p∗Map
(
BD

(
Ĝ

un
)
, X̃

)
≃Map

(
p∗BD

(
Ĝ

un
)
,p∗X̃

)
≃Map

(
BD

(
Ĝ

)
,X

)
since X̃ × Spec(Fp) ≃ X and p∗BD(Ĝun) ≃ BD(Ĝ). □

From this we conclude that the Ĝ-Hochschild homology has a lift in the geometric sense, in that there is a
spectral mapping stack over Spec(Run

Ĝ

) which base changes to Map(BĜ∨,X). We would like to conclude this
at the level of global section E∞-algebras. This is not formal unless we have a more precise understanding
of the regularity properties of Map(BD(Ĝun),X) for an affine spectral scheme X = Spec(A).

Indeed, there is a map

(9.1) RΓ
(
Map

(
BD

(
Ĝ

un
)
, X̃

)
,O

)
⊗Fp→ RΓ

(
Map

(
p∗BD

(
Ĝ

un
)
,p∗X̃

)
,O

)
,

but it is not a priori clear that this is an equivalence. In particular, we have the diagram of stable∞-categories

ModRun
Ĝ

p∗

��

φ∗
// QCoh

(
Map

(
BD

(
Ĝ

un
)
, X̃

))
p′∗

��

Mod
Fp

φ′∗
// QCoh

(
Map

(
BD

(
Ĝ

un
)
, X̃

))
for which we would like to verify that the Beck–Chevalley condition holds, i.e., that the canonically defined
map

ρ : p∗ ◦φ∗ −→ φ′∗ ◦ p′∗

is an equivalence. Here φ∗ and φ′∗ are the right adjoints and may be thought of as global section functors.
This construction applied to the structure sheaf O recovers the map (9.1).

This would follow from Proposition 2.1 upon knowing either that the spectral stack Map(BD(Ĝun), X̃) is
representable by a derived scheme or, more generally, that it is of finite cohomological dimension. In fact, it
is the former.

Theorem 9.6. Let Ĝ be as above, and let X denote an spectral scheme. Then the mapping stack Map(BD(Ĝun),X)
is representable by a spectral scheme.
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Proof. This will be an application of the Artin–Lurie representability theorem; cf. [Lur18c, Theorem 18.1.0.1].
Given spectral stacks X and Y , the derived spectral mapping stack Map(Y ,X) is representable by a spectral
scheme if and only if it is nilcomplete, infinitesimally cohesive and admits a cotangent complex and if the
truncation t0(Map(Y ,X)) is representable by a classical scheme. By [HLP14, Proposition 5.10], if Y is of finite
Tor-amplitude and X admits a cotangent complex, then so does the mapping stack Map(Y ,X). In our case,
X is an honest spectral scheme which has a cotangent complex. Note that the condition of being of finite
Tor-amplitude is local on the source with respect to the flat topology (cf. [Lur18c, Proposition 6.1.2.1]. Thus
if there exists a flat cover U → Y such that the composition U → Y → Spec(R) is of finite Tor-amplitude,
then Y → Spec(R) itself has this property. Infinitesimal cohesion follows from [TV08, Lemma 2.2.6.13]. The
following lemma takes care of the nilcompleteness.

Lemma 9.7. Let Y be a spectral stack over Spec(R) which may be written as a colimit of affine spectral schemes

Y ≃ colimSpec(Ai),

where each Ai is flat over R, and let X be a nilcomplete spectral stack. Then MapStkR
(Y ,X) is nilcomplete.

Proof. The argument is similar to that of an analogous claim appearing in the proof of [TV08, Theo-
rem 2.2.6.11]. Let Y be as above. Then

Map(Y ,X) ≃ lim
i

Map(Spec(Ai),X),

and so it amounts to verify this when Y = Spec(Ai) for Ai flat. In this case, we see that for B ∈ CAlgcn,

Map(Spec(A),X)(B) ≃ X(A⊗R B).

The map

Map(Spec(A),X)(B) −→ limMap(Spec(A),X)(τ≤nBn),

which we need to check is an equivalence, now translates to a map

(9.2) X(A⊗R B) −→ X(τ≤nB⊗RA).

We now use the flatness assumption on A. Using the general formula (cf. [Lur17, Proposition 7.2.2.13]) in this
case

πn(A⊗B) ≃ Tor0
π0(R)(π0A,πnB),

we conclude that τ≤n(A⊗B) ≃ A⊗ τ≤nB. Thus, (9.2) above becomes a map

X(A⊗R B) −→ X(τ≤n(B⊗RA)),

which is an equivalence because X was itself assumed to be nilcomplete. □

Finally, we show that the truncation is an ordinary scheme. First of all, note that the truncation functor

t0 : SStk −→ Stk

preserves limits and colimits. It is induced from the Eilenberg–Maclane functor

H : CAlg0 −→ CAlg, A 7−→HA,

which is itself adjoint to the truncation functor on E∞-rings. One sees that the truncation functor t0 =
H ∗ : SStk→ Stk will have as a right adjoint the functor

π∗0 : Stk −→ SStk

induced by the π0 functor

R 7−→ π0R.
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Thus it is right exact and preserves colimits. Hence if Y = BG for some flat spectral group scheme G, then
t0BG ≃ Bt0G. Now, one has the identification

t0 Map(Y ,X) ≃Map(t0Y ,t0X)

in this particular case because Y ≃ colimSpec(Ai) is a colimit of flat affine schemes, so this identification
may be checked by looking at each component Map(Spec(Ai),X) of the resulting limit. In this case, we can
test this by hand or refer to [HLP14, Remark 5.1.3].

Thus we have the identification

t0 Map
(
BD

(
Ĝ

un
)
,X

)
≃Map(BG,t0X)

for some (classical) affine group scheme G. Recall that the only classical maps f : BG→ t0X between a
classifying stack and a scheme t0X are the constant ones. Hence we conclude that the truncation of this
spectral mapping stack is equivalent to the scheme t0X, the truncation of X. □

9.1. Topological Hochschild homology

As we saw, for a height n formal group Ĝ over a finite field k, there exists a lift D(Ĝun) of the Cartier
dual of Ĝ; this allows one to define a lift of Ĝ-Hochschild homology. Let us show that when the formal
group is Ĝm, this lift is precisely topological Hochschild homology, at least after p-completion, as one would
expect. For the remainder of this section, we let Ĝ = Ĝm, the formal multiplicative group.

Let X be a fixed spectral stack. We remark that there exists an adjunction of ∞-topoi

π∗ : S ⇄ SStkX : π∗,

where on the right-hand side, one has the ∞-category of spectral stacks over X. In the following, we think of
S1 as a “constant stack” obtained by the adjunction above.

Proposition 9.8. There exists a canonical map

S1 −→ BD
(
Ĝ

un
)

of group objects in the ∞-category of spectral stacks over Sp. This gives a lift of the map

S1 −→ BFix.

Proof. By [MRT22, Construction 3.3.1], there is a canonical map

(9.3) Z −→ Fix

in the category of fpqc abelian sheaves over Spec(Zp). Note that this is in fact a map of ring objects, cf.
[Dri21, Appendix C.1.1], and is unique as such, by the initiality of Z. We would like to lift this to a map
Z→D(Ĝun) of abelian group objects in SStk

Sp
. We construct a lift directly and show that it base changes

to the map Z→ Fix. For this we use the construction of Cartier duals of CMongp-valued functors from
[Lur18a, Construction 3.7.1 and Proposition 3.9.6]. Working in Stk

Sp
, there is a canonical map of abelian

group objects

Ĝ
un ≃ Ĝm

i−−→Gm

given by the inclusion of the formal completion along the identity section, where Gm = Spec(S[t, t−1]).
Taking Cartier duals in the sense of [Lur18a, Construction 3.7.1], we obtain a map

D(Gm) −→D
(
Ĝ

un
)
,
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where we remark that the Cartier dual of Ĝun in this sense agrees with our usage of the notation D(Ĝun).(1)

Note further that there is a canonical map of monoid objects

Z −→D(Gm) = homFun(CAlgcn
Sp

,CMongp)(Gm,Gm);

this can be seen at the level of functors of points. The composite map

Z −→D(Gm) −→D
(
Ĝ

un
)

gives our candidate lift. Base changing this along Spec(Zp)→ Spec(Sp), we obtain a mapZ ≃D(Gm)→ Fix,
which is a map of ring schemes over Zp. This follows by construction since on A-points, it is the map
induced by the universal property of formal completion:

HomcoGroup(CAlg)(A[t, t−1],A[t, t−1]) ≃ homGrp(Gm,Gm)(A) −→ homGrp

(
Ĝm,Gm

)
(A)

≃ homGrp

(
Ĝm,Ĝm

)
(A)

≃HomcoGroup(Adic)(A[[t]],A[[t]]),

which is a map of rings. Note that the equivalence on the third line arises from the fact that every group

map Ĝm→Gm factors as Ĝm
α−→ Ĝm

i−→Gm. Hence we recover the map Z→ Fix of ring schemes. By taking
classifying stacks of this lift, we obtain the desired map

S1 ≃ BZ −→ BD
(
Ĝ

un
)
. □

Let X = Spec(A) be an affine spectral scheme. By taking mapping spaces, Proposition 9.8 furnishes a
map

Map
(
BĜ∨un,X

)
−→Map

(
S1,X

)
;

applying global sections further begets a map

f : THH(A) −→ RΓ
(
Map

(
BĜ∨un,X

)
,O

)
of E∞ Sp-algebras.

Theorem 9.9. Let

fp : THH
(
A;Zp

)
−→ RΓ

(
Map

(
BĜ∨un,X

)
,O

)̂
p

denote the p-completion of the above map. Then f is an equivalence.

Proof. Since this is a map of p-complete spectra, it is enough to verify that it is an equivalence upon tensoring
with the Moore spectrum Sp/p. In fact, since these are both connective spectra, one can go further and test
this simply by tensoring with Fp (e.g., by [Mao23, Corollary A.33]). Hence we are reduced to showing that

THH
(
A;Zp

)
⊗
Sp

Fp −→ RΓ
(
Map

(
BĜ∨un,X

)
,O

)̂
p
⊗Fp

is an equivalence of E∞ Fp-algebras. By generalities on topological Hochschild homology, we have the
following identification of the left-hand side:

THH
(
A;Zp

)
⊗
Sp

Fp ≃HH
(
A⊗

Sp
Fp/Fp

)
.

Now we can use Theorem 9.6 to identify the right-hand side with the global sections of the mapping stack

Map
(
BĜ∨un,X

)
× Spec

(
Fp

)
≃Map

(
BĜ∨un × Spec

(
Fp

)
,X × Spec

(
Fp

))
.

By Proposition 9.3, this is precisely HH(A⊗
Sp

Fp/Fp), whence the equivalence. □

(1)Indeed, the Cartier duality assignment of [Lur18a] restricts to the duality equivalence of Proposition 8.2



40 T. Moulinos40 T. Moulinos

10. Filtrations in the spectral setting

In Section 6, an interpretation of the HKR filtration on Hochschild homology was given in terms of a
degeneration of Ĝm to Ĝa. Moreover, this was expressed as an example of the deformation to the normal
cone construction of Section 5.

In Section 9, we further saw that these Ĝ-Hochschild homology theories may be lifted beyond the integral
setting. A natural question then arises: do the filtrations come along for the ride as well? Namely, does

there exist a filtration on THHĜ(−) which recovers the filtered object corresponding to HHĜ(−) upon base
changing along Run

Ĝ

→ k?
We will not seek to answer this question here. However, we do give a reason why some negative results

might be expected. As mentioned in the introduction, many of the constructions do work integrally. For
example, one can talk about the deformation to the normal cone Def

A
1/Gm

(Ĝ) of an arbitrary formal group

over Spec(Z). If we apply this to Ĝm, we obtain a degeneration of the formal multiplicative group to the
formal additive group. We let Def

A
1/Gm

(Ĝm)∨ be the Cartier dual, as in Section 4. In [Toë20b], the Cartier

dual to Ĝm is described to be Spec(Int(Z)), the spectrum of the ring of integer-valued polynomials on Z.
Moreover, it is shown that BSpec(Int(Z)) is the affinization of S1; hence one can recover (integral) Hochshild
homology from this.

Let us suppose there exists a lift of Def(Ĝm)∨ to the sphere spectrum, which we will denote by DefS(Ĝm)∨.
This would allow us to define a mapping stack in the ∞-category sStk

A
1/Gm

of spectral stacks over the
spectral variant of A1/Gm. By the results of [Mou21], this comes equipped with a filtration on its cohomology,
which we would like to think of as recovering topological Hochschild homology.

However, over the special fiber BGm→A
1/Gm, we would expect that such a lift DefS(Ĝm)∨ recovers

the formal additive group Ĝa. More precisely, we would get a formal group over the sphere spectrum
Ĝ→ Spec(S) which pulls back to the formal additive group Ga along the map S→Z. However, by [Lur18b,
Proposition 1.6.20], this cannot happen. Indeed, there it is shown that Ĝa does not belong to the essential
image of FGroup(S)→ FGroup(Z).

We summarize this discussion into the following proposition.

Proposition 10.1. There exists no lift of Def
A

1/Gm
(Ĝm) over to the sphere spectrum. In particular, there exists no

formal group ˜̂G over A1/Gm relative to S such that
˜̂
G× Spec(Z) ≃Def

A
1/Gm

(Ĝm).
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