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The universal vector extension of an abeloid variety

Marco Maculan

Abstract. Let A be an abelian variety over a complete non-Archimedean field K . The universal
cover of the Berkovich space attached to A reflects the reduction behaviour of A. In this paper the
universal cover of the universal vector extension EpAq of A is described. In a forthcoming paper
this will be one of the crucial tools to show that rigid analytic functions on EpAq are all constant.
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1. Introduction

1.1. Background

Let K be an algebraically closed non-trivially valued complete non-Archimedean field. The driving force
behind Tate’s foundation [Tat71] of rigid analysis was the uniformization of elliptic curves over a p-adic field:
given an elliptic curve E over K , there is an isomorphism EpKq – Kˆ{qZ of rigid analytic spaces for some
|q| ă 1 if and only if the j-invariant of E is not integral. Within the framework of Berkovich spaces, analytic
spaces are locally path connected and locally contractible (in contrast with the total disconnectedness of K ),
so that the usual theory of universal covers and fundamental groups can be applied. Tate’s result then can be
restated as follows. The topological space underlying the Berkovich space Ean attached to E is contractible
if and only if E has good reduction; if this is not the case, the universal cover of Ean is Gan

m , its fundamental
group is identified with qZ Ă Kˆ for some |q| ă 1, and Ean “ G

an
m {qZ. Mumford generalized Tate’s theorem

both for higher-genus curves, see [Mum72b], and higher-dimensional abelian varieties, see [Mum72a]. Given
an abelian variety A over K , the universal cover of Aan is of the form Ean for a semi-abelian variety

(1.1) 0 ÝÑ T ÝÑ E ÝÑ BÝÑ 0,

where T is a K-torus and B an abelian variety with good reduction. The topological space Ean is again seen
to be contractible, and the fundamental group of Aan is seen to be a free abelian group Λ Ă EpKq of rank
dimT . Later on Lütkebohmert [Lüt16, Corollary 7.6.5] obtained such a uniformization result for all abeloid
varieties, that is, proper smooth connected analytic groups over K – the rigid analytic analogue of a complex
torus.

1.2. Motivation

In this paper the universal cover of the universal vector extension of an abelian variety is made explicit.
Recall that a vector extension of an abelian variety A over a field k is a short exact sequence of algebraic
groups

0 ÝÑ V pFq ÝÑ G ÝÑ AÝÑ 0,

where F is a finite-dimensional k-vector space and V pFq the vector group attached to it. Such an
extension corresponds (up to isomorphism) to elements of the cohomology group H1pA,OAq bK F. Taking
F “ H1pA,OAq_, the vector extension with isomorphism class id P EndH1pA,OAq,

0 ÝÑ V

`

H1 pA,OAq
_
˘

ÝÑ EpAq ÝÑ AÝÑ 0,
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is said to be the universal one; it has the property that any other vector extension G is obtained as the
push-out of EpAq along the linear map H1pA,OAq_ Ñ F given by the isomorphism class of G.

When k “ C, the uniformization of EpAq admits a quite explicit description, which should hopefully
clarify the statements in the rigid context. The exponential map V :“ LieAÑ ApCq is a universal cover of
ApCq. We identify the fundamental group π1pApCq,0q with the kernel of the exponential map Λ Ď LieA.
Hodge theory permits one to see H1pA,OAq_ as the complex vector space V̄ conjugate to V ; consequently,
we have an inclusion θΛ : Λ Ñ V̄ . Then,

EpAqpCq “ pV ˆ V̄ q{Λ

with Λ embedded diagonally. The choice of a basis of Λ induces a biholomorphism EpAqpCq – pCˆq2g . In
particular, the complex manifold EpAqpCq is Stein, meaning that it can be holomorphically embedded in C

n

as a closed subspace for some ně 0. Such an embedding cannot be algebraic, as all algebraic functions on
EpAq are constant. In other words, EpAq is an example of a non-affine algebraic variety whose associated
complex space is Stein.

The motivation of the present paper comes from the study of the analogous question over K ; see [Mac22].

1.3. Results

From now on let us work over K . To ease notation, the superscript ‘an’ is dropped, and all algebraic
varieties are treated as analytic spaces. Let

0 ÝÑ T ÝÑ E ÝÑ BÝÑ 0

be the semi-abelian variety which is the universal cover of A and Λ Ď EpKq the fundamental group. In order
to state the main result, it is necessary to also have at hand the uniformization of the dual abelian variety Ǎ.
See B as the dual of its dual B̌; then the group morphism Λ Ñ BpKq defines a semi-abelian variety

0 ÝÑ Ť ÝÑ Ě
p̌

ÝÑ B̌ÝÑ 0,

where Ť is the K-torus with group of characters Λ. Let Λ̌ be the group of characters of the K-torus T . The
datum of Λ Ď EpKq induces an embedding of Λ̌ Ď ĚpKq, and

Ǎan “ Ěan{Λ̌.

For an algebraic group G, let ωG “ pLieGq_ denote the dual of its Lie algebra. Since the quotient map
Ěan Ñ Ǎan is étale, the spaces of invariant 1-forms ωĚ and ωǍ are identified. The above short exact
sequence of algebraic groups gives the following one:

0 ÝÑ ωB̌
dp̌

ÝÑ ωǍ ÝÑ ωŤ ÝÑ 0,

where dp̌ is the pull-back of 1-forms along p̌. The first result concerns structure.

Theorem A. The universal cover ẼpAq of EpAq is contractible, is the pull-back to Ã of EpAq and is the push-out
of EpBq ˆB E along dp̌; i.e. there is a commutative and exact diagram

0 V pωB̌q EpBq ˆB E E 0

0 V

`

ωǍ
˘

ẼpAq E 0.

Ð

Ñ

ÐÑ dp̌

Ð

Ñ

Ð

Ñ

ÐÑ

Ð

Ñ

ðð

Ð

Ñ

Ð

Ñ

Ð

Ñ

Ð

Ñ

In the statement the isomorphisms ωǍ – H1pA,OAq_ and ωB̌ – H1pB,OBq_ are understood. The
fundamental group π1pEpAq,0q of EpAq with base-point 0 can be identified with a subgroup of (the K-
rational points of) its universal cover ẼpAq. The projection ẼpAq Ñ E given by Theorem A then induces a
map

ϕ : π1pEpAq,0q ÝÑ Λ.
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In order to understand how π1pEpAq,0q sits inside ẼpAq, note that Theorem A gives an isomorphism
CokerpEpBq ˆB E Ñ ẼpAqq – V pωŤ q. Let

pru : ẼpAq ÝÑ V pωŤ q

be the induced projection. The image of π1pEpAq,0q is described by means of the universal vector hull of
the group Λ, that is, the K-linear map θΛ : Λ ÑωŤ defined as follows. By definition, Ť is the K-torus with
group of characters Λ. Seeing χ P Λ as a character χ : Ť Ñ Gm, set

θΛpχq :“ χ˚ dz
z PωŤ ,

where z is the coordinate function on Gm.

Theorem B. The map ϕ : π1pEpAq,0q Ñ Λ is an isomorphism, and

pru ˝ϕ´1 “ θΛ.

Concretely, when the abelian variety A has good reduction, the above results simply say that EpAq is
contractible, so that it coincides with its universal cover. In the extremely opposite situation, when A“ T {Λ

has totally degenerate reduction, the result is more interesting and gives the following description of EpAq:

EpAq “ pT ˆV pωŤ qq{tpχ,θΛpχqq : χ P Λu.

In the framework of 1-motives, Theorems A and B say that ẼpAq is the universal vector extension of the
1-motive M “ rΛ Ñ Es; see [BVS01, Section 1.4] and [Ber09, Section 2.2].

1.4. Content of the paper

In order to show Theorems A and B, the natural approach would be to compare ẼpAq with the universal
vector extension M6 of the 1-motive M “ rΛ Ñ Es. However, ẼpAq is an analytic vector extension of E, and
since E is not proper, it is not clear a priori why it should be an algebraic one. Therefore, we cannot apply the
universal property ofM6 directly. Instead, we will proceed by making an explicit construction of EpAq giving
the main results above as a byproduct. Unfortunately, the universal property of the universal vector extension
does not say much about how EpAq is constructed. It is instead more insightful to look at the moduli space
A6 of translation-invariant line bundles on A endowed with a (necessarily integrable) connection – such a
moduli space is canonically isomorphic to the universal vector extension. The construction of A6 presented
here (see Section 2), although quite natural, seemingly does not appear in the literature; it is inspired from
[BHR11], even though the Hodge-theoretical reasoning therein had to be circumvented. Such a definition for
A6 has several advantages. First, it translates right away to the rigid analytic framework for abeloid varieties.
Second, its explicit nature permits one to perform the necessary computations (see notably Proposition 4.2,
Theorem 4.6 and Theorem 4.11). Third, it allows one to determine the canonical linear isomorphism through
which A6 is obtained by push-out from EpAq (see Theorem 2.20).(1) The ‘universal cover’ of A6 is then
defined by hand (see Section 4.3) and only ultimately shown to be contractible (see Proposition 4.15), so that
it is literally the universal cover of A6.

1.5. Conventions

Let X be a locally ringed space and

(F) ¨ ¨ ¨ ÝÑ Fi´1 ÝÑ Fi ÝÑ Fi`1 ÝÑ ¨¨ ¨

(1)This formula, perhaps because of its what-else-could-it-be nature, is missing in the literature. Mazur and Messing prove the
canonical isomorphism is functorial in A (see [MM74, Proposition 2.6.7]), but its explicit form is missing. This gap was already
pointed out by Crew (see [Cre90, Introduction]), but in the description he proposes (op.cit., Theorem 2.7), he does not determine
such a linear map.
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a sequence of OX-modules indexed by integers. For morphisms of locally ringed spaces f : Y Ñ X and
g : X Ñ Z, and an OX-module M, let f ˚pFq, g˚pFq, pFq bM denote the sequences obtained from pFq by,
respectively, pulling back along f , pushing forward along g and taking the tensor product with M .

Let K be a complete non-trivially valued non-Archimedean field. In this paper K-analytic spaces are
considered in the sense of Berkovich (see [Ber93]). By abuse of notation, given a K-analytic space X, an
OX-module here is what is called an OXG

-module in op.cit. As soon as the K-analytic space X is good (that
is, every point admits an affinoid neighbourhood), the two notions coincide (op.cit., Proposition 1.3.4). For
a K-analytic space S, an S-analytic space in groups will be called simply an S-analytic group. An abeloid
variety over S is a proper, smooth S-analytic group with connected fibers.

2. Moduli of rank 1 connections and universal extension of an abelian
scheme

Let S be a scheme, α : A Ñ S an abelian scheme, e : S Ñ A the zero section and ωA “ e˚Ω1
A{S . Let

µ,pr1,pr2 : AˆS AÑ A be, respectively, the group law, the first and the second projections.

2.1. Connections on homogeneous line bundles

A homogeneous line bundle on A is the datum of a line bundle on A together with an isomorphism of
OA-modules ϕ : pr˚

1 Lb pr˚
2 LÑ µ˚L. The isomorphism ϕ is called rigidification.

Remark 2.1. The isomorphism pe,eq˚ϕ : e˚Lb e˚LÑ e˚L induces a trivialization u : OS Ñ e˚L of the line
bundle e˚L on S .

Let ∆1 be the first-order thickening of AˆS A along the diagonal, pi : ∆1 Ñ A the ith projection for
i “ 1,2, A1 the first-order thickening of A along e, ι : A1 Ñ A the closed immersion, π : A1 Ñ S the
structural morphism and τ : A1 Ñ ∆1 the morphism defined by p1 ˝ τ “ x ˝π and p2 ˝ τ “ ι. Following
Grothendieck, a connection on L is an isomorphism of O∆1

-modules ∇ : p˚
1LÑ p˚

2L whose restriction to A is
the identity. Similarly, an infinitesimal rigidification(2) at e is an isomorphism of OA1

-modules ρ : π˚e˚ Ñ ι˚L
whose restriction to the zero section is the identity. (Refer to Sections A.4 and A.5 for basics on connections
and infinitesimal rigidifications.) In particular, for a connection ∇ on L, τ˚∇ is an infinitesimal rigidification
of L at e.

Proposition 2.2. For a homogeneous line bundle L on A, we have a bijection

tconnections on Lu ÝÑ

"

infinitesimal
rigidifications of L at e

*

, ∇ ÞÝÑ τ˚∇.

Proof. The argument is borrowed from (2) and (3) in the proof of [MM74, Proposition 3.2.3, pp. 39–40].
Injectivity. Let ∇,∇1 : p˚

1L Ñ p˚
2L be connections on L. Since both isomorphisms ∇ and ∇1 are the

identity when restricted to the diagonal, they differ by an homomorphism of OX-modules LÑ Ω1
α bL. The

latter is equivalent to the datum of a global section ω of Ω1
α as L is a line bundle. On the other hand, the

evaluation at e homomorphism ε : α˚Ω
1
α ÑωA is also an isomorphism. Therefore, the isomorphisms τ˚∇

and τ˚∇1 differ by εpωq, which is 0 if and only if ω is.
Surjectivity. Let ρ : π˚e˚LÑ ι˚L be an infinitesimal rigidification of L. The morphism p2 ´ p1 : ∆1 Ñ A

factors through the closed immersion ι : A1 Ñ A. Indeed, when restricted to the diagonal, the map p2 ´ p1
has constant value e. As A1 (resp. ∆1) is the first-order thickening of A along e (resp. of X ˆS X along
the diagonal ∆), the morphism p2 ´ p1 induces a morphism η : ∆1 Ñ A1 between first-order thickenings

(2)Mazur–Messing call an ‘infinitesimal rigidification’ simply a ‘rigidification’. Here, the adjective ‘infinitesimal’ is added in order
to distinguish the concept from that of a rigidification of a homogeneous line bundle.
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such that ι ˝ η “ p2 ´ p1. The pull-back of the rigidification ϕ along the morphisms of S-schemes
pe ˝π ˝ η,p1q,pp2 ´ p1,p1q : ∆1 Ñ AˆA furnishes the following isomorphisms of line bundles over ∆1:

pe ˝π ˝ η,p1q˚ϕ : η˚π˚e˚Lb p˚
1LÝÑ p˚

1L,

pp2 ´ p1,p1q˚ϕ : pp2 ´ p1q˚Lb p˚
1LÝÑ p˚

2L.

On the other hand, taking the tensor product of η˚ρ with p˚
1L gives rise the isomorphism of O∆1

-modules

η˚ρb id : η˚π˚e˚Lb p˚
1LÝÑ pp2 ´ p1q˚Lb p˚

1L.

Consider the unique homomorphism of O∆1
-modules ∇ : p˚

1LÑ p˚
2L making the following diagram commu-

tative:

(2.1)

η˚π˚e˚Lb p˚
1L pp2 ´ p1q˚Lb p˚

1L

p˚
1L p˚

2L.

Ð

Ñ
η˚ρbid

ÐÑpe˝π˝η,p1q˚ϕ ÐÑ pp2´p1,p1q˚ϕ

Ð

Ñ
∇

To conclude, one has to show that the infinitesimal rigidification τ˚∇ is ρ. Notice that the endomorphism
η ˝ τ of the S-scheme A1 is the identity. Indeed, since ι is a closed immersion (thus a monomorphism of
schemes), it suffices to show the equality ι˝η ˝τ “ ι. But ι˝η ˝τ “ pp2 ´p1q˝τ “ ι´e˝π “ ι as A1-valued
points of A because e ˝π is the neutral element of the group ApA1q. Now, pulling back the diagram (2.1)
along τ gives the following commutative diagram of OA1

-modules:

π˚e˚L ι˚L

π˚e˚Lbπ˚e˚L ι˚Lbπ˚e˚L,

Ð

Ñ
τ˚∇

ÐÑidbπ˚u ÐÑ idbπ˚u

Ð
Ñ

ρbid

where u : OS Ñ e˚L is the trivialization introduced in Remark 2.1. (Here we used the equalities p1 ˝τ “ x ˝π
and p2 ˝ τ “ ι holding by the definition of τ .) The equality τ˚∇“ ρ follows. This concludes the proof. □

For a homogeneous line bundle L on A, let

(AtA{SpLq) 0 ÝÑ Ω1
A{S ÝÑ AtA{SpLq ÝÑ OA ÝÑ 0

be its Atiyah extension (see Section A.4). Recall that connections on L correspond to splittings of the Atiyah
extension of L.

Proposition 2.3. Let pL,ϕq be a homogeneous line bundle on A.

(1) If the cohomology group H1pS,ωAq vanishes, then the line bundle L admits a connection.
(2) The following sequence of OS -modules is short exact:

α˚pAtA{SpLqq 0 ÝÑ α˚Ω
1
A{S ÝÑ α˚ AtA{SpLq ÝÑ α˚OA ÝÑ 0.

(3) The homomorphism α˚α
˚pAtA{SpLqq Ñ pAtA{SpLqq of short exact sequences of OA-modules obtained by

adjunction is an isomorphism.

Proof. (1) According to Proposition 2.2, it suffices to show that the line bundle L admits an infinitesimal
rigidification at e. With the notation of Proposition A.6, an infinitesimal rigidification corresponds to a
splitting of the short exact sequence of OS-modules

π˚pι˚Lq 0 ÝÑ ωA b e˚LÝÑ π˚ι
˚LÝÑ e˚LÝÑ 0.

The latter is an extension of the line bundle e˚L on S by the vector bundle ωA b e˚L; therefore, its
isomorphism class lies in H1pS,Hompe˚L,ωA b e˚Lqq “ H1pS,ωAq. By hypothesis, the cohomology group
H1pS,ωAq vanishes; hence the short exact sequence π˚pι˚Lq splits, and the line bundle L admits a
connection.
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(2) The push-forward along α is a left-exact functor; therefore, it suffices to show that the natural map
p : α˚ AtA{SpLq Ñ α˚OA is surjective. The statement is local on S ; thus the scheme S may be supposed to
be affine. Under this assumption, the cohomology group H1pS,ωAq vanishes, and because of (1), the line
bundle L admits a connection. In other words, by Proposition A.4, the Atiyah extension pAtA{SpLqq of L
admits a splitting s : OA Ñ AtA{SpLq. The homomorphism of OS-modules α˚s : α˚OA Ñ α˚ AtA{SpLq is a
section of p; that is, it satisfies p ˝α˚s “ id. In particular, the homomorphism p is surjective.

(3) The homomorphism of short exact sequences of OA-modules in question is the commutative diagram

0 α˚α˚Ω
1
A{S α˚α˚ AtA{SpLq α˚α˚OA 0

0 Ω1
A{S AtA{SpLq OA 0,

Ð

Ñ

Ð

Ñ
ÐÑ

Ð

Ñ

ÐÑ

Ð

Ñ

ÐÑ

Ð

Ñ

Ð

Ñ

Ð

Ñ

Ð

Ñ

where the three vertical arrows are given by adjunction. The leftmost and the rightmost vertical arrows are
isomorphisms; thus the central vertical arrow must be so by the five lemma. □

Remark 2.4. The Atiyah extension pAtA{SpLqq is obtained as the tensor product with L_ of the short exact
sequence

(J1
A{SpLq) 0 ÝÑ Ω1

A{S bLÝÑ J1
A{SpLq ÝÑ LÝÑ 0,

where J1
A{SpLq is the OX-module of first-order jets of L. Proposition A.7 furnishes an isomorphism

ϕ : e˚pJ1
A{SpLqq Ñ π˚pι˚Lq of short exact sequences of OS-modules. Taking the tensor product with

e˚L_ induces an isomorphism

e˚pAtA{SpLqq ÝÑ π˚pι˚Lq b e˚L_

of short exact sequences of OS-modules. Also note that, by Remark 2.1, the line bundle e˚L on S is trivial,
whence we have an isomorphism

e˚pAtA{SpLqq – π˚pι˚Lq.

2.2. The canonical extension of the trivial line bundle

The functor associating with an S-scheme S 1 the set of isomorphism classes of homogeneous line bundles
on AˆS S

1 is representable by an abelian scheme α̌ : ǍÑ S, called the dual abelian scheme (this is [FC90,
Theorem 1.9]; to see that the definition in loc. cit. is equivalent to the one here, see [Oor66, Proposition 18.4]).
Let L be the Poincaré bundle (that is, the universal homogeneous line bundle on AˆS Ǎ), q : AˆS ǍÑ Ǎ
the projection onto the second factor and pAtqpLqq the Atiyah extension relative to q of the Poincaré bundle
L. Set UǍ :“ q˚ AtqpLq. The sequence of OǍ-modules

(UǍ) 0 ÝÑ α̌˚ωA ÝÑ UǍ ÝÑ OǍ ÝÑ 0

obtained by pushing forward the short exact sequence pAtqpLqq along q, is short exact by Proposition 2.3(2)
applied to the abelian scheme AˆS Ǎ over Ǎ.

Definition 2.5. The extension pUǍq is called the canonical extension of OǍ.

Remark 2.6. The pull-back of the Atiyah extension of L along the unramified morphism pidA, ěq is the
Atiyah extension of the trivial line bundle OA. Therefore, the canonical derivation dA{S : OA Ñ Ω1

A{S , being
a connection on the trivial bundle, defines a splitting of ě˚pUǍq, called the canonical splitting.

Remark 2.7. Let A1 be the first-order thickening of A along the zero section e, ι : A1 ˆS ǍÑ AˆS Ǎ the
morphism obtained from the closed immersion A1 Ñ A by base change along α̌ and π : A1 ˆS ǍÑ Ǎ the
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second projection. Remark 2.4 (applied to the abelian scheme AˆS Ǎ over Ǎ) furnishes an isomorphism of
sequences of OǍ-modules

pe, idǍq˚pAtqpLqq „ÝÑ π˚pι˚Lq.

On the other hand, by Proposition 2.3(3), the evaluation at the zero section

pUǍq “ q˚pAtqpLqq ÝÑ pe, idǍq˚pAtqpLqq

is an isomorphism of sequences of OǍ-modules. Composing these isomorphisms yields an isomorphism of
sequences of OǍ-modules

pUǍq – π˚pι˚Lq.

2.3. Moduli space of connections

Definition 2.8. The S-scheme Ǎ6 “ PpUǍq∖Ppα̌˚ωAq is called the moduli space of rank 1 connections on A.

Theorem 2.9. The S-scheme Ǎ6 represents the functor associating with an S-scheme S 1 the set of isomorphism
classes of triples pL,ϕ,∇q made up of a homogeneous line bundle pL,ϕq on the abelian scheme AS1 and a connection
∇ : LÑ Ω1

AS1 {S1 bL.

Proof. For an S-scheme S 1, an S 1-valued point of Ǎ6 consists of the datum of a morphism of S-schemes
f : S 1 Ñ Ǎ and a splitting s : OS1 Ñ f ˚ UǍ of the short exact sequence of OS1-modules f ˚pUǍq. Let pL,ϕq

be the homogeneous line bundle on the abelian scheme A1 :“ AS1 obtained as the pull-back of the Poincaré
bundle L along the morphism idAˆf : A1 :“ AˆS S

1 Ñ AˆS Ǎ. Let α
1 : A1 Ñ S 1 be the morphism obtained

from α by base change. Then, by Proposition 2.3(3), the short exact sequence of OA1-modules α1˚f ˚pUǍq

is the Atiyah extension pAtα1pLqq of the homogeneous line bundle L. By Proposition A.4, the splitting
α1˚s : OA1 Ñ Atα1pLq corresponds to a connection on L (notice the equality EndL “ OS , due to L being a
line bundle). □

The tensor product of line bundles together with a connection endows Ǎ6 with the structure of a group
S-scheme. The natural projection π : Ǎ6 Ñ Ǎ, pL,ϕ,∇q ÞÑ pL,ϕq is a faithfully flat morphism of group
S-schemes. The kernel of π is by definition made of connections on the trivial bundle OA. Now, a connection
on the trivial line bundle is nothing but dA{S `ω for a global differential form on A, where dA{S is the
canonical α´1OS-linear derivation. The isomorphism α˚Ω

1
A{S – e˚Ω1

A{S “: ωA thus yields a short exact
sequence of group S-schemes

0 ÝÑ V pωAq ÝÑ Ǎ6 ÝÑ ǍÝÑ 0.

The following remark will only be needed once, quite further in text (see the proof of Theorem 4.6). The
reader may harmlessly skip it at first.

Remark 2.10. As any affine bundle on an abelian scheme, the group structure on Ǎ6 is defined by a unique
isomorphism of OǍ-modules

ψ̌ : pr˚
1 UǍ `B pr˚

2 UǍ ÝÑ µ̌˚ UǍ,

where µ̌,pr1,pr2 : ǍˆS ǍÑ Ǎ are, respectively, the group law, the first and the second projection, and `B is
the Baer sum of extensions (see Examples 2.15 and 2.17 below). According to Example 2.18, the isomorphism
ψ̌ is the push-forward along the morphism pA1 ˆS Ǎq ˆA1

pA1 ˆS Ǎq Ñ ǍˆS Ǎ of the rigidification

ϕ̌ : pid,pr1q˚Lb pid,pr2q˚LÝÑ pid, µ̌q˚L

of the Poincaré bundle L on the abelian scheme AˆS Ǎ over A.
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2.4. The Lie algebra of the dual abelian scheme (redux)

Let Ǎ1 be the first-order thickening of Ǎ along its zero section ě, π : Aˆ Ǎ1 Ñ A the projection onto
the first factor, ι : AˆS Ǎ1 Ñ AˆS Ǎ the morphism obtained from the closed embedding Ǎ1 Ñ Ǎ by base
change with respect to α : AÑ S and α1 : AˆS Ǎ1 Ñ S the structural morphism. Consider the isomorphism
class

rι˚Ls P H1
´

AˆS Ǎ1,O
ˆ

AˆǍ1

¯

of the line bundle ι˚L on AˆS Ǎ1, where L is the Poincaré bundle on AˆS Ǎ. Let c1pι˚Lq be the
global section of the sheaf of abelian groups R1α1˚O

ˆ

AˆǍ1
on S defined as the image of rι˚Ls via the

homomorphism of abelian groups

H1
´

AˆS Ǎ1,O
ˆ

AˆǍ1

¯

ÝÑ H0
´

S,R1α1˚O
ˆ

AˆǍ1

¯

given by the Grothendieck–Leray spectral sequence

Hp
´

S,Rqα1˚O
ˆ

AˆǍ1

¯

ùñ Hp`q
´

AˆS Ǎ1,O
ˆ

AˆǍ1

¯

.

The first projection π : AˆS Ǎ1 Ñ A induces a homeomorphism on the underlying topological spaces,
whence an isomorphism R1α˚pπ˚O

ˆ

AˆǍ1
q – R1α1˚O

ˆ

AˆǍ1
that will be treated as understood in what follows.

The homomorphism OA Ñ π˚OAˆǍ1
defines a splitting of 0 Ñ α˚ωǍ Ñ π˚OAˆǍ1

Ñ OA Ñ 0. It follows
that the short exact sequence of sheaves abelian groups on A

0 ÝÑ α˚ωǍ
exp
ÝÑ π˚O

ˆ

AˆǍ1
ÝÑ Oˆ

A ÝÑ 0

splits, where exp: v ÞÑ 1 ` v is the truncated exponential. We therefore have an exact sequence of sheaves
of abelian groups on S

0 ÝÑ R1α˚α
˚ωǍ ÝÑ R1α˚

´

π˚O
ˆ

AˆǍ1

¯

ÝÑ R1α˚OA.

The pull-back of the line bundle ι˚L along the morphism pid, ěq : AÑ AˆS Ǎ1 is trivial; thus c1pι˚Lq is
(the image via the truncated exponential of) a section of OS-module R1α˚α

˚ωǍ still written c1pι˚Lq. The
projection formula yields an isomorphisms R1α˚α

˚ωǍ – R1α˚OA bωǍ “ HompLie Ǎ,R1α˚OAq through
which the class c1pι˚Lq corresponds to an isomorphism (see [BLR90, Section 8.4, Theorem 1])

ΦA : Lie ǍÝÑ R1α˚OA.

2.5. Universal property of the canonical extension

We borrow notation from Section 2.4. For a vector bundle F on S, the Grothendieck–Leray spectral
sequence HppS,Rqα˚α

˚Fq ñ Hp`qpA,α˚Fq yields an exact sequence of Γ pS,OSq-modules

(2.2) 0 ÝÑ H1pS,Fq
α˚

ÝÑ H1pA,α˚Fq
pF

ÝÑ H0pS,R1α˚α
˚Fq.

For an extension of OA by α˚F,

(F) 0 ÝÑ α˚F ÝÑ FÝÑ OA ÝÑ 0,

let rFs P H1pA,α˚Fq be its isomorphism class. The global section cpFq :“ pFprFsq of the OS-module
R1α˚α

˚F can also be seen as the connecting homomorphism in the long exact sequence of OS-modules

0 ÝÑ F ÝÑ α˚FÝÑ OS
cpFq
ÝÑ R1α˚α

˚F ÝÑ ¨¨ ¨ .

The abelian scheme A coincides with the dual abelian scheme of Ǎ. By means of this identification, consider
the canonical extension pUAq on A and its isomorphism

rUAs P H1 `A,Hom
`

OA,α
˚ωǍ

˘˘

“ H1 `A,α˚ωǍ
˘

.
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The truncated exponential map exp: α˚ωǍ Ñ π˚O
ˆ

AˆǍ1
, v ÞÑ 1 ` v induces a homomorphism of abelian

groups

exp: H1 `A,α˚ωǍ
˘

ÝÑ H1
´

A,π˚O
ˆ

AˆǍ1

¯

.

On the other hand, the morphism π is a homeomorphism on the underlying topological spaces, thus an
isomorphism of abelian groups

H1
´

AˆS Ǎ1,O
ˆ

AˆǍ1

¯

„ÝÑ H1
´

A,π˚O
ˆ

AˆǍ1

¯

.

The image of rι˚Ls via the preceding isomorphism is the isomorphism class rπ˚ι
˚Ls of the invertible

π˚OAˆǍ1
-module π˚ι

˚L.

Proposition 2.11. With the notation above,

rπ˚ι
˚Ls “ expprUAsq,(1)

cpUAq “ c1pι˚Lq.(2)

The second statement can be reformulated by saying that, via R1α˚α
˚ωǍ – HompLie Ǎ,R1α˚OAq, the

following equality holds:
cpUAq “ ΦA.

Proof. (1) Remark 2.7 furnishes an isomorphism of short exact sequence of OA-modules pUAq – π˚pι˚Lq.
For an affine open cover tAiuiPI of A, the isomorphism class rUAs is represented by a 1-cocycle, say
fij P Γ pAi XAj ,α

˚ωǍq for i, j P I . The invertible π˚OAˆǍ1
-module π˚ι

˚L is the glueing of the OAi -modules
pπ˚OAˆǍ1

q|Ai along the transition maps exppfijq “ 1 ` fij . Relation (2) follows immediately from (1). □

For a homomorphism ϕ : ωǍ Ñ F with F a vector bundle on S, let pFϕq be the short exact sequence
obtained by push-out of pUAq along the homomorphism α˚ϕ. Let γFpϕq denote its isomorphism class
rFϕs P H1pA,α˚Fq; then this construction defines a map

γF : HompωǍ,Fq ÝÑ H1pA,α˚Fq.

Theorem 2.12. The map γF is injective and Γ pS,OSq-linear, and its image is the set of isomorphism classes of
extensions

(F) 0 ÝÑ α˚F ÝÑ FÝÑ OA ÝÑ 0

such that the short exact sequence of OS -modules e
˚pFq splits.

This statement is an immediate consequence of the following more precise fact. To state it, consider the
homomorphism e˚ : H1pA,α˚Fq Ñ H1pS,Fq given by the pull-back of an extension along the morphism e.
Since e is a section of α, the composite map e˚ ˝α˚ is the identity of H1pS,Fq. Also, note that an extension
pFq as above splits if and only if e˚rFs “ 0.

Lemma 2.13. For a vector bundle F on S ,

(1) pF ˝γF is the isomorphism induced by ΦA b idF : HompωǍ,Fq Ñ R1α˚α
˚F on global sections,

(2) the following sequence of Γ pS,OSq-modules is short exact:

0 ÝÑ HompωǍ,Fq
γF

ÝÑ H1pA,α˚Fq
e˚

ÝÑ H1pS,Fq ÝÑ 0.

Proof. (1) The diagram of OS-modules

0 ωǍ α˚ UA OS R1α˚OA bωǍ ¨ ¨ ¨

0 F α˚Fϕ OS R1α˚OA bF ¨ ¨ ¨

Ð

Ñ

Ð

Ñ

ÐÑ ϕ

Ð

Ñ

ÐÑ ðð

Ð

Ñ
cpUAq Ð

Ñ

ÐÑ idbϕ

Ð

Ñ

Ð

Ñ

Ð

Ñ

Ð

Ñ
cpFϕq Ð

Ñ
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is commutative. It follows from Proposition 2.11(2) that the composite map pF ˝γF is the one induced on
global sections by ΦA b idF : Lie ǍbF Ñ R1α˚OA bF.

(2) First of all, notice that the map γF is injective and Γ pS,OSq-linear. Second, the composite map e˚ ˝γF
vanishes: for a homomorphism ϕ : ωǍ Ñ F, the splitting of the short exact sequence of OS-module e˚pUAq

induced by the derivation dǍ{S (see Remark 2.6) induces a splitting of e˚pFϕq. Therefore, it remains to

show that the image of γF is the whole Kerpe˚q. Set rF :“ ppF ˝γFq´1 ˝ pF . Then rF ˝γF is the identity of
HompωǍ,Fq, and the sequence of Γ pS,OSq-modules

0 ÝÑ H1pS,Fq
α˚

ÝÑ H1pA,α˚Fq
rF

ÝÑ HompωǍ,Fq ÝÑ 0

is short exact by (2.2). Since γF and e˚ are sections of, respectively, rF and α˚, the result follows. □

2.6. Preliminaries on extensions of an abelian scheme

Let G be an affine, commutative, faithfully flat and finitely presented group S-scheme.

2.6.1. Principal bundles. A principal G-bundle on A is a faithfully flat A-scheme P endowed with an
action of G such that the morphism pσ,prP q : GˆSP Ñ PˆAP is an isomorphism, where σ,prP : GˆSP Ñ P
are, respectively, the morphism defining the action and the projection onto A. Let H1

fppfpA,Gq denote the set
of isomorphism classes of principal G-bundles on A.

Let ρ : G Ñ G1 be a morphism of group S-schemes, where G1 has the same properties of G, and let P be
a principal G-bundle on A. The quotient ρ˚P of S-scheme G1 ˆS P via the action gpg 1,xq “ pρpgqg 1, gxq of
G exists and is a principal G1-bundle on A, called the push-out (see [Ols16, Propositions 4.5.6 and 12.1.2]).
For principal G-bundles P and P 1 on A, the push-out

P ^ P 1 :“ µG˚pP ˆA P
1q

of the principal GˆS G-bundle P ˆA P
1 along the sum map µG : GˆS G Ñ G is called the sum. This

operation endows the set H1
fppfpA,Gq with the structure of an abelian group with neutral element GˆSA and

inverse P ÞÑ r´1s˚P , where r´1s is the inverse map on G. Furthermore, the push-out of an endomorphism of
G as a group S-scheme induces an endomorphism of the abelian group H1

fppfpA,Gq. This equips H1
fppfpA,Gq

with the structure of a module on the ring EndpGq of endomorphisms of G. For instance, if G “ V pFq for
some vector bundle F on S , the set H1

fppfpA,Gq is naturally a Γ pS,OSq-module.

Example 2.14. Suppose G “ Gm. The principal Gm-bundle associated with a line bundle L on A is the total
space of L deprived of its zero section V pLqˆ. The so-defined map PicpAq Ñ H1

fppfpA,Gmq, L ÞÑ V pLqˆ

is an isomorphism of abelian groups (see [SGA1, Exposé XI, Proposition 5.1]), that is, a sum of principal
Gm-bundles corresponds to a tensor product of line bundles.

Example 2.15. Suppose G “ V pFq for some vector bundle F on S , and let

(F) 0 ÝÑ α˚F ÝÑ F
p

ÝÑ OA ÝÑ 0

be a short exact sequence of OA-modules. The A-scheme ApFq :“ PpFq∖Ppα˚Fq is a principal V pFq-
bundle. The map H1pA,α˚Fq Ñ H1

fppfpA,V pFqq, pFq ÞÑ ApFq is an isomorphism of Γ pS,OSq-modules
(see [SGA1, Exposé XI, Proposition 5.1]). In particular, the sum of such principal V pFq-bundles is the
V pFq-bundle associated with the Baer sum of the corresponding extensions.

2.6.2. Law groups on principal bundles. An extension of A by G is the datum of a short exact sequence
of commutative group S-schemes

(E) 0 ÝÑ G
iE

ÝÑ E
pE

ÝÑ AÝÑ 0,

where the morphism pE is faithfully flat. Note that an extension E of A by G is naturally a principal
G-bundle over A. Since the natural homomorphism OS Ñ f˚OA is an isomorphism, the commutativity of E
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is automatic. Morphisms of extensions are defined in the evident way. An isomorphism of extensions is a
morphism inducing the identity on A and G. Let ExtpA,Gq be set of isomorphism classes of extensions of
A by G. For a morphism of S-group schemes ρ : G Ñ G1, with G1 having the same properties as G, and
an extension pEq, the cokernel ϕ˚pEq of the morphism piE ,ρq : G Ñ EˆS G

1 is called the push-out of pEq.
The Baer sum of extensions pEq and pE1q of A by G is the push-out of E ˆA E along the sum morphism
GˆS G Ñ G. The Baer sum endows ExtpA,Gq with the structure of an abelian group. Similarly to the case
of principal G-bundles, the abelian group ExtpA,Gq is endowed with the structure of an EndpGq-module.
Seeing an extension as a principal bundle gives rise to a homomorphism of EndpGq-modules

λG : ExtpA,Gq ÝÑ H1
fppfpA,Gq.

A rigidification of a principal G-bundle P over A is an isomorphism

ϕ : pr˚
1 P ^ pr˚

2 P ÝÑ µ˚
AP

of principal G-bundles over AˆS A.
(3) The map λG is injective, and its image is the set of isomorphism

classes of principal G-bundles admitting a rigidification (see [Ser59, Théorème 15.5]).

Example 2.16. Suppose G “ Gm and identify principal Gm-bundles with line bundles as in Example 2.14. A
rigidification of a line bundle L on A is an isomorphism of OAˆSA-modules ϕ : pr˚

1 Lb pr˚
2 LÑ µ˚

AL.

Example 2.17. Suppose G “ V pFq for some vector bundle F on S . Identify principal V pFq-bundles with
extensions of OA by f ˚F as in Example 2.15. For a short exact sequence of OA-modules

(F) 0 ÝÑ f ˚F ÝÑ FÝÑ OA ÝÑ 0,

a rigidification of pFq is an isomorphism of short exact sequences of OAˆSA-modules

ϕ : pr˚
1pFq `B pr˚

2pFq „ÝÑ µ˚
ApFq,

where pr˚
1pFq `B pr˚

2pFq is the Baer sum of the extensions pr˚
1pFq and pr˚

2pFq.

Example 2.18. For a vector bundle F on S , let S 1 be the first-order thickening of V pF_q along its zero section.
Let L be a line bundle on A1 :“ AˆS S

1 endowed with a rigidification ϕ : pr˚
1 Lb pr˚

2 LÑ µ˚
A1L, with the

obvious notation. Let s : AÑ A1 be the closed immersion induced by the zero section of F_ and π : A1 Ñ A
the projection onto A. The OA-module F:“ π˚L sits into the following short exact sequence of OA-modules:

(F) 0 ÝÑ f ˚Fb s˚LÝÑ FÝÑ s˚LÝÑ 0.

According to Proposition A.2, the push-forward of the OA1ˆA1-module pr˚
1 Lb pr˚

2 L along the morphism
πˆπ : A1 ˆS1 A1 Ñ AˆS A is the Baer sum of the extensions pr˚

1 Fb pr˚
2 s

˚L and pr˚
1 s

˚Lb pr˚
2 F. Assume

further that the line bundle s˚L is isomorphic to OA. Then, the vector bundle F is an extension of OA by
f ˚F, and the isomorphism pπˆπq˚ϕ : pr˚

1 F`B pr˚
2 FÑ µ˚

AF is a rigidification like the one considered in
Example 2.17.

2.7. The universal vector extension

A vector extension of the abelian scheme A is an extension of A by V pFq for some vector bundle F on S
called its vector part. Recall the injective homomorphism of Γ pS,OSq-modules

λF :“ λ
V pFq : ExtpA,V pFqq ÝÑ H1

fppfpA,V pFqq “ H1pA,α˚Fq

defined in Section 2.6.2 and the map pF : H1pA,α˚Fq Ñ H0pS,R1α˚α
˚Fq introduced in (2.2). According to

[MM74, Proposition 1.10], the composite homomorphism

λF{S :“ pF ˝λF : ExtpA,Fq ÝÑ H0pS,R1α˚α
˚Fq

(3)The definition of a rigidification in [SGA7-I, Exposé VII, Section 1] involves the commutativity of two diagrams which is
automatic over abelian schemes.
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is bijective. For the vector bundle F “ pR1α˚OAq_ on S , this gives an isomorphism

ExtpA,V ppR1α˚OAq_qq – EndR1α˚OA.

Definition 2.19. The universal vector extension is the one corresponding to the identity via the above
isomorphism:

(EpAq) 0 ÝÑ V ppR1α˚OAq_q ÝÑ EpAq ÝÑ AÝÑ 0.

The extension EpAq deserves the ‘universal’ title because of the following property. First notice that,
for vector bundles F and F1 on S and a homomorphism of OS-modules ϕ : F Ñ F1, the diagram of
Γ pS,OSq-modules

ExtpA,Fq H0pS,R1α˚α
˚Fq

ExtpA,F1q H0pS,R1α˚α
˚F1q

Ð

Ñ
λF{S

ÐÑ ÐÑ idbϕ

Ð

Ñ
λF1{S

is commutative, where the leftmost vertical arrow is given by push-out along ϕ. Moreover, for a
vector extension G, the global section λF{SpGq of R1α˚α

˚F defines a homomorphism of OS-modules
λF{SpGq : pR1α˚OAq_ Ñ F. The extension G is isomorphic (in a unique way!) to the push-out of pEpAqq

along λF{SpGq. The moduli space A6 of rank 1 connections on Ǎ is a vector extension of the abelian
scheme A with vector part ωǍ. Recall the isomorphism of OS-modules ΦA : Lie ǍÑ R1α˚OA introduced in
Section 2.4. Proposition 2.11(2) implies the following.

Theorem 2.20. The vector extension A6 is the push-out of EpAq along

Φ_
A : pR1α˚OAq_ „ÝÑ pLie Ǎq_ “ωǍ.

As a consequence, one obtains a down-to-earth description of how vector extensions are constructed. For
a homomorphism of OS-modules ϕ : ωǍ Ñ F, let Eϕ be the push-out of A6 along ϕ.

Corollary 2.21. The map HompωǍ,Fq Ñ ExtpA,Fq, ϕ ÞÑ rEϕs is the inverse of pΦ_
A b idFq ˝λF{S .

Observe that the affine bundle underlying Eϕ is PpFϕq∖Ppα˚Fq, where pFϕq is the push-out of pUAq

along ϕ.

3. Preliminaries on Tate–Raynaud uniformization

Let K be a complete non-trivially valued non-Archimedean field and R its ring of integers.

3.1. Raynaud’s generic fiber of a formal abelian scheme

Let S be an admissible formal R-scheme, B a formal abelian scheme over the formal R-scheme S, B̌ its
dual and LB the Poincaré bundle on BˆS B̌. As customary, Raynaud’s generic fibers of formal schemes
are referred to by straight letters (as opposed to curly ones for formal schemes). More explicitly, let S , B and
B̌ be Raynaud’s generic fibers of S, B and B̌. Let LB be the line bundle on BˆS B̌ deduced from LB. The
K-analytic space B̌ represents the functor associating with a S-analytic space the group of isomorphism
classes of homogeneous line bundles on BˆS S

1. Moreover, the universal object is the line bundle LB on
BˆS B̌ (see [BL91, Proposition 6.2]). Let β : B Ñ S and β̌ : B̌ Ñ S be the structural morphisms. For an
S-analytic space S 1 Ñ S and morphisms b : S 1 Ñ B, b̌ : S 1 Ñ B̌ of S-analytic spaces, let

LB,pb,b̌q
:“ pb, b̌q˚LB

be the line bundle on S 1 obtained by pulling back the Poincaré bundle LB on BˆS B̌ along the morphism
pb, b̌q : S 1 Ñ BˆS B̌.
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3.2. Datum of a toric extension

Let Λ̌ be a free abelian group of rank equal to that of Λ, Λ̌S the constant S-analytic group with value
Λ̌ and T the split S-torus with group of characters Λ̌. From now on suppose that S is connected, so that
sections of the morphism Λ̌S Ñ S are naturally in one-to-one correspondence with elements Λ̌ and will
be henceforth identified with those. Let č : Λ̌S Ñ B̌ be a morphism of S-analytic groups, and consider the
extension ε : E Ñ S of the proper K-analytic group B by the torus T determined by č:

0 ÝÑ T ÝÑ E
p

ÝÑ BÝÑ 0.

The extension E is described as follows. For an S-analytic space S 1, an S 1-valued point g of the S-analytic
space E is the datum of

‚ an S 1-valued point b “ ppgq of B and,
‚ for χ̌ P Λ̌, a trivialization xg, χ̌yE of the line bundle LB,pb,čpχ̌qq on S

1.

Moreover, the trivializations are required to satisfy the following compatibility: for χ̌, χ̌1 P Λ̌,
@

g, χ̌` χ̌1
D

E “ xg, χ̌yE b
@

g, χ̌1
D

E ,

where the equality is meant to be understood via the isomorphism

(3.1) LB,pb,čpχ̌qq bLB,pb,čpχ̌1qq – LB,pb,čpχ̌`χ̌1qq

induced by the implied rigidification of the homogeneous line bundle LB.

3.3. Dual datum

Let Λ be a free abelian group of finite rank, ΛS the constant S-analytic group with value Λ, Ť the split
S-torus with group of characters Λ and i : ΛS Ñ E a morphism of S-analytic groups which is a closed
immersion. See the abeloid variety B as the dual of B̌; then the group morphism c “ p ˝ i : MS Ñ B
determines an extension Ě of the proper S-analytic group B̌ by the torus Ť :

0 ÝÑ Ť ÝÑ Ě
p̌

ÝÑ B̌ÝÑ 0.

Just to fix notation, for an S-analytic space S 1, an S 1-valued point ǧ of Ě corresponds to the datum of

‚ an S 1-valued point b̌ “ p̌pǧq of B̌ and,
‚ for χ P Λ, a trivialization xχ, ǧyĚ of the line bundle LB,pcpχq,b̌q

on S 1.

As before, the trivializations are subsumed to the relation, for χ,χ1 P Λ,

xχ`χ1, ǧyĚ “ xχ, ǧyĚ b xχ1, ǧyĚ .

Now, for χ̌ P Λ̌, by the symmetry of the Poincaré bundle, there is a unique S-valued point ı̌pχ̌q of Ě such
that, for χ P Λ,

xχ, ı̌pχ̌qyĚ “ xipχq, χ̌yE .

This defines an injective morphism of S-analytic groups ı̌ : Λ̌S Ñ Ě.
In an attempt of unburdening the (already overwhelming) notation, in what follows ΛS is identified with

the image of i, and the subscript E is dropped from the pairing x´,´yE , and similarly for Λ̌S , ı̌ and x´,´yĚ .

3.4. Quotient

Since the subgroup ΛS is closed (hence fiberwise discrete) in E, the (topological) quotient A :“ E{ΛS

exists. Moreover, assume that the structural morphism α : AÑ S is proper. Under these working hypotheses,
the bilinear pairing x´,´y on Λ ˆ Λ̌ is non-degenerate, the subgroup Λ̌S is closed in Ě, the quotient
Ǎ :“ Ě{Λ̌S exists, and the structural morphism α̌ : Ǎ Ñ S is proper (see [BL91, Proposition 3.4]). Let
u : E Ñ A and ǔ : Ě Ñ Ǎ be the quotient maps. The situation is summarized in the following diagrams:
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ΛS

T E B

A,

ÐÑ i

Ð

Ñ
c

Ð

Ñ

Ð

Ñ
p

ÐÑ u

Λ̌S

Ť Ě B̌

Ǎ.

ÐÑ ı̌

Ð

Ñ
č

Ð

Ñ

Ð

Ñ
p̌

ÐÑ ǔ

3.5. Coherent sheaves on the quotient

Descent of modules along the morphism u can be restated in terms of ΛS-linearizations. More precisely,
the datum of a coherent OA-module is equivalent to that of a coherent OE-module V endowed with a
ΛS-linearization

λ : pr˚
E V ÝÑ σ˚V ,

where σ,prE : ΛS ˆS E Ñ E are, respectively, the restriction to ΛS ˆS E of the group law of E and the
projection onto the second factor. Quite concretely, the group ΛS being constant, the datum of a ΛS-
linearization of a coherent OE-module V boils down to that, for χ P Λ, of an isomorphism of OE-modules

λχ : V ÝÑ tr˚
χV ,

where trχ is the translation by χ on E. Additionally, the collection of isomorphisms λχ is required to fulfil
the following compatibility, for χ,χ1 P Λ:

λχ`χ1 “ tr˚
χλχ1 ˝λχ.

3.6. Homogeneous line bundles

Owing to [BL91, Theorem 6.7], given a homogeneous line bundle L on A, its pull-back u˚L on E is
isomorphic to p˚M for some line bundle M on B. Moreover, the natural rigidification

pr˚
1 p

˚M b pr˚
2 p

˚M ÝÑ µ˚
Ep

˚M,

where µE is the group law on E, is equivariant with respect to the ΛS-linearization λ on p˚M induced
by the isomorphism u˚L– p˚M . It follows that the ΛS-linearization λ can be expressed as the datum of
isomorphisms, for χ P Λ,

λχ : p˚M ÝÑ tr˚
χ p

˚M, s ÞÝÑ sb rpχq,

where the isomorphism tr˚
χ p

˚M – p˚M b ε˚cpχq˚M coming from the homogeneity of M is taken into
account (recall that ε is the structural morphism of E) and r is a trivialization of the line bundle c˚M on ΛS .
What is more, the trivialization r must satisfy, for χ,χ1 P Λ, the relation

rpχq b rpχ1q “ rpχ`χ1q,

where, as is customary at this stage, the above equality is meant to be understood via the isomorphism
cpχq˚M b cpχ1q˚M – cpχ`χ1q˚M given by the rigidification of M .

3.7. Duality

By [BL91, Theorem 6.8] the S-analytic group Ǎ represents the functor associating with an S-analytic
space S 1 the set of isomorphism classes of homogeneous line bundles on AˆS S

1. Furthermore, let LA be
the Poincaré bundle on AˆS Ǎ. According to loc. cit., there is a (necessarily unique) isomorphism of line
bundles

ξ : pu, ǔq˚LA
„ÝÑ LE :“ pp, p̌q˚LB

on EˆS Ě compatible with the implied rigidifications of the homomogeneous line bundles LA and LB. The
isomorphism ξ endows the line bundle LE with a pΛ ˆ Λ̌qS-linearization λ, which can be described as
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follows. For characters χ P Λ and χ̌ P Λ̌, an S-analytic space S 1 and S 1-valued points x of E and x̌ of Ě, the
isomorphism of OS1-modules

λpχ,χ1q,px,x1q : LE,px,x̌q
„ÝÑ LE,px`χ,x̌`χ̌q

induced by the linearization λ is

(3.2) v ÞÝÑ pxx, χ̌yE b xχ,χ̌yEq b pxχ, x̌yĚ b vq .

In order to make sense of (3.2), observe that xx, χ̌yE is by definition a section of the line bundle LE,px,χ̌q,
while xχ,χ̌yE is a section of the line bundle LE,pχ,χ̌q and xx, χ̌yE b xχ,χ̌yE is seen as a section of the line
bundle LE,px`χ,χ̌q via the isomorphism of OS1-modules

LE,px,χ̌q bLE,pχ,χ̌q – LE,px`χ,χ̌q

induced by the rigidification of the homogeneous line bundle LB. Arguing similarly, xχ, x̌yĚ b v is a section
of line bundle LE,px`χ,x1q, so that the right-hand side of (3.2) is the section of the line bundle LE,px`χ,x̌`χ̌q

via the isomorphism of OS1-modules

LE,px`χ,χ̌q bLE,px`χ,x̌q – LE,px`χ,x̌`χ̌q.

4. The universal vector extension of an abeloid variety

Let K be a non-trivially valued complete non-Archimedean field and S a K-analytic space.

4.1. The canonical extension

4.1.1. Definition. Let A be an abeloid variety over S, that is, a proper and smooth S-analytic group
with (geometrically) connected fibers. Suppose that the functor associating with an S-analytic space S 1 the
set of isomorphism classes of (fiberwise) homogeneous line bundles on AS1 is represented by an abeloid
variety Ǎ over S . For instance, this is the case if S is a K-rational point (see [Lüt16, Corollary 7.6.5]) or if Ǎ
admits a uniformization as the one described in Section 3 (see [BL91, Theorem 6.8]). Under this assumption,
translating the arguments of Section 2 into the rigid analytic framework permits one to define the canonical
extension pUAq on the abeloid variety A and the moduli space A6 of rank 1 connections on A.

4.1.2. Canonical extension on the universal cover. From now on, and up until Section 4.6, the abeloid
variety A is supposed to admit a uniformization as the one described in Section 3. We borrow notation
introduced therein and consider the canonical extension pUBq on (Raynaud’s generic fiber of) the formal
abelian scheme B.

Definition 4.1. The pull-back of differential forms along the morphism p̌ : Ě Ñ B̌ induces a homomorphism
of OS-modules dp̌ : ωB̌ ÑωĚ . The short exact sequence of OE-modules

(UE ) 0 ÝÑ ε˚ωĚ ÝÑ UE ÝÑ OE ÝÑ 0

obtained as the push-out of short exact sequence of OE-modules p˚pUBq along dp̌ is called the canonical
extension of OE .

4.1.3. Alternative description. To perform ‘explicit’ computations, it is often useful to have at hand a
down-to-earth expression for UE , similar to that in Remark 2.7. Let X “ A, B, E and, respectively, X̌ “ Ǎ,
B̌, Ě. Let X̌1 “ Ǎ1, B̌1, Ě1 be the first-order thickenings of X̌, and

ιX : XˆS X̌1 ÝÑ XˆS X̌, πX : XˆS X̌1 ÝÑ X,
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respectively, the closed immersion and the projection onto the first factor. With this notation, the considera-
tions in Remark 2.7 furnish isomorphisms

UA – πA˚ι
˚
ALA, UB – πB˚ι

˚
BLB,

where LA and LB are, respectively, the Poincaré bundles on AˆS Ǎ and BˆS B̌. Recall the isomorphism

ξ : pu, ǔq˚LA
„ÝÑ LE :“ pp, p̌q˚LB

of line bundles on E ˆS Ě considered in Section 3.7. By definition, the canonical extension UE is the
push-forward along the morphism πE of the line bundle ι˚ELE on EˆS Ě1:

UE “ πE˚ι
˚
ELE .

Pushing forward the isomorphism ι˚Eξ along the map πE yields an isomorphism of OE-modules

πE˚ι
˚
Eξ : u˚ UA

„ÝÑ UE .

4.2. Linearization of the canonical extension

By means of the isomorphism u˚ UA – UE described above, the canonical extension UE acquires a
natural ΛS-linearization. The task undertaken here is to give an explicit expression for it. Unfortunately, this
point is as crucial as dreadfully technical.

4.2.1. Describing the ΛS-linearization of the line bundle ι˚ELE is easily achieved. Indeed, such a
linearization is the pull-back along the morphism ιE of the pΛˆΛ̌qS-linearization of the line bundle LE . Let
ȷ̌ : Ě1 Ñ Ě denote the closed immersion and, for χ P Λ, consider the trivialization xχ, ȷ̌y of the line bundle

LE,pχ,ȷ̌q “

´

χ, idĚ1

¯˚

ι˚ELE

on Ě1. Evaluating (3.2) at χ̌ “ 0, x “ idE and x̌ “ ȷ̌ shows that the ΛS-linearization of the line bundle ι˚ELE
is given, for χ P Λ, by the isomorphism

(4.1) ι˚ELE ÝÑ

´

trχ, idĚ1

¯˚

ι˚ELE , v ÞÝÑ vb xχ, ȷ̌y,

where trχ is the translation by χ on E. To make sense of the formula, notice that the homogeneity of the
line bundle ι˚ELE furnishes an isomorphism

(4.2)
`

trχ, id
˘˚
ι˚ELE – ι˚ELE b ε˚

1LE,pχ,ȷ̌q,

where ε1 : Eˆ Ě1 Ñ Ě1 is the projection onto the second factor.

4.2.2. The ΛS-linearization of the unipotent bundle UE is somewhat trickier to come by. Rather
formally, for χ P Λ, the isomorphism UE Ñ tr˚

χ UE is just the push-forward of the isomorphism (4.1) along
the ΛS-equivariant morphism πE . The key observation (see Proposition A.2) is that the isomorphism (4.2)
becomes, after pushing forward along πE , an isomorphism of OE-modules

tr˚
χ UE – UE `B ε

˚χ˚ UE .

(Notice that both the vector bundles UE and ε˚χ˚ UE are extensions of OE by ε˚ωĚ ; thus their Baer sum is
well defined.)

Accordingly, the tensor product in (4.1) is now replaced by a ‘sum’. To be more precise about what
this possibly means, recall how the Baer sum of the extensions pUEq and pε˚χ˚ UEq is constructed. First,
consider the OE-submodule

V Ď UE ‘ ε˚χ˚ UE

made of pairs pv,wq whose components have same projection in OE . The OE-module V is an extension of
OE by ε˚pωĚ ‘ωĚq, and the Baer sum in question is its push-out along the sum map ωĚ ‘ωĚ Ñ ωĚ . For
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a pair pv,wq, the aforementioned ‘sum’ v`w is the image of pv,wq in UE `B ε
˚χ˚ UE . Summing up, we

proved the following.

Proposition 4.2. With the notation above, the ΛS -linearization of the unipotent bundle UE is given, for χ P Λ,
by the isomorphism

(4.3) UE ÝÑ tr˚
χ UE , v ÞÝÑ v` qpvq.xχ, ȷ̌y ,

where q : UE Ñ OE is the projection in the datum of the extension pUEq.

The meaning of the preceding formula is unveiled by the following.

Remark 4.3. The equality UE “ πE˚ι
˚
ELE implies

χ˚ UE “ ε̌1˚LE,pχ,ȷ̌q,

where ε̌1 : Ě1 Ñ S is the structural morphism. By means of the preceding, the trivialization xχ, ȷ̌y of the line
bundle LE,pχ,ȷ̌q can be seen as a section of the vector bundle χ˚ UE on S . Moreover, the sum in expression
(4.3) does make sense for the following reason: the projection in OS “ LE,pχ,ěq of the section xχ, ȷ̌y of the
extension χ˚ UE is xχ, ěy “ 1 (where ě is the neutral section of Ě); thus the sections v and qpvq.xχ, ȷ̌y have
equal projection in OS .

4.3. Universal cover of the universal vector extension

Definition 4.4. The universal cover of the universal vector extension A6 is

E6 :“ PpUEq∖Ppε˚ωĚq.

Remark 4.5. When S is a point, the name ‘universal cover’ is well deserved as the topological space E6 is
contractible (see Proposition 4.15) and comes with a covering map E6 Ñ A6 (see Theorem 4.6).

Let Ě1 be the first-order thickening of Ě along the neutral section and ȷ̌ : Ě1 Ñ Ě the closed immersion.
As explained in Remark 4.3, for χ P Λ, the trivialization xχ, ȷ̌y of the line bundle LE,pχ,ȷ̌q on Ě1 defines a
section of the vector bundle χ˚ UE on S . Moreover, the projection of xχ, ȷ̌y in OS is 1; thus the section xχ, ȷ̌y
defines a splitting of the short exact sequence χ˚pUEq. Therefore, xχ, ȷ̌y defines an S-valued point χ6 of the
universal cover E6. Let

i6 : ΛS ÝÑ E6, χ ÞÝÑ χ6 :“ xχ, ȷ̌y

be the so-defined morphism of S-analytic spaces. For χ P Λ, the projection of χ6 in E is by definition χ;
thus the morphism i6 is a closed immersion. The isomorphism of OE-modules u˚ UA – UE introduced in
Section 4.1.3 induces an isomorphism of E-analytic spaces A6 ˆA E – E6. It follows that E6 is naturally
endowed with a structure of S-analytic space in groups and the natural morphism of S-analytic spaces

u6 : E6 ÝÑ A6

is a group morphism.

Theorem 4.6. The map i6 is a group morphism with image the kernel of u6; that is, the following sequence of
S-analytic groups is short exact:

0 ÝÑ ΛS
i6

ÝÑ E6 u6

ÝÑ A6 ÝÑ 0.

Proof. The group law on the affine bundle A6 “ PpUAq∖Ppα˚ωǍq is given by an isomorphism of OA-modules

ψA : pr˚
1 UA `B pr˚

2 UA
„ÝÑ µ˚

AUA,

where µA,pr1,pr2 : AˆS AÑ A are, respectively, the group law, the first and the second projection on A.
According to Remark 2.10, or better its rigid analytic analogue, such an isomorphism ψA is the push-forward
along the projection

`

AˆS Ǎ1
˘

ˆǍ1

`

AˆS Ǎ1
˘

“ AˆS Aˆ Ǎ1 ÝÑ AˆS A
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of the isomorphism pidAˆȷ̌, idAˆȷ̌q˚ϕA, where

ϕA : pr˚
1 LA b pr˚

2 LA
„ÝÑ µ˚

ALA

is the rigidification of the Poincaré bundle LA and

pidAˆȷ̌, idAˆȷ̌q :
`

AˆS Ǎ1
˘

ˆǍ1

`

AˆS Ǎ1
˘

ÝÑ
`

AˆS Ǎ
˘

ˆǍ

`

AˆS Ǎ
˘

the closed immersion. By design, the group law of E6 is constructed from that of A6. That is, the group law
on the affine bundle E6 “ PpUEq∖Ppε˚ωĚq is defined by the isomorphism of OE-modules

ψE :“ puˆuq˚ψA : pr˚
1 UE `B pr˚

2 UE
„ÝÑ µ˚

EUE ,

the isomorphism u˚ UA – UE (and with the obvious notation) being allowed for. Thanks to (4.3) and with
the notation therein, the ΛS-linearization of the unipotent bundle UE is the datum of the isomorphisms, for
χ P Λ,

λχ : v ÞÝÑ v` qpvqχ6,

where q : UE Ñ OE is the projection in the datum of the extension pUEq.
Given χ,χ1 P Λ, via the isomorphism ψE , the wanted additivity χ6 `χ16 “ pχ`χ1q6 is seen to be nothing

but the compatibility λχ`χ1 “ tr˚
χλχ1 ˝λχ to which is subsumed the ΛS-linearization of UE .

This substantially also proves the remaining assertions. Indeed, the affine bundle A6 is the quotient of E6

by the natural action of ΛS on it induced by the ΛS-linearization of UE . Moreover, from this point of view,
the map u6 is just the quotient morphism, and the above considerations show that the action of ΛS on E6 is
described, for χ P Λ, as the translation by χ6. This amounts to saying that the sequence of S-analytic groups

0 ÝÑ ΛS
i6

ÝÑ E6 u6

ÝÑ A6 ÝÑ 0

is short exact, thus concluding the proof. □

4.4. A computation on toric bundles

The next task is acquiring a better understanding of the map i6. This is done via a computation on
toric bundles whose proof is clearer when stated in a broader generality. So let us momentarily reset our
notation, and let X be a separated S-analytic space, Λ a free abelian group of finite rank n, Λ Ñ PicpXq,
χ ÞÑ Lχ a group homomorphism and P the X-analytic space whose points s with values on a X-analytic
space f : X 1 Ñ X form the set of data, for χ P Λ, of a trivialization xχ,sy of the line bundle f ˚Lχ. Moreover,
the trivializations above satisfy, for χ,χ1 P Λ, the relation(4)

(4.4) xχ,sy b xχ,sy “ xχ`χ1, sy.

Let p : P Ñ X be the projection. The split torus T over S with group of characters Λ acts naturally on P by
the rule defined, for an S-analytic space S 1, S 1-valued points s of P and t of T and a character χ P Λ, by

xχ,tsy “ χptqxχ,sy.

Let u : S Ñ P be a morphism of S-analytic spaces, P1 the first-order thickening of P along the section
u and j : P1 Ñ P the closed immersion. To make the notation more flexible, given a finite morphism of
K-analytic spaces Z Ñ S and a coherent OZ-module F, let us denote again by F its push-forward onto

(4)Several abuses of notation have been perpetrated here. Rather than isomorphism classes of line bundles, one should fix, for
χ P Λ, a line bundle Lχ and, for χ,χ1 P Λ, isomorphisms LχbLχ1 – Lχ`χ1 through which the formula xχ,sybxχ,sy “ xχ`χ1, sy

ought to be understood.
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S . Consider the S-valued point x “ ppuq of X, the first-order thickening X1 of X along the section x, the
closed immersion i : X1 Ñ X and the following commutative and exact diagram of OS-modules:

(4.5)

0 0 0

0 x˚Ω1
X{S b x˚Lχ i˚Lχ x˚Lχ 0

0 u˚Ω1
P {S b x˚Lχ j˚p˚Lχ x˚Lχ 0

0 u˚Ω1
P {X b x˚Lχ j˚p˚Lχ{i˚Lχ 0

0 0.

Ð

Ñ

ÐÑ ÐÑ

Ð

Ñ

Ð

Ñ

dpbid

Ð

Ñ

ÐÑ

Ð

Ñ

ðð

Ð

Ñ

Ð

Ñ

Ð

Ñ

Ð

Ñ

ÐÑ

Ð

Ñ

ÐÑ

Ð

Ñ

Ð

Ñ

Ð

Ñ

Ð

Ñ
„

ÐÑ

Ð

Ñ

The map i˚Lχ Ñ j˚p˚Lχ is given by adjunction with respect to the morphism p1 : P1 Ñ X1 induced
by p. The isomorphism T ˆS P Ñ P ˆX P given by the action of T yields an isomorphism of OS-modules
u˚Ω1

P {X – e˚Ω1
T {S “:ωT , where e is the neutral section of T . Consider the homomorphism

q : j˚p˚Lχ ÝÑ ωT b x˚Lχ

defined via the isomorphisms u˚Ω1
P {X b x˚Lχ – j˚p˚Lχ{i˚Lχ and u˚Ω1

P {X –ωT .

Proposition 4.7. With the notation above,

qpxχ,jyq “ χ˚ dz
z bu,

where z is the coordinate function on Gm,S and χ is seen as a character T Ñ Gm,S .

Proof. The argument is just a tedious dévissage until reaching the case Λ “ Z, χ “ 1, X “ S , L1 “ OS , u “ 1,
for which the result is substantially trivial.

First step. To begin with, reduce to the case Λ “ Z and χ “ 1. Consider the X-analytic space Pχ
parametrizing trivializations of the line bundle Lχ and the morphism prχ : P Ñ Pχ sending a point s of P
with values in an X-analytic space X 1 to the trivialization xχ,sy. Then, by design, the trivialization xχ,jy can
be seen as the composite morphism prχ ˝j : P1 Ñ Pχ. The latter factors through the first-order thickening
Pχ,1 of Pχ along the section xχ,uy “ prχpuq, giving rise to the commutative diagram

P1 P

Pχ,1 Pχ,

Ð

Ñ
j

ÐÑprχ,1 ÐÑ prχ

Ð

Ñ
jχ

where jχ is the closed immersion and prχ,1 the factorization of prχ. Upon letting pχ : Pχ Ñ X be the
projection, the homomorphism qχ : j˚

χp
˚
χLχ Ñω

Gm
bx˚Lχ, defined analogously to q, fits in the commutative

diagram of OS-modules

j˚
χp

˚
χLχ prχpuq˚ω

Gm
b x˚Lχ

j˚p˚Lχ ωT b x˚Lχ,

ÐÑ

Ð

Ñ
qχ

ÐÑ dχbid

Ð

Ñ
q

where the leftmost vertical arrow is given by adjunction with respect to the map prχ,1 and the rightmost one
by pull-back of differential forms along the character χ. In particular, it suffices to show that the trivialization
of the line bundle Lχ given by the Pχ,1-valued point jχ of Pχ is mapped to dz

z bu by qχ.
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Second step. Suppose Λ “ Z and χ “ 1. To simplify notation, simply write L instead of Lχ. The aim of
this second step is to reduce to the case X “ S, L“ OS and u “ 1. In order to do this, consider the fiber
Px of P at x, which can also be seen as the principal Gm-bundle over S associated with the line bundle
x˚L on S . In this case, the identity map of S plays the role of the section x, and the line bundle j˚p˚L
on P1 is replaced by the line bundle π˚x˚L on Px,1, where Px,1 is the first-order thickening of Px at u and
π : Px,1 Ñ S is the structural morphism. Diagram (4.5) for the principal bundle Px reads more simply as the
following:

0 0 0

0 0 x˚L x˚L 0

0 x˚Lbu˚Ω1
Px{S π˚x˚L x˚L 0

0 x˚Lbu˚Ω1
Px{S π˚x˚L{x˚L 0

0 0,

ð

ð

Ð

Ñ

Ð

Ñ

ð

ð
Ð

Ñ

Ð

Ñ

ÐÑ

ð

ð

ðð

Ð

Ñ

Ð

Ñ

ð

ð

Ð

Ñ

ÐÑ

Ð

Ñ

ÐÑ

Ð

Ñ

Ð

Ñ

Ð

Ñ

Ð

Ñ
„ Ð

Ñ

ÐÑ

where x˚L Ñ π˚x
˚L is natural map. The restriction map from P1 to Px,1 furnishes a homomorphism of

commutative diagrams of OS-modules from (4.5) to the above, matching the entries in the obvious manner.
In particular, the projection qx : π˚x˚LÑ x˚Lbω

Gm
defined similarly to q sits in the following diagram:

j˚p˚L x˚Lbω
Gm

π˚x˚L x˚Lbω
Gm
.

Ð

Ñ
q

ÐÑ ðð

Ð

Ñ
qx

Strictly speaking, the above argument permits one to reduce to the case X “ S and to a line bundle L
on S . However, by means of the isomorphism OS – L induced by the given trivialization u, one is finally led
back to the case of the trivial line bundle on S and u “ 1.

Third step. Suppose X “ S, L “ OS and u “ 1. Let z be the coordinate function on P “ Gm. The
OS-algebra OP1

is then identified with OSrzs{pz´ 1q2 and its ideal generated by z´ 1 with the OS-module
ω
Gm

, so that

OSrzs{pz´ 1q2 “ OS ‘ω
Gm
.

In these terms, the map q is just the projection onto ω
Gm

. Moreover, and tautologically enough, the closed
immersion j : P1 Ñ P corresponds to the invertible function z on P1. Writing z “ 1 ` pz´ 1q shows that the
image of z in ω

Gm
coincides with that of z´1, which in turn corresponds to the invariant differential dz

z . □

4.5. Relation with the universal vector hull of the fundamental group

In this section the map i6 is related to the universal vector hull of the group Λ. To define the latter, recall
that the group Λ is by definition the lattice of characters of the torus Ť . Given χ P Λ, let χ : Ť Ñ G

an
m,S

again denote the corresponding character.

Definition 4.8. The universal vector hull of ΛS is the S-analytic group morphism

θΛ : Ť ÝÑ V pωŤ q , χ ÞÝÑ χ˚ dz
z ,

where z is the coordinate function on Gm and dz
z the corresponding invariant differential form.
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Lemma 4.9. For a basis χ1, . . . ,χn of Λ, where n“ rkΛ, the sections θΛpχiq form a basis of the vector bundle
ωŤ on S .

The map θΛ deserves the name ‘universal vector hull’ because of the following property: given a vector
bundle E over S and a morphism of S-analytic groups f : ΛS Ñ V pEq, there exists a unique homomorphism
of OS-modules ϕ : ωŤ Ñ E such that f “ ϕ ˝ θΛ; see [MM74, Example 1.3 a) and Proposition 1.4]. Now,
the canonical extension pUEq is by definition the push-out along the injective map dp̌ : ωB̌ Ñ ωĚ of the
extension p˚pUBq. The quotient UE{p˚ UB therefore sits in the following commutative and exact diagram
of OE-modules:

(4.6)

0 0 0

0 ε˚ωB̌ p˚ UB OE 0

0 ε˚ωĚ UE OE 0

0 ε˚ωŤ UE{p˚ UB 0

0 0.

Ð

Ñ

Ð

Ñ

Ð

Ñ

Ð

Ñ

Ð

Ñ

Ð

Ñ

Ð

Ñ

Ð

Ñ

ð

ð

Ð

Ñ

Ð

Ñ

Ð

Ñ

Ð

Ñ

Ð

Ñ

Ð

Ñ

ÐÑ

Ð

Ñ

Ð

Ñ

Ð

Ñ

Ð

Ñ
„

Ð

Ñ

Ð

Ñ

The isomorphism ε˚ωŤ – UE{p˚ UB allows one to define a projection q : UE Ñ ε˚ωŤ . In particular, for
χ P Λ, this defines a homomorphism of OS-modules q : χ˚ UE ÑωŤ . Recall that χ

6 “ xχ, ȷ̌y can be seen as
a section of χ˚ UE (see Remark 4.3).

Proposition 4.10. For χ P Λ we have qpxχ, ȷ̌yq “ θΛpχq.

Proof. Up to transliteration, the statement is a special case of Proposition 4.7. Needless to say,

‚ the S-analytic space therein X plays the role of B̌,
‚ the principal bundle P that of Ě,
‚ the line bundle Lχ that of LB,pcpχq,idq and
‚ the section u that of xχ, ěy, where ě is the neutral section of Ě.

For χ P Λ the section xχ,jy corresponds via this dictionary to the trivialization xχ, ȷ̌y. Nonetheless, the
reader might still be lost in translation while trying to see why diagram (4.5) reads as (4.6). To remedy
that, first, notice that in the current framework, the line bundle ě˚LB,pcpχq,idq is always understood to be
trivialized via xχ, ěy. This should elucidate the omnipresence of the line bundle x˚Lχ as opposed to the
absence of the corresponding line bundle ě˚LB,pcpχq,idq. Second, the statement of Proposition 4.10 revolves
around the vector bundles UE and p˚ UB on E (rather, their fibers at χ), whereas in Proposition 4.7 the
line bundles j˚p˚Lχ and i˚Lχ are considered (better, their push-forward onto S). However, the line bundle
j˚p˚Lχ translates to LE,pχ,ȷ̌q and, as already observed in Remark 4.3, the push-forward of LE,pχ,ȷ̌q onto S
coincides with χ˚ UE . Along a similar line, the vector bundle i˚Lχ on S plays the role of χ˚p˚ UB. Third, in
diagram (4.6), there is nothing whatsoever like u˚Ω1

P {X . This is because the projection q in the statement

of Proposition 4.7 is constructed by further taking into account the isomorphism ωT – u˚Ω1
P {X already

implied here. □

Diagram (4.6) permits one to define a morphism of S-analytic groups

pru : E6 ÝÑ V pωŤ q .

Unwinding the definitions, Proposition 4.10 is rephrased as follows.

Theorem 4.11. For χ P Λ we have prupχ6q “ θΛpχq.
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Example 4.12. Theorem 4.11 is more eloquent when A is an abeloid variety over K with totally degenerate
reduction, that is, A“ T {Λ. If Ť is the torus with group of characters Λ and θΛ : Λ Ñ V pωŤ q the universal
vector hull of Λ, then

A6 “ pT ˆV pωŤ qq{tpχ,θΛpχqq : χ P Λu.

4.6. Universal cover of affine bundles

4.6.1. Extensions. Let F be a vector bundle over S , ϕA : ωǍ Ñ F a homomorphism of OS-modules and
pFAq the short exact sequence of OS-modules obtained by push-out of the canonical extension pUAq along
ϕA. Via the isomorphism UE – u˚ UA obtained in Section 4.1.3, the short exact sequence of OE-modules
pFEq :“ u˚pFAq is seen to be the push-out of pUEq along the homomorphism of OS-modules

ϕE : ωĚ ωǍ F,Ð

Ñ
pdǔq´1

Ð

Ñ
ϕA

where dǔ : ωǍ ÑωĚ is the isomorphism given by pull-back of differential forms along the étale morphism ǔ.
On the other hand, by its very definition, the short exact sequence pUEq is itself the push-out of p˚pUBq along
the K-linear homomorphism dp̌ : ωB̌ Ñ ωĚ . Thus, the preceding considerations furnish an isomorphism
pFEq – p˚pFBq of short exact sequences of OE-modules, where pFBq is the push-out of the canonical
extension pUBq along the homomorphism of OS-modules

ϕB : ωB̌ ωĚ F.Ð

Ñ
dp̌ Ð

Ñ
ϕE

4.6.2. Affine bundles. Consider the affine bundle πA : V pFAq Ñ A and the morphism of S-analytic
spaces

ΦA : A6 ÝÑ ApFAq

induced by the homomorphism pUAq Ñ pFAq of short exact sequences of OA-modules given by the definition
of pFAq as a push-out. The affine bundle ApFAq carries a unique S-analytic group structure for which the
morphism ΦA is a group morphism. The pull-back V pFAq ˆA E to E is by definition the affine bundle
πE : ApFEq Ñ E associated with the extension pFEq. By transport of structure, the E-analytic space ApFEq

is an S-analytic group such that the natural morphism

ΦE : E6 ÝÑ ApFEq

deduced from ΦA is a group morphism. The natural action of ΛS on V pFEq given by the natural ΛS-
linearization of FE is described, for χ P Λ, as the translation by the point ΦEpχ6q, where χ6 is the S-point
of the universal vector extension E6 considered in Section 4.3.

Now, the isomorphism of short exact sequences of OE-modules pFEq – p˚pFBq permits one to identify
the affine bundle ApFEq with the fibered product ApFBq ˆB E, where πB : ApFBq Ñ B is the affine bundle
associated with pFBq. This identification respects the natural S-analytic group structures involved and will
be implied in what follows. Let q : ApFEq Ñ ApFBq be the projection, so that the following square of
K-analytic space is Cartesian:

ApFEq ApFBq

E B.

ÐÑ πE

Ð

Ñ
q

ÐÑ πB

Ð

Ñ
p

Let CB be the cokernel of ϕB. Arguing as for the map pru : E6 Ñ V pωŤ q permits one to define a
morphism of S-analytic groups pru,B : ApFBq Ñ V pCBq. Let ϕT : ωŤ Ñ CB the unique map fitting in the
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following commutative and exact diagram of homomorphism of OS-modules:

(4.7)

0 ωB̌ ωĚ ωŤ 0

0 ImϕB F CB 0.

Ð

Ñ

Ð

Ñ
dp̌

ÐÑ ϕB

Ð

Ñ

ÐÑ ϕE ÐÑ ϕT

Ð

Ñ

Ð

Ñ

Ð

Ñ

Ð

Ñ

Ð

Ñ

The construction of pFEq as a push-out of pUEq along ϕE implies that the diagram of S-analytic spaces

E6
V pωŤ q

ApFEq V pCBq

Ð

Ñ

ÐÑ ΦE ÐÑ pru,E

Ð

Ñ
ϕT

is commutative, where the upper horizontal arrow is the projection considered in Theorem 4.11 and
pru,E :“ pru,B ˝q : ApFEq Ñ V pCBq. These considerations together with Theorem 4.11 prove the following.

Corollary 4.13. With the notation above, for χ P Λ we have

pru,EpΦEpχ6qq “ ϕT pθΛpχqq.

4.6.3. Contractibility of the universal cover. In this final section the contractibility of the space ApFEq

above is addressed when S is a K-rational point.

Lemma 4.14. Let X be a smooth connected admissible formal R-scheme with Raynaud’s generic fiber X :“ Xη .
Then, for any closed analytic subspace of Z Ĺ X, the open subset X ∖Z is contractible.

Proof. Let h : Xˆ r0,1s Ñ X be the deformation retraction onto the skeleton SkpXq of X given by [Ber99,
Theorem 5.2]. Since the formal scheme X is smooth connected, the skeleton SkpXq is a singleton, namely
the unique preimage of the generic point of X under the reduction map X Ñ X. According to item (v)
of loc. cit., for 0 ă t ď 1 and x P X, the local ring at the point hpx, tq is a field. Thus the only closed
analytic subspace of X containing hpx, tq is X itself. In particular, the point hpx, tq belongs to X ∖Z, and
the statement follows. □

Proposition 4.15. The topological space ApFEq is contractible and is a universal cover of ApFAq.

Proof. Let F0 be the image of the R-module ωB̌ via the map ϕB : ωB̌ Ñ F and F0 the push-out of the
canonical extension pUBq on B along ωB̌ Ñ F0. For χ̌ P Λ̌, the line bundle LB,χ̌ “ LB|Bˆtčpχ̌qu extends to
a line bundle LB,χ̌ on B. Consider a basis χ̌1, . . . , χ̌n of Λ and the smooth connected formal R-scheme

X :“ PpF0q ˆBP

`

OB ‘Lχ̌1

˘

ˆB ¨ ¨ ¨ ˆBP

`

OB ‘Lχ̌n

˘

.

Now ApFEq is the complement of a Cartier divisor in X :“ Xη ; thus by Lemma 4.14 it is contractible. Since
ApFAq is the quotient of ApFEq by the (free) action of Λ, the statement follows. □

Applying this with F “ ωǍ and ϕA “ id gives that E6 is contractible and E6 Ñ A6 is a universal cover,
which justifies the name universal cover for E6.

Appendix. Connections

A.1. Vector bundles on first-order thickenings

Let X0 and X1 be schemes endowed with a closed immersion s : X0 Ñ X1 and a morphism f : X1 Ñ X0
such that f ˝ s “ idX0

. Suppose that the sheaf of ideals I :“ KerpOX1
Ñ OX0

q is of square zero. For a
quasi-coherent OX1

-module F, consider the short exact sequence

(F) 0 ÝÑ IF ÝÑ F ÝÑ F{IF ÝÑ 0.
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The sequence of OX0
-modules

f˚pFq 0 ÝÑ f˚pIFq ÝÑ f˚F ÝÑ s˚F ÝÑ 0

obtained by pushing forward pFq along f is short exact because the morphism f is affine (affineness only
depends on the underlying reduced structure). Pushing forward a homomorphism of OX1

-modules ϕ : F Ñ F1

yields a homomorphism of short exact sequences of OX0
-modules f˚ϕ : f˚pFq Ñ f˚pF1q. The so-defined

functor
␣

OX1
-modules

(

ÝÑ

"

short exact sequences
of OX0

-modules

*

, F ÞÝÑ f˚pFq

is faithful. Moreover, an isomorphism of OX1
-modules f ˚s˚F Ñ F induces a splitting of the short exact

f˚pFq.

Proposition A.1. The bijection Hompf ˚s˚F,Fq Ñ Homps˚F,f˚Fq given by adjunction for a vector bundle F
on X1 induces a bijection

"

isomorphisms ρ : f ˚s˚F Ñ F
such that s˚ρ “ ids˚F

*

–

"

splittings of the short
exact sequence f˚pFq

*

.

Proof. The only thing to show is that, for a splitting ϕ : s˚F Ñ f˚F of the short exact sequence f˚pFq, the
homomorphism Φ : f ˚s˚F Ñ F obtained by extending ϕ OX1

-linearly is an isomorphism. To check this,
one may reason locally on X0 and choose a splitting f˚F – s˚F ‘ s˚F b f˚I of the short exact sequence
f˚pFq. This allows for the identities IF “ I bF and f˚pIFq “ f˚I b s˚F, which hold, respectively, because
F is flat and because the ideal I is of square zero. Via these identifications, the splitting ϕ is of the form
v ÞÑ pv,εpvqq for a homomorphism of OX-modules ε : s˚F Ñ s˚Fb f˚I . Write a section of f ˚s˚F as pv,v1q

for sections v of s˚F and v1 of s˚Fb f˚I ; then the map Φ is defined as pv,v1q ÞÑ pv,εpvq ` v1q, where the
term εpv1q vanished because the ideal I is of square zero. Such an expression clearly defines an isomorphism,
which concludes the proof. □

A.2. Tensor product and Baer sums

For simplicity, assume X1 to be the first-order thickening of V pE_q along its zero section s, where
E is a vector bundle on X0 and V pE_q the total space of its dual. Concretely, the scheme X1 is the
spectrum of the OX0

-module OX0
‘ E endowed with an OX0

-algebra structure defined by the formula
pa,vq ¨ pb,wq “ pab,aw`bvq. In what follows, it will be important to distinguish whether tensor products are
taken with respect to OX0

or OX1
. To mark the difference but at the same time make the notation lighter, for

i “ 0,1 and OXi -modules V and V 1, write V bi V
1 instead of V bOXi

V 1. For a vector bundle V on X1, set
V0 :“ s˚V , so that the vector bundle f˚V on X0 is an extension of V0 by V0 b0 E. In order to make sense
of the following statement, observe that, for vector bundles V and V 1 on X1, the OX0

-modules f˚V b0 V
1
0,

f˚V
1 b0 V0 and f˚pV b1 V

1q are all extensions of V0 b0 V
1
0 by Eb0 V0 b0 V

1
0.

Proposition A.2. The extension f˚pV b1 V
1q is the Baer sum of f˚V b0 V

1
0 and f˚V

1 b0 V0.

Proof. Unfortunately, the argument is quite clumsy and goes through the explicit construction of the Baer
sum in question. To recall it, let p : f˚V Ñ V0 and p1 : f˚V 1 Ñ V 1

0 denote the homomorphisms given by
restriction to X0, and consider the OX0

-submodule W Ď pV0 b0 f˚V
1q ‘ pf˚V b0 V

1
0q made of pairs whose

components have the same image in V0 b0 V
1
0 via, respectively, pb idV 1

0
and idV0

bp1. The vector bundle
W on X0 fits into the following short exact sequence of OX0

-modules:

(W ) 0 ÝÑ pEb0 V0 b0 V
1
0q‘2 ÝÑW ÝÑ V0 b0 V

1
0 ÝÑ 0.

The Baer sum mentioned in the statement is the push-out of the short exact sequence pW q along the sum
map pEb0V0 b0V

1
0q‘2 Ñ Eb0V0 b0V

1
0. This being said, consider the natural epimorphism of OX0

-modules
ϕ : f˚V b0 f˚V

1 Ñ f˚pV b1 V
1q given by universal property of tensor product. The vector bundle E, seen
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as a sheaf of ideals of f˚OX1
, is of square zero; hence Kerϕ “ pEb0 V0q b0 pEb0 V

1
0q. The right-hand side

of the previous equality is seen to also be the intersection of the kernels of the homomorphisms pb idf˚V 1

and idf˚V 1 bp1. That is, upon setting

ψ “ ppb idf˚V 1 , idf˚V 1 bp1q : f˚V b0 f˚V
1 ÝÑ pV0 b0 f˚V

1q ‘ pf˚V b0 V
1
0q,

the homomorphisms ϕ and ψ share the same kernel. Moreover, the identity

ppb idV 1
0
q ˝ pidf˚V bp1q “ pb p1 “ pidV0

bp1q ˝ ppb idf˚V 1q

of maps f˚V b0 f˚V
1 Ñ V0 b0 V

1
0 implies that the image of ψ is W . Consequently, the homomorphism

ϕ factors uniquely through an epimorphism ϕ̃ : W Ñ f˚pV b1 V
1q of OX0

-modules. The kernel of ϕ is
contained in that of pb p1, and the homomorphism ϕ̃ acts on the quotient

Kerppb p1q

Kerϕ
“
K `K 1

K XK 1
–

K
K XK 1

‘
K 1

K XK 1
“ pEb0 V0 b0 V

1
0q‘2

as the sum map, where K and K 1 are the kernels of the homomorphisms p b idf˚V 1 and idf˚V bp1,
respectively. In other words, the homomorphism ϕ̃ fits into the following commutative and exact diagram of
OX0

-modules:

0 pEb0 V0 b0 V
1
0q‘2 W V0 b0 V

1
0 0

0 Eb0 V0 b0 V
1
0 f˚pV b1 V

1q V0 b0 V
1
0 0,

Ð

Ñ

ÐÑ sum

Ð

Ñ

ÐÑ ϕ̃

Ð

Ñ

ðð

Ð

Ñ

Ð

Ñ

Ð

Ñ

Ð

Ñ

Ð

Ñ

where the upper row is the short exact sequence pW q. To put it differently, the lower row is the push-out of
the upper one along the sum map; that is, the extension f˚pV b1 V

1q is the desired Baer sum. □

A.3. Connections

Let S be a scheme, f : X Ñ S a separated morphism of schemes, ∆X : X Ñ XˆSX the diagonal morphism
and I :“ KerpOXˆSX Ñ ∆X˚OXq its augmentation ideal. With this notation, the sheaf of differentials (denoted
by Ω1

f or Ω1
X{S ) relative to f is the OX-module ∆˚

XI . Let ∆X,1 be the first infinitesimal neighbourhood

of the diagonal, that is, the closed subscheme of X ˆS X defined by the sheaf of ideals I2. For i “ 1,2,
let pi : ∆X,1 Ñ X be the morphism induced by the ith projection. The OX-module J1

f :“ p1˚O∆X,1 is

called the sheaf of first-order jets. Each pi induces a homomorphism of f ´1OS-algebras ji : OX Ñ J1
f . The

homomorphism of f ´1OS-modules df :“ j2 ´ j1 : OX Ñ Ω1
f is called the canonical derivation.

Definition A.3. A connection on a vector bundle F on X is an isomorphism ∇ : p˚
1F Ñ p˚

2F of vector
bundles over ∆X,1 whose restriction to the diagonal ∆˚

X∇ is the identity of F.

A.4. Atiyah extension

The kernel of the restriction map O∆X,1 Ñ i˚OX , where i : X Ñ ∆X,1 is the closed immersion induced by
the diagonal, is by definition of square zero. This allows one to adopt the notation introduced in Section A.1
with X0 “ X, X1 “ ∆X,1, s “ i and f “ p1. Pushing forward the O∆X,1-module p˚

2F along p1 yields the short
exact sequence

(J1
f pFq) 0 ÝÑ Ω1

f bF ÝÑ J1
f pFq ÝÑ F ÝÑ 0

of OS-modules, where J1
f pFq :“ p1˚p

˚
2F is the OX -module of first-order jets of F. Applied to the O∆X,1-module

p˚
2F, Proposition A.1 implies the following.
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Proposition A.4. The bijection Hompp˚
1F,p

˚
2Fq Ñ HompF,J1

X{SpFqq given by adjunction induces a bijection

␣

connections on F
(

–

#

splittings of the short
exact sequence pJ1

X{SpFqq

+

.

Set Atf pFq :“ HompE,J1
f pFqq. The short exact sequence of OX-modules

(Atf pFq) 0 ÝÑ Ω1
f b EndF ÝÑ Atf pFq ÝÑ EndF ÝÑ 0

obtained as the tensor product of pJ1
f pFqq with F_ is called the relative Atiyah extension of F. When F is

a line bundle, EndF – OX , and splittings of the Atiyah extension pAtf pFqq are in bijection with those of
pJ1
f pFqq, thus with connections on F.

A.5. Infinitesimal rigidifications

Let pr1,pr2 : XˆS X Ñ X be, respectively, the first and the second projection and x : S Ñ X a section of
the structural morphism f : X Ñ S . Let X1 be the first-order thickening of X along x, ι : X1 Ñ X the closed
immersion and π “ f ˝ ι : X1 Ñ S the structural morphism.

Definition A.5. An infinitesimal rigidification of F at x is an isomorphism of OX1
-modules ρ : π˚x˚F Ñ ι˚F

such that x˚ρ is the identity.

Note that if ∇ : p˚
1F Ñ p˚

2F is a connection on F, then the homomorphism of OX1
-modules τ˚∇ is an

infinitesimal rigidification of F at x. Now, it is possible to give a characterization of infinitesimal rigidifications
similar to that of connections. For, the augmentation ideal of the closed immersion x1 : S Ñ X1 induced
by x is of square zero. This permits one to employ the conventions introduced in Section A.1 with X0 “ S ,
s “ x1 and f “ π. For instance, if F is a vector bundle, then pushing forward the OX1

-module ι˚F along π
yields the short exact sequence

π˚pι˚Fq 0 ÝÑ x˚Ω1
X{S b x˚F ÝÑ π˚ι

˚F ÝÑ x˚F ÝÑ 0

of OS-modules. Applied to OX1
-module ι˚F, Proposition A.1 reads as follows.

Proposition A.6. The bijection Hompπ˚x˚F, ι˚Fq Ñ Hompx˚F,π˚ι
˚Fq given by adjunction induces a bijection

"

infinitesimal
rigidifications of F at x

*

–

"

splittings of the short
exact sequence π˚pι˚Fq

*

.

Let τ : X1 Ñ ∆X,1 be the morphism determined by p1 ˝ τ “ x ˝ π and p2 ˝ τ “ ι. Consider the
homomorphism ψ : p˚

2F Ñ τ˚ι
˚F of O∆X,1-modules given by adjunction (note the equality ι˚F “ τ˚p˚

2F).
Pushing it forward along the morphism p1 gives a homomorphism

π˚ψ : pJ1
X{SpFqq ÝÑ p1˚τ˚pι˚Fq

of short exact sequences of OX-modules. Now, by the definition of τ , the following square is commutative:

X1 S

∆X,1 X.

Ð

Ñ
π

ÐÑ τ ÐÑ x

Ð

Ñ
p1

Therefore, the short exact sequence p1˚τ˚pι˚Fq of OX-modules is nothing but the push-forward along the
closed immersion x of the short exact sequence π˚pι˚Fq of OS-modules.

Proposition A.7. The homomorphism ϕ : x˚pJ1
X{SpFqq Ñ π˚pι˚Fq of short exact sequence of OS -modules adjoint

to π˚ψ is an isomorphism.
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Proof. The homomorphism ψ : p˚
2F Ñ τ˚ι

˚F restricted to the diagonal is the evaluation at x. Therefore, the
homomorphism π˚ψ of short exact sequence of OX-modules is the following commutative diagram:

0 Ω1
X{S bF J1

X{SpFq F 0

0 x˚x
˚Ω1

X{S b x˚x
˚F x˚π˚ι

˚F x˚x
˚F 0,

Ð

Ñ

Ð

Ñ

Ð

Ñ evx

Ð

Ñ

ÐÑ π˚ψ

Ð

Ñ

ÐÑ evx

Ð

Ñ

Ð

Ñ

Ð

Ñ

Ð

Ñ

where evx is the evaluation at x. The homomorphism ϕ, which is the adjoint to π˚ψ, reads as the
commutative diagram

0 x˚Ω1
X{S b x˚F x˚J1

X{SpFq x˚F 0

0 x˚Ω1
X{S b x˚F π˚ι

˚F x˚F 0

Ð

Ñ

Ð

Ñ
ð

ð

Ð

Ñ

ÐÑ ϕ

Ð

Ñ

ðð

Ð

Ñ

Ð

Ñ

Ð

Ñ

Ð

Ñ

of OS-modules. The five lemma implies that ϕ is an isomorphism. □
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