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1. Introduction

1.1. Background

Let K be an algebraically closed non-trivially valued complete non-Archimedean field. The driving force
behind Tate’s foundation [Tat71] of rigid analysis was the uniformization of elliptic curves over a p-adic field:
given an elliptic curve E over K, there is an isomorphism E(K) = K* /g% of rigid analytic spaces for some
|q| <1 if and only if the j-invariant of E is not integral. Within the framework of Berkovich spaces, analytic
spaces are locally path connected and locally contractible (in contrast with the total disconnectedness of K),
so that the usual theory of universal covers and fundamental groups can be applied. Tate’s result then can be
restated as follows. The topological space underlying the Berkovich space E*" attached to E is contractible
if and only if E has good reduction; if this is not the case, the universal cover of E*" is G%}, its fundamental
group is identified with g% — K* for some |g| < 1, and E* = G"/q%. Mumford generalized Tate’s theorem
both for higher-genus curves, see [Mum72b], and higher-dimensional abelian varieties, see [Mum?72a]. Given
an abelian variety A over K, the universal cover of A*" is of the form E®" for a semi-abelian variety

(L1) 0—T—>E—>B—>0,

where T is a K-torus and B an abelian variety with good reduction. The topological space E*" is again seen
to be contractible, and the fundamental group of A*" is seen to be a free abelian group A < E(K) of rank
dim T. Later on Liitkebohmert [Liitl6, Corollary 7.6.5] obtained such a uniformization result for all abeloid
varieties, that is, proper smooth connected analytic groups over K - the rigid analytic analogue of a complex
torus.

1.2. Motivation

In this paper the universal cover of the universal vector extension of an abelian variety is made explicit.
Recall that a vector extension of an abelian variety A over a field k is a short exact sequence of algebraic
groups

0—V(F)—G—A—0,

where F is a finite-dimensional k-vector space and V(F) the vector group attached to it. Such an
extension corresponds (up to isomorphism) to elements of the cohomology group H!(A,6,) ®x F. Taking
F =H'(A,064)", the vector extension with isomorphism class id € EndH' (A,0,),

0— V(H'(4,04)") — E(A) — A—0,
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is said to be the universal one; it has the property that any other vector extension G is obtained as the
push-out of E(A) along the linear map H'(A,G4)" — F given by the isomorphism class of G.

When k = C, the uniformization of E(A) admits a quite explicit description, which should hopefully
clarify the statements in the rigid context. The exponential map V :=Lie A — A(C) is a universal cover of
A(C). We identify the fundamental group 711 (A(C),0) with the kernel of the exponential map A < Lie A.

\%

Hodge theory permits one to see H'(A,0,)" as the complex vector space V conjugate to V; consequently,

we have an inclusion 65 : A — V. Then,
E(A)(C) = (V x V)/A

with A embedded diagonally. The choice of a basis of A induces a biholomorphism E(A)(C) = (C*)?$. In
particular, the complex manifold E(A)(C) is Stein, meaning that it can be holomorphically embedded in C"
as a closed subspace for some # > 0. Such an embedding cannot be algebraic, as all algebraic functions on
E(A) are constant. In other words, E(A) is an example of a non-affine algebraic variety whose associated
complex space is Stein.

The motivation of the present paper comes from the study of the analogous question over K; see [Mac22].

1.3. Results

From now on let us work over K. To ease notation, the superscript ‘an’ is dropped, and all algebraic

varieties are treated as analytic spaces. Let

0—T—E—B—0
be the semi-abelian variety which is the universal cover of A and A < E(K) the fundamental group. In order
to state the main result, it is necessary to also have at hand the uniformization of the dual abelian variety A.
See B as the dual of its dual B; then the group morphism A — B(K) defines a semi-abelian variety

0—T—ELB o,
where T is the K-torus with group of characters A. Let A be the group of characters of the K-torus T. The
datum of A < E(K) induces an embedding of A = E(K), and

Aan _ E"van/]\.

For an algebraic group G, let wg = (LieG)" denote the dual of its Lie algebra. Since the quotient map

E* — A2 is étale, the spaces of invariant 1-forms wg and w are identified. The above short exact
sequence of algebraic groups gives the following one:
dp
0 — wp— w; — wy —0,
where dp is the pull-back of 1-forms along p. The first result concerns structure.

Theorem A. The universal cover E(A) of E(A) is contractible, is the pull-back to A of E(A) and is the push-out
of E(B) xgE along dp; i.e. there is a commutative and exact diagram

0 — V(wy) — E(B)xgE —— E —— 0

| 1

0 — V(wy) E(A) ﬂ 0.

In the statement the isomorphisms w; = HI(A,GA)V and wj = HI(B,GB)V are understood. The
fundamental group 7t;(E(A),0) of E(A) with base-point 0 can be identified with a subgroup of (the K-
rational points of) its universal cover E(A). The projection E(A) — E given by Theorem A then induces a
map

@: 11(E(A),0) — A.
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In order to understand how 71, (E(A),0) sits inside E(A), note that Theorem A gives an isomorphism
Coker(E(B) xgE — E(A)) ~ V(wy). Let

pr,: E(A) — V(wp)

be the induced projection. The image of 711 (E(A),0) is described by means of the universal vector hull of
the group A, that is, the K-linear map 05 : A — w5 defined as follows. By definition, T is the K-torus with
group of characters A. Seeing x € A as a character x: T — G,,, set

* dz

Oa(X) :=x"F € wy,
where z is the coordinate function on G,,.
Theorem B. The map ¢: 111 (E(A),0) — A is an isomorphism, and
pr, © (p_l = 0O\.

Concretely, when the abelian variety A has good reduction, the above results simply say that E(A) is
contractible, so that it coincides with its universal cover. In the extremely opposite situation, when A = T /A
has totally degenerate reduction, the result is more interesting and gives the following description of E(A):

E(A) = (T x V(wg5)) {(x,04(x)) : x € A}.

In the framework of 1-motives, Theorems A and B say that E(A) is the universal vector extension of the
1-motive M = [A — EJ; see [BVSO0L, Section 1.4] and [Ber09, Section 2.2].

1.4. Content of the paper

In order to show Theorems A and B, the natural approach would be to compare E(A) with the universal
vector extension M of the 1-motive M = [A — E]. However, E(A) is an analytic vector extension of E, and
since E is not proper, it is not clear a priori why it should be an algebraic one. Therefore, we cannot apply the
universal property of M? directly. Instead, we will proceed by making an explicit construction of E(A) giving
the main results above as a byproduct. Unfortunately, the universal property of the universal vector extension
does not say much about how E(A) is constructed. It is instead more insightful to look at the moduli space
AP of translation-invariant line bundles on A endowed with a (necessarily integrable) connection - such a
moduli space is canonically isomorphic to the universal vector extension. The construction of A" presented
here (see Section 2), although quite natural, seemingly does not appear in the literature; it is inspired from
[BHRI1], even though the Hodge-theoretical reasoning therein had to be circumvented. Such a definition for
A" has several advantages. First, it translates right away to the rigid analytic framework for abeloid varieties.
Second, its explicit nature permits one to perform the necessary computations (see notably Proposition 4.2,
Theorem 4.6 and Theorem 4.11). Third, it allows one to determine the canonical linear isomorphism through
which A% is obtained by push-out from E(A) (see Theorem 2.20).)'. The ‘universal cover’ of A% is then
defined by hand (see Section 4.3) and only ultimately shown to be contractible (see Proposition 4.15), so that
it is literally the universal cover of A"

1.5. Conventions
Let X be a locally ringed space and

(O This formula, perhaps because of its what-else-could-it-be nature, is missing in the literature. Mazur and Messing prove the
canonical isomorphism is functorial in A (see [MM74, Proposition 2.6.7]), but its explicit form is missing. This gap was already
pointed out by Crew (see [Cre90, Introduction]), but in the description he proposes (9p.cit., Theorem 2.7), he does not determine
such a linear map.
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a sequence of Ox-modules indexed by integers. For morphisms of locally ringed spaces f: Y — X and
g: X — Z, and an Ox-module M, let f*(F), g.(F), (F) ® M denote the sequences obtained from (F) by,
respectively, pulling back along f, pushing forward along ¢ and taking the tensor product with M.

Let K be a complete non-trivially valued non-Archimedean field. In this paper K-analytic spaces are
considered in the sense of Berkovich (see [Ber93]). By abuse of notation, given a K-analytic space X, an
Ox-module here is what is called an Oy,-module in op.cit. As soon as the K-analytic space X is good (that
is, every point admits an affinoid neighbourhood), the two notions coincide (op.cit., Proposition 1.3.4). For
a K-analytic space S, an S-analytic space in groups will be called simply an S-analytic group. An abeloid
variety over S is a proper, smooth S-analytic group with connected fibers.

2. Moduli of rank 1 connections and universal extension of an abelian

scheme

Let S be a scheme, a: A — S an abelian scheme, ¢: S — A the zero section and w4 = e*Q}q/S. Let
W PT,Pry: A Xg A — A be, respectively, the group law, the first and the second projections.

2.1. Connections on homogeneous line bundles

A homogeneous line bundle on A is the datum of a line bundle on A together with an isomorphism of
O4-modules @: pri L& pr; L — p*L. The isomorphism ¢ is called rigidification.

Remark 2.1. The isomorphism (e,e)*@: e*L® e*L — e*L induces a trivialization u: Og — e*L of the line
bundle ¢*L on S.

Let A; be the first-order thickening of A xg A along the diagonal, p;: A; — A the iM projection for
i =1,2, A; the first-order thickening of A along e, 1: A; — A the closed immersion, 7t: Ay — S the
structural morphism and 7: A; — A; the morphism defined by p; ot = xom and p; o7 = 1. Following
Grothendieck, a connection on L is an isomorphism of G5 -modules V: pTL — p5L whose restriction to A is
the identity. Similarly, an infinitesimal rigidification®® at e is an isomorphism of © 4, -modules p: w*e* — 1*L
whose restriction to the zero section is the identity. (Refer to Sections A.4 and A.5 for basics on connections
and infinitesimal rigidifications.) In particular, for a connection V on L, 7%V is an infinitesimal rigidification
of L at e.

Proposition 2.2. For a homogeneous line bundle L on A, we have a bijection

infinitesimal

}, V+— t*V.

connections on L} —
{ J { rigidifications of L at e

Proof. The argument is borrowed from (2) and (3) in the proof of [MM74, Proposition 3.2.3, pp. 39-40].

Injectivity. Let V,V': p{L — p3L be connections on L. Since both isomorphisms V and V' are the
identity when restricted to the diagonal, they differ by an homomorphism of Ox-modules L — QL ® L. The
latter is equivalent to the datum of a global section @ of Q) as L is a line bundle. On the other hand, the
evaluation at ¢ homomorphism ¢: @, Q) — @, is also an isomorphism. Therefore, the isomorphisms 7*V
and t*V’ differ by ¢(w), which is 0 if and only if w is.

Surjectivity. Let p: *e*L — 1*L be an infinitesimal rigidification of L. The morphism p, —p;: A} = A
factors through the closed immersion i: A; — A. Indeed, when restricted to the diagonal, the map p, — p;
has constant value e. As A; (resp. Ap) is the first-order thickening of A along e (resp. of X xg X along
the diagonal A), the morphism p, — p; induces a morphism #: A — A; between first-order thickenings

(Q)Mazur—Messing call an ‘infinitesimal rigidification’ simply a ‘rigidification’. Here, the adjective ‘infinitesimal’ is added in order
to distinguish the concept from that of a rigidification of a homogeneous line bundle.
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such that 1o#n = p, — p;. The pull-back of the rigidification ¢ along the morphisms of S-schemes
(eomon,p1),(p2 —p1,P1): Ay — A x A furnishes the following isomorphisms of line bundles over A;:

(eomon,py)*: n*n*e* L @piL — piL,
(P2 —p1,p1)*¢: (p2—p1)*L®pTL — p3L.
On the other hand, taking the tensor product of 17*p with py'L gives rise the isomorphism of O -modules
n*p®id: n* " e* L@ piL — (p2 —p1)"L&p7L.

Consider the unique homomorphism of G5 -modules V: pjL — p5L making the following diagram commu-

tative:
Pt L@ piL S (p, — p1)*L@piL
(2'1) (9071071471)*@1 l(Pz*Plfpl)*(P
piL v p3L.

To conclude, one has to show that the infinitesimal rigidification T*V is p. Notice that the endomorphism
1ot of the S-scheme A, is the identity. Indeed, since ! is a closed immersion (thus a monomorphism of
schemes), it suffices to show the equality 101707 = 1. But tonot = (py —py)otT =1—eom =1 as A;-valued
points of A because e o 7t is the neutral element of the group A(A;). Now, pulling back the diagram (2.1)
along 7 gives the following commutative diagram of 6,4, -modules:
*e*L Al *L
id®n*u1 lid®ﬂ*u
id

n*e*L @ mte*L _peid *LRm*e*L,

where u: Og — e*L is the trivialization introduced in Remark 2.1. (Here we used the equalities p; ot = xom
and p, o T = 1 holding by the definition of 7.) The equality 7%V = p follows. This concludes the proof. [

For a homogeneous line bundle L on A, let
(Atass(L)) 0— Q,lq/s —> Atys(L) — 64 — 0

be its Atiyah extension (see Section A.4). Recall that connections on L correspond to splittings of the Atiyah
extension of L.

Proposition 2.3. Let (L, @) be a homogeneous line bundle on A.

(1) If the cohomology group H' (S, w4) vanishes, then the line bundle L admits a connection.
(2) The following sequence of Og-modules is short exact:

a.(Ata/s(L)) 0 — Qg — Wy Atass(L) — 2,04 — 0.
(3) The homomorphism a,a*(Atays(L)) — (Atass(L)) of short exact sequences of ©4-modules obtained by

adjunction is an isomorphism.

Proof. (1) According to Proposition 2.2, it suffices to show that the line bundle L admits an infinitesimal
rigidification at e. With the notation of Proposition A.6, an infinitesimal rigidification corresponds to a
splitting of the short exact sequence of Og-modules

70, (1*L) 0— ws®e*L—> 1, 1"L—> e*L — 0.

The latter is an extension of the line bundle e*L on S by the vector bundle w, ® e*L; therefore, its
isomorphism class lies in H! (S, #om(e*L, ws ® e*L)) = H(S, w4). By hypothesis, the cohomology group
H!(S,w,) vanishes; hence the short exact sequence 7, (1*L) splits, and the line bundle L admits a
connection.



The universal vector extension of an abeloid variety 7

(2) The push-forward along « is a left-exact functor; therefore, it suffices to show that the natural map
p: a,Atys(L) — a0, is surjective. The statement is local on S; thus the scheme S may be supposed to
be affine. Under this assumption, the cohomology group H!(S,w,) vanishes, and because of (1), the line
bundle L admits a connection. In other words, by Proposition A.4, the Atiyah extension (At,/s(L)) of L
admits a splitting s: ©4 — Ata/s(L). The homomorphism of Og-modules a,s: a,04 — a, Aty/s(L) is a
section of p; that is, it satisfies p o s = id. In particular, the homomorphism p is surjective.

(3) The homomorphism of short exact sequences of ©4-modules in question is the commutative diagram

0—— a*a*QA/S — a*a, Aty (L) — a*a, 64 —— 0

| | |

0 Qg/s Atys(L) Oy 0,

where the three vertical arrows are given by adjunction. The leftmost and the rightmost vertical arrows are
isomorphisms; thus the central vertical arrow must be so by the five lemma. O

Remark 2.4. The Atiyah extension (At,/s(L)) is obtained as the tensor product with LY of the short exact
sequence

(Fass(L)) 0— QL ®L— b (L) —L—0,

where jj/S(L) is the Ox-module of first-order jets of L. Proposition A.7 furnishes an isomorphism

Q: e*(}j/s (L)) — m4(1*L) of short exact sequences of Og-modules. Taking the tensor product with

e*L" induces an isomorphism
e*(Aty/s(L)) — 1, (1"L) ®e*L”

of short exact sequences of Og-modules. Also note that, by Remark 2.1, the line bundle e*L on S is trivial,
whence we have an isomorphism

e*(Atass(L)) = m, (1*L).

2.2. The canonical extension of the trivial line bundle

The functor associating with an S-scheme S’ the set of isomorphism classes of homogeneous line bundles
on A xg S’ is representable by an abelian scheme ¢: A — S, called the dual abelian scheme (this is [FC90,
Theorem 1.9]; to see that the definition in loc. ¢it. is equivalent to the one here, see [Oor66, Proposition 18.4)).
Let & be the Poincaré bundle (that is, the universal homogeneous line bundle on A xg A), g: A xg A — A
the projection onto the second factor and (At, (<)) the Atiyah extension relative to q of the Poincaré bundle
L. Set Uy := g4 Aty (£). The sequence of 6 -modules

(Uy) 0—d*wy —U; — 04— 0
obtained by pushing forward the short exact sequence (At,(<)) along g, is short exact by Proposition 2.3(2)
applied to the abelian scheme A x g A over A.

Definition 2.5. The extension (U ;) is called the canonical extension of ©.

Remark 2.6. The pull-back of the Atiyah extension of &£ along the unramified morphism (id 4, €) is the
Atiyah extension of the trivial line bundle ©4. Therefore, the canonical derivation dy/5: O4 — Q}q /50 being

a connection on the trivial bundle, defines a splitting of é*(U ;), called the canonical splitting.

Remark 2.7. Let Ay be the first-order thickening of A along the zero section e, 1: Ay Xg A— AxgA the
morphism obtained from the closed immersion A; — A by base change along & and 7t: A; x5 A — A the
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second projection. Remark 2.4 (applied to the abelian scheme A x g A over A) furnishes an isomorphism of
sequences of O ;-modules

(e,id ;)" (Aty(£)) = 1, (1*L).
On the other hand, by Proposition 2.3(3), the evaluation at the zero section

(Uz) = 4:(Aty(£)) — (&,id 1) (Aty(£))

is an isomorphism of sequences of O ;-modules. Composing these isomorphisms yields an isomorphism of
sequences of O ;-modules

(U) = 1, (L),

2.3. Moduli space of connections
Definition 2.8. The S-scheme A" = P(U ;) \IP(d*wy) is called the moduli space of rank 1 connections on A.

Theorem 2.9. The S-scheme A® represents the functor associating with an S -scheme S' the set of isomorphism
classes of triples (L, ¢, V) made up of a homogeneous line bundle (L, @) on the abelian scheme As: and a connection
V:L— Q}As//S’ ®L.

Proof. For an S-scheme S’, an S’-valued point of A? consists of the datum of a morphism of S-schemes
f: S — A and a splitting s: O/ — f*U 4 of the short exact sequence of Og/-modules f*(U ). Let (L, ¢)
be the homogeneous line bundle on the abelian scheme A’ := Ag/ obtained as the pull-back of the Poincaré
bundle & along the morphism idy x f: A’ := AxgS’ — AxgA. Let a’: A’ — S’ be the morphism obtained
from @ by base change. Then, by Proposition 2.3(3), the short exact sequence of 04/-modules a’* f*(U ;)
is the Atiyah extension (At,/ (L)) of the homogeneous line bundle L. By Proposition A.4, the splitting
a’*s: ©p — Aty (L) corresponds to a connection on L (notice the equality ¥ndL = Og, due to L being a
line bundle). 0

The tensor product of line bundles together with a connection endows A” with the structure of a group
S-scheme. The natural projection 7t: A" — A, (L,¢,V) — (L, ) is a faithfully flat morphism of group
S-schemes. The kernel of 7 is by definition made of connections on the trivial bundle 64. Now, a connection
on the trivial line bundle is nothing but d4/s + w for a global differential form on A, where d4/s is the
canonical @ ~!Og-linear derivation. The isomorphism a*Q}q/S > e*Q}q/s =: wy thus yields a short exact

sequence of group S-schemes
0 — V(wy) — A" — A —0.

The following remark will only be needed once, quite further in text (see the proof of Theorem 4.6). The
reader may harmlessly skip it at first.

Remark 2.10. As any affine bundle on an abelian scheme, the group structure on A is defined by a unique
isomorphism of © ;-modules

p: pri Uy +ppry Uz — Uy,

where fi, pry,pr,: A x g A — A are, respectively, the group law, the first and the second projection, and + is
the Baer sum of extensions (see Examples 2.15 and 2.17 below). According to Example 2.18, the isomorphism
¢ is the push-forward along the morphism (A; xg A) x A, (A1 s A) — A xg A of the rigidification

¢: (id, pry)*Z ® (id, pr,)*Z — (id, i)*<

of the Poincaré bundle & on the abelian scheme A x g A over A.
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2.4. The Lie algebra of the dual abelian scheme (redux)

Let A; be the first-order thickening of A along its zero section &, 71: A x A; — A the projection onto
the first factor, 1: A xg A; — A xg A the morphism obtained from the closed embedding A; — A by base
change with respect to a: A — S and a;: A xg Ay — S the structural morphism. Consider the isomorphism
class

[l*g] € I‘I1 (A Xg A1'®:><A1)

of the line bundle *% on A xg Ay, where £ is the Poincaré bundle on A xg A. Let ¢; (1*%£) be the

global section of the sheaf of abelian groups Rlal*GXXA on S defined as the image of [1*Z] via the
1
homomorphism of abelian groups
1 A X 0 1 X
H (A XSA1,®AXA1> —H (S,R a1*®A><A1>
given by the Grothendieck-Leray spectral sequence

p q X p+q A, ®*
H (S,R a1*®A><A1> — H (AxSAl,c)AXAI).

The first projection 7t: A xg A; — A induces a homeomorphism on the underlying topological spaces,

whence an isomorphism RIO‘*(H*G;;X i )= Rlay *®;\<>< A that will be treated as understood in what follows.
1 1

The homomorphism 0y — 7,0, 4, defines a splitting of 0 — a*wy — 704 4, = 04 — 0. It follows

that the short exact sequence of sheaves abelian groups on A

X

* €xp
0—a«a a)A—>7z*®AXA1

60
splits, where exp: v — 1 + v is the truncated exponential. We therefore have an exact sequence of sheaves

of abelian groups on S

0 —R'a,a*w; — Rla, (n*GXXAl) — Rla,0,.

The pull-back of the line bundle *% along the morphism (id,&): A — A x g A, is trivial; thus c; (:*%) is
(the image via the truncated exponential of) a section of Og-module R!a,.a*w ;i still written ¢ (1*%). The
projection formula yields an isomorphisms Rla,a*w; ~ R'a,04 ® w; = #Hom(Lie A,R'a,04) through
which the class ¢1 (1*2) corresponds to an isomorphism (see [BLR90, Section 8.4, Theorem 1))

®y: LieA — Rla,04.

2.5. Universal property of the canonical extension

We borrow notation from Section 2.4. For a vector bundle F on S, the Grothendieck-Leray spectral
sequence H? (S,R9a,,a*F) = HPT1(A, a*F) yields an exact sequence of I'(S,0g)-modules

(2.9) 0 — H'(S,F) 25 H (4, a*F) 25 HO(S, R a, a*F).
For an extension of O4 by a*F,
() 0— a*F —F —> 04 — 0,

let [F] € H'(A,a*F) be its isomorphism class. The global section ¢(%) := pp([F]) of the Gg-module
R'a,a*F can also be seen as the connecting homomorphism in the long exact sequence of Og-modules

0—F— a,F — 05 AR a,a*F — ---.

The abelian scheme A coincides with the dual abelian scheme of A. By means of this identification, consider
the canonical extension (U4) on A and its isomorphism

[Ua) € H (A, FHom (04, 0*w;)) =H' (A, a*wy).
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The truncated exponential map exp: a*w; — 1,0

R And S’ induces a homomorphism of abelian
1

groups
exp: H' (A, a*w;) — H! (A,N*GZXA )
1
On the other hand, the morphism 7t is a homeomorphism on the underlying topological spaces, thus an
isomorphism of abelian groups

1 A X ~ 1 X
H (A st1,®AXA1) ~LH (A,Tc*GAXAl).

The image of [1*Z] via the preceding isomorphism is the isomorphism class [71,:*Z] of the invertible
7404, 4, -module [N

Proposition 2.11. With the notation above,

M [0 2] = exp([Ual),
) c(Up) = 1(7L).
The second statement can be reformulated by saying that, via Rla*a*wA ~ Jom(Lie A,R'a,0,), the

following equality holds:
c(Ua) = Pa.

Proof. (1) Remark 2.7 furnishes an isomorphism of short exact sequence of O4-modules (U4) = 70, (1*Z).
For an affine open cover {A;};c; of A, the isomorphism class [U 4] is represented by a 1-cocycle, say
fijeT(AinAj,a*wy) for i, j € I. The invertible 71,04, 4 -module 7t,1*< is the glueing of the O4,-modules
(11404 4 )|a; along the transition maps exp(f;;) = 1+ f;;. Relation (2) follows immediately from (1). [

For a homomorphism ¢: w4 — F with F a vector bundle on S, let (¥,) be the short exact sequence
obtained by push-out of (U,) along the homomorphism a*@. Let yr(¢) denote its isomorphism class
[Fol € H!(A,a*F); then this construction defines a map

yp: Hom(w, F) — H' (A, a*F).
Theorem 2.12. The map yr is injective and I'(S,Os ) -linear, and its image is the set of isomorphism classes of
extensions
(F) 0—a*F—F —0,4—0
such that the short exact sequence of O -modules e*(F) splits.

This statement is an immediate consequence of the following more precise fact. To state it, consider the
homomorphism e*: H! (A, a*F) — H!(S, F) given by the pull-back of an extension along the morphism e.
Since e is a section of &, the composite map e* o a* is the identity of H! (S, F). Also, note that an extension
(%) as above splits if and only if e*[F] = 0.

Lemma 2.13. For a vector bundle F on S,
(1) pr o VE is the isomorphism induced by Pp ®@idp: Hom(w ;,F) — Rla,a*F on global sections,
(2) the following sequence of T(S,0g)-modules is short exact:
0 —> Hom(w;, F) 25 HY (A, a*F) <5 H'(S, F) —> 0.
Proof- (1) The diagram of Og-modules

c(Uy) Rla*®A®wA sy ..

l(p l H lid@(P
o c(Fp) 4
0 F A Fy Og R'2,6,®F —— ---

0 w4 a*cuA @5
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is commutative. It follows from Proposition 2.11(2) that the composite map pr o yr is the one induced on
global sections by ®4 ®idp: Lie A®F — Rla,0,®F.

(2) First of all, notice that the map y is injective and I'(S, Og)-linear. Second, the composite map e* oy
vanishes: for a homomorphism ¢: w; — F, the splitting of the short exact sequence of Og-module e* (U4 )
induced by the derivation dj g (see Remark 2.6) induces a splitting of e*(F,). Therefore, it remains to
show that the image of y is the whole Ker(e*). Set rr := (pr o ¥r) ! o pr. Then r oy is the identity of
Hom(w, F), and the sequence of I'(S,0g)-modules

0 — HY(S,F) 25 HY(A, a*F) -5 Hom(w , F) —> 0

is short exact by (2.2). Since yr and e* are sections of, respectively, rr and a*, the result follows. g

2.6. Preliminaries on extensions of an abelian scheme

Let G be an affine, commutative, faithfully flat and finitely presented group S-scheme.

2.6.1. Principal bundles.— A principal G-bundle on A is a faithfully flat A-scheme P endowed with an
action of G such that the morphism (o, prp): GxgP — P x 4P is an isomorphism, where o, prp: GxgP — P
are, respectively, the morphism defining the action and the projection onto A. Let Hflppf(A, G) denote the set
of isomorphism classes of principal G-bundles on A.

Let p: G — G’ be a morphism of group S-schemes, where G’ has the same properties of G, and let P be
a principal G-bundle on A. The quotient p, P of S-scheme G’ x g P via the action g(g’,x) = (p(g)g’, gx) of
G exists and is a principal G'-bundle on A, called the push-out (see [Ols16, Propositions 4.5.6 and 12.1.2)).

For principal G-bundles P and P’ on A, the push-out
P AP = ]/lG*(P XA Pl)

of the principal G X G-bundle P x 4 P’ along the sum map pig: G x5 G — G is called the sum. This
operation endows the set H}ppf(A, G) with the structure of an abelian group with neutral element G x 5 A and
inverse P — [—1],P, where [—1] is the inverse map on G. Furthermore, the push-out of an endomorphism of
G as a group S-scheme induces an endomorphism of the abelian group H}ppf(A, G). This equips H%ppf(A, G)
with the structure of a module on the ring End(G) of endomorphisms of G. For instance, if G = V(F) for

some vector bundle F on S, the set H%pr(A, G) is naturally a I'(S, Og)-module.

Example 2.14. Suppose G = G,,,. The principal G,,-bundle associated with a line bundle L on A is the total
space of L deprived of its zero section V(L)*. The so-defined map Pic(A) — H}pr(A,Gm), L—V(L)*
is an isomorphism of abelian groups (see [SGAl, Exposé XI, Proposition 5.1]), that is, a sum of principal
G,,-bundles corresponds to a tensor product of line bundles.

Example 2.15. Suppose G = V(F) for some vector bundle F on S, and let
(F) 0—a*'F—F-206,—0
be a short exact sequence of O4-modules. The A-scheme A(F) := P(%) \IP(a*F) is a principal V(F)-

bundle. The map H'(A,a*F) — H%ppf(A,W(F)), (F) — A(F) is an isomorphism of I'(S,0g)-modules

(see [SGAL, Exposé XI, Proposition 5.1]). In particular, the sum of such principal V(F)-bundles is the
V(F)-bundle associated with the Baer sum of the corresponding extensions.

2.6.2. Law groups on principal bundles.— An extension of A by G is the datum of a short exact sequence
of commutative group S-schemes

(E) 0—G-5HEPL Ao,

where the morphism pg is faithfully flat. Note that an extension E of A by G is naturally a principal
G-bundle over A. Since the natural homomorphism Og — f,0, is an isomorphism, the commutativity of E
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is automatic. Morphisms of extensions are defined in the evident way. An isomorphism of extensions is a
morphism inducing the identity on A and G. Let Ext(A, G) be set of isomorphism classes of extensions of
A by G. For a morphism of S-group schemes p: G — G/, with G’ having the same properties as G, and
an extension (E), the cokernel @, (E) of the morphism (ig,p): G — E x5 G’ is called the push-out of (E).
The Baer sum of extensions (E) and (E’) of A by G is the push-out of E x 4 E along the sum morphism
G x5 G — G. The Baer sum endows Ext(A, G) with the structure of an abelian group. Similarly to the case
of principal G-bundles, the abelian group Ext(A, G) is endowed with the structure of an End(G)-module.
Seeing an extension as a principal bundle gives rise to a homomorphism of End(G)-modules

Ag: Ext(4,G) — Hi, (A, G).

A rigidification of a principal G-bundle P over A is an isomorphism
@: pri P Apr3 P — iy P

of principal G-bundles over A xg A.®) The map Ag is injective, and its image is the set of isomorphism
classes of principal G-bundles admitting a rigidification (see [Ser59, Théoréme 15.5]).

Example 2.16. Suppose G = G,,, and identify principal G,,-bundles with line bundles as in Example 2.14. A
rigidification of a line bundle L on A is an isomorphism of 64,  4-modules ¢: priL®pr5L — pjL.

Example 2.17. Suppose G = V(F) for some vector bundle F on S. Identify principal V(F)-bundles with
extensions of O4 by f*F as in Example 2.15. For a short exact sequence of ©4-modules
() 0—> f*F—>F — 0,4 —> 0,
a rigidification of (%) is an isomorphism of short exact sequences of O, . 4-modules
@1 pri(F) +ppr3(F) = pu(F),
where pr} (%) 43 pr5(F) is the Baer sum of the extensions pr} (%) and pr3(%).
Example 2.18. For a vector bundle F on S, let S’ be the first-order thickening of V(F") along its zero section.
Let L be a line bundle on A" := A x g S’ endowed with a rigidification ¢: prj L& prj L — pj, L, with the

obvious notation. Let s: A — A’ be the closed immersion induced by the zero section of F¥ and 7t: A’ — A
the projection onto A. The O4-module F := 7, L sits into the following short exact sequence of ©4-modules:

(%) O—»f*F®S*L—>?f—>S*L—>O.

According to Proposition A.2, the push-forward of the 6/, 4--module pri L ® pr} L along the morphism
nuxg: A’ xgr A" — A xg A is the Baer sum of the extensions pri F®pr}s*L and pris*L®pr; F. Assume
further that the line bundle s*L is isomorphic to ©4. Then, the vector bundle F is an extension of O, by
f*F, and the isomorphism (7t x 1), ¢: pr{%F +ppry F — p,F is a rigidification like the one considered in
Example 2.17.

2.7. The universal vector extension

A vector extension of the abelian scheme A is an extension of A by V(F) for some vector bundle F on S
called its vector part. Recall the injective homomorphism of T'(S,Og)-modules
Api=Ay(p): Ext(A, V(F)) — Hy, (A, V(F)) = H' (A, a*F)
defined in Section 2.6.2 and the map pp: H' (A, a*F) — H°(S,R!a,.a*F) introduced in (2.2). According to
[MM?74, Proposition 1.10], the composite homomorphism
Apss i=ppoAp: Ext(AF) — HO(S,R!a, a*F)

()The definition of a rigidification in [SGA7-I, Exposé VII, Section 1] involves the commutativity of two diagrams which is
automatic over abelian schemes.
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is bijective. For the vector bundle F = (R'@,6,)" on S, this gives an isomorphism
Ext(A, V((R'a,04)")) ~ EndR!a,0,.

Definition 2.19. The universal vector extension is the one corresponding to the identity via the above
isomorphism:

(E(A)) 0 — V((R'a,04)") — E(A) — A — 0.

The extension E(A) deserves the ‘universal’ title because of the following property. First notice that,
for vector bundles F and F’ on S and a homomorphism of Og-modules ¢: F — F’, the diagram of

I'(S,0s)-modules
A
Ext(A,F) —2 H(S,R!a,a*F)

l 1id®<p
Apt
Ext(A,F') — HO(S,R'a,a*F')
is commutative, where the leftmost vertical arrow is given by push-out along ¢. Moreover, for a
vector extension G, the global section Af/5(G) of Rla,a*F defines a homomorphism of Og-modules
Apss(G): (R'@,0,4)" — F. The extension G is isomorphic (in a unique way!) to the push-out of (E(A))
along Ap/s(G). The moduli space A" of rank 1 connections on A is a vector extension of the abelian
scheme A with vector part w 4. Recall the isomorphism of Og-modules @ : LieA — R!a,0, introduced in
Section 2.4. Proposition 2.11(2) implies the following.

Theorem 2.20. The vector extension AY is the push-out of E(A) along
Dy : (R'a,0,)Y - (Lied)" = w;.
As a consequence, one obtains a down-to-earth description of how vector extensions are constructed. For
a homomorphism of Og-modules ¢: w; — F, let E,, be the push-out of A" along ¢.
Corollary 2.21. The map Hom(w 4, F) — Ext(A, F), @ > [E,] is the inverse of (D) ®@idp) o Ap/s.

Observe that the affine bundle underlying E,, is IP(F,,) \ P(a*F), where (%) is the push-out of (Ux)
along ¢.

3. Preliminaries on Tate-Raynaud uniformization
Let K be a complete non-trivially valued non-Archimedean field and R its ring of integers.

3.1. Raynaud’s generic fiber of a formal abelian scheme

Let S be an admissible formal R-scheme, % a formal abelian scheme over the formal R-scheme S, 9% its
dual and 2y the Poincaré bundle on B x g 9. As customary, Raynaud’s generic fibers of formal schemes
are referred to by straight letters (as opposed to curly ones for formal schemes). More explicitly, let S, B and
B be Raynaud’s generic fibers of S, 3 and 9. Let % be the line bundle on B x g B deduced from Z%g. The
K-analytic space B represents the functor associating with a S-analytic space the group of isomorphism
classes of homogeneous line bundles on B x g S’. Moreover, the universal object is the line bundle £5 on
B x B (see [BLII, Proposition 6.2]). Let f: B— S and f: B — S be the structural morphisms. For an
S-analytic space S’ — S and morphisms b: S’ — B, b: $’ — B of S-analytic spaces, let

be the line bundle on S’ obtained by pulling back the Poincaré bundle 5 on B x g B along the morphism
(b,b): S’ > B xgB.
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3.2. Datum of a toric extension

Let A be a free abelian group of rank equal to that of A, Ag the constant S-analytic group with value
A and T the split S-torus with group of characters A. From now on suppose that S is connected, so that
sections of the morphism Ag — S are naturally in one-to-one correspondence with elements A and will
be henceforth identified with those. Let ¢: Ag — B be a morphism of S-analytic groups, and consider the
extension €: E — S of the proper K-analytic group B by the torus T determined by ¢:

0—T—E-B—0
The extension E is described as follows. For an S-analytic space S’, an S’-valued point ¢ of the S-analytic

space E is the datum of

e an S’-valued point b = p(g) of B and,
e for ¥ € A, a trivialization (g, ¥)g of the line bundle LB,b,e(x)) on S'.

Moreover, the trivializations are required to satisfy the following compatibility: for ¥, ¥’ € A,

<g,)E + )Z/>E ={(&X)F ®<3'?E,>E’

where the equality is meant to be understood via the isomorphism

(3.) ZB,(0.c(x) @LB, b)) = LB(b.c (¥ +4))
induced by the implied rigidification of the homogeneous line bundle Z5.

3.3. Dual datum

Let A be a free abelian group of finite rank, Ag the constant S-analytic group with value A, T the split
S-torus with group of characters A and i: Ag — E a morphism of S-analytic groups which is a closed
immersion. See the abeloid variety B as the dual of B; then the group morphism ¢ = poi: Mg — B
determines an extension E of the proper S-analytic group B by the torus T:

p

0—T-—E-—>B—0.
Just to fix notation, for an S-analytic space S’, an S’-valued point ¢ of E corresponds to the datum of
e an $'-valued point b = j(§) of B and,
e for x € A, a trivialization (), §)j of the line bundle Ly, (c(x)b) OM S’.

As before, the trivializations are subsumed to the relation, for x, x’ € A,
X+ 1.9 =W Or-

Now, for ¥ € A, by the symmetry of the Poincaré bundle, there is a unique S-valued point i(¥) of E such
that, for y € A,

K HX))E = i), X -

This defines an injective morphism of S-analytic groups 1: Ag—E.
In an attempt of unburdening the (already overwhelming) notation, in what follows Ag is identified with
the image of 7, and the subscript E is dropped from the pairing {—, —)g, and similarly for Ag, ¥ and (—, —).

3.4. Quotient

Since the subgroup Ag is closed (hence fiberwise discrete) in E, the (topological) quotient A := E/Ag
exists. Moreover, assume that the structural morphism a: A — § is proper. Under these working hypotheses,
the bilinear pairing (—, —) on A x A is non-degenerate, the subgroup Ag is closed in E, the quotient
A= E//V\S exists, and the structural morphism d: A — S is proper (see [BLI1, Proposition 3.4]). Let
u: E— Aand ii: E— A be the quotient maps. The situation is summarized in the following diagrams:
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Ag Asg

S N Y
I Js
4, A

3.5. Coherent sheaves on the quotient

Descent of modules along the morphism u# can be restated in terms of Ag-linearizations. More precisely,
the datum of a coherent 64-module is equivalent to that of a coherent Og-module V endowed with a
Ag-linearization

A prgV— "V,
where o,prp: Ag Xxg E — E are, respectively, the restriction to Ag xg E of the group law of E and the
projection onto the second factor. Quite concretely, the group Ag being constant, the datum of a Ag-
linearization of a coherent Og-module V boils down to that, for x € A, of an isomorphism of Og-modules

Ay: V—s tr; V,
where tr, is the translation by x on E. Additionally, the collection of isomorphisms A, is required to fulfil
the following compatibility, for y, x'eA:

AX""X’ = tr; /\X/ e} /\X.
3.6. Homogeneous line bundles

Owing to [BL91, Theorem 6.7], given a homogeneous line bundle L on A, its pull-back u*L on E is
isomorphic to p*M for some line bundle M on B. Moreover, the natural rigidification

prip"M®pr; p*™M — ppp™M,
where pp is the group law on E, is equivariant with respect to the Ag-linearization A on p*M induced
by the isomorphism u*L =~ p*M. It follows that the Ag-linearization A can be expressed as the datum of
isomorphisms, for x € A,
Ay p*M — tr;p*M, s—s®r(x),
where the isomorphism try p*M =~ p*M ® e¥c(x)*M coming from the homogeneity of M is taken into

account (recall that ¢ is the structural morphism of E) and r is a trivialization of the line bundle ¢c*M on Ag.
What is more, the trivialization r must satisfy, for x, x’ € A, the relation

r(x)®r(x") =r(x +x'),

where, as is customary at this stage, the above equality is meant to be understood via the isomorphism
c(X)*M®c(x")*M = c(x + x')*M given by the rigidification of M.

3.7. Duality

By [BLI1, Theorem 6.8] the S-analytic group A represents the functor associating with an S-analytic
space S’ the set of isomorphism classes of homogeneous line bundles on A x g S’. Furthermore, let £, be
the Poincaré bundle on A x g A. According to loc. cit., there is a (necessarily unique) isomorphism of line
bundles

& (u )" Ly —> Lp = (p,p)* Ly
on E x g E compatible with the implied rigidifications of the homomogeneous line bundles %4 and %p. The
isomorphism & endows the line bundle £ with a (A x /V\) s-linearization A, which can be described as
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follows. For characters x € A and ¥ € A, an S-analytic space S’ and S’-valued points x of E and % of E, the
isomorphism of Og/-modules
AGean o)t ZE 0 = LE(ra+1)

induced by the linearization A is

(3-2) v (6 0 @0 X0p) ® (X, X ®v).

In order to make sense of (3.2), observe that (x, X ) is by definition a section of the line bundle Z . y),
while (x, X is a section of the line bundle L (, ;) and (x, X )r ®@{X, X g is seen as a section of the line
bundle £ (y, ) via the isomorphism of Og/-modules

ZE,(x0) OZLE,(x,1) = LE,(x+1.7)

induced by the rigidification of the homogeneous line bundle <. Arguing similarly, (x, %)z ® v is a section
of line bundle &g (), so that the right-hand side of (3.2) is the section of the line bundle &g (v ¢ 7)
via the isomorphism of Og/-modules

L (x+2,70) O LE (x+x,%) = LE (x+x,547)-

4. The universal vector extension of an abeloid variety
Let K be a non-trivially valued complete non-Archimedean field and S a K-analytic space.

41. The canonical extension

4.11. Definition.— Let A be an abeloid variety over S, that is, a proper and smooth S-analytic group
with (geometrically) connected fibers. Suppose that the functor associating with an S-analytic space S’ the
set of isomorphism classes of (fiberwise) homogeneous line bundles on Ag/ is represented by an abeloid
variety A over S. For instance, this is the case if S is a K-rational point (see [Liitl6, Corollary 7.6.5]) or if A
admits a uniformization as the one described in Section 3 (see [BLI1, Theorem 6.8]). Under this assumption,
translating the arguments of Section 2 into the rigid analytic framework permits one to define the canonical
extension (U,) on the abeloid variety A and the moduli space A" of rank 1 connections on A.

4.1.2. Canonical extension on the universal cover.— From now on, and up until Section 4.6, the abeloid
variety A is supposed to admit a uniformization as the one described in Section 3. We borrow notation
introduced therein and consider the canonical extension (Ug) on (Raynaud’s generic fiber of) the formal
abelian scheme B.

Definition 4.1. The pull-back of differential forms along the morphism p: E — B induces a homomorphism
of Og-modules dp: wy — wg. The short exact sequence of Og-modules

(CU,E) 0—>£*a)g—>‘u5—>®g—>0

obtained as the push-out of short exact sequence of Og-modules p*(Up) along dp is called the canonical
extension of Of.

4.13. Alternative description.— To perform ‘explicit’ computations, it is often useful to have at hand a

down-to-earth expression for Ug, similar to that in Remark 2.7. Let X = A, B, E and, respectively, X = A,
B,E. Let X; = Al, By, E; be the first-order thickenings of X, and

lxlXX5X1—>XXSX, T(X:XXSX1—>X,
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respectively, the closed immersion and the projection onto the first factor. With this notation, the considera-
tions in Remark 2.7 furnish isomorphisms

Up = a3 La, Up = TR 13 L,
where &4 and &5 are, respectively, the Poincaré bundles on A x g A and B xg B. Recall the isomorphism

& (ui)*Lp —> Lp = (p,p)* Ly
of line bundles on E xg E considered in Section 3.7. By definition, the canonical extension U is the
push-forward along the morphism 7¢ of the line bundle :;%r on E xg Ep:

U = 1p 15 L.
Pushing forward the isomorphism ;& along the map 7f yields an isomorphism of Of-modules
TElp&: Uy — Up.

4.2. Linearization of the canonical extension

By means of the isomorphism u*U, =~ Ug described above, the canonical extension Ug acquires a
natural Ag-linearization. The task undertaken here is to give an explicit expression for it. Unfortunately, this
point is as crucial as dreadfully technical.

4.2.1. — Describing the Ag-linearization of the line bundle (}Zf is easily achieved. Indeed, such a
linearization is the pull-back along the morphism i of the (A x /v\) s-linearization of the line bundle &. Let
j: E; — E denote the closed immersion and, for x € A, consider the trivialization {y, j) of the line bundle

ZLE,(0f) = (X' idé1>* 15 Le

on E;. Evaluating (3.2) at ¥ = 0, x = idg and % = J shows that the Ag-linearization of the line bundle 3 <
is given, for x € A, by the isomorphism

*
(4.]) 1 Lg — (trx,idél) 5 LE, v— v Q)

where tr, is the translation by x on E. To make sense of the formula, notice that the homogeneity of the
line bundle 1 Zf furnishes an isomorphism

(4.2) (try,id) “iFLE = 3LE @ 1L (1)
where ¢1: E x E; — Ej is the projection onto the second factor.

4.2.2. — The Ag-linearization of the unipotent bundle U is somewhat trickier to come by. Rather
formally, for x € A, the isomorphism Ug — try U is just the push-forward of the isomorphism (4.1) along
the Ag-equivariant morphism 7tg. The key observation (see Proposition A.2) is that the isomorphism (4.2)
becomes, after pushing forward along 7tg, an isomorphism of Og-modules

tl’; Up =~ Ug +g ¥ x* Up.

(Notice that both the vector bundles U and £* x* U are extensions of O by *wg; thus their Baer sum is
well defined.)

Accordingly, the tensor product in (4.1) is now replaced by a ‘sum’. To be more precise about what
this possibly means, recall how the Baer sum of the extensions (Ug) and (¢* x*UE) is constructed. First,
consider the Og-submodule

VU De*x  UE
made of pairs (v, w) whose components have same projection in Og. The Og-module V is an extension of
Op by ¢*(w; @ wg), and the Baer sum in question is its push-out along the sum map wz @ wi — wp. For
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a pair (v,w), the aforementioned ‘sum’ v + w is the image of (v,w) in Ug +p * x*Ug. Summing up, we
proved the following.

Proposition 4.2. With the notation above, the A -linearization of the unipotent bundle U is given, for x € A,
by the isomorphism
(4.3) Up — tryUp, v—v+q((v).{X.]),
where q: Ug — O is the projection in the datum of the extension (Ug).
The meaning of the preceding formula is unveiled by the following.
Remark 4.3. The equality Up = 1p, 1 ;L implies
X*Up = &1L (1))

where &, : E; — S is the structural morphism. By means of the preceding, the trivialization (x, j) of the line
bundle Zg (,,) can be seen as a section of the vector bundle x*Ug on S. Moreover, the sum in expression
(4.3) does make sense for the following reason: the projection in Og = g (, ¢ of the section (x, j) of the
extension x*Ug is (x,¢) = 1 (where ¢ is the neutral section of E); thus the sections v and q(v).(x, j) have
equal projection in Og.

4.3. Universal cover of the universal vector extension

Definition 4.4. The universal cover of the universal vector extension A is
E*:= P(Up) \P(e*wp).

Remark 4.5. When S is a point, the name ‘universal cover’ is well deserved as the topological space E is
contractible (see Proposition 4.15) and comes with a covering map E? — A! (see Theorem 4.6).

Let E; be the first-order thickening of E along the neutral section and j: E, — E the closed immersion.
As explained in Remark 4.3, for x € A, the trivialization (x, j) of the line bundle Zf (, ;) on E, defines a
section of the vector bundle x*Ug on S. Moreover, the projection of (x, j) in Og is 1; thus the section (x, J)
defines a splitting of the short exact sequence x*(Ur). Therefore, x, ) defines an S-valued point x? of the
universal cover Ef. Let

i As — B, = xti= (o)
be the so-defined morphism of S-analytic spaces. For x € A, the projection of x? in E is by definition x;
thus the morphism i% is a closed immersion. The isomorphism of Og-modules u* U, =~ U introduced in
Section 4.1.3 induces an isomorphism of E-analytic spaces A" x 4 E = Ef. It follows that EY is naturally
endowed with a structure of S-analytic space in groups and the natural morphism of S-analytic spaces

ub: Ef — A"

is a group morphism.

Theorem 4.6. The map i’ is a group morphism with image the kernel of u®; that is, the following sequence of
S-analytic groups is short exact:

0— Ag > EE 2 A0,
Proof. The group law on the affine bundle A% = P(U4)\IP(a*w ;) is given by an isomorphism of ©4-modules
Pa: pry Ua +pry Ua — pyUa,

where iy, pry,pry: A xg A — A are, respectively, the group law, the first and the second projection on A.
According to Remark 2.10, or better its rigid analytic analogue, such an isomorphism 14 is the push-forward

along the projection
(AxsAy) x4, (A xsA)) =AxgAx Al — AxgA
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of the isomorphism (id4 x j,idg X J)* @4, where
Pat PITLA@PI Lo — ps%a
is the rigidification of the Poincaré bundle &£, and
(ida xJida xj) : (AxsA;) x4, (A xg A1) — (AxgA) x; (AxsA)

the closed immersion. By design, the group law of E? is constructed from that of A%, That is, the group law
on the affine bundle E¥ = IP(Ug) \ P(¢*wy) is defined by the isomorphism of Of-modules

YE = (uxu) s pri Ug +ppry Ug — pr U,

the isomorphism u* U, = Ug (and with the obvious notation) being allowed for. Thanks to (4.3) and with
the notation therein, the Ag-linearization of the unipotent bundle Ug is the datum of the isomorphisms, for
XEA,

Ay v— v +q(v)x%,

where q: Ug — O is the projection in the datum of the extension (Ug).

Given x, x’ € A, via the isomorphism g, the wanted additivity X'+ x" = (x + )(/)h is seen to be nothing
but the compatibility Ay, = try A,s o A, to which is subsumed the Ag-linearization of U.

This substantially also proves the remaining assertions. Indeed, the affine bundle A% is the quotient of E’
by the natural action of Ag on it induced by the Ag-linearization of Ug. Moreover, from this point of view,
the map ul is just the quotient morphism, and the above considerations show that the action of Ag on E% is
described, for x € A, as the translation by x!. This amounts to saying that the sequence of S-analytic groups

it i
0— Ag LLET L AT
is short exact, thus concluding the proof. g

4.4. A computation on toric bundles

The next task is acquiring a better understanding of the map i®. This is done via a computation on
toric bundles whose proof is clearer when stated in a broader generality. So let us momentarily reset our
notation, and let X be a separated S-analytic space, A a free abelian group of finite rank 1, A — Pic(X),
X — L, a group homomorphism and P the X-analytic space whose points s with values on a X-analytic
space f: X’ — X form the set of data, for x € A, of a trivialization (x,s) of the line bundle f*L,. Moreover,
the trivializations above satisfy, for x, x’ € A, the relation®

(4.4) Q6s)® sy ={x +x')s).

Let p: P — X be the projection. The split torus T over S with group of characters A acts naturally on P by
the rule defined, for an S-analytic space S’, S’-valued points s of P and ¢ of T and a character x € A, by

otsy = x(1)<x,s).

Let u: S — P be a morphism of S-analytic spaces, P; the first-order thickening of P along the section
u and j: P, — P the closed immersion. To make the notation more flexible, given a finite morphism of
K-analytic spaces Z — S and a coherent 6z-module F, let us denote again by F its push-forward onto

(4)Several abuses of notation have been perpetrated here. Rather than isomorphism classes of line bundles, one should fix, for
X € A, aline bundle Ly and, for x, x’ € A, isomorphisms Ly ® L,/ = L, 1 ,+ through which the formula {x,s)®{x,s) = {x +x',s)
ought to be understood.
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S. Consider the S-valued point x = p(u) of X, the first-order thickening X; of X along the section x, the
closed immersion i: X; — X and the following commutative and exact diagram of ©g-modules:

0 0 0

l | l

0 — x*Qy  ®x*Ly ——— i*Ly ——— x*L; — 0

Y

(4.5) 0 — u*Qp g ®x*L, — j*p*Ly —— x*L; — 0

| | |

0 — w*Qpy @x* Ly — j*p*L,/i*L, —— 0

| |

0 0.

The map i*L, — j*p*L, is given by adjunction with respect to the morphism p;: P; — X; induced
by p. The isomorphism T xg P — P X x P given by the action of T yields an isomorphism of ©5-modules

u*Qllj/X ~ e*Q%w/S =: wr, where e is the neutral section of T. Consider the homomorphism

q: j*p*Ly — wr®x*L,
defined via the isomorphisms u*Qll,/X®x*LX >~ j*p*L,/i*L, and u*Qll,/X ~ wr.
Proposition 4.7. With the notation above,

(i) =x*E®u,

where z is the coordinate function on G, g and x is seen as a character T — G, g.

Proof. The argument is just a tedious dévissage until reaching the case A=7Z, x =1,X=S5,L1 =05, u =1,
for which the result is substantially trivial.

First step. 'To begin with, reduce to the case A = Z and xy = 1. Consider the X-analytic space P,
parametrizing trivializations of the line bundle L) and the morphism pr, : P — P, sending a point s of P
with values in an X-analytic space X’ to the trivialization {x,s). Then, by design, the trivialization (y, j) can
be seen as the composite morphism pr, oj: P; — Py. The latter factors through the first-order thickening

Py of P along the section (x,u) = pr, (1), giving rise to the commutative diagram

p—L-p

PTy1 l lprx
Jx

Py 2 Py,

where j, is the closed immersion and pr, ; the factorization of pr,. Upon letting p,: P, — X be the
projection, the homomorphism g, : j¥pyL, — wg, ®x*L,, defined analogously to g, fits in the commutative
diagram of Og-modules

. q
jipiLly —— pr(u)*wg, ®x*Ly

l 1d)(®id
J*p*Ly i wr @Xx*L,,

where the leftmost vertical arrow is given by adjunction with respect to the map pr 0l and the rightmost one

by pull-back of differential forms along the character x. In particular, it suffices to show that the trivialization
of the line bundle L, given by the P, ;-valued point j, of P, is mapped to % ®u by q,.
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Second step. Suppose A = Z and x = 1. To simplify notation, simply write L instead of L. The aim of
this second step is to reduce to the case X = S, L = 65 and u = 1. In order to do this, consider the fiber
P, of P at x, which can also be seen as the principal G,,-bundle over S associated with the line bundle
x*L on S. In this case, the identity map of S plays the role of the section x, and the line bundle j*p*L
on P; is replaced by the line bundle 7*x*L on P, 1, where P, ; is the first-order thickening of P, at u and
7t: P 1 — S is the structural morphism. Diagram (4.5) for the principal bundle P, reads more simply as the

following:
0 0 0
H | |
0=——0 x*L x*L 0
l | H
0 — x"Leu QL  —— 7*x*L *L 0

P/S l xl
0— x*L@u*Qllj /s — *x*L/x*L —— 0

| |

0 0,

where x*L — 7,x*L is natural map. The restriction map from P to P, furnishes a homomorphism of
commutative diagrams of Og-modules from (4.5) to the above, matching the entries in the obvious manner.
In particular, the projection g,: 77*x*L — x*L ® wg, defined similarly to g sits in the following diagram:

Strictly speaking, the above argument permits one to reduce to the case X = S and to a line bundle L
on S. However, by means of the isomorphism Og =~ L induced by the given trivialization u, one is finally led
back to the case of the trivial line bundle on S and u = 1.

Third step. Suppose X = S, L = Og and u = 1. Let z be the coordinate function on P = G,,. The
Os-algebra Op, is then identified with Og[z]/(z — 1)? and its ideal generated by z — 1 with the O5-module
wg,,, so that

Os[z]/(z—1)* =05 D wg,,-

In these terms, the map g is just the projection onto wg, . Moreover, and tautologically enough, the closed
immersion j: P; — P corresponds to the invertible function z on P;. Writing z = 1 + (z — 1) shows that the
image of z in wg, coincides with that of z— 1, which in turn corresponds to the invariant differential % O

4.5. Relation with the universal vector hull of the fundamental group

In this section the map 1 7 is related to the universal vector hull of the group A. To define the latter, recall
that the group A is by definition the lattice of characters of the torus T. Given x € A, let x: T — G5
again denote the corresponding character.

Definition 4.8. The universal vector hull of Ag is the S-analytic group morphism
*dz

Op: T—>W(wT), X— X 5

where z is the coordinate function on G,, and % the corresponding invariant differential form.
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Lemma 4.9. For a basis x1,..., X, of A, where n = rk A, the sections O (x;) form a basis of the vector bundle
wf on S.

The map 0, deserves the name ‘universal vector hull’ because of the following property: given a vector
bundle E over S and a morphism of S-analytic groups f: As — V(E), there exists a unique homomorphism
of Og-modules @: wy — E such that f = ¢ o 0; see [MM74, Example 1.3 a) and Proposition 1.4]. Now,
the canonical extension (Ug) is by definition the push-out along the injective map dp: wy — wg of the
extension p*(Up). The quotient U /p*Up therefore sits in the following commutative and exact diagram
of Og-modules:

0 0 0

l ! l

0 —> e*wy — p*Uy — Op —> 0

l |

H
(4.6) 0 — e*wg WUg OF 0

l | |

00— 8*(4)T — %E/p*cuB — 0

| !

0 0.

The isomorphism e*wy = Ug/p*Up allows one to define a projection q: Ug — €*wy. In particular, for
X € A, this defines a homomorphism of Og-modules g: x*U g — wy. Recall that x¥ = (x,j) can be seen as
a section of x*Ug (see Remark 4.3).

Proposition 4.10. For x € A we have q({x,])) = Op(x).

Proof. Up to transliteration, the statement is a special case of Proposition 4.7. Needless to say,

the S-analytic space therein X plays the role of B,

o the principal bundle P that of E,

e the line bundle L, that of &g (;(y),iq) and

e the section u that of (x, &), where & is the neutral section of E.

For x € A the section {y, j) corresponds via this dictionary to the trivialization {x, /). Nonetheless, the
reader might still be lost in translation while trying to see why diagram (4.5) reads as (4.6). To remedy
that, first, notice that in the current framework, the line bundle é*%p (.(;)q) is always understood to be
trivialized via (x,¢€). This should elucidate the omnipresence of the line bundle x*L, as opposed to the
absence of the corresponding line bundle é*%p (.(;)id)- Second, the statement of Proposition 4.10 revolves
around the vector bundles U and p*Up on E (rather, their fibers at x), whereas in Proposition 4.7 the
line bundles j*p*L, and i*L, are considered (better, their push-forward onto S). However, the line bundle
j*p*L translates to £ (, 1) and, as already observed in Remark 4.3, the push-forward of £ (, ;) onto S
coincides with x*Upg. Along a similar line, the vector bundle i*L, on S plays the role of x*p*WUg. Third, in
diagram (4.6), there is nothing whatsoever like u"‘Q}J /X This is because the projection g in the statement

of Proposition 4.7 is constructed by further taking into account the isomorphism wp = u*Qll, /X already
implied here.

Diagram (4.6) permits one to define a morphism of S-analytic groups
pr,: Ef — V(wy).
Unwinding the definitions, Proposition 4.10 is rephrased as follows.

Theorem 4.11. For x € A we have pr,(x*) = 05 (x).
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Example 4.12. Theorem 4.11 is more eloquent when A is an abeloid variety over K with totally degenerate
reduction, that is, A = T/A. If T is the torus with group of characters A and 6, : A — V(wy) the universal
vector hull of A, then

AP = (T x V(03))/{(x,04(x)) : x € A}.

4.6. Universal cover of affine bundles

4.6.1. Extensions.— Let F be a vector bundle over S, ¢4: w; — F a homomorphism of 65-modules and
(F4) the short exact sequence of Og-modules obtained by push-out of the canonical extension (U,) along
@4. Via the isomorphism Ug =~ u* U, obtained in Section 4.1.3, the short exact sequence of Og-modules
(Fg) := u™(F4) is seen to be the push-out of (Ug) along the homomorphism of O5-modules

dV—l
(PE:“)E(”) W Pa F,

where dii: w; — wjp is the isomorphism given by pull-back of differential forms along the étale morphism 1.
On the other hand, by its very definition, the short exact sequence (Ug) is itself the push-out of p*(Up) along
the K-linear homomorphism dp: wy — wp. Thus, the preceding considerations furnish an isomorphism
(Fg) = p*(Fp) of short exact sequences of Og-modules, where (Fg) is the push-out of the canonical
extension (Upg) along the homomorphism of O5-modules

dp PE
Qp: Wp W F.

4.6.2. Affine bundles.— Consider the affine bundle 774: V(%#,) — A and the morphism of S-analytic
spaces

Dy: AY— A(F,)

induced by the homomorphism (U4) — (F4) of short exact sequences of ©4-modules given by the definition
of (¥4) as a push-out. The affine bundle A(%,) carries a unique S-analytic group structure for which the
morphism @, is a group morphism. The pull-back V(%4) x4 E to E is by definition the affine bundle
1t A(Fg) — E associated with the extension (Fg). By transport of structure, the E-analytic space A (%)
is an S-analytic group such that the natural morphism

Op: Ef — A(Fg)

deduced from @, is a group morphism. The natural action of Ag on V(%) given by the natural Ag-
linearization of % is described, for x € A, as the translation by the point ®f(x?), where x? is the S-point
of the universal vector extension E7 considered in Section 4.3.

Now, the isomorphism of short exact sequences of Og-modules (Fg) = p*(Fg) permits one to identify
the affine bundle A(Fg) with the fibered product A(%Fg) x g E, where 7tg: A(Fp) — B is the affine bundle
associated with (%g). This identification respects the natural S-analytic group structures involved and will
be implied in what follows. Let q: A(Fg) — A(Fg) be the projection, so that the following square of
K-analytic space is Cartesian:

A(Fg) —— A(Fp)

T g
P,

Let Cp be the cokernel of ¢p. Arguing as for the map pr,: E* — V(wg) permits one to define a
morphism of S-analytic groups pr,, p: A(Fp) — V(Cp). Let ¢r: wy — Cp the unique map fitting in the



24 M. Maculan

following commutative and exact diagram of homomorphism of Og-modules:

dp

0 W W [z 0
(4.7) 1@3 1(/15 l(PT
0 —— Im (PB F CB 0.

The construction of (Fg) as a push-out of (Ug) along @ implies that the diagram of S-analytic spaces
E’ V(wy)

qu)E lpru,E

A(Fg) 2 V(Cp)

is commutative, where the upper horizontal arrow is the projection considered in Theorem 4.11 and
pr, g :=pr,poq: A(Fg) — V(Cp). These considerations together with Theorem 4.11 prove the following.

Corollary 4.13. With the notation above, for x € A we have
pr, 5(Pe(x") = (04 (X))

4.6.3. Contractibility of the universal cover.— In this final section the contractibility of the space A(Fg)
above is addressed when S is a K-rational point.

Lemma 4.14. Let X be a smooth connected admissible formal R-scheme with Raynaud’s generic fiber X := X,,.
Then, for any closed analytic subspace of Z < X, the open subset X \ Z is contractible.

Proof- Let h: X x [0,1] — X be the deformation retraction onto the skeleton Sk(X) of & given by [Ber99,
Theorem 5.2]. Since the formal scheme X is smooth connected, the skeleton Sk(X) is a singleton, namely
the unique preimage of the generic point of X under the reduction map X — &. According to item (v)
of loc. cit., for 0 <t < 1 and x € X, the local ring at the point h(x,t) is a field. Thus the only closed
analytic subspace of X containing h(x,t) is X itself. In particular, the point h(x, t) belongs to X \ Z, and
the statement follows. U

Proposition 4.15. The topological space A(Fg) is contractible and is a universal cover of A(Fy).

Proof- Let F be the image of the R-module wg, via the map ¢p: wz — F and %, the push-out of the
canonical extension (Ug) on B along wg, — Fy. For x € A, the line bundle £y = LBBx{¢(y)) extends to
a line bundle £g » on A. Consider a basis X1,..., X, of A and the smooth connected formal R-scheme

XL =P (Fo) xg P (O DLy, ) X+ x5z P (O DLy, ).

Now A(Fg) is the complement of a Cartier divisor in X := X, ; thus by Lemma 4.14 it is contractible. Since
A(F,) is the quotient of A(Fg) by the (free) action of A, the statement follows. O

Applying this with F = w; and ¢4 = id gives that E 7 is contractible and E — A% is a universal cover,
which justifies the name universal cover for E”.

Appendix. Connections

A.l. Vector bundles on first-order thickenings

Let X and X; be schemes endowed with a closed immersion s: Xy — X; and a morphism f: X; — X
such that f os = idy . Suppose that the sheaf of ideals I := Ker(Ox, — Oy, ) is of square zero. For a
quasi-coherent Oy -module F, consider the short exact sequence

(F) 0—>IF —>F—>F/IF — 0.
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The sequence of Ox -modules
f+(F) 0— fu(IF) — f,F — s*F — 0

obtained by pushing forward (F) along f is short exact because the morphism f is affine (affineness only
depends on the underlying reduced structure). Pushing forward a homomorphism of Ox, -modules ¢: F — F’
yields a homomorphism of short exact sequences of Ox -modules f.@: f,(F) — f.(F'). The so-defined

functor
short exact sequences

{6x, -modules} — { } F— fi(F)

is faithful. Moreover, an isomorphism of Ox, -modules f*s*F — F induces a splitting of the short exact
fi(F).

Proposition A.l. The bijection Hom(f*s*F,F) — Hom(s*F, f,F) given by adjunction for a vector bundle F
on X1 induces a bijection

isomorphisms p: f*s*F — F | _ [ splittings of the short
such that s*p = idg«p -

of Ox,-modules

exact sequence f,(F)

Proof. The only thing to show is that, for a splitting ¢: s*F — f,F of the short exact sequence f,(F), the
homomorphism @: f*s*F — F obtained by extending ¢ Ox, -linearly is an isomorphism. To check this,
one may reason locally on X, and choose a splitting f,.F =~ s*F @ s*F ® f,I of the short exact sequence
f+(F). This allows for the identities [F = I ® F and f,(IF) = f,I ® s*F, which hold, respectively, because
F is flat and because the ideal I is of square zero. Via these identifications, the splitting ¢ is of the form
v+ (v,&(v)) for a homomorphism of Ox-modules ¢: s*F — s*F ® f,I. Write a section of f*s*F as (v,v’)
for sections v of s*F and v’ of s*F ® f,I; then the map @ is defined as (v,7v') — (v,&(v) +v’), where the
term €(v’) vanished because the ideal I is of square zero. Such an expression clearly defines an isomorphism,
which concludes the proof. U

A.2. Tensor product and Baer sums

For simplicity, assume X; to be the first-order thickening of V(E") along its zero section s, where
E is a vector bundle on X, and V(EV) the total space of its dual. Concretely, the scheme X; is the
spectrum of the Ox -module Ox @ E endowed with an Oy -algebra structure defined by the formula
(a,v)-(b,w) = (ab,aw + bv). In what follows, it will be important to distinguish whether tensor products are
taken with respect to Ox, or Ox, . To mark the difference but at the same time make the notation lighter, for
i = 0,1 and Ox,-modules V and V', write V ®; V' instead of V ®¢, V. For a vector bundle V on Xj, set
Vo := sV, so that the vector bundle f,V on X is an extension of \1/0 by Vo ®g E. In order to make sense
of the following statement, observe that, for vector bundles V and V' on Xj, the Ox,-modules 1V ®g Vé,
f+V'®g Vy and £, (V ®; V') are all extensions of Vy®, Vj by E®q Vo ®g V.

Proposition A.2. The extension f,(V ®, V') is the Baer sum of £,V ®q V;; and f,V' ®q Vj.

Proof. Unfortunately, the argument is quite clumsy and goes through the explicit construction of the Baer
sum in question. To recall it, let p: f,V — V; and p’: f, V' — V| denote the homomorphisms given by
restriction to X, and consider the Ox -submodule W < (V ®y f. V') @ (f.. V ® Vj) made of pairs whose
components have the same image in V ® V via, respectively, p ®idy; and idy, ®p’. The vector bundle
W on X fits into the following short exact sequence of Ox -modules:

(W) 0— (E®q Vo® Vg)®* — W — Vo & Vj — 0.

The Baer sum mentioned in the statement is the push-out of the short exact sequence (W) along the sum
map (E®y Vo® V) 19?2 - E®) Vo®o V. This being said, consider the natural epimorphism of Ox,-modules
Q: f:V® fx V' — f.(V®; V') given by universal property of tensor product. The vector bundle E, seen
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as a sheaf of ideals of f,Ox , is of square zero; hence Ker ¢ = (E® Vp) ® (E ® V). The right-hand side
of the previous equality is seen to also be the intersection of the kernels of the homomorphisms p ®idy, v
and id¢, y» ®p’. That is, upon setting

Y= (pRidy,yr,idf v ®p'): L Vo iV — (Vo®0o £ V) ® (£ V ®g V),

the homomorphisms ¢ and ¢ share the same kernel. Moreover, the identity
(p®idyy) o (idy, v ®p') = p®p’ = (idy, ®p") o (p®idy, )

of maps f,V ® fi. V' — Vy®p V}; implies that the image of i is W. Consequently, the homomorphism
¢ factors uniquely through an epimorphism ¢: W — f,(V ®; V') of Ox -modules. The kernel of ¢ is
contained in that of p ® p’, and the homomorphism ¢ acts on the quotient

Ker(p®p') K+K' = K K’

= S = (E®q Vo ®g V{)®?
Ker ¢ Kok Kk Oxarw ~ EG0 Voo Vo)

as the sum map, where K and K’ are the kernels of the homomorphisms p ® idy, v and idy, v ®p’,
respectively. In other words, the homomorphism ¢ fits into the following commutative and exact diagram of
Ox,-modules:

0 —— (E®q Vo ® V§)®? w Vo®o Vj —— 0

Jom I |

0 E® Vo® V, (V@ V) —— Vy® Vg — 0,

where the upper row is the short exact sequence (W). To put it differently, the lower row is the push-out of
the upper one along the sum map; that is, the extension f,(V ®; V') is the desired Baer sum. O

A.3. Connections

Let S be a scheme, f: X — S a separated morphism of schemes, Ay: X — X x X the diagonal morphism
and I := Ker(Ox . x — Ax,0Ox) its augmentation ideal. With this notation, the sheaf of differentials (denoted
by Q]l( or Q%(/S) relative to f is the Ox-module AYI. Let Ay ; be the first infinitesimal neighbourhood
of the diagonal, that is, the closed subscheme of X x¢ X defined by the sheaf of ideals I?. Fori=1,2,

let p;: Ax; — X be the morphism induced by the ith projection. The Ox-module }; (= P1s0a,, is
called the sheaf of first-order jets. Fach p; induces a homomorphism of f ~!6g-algebras j;: Ox — ffl. The

homomorphism of f~!6g-modules dr:i=jr—j1: Ox — le[ is called the canonical derivation.

Definition A.3. A connection on a vector bundle F on X is an isomorphism V: p{F — pJF of vector
bundles over Ay ; whose restriction to the diagonal A}V is the identity of F.

A 4. Atiyah extension

The kernel of the restriction map Op , — i,0x, where i: X — Ay is the closed immersion induced by
the diagonal, is by definition of square zero. This allows one to adopt the notation introduced in Section A.1
with Xo = X, X; = Ay 1, s =i and f = p;. Pushing forward the O ,-module p5F along p; yields the short
exact sequence

(%7 (F)) 0— Q}®F — J}(F) —F —0

of Og-modules, where jfl (F) := p14p>F is the Ox -module of first-order jets of F. Applied to the Op  -module
p>F, Proposition A.1 implies the following.
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Proposition A.4. The bijection Hom(p{F,p5F) — Hom(F, })%/S (F)) given by adjunction induces a bijection

splittings of the short
{ connections on F } >~

exact sequence (j)%/s (F))

Set Aty (F) := Hom(E, ffl (F)). The short exact sequence of Ox-modules
(At (F)) 0 — Qf ®&ndF —> Ats(F) — ndF — 0

obtained as the tensor product of (¥ ]} (F)) with FY is called the relative Atiyah extension of F. When F is
a line bundle, €ndF =~ Oy, and splittings of the Atiyah extension (Ats(F)) are in bijection with those of
(jfl (F)), thus with connections on F.

A.5. Infinitesimal rigidifications

Let pry,pr,: X xg X — X be, respectively, the first and the second projection and x: S — X a section of
the structural morphism f: X — S. Let X be the first-order thickening of X along x, 1: X; — X the closed
immersion and 7w = f o1: X; — S the structural morphism.

Definition A.5. An infinitesimal rigidification of F at x is an isomorphism of Ox -modules p: 7w*x*F — *F
such that x*p is the identity.

Note that if V: p{F — p3F is a connection on F, then the homomorphism of Ox -modules T*V is an
infinitesimal rigidification of F at x. Now, it is possible to give a characterization of infinitesimal rigidifications
similar to that of connections. For, the augmentation ideal of the closed immersion x;: S — X; induced
by x is of square zero. This permits one to employ the conventions introduced in Section A.l1 with Xy =S,
s =x; and f = 7. For instance, if F is a vector bundle, then pushing forward the Ox, -module /*F along 7
yields the short exact sequence

7, (1*F) 0—>x*Q%</S®x*F—>rc*z*F—>x*F—>0
of Og-modules. Applied to Ox, -module :*F, Proposition A.l reads as follows.

Proposition A.6. The bijection Hom (7c*x*F,1*F) — Hom (x*F, 10, 1*F) given by adjunction induces a bijection

{ infinitesimal } N { splittings of the short }

rigidifications of F at x exact sequence 7, (1*F)

Let 7: X; — Ax,; be the morphism determined by pj o7 = xom and p; o7 = 1. Consider the
homomorphism ¥: p5F — 7,1*F of Op  -modules given by adjunction (note the equality 1*F = t*p5F).
Pushing it forward along the morphism p; gives a homomorphism

mp: (Fh5(F) — prau(iF)

of short exact sequences of Ox-modules. Now, by the definition of 7, the following square is commutative:

Ayi —2 X

Therefore, the short exact sequence py,7,(1*F) of Ox-modules is nothing but the push-forward along the
closed immersion x of the short exact sequence 7, (1*F) of Og-modules.

Proposition A.7. The homomorphism ¢ : x* (j§/s (F)) — 1, (*F) of short exact sequence of Og-modules adjoint
to 10, is an isomorphism.



28 M. Maculan

Proof. The homomorphism : p5F — 7,1 F restricted to the diagonal is the evaluation at x. Therefore, the
homomorphism 7,1 of short exact sequence of Ox-modules is the following commutative diagram:

0

Qy s ®F Fx s (F) F 0

levx ln*lp ler

00— x*x*Q}l(/S@)x*x*F — X, T WF —— x,x*F —— 0,

where ev, is the evaluation at x. The homomorphism ¢, which is the adjoint to 7,1, reads as the
commutative diagram

0 —— x*Q} ;s ®x*F —— x*Fy (F) x*F 0
H o
0— x*Q}(/S®x*F 10, 1" F x*F 0
of Og-modules. The five lemma implies that ¢ is an isomorphism. 0
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