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Abstract. We define derived versions of F-zips and associate a derived F-zip to any proper smooth
morphism of schemes in positive characteristic. We analyze the stack of derived F-zips and certain
substacks. We make a connection to the classical theory and look at problems that arise when
trying to generalize the theory to derived G-zips and derived F-zips associated to lci morphisms.

As an application, we look at Enriques surfaces and analyze the geometry of the moduli
stack of Enriques surfaces via the associated derived F-zips. As there are Enriques surfaces in
characteristic 2 with non-degenerate Hodge–de Rham spectral sequence, this gives a new approach,
which could previously not be obtained by the classical theory of F-zips.
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1. Introduction

The notion of F-zips was introduced by Moonen and Wedhorn in [MW04]. Before starting with the
positive characteristic case discussed in [MW04], let us first look at the characteristic zero case, after [Wed08].

Let X → Spec(C) be a proper smooth morphism of schemes. By general GAGA principles, we can
associate a compact complex manifold Xan to X in a “universal” way (we do not make this explicit here).
Important for us is that the algebraic de Rham cohomology Hn

dR(X/C) of X is isomorphic to the complex de
Rham cohomology Hn

dR(Xan) of Xan. Complex de Rham cohomology computes the singular cohomology of
Xan with complex coefficients, i.e. Hn

dR(Xan) �Hn
sing(Xan,C) �Hn

sing(Xan,Z)⊗
Z
C. Thus, complex de Rham

cohomology comes equipped with an integral structure. The C-vector space given by H1
dR with its integral

structure characterizes, for example, abelian varieties over C (this is called the global Torelli property of
abelian varieties).

We also have a descending filtration C• on this complex vector space Hn
dR(Xan) which is induced by

the Hodge spectral sequence. It is known that this spectral sequence degenerates. Therefore, successive
quotients are computed by the Hodge cohomologies Ci/Ci+1 = Hn−i(Xan,Ωi

Xan). The real structure on
the singular cohomology together with the complex conjugation on C induce an R-linear endomorphism
on Hn

sing(Xan,C). The images of the Ci under this map are again complex vector spaces and induce an

ascending filtration on Hn
dR(Xan) by Di B Cn−i . One can show that Di−1 ⊕Ci = Hn

dR(Xan) for all i ∈ Z.
These data, together with the integral structure obtained via the comparison with the singular cohomology,
endow Hn

dR(X/C) with an integral Hodge structure. The study of integral Hodge structures and their moduli
can be found in [BP96] and leads to the notion of Griffiths’ period domains. The study of these data enables
us to analyze the moduli of geometric objects via linear-algebra data.

These results can be extended to arbitrary smooth proper families in characteristic zero. In characteristic
p > 0, however, we do not have a complex conjugation. But still, we have an analogous structure on the de
Rham cohomology.

Let us fix an Fp-algebra A and a smooth proper A-scheme X. Contrary to the characteristic zero case,
we have a second spectral sequence on the de Rham cohomology, the conjugate spectral sequence. This
spectral sequence endows the de Rham cohomology Hn

dR(X/A) with a second filtration D•. We also have an
analogue of the Poincaré lemma, the Cartier isomorphism. The Cartier isomorphism links the graded pieces
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of the Hodge filtration C• with D•. If we assume that the Hodge cohomologies are finite projective and the
Hodge–de Rham spectral sequence is degenerate, then the successive quotients are isomorphic up to Frobenius
twist; i.e. we have Ci/Ci+1 ⊗A,Frob A �Di/Di−1, where Frob: A→ A denotes the Frobenius endomorphism
a 7→ ap. Putting all of these data together, we have a finite projective A-module Hn

dR(X/A) equipped with
two filtrations C• and D• and isomorphisms ϕi : Ci/Ci+1 ⊗A,Frob A �Di/Di−1. In good cases, generalizing
this by replacing the de Rham cohomology with an arbitrary finite projective module, we get the following
definition.

An F-zip over a scheme S of characteristic p > 0 is a tuple (M,C•,D•,ϕ•), where M is a finite locally free
OS-module, C• is a descending filtration on M, D• is an ascending filtration on M and ϕ• : (gr•CM)(1) ∼−→
gr•DM are isomorphisms, where the index (1) denotes the Frobenius twist. (For an OS-module F , we set
F (1) B F ⊗OS ,FrobS OS .) The associated stack of F-zips is then a rather combinatorical object. Associating
an F-zip to a geometric object, such as an abelian scheme, one can analyze its moduli by analyzing the
moduli of F-zips.

With this method, Moonen–Wedhorn extended results of Ekedahl and Oort on the stratification of families
of abelian schemes in positive characteristic. They defined new stratifications on families of proper smooth
morphisms satisfying certain conditions, which generalized the known results for abelian varieties in positive
characteristic (see [MW04]). By attaching extra structure to F-zips, we can also generalize the theory of
F-zips to the theory of so-called G-zips, defined in [PWZ15]. Goldring and Koskivirta used the theory
of G-zips to construct group-theoretical Hasse invariants on Ekedahl–Oort stratum closures of a general
Hodge-type Shimura variety (see [GK19]). They applied this in different cases to the Langlands program and
proved, for example, a conjecture of Oort.

One major way to associate an F-zip to a geometric object is through its de Rham cohomology. Namely,
the Hodge and conjugate spectral sequences induce two filtrations on the kth de Rham cohomology. If the
Hodge–de Rham spectral sequence degenerates and the Hodge cohomologies are finite projective (and thus
the conjugate spectral sequence also degenerates(1)), the graded pieces are isomorphic up to Frobenius twist,
via the Cartier isomorphism. The hypothesis on the Hodge–de Rham spectral sequence restricts us to a
certain class of geometric objects, which for example include abelian schemes, K3-surfaces, smooth proper
curves and smooth complete intersections in the projective space. But since, for example, the Hodge–de
Rham spectral sequence does not degenerate for supersingular Enriques surfaces in characteristic 2 (see
[Lan95, Theorem 2]), we cannot use the theory of F-zips to analyze their moduli stack.

One possible solution to this problem is going to the derived world. The idea is straightforward. If we
replace the kth de Rham cohomology with its hypercohomology, we get a perfect complex with two filtrations,
and the Cartier isomorphism still applies to the graded pieces.(2) But taking the derived category naively
leads us to problems since we cannot glue in the ordinary derived category. To apply geometric methods, we
want descent on the derived category. This problem is solved by introducing the language of ∞-categories.
So, in particular, the idea of this article is to use homotopy-theoretic methods to analyze derived versions of
F-zips.

A homotopy-theoretic version of algebraic geometry was developed in [TV08]. In the reference, Toën–
Vezzosi worked in the model-categorical setting. They used simplicial commutative rings as a replacement
for commutative rings and presheaves of spaces as a replacement for presheaves of sets (or groupoids). They
defined model structures on those (actually in a more general setting, see [TV05]) and used Grothendieck
topologies (in their setting) to define derived versions of stacks, schemes and affine schemes as fibrant objects
in the corresponding model category. They analyzed certain properties such as geometricity and smoothness,
as well as the cotangent complex. In this context, a derived stack is n-geometric if it has an (n−1)-geometric
atlas by a coproduct of derived affine schemes. This notion allows us to define notions like smooth, flat and

(1)See [Kat72, Proposition (2.3.2)].
(2)See Section 3.1 for the notions of filtrations in the derived category and of graded pieces.
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étale by using the atlas and defining it on the level of animated rings. The notion of higher geometricity
comes into play if one wants to work with stacks that take values in higher groupoids. In [TV07], Toën and
Vaquié gave an important example of a geometric stack, namely the derived stack of perfect complexes. In
[AG14], Antieau and Gepner recalled this fact in detail in the setting of spectral algebraic geometry. This
shows that one can glue perfect complexes and can cover the stack of perfect complexes by affine derived
schemes (in a suitable sense), and therefore the notion of derived F-zips indicated above should also behave
in a similar fashion.

The translation to the world of ∞-categories is rather straightforward using Lurie’s works [Lur09, Lur17,
Lur18]. Since Toën–Vezzosi defined their version of derived algebraic geometry using fibrant objects in
model categories, we get analogous notions if we look at the ∞-categories associated to the corresponding
model categories. Nevertheless, we will recall the definitions and theorems needed in this article from [TV08]
and [TV07] without using much of the model structure and will prove the results purely in the world of
∞-categories. This shows that the definitions and results obtained this way rely not on the chosen model
structure but on the underlying ∞-category.

We will not do this in detail and will be very brief. A detailed discussion about derived algebraic geometry
with proofs and references can be found in the author’s notes [Yay22b].

Derived algebraic geometry. The first section of this paper focuses on reformulating some results of
[TV08, TV07, Lur18] in the language of animated rings. The ∞-category of animated rings AR

Z
is given by

freely adjoining sifted colimits to polynomial algebras. Looking at overcategories for any animated ring A,
we can define the ∞-category of animated A-algebras ARA B (AR

Z
)A/ . The benefit of this definition is that

many questions about functors from AR
Z

to ∞-categories with sifted colimits can be reduced to polynomial
algebras. Animated rings should be thought of as connective spectral commutative rings (i.e. E∞-rings) with
extra structure. In particular, after forgetting this extra structure, we can also define modules over animated
rings (as modules over the underlying E∞-ring). One important example of such a module is the cotangent
complex. This module arises naturally if we want to define an analogue of the module of differentials as the
module that represents the space of derivations.

The underlying E∞-ring of an animated ring is a commutative algebra object in spectra. Thus, we can
define homotopy groups of animated rings and automatically see (with the theory developed in [Lur17])
that we can associate to every animated ring A an N0-graded ring π∗A. Using this, we reduce definitions,
for example, smoothness of a morphism A→ B ∈ AR

Z
to smoothness of the ordinary rings π0A→ π0B

together with compatibility of the graded ring structure, i.e. π∗A ⊗π0A π0B � π∗B. Analogously to the
classical case, we have that for a smooth morphism of animated rings, its cotangent complex (the module
representing the space of derivations) is finite projective. We can upgrade this to an “if and only if” if we
assume that on π0 the ring homomorphism is finitely presented. This does not hold in the classical world; i.e.
a ring homomorphism with a finite projective module of differentials may not be smooth; see e.g. non-smooth
regular closed immersions.

Defining derived stacks is rather straightforward now. Let S denote the ∞-category of spaces (also called
∞-groupoids). We define derived stacks to be presheaves (of spaces) on AR

Z
which satisfy étale descent. One

important class of examples consist of affine derived schemes, which we define as representable presheaves
on AR

Z
. We can also define relative versions, where we replace Z with an animated ring. We will see

that they naturally satisfy fpqc descent. For affine derived schemes, it is easy to define properties by using
their underlying animated rings. To do the same for derived stacks, we will need the notion of n-geometric
morphisms. This notion is defined inductively, where we say that a morphism f : F→ G of derived stacks
is (−1)-geometric if the base change with an affine derived scheme is representable by an affine derived
schemes. A (−1)-geometric morphism is smooth if it is so after base change to any affine. The morphism
f is n-geometric if for any affine derived scheme Spec(A) with morphism Spec(A)→ G, the base change
F ×G Spec(A) has a smooth (n − 1)-geometric effective epimorphism

∐
Spec(Ti)↠ F ×G Spec(A), where
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an n-geometric morphism is smooth if after affine base change, the induced maps of the atlas to the base
are (−1)-geometric and smooth. For a good class(3) of properties P of affine derived schemes, e.g. smooth,
flat,. . . ,(4) we can now say that a morphism of derived stacks has property p ∈ P if it is n-geometric for some
n and after base change with an affine derived scheme, the atlas over the affine base has property p. As in
the affine case, we can relate deformation theory of derived stacks to geometric properties.

We will finish the discussion about derived algebraic geometry with an example of a geometric stack, the
derived stack of perfect complexes. This will become important later on, when we want to look at families of
perfect complexes together with extra structure, i.e. derived F-zips.

Theorem 1.1 (cf. Theorem 2.57). The derived stack

Perf : ARR −→ S

A 7−→
(
Modperf

A

)≃
is locally geometric and locally of finite presentation.

Derived F -zips. The second part of this article focuses on derived F-zips. To be more specific, we first
define derived F-zips and then analyze the geometry of their moduli spaces. The definition of derived
F-zips is influenced by the natural structure that arises on the de Rham hypercohomology for some proper
smooth scheme morphism X → Spec(A). We see, for example, that the Hodge filtration is just a functor
Z

op→D(A)perf that is bounded. This is what we call a descending filtration. With this notion, we define a
derived F-zip over A ∈ AR

Fp
, for some positive prime p, to be a tuple (C•,D•,φ,ϕ•), where C• is a bounded

descending filtration, D• is a bounded ascending filtration of A-modules, φ : colim
Z

opC• ∼−→ colim
Z
D• is an

equivalence and ϕ• : (gr•C)(1) ∼−→ gr•D are equivalences. As we vary A, this construction induces a derived
stack (even a hypercomplete fpqc sheaf). One of our main results is that this stack is locally geometric.

Theorem 1.2 (cf. Theorem 3.45). The derived stack

F-Zip : AR
Fp
−→ S,

A 7−→∞-groupoid of derived F-zips over A

is locally geometric.

The idea of the proof is straightforward. We first look at the derived substack F-Zip[a,b],S , for a finite
subset S ⊆Z and a ≤ b ∈Z, classifying those derived F-zips (C•,D•,φ,ϕ•) where we fix the Tor-amplitude
[a,b] of all filtered pieces and griC ≃ 0 for i < S . In this way we only have to look at the stacks classifying
two chains of morphisms of modules with fixed Tor-amplitude, that have a connecting equivalence at the
last entry, such that the graded pieces are equivalent after Frobenius twist. Since perfect modules with fixed
Tor-amplitude, morphisms of those and equivalences of those are geometric, we conclude the geometricity of
F-Zip[a,b],S .

We can also look at derived substacks F-Zip≤τ , for a function τ : Z ×Z → N0 with finite support,
classifying those derived F-zips F B (C•,D•,φ,ϕ•) where the fiberwise dimensions of the πi(grj C) are at
most τ(i, j). If we have equality and the πi(grj C) are finite projective, we call F homotopy finite projective
of type τ . By the upper semi-continuity of the dimension of fiberwise cohomology of perfect complexes,
we see that F-Zip≤τ is an open substack of F-Zip and that it is also geometric, as it is in fact open in some
F-Zip[a,b],S . Writing F-Zip as the filtered colimit of the F-Zip≤τ , we deduce the theorem.

(3)By “good class” we mean stable under base change, composition and equivalences, as well as smooth local on the source and
target.

(4)Note that the property étale is not smooth local on the source. We have to be careful if we want to define étale morphisms of
n-geometric stacks.
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Since derived F-zips satisfy descent, we can glue this definition to any derived scheme S . There is also an
ad hoc definition in the derived scheme case, but we can show that both definitions agree.

The definition is constructed in such a way that every proper smooth morphism f : X → S induces a
derived F-zip Rf∗Ω

•
X/S over S .

Modification of filtrations and examples of derived F -zips. For the term filtration above, we do not
enforce something like a monomorphism condition on the filtration. Even though it seems natural, it actually
leads to another definition of derived F-zips, which we call strong derived F-zips. The difference between
these two becomes apparent if we look at the corresponding spectral sequences.

Theorem 1.3 (cf. Theorem 3.74). Let f : X→ S be a smooth proper morphism of schemes. Let us consider the
Hodge–de Rham spectral sequence

E
p,q
1 = Rqf∗Ω

p
X/S =⇒ Rp+qf∗Ω

•
X/S .

The derived F-zip Rf∗Ω
•
X/S is strong if and only if the Hodge–de Rham spectral sequence degenerates and R

if∗Ω
j
X/S

is finite locally free for all i, j ∈Z.

So, we do not expect the theory of strong derived F-zips to give us any new information if we want to
consider geometric objects that do not induce classical F-zips. But, we can show that the derived stack of
strong derived F-zips is open in the derived stack of derived F-zips. Further, looking at very specific types
of strong derived F-zips, we can even make a connection to classical F-zips.

This connection can be generalized by looking at the full sub-∞-category of derived F-zips with degenerate
spectral sequences(5) such that the graded pieces attached to the filtrations have finite projective homotopy
groups of type τ , denoted by X τ . It is not hard to see that X τ is equivalent to the product of classical F-zips
of type corresponding to the components of τ (see Section 4 for more details).

We note that we formulate all the results more generally for derived F-zips over arbitrary derived schemes
of positive characteristic.

The above connection to classical F-zips also shows that in the case of K3-surfaces or proper smooth
curves and abelian schemes, the theory of strong derived F-zips gives no new information. In the K3-surfaces
and proper smooth curve cases, we can be more specific. Every derived F-zip of K3-type or proper smooth
curve type is induced by a classical F-zip. This is because in both cases, there is only one cohomology group
with a non-trivial filtration. This does not hold for abelian schemes (since they have a more complicated type),
but as remarked earlier, the derived F-zip associated to an abelian scheme X/A is completely determined by
the classical F-zips associated to H1

dR(X/A) (since the Hodge–de Rham spectral sequence of abelian schemes
is degenerate, the Hodge cohomologies are finite projective, and we have Hn

dR(X/A) � ∧nH1
dR(X/A)). Also,

one can look at the moduli stack of Enriques surfaces in characteristic 2. In this case, the Hodge–de Rham
spectral sequence does not degenerate in general. Hence, we cannot directly use the theory of F-zips by
associating to an Enriques surface its de Rham cohomology but have to use derived F-zips for this approach.
Using the upper semi-continuity of cohomology, we can see with the theory of derived F-zips that the
substacks classifying Enriques surfaces of type Z/2 or µ2 are open in the moduli of Enriques surfaces and
the substack classifying Enriques surfaces of type α2 is closed. These results give a new proof of the results
of Liedtke [Lie15], who does not use the derived theory. In the future, we want to use the theory of derived
F-zips to analyze discrete invariants of morphisms with non-degenerate Hodge–de Rham spectral sequence.
Further, this approach should make it easier to understand the deformation theory of such morphisms as it
is naturally part of derived algebraic geometry.

(5)For any animated ring A, by [Lur17, Proposition 1.2.2.14], a functor F ∈ Fun(Z,ModA) with F(n) ≃ 0 for n≪ 0 induces a
spectral sequence of the form E

p,q
1 = πp+q(grp F)⇒ πp+q(colimZF). A derived F-zip over A comes equipped with two filtrations

and thus induces two such spectral sequences, which we call the spectral sequences attached to the derived F-zip.
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Derived F -zips with cup product. Let f : X→ S be a proper smooth morphism of schemes in positive
characteristic with geometrically connected fibers of fixed dimension n. Further, assume the Hodge–de
Rham spectral sequence associated to f degenerates and the Hodge cohomologies are finite locally free.
As in the classical case, there is extra structure on the de Rham hypercohomology coming from the cup
product, namely a perfect pairing. For classical F-zips, this induces a G-zip structure on the F-zip associated
to Hn

dR(X/S), for certain reductive groups over a field of characteristic p > 0. One could try to define a
derived G-zip, for a reductive group G over a field k of characteristic p > 0, in such a way such that the cup
product induces a derived G̃-zip structure on the de Rham hypercohomology for some reductive group G̃
over k. As explained in Section 6.1.2, the most obvious ways to generalize the theory of G-zips to derived
G-zips are not quite right. The problem here is that we do not have a “good” way of defining derived group
schemes. For example, we would like to have that the derived analogue of GLn-torsors is given by perfect
complexes of Euler characteristic ±n. But, as far as we know, there is no such analogue.

Alternatively, we show that the symmetric monoidal category of classical F-zips over a scheme S in
characteristic p > 0 is equivalent to the symmetric monoidal category of vector bundles over a certain
algebraic stack XS . The stack XS is given by pinching the projective line at 0 and ∞ via the Frobenius
morphism and then taking the quotient by the induced Gm,Fp -action. The category of G-zips over S is then
equivalent to the stack of G-torsors on XS . To apply this construction to derived F-zips, we will show that
perfect complexes over XS are precisely derived F-zips.

Theorem 1.4 (cf. Corollary 3.87). Let R be an Fp-algebra and S an R-scheme. Then we have

F-ZipR(S) ≃ Perf(XS ).

But, we lack a definition of derived groups and torsors attaching extra structure to perfect complexes. So
again, we did not follow this approach further.

For completeness, we naively put the cup product structure into the definition of derived F-zips leading
to the definition of dR-zips. This again is a sheaf, and we can explicitly analyze the projection to derived
F-zips.

Proposition 1.5 (cf. Proposition 6.7). The induced morphism via forgetting the pairing

p : dR-Zip −→ F-Zip

is smooth and locally of finite presentation; in particular, dR-Zip is locally geometric and locally of finite
presentation.

Depending on the Tor-amplitude of the dR-zips, we can specify the properties of the above forgetful
functor.

The derived world has another benefit. Usually, we can extend results for smooth objects to objects
that are only lci (in fact to any animated algebra via left Kan extension). In the case of the de Rham
hypercohomology, we know that its lci analogue is given by the derived de Rham complex (here lci is needed
to ensure perfectness of the cotangent complex). This seems like a good generalization of the de Rham
hypercohomology since it comes equipped with two filtrations with Frobenius-equivalent graded pieces. But,
one can show that these filtrations are not bounded in any way (see Section 6.1.1 for more details). So we
would need a notion of derived F-zips with unbounded filtrations. But, then the obvious problem becomes
the geometricity since we would have to cover an infinite amount of information with the atlas, which is not
clear at all – geometricity is a priori not preserved under arbitrary limits (and may not even be for cofiltered
limits).

Structure of this paper

We start with a quick summary of derived algebraic geometry (see Section 2), i.e. the theory of étale
sheaves on animated rings with values in spaces. Mainly, we introduce the notions of derived stacks,
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geometricity of morphisms and derived schemes. We also look at quasi-coherent modules over derived
stacks. We end this section with a quick look at the derived stack of perfect complexes.

Next, we talk about filtrations on the derived category and introduce derived F-zips (see Section 3). We
show that the presheaf which assigns to an animated ring the ∞-category of derived F-zips is in fact a
sheaf, so a derived stack, and is even locally geometric. After the geometricity, we discuss some important
substacks and try to generalize the notion of derived F-zips to derived schemes. We look at certain substacks
that come naturally by looking at derived F-zips of certain type. Also, we look at the substack classifying
those filtrations that are termwise monomorphisms. In particular, we show that under some assumptions,
this condition is equivalent to the degeneracy of the Hodge–de Rham spectral sequence. Finally, analogously
to classical F-zips, we relate derived F-zips to perfect complexes over the (Frobenius) pinched projective line.

We finish the study of derived F-zips by trying to connect classical F-zips with derived F-zips (see
Section 4). We show that in the case of a degenerating Hodge–de Rham spectral sequence, there is no new
information coming from derived F-zips. Lastly, we apply our theory to the moduli of Enriques surfaces (see
Section 5).

We finish this paper by elaborating on the problems that appeared while trying to generalize the theory of
derived F-zips to the case of proper lci morphisms and trying to define derived G-zips (see Section 6). For
completeness, we also naively equip derived F-zips with extra structure.

In the appendix, we discuss the connection between classical G-zips and G-torsors on the (Frobenius)
pinched projective line modulo Gm,Fp-action X.

Assumptions

All rings are commutative with unit.
We work with the Zermelo–Frenkel axioms of set theory with the axiom of choice, and we assume the

existence of inaccessible regular cardinals.
Throughout this paper, we fix some uncountable inaccessible regular cardinal κ and the collection U (κ)

of all sets having cardinality less than κ, which is a Grothendieck universe (and as a Grothendieck universe
is uniquely determined by κ) and hence satisfies the usual axioms of set theory (see [Wil69]). When we talk
about small, we mean U (κ)-small. In the following, we will use some theorems which assume smallness of the
respective (∞-)categories. When needed, without further mentioning it, we assume that the corresponding
(∞-)categories are contained in U (κ).

If we work with families of objects that are indexed by some object, we will assume, if not further
mentioned, that the indexing object is a U (κ)-small set.

Notation

We work in the setting of (∞,1)-categories (see [Lur09]). By abuse of notation, for any 1-category C, we
will always denote its nerve again by C, unless otherwise specified.

A subcategory C′ of an ∞-category C is a simplicial subset C′ ⊆ C such that the inclusion is an inner
fibration. In particular, any subcategory of an ∞-category is itself an ∞-category, and we will not mention
this fact.

• ∆ denotes the simplex category (see [Lur24, 000A]), i.e. the category of finite non-empty linearly
ordered sets, and ∆+ denotes the category of (possibly empty) finite linearly ordered sets. We denote
by ∆s those finite non-empty linearly ordered sets whose morphisms are strictly increasing functions
and by ∆s,+ those (possibly empty) finite linearly ordered sets whose morphisms are strictly increasing
functions.
• By an ∞-category, we always mean an (∞,1)-category.
• S denotes the ∞-category of small spaces (also called ∞-groupoids or anima).
• Cat∞ denotes the ∞-category of small ∞-categories.



Derived F -zips 9Derived F -zips 9

• Sp denotes the ∞-category of spectra.
• For an E∞-ring A, we denote the ∞-category of A-modules in spectra, i.e. ModA(Sp) in the notation

of [Lur17], by ModA.
• For any ordered set (S,≤), we denote its corresponding∞-category again by S , where the correspond-

ing ∞-category of an ordered set is given by the nerve of (S,≤) seen as a 1-category (the objects are
given by the elements of S and HomS(a,b) equals ∗ if and only if a ≤ b and is otherwise empty).
• For any set S , the ∞-category Sdisc is the nerve of the set S seen as a discrete 1-category (the objects

are given by the elements of S , and HomS(a,a) equals ∗ for any a ∈ S and is otherwise empty).
• For any morphism f : X→ Y in an ∞-category C with finite limits, if it exists, we denote the functor

from ∆+ to C that is given by the Čech nerve of f (see [Lur09, Section 6.1.2]) by Č(Y /X)•.
• Let C be an ∞-category with final object ∗. For morphisms f : ∗ → X and g : ∗ → X, if it exists, we

denote the homotopy pullback ∗ ×f ,X,g ∗ by Ωf ,gX. If C has an initial object 0, then we denote the
pullback 0×X 0 by ΩX.
• Let f : X→ Y be a morphism in S, and let y ∈ Y . We write fiby(X→ Y ) or fiby(f ) for the pullback
X ×Y ∗, where ∗ is the final object in S (up to homotopy) and the morphism ∗ → Y is induced by the
element y, which by abuse of notation we also denote by y.
• For a morphism f : M → N in ModA, where A is some E∞-ring, we define fib(f ) = fib(M → N )

(resp. cofib(f ) = cofib(M→N )) as the pullback (resp. pushout) of f with the essentially unique zero
morphism 0→N (resp. M→ 0).
• When we say that a square diagram in an ∞-category C of the form

W X

Y Z

is commutative, we always mean that we can find a morphism ∆1 ×∆1 → C of ∞-categories that
extends the above diagram.
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2. Overview of derived algebraic geometry

The first thing that one might ask is, why derived algebraic geometry? As explained at the beginning of
Section 3, we want to define the analogue of F-zips, where we work with perfect complexes instead of vector
bundles. One downside to the derived category is that we cannot glue morphisms in it. This problem is
resolved if we keep track of all the higher homotopies, i.e. pass to the derived ∞-category. So, it is very
natural to work with ∞-categories and sheaves in ∞-groupoids instead of groupoids.

But we can go a bit further. Instead of functors from (Ring) to S, we can work with functors from animated
rings (the ∞-category associated to simplicial commutative rings) to S. One of the benefits of working with
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animated rings is that deformation theory comes very naturally. To be more specific, the cotangent complex
is the complex representing derivations. This allows us to link properties of morphisms like smooth, étale and
locally of finite presentation to properties of the cotangent complex. Hence, we can use geometric properties
of sheaves on animated rings with values in ∞-groupoids to analyze its deformation theory.

Still the question remains, what does geometry mean in this context? This section is dedicated to this
question, and we want to summarize important aspects of derived algebraic geometry following the works of
Toën–Vezzosi [TV08], Antieu–Gepner [AG14], Toën–Vaquié [TV08] and Lurie [Lur04]. We will only briefly
showcase the theory of derived algebraic geometry needed for this paper. A detailed discussion, with proofs
and references, can be found in the author’s notes [Yay22b].

2.1. Derived commutative algebra

In the following, R will be a ring.
In this subsection, we want to give a quick summary about animated rings and look at the deformation

theory of animated rings. A detailed overview with proofs and references can be found in [Yay22b,
Section 3.1].

2.1.1. Animated rings. By PolyR we denote the category of polynomial R-algebras in finitely many

variables. Then the category of R-algebras is naturally equivalent to the category of functors from Polyop
R to

(Sets) which preserve finite products. Applying this construction to the ∞-categorical case, we obtain ARR,
the ∞-category of animated R-algebras.(6)

Definition 2.1. We define the ∞-category of animated R-algebras as

ARR B Funπ(Polyop
R ,S),

where the subscript π denotes the full subcategory of Fun(Polyop
R ,S) of functors that preserve finite products.

If R = Z, we say animated ring instead of animated R-algebra. If A is an animated ring, we also denote
the ∞-category of animated A-algebras by ARA B (AR

Z
)A/ .

As shown in [Lur18], the definition of animated rings yields a functor θ : ARR→ E∞-Algcn
R . Here E∞-Algcn

R
denotes the ∞-category of connective E∞-R-algebras, i.e. connective commutative R-algebra objects in
spectra (see [Lur17] for more details). This functor can be seen as a “forgetful functor” in the sense that it
forgets the strictness of the associativity in ARR. In particular, any animated R-algebra has an underlying
connective spectrum. In this way, we are able to define homotopy groups of animated rings.

Definition 2.2. Let A be an animated ring, and let i ∈ Z. Then we define the ith homotopy group as
πiAB πiθ(A).

Remark 2.3. We want to note that all of the above can be upgraded to the case where R is an animated ring,
via passage to undercategories.

We conclude this subsection by starting with a bit of geometry, namely the localization of animated rings.

Proposition and Definition 2.4. For any element f ∈ π0A,
(7) there is an animated ring A[f −1] with the

property that for all B ∈ ARA, the simplicial set HomARA(A[f −1],B) is non-empty if and only if the image of

f under π0(A)→ π0(B) is invertible.(8) This localization is also compatible with taking homotopy groups; i.e.
πi(A[f −1]) ≃ (πiA)f .

(6)The name “animated R-algebras” is due to Cesnavicius–Scholze [CS24], who give a construction for any cocomplete∞-category,
called animation. The animation of the (nerve of the) category of R-algebras leads to an equivalent ∞-category.

(7)Recall that by the construction of the fundamental group, as explained above, π0A is a commutative ring.
(8)In fact, we can even localize at any subset F ∈ π0A (see [Yay22b]).
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Proof. The proof follows that of [TV08, Proposition 1.2.9.1]. The idea is to localize ARA at the multiplication
map by f (and apply SymA) and define A[f −1] as the image under the localization functor. For further
details and the general case, where we localize at a subset of π0A, see [Yay22b, Proposition 3.13]. □

The localization map of animated rings should be an open immersion. But, we still need to define
properties of morphisms between animated rings.

Definition 2.5. Let f : A→ B be a morphism between animated rings. Then f is called

(1) locally of finite presentation if B is a compact animated A-algebra through f ,
(2) flat if π0f is flat and the natural map πiA⊗π0A π0B→ πiB is an isomorphism for all i ∈Z, and
(3) smooth (resp. étale) if f is flat and π0f is smooth (resp. étale).

Now using the definition of the localization, it is not hard to see that the natural map A→ A[f −1] is a
monomorphism and is locally of finite presentation. One can even show that it is flat. So, in particular,
A→ A[f −1] is an open immersion,(9) as expected.

2.1.2. Modules over animated rings. Let us quickly recall the notion of an A-module for an animated
ring A and list some facts that we will need later on.

The forgetful functor θ from animated rings to E∞-rings allows us to see any animated ring as a ring
object in spectra. In particular, we can look at modules in spectra over the underlying animated ring.

Definition 2.6. Let A be an animated ring. Then we define the ∞-category of A-modules as ModA B
Modθ(A)(Sp).

Note that we could also look at the animation of modules, but as explained in [CS24], this only gives the
∞-category of connective modules. In particular, for a discrete animated ring A, we have ModA ≃ D(A),
whereas the animation of A-modules only recovers D(A)≤0.

Further, the functor θ has a left adjoint, which induces a left adjoint to the forgetful functor ARR→Modcn
R .

Definition 2.7. The left adjoint to the forgetful functor ARR→Modcn
R is denoted by SymR.

The equivalence of the derived ∞-category with spectral modules gives us an idea how to define perfect
modules and the Tor-amplitude.

Definition 2.8. Let A be an animated ring. An A-module M is called perfect if M is compact in ModA.
The Tor-amplitude of a perfect A-module M is defined as the Tor-amplitude of M ⊗A π0A ∈ D(π0A).

As modules over animated rings are defined as modules over the underlying ring spectrum, we can use
the results of [Lur17] to define and understand notions like projective and flat modules. We also have the
Tor-spectral sequence relating the Tor-groups to the homotopy groups of the tensor product of modules. We
do not want to go into detail and refer to [Lur17] or [Yay22b, Section 2.2].

But, we want to end this section with a quick proposition found in [AG14] relating the notion of perfectness
and Tor-amplitude, as in the classical case.

Lemma 2.9. Let A be an animated R-algebra. Let P and Q be A-modules.

(1) If P is perfect, then P has finite Tor-amplitude.
(2) If B is an A-algebra and P has Tor-amplitude in [a,b], then the B-module P ⊗A B has Tor-amplitude in

[a,b].
(3) If P has Tor-amplitude in [a,b] and Q has Tor-amplitude in [c,d], then P ⊗AQ has Tor-amplitude in

[a+ c,b+ d].
(4) If P ,Q have Tor-amplitude in [a,b], then for any morphism f : P →Q, the fiber of f has Tor-amplitude

in [a− 1,b] and the cofiber of f has Tor-amplitude in [a,b+ 1].

(9)An open immersion of animated rings is per definition a flat, finitely presented monomorphism.
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(5) If P is a perfect A-module with Tor-amplitude in [0,b], with 0 ≤ b, then P is connective and π0P ≃
π0(P ⊗A π0A).

(6) The A-module P is perfect and has Tor-amplitude in [a,a] if and only if P is equivalent to M[a] for some
finite projective A-module.

(7) If P is perfect and has Tor-amplitude in [a,b], then there exists a morphism

M[a] −→ P

such that M is a finite projective A-module and the cofiber is perfect with Tor-amplitude in [a+ 1,b].

Proof. Since modules over animated rings are defined as modules over their underlying E∞-ring spectrum,
this is [AG14, Proposition 2.13]. □

2.1.3. Deformation theory of animated ring. As mentioned at the beginning of this section, one benefit
of working with animated rings is the naturally arising deformation theory. Let us be more precise.

For any animated R-algebra A and any connective A-module M , we can define the square zero extension of
A by M, denoted by A⊕M .(10) This allows us to define derivations.

Definition 2.10. An R-linear derivation of A into M is a morphism A→ A ⊕M over A. The space of
derivations is denoted by DerR(A,M)BHom(ARR)/A(A,A⊕M).

Classically, meaning if we do not work with animated rings, the space of derivations is represented by
the Kähler differentials Ω1

A/R. In the case of animated rings, DerR(A,M) is represented by a connective
A-module LA/R (which is unique up to homotopy), the cotangent complex of A over R.

Since this construction is a natural generalization of Kähler differentials, it gives a more natural approach
to deformation theory. In particular, if f : A→ B is a morphism of animated rings such that π0f is finitely
presented, the properties finitely presented, smooth and étale of f correspond to the properties perfect, finite
projective and trivial of LB/A, respectively.

Proposition 2.11. Let f : A→ B be a morphism of animated rings. Assume π0f is finitely presented. Then

(1) f is locally of finite presentation if and only if LB/A is perfect;
(2) f is smooth if and only if LB/A is finite projective;
(3) f is étale if and only if LB/A ≃ 0.

Proof. The proof is the same as in the model-categorical case, presented in [TV08]. A detailed proof of the
second statement can be found in [Yay22b, proof of Proposition 2.56]. □

Further, we want to mention that one can show that the natural truncation morphisms A≤n→ A≤n−1 are
square zero extensions (in a suitable sense). In particular, étale and thus also Zariski coverings of animated
rings only depend on the underlying covering on the commutative ring π0A, and any such covering on π0A
gives rise to a covering on A.

Proposition 2.12. Let A be an animated R-algebra. Then the base change under the natural morphism A→ π0A
induces an equivalence of ∞-categories between étale A-algebras and étale π0A-algebras.

Proof. See [CS24, Proposition 5.2.3]. □

(10)This is induced by the left Kan extension of the classical square zero extension; i.e. for a discrete ring A and an A-module M ,
we have that A⊕M is the direct sum with multiplication given by (a,m)(a′ ,m′)B (aa′ , am′ + a′m).
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2.2. Derived algebraic geometry

In this section, we want to give a quick overview of derived algebraic geometry. It is important to note
that we are following the definitions of [TV08, Sections 1 and 2.2] as there are different approaches to
derived algebraic geometry. For example, there are different results depending on the points of the stacks.
The theory differs if we replace animated rings with DG-rings or (connective) E∞-rings. We are interested
in animated rings since we want to work in positive characteristic and that setting seems to be the one
most suited for this application. The main reason is the Frobenius, which naturally exists for animated
rings in positive characteristic. For E∞-rings, there is no clear notion of a Frobenius. This is because we
would need to find a Frobenius map that is homotopy coherent on all levels, and since animated rings have
“more” structure, the “on the nose” definition on simplicial commutative rings gives us a Frobenius morphism
on animated rings. The difference between animated rings and DG-rings only becomes visible in positive
characteristic. Via the Dold–Kan correspondence, one gets a functor from animated rings to DG-rings, but
one can show that the image of this functor takes values in DG-rings that naturally have a PD-structure.

It is important to note that Toën–Vezzosi develop the theory of derived algebraic geometry for animated
rings in terms of model categories. But, using the forgetful map between animated rings and connective
E∞-rings, we can use the results of Lurie in [Lur18] to understand the theory purely in ∞-categorical terms,
without much effort (as the difficult part was done by Lurie).

For this section, we will follow [TV08, Section 2], [AG14] and the lecture notes of Adeel Khan [Kha18]. We
will not prove any of the assertions in this section and refer to the notes of the author [Yay22b, Section 4.2]
for details.

2.2.1. Affine derived schemes. In the following, R will be a ring and A an animated R-algebra.
Let us define the étale and fpqc topology.

Proposition and Definition 2.13. Let B an animated A-algebra.

(1) There exists a Grothendieck topology on AR
op
A , called the fpqc topology, which can be described as follows:

A sieve (see [Lur09, Definition 6.2.2.1]) C ⊆ (AR
op
A )/B ≃ AR

op
B is a covering sieve if and only if it contains

a finite family (B→ Bi)i∈I for which the induced map B→
∏
i∈I Bi is faithfully flat.

(2) There exists a Grothendieck topology on the full subcategory (ARét
A )op of étale A-algebras, called the étale

topology, which can be described as follows: A sieve C ⊆ (ARét
A )op
/B ≃ (ARét

B )op is a covering sieve if and
only if it contains a finite family (B→ Bi)i∈I for which the induced map A→

∏
i∈I Bi is faithfully flat

(and étale, which is automatic).

Proof. This follows using the results from [Lur18] and the forgetful functor between animated rings and
E∞-rings. For further details, see [Yay22b, Proposition 4.1]. □

We use the functorial view of schemes to define derived affine schemes. As expected, derived affine
schemes are sheaves for the étale topology.

Definition and Remark 2.14. An affine derived scheme over A is a functor from ARA to spaces (i.e. a presheaf
on AR

op
A ) which is equivalent to Spec(B)BHomARA(B,−) for some B ∈ ARA.

The presheaf Spec(B) is in fact a sheaf for the fpqc topology, as we can see using that the fpqc topology
on E∞-algebras is subcanonical (see [Lur18, Theorem D.6.3.5]).

We can immediately define properties of affine derived schemes using their underlying animated ring
morphisms.

Definition 2.15. Let P be one of the following properties of a morphism of animated rings: flat, smooth,
étale, locally of finite presentation. We say that a morphisms of affine derived schemes Spec(B)→ Spec(C)
has property P if the underlying homomorphism C→ B has P.
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Remark 2.16. Let us note that the above properties of morphisms of affine derived schemes are stable under
equivalences, compositions and pullbacks and are étale local on the source and target.

Definition 2.17. For a discrete ring A, we define

Spec(A)cl BHom(Ring)(A,−) : (Ring) −→ (Sets)

to be its underlying classical scheme. We will abuse notation and denote the underlying locally ringed space
of Spec(A)cl the same.

Remark 2.18. The notation (−)cl is introduced since even for a discrete ring A, the corresponding derived
stack Spec(A) is a sheaf with values in spaces. Thus, for a (possibly non-discrete) animated ring B, the space
HomAni(A,B) need not to be discrete; e.g. we have that HomAni(Z[X],B) ≃Ω∞B. But, for example if we
restrict ourselves to discrete rings C, we have HomAni(A,C) ≃Hom(Ring)(π0A,C) by adjunction, even when
A is not discrete.

2.2.2. Geometric stacks. In this section, we mostly follow [AG14] and [TV08].

Definition 2.19. Let A be an animated ring. A derived stack over A is a sheaf of spaces on (ARét
A )op. We

denote the ∞-category of derived stacks over A by dStA. If A = Z, we simply say derived stack and denote
the ∞-category by dSt.

Next we define what a “geometric” derived stack is. This terminology is due to Simpson, who himself
tried to understand sheaves of rings taking values in n-groupoids. For this, he defined inductively the
term “n-(algebraic) geometric”, which describes étale sheaves that have an atlas that is less truncated than
before and again has an atlas by sheaves that are less truncated; i.e. an n-geometric stack is a sheaf with a
smooth atlas given by (n− 1)-geometric sheaves. So in the end, one can understand n-geometric sheaves by
understanding inductively sheaves that are less truncated (or more affine).

Definition 2.20 (cf. [TV08, Definition 1.3.3.1]). We will define a geometric morphism inductively.

(1) A derived stack is (−1)-geometric or affine if it is equivalent to an affine derived scheme.
A morphism of derived stacks X→ Y is (−1)-geometric or affine if for all affine schemes Spec(A)

and all Spec(A)→ Y , the base change X ×Y Spec(A) is affine.
A (−1)-geometric morphism of derived stacks X→ Y is smooth if for all affine derived schemes

Spec(A) and all morphisms Spec(A)→ Y , the base change morphism Spec(B) ≃ X ×Y Spec(A)→
Spec(A) corresponds to a smooth morphism of animated rings.

Now let n ≥ 0.

(2) An n-atlas of a derived stack X is a family (Spec(Ai)→ X)i∈I of morphisms of derived stacks such
that
(a) each Spec(Ai)→ X is (n− 1)-geometric and smooth, and
(b) the induced morphism

∐
Spec(Ai)→ X is an effective epimorphism.

A derived stack is called n-geometric, if
(a) it has an n-atlas, and

(b) the diagonal X
∆−→ X ×X is (n− 1)-geometric.

(3) A morphism X→ Y of derived stacks is called n-geometric if for all affine derived schemes Spec(A)
and all morphisms Spec(A)→ Y , the base change X ×Y Spec(A) is n-geometric.

An n-geometric morphism X→ Y of derived stacks is called smooth if for all affine derived schemes
Spec(A) and all morphisms Spec(A)→ Y , the base change X ×Y Spec(A) has an n-atlas given by a
family of affine derived schemes (Spec(Ai))i∈I such that the induced morphisms A→ Ai are smooth.

We call a morphism of derived stacks geometric if it is n-geometric for some n ≥ −1.
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Definition 2.21. Let P be a property of affine derived schemes that is stable under equivalences, pullbacks
and compositions and is smooth local on the source and target. Then we say that a morphism of derived
stacks X→ Y has P if it is geometric and for an affine (n− 1)-atlas (Ui)i∈I of the pullback along an affine
derived scheme Spec(B), the corresponding morphisms Ui → Spec(B) of affine schemes have P.

Lemma 2.22. The properties “locally of finite presentation”, “flat” and “smooth” of morphisms of affine derived
schemes satisfy the conditions of Definition 2.21.

Proof. This follows from the characterizations in Proposition 2.11 and the definitions. See [Yay22b, Lem-
ma 4.14] for further details. □

Remark 2.23. We want to note that the property étale is not smooth local on the base since if it were smooth
local in our context, then it would be smooth local in the classical theory of schemes, which it is not. This, in
particular, means that one has to be careful when defining étale morphisms of derived stacks. A discussion
and definition can be found in [Yay22b, Definition 4.11] since this was not treated carefully in [TV08], which
led to some errors in the definition given there.

The basic idea is to define étale morphisms similarly to how it is done for algebraic stacks, where we only
consider morphisms that are “DM” (again, we refer to [Yay22b]).

We next define open and closed immersions of derived stacks. These seem natural, except that for closed
immersions, we do not impose any monomorphism condition. This is due to the fact that monomorphisms
have a vanishing cotangent complex. Since many interesting closed immersions (such as regular immersions)
have non-vanishing cotangent complex, we omit this property in the definition.

Definition 2.24. A morphism of derived stacks X→ Y is

(1) an open immersion if it is flat and locally of finite presentation and is a monomorphism, where flat is
in the sense of Definition 2.21 and monomorphism means (−1)-truncated in the sense of [Lur09]; i.e.
the homotopy fibers of X→ Y are either empty or contractible;

(2) a closed immersion if it is affine and for any Spec(B)→ Y , the corresponding morphism X×Y Spec(B) ≃
Spec(C)→ Spec(B) induces a surjection π0B→ π0C of rings.

Let us give an important example of an open immersion of derived stacks.

Lemma 2.25. Let A be an animated R-algebra, and let f ∈ π0A be an element. Then the inclusion
j : Spec(A[f −1]) ↪→ Spec(A) is an open immersion.

Definition 2.26. A derived stack X is locally geometric if we can write X as the filtered colimit of geometric
derived stacks Xi with open immersions Xi ↪→ X.

We say that a locally geometric stack X ≃ colimi∈I Xi is locally of finite presentation if each Xi is locally of
finite presentation.

Definition and Proposition 2.27. For a morphism of derived stacks f : X→ Y , we define Im(f ) as an epi-mono
factorisation X↠ Im(f ) ↪→ Y of f (here “epi” means “effective epimorphism” ). This factorisation is unique up to
homotopy.

Proof. The existence of such a factorisation follows from [Lur09, Example 5.2.8.16]. The uniqueness up to
homotopy follows from [Lur09, Proposition 5.2.8.17]. □

Remark 2.28. Let A be an animated ring. Using the above, there is a way to lift open immersions
Ũ ↪→ Spec(π0A) to open immersions U → Spec(A). The idea is to cover Ũ by standard affines and lift
these using Proposition 2.4 (for more details, see [Yay22b, Remark 4.42]).

We can also define derived schemes using open immersions.
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Definition 2.29. Let X be a derived stack. Then X is a derived scheme if it admits a cover (Spec(Ai) ↪→ X)i∈I
such that each Spec(Ai) ↪→ X is an open immersion (in particular, X is 1-geometric(11)).

Remark and Definition 2.30 (Truncation). There is an adjunction between Shvét((R-Alg)), étale sheaves on
(R-Alg) with values in S, and Shvét(ARR), étale sheaves on ARR with values in S,

ι : Shvét((R-Alg)) Shvét(ARR) : t0.

Let us state some facts about ι and t0.

(1) The functor t0 has a right and a left adjoint.
(2) The functor t0 preserves geometricity (here geometricity of sheaves in (R-Alg) is defined as for derived

stacks; see [TV08, Section 2.1.1] for further information) and the properties flat, smooth and étale
along geometric morphisms.

(3) The functor ι preserves geometricity and homotopy pullbacks of n-geometric stacks along flat
morphisms and sends flat (resp. smooth, étale) morphisms of n-geometric stacks to flat (resp. smooth,
étale) morphisms of n-geometric stacks.

A proof for these statements is given in [TV08, Proposition 2.2.4.4]. A more detailed discussion can be
found in [Yay22b].

We list some properties of geometric morphisms of derived stacks. All of these statements can also be
found in the E∞-case in [AG14], and the proofs are similar. Proofs in this case can be found in [Yay22b].

Lemma 2.31. Let X → Z and Y → Z be morphisms of derived stacks. If X → Z is n-geometric, then so is
X ×Z Y → Y .

Lemma 2.32. A morphism of derived stacks X → Y is n-geometric if and only if the base change under
Spec(A)→ Y for any A ∈ ARR is n-geometric.

Lemma 2.33. Let f : X→ Y and g : Y → Z be morphisms of derived stacks. If f and g are n-geometric, then
so is g ◦ f .

Proposition 2.34. Let f : X→ Y be a morphism of derived stacks. Assume X is n-geometric and the diagonal
Y → Y ×Y is n-geometric. Then f is n-geometric.

Corollary 2.35. Let X and Y be n-geometric stacks. Then any morphism X→ Y is n-geometric.

Proof. This follows immediately from the definitions and Proposition 2.34 □

Proposition 2.36. Let X→ Y be an effective epimorphism of derived stacks, and suppose that X and X ×Y X
are n-geometric. Further, assume that the projections X ×Y X → X are n-geometric and smooth. Then Y is an
(n+ 1)-geometric stack. If in addition X is quasi-compact and X→ Y is a quasi-compact morphism, then Y is
quasi-compact. Finally, if X is locally of finite presentation, then so is Y .

2.3. Quasi-coherent modules over derived stacks

In this section, we will briefly look at quasi-coherent modules over derived stacks. Again, we will not give
detailed proofs of any assertion and refer to [Yay22b, Section 4.3] for the details.

The definition of quasi-coherent modules is straightforward. For any derived stack, we want to glue the
∞-categories of modules along an atlas. In general, this is achieved by right Kan extension.

Definition 2.37. Let X be a presheaf on AR
op
R . We define the ∞-category of quasi-coherent modules over X to

be
QCoh(X)B lim

Spec(A)→X
ModA .

(11)It is not hard to see that any geometric monomorphism is 0-geometric (a more detailed discussion can be found in [Yay22b]).
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An element F ∈ QCoh(X) is called a quasi-coherent module over X or OX -module. For any affine derived
scheme Spec(A) and any morphism f : Spec(A)→ X, we denote the image of a quasi-coherent module F
under the projection QCoh(X)→ModA by f ∗F .

We define the ∞-category of perfect quasi-coherent modules over X to be

QCohperf(X)B lim
Spec(A)→X

Modperf
A .

We say that a perfect quasi-coherent module F over X has Tor-amplitude in [a,b] if for every derived affine
scheme Spec(A) and any morphism f : Spec(A)→ X, the A-module f ∗F has Tor-amplitude in [a,b].

Remark 2.38. As limits of stable ∞-categories with finite limit-preserving transition maps are stable, we
know that for any X ∈ P (AR

op
R ), the ∞-category QCoh(X) is stable.

Let us quickly note that the right Kan extension of sheaves is again a sheaf (in a suitable sense). In
particular, any F ∈QCoh(X), for a derived scheme X, can be glued from modules on an affine open cover.

Proposition 2.39. Let C be a presentable ∞-category, and let F : ARR → C be a (hypercomplete) sheaf with
respect to the Grothendieck topology τ ∈ {fpqc, étale} on ARR. Let RF denote the right Kan extension of F along
the Yoneda embedding ARR ↪→P (AR

op
R )op. Further, let us denote the corresponding ∞-topos of (hypercomplete)

τ-sheaves on ARR by Shvτ . Then for any diagram p : K →P (AR
op
R ), where K is a simplicial set, and morphism

colimK Xk → Y that becomes an equivalence in Shvτ after sheafification,
(12) we have that the natural map

RF(Y )→ limK RF(Xk) is an equivalence.

Proof. The idea of the proof is to first reduce to C ≃ S using the Yoneda lemma. Then F itself is a derived
stack and is thus local with respect to effective epimorphisms of derived stacks.

A detailed proof of this can be found in [Yay22b, Proposition 4.48]. □

Definition 2.40. Let C be a presentable ∞-category, and let τ be the fpqc or étale topology on ARR. A
functor F : P (AR

op
R )op→ C is a (hypercomplete ) sheaf or satisfies τ-descent if for any effective epimorphism

X→ Y (resp. a hypercover X•→ Y ), we have

RF(Y ) ≃ lim
∆
RF(Č(X/Y )•) (resp. RF(Y ) ≃ lim

∆s

RF(X•)).

Remark 2.41. In the setting of Proposition 2.39, we see that if F is a (hypercomplete) sheaf, then so is its
right Kan extension RF.

Proposition 2.42. Let C be a presentable ∞-category, and let F : ARR→C be an étale sheaf. Let RF denote a
right Kan extension of F along the Yoneda embedding ARR ↪→P (ARR)op. Then for any derived scheme X over R,
the natural morphism

RF(X) −→ lim
U↪→X

affine open

F(U )

is an equivalence.

Proof. This is a generalization of [Kha18, Lecture 1, Proposition 3.5] using Proposition 2.39 (see [Yay22b,
Proposition 4.52]). □

Remark 2.43. Let us note that the functors A 7→ModA and A 7→Modperf
A are hypercomplete sheaves for

the fpqc topology (see [Lur18, Corollary D.6.3.3]). Thus, using the definitions of the functors QCoh and
QCohperf, we see, using Remark 2.41, that these functors are hypercomplete sheaves for the fpqc topology.

Proposition 2.44. Let X be a scheme. Then we have an equivalence of ∞-categories Dqc(X) ≃QCoh(X), where
Dqc(X) denotes the derived ∞-category of OX -modules with quasi-coherent cohomologies.

(12)We can describe Shvτ as a localization of P (AR
op
R ) (as seen in the proof), so we get a functor L : P (AR

op
R )→ Shvτ left adjoint

to the inclusion, which we call sheafification.
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Proof. This is shown in the spectral setting in [Lur18]. In our setting, one can deduce this from Lurie’s PhD
thesis [Lur04] and the spectral setting. For more details, see [Yay22b, Proposition 4.57]. □

2.4. Deformation theory of a derived stack

This section is derived from [TV08, Section 1.4], [AG14, Section 4.2] and [Kha18, Lecture 5]. For detailed
properties and the existence of the cotangent complex, we refer to [Yay22b, Section 4.4].

We let R be a ring and assume every derived stack is a derived stack over R.
Let f : X → Y be a morphism of derived stacks. Let x : Spec(A)→ X be an A-point, where A is an

animated R-algebra. Let M ∈Modcn
A , and let us look at the commutative square

X(A⊕M) X(A)

Y (A⊕M) Y (A),

f

where the horizontal arrows are given by the canonical projection A⊕M→ A. We define the derivations at
the point x as

Derx(X/Y ,M)B fibx(X(A⊕M) −→ X(A)×Y (A) Y (A⊕M)),

where we see x as a point in the target via the natural map induced by Spec(A⊕M)→ Spec(A)
x−→ X

f
−→ Y .

Definition 2.45 (cf. [TV08, Definition 1.4.1.5]). We say that Lf ,x ∈ModA is a cotangent complex for f : X→ Y
at the point x : Spec(A)→ X if it is (−n)-connective for some n ≥ 0 and if for all M ∈Modcn

A , there is a
functorial equivalence

HomModA(Lf ,x,M) ≃Derx(X/Y ,M).

When such a complex Lf ,x exists, we say that f admits a cotangent complex at the point x. If there is no
possibility of confusion, we also write LX/Y ,x for Lf ,x. We also write LX if Y ≃ Spec(R).

Definition 2.46. We say that Lf ∈ QCoh(X) is a cotangent complex for f : X → Y if for all points
x : Spec(A)→ X, the A-module x∗Lf is a cotangent complex for f at the point x.

If Lf exists, we say that f admits a cotangent complex. We will write Lf ,x instead of x∗Lf if f admits a
cotangent complex.

Remark 2.47. Since the cotangent complex is by definition (−n)-connective on points for suitable n, we can
use a version of the Yoneda lemma to see that it is unique up to equivalence (see [TV08, Proposition 1.2.11.3]).

For affine derived schemes, the construction of the cotangent complex shows that it agrees with the
cotangent complex of animated rings. The points are then given by base change.

We list some facts concerning the cotangent complex that can be found in [Yay22b, Section 4.4].

Lemma 2.48. Let j : X ↪→ Y be a monomorphism of derived stacks over A; then j admits a cotangent complex
and Lj ≃ 0.

Proof. This is a straightforward calculation. Details can be found in the proofs of [Kha18, Lecture 5,
Proposition 5.9] or [Yay22b, Lemma 4.64]). □

The vanishing of the cotangent complex shows that it is indeed not useful to impose a monomorphism
condition on closed immersions of derived schemes.

Proposition 2.49. Let f : X→ Y be an n-geometric morphism of derived stacks. Then f is smooth if and only if
t0f is locally of finite presentation and Lf exists, is perfect and has Tor-amplitude in [−n− 1,0].
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Proof. The proof follows those of [AG14, Propositions 4.45 and 4.46]. Let us give a very brief sketch and refer
to [Yay22b, Corollary 4.77] for details. The idea, again, is induction on n. We first reduce to the case where
Y is an affine derived scheme. Then we show the assertion for (−1)-geometric derived stacks, i.e. affine
derived schemes, which is more or less clear. The “only if” direction follows using an atlas of X, inducing a

diagram of the form U
p
−→ X

f
−→ Y , with p being (n− 1)-geometric. For the “if” direction, one has to work

more.
We first define Lf as the fiber of Lf ◦p→ Lp, which exists by induction. Now we need to understand the

space of derivations and show that Lf indeed represents it. The proof of this is too involved to sketch here,
and we refer to loc. cit. for the details. The fact that Lf is perfect and has the right Tor-amplitude then
follows immediately by a 2-out-of-3 argument. □

Corollary 2.50. Let f : X→ Y be an n-geometric morphism of derived stacks locally of finite presentation. Then
Lf is perfect.

Proof. Let us sketch the proof of [Yay22b, Corollary 4.78].
We first reduce to the case where Y is affine. Then we use that X has a smooth atlas p : U → X. As

perfect modules satisfy fpqc descent, we can check perfectness of Lf after pullback to U . Now we can use
the cofiber sequence of the cotangent complexes with respect to f and p to see that a 2-out-of-3 argument,
together with Proposition 2.49, implies the result. □

Lemma 2.51. Let X be an n-geometric stack; then X is hypercomplete.

Proof. The proof is analogous to that of [Lur04, Corollary 5.3.9]. The basic idea is to show that for any
geometric stack X, we have X ≃ limnX ◦ τn. Then we use that X ◦ τn takes values in (n+ k)-groupoids, for
some sufficiently large k, and the fact that truncated sheaves are automatically hypercomplete (see [Lur09,
Lemma 6.2.9]).

A detailed proof is given in [Yay22b, Lemma 4.81]. □

2.5. The stack of perfect modules

In this section, we want to recall that the derived stack of perfect modules is locally geometric. This was
already proven in [TV07] in the model-categorical setting, and a detailed proof can be found in [Yay22b].
We recall some lemmas needed for the proof, as they will become important later on when we analyze the
substacks of derived F-zips.

Lemma 2.52. Let A be a commutative ring and P be a perfect complex of A-modules, and let n ∈N0. Further,
for k ∈ Z, let βk : Spec(A)cl →N0 be the function given by s 7→ dimκ(s)πk(P ⊗A κ(s)). Then β−1

k ([0,n]) is
quasi-compact open.

Proof. This follows from [Sta24, 0BDI]. □

Remark 2.53. Let A be a commutative ring and P be a perfect complex of A-modules. Let I ⊆Z be a finite
subset, and for k ∈Z, let βk be as in Lemma 2.52. Assume that βi is non-zero for i ∈ I and zero everywhere
else. Then using [Sta24, 0BCD,066N], we see that P has Tor-amplitude in [min(I),max(I)].

Lemma 2.54. Let A be a commutative ring and P be a perfect complex of A-modules. Then there exists a
quasi-compact open subscheme U ⊆ Spec(A)cl with the following property:

• an affine scheme morphism Spec(B)cl→ Spec(A)cl factors through U if and only if P ⊗A B ≃ 0.

Proof. This follows from the upper semi-continuity of the Betti numbers (see [Sta24, 0BDI]). For a detailed
proof, we refer to [Yay22b, Lemma 5.3]. □
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The next lemma shows that the vanishing locus of perfect complexes is quasi-compact open. This will be
applied to the cofiber of morphisms of perfect complexes. In particular, the locus classifying equivalences
between fixed perfect modules is therefore quasi-compact open.

Lemma 2.55. Let A ∈ ARR and P be a perfect A-module. Define the derived stack VP by letting VP (B) be the
full sub-∞-category of HomARR(A,B) consisting of morphisms u : A→ B such that P ⊗A,u B ≃ 0. This is a
quasi-compact open substack of Spec(A).

Proof. The proof follows that of [TV07, Proposition 2.23]. The idea of the proof is to use the upper
semi-continuity of the Betti numbers of a perfect complex to see the openness on π0A and then lift the
quasi-compact openness to A. For details, see [Yay22b, Lemma 5.4]. □

Next, we want to remark that the stack classifying morphisms between perfect modules is actually
geometric and in good cases smooth. Since derived F-zips will come with two bounded perfect filtrations (i.e.
finite chains of morphisms of perfect modules), this lemma is crucial for the geometricity of derived F-zips.

Lemma 2.56. Let A be an animated R-algebra. Let P be a perfect A-module with Tor-amplitude concentrated in
[a,b] with a ≤ 0. Then the derived stack

FAP : ARA −→ S

B 7−→HomModA(P ,B)

is (−a− 1)-geometric and locally of finite presentation over Spec(A). (We can view FAP as a derived stack over R
with a morphism to Spec(A). So for any animated R-algebra C that does not come with a morphism A→ C, the
value of FAP is empty.) Further, the cotangent complex of F

A
P at a point x : Spec(B)→ FAP is given by

LFAP ,x ≃ P ⊗A B.

In particular, if b ≤ 0, then FAP is smooth.

Proof. The proof follows that of [AG14, Theorem 5.2]. First one computes the space of derivations associated
to FAP . Then we use that any perfect complex of Tor-amplitude in [a,b] sits in a fiber sequence of perfect
modules, where the remaining modules have Tor-amplitude in [a+ 1,b], resp. [a,a] (see Lemma 2.9). Lastly,
an inductive argument concludes the proof (see [Yay22b, Lemma 5.5] for further details). □

Theorem 2.57. The derived stack

PerfR : ARR −→ S

A 7−→ (Modperf
A )≃

is locally geometric and locally of finite presentation.

To be more specific, we can write PerfR = colima≤b Perf [a,b]
R , where Perf [a,b]

R is the moduli space consisting of

perfect modules which have Tor-amplitude concentrated in degree [a,b], each Perf [a,b]
R is (b − a+ 1)-geometric and

locally of finite presentation and the inclusion Perf [a,b]
R ↪→ PerfR is a quasi-compact open immersion. If b − a ≤ 1,

then Perf [a,b]
R is in fact smooth.

Proof. The proof is analogous to those of [AG14, Theorem 5.6], [TV07, Proposition 3.7], and a full proof in this
setting can be found in [Yay22b, proof of Theorem 5.14]. The basic idea is to first prove that Perf [a,a] ≃ BGL
is geometric, then proceed by induction, using that any perfect module sits in a cofiber sequence of perfect
modules with smaller Tor-amplitude. An atlas is then given by taking fibers of morphisms of perfect modules
with smaller Tor-amplitude. In particular, Lemma 2.56 gives us the geometricity and smoothness of the atlas.
The surjectivity is reduced to classical statements, but we refer to [Yay22b, Theorem 5.14] for details as this
reduction is too involved. The openness follows again from the upper semi-continuity of the Betti numbers
of a perfect complex. □
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3. Derived F -zips

In the following, we fix a prime p and an Fp-algebra R. Starting from here, it is important that we
have chosen the ∞-category of animated rings for our study of derived algebraic geometry. The main
reason is that we want to have a Frobenius in characteristic p > 0. For E∞-rings, it is not clear how to
define a Frobenius morphism. But for animated rings, we naturally have a Frobenius. Namely, if we see
an animated ring A over Fp as a contravariant functor from Poly

Fp
to S, then the Frobenius morphism

induces a natural transformation of the animated ring to itself, which we denote by Frob: A→ A. For any
animated R-algebra A and any A-module M, we denote the base change of M by the Frobenius of A by
M(1) BM ⊗A,Frob A. If A is discrete, we can see an M-module as an element in the derived category via
the equivalence ModA ≃ D(A), and we have M(1) ≃M ⊗LA,Frob A (here we abuse notation and identify A
with π0A if A is discrete).

We want to define derived versions of F-zips presented in [MW04]. In the reference, Moonen–Wedhorn
defined F-zips over schemes of characteristic p > 0 and analyzed the corresponding classifying stack. One
application is the F-zip associated to a scheme with degenerate Hodge–de Rham spectral sequence. Examples
of those are abelian schemes and K3-surfaces. The degeneracy of the spectral sequence is used to get two
filtrations (note that the conjugate spectral sequence also degenerates) on the ith de Rham cohomology.
Our goal is to eliminate the extra information given by the degeneracy of the spectral sequences. This
information seems unnecessary since the two spectral sequences are induced by filtrations on the de Rham
hypercohomology, and thus if we pass to the derived categories, we can use the perfectness of the de Rham
hypercohomology, the two filtrations and the Cartier isomorphism to get derived F-zips, as explained in the
following example.

Example 3.1. Let f : X → S be a proper smooth morphism of schemes, where S is an R-scheme. The
complex Rf∗Ω

•
X/S is perfect and commutes with arbitrary base change (see [Sta24, 0FM0]). The conjugate

and Hodge filtrations on the de Rham complex induce functors conj : Z→D(S) and HDG : Zop→D(S)
given by(13) conj(n) = Rf∗τ≤nΩ•X/S and HDG(n) = Rf∗σ≥nΩ•X/S (recall that we see the ordered set Z as a
1-category (and thus via the nerve functor as an ∞-category), where we have a unique map between a,b ∈Z
if and only if a ≤ b). The associated colimits are naturally equivalent as we have

colim
Z

conj ≃ Rf∗Ω•X/S ≃ colim
Z

op
HDG.

For n ≥ 0, we have the following exact sequence of complexes of f −1OS-modules:

0 −→ τ≤n−1Ω
•
X/S

∂n−→ τ≤nΩ
•
X/S −→ Coker(∂n) −→ 0,

0 −→ σ≥n+1Ω
•
X/S −→ σ≥nΩ

•
X/S −→Ωn

X/S [−n] −→ 0.

Note that there is a quasi-isomorphism Coker(∂n) ∼−→Hn(Ω•X/S )[−n] in D(S). These induce fiber sequences
in D(S) of the form

conj(n− 1) −→ conj(n) −→ Rf∗Hn(Ω•X/S )[−n],

HDG(n+ 1) −→HDG(n) −→ Rf∗Ω
n
X/S [−n].

It makes sense to think of Rf∗Hn(Ω•X/S )[−n] and Rf∗Ω
n
X/S [−n] as “cokernels” of the respective maps in the

distinguished triangles (as they are the cofibers in the stable ∞-category D(S)).
The notation conj and HDG is chosen to indicate their influence on the classical conjugate and Hodge

filtrations. Using these functors, one can naturally associate converging spectral sequences (as explained
for example in [Lur17, Definition 1.2.2.9, Proposition 1.2.2.14] or [Sta24, 0FM7] for the Hodge filtration) on

(13)Here τ≤n denotes the canonical truncation and σ≥n the stupid truncation in the sense of [Sta24, 0118].
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Rif∗Ω
•
X/S . The filtration on the ith cohomology of the colimit of HDG (≃ Rf∗Ω•X/S ), for example, is given

by
FnRif∗Ω

•
X/S B im(H i(HDG(n)) −→ Rif∗Ω

•
X/S ).

The spectral sequence associated to the Hodge functor is given by

E
p,q
1 =Hq(X,Rf∗Ω

p
X/S ) =Hq+p(X,Rf∗Ω

p
X/S [−p]) =⇒ Rp+qf∗Ω

•
X/S .

Therefore, it seems reasonable to think of conj, resp. HDG, as an ascending, resp. descending, filtration (see
Definition 3.4 below) with graded pieces

grn conjB Rf∗Hn(Ω•X/S )[−n] resp. grnHDGB Rf∗Ω
n
X/S [−n]

(see Definition 3.6 below).

The Cartier isomorphism gives an equivalence Rf∗Hn(Ω•X/S ) ≃ Rf (1)
∗ Ωn

X(1)/S
. Again by [Sta24, 0FM0],

Rf∗Ω
n
X/S commutes with arbitrary base change, and therefore

(grnHDG)(1) ≃ (Rf∗Ω
n
X/S )(1)[−n] ≃ Rf (1)

∗ Ωn
X(1)/S

[−n] ≃ Rf∗Hn(Ω•X/S )[−n] ≃ grn conj.

We claim that conj and HDG take values in perfect complexes of OS-modules and their respective graded
pieces are perfect.

Indeed, first note that we can check this Zariski locally, so we may assume that S is affine and in particular
quasi-compact. Then for any n ∈Z, the complexes grnHDG and Rf∗Ω

•
X/S are perfect, and their formation

commutes with arbitrary base change (see [Sta24, 0FM0]). Since σ≥0Ω
•
X/S = Ω•X/S , we see inductively using

the distinguished triangles above that for all n ∈ Z, the complex HDG(n) is perfect. Now certainly the
base change of perfect complexes is perfect, and therefore the Cartier isomorphism shows that the graded
pieces of conj are also perfect. The quasi-compactness of S implies that there is an n ∈ N0 such that
τ≤nΩ

•
X/S = Ω•X/S , and thus again inductively with the distinguished triangles above, we see that conj(n) is

perfect for all n ∈Z.
Note that we heavily used that Zariski locally, there is an n≫ 0 such that for any k ≤ 0 and j ≥ 0, we have

conj(k−1) ≃ 0 ≃HDG(n+ j) and conj(n+ j) ≃ Rf∗Ω•X/S ≃HDG(k), and conj(n+ j)→ conj(n+ j + 1) and
HDG(k + 1)→HDG(k) are equivalent to the identity.

The example above gives us an idea for the definition of derived F-zips (see Definition 3.15). Namely, a
derived F-zip should consist of two filtrations (one descending and one ascending) with perfect values that
are locally determined by a finite chain of morphisms, i.e. functors

C• ∈ Fun(Zop,Perf(S)) and D• ∈ Fun(Z,Perf(S)),

such that their colimits are equivalent and that on affine opens, they are up to equivalence determined
by their values on a finite ordered subset of Z, together with equivalences ϕ• of their graded pieces up to
Frobenius twist, i.e. for grnC B cofib(Cn+1 → Cn) and grnD B cofib(Dn−1 → Dn), equivalences of the
form

ϕn B (grnC)(1) ∼−−→ grnD.

The ∞-category of derived F-zips should then be defined as the ∞-category of such triples (C•,D•,ϕ•).

3.1. Filtrations

In the following, A will denote an animated ring.
We will now define the notions of a filtration and graded pieces and look at properties of filtrations. These

definitions are highly influenced by the work of Gwilliam–Pavlov [GP18] and Example 3.1.

Definition 3.2. A morphism f : M → N of A-modules is called a monomorphism if for all i ∈ Z, the
morphism πif is injective. We call f a split monomorphism if f admits a retraction.
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Remark 3.3. Note that a monomorphism in our sense is not equivalently an ∞-categorical monomorphism;
i.e. if f is a monomorphism of A-modules in our sense, then the diagonal f may not be an equivalence.(14)

Further, let us observe that any split monomorphism is automatically a monomorphism but the other way
is not necessarily true. For this let us note that a split monomorphism f : M→N is equivalently a splitting

of the fiber sequence M
f
−→N → cofib(f ); i.e. we have an equivalence of cofiber sequences

M N cofib(f )

M M ⊕ cofib(f ) cofib(f ).

f

id ≃ id

In particular, the natural morphism Z

·2−→Z is a monomorphism in our sense but is not split (otherwise, the
short exact sequence

0 −→Z

·2−→Z −→Z/2Z −→ 0

would be split).

Definition 3.4. An ascending (resp. descending ) filtration of A-modules is an element F ∈ Fun(Z,ModA) (resp.
F ∈ Fun(Zop,ModA)).

We call an ascending (resp. descending) filtration F

(1) right bounded if there exists an i ∈ Z such that the natural map F(k)→ colim
Z
F (resp. F(k)→

colim
Z

op F) is an equivalence for all i ≤ k (resp. i ≥ k),
(2) left bounded if there exists an i ∈Z such that the natural map 0→ F(k) is an equivalence for all k ≤ i

(resp. k ≥ i),
(3) bounded if it is left and right bounded,

(4) perfect if F takes values in Modperf
A ,

(5) strong if for all i ≤ j (resp. j ≤ i), we have that F(i)→ F(j) is a monomorphism.

Remark 3.5. The definition of a strong filtration seems natural since for a discrete module M over a discrete
ring A, a filtration is usually defined as a filtered chain of submodules

· · · ⊆Mi ⊆Mi+1 ⊆ · · · ⊆M

(for simplicity, we only consider ascending filtrations). But we can show that the Hodge filtration HDG of
Example 3.1 is strong if and only if the Hodge–de Rham spectral sequence is degenerate and the modules of
the E1-page are finite locally free (see Theorem 3.74). Since we are particularly interested in the cases where
the Hodge–de Rham spectral sequence is non-degenerate, strong filtrations are not used in the definition of
derived F-zips.

The∞-category of A-modules is stable. Thinking of stable∞-categories as analogues of abelian categories,
we may think of cofibers as cokernels. This allows for a definition of graded pieces of a filtration, that was
used in Example 3.1.

Definition 3.6. Let F be an ascending (resp. descending) filtration of A-modules. For any i ∈Z, we define
the ith graded piece of F as gri F B cofib(F(i − 1)→ F(i)) (resp. gri F B cofib(F(i + 1)→ F(i))).

Remark 3.7. By the construction of the category Fun(Z,ModA), one sees that two filtrations F and G
are equivalent if and only if there is a morphism F → G such that for all n ∈ Z, the induced morphism
F(n)→ G(n) is an equivalence of A-modules. However, one can show that a morphism of bounded filtrations

(14)Note that in stable ∞-categories, pullback diagrams are equivalently pushout diagrams. So if f : M→N is a morphism of
A-modules such that the diagonal is an equivalence, then f is an equivalence.
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is an equivalence if and only if it induces an equivalence on the graded pieces (this is an easy consequence
using induction or [GP18, Remark 3.21]).

Remark 3.8. Note that for a perfect filtration F of A-modules, the graded pieces gri F are again perfect
(since the ∞-category of perfect modules is per definition stable; see [Lur17, Section 7.2.4]).

Remark 3.9. We want to attach a monoidal structure to filtrations of A-modules (we will only consider
ascending filtrations, but the arguments work analogously for descending filtrations as explained at the
end of this remark). First, note that for any (symmetric) monoidal ∞-category C, the ∞-category Fun(Z,C)
has two monoidal structures. The first one is simply given by termwise tensor product (see [Lur17, Remark
2.1.3.4]); the other one is given by the Day convolution (see [Lur17, Example 2.2.6.17]). We will not use the
monoidal structure given by termwise tensor product since we want to consider bounded filtrations, and for
such we do not have a unit element with respect to the termwise tensor product. Having this in mind, we
will look closely into the monoidal structure induced by the Day convolution, which we will explain in the
following.

For the Day convolution, we first need a (symmetric) monoidal structure on Z. For this, we simply take Z

with the usual addition, seen as a symmetric monoidal structure on Z. Then the Day convolution of two
elements F,G ∈ Fun(Z,ModA), denoted by F ⊗G, is given by the formula

(F ⊗G)(k) ≃ colim
n+m≤k

F(n)⊗AG(m),

where we take the colimit over the category of triples (a,b,a+ b→ k) where a,b ∈ Z and a+ b→ k is a
morphism in Z (recall that this simply means a+ b ≤ k) and the morphisms are given componentwise, i.e. a
morphism

(a,b,a+ b→ k) −→ (a′ ,b′ , a′ + b′→ k′)

is given by the relations a ≤ a′ , b ≤ b′ and k ≤ k′ . A unit element for this tensor product is given by
the bounded perfect filtration Atriv

• on A, where Atriv
i ≃ A for i ≥ 0 and Atriv

i = 0 otherwise, the maps
Atriv
m → Atriv

n for 0 ≤ m ≤ n are given by the identity and the maps Atriv
m → Atriv

n for m ≤ n ≤ 0 are given
by 0.

If we replace ascending filtrations with descending ones, the relations above get opposed; i.e. we have
unique morphisms a→ b in Z

op if and only if b ≤ a. Taking this to account, we can dually define the Day
convolution for descending filtrations similarly.

Notation 3.10. In the definition of derived F-zips, we will have an ascending and a descending filtration.
For clarity, for an ascending filtration F ∈ Fun(Z,ModA), we denote its values by Fn B F(n) for any n ∈Z,
and for a descending filtration G ∈ Fun(Zop,ModA), we denote its values by Gn B G(n). We also denote
the filtrations by F• B F and G• B G. For the gradings, we omit the •; i.e. we write gri F B gri F• and
griGB griG•

Remark 3.11. Let us visualize the Day convolution using an easy example. Let M and N be A-modules, and
let C→M and D→N be morphisms of A-modules. Now let us look at the filtrations C• and D• given

C• : · · · 0−−−→ 0
0−−−→ C −→M

id−−→M
id−−→ ·· ·

D• : · · · 0−−−→ 0
0−−−→D −→N

id−−→N
id−−→ ·· · ,

where we set C0 = C and D0 = D . Then we have (C• ⊗D•)0 ≃ C ⊗A D, and the A-module (C• ⊗D•)1 is
given by the pushout of the diagram

C ⊗AD

M ⊗AD C ⊗AN .
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The A-module (C• ⊗D•)2 is given by the colimit of the diagram

C ⊗AD

M ⊗AD C ⊗AN

M ⊗AD M ⊗AN C ⊗AN ;

id id

in particular, we may forget about the topmost module and only look at the colimit of the bottom zigzag
(in the homotopy category). This diagram makes clear that (C• ⊗D•)2 ≃M ⊗AN . The same visualization
works for higher degrees of the filtration (C• ⊗D•)•, and we will prove in the following proposition that the
Day convolution descends to perfect bounded filtrations having this tree structure in mind.

Proposition 3.12. The Day convolution on Fun(Z,ModA) descends to a symmetric monoidal structure on the
full subcategory of perfect bounded ascending filtrations. The same holds for perfect bounded descending filtrations.

Proof. That the unit element for the Day convolution is a bounded perfect filtration on an A-module is
shown in Remark 3.9.

Let C• and D• be bounded ascending filtrations of A-modules. We claim that (C• ⊗D•)• is a bounded
ascending filtration. That (C• ⊗D•)• defines a left-bounded filtration is clear. To see that it is also right
bounded, fix some integers k,k′ ∈Z such that the natural morphisms

Ci
∼−−→ colim

Z

C• and Dj
∼−−→ colim

Z

D•

are equivalences for all i ≥ k and j ≥ k′ . For simplicity, let us set M B colim
Z
C• and N B colim

Z
D•.

First, note that the morphism Ci≤i+1 : Ci → Ci+1 is an equivalence for all i ≥ k. Using this equivalence,
we may assume that Ci≤i+1 is given by idM (it is not hard to find an equivalence of filtrations); we do the
same for D•. Now let us look at (C• ⊗D•)k+k′ ; we claim that this term is equivalent to M ⊗N . Indeed,
Ck ⊗ADk′ ≃M ⊗AN by construction. Now let (i, j) ∈Z2 be such that i + j ≤ k + k′ but i > k or j > k′ , so
there is no morphism from Ci ⊗ADj to Ck ⊗ADk′ . Without loss of generality, assume i > k (in particular,
j < k′).

Let us visualize what we are going to do. Considering the zigzag from Remark 3.11, we will look at the
following diagram:

Ck ⊗ADj

... Ck+1 ⊗ADj

... . . .

Ck ⊗ADk′ Ci ⊗ADj

(C• ⊗D•)k+k′ .

id

f
id

id

g

h

By the definition of colimits, we automatically get a homotopy between f and h and a homotopy between f
and g . In particular, this diagram shows that h is, up to homotopy, uniquely determined by f and g . But
certainly the morphisms of the filtrations and g uniquely (up to homotopy) determine f . Using this and
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the universal property of colimits, we see that there exists a morphism p : (C• ⊗D•)k+k′ → Ck ⊗ADk′ such
that idCk⊗ADk′ ≃ p ◦ g . But g ◦ p induces a map (C• ⊗D•)k+k′ → (C• ⊗D•)k+k′ that is compatible with all
transition maps in the colimit diagram, and thus g ◦p ≃ id(C•⊗D•)k+k′ . In other words, M⊗AN ≃ Ck⊗ADk′ ≃
(C• ⊗D•)k+k′ .

The same argument shows that (C•⊗D•)l ≃M⊗AN and that the canonical maps (C•⊗D•)l → (C•⊗D•)l+1
are homotopic to the identity for all l ≥ k + k′ . So for all l ≥ k + k′ , the natural map

(C• ⊗D•)l ∼−−→ colim
Z

(C• ⊗D•)• ≃M ⊗AN

is an equivalence; i.e. (C• ⊗D•)• is right bounded.
The above computations show that since C• and D• are bounded, for any k ∈Z, we have that (C• ⊗D•)k

is equivalent to the colimit taken over a finite filtered subset of Z (again seen as a category via the nerve
functor and morphisms uniquely given by relations). Since finite colimits of perfect modules are perfect, we
see that (C• ⊗D•)• is not only bounded but also perfect (note that stable ∞-categories are closed under
finite colimits; see [Lur17, Proposition 1.1.3.4]).

Combining everything above, we see that the Day convolution descends to bounded perfect filtrations
and therefore gives us a symmetric monoidal structure on bounded perfect filtrations (see [Lur17, Proposi-
tion 2.2.1.1, Remark 2.2.1.2]).

The proof for descending filtrations works analogously. □

Remark 3.13. For two filtrations C• and D• of A-modules, it is known that

grk(C• ⊗D•) ≃
⊕
n∈Z

grnC ⊗A grk−nD

(see [BMS19, Lemma 5.2]).

Remark 3.14. Let us note that the construction of the Day convolution can also be done for Fun(C,D), where
C and D are arbitrary symmetric monoidal ∞-categories (see [Lur17, Example 2.2.6.17]).

An interesting example for us occurs if C ≃Z
disc (recall that this means the set Z as a discrete 1-category

and thus an ∞-category via the nerve functor), where we endow Z
disc with a symmetric monoidal structure

by addition, i.e. a⊗ bB a+ b, and D ≃Modperf
A . Then for functors F,G ∈ Fun(Zdisc,Modperf

A ), we have

(F ⊗G)(k) ≃
⊕
n+m=k

F(n)⊗AG(m) ≃
⊕
n∈Z

F(n)⊗AG(k −n).

This will become important when constructing a symmetric monoidal structure on derived F-zips since we
have to take into account the morphisms between graded pieces and the behaviour of graded pieces of the
tensor product of bounded perfect filtrations.

3.2. Derived F -zips over affine schemes

We are ready to define derived F-zips, and we will do so by axiomatizing the structures occurring in
Example 3.1. We will first restrict ourselves to the local case; i.e. we define derived F-zips over animated
rings. The reason, besides simplicity, is that the theory of derived algebraic geometry was only developed for
animated rings since we want a “nice” model category such as the model category associated to animated
rings. This is not a real issue since globalization of the results is achieved by considering right Kan
extensions. There is also a direct way of defining derived F-zips for derived stacks, but we will see that the
two constructions agree (see Remark 3.65).

Recall that we fixed an Fp-algebra R at the beginning of this section.

Definition 3.15. Let A be an animated R-algebra. A derived F-zip over A is a tuple (C•,D•,φ,ϕ•) consisting
of

• a descending bounded perfect filtration of A-modules C•,
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• an ascending bounded perfect filtration of A-modules D•,
• an equivalence φ : colim

Z
opC• ≃ colim

Z
D•, and

• a family of equivalences ϕk : (grkC)(1) ∼−→ grkD .

The ∞-category of F-zips over A, denoted by F-Zip∞,R(A), is defined as the full subcategory of

(Fun(Zop,Modperf
A )×colim,ModA,colim Fun(Z,Modperf

A ))

×((gri−)
(1),gri−)i∈Z,

∏
Z

Fun(∂∆1,Modperf
A )

∏
Z

Fun(∆1,Modperf
A )

consisting of derived F-zips over A.
For an animated R-algebra homomorphism A → A′ , we have an obvious base change functor

F-Zip∞,R(A)→ F-Zip∞,R(A′) via the tensor product, where the filtrations are base changed componentwise
with induced morphisms.

Remark 3.16. In the above definition we have to fix the equivalence between the colimits of the ascending and
descending filtrations. This comes from the fact that we want to define derived F-zips as a full subcategory,
as above. To be more specific, let us look at a pullback diagram of ∞-categories

D A

B C.

g

n

A morphism ∆0→D is by definition the same as a diagram

∆0 A

B C

f

m h g

n

with equivalences g ◦ f ≃ h and n ◦ m ≃ h in the ∞-category Fun(∆0,C), i.e. 1-morphisms in
HomCat∞(∆0,C) B Fun(∆0,C)≃ (resp. 2-morphisms in Cat∞). Important here is that we have to fix
the homotopy equivalences g ◦ f ≃ h and n ◦m ≃ h; i.e. they are an additional datum. So an object in D
is the same as a tuple (A,B,C) ∈ A×B × C together with equivalences g(A) ≃ C and n(B) ≃ C. This is
equivalent to giving a tuple (A,B,φ) of objects A ∈ A and B ∈ B and an equivalence φ : g(A) ≃ n(B).

Remark 3.17. Let A be an animated R-algebra. The homotopy category of derived F-zips over A forgets
the extra datum of the equivalence between the colimits. This follows from the fact that the filtrations in
the definition of a derived F-zips over A are bounded. So, any derived F-zip (C•,D•,φ,ϕ•) is isomorphic
(not canonically) in hF-Zip∞(S) to a derived F-zip, where the equivalence between the colimits is actually
given by the identity. In particular, up to equivalence we may replace φ with the identity, and we will write
(C•,D•,ϕ•) in this case for a derived F-zip when we work with derived F-zips up to homotopy.

Example 3.18. Let us come back to Example 3.1. Let f : X → Spec(A) be a proper smooth morphism of
schemes. Then the associated Hodge and conjugate filtrations HDG and conj define, respectively, descending,
and ascending perfect bounded filtrations of A-modules. We also have equivalences ϕn : (grnHDG)(1) ∼−→
grn conj between the graded pieces (up to Frobenius twist), induced by the Cartier isomorphism. Therefore,
we get a derived F-zip associated to the proper smooth map f of schemes

RΓdR(X/A)B (HDG•,conj•,ϕ•)

(note that colim
Z

op HDG• ≃ colim
Z
conj naturally by the identity).
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Remark 3.19. Let us note that for any A ∈ ARR, the ∞-category of F-zips over A is essentially small, even if
we do not assume ModA to be small.(15) This is because the ∞-category ModA is compactly generated (see
[Lur17, Proposition 7.2.4.2]) (thus accessible), and therefore the full subcategory of perfect objects is essentially

small (see [Lur09, Proposition 5.4.2.2]). Hence for any small∞-category K , the∞-category Fun(K,Modperf
A )

is again essentially small (see [Lur09, Propositions 5.3.4.13 and 5.4.4.3]). Finally, since F-Zip∞,R(A) is a full
subcategory of finite limits of the objects of the form above, we see that indeed F-Zip∞,R(A) is essentially
small (note that by [Lur09, Corollary 4.2.4.8], the ∞-category of small ∞-categories has small limits).

Lemma 3.20. The ∞-category of derived F-zips over an animated R-algebra A is stable.

Proof. We know that ModA and Modperf
A are stable and thus also that for any ∞-category C, the ∞-category

Fun(C,Modperf
A ) is stable. Since the limit of stable ∞-categories with finite limit-preserving transition maps

is stable, it is enough to show that F-Zip∞,R(A) is a stable subcategory of(
Fun

(
Z

op,Modperf
A

)
×colim,ModA,colim Fun

(
Z,Modperf

A

))
×((gri−)

(1),gri−)i∈Z,
∏

Z
Fun

(
∂∆1,Modperf

A

) ∏
Z

Fun
(
∆1,Modperf

A

)
(note that

∏
Z

Fun(∆1,Modperf
A ) ≃ Fun(Zdisc,Fun(∆1,Modperf

A )) and filtered colimits preserve finite limits).
For this, we have to show that the perfect bounded filtrations, equivalences between colimits of filtrations
and equivalences between the graded pieces (up to Frobenius twist) are stable under shifts and cofibers.

That perfect bounded filtrations are stable under shift and cofibers follows immediately from the fact
that limits and colimits of functors can be computed pointwise (see [Lur09, Corollary 5.1.2.3]). The same
argument implies that equivalences between the graded pieces (up to Frobenius twist) are stable under
cofibers and shifts. Since filtered colimits commute with shifts and cofibers, we also see that the equivalence
between the colimits is preserved under those operations. □

In the following, we want to construct a symmetric monoidal structure on derived F-zips. The idea is
very simple. We know that derived F-zips are contained in a larger ∞-category (see Definition 3.15); let us
denote this category with C. This ∞-category C is constructed by limits of functor categories, that we can
endow with the Day convolution. For the morphisms between graded pieces, we have to be a bit careful, but
Remarks 3.13 and 3.14 show us that this will not be a problem. Since passing to the graded pieces and taking
the colimit of a filtration are both monoidal functors, we see that indeed C is symmetric monoidal. Now
we only need to show that the unit object of C is a derived F-zip, which follows immediately, that the Day
convolution of perfect bounded filtrations is bounded perfect (this is Proposition 3.12) and that the induced
morphism of graded pieces (up to Frobenius twist) is an equivalence, which is also immediate.

Proposition 3.21. The ∞-category of derived F-zips over an animated R-algebra A admits a symmetric monoidal
structure.

Proof. We know that Modperf
A admits a symmetric monoidal structure (see [Lur17, Remark 2.2.1.2] and note

that as an A-module, A is perfect and the tensor product of perfect A-modules is again perfect). We now
show how to construct a symmetric monoidal structure on derived F-zips.

The monoidal structure on the filtrations is given by the Day convolution (see Proposition 3.12). The
monoidal structure on the equivalences of graded pieces is given in the following way.

We endow Fun(Zdisc,Modperf
A ) with the Day convolution (as explained in Remark 3.14), where we endow

Z
disc with a symmetric monoidal structure by usual addition. The unit object in Fun(Zdisc,Modperf

A )

(15)We want to note that we did not assume any smallness of the module categories explicitly, and this remark shows that it is not
needed in this section. But as Remark 2.43 shows, we need smallness of the module categories for globalization purposes, i.e. when
we want to extend derived F-zips to derived schemes via right Kan extension.
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is given by Adisc
triv , where Adisc

triv (n) ≃ A if n = 0 and 0 otherwise. Now we endow the ∞-category

Fun(∆1,Fun(Zdisc,Modperf
A )) with the pointwise tensor product (see [Lur17, Remark 2.1.3.4]); we do exactly

the same for Fun(∂∆1,Fun(Zdisc,Modperf
A )). Certainly, by this construction, for a derived F-zip (C•,D•,ϕ•)

over A, the family ϕ• defines an element of Fun(∆1,Fun(Zdisc,Modperf
A )).

Now let us note that taking the colimit defines a symmetric monoidal functor from ascending (resp.
descending) filtrations to ModA (as the tensor product of spectra commute with colimits in each variable,
see [Lur17, Corollary 4.8.2.19]). Also, sending a filtration to its graded piece is symmetric monoidal by
Remark 3.13. Therefore, we can attach a symmetric monoidal structure to

C(A)B
(
Fun

(
Z

op,Modperf
A

)
×colim,ModA,colim Fun

(
Z,Modperf

A

))
×Fun

(
∂∆1,Fun

(
Z

disc,Modperf
A

)) Fun
(
∆1,Fun

(
Z

disc,Modperf
A

))
,

where we use that the ∞-category of symmetric monoidal ∞-categories has limits (see(16) [Lur17, Remark
2.4.2.6, Proposition 3.2.2.1]).

Since derived F-zips over A form a full subcategory of C(A), it suffices to check that the unit element of
C(A) is in F-Zip∞,R(A) and that it is closed under the tensor product (see [Lur17, Remark 2.2.1.2]). But this
follows from Proposition 3.12 and Remarks 3.13 and 3.14. Concretely, the unit element in F-Zip∞,R(A) is
given by

1A B (A•triv,A
triv
• , idA, (idA)0),

where Atriv
• is defined as in Remark 3.9, A•triv is defined dually, i.e. is given by Antriv ≃ A for n ≤ 0 and 0

elsewhere and has identity as transition maps, (idA)0 denotes the family of morphisms ϕ•, where ϕ0 ≃ idA
and ϕn = 0 elsewhere.

Note that for ϕ•,ϑ• ∈ Fun(∆1,Fun(Zdisc,Modperf
A )) which induce equivalences in Fun(Zdisc,Modperf

A ),
their tensor product is still an equivalence, by the explicit description given in Remark 3.14. □

Our next goal is to show that the functor that sends an animated R-algebra to the ∞-category of derived
F-zips over it is locally geometric. For this we need that it is a hypercomplete sheaf for the étale topology.
We will show that it is a hypercomplete sheaf even for the fpqc topology. Since every geometric derived
stack is hypercomplete (see Lemma 2.51), the hypercompleteness condition is necessary, at least for the étale
topology.

Again the idea is very simple and follows the proof of descent for perfect modules seen in [AG14, proof of
Lemma 5.4]. We again embed F-zips into a larger category as in the proof of Proposition 3.21, which satisfies
hyperdescent. Then we only need to check that the property bounded perfect of a filtration and the property
equivalence of a morphism between modules satisfy fpqc hyperdescent. But since our cover is affine and
perfectness is equivalent to dualizability, both properties satisfy hyperdescent, and we are done.

To see that the larger category satisfies descent, one only needs that perfect filtrations satisfy descent,
which will follow the from descent of perfect modules.

Lemma 3.22. Let F : ARR → Cat∞ be a hypercomplete fpqc sheaf. Then for any ∞-category C, the functor
Fun(C,F(−)) : ARR→ Cat∞ is a hypercomplete fpqc sheaf.

Proof. As Fun(C,−) is right adjoint to the product, it preserves limits. Since F is a hypercomplete sheaf, we
see that indeed the natural morphism Fun(C,F(A)) ∼−→ lim∆s

Fun(C,F(A•)) is an equivalence for any fpqc
hypercovering A→ A•. □

(16)The reference shows the existence of limits in commutative algebra objects of symmetric monoidal ∞-categories. But using
[Lur17, Proposition 4.1.7.10], we can endow the∞-category of∞-categories with the Cartesian model structure (a concrete description
of the associated ∞-operad is given in [Lur17, Notation 4.8.1.2]). The commutative algebra objects of the ∞-category of ∞-categories
with this monoidal structure is then equivalent to the ∞-category of symmetric monoidal ∞-categories (defined for example in
[Lur17, Variant 2.1.4.13]).
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Definition and Proposition 3.23. The functor

F-Zip∞,R : ARR −→ Cat∞

A 7−→ F-Zip∞,R(A)

is a hypercomplete sheaf for the fpqc topology.

Proof. In the following, we will denote the functor ARR → Cat∞, A 7→ Modperf
A by Modperf

(−) to avoid
confusion with the notation of the stack of perfect modules over R.

Let A→ A• be an fpqc hypercovering given by a functor ∆+,s→ ARR. We have to show that F-Zip∞(A)→
lim∆s

F-Zip∞,R(A•) is an equivalence.
For convenience, we first set

C(−)B Fun
(
Z

op,Modperf
−

)
×colim,Mod−,colim Fun

(
Z,Modperf

−
)

×Fun(∂∆1,Fun(Zdisc,Modperf
− )) Fun

(
∆1,Fun

(
Z

disc,Modperf
−

))
.

For the fully faithfulness, let us look at the diagram

F-Zip∞,R(A) lim∆s
F-Zip∞,R(A•)

C(A) lim∆s
C(A•).

By Lemma 3.22 and descent of (perfect) modules (see Remark 2.43), we see that C is a hypercomplete sheaf
for the fpqc topology, and thus the bottom horizontal arrow is an equivalence, and thus the upper horizontal
arrow is fully faithful.

For the essential surjectivity, note that we have to check that a filtration is bounded if and only if it is fpqc
hyperlocally. But this follows immediately from the definition of a hypercovering since A→ A0 has to be an
fpqc covering, and thus if a filtration is bounded on the hypercovering, it certainly is on A. Also, we have to
check that the induced morphism on the graded pieces (up to Frobenius twist) is an equivalence if and only
if it is so fpqc hyperlocally, but again this follows from the descent of modules. □

Recall that the functor (−)≃ that sends an ∞-category to its underlying Kan complex is right adjoint to
the inclusion and thus preserves limits. In particular, the hypercomplete sheaf F-Zip∞,R induces a derived
stack. We want to show that this stack is locally geometric. To do so, we have to write it as a filtered
colimit of geometric stacks. In the case of perfect modules, we restricted ourselves to perfect modules of

fixed Tor-amplitude Perf[a,b]
R . To use the geometricity of Perf[a,b]

R to our advantage, we fix the Tor-amplitude
of the graded pieces associated to the descending filtration of a derived F-zip (C•,D•,φ,ϕ•). By the
boundedness of the filtrations, this also fixes the Tor-amplitude of each Ci and Di for all i ∈Z (for Di we
use the equivalences given by ϕ•). But this is still not enough for geometricity since we would need to cover
filtrations that could get bigger and bigger. To solve this problem, we also fix a finite subset S ⊆Z, where the
ith graded piece vanishes for i < S . This is analogous to fixing the type (see Definition 3.31), which is done in
the classical setting by [MW04]. This approach also works, as seen later in Remark 3.44, but amounts to the
same proof.

Definition 3.24. We define the derived stack of F-zips

F-ZipR : ARR −→ S

A 7−→ F-Zip∞,R(A)≃.

For a finite subset S ⊆Z and a ≤ b ∈Z, we define F-Zip[a,b],S
R as the derived substack over F-ZipR, where

we restrict ourselves to the F-zips (C•,D•,φ,ϕ•) such that griC ≃ 0 for i < S and the Tor-amplitude of
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griC is contained in [a,b] for all i ∈ S (note that both conditions can be tested locally, and thus F-Zip[a,b],S
R

indeed defines a derived substack).

Let us quickly insert a remark that is needed for the proof of the next theorem.

Remark 3.25. Let us look at the following diagram in S:

Z X

Y W .

a

b

Let us assume this diagram is a pullback diagram in S. If one of the morphisms a or b is a Kan fibration,
then Z is equivalent in S to the ordinary pullback in the category of simplicial sets. This is a standard result
for homotopy pullbacks in model categories (see [Lur09, Remark A.2.4.5]).

If we replace S with Cat∞, where we also replace “Kan fibration” with “isofibration”, the same holds after
applying (−)≃ : Cat∞→ S to the diagram. A more detailed overview of this can also be found in [Yay22b,
Remark 4.13].

An important example of a Kan fibration (resp. an isofibration) is the naturally induced morphism
Fun(B,X) → Fun(A,X) for a simplicial set B, a simplicial subset A ⊆ B and a Kan complex (resp. an
∞-category) X (see [Lur24, 00TJ, 01BS]; again, a more details can also be found in [Yay22b, Remark 4.13]).

Theorem 3.26. Let S ⊆Z be a finite subset and a ≤ b ∈Z. The derived stack F-Zip[a,b],S
R is (b−a+1)-geometric

and locally of finite presentation. Further, the functor F-Zip[a,b],S
R → Perf [a,b]

R induced by (C•,D•,φ,ϕ•) 7→
colim

Z
opC• is locally of finite presentation.

We want to note that in fact F-Zip is locally geometric, which will be shown later on (see Theorem 3.45).
The idea of the proof is straightforward. We know that perfect modules with fixed Tor-amplitude,

morphisms between those and stacks classifying equivalences between those are geometric. Since the
filtrations have finite length, we can see them as finite chains between perfect modules with fixed Tor-
amplitude, which are also geometric. The only thing left is to extend finite chains of perfect modules to
functors from Z (resp. Zop) to perfect modules with fixed degree where the graded pieces do not vanish.
But this is also straightforward since the only thing left is to degenerate each vertex in the finite chain such
that it sits in the right degree.

Proof of Theorem 3.26. Let k be the number of elements of S, and let us index S in the following way
{s0 < · · · < sk−1}. Let us set nB b − a+ 1. Consider the pullback square

V Fun
(
∆1,Modperf

(−)

)≃

Perf [a,b]
R ×R Perf [a,b]

R Fun
(
∂∆1,Modperf

(−)

)≃
.

p

Then V is an n-geometric stack locally of finite presentation, since it classifies morphisms between perfect

complexes with Tor-amplitude in [a,b]. Thus, the fiber under p of a point Spec(A)→ Perf [a,b]
R ×R Perf [a,b]

R ,
classified by perfect A-modules (P ,Q) of Tor-amplitude in [a,b], is given by FP⊗Q∨ . This is an (n − 2)-
geometric derived stack and is locally of finite presentation by Lemma 2.56. Hence, using that the

product Perf [a,b]
R ×R Perf [a,b]

R is n-geometric (since Perf [a,b]
R is n-geometric by Theorem 2.57), we see that V is

n-geometric.
We will now glue copies of V together so that we can classify a chain of morphisms, and since F-zips

have two filtrations, we will do this twice. Let us start with codom: V → Perf [a,b]
R , which sends a morphism
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to its codomain. This morphism is n-geometric and locally of finite presentation since it is the composition

of V → Perf [a,b]
R ×R Perf [a,b] and p2 : Perf [a,b]

R ×R Perf [a,b]
R → Perf [a,b]

R , which both are n-geometric and locally
of finite presentation (analogously, the map dom: V → Perf [a,b] which sends a morphism to its domain is
n-geometric and locally of finite presentation). In particular, Ṽ1 B V ×codom,Perf [a,b]

R ,codom V is n-geometric

and locally of finite presentation.
The derived stack Ṽ1 classifies tuples of morphisms of perfect modules (M→M ′ ,N →N ′) such that M ′

is equivalent to N ′ . This is not an extra datum, as codom from V to Perf[a,b]
R is pointwise a Kan fibration,

so we can use Remark 3.25 to see that Ṽ1 is pointwise equivalent in S to the ordinary pullback of simplicial
sets, where we do not need to keep track of the equivalence of M ′ and N ′ . Since we want to keep track of
the equivalence between the colimits, we define V1 via the pullback square

V1 Fun
(
∆1,Perf [a,b]

R

)

Ṽ1 Fun
(
∂∆1,Perf [a,b]

R

)
.

p̃

(codom,codom)

Note that for any morphism Spec(A)→ Ṽ1, classified by two morphisms (M →M ′ ,N → N ′) of perfect
A-modules of Tor-amplitude [a,b], the fiber under p̃ is given by the stack classifying equivalences between
M ′ and N ′ , which is open in the derived stack HomModA(M ′ ⊗A (N ′)∨,−) over A by Lemma 2.55 and thus
(n− 2)-geometric and locally of finite presentation by Lemma 2.56. By our construction, V1 is n-geometric
and classifies tuples (f ,g,ψ), where f ,g are morphisms of perfect modules and ψ is an equivalence between
their codomains.

Let us set recursively

Vl B (V ×R V )×codom×codom,Perf [a,b]
R ×RPerf [a,b]

R ,dom×dom Vl−1

for l ≥ 2. Let us also define V0 as the stack classifying equivalences between perfect modules (analogously

defined as V ). Here dom×dom: Vl−1→ Perf [a,b]
R ×R Perf [a,b]

R is defined for l > 2 by projecting to V ×R V
and then further projecting by dom×dom, and for l = 2, it is directly given by dom×dom (note that we
have two projections from V1 to V ). Using the same arguments as before, we see that Vl is n-geometric and
locally of finite presentation for all l ≥ 0. Now let us look at Vk−1. The stack Vk−1 classifies two chains of
length k − 1 of morphisms of perfect modules with Tor-amplitude in [a,b], with an equivalence of the ends
of the two chains.

Later in the proof, we will identify Vk−1 with the stack that classifies perfect modules with Tor-amplitude
in [a,b] and two bounded filtrations with graded pieces of Tor-amplitude in [a,b] (one descending, one
ascending) with k non-trivial graded pieces.

We extend the chains by zero on the left by defining

�Vk−1 B Vk−1 ×dom×dom,Perf [a,b]
R ×RPerf [a,b]

R ,p0×p0
W ×RW,

where W is defined via the pullback

W Fun
(
∆1,Modperf

(−)

)≃

Perf [a,b]
R Fun

(
∂∆1,Modperf

(−)

)≃
.

p0

M 7→(0,M)
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Since 0 is the initial object in perfect modules, we see that W ≃ Perf [a,b]
R and thus �Vk−1 ≃ Vk−1, but this

description will ease the connection to derived F-zips (we have to add zeroes to get left-bounded filtrations,
and by working with �Vk−1, this is automatic if we degenerate the leftmost vertex). Note that we can identify
an element in �Vk−1(A) with two functors

C•,D• : S− B {s0 − 1 < s0 < · · · < sk−1} −→Modperf
A .

Sending C• to the functor

C• : Sop
+ B {s0 < · · · < sk−1 < sk−1 + 1}op −→Modperf

A

si 7−→ Csk−1−i

sk−1 + 1 7−→ Cs0−1

defines an obvious equivalence between the corresponding functor categories, and so we may see an element�Vk−1(A) as a tuple (C•,D•,ψ) of a finite descending chain C• of perfect A-modules, a finite ascending chain
D• of perfect A-modules and an equivalence of their respective colimits, i.e.

ψ : colim
S

op
+

C• ≃ colim
S−

D•.

With this identification, we get a morphism from �Vk−1 to the k-fold product of Fun(∂∆1,Perf), by sending
a pair of chains to the graded pieces of the chains (resp. if we see them as filtrations, we send them to
the non-trivial graded pieces); i.e. if the filtrations of an element in �Vk−1(A), for some A ∈ ARR, are given
by (C•,D•,ψ), we take ((grsC)(1),grsD)s∈S (here grsC is defined as the cofiber of Csi+1 → Csi , where si
corresponds to s in the notation above, and analogously for grsD). With this, let us look at the pullback
square

Ṽ
∏
s∈S Fun(∆1,PerfR)

�Vk−1
∏
s∈S Fun(∂∆1,PerfR)

p

((grs(−))(1),grs(−))s∈S

(note the difference with the previous squares: previously, we considered morphisms in Modperf
− , whereas

here we consider morphisms in the underlying Kan complex, so only invertible ones).
Now let Spec(A)→ Ṽk be a morphism classified by a perfect A-module with Tor-amplitude in [a,b] and

a descending (resp. ascending) chain C• (resp. D•). Then p−1(Spec(A)) is given by the stack∏
s∈S

Equiv((grsC)(1),grsD),

where Equiv((grsC)(1),grsD) denotes the stack classifying equivalences between (grsC)(1) and grsD . This
stack is n-geometric and locally of finite presentation (since each term is n-geometric and locally of finite
presentation)(17), and therefore we see that Ṽ is n-geometric and locally of finite presentation. By construction,
we also have that the morphism

Ṽ −→ Perf [a,b]
R

given by sending one of the chains to its colimit is n-geometric and locally of finite presentation (as it is

given by projections down to Perf [a,b]
R , which are all n-geometric and locally of finite presentation).

We can naturally define a functor F : Ṽ → F-Zip[a,b],S
R by extending the filtrations via the identity to get

non-trivial graded pieces at the points of S and the isomorphisms of the graded pieces by the essentially
unique zero morphism.

(17)Again, Equiv((grsC)(1),grsD) is open in the derived stack HomModA ((grsC)(1) ⊗ (grsD)∨,−) over A by Lemma 2.55, and

HomModA ((grsC)(1) ⊗ (grsD)∨,−)→ Spec(A) is (n− 2)-geometric by Lemma 2.56.
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To be more specific, we will show how to give F as a functor of simplicial sets. The extension by the
identity will just be degeneration of simplicial sets. Let σ ∈ Ṽ (A) be an m-simplex. Then σ is given by
functors

D : S− ×∆m −→Modperf
A , C : Sop

+ ×∆m −→Modperf
A

with

ψ : C|{s0}×∆m ≃D|{sk−1}×∆m , C|{sk−1+1}×∆m ≃ 0 ≃D|{s0−1}×∆m

and (ϕs)s∈S , where ϕs : ∆1 ×∆m→ PerfR(A) is a functor between simplicial sets, such that

ϕs|∆{0}×∆{i} ≃ (grsC)(1) and ϕs|∆{1}×∆{i} ≃ grsD.

We will show how to define an extension of D, i.e. a functor D̄ : Z×∆m→Modperf
A , that restricted to S− is

equivalent to D .
Let (α,σ ) be an l-simplex in Z×∆m; note that α is given by a sequence of integers α0 ≤ · · · ≤ αl−1. We

are going to count the number of αi that are between two vertices in S− and degenerate our finite chain for
this amount. This can be thought of as adding the right amount of identities between vertices so that the
resulting filtration has non-vanishing graded pieces precisely at all s ∈ S .

Let us denote the degeneracy maps of S− by λ• (here we see the finite ordered set S− as an∞-category and
set λ−∞ as the degeneracy map corresponding to s0 − 1). For sd ∈ S−, define sets Ad B {αj | sd ≤ αj ≤ sd+1},
where we set sk =∞ and A−∞ B {αj | αj ≤ s0 −1}. Let us further set ni = #Ai . We consider the l-simplex in
S− of the form

ᾱB λ
nk−1−1
k−1 ◦ · · · ◦λn−∞−1

−∞ ⟨sj | Aj , ∅⟩,

where λ−1
i B id. Thus, we can set D̄(α,σ )BD(ᾱ,σ ). Similarly, this can be done to extend C, ψ and (ϕs)s,

which defines the functor F.
We also get a projection P : F-Zip[a,b],S

R → Ṽ via restricting the filtrations to {s0−1 ≤ s0 ≤ · · · ≤ sk−1} ≃ S−,
resp. {s0 ≤ · · · ≤ sk−1 ≤ sk−1 + 1} ≃ S+, and the equivalences to Fun(∆1,Fun(Sdisc,PerfR(A))). Since by this
construction P ◦ F is the identity, we see that F is in fact a monomorphism, and since it is an effective
epimorphism (by Remark 3.17, F is pointwise essentially surjective on the level of homotopy categories), this
shows that F is an equivalence of derived stacks. □

Corollary 3.27. Let S ⊆Z be a finite subset and a ≤ b ∈Z. The derived stack F-Zip[a,b],S
R has a perfect cotangent

complex .

Proof. This follows from Theorem 3.26 and Corollary 2.50.
□

3.3. On some substacks of F-Zip

In this section, we want to define the type of a derived F-zip and look at the derived substacks classified
by the type. We do the same with those derived F-zips where the underlying module has some fixed Euler
characteristic. These derived substacks will be open (resp. locally closed), and we will use these to write the
derived stack of derived F-zips as a filtered colimit of open derived substacks.

We do this in the spirit of the classical theory of F-zips over a scheme S . There, the type of a classical
F-zip (M,C•,D•,ϕ•) is a function from S to functions Z→N0 with finite support that assigns to a point
s ∈ S the function k 7→ dimκ(s)(grkCM ⊗OS κ(s)) (one uses that the graded pieces of a classical F-zip are
finite projective and thus the dimension on the fibers is locally constant with respect to s).

Since we are working with complexes, we have to modify the definition of the type. To be more specific,
we will look at fiberwise dimensions of all cohomologies at once. For a perfect complex P over S, the
assignment s ∈ S 7→H i(P ⊗OS κ(s)) defines an upper semi-continuous function. Since derived F-zips have
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only finitely many non-zero graded pieces, we will use this result to analyze the geometry of the derived
substacks classifying derived F-zips with certain type.

Definition and Remark 3.28. Let A be an animated ring, and let P be a perfect A-module. We define the
function

βP : Spec(π0A)cl −→N
Z

0

a 7−→ (dimκ(a)πi(P ⊗A κ(a)))i∈Z.

Since P ⊗A π0A is perfect and thus has bounded Tor-amplitude, we see that βP takes values in functions
Z → N0 with finite support and β−1

P (([0, ki])i∈Z) is open and quasi-compact for any (ki)i ∈ N
Z

0 (see
Lemma 2.52).

Let I ⊆ Z be a finite subset. Assume that Supp(βP (a)) ⊆ I for all a ∈ Spec(π0A)cl. Recall from
Remark 2.53 that this implies that P has Tor-amplitude in [min(I),max(I)]. Further, as explained in the
proof of Lemma 2.54, Nakayama’s lemma implies that if βP constant with value equal to (0)i∈Z, then P ≃ 0.

The following definition will be used to ease notation.

Definition 3.29. Let f : Z→N
Z

0 be a function. We say that f has finite support if the induced function
Z×Z→N0 given by (n,m) 7→ f (n)m has finite support.

Remark 3.30. A function f : Z→N
Z

0 has finite support if the sets

{n ∈Z | f (n) , (0)i∈Z}, {k ∈Z | f (n)k , 0}

are finite.

Definition and Remark 3.31. Let A be an animated R-algebra and F B (C•,D•,φ,ϕ•) be a derived F-zip
over A. Consider the function

βF : a 7−→ (k 7−→ βgrkC(a))

from Spec(π0A)cl to functions with finite support.

(1) The function βF is called the type of the derived F-zip F.
(2) Let τ : Z → N

Z

0 be a function with finite support. We say that F has type at most τ if for all
a ∈ Spec(π0A)cl, we have βF(a) ≤ τ .(18)

Further, for any a ∈ Spec(π0A)cl, there exist a quasi-compact open neighbourhood Ua of a (resp. locally
closed subset Va containing a) and a function τ : Z→N

Z

0 with finite support, such that βF|Ua ≤ τ in the
above sense (resp. βF|Va is constant and equal to τ ); this follows from Lemma 2.52.

Remark 3.32. Let us come back to our example of a proper smooth morphism f : X → Spec(A). Let
τ : Z→N

Z

0 be a function with finite support. Then the derived F-zip RΓdR(X/A) of Example 3.18 has type
at most τ if the Hodge numbers satisfy

dimκ(a)H
−j−i(Xκ(a),Ω

i
Xκ(a)/κ(a)) ≤ τ(i)j

for all i, j ∈ Z and a ∈ Spec(A) (note that the minus signs in the Hodge numbers appear since we use
homological notation).

Definition and Remark 3.33. Let A be an animated R-algebra and F B (C•,D•,φ,ϕ•) be a derived F-zip
over A. Let us look at the function

χk(F) : Spec(π0A)cl −→Z

s 7−→ χ(grkC ⊗A κ(s)).

(18)Again, we view βP (a) and τ as functions from Z×Z to N0 and define the inequality pointwise.
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This is a locally constant function (see [Sta24, 0B9T]). Since the filtrations on derived F-zips are bounded,
we also know that the function χF : a 7→ (k 7→ χk(F)(a)) is also locally constant as a map from Spec(π0A)cl
to functions Z→Z with finite support. We call χF the Euler characteristic of F.

If τ : Z→ Z is a function with finite support, we say that F has Euler characteristic τ if χF is constant
with value τ .

The reason behind the following definition will become clear later on. One problem will be that we cannot
classify F-zips of fixed type since the type is only “upper semi-continuous” (we do not explicitly define this
notion but hope that the idea is clear from the previous definitions and remarks). This can be resolved when
we assume that the homotopies of the graded pieces are finite projective.

Definition 3.34. Let A be an animated ring.

(1) Let M ∈ ModA be a perfect A-module. Fix a map r : Z → N0. We call M homotopy finite
projective of rank r if for all schemes S and scheme morphisms f : S→ Spec(π0A)cl, the OS-module
πi(f ∗(M ⊗A π0A)) is finite locally free of rank ri .

(2) Let F B (C•,D•,φ,ϕ•) be a derived F-zip over A and τ : Z→N
Z

0 be a function with finite support.
We say that F is homotopy finite projective of type τ if for all i ∈ Z, we have that griC is homotopy
finite projective of rank τ(i).

Remark 3.35. By the above definition, if a derived F-zip is homotopy finite projective of type τ , for τ as
above, then its ascending filtration has type τ .

Definition 3.36. Let A be an animated R-algebra. Let τ : Z→N
Z

0 be a function with finite support.

(1) We define F-Zip≤τ∞,R(A) to be the subcategory of F-Zip∞,R(A) consisting of those derived F-zips with
type at most τ .

(2) We define F-Zipτ∞,R(A) to be the subcategory of F-Zip∞,R(A) consisting of those derived F-zips that
are homotopy finite projective of type τ .

The associated functors are denoted by F-Zip≤τ∞,R and F-Zipτ∞,R, and the associated functors from ARR to S

are denoted by F-Zip≤τR and F-ZipτR, respectively.

Proposition 3.37. The functors F-Zip≤τ∞,R and F-Zipτ∞,R are hypercomplete fpqc sheaves. In particular, F-Zip≤τR
and F-ZipτR are derived substacks of F-ZipR.

Proof. Using arguments as in the proof of Proposition 3.23, we only have to show that if A→ Ã is faithfully
flat, a derived F-zip over A has type at most τ , respectively is homotopy finite projective of type τ , if and
only this holds after base change to Ã. But by faithful flatness, we know that Spec(π0Ã)cl→ Spec(π0A)cl is
faithfully flat. Now the definitions involved easily show the claim as we note that for an A-module M and
any commutative diagram of the form

κ(a′) Spec(π0Ã)

κ(a) Spec(π0A),

where κ(a) is the residue field of a point a ∈ Spec(π0A) and κ(a′) is the residue field of a lift a′ ∈ Spec(π0Ã)
of a (this exists by faithful flatness), we have

dimκ(a′)πi(M ⊗A Ã⊗Ã κ(a′)) = dimκ(a′)πi
(
M ⊗A κ(a)⊗κ(a) κ(a′)

)
= dimκ(a′)πi (M ⊗A κ(a))⊗κ(a) κ(a′)

= dimκ(a)πi (M ⊗A κ(a)) ,

where we use the flatness of field extensions for the second equality. □
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Definition 3.38. Let A be an animated R-algebra. Let τ : Z→Z be a locally constant function with finite
support. We define F-Zipχ=τ

∞,R(A) to be the subcategory of F-Zip∞,R(A) classifying those derived F-zips F
with χF = τ .

The associated functor is denoted by F-Zipχ=τ
∞,R , and the associated presheaf from ARR to S is denoted by

F-Zipχ=τ
R .

Lemma 3.39. The functor F-Zipχ=τ
∞,R is a hypercomplete fpqc sheaf. In particular, the functor F-Zipχ=τ

R is a
derived substack of F-ZipR.

Proof. The proof is completely analogous to that of Proposition 3.37. □

In the following, we want to show that the inclusions of the derived substacks F-Zip≤τ , F-Zipτ and
F-Zipχ=τ into F-Zip are in fact geometric. To show the geometricity of F-Zipτ , we will need a proposition
from the book [GW23] of Görtz–Wedhorn. This proposition in particular shows the reason behind the
definition of homotopy finite projectiveness. The finite projectiveness of the homotopy groups is needed to have
some geometric structure if we fix the type.

Lemma 3.40 (cf. [GW23, Proposition 23.130]). Let S be a scheme, let E be a perfect complex in D(S) of
Tor-amplitude [a,b], and let I ⊆ [a,b] be an interval containing a or b. Fix a map r : I →N0, i 7→ ri . Then
there exists a unique locally closed subscheme j : Z = Zr ↪→ S such that a morphism f : T → S factors through Z
if and only if for all morphisms g : T ′→ T , the OT ′ -module πi(L(f ◦ g)∗E) is finite locally free of rank ri for all
i ∈ I . Moreover,

(1) the immersion j : Z ↪→ S is of finite presentation;
(2) as a set, one has

Z = {s ∈ S | dimκ(s)πi(E ⊗LOS κ(s)) = ri for all i ∈ I};

(3) if f : T → S factors as T
f̄
−→ Z

j
−→ S, then πi(Lf ∗E ⊗LOT G) = f̄ ∗πi(j∗E)⊗OT G for all i ∈ I and for all

quasi-coherent OT -modules G.

We are going to show that derived F-zips of certain type are classified by open (resp. locally closed)
substacks of F-ZipR. We have seen in Remark 2.28 that an open immersion U ↪→ Spec(π0A) of R-algebras,
where A ∈ ARR, can be lifted to an open immersion Ũ ↪→ Spec(A). Also, any morphism Spec(T )→ Spec(A)
factors through Ũ if étale locally Spec(π0T )→ Spec(π0A) factors through U .

We could now try to do the same for closed immersions. So, for a closed immersion, let us say
induced by an element a ∈ π0A, so of the form Spec(π0A/(a))→ Spec(π0A), we get a closed immersion
Spec(A�(a)) → Spec(A), where A�(a) is the derived quotient.(19) But it is not clear that a morphism
Spec(T )→ Spec(A) factors through Spec(A�(a)) if and only it does étale locally on π0. In particular, in
the following proposition we cannot show that F-Zipτ ↪→ F-Zip≤τ is a locally closed immersion; we can only
do so after restricting the functors to R-algebras (we can even show that it is open and closed).

Remark 3.41. In the next proposition, we will analyze the geometric structure of the inclusion i : F-Zip≤τR ↪→
F-ZipR. For this, we want to understand the pullback

X Spec(A)

F-Zip≤τR F-ZipR ,i

(19)The derived quotient is defined in the following way. An element in a ∈ π0A = π0Ω
∞A gives rise to an element

f ∈Hom(Z[X],A) ≃Ω∞A. Thus we can define the derived quotient as A�(a)B A⊗f ,Z[X],X 7→0 Z.
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where Spec(A)→ F-ZipR is given by some derived F-zip F B (C•,D•,φ,ϕ•). As explained in Remark 3.17,
we can find an equivalence between F and a derived F-zip GB (C′•,D ′•,φ

′ ,ϕ′•), where φ′ is given by the
identity on colim

Z
opC′•. This equivalence between F and G defines homotopies

Spec(A) Spec(A)

F-ZipR ,
G

idSpec(A)

F

Spec(A) Spec(A)

F-ZipR .
F

idSpec(A)

G

So, in particular, the pullbacks F-Zip≤τR ×i,F-ZipR,F Spec(A) and F-Zip≤τR ×i,F-ZipR,G Spec(A) are equivalent.
Thus, for geometric properties of the inclusion i, we may only work with derived F-zips of the form G (i.e.
those derived F-zips where the equivalence between the colimits is given via the identity).

The same reasoning also works for other substacks.

Proposition 3.42. Let τ : Z→N
Z

0 be a function with finite support. Then the inclusion i : F-Zip≤τR ↪→ F-ZipR
is a quasi-compact open immersion. Further, let p : F-ZipτR ↪→ F-Zip≤τR denote the inclusion. Then t0p is a closed
immersion locally of finite presentation. (Recall that t0p is the restriction of p to R-algebras by the inclusion
(R-Alg) ↪→ ARR.)

Proof. Let Spec(A) → F-ZipR be a morphism of derived stacks with A ∈ AR
Fp

classified by a derived

F-zip F = (C•,D•,ϕ•).(20) Then a morphism f : Spec(T )→ Spec(A) factors through the product i−1(F)B
Spec(A) ×F-ZipR F-Zip≤τ if and only if f ∗F has type at most τ . By Lemma 2.52, we know that there is

a quasi-compact open subscheme Ũ of Spec(π0A) classifying those points of Spec(π0A) where F has
type at most τ (note that the filtrations are bounded and that perfect complexes have only finitely many
non-zero homotopy groups). We claim that f factors through i−1(F) if and only if it factors through the lift
U of Ũ constructed in Remark 2.28; i.e. if we write Ũ =

⋃n
i=0 Spec(π0Afi ), we define U as the image of∐n

i=0 Spec(A[f −1
i ])→ Spec(A) (note that this construction implies that U is quasi-compact).

Indeed, it is clear that if f factors through U , then it certainly factors through i−1(F). Now assume f
factors through i−1(F). In particular, we have

dimκ(t)πi(f
∗grj C ⊗T κ(t)) ≤ τ(j)i

for all t ∈ Spec(π0T ) and i, j ∈Z. But we have the equalities

dimκ(t)πi(f
∗grj C ⊗T κ(t)) = dimκ(t)πi(grj C ⊗A κ(t))

= dimκ(t)πi
(
grj C ⊗A κ(π0f (t))⊗κ(π0f (t)) κ(t)

)
= dimκ(t)πi

(
grj C ⊗A κ(π0f (t))

)
⊗κ(π0f (t)) κ(t)

= dimκ(π0f (t))πi
(
grj C ⊗A κ(π0f (t))

)
,

where we use the flatness of κ(f (t))→ κ(t) in the fourth equality. This shows that π0f factors through Ũ .
Let us write Ũ =

⋃
j∈J Spec((π0A)fj )cl as a finite union of principal affine opens in Spec(π0A). Then

f factors though U =
⋃
j∈J Spec(A[f −1

j ]) if and only if there is an étale cover (T → Tk)k∈I such that
Spec(π0Ti) factors through some Spec((π0A)fj ) (see Remark 2.28). But this is clear since the base change

of
∐
j∈J Spec((π0A)fj )→ Ũ to Spec(π0T ) gives an étale cover of Spec(π0T ), which can be lifted to an étale

cover of Spec(T ) (use Proposition 2.12 and note that faithful flatness can be checked on π0), where this
property holds by definition.

For t0F-ZipτR, let Spec(A)→ t0F-Zip≤τR be classified by a derived F-zip F over an R-algebra A. Then a
morphism f : Spec(T )→ Spec(A) factors through the projection t0p

−1(A)→ Spec(A) if and only if f ∗F

(20)Keeping Remark 3.41 in mind, we do not need to keep track of the equivalence connecting the colimits of the ascending and
descending filtrations.
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is homotopy finite projective of type τ . By Lemma 3.40 and the finiteness of the filtrations, we can find
a locally closed subscheme Z of Spec(A), where Z ↪→ Spec(A) is finitely presented, such that f factors
through Z if and only if f ∗F is homotopy finite projective of type τ . So, in particular, Z ≃ t0p−1(A).

What is left to show is that Z is also closed in Spec(A). Using the upper semi-continuity of the Betti
numbers (see Lemma 2.52), we see that the image of Z in Spec(A) is a closed subset, and therefore the
immersion Z ↪→ Spec(A) is in fact closed (see [Sta24, 01IQ]). □

Proposition 3.43. Let τ : Z→Z be a function with finite support. The inclusion i : F-Zipχ=τ
R ↪→ F-ZipR is an

open immersion of derived stacks, and further t0i is an open and closed immersion.

Proof. This is completely analogous to the proof of Proposition 3.42 with Remark 3.33. Nevertheless, we give
a proof for completeness.

Let Spec(A) → F-Zip be a morphism of derived stacks with A ∈ AR
Fp

classified by a derived F-zip

F = (C•,D•,ϕ•). Then a morphism f : Spec(T )→ Spec(A) factors through i−1(F) if and only if χ(f ∗F) = τ .
Since χ is locally constant, we know that we can find an open and closed subscheme Ũ of Spec(π0A)
classifying those points of Spec(π0A) where F has Euler characteristic τ (note that the filtrations are
bounded). Let U be the lift of Ũ on Spec(A) constructed in Remark 2.28. Then by construction, U is open
in Spec(A). We claim that f factors through i−1(F) if and only if it factors through U .

Indeed, if f factors through U , then certainly it also factors through i−1(F). Now assume f factors
through i−1(F). In particular, we have χ(f ∗grkCM ⊗T κ(t)) = τ(k) for all t ∈ Spec(π0T ) and k ∈ Z. But
analogously to the proof of Proposition 3.42, we have

χ(f ∗grkCM ⊗T κ(t)) = χ(f ∗grkCM ⊗A κ(π0f (t))).

This shows that π0f factors through Ũ . Now, this factorization can be lifted to a factorization of f through
U (again the argumentation is the same as in the proof of Proposition 3.42).

That t0i is open and closed follows immediately from the above. □

Remark 3.44. By the above, F-Zip≤τR ↪→ F-ZipR is a 0-geometric open immersion. In fact, we can see that
colimτ F-Zip≤τR ≃ F-ZipR, where τ runs through the functions Z→N

Z

0 with finite support. This colimit is
filtered, as we can view τ as a function Z×Z→N0 and get a pointwise order.

For the equivalence, note that any F-zip F has finitely many graded pieces, which all have finite Tor-
amplitude, so we can find a function σ : Z→N

Z

0 with finite support such that F has type at most σ , i.e.
F ∈ F-Zip≤σ .

Further, the inclusion F-Zip≤τR ↪→ F-ZipR has to factor through some F-Zip[a,b],S
R by the fact that the

filtrations are bounded and by Remark 3.28. By the same arguments as in the proof of Proposition 3.42,

we see that F-Zip≤τR ↪→ F-Zip[a,b],S
R is a quasi-compact open immersion, which implies that F-Zip≤τR itself

is (b − a+ 1)-geometric and locally of finite presentation. In particular, we can write F-ZipR as the filtered
colimit of geometric derived open substacks:

F-ZipR ≃ lim
−→
τ

F-Zip≤τR .

Theorem 3.45. The derived stack F-ZipR is locally geometric and locally of finite presentation.

Proof. This follows from Remark 3.44. □

3.4. Strong derived F -zips over affine schemes

In the following, we want to look at derived F-zips where the underlying ascending and descending
filtrations are strong. A morphism between modules is a monomorphism if and only if the induced long
exact sequence splits into short exact sequences. Using classical theory, it is not hard to see that restricting
to those derived F-zips where the underlying filtrations are strong and homotopy finite projective gives an
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open and closed derived substack of t0F-Zip. We can also use this open and closed derived substack to
easily embed the stack of classical F-zips into the derived version via an open immersion.

Definition 3.46. Let A be an animated R-algebra and τ : Z → N
Z

0 be a function with finite support.
We define the full sub-∞-category sF-Zipτ∞,R(A) of F-Zipτ∞,R(A) as consisting of those derived F-zips
(C•,D•,φ,ϕ) where the filtrations C• and D• are in fact strong filtrations. An element in sF-Zipτ∞,R(A) is
called a strong derived F-zip over A of type τ .

Remark 3.47. Let τ : Z→N
Z

0 be a function with finite support. Let A be a classical ring. By definition, it
is immediate that the base change along classical rings of strong derived F-zips of type τ is again strong
of type τ . Therefore, the pullback induces a functor A 7→ sF-Zipτ∞,R(A) from (R-Alg) to Cat∞ (here (R-Alg)
denotes the nerve of the category of R-algebras).

Remark 3.48. The condition that the underlying filtrations are strong may seem useful, as it turns out, this
is a very strong condition (see Theorem 3.74). This is because monomorphisms of perfect complexes (on
a classical ring) with finite projective homotopy groups are automatically split. So a strong filtration is
automatically determined by its underlying graded pieces, which indicates that the corresponding spectral
sequence should degenerate. But the reason behind the derived F-zips is precisely the study of those
filtrations with non-degenerate spectral sequences.

In the above definition, we have to fix a type as otherwise it is not clear that strongness is stable under
base change. Nevertheless, in this paper we will not encounter strong filtrations that are not homotopy finite
projective.

Definition and Proposition 3.49. Let τ : Z→N
Z

0 be a function with finite support. The presheaf

sF-Zipτ∞,R : (R-Alg) −→ Cat∞

A 7−→ sF-Zipτ∞,R(A)

is a hypercomplete sheaf for the fpqc topology.

Proof. Analogously to the proof of Proposition 3.23, it is enough to show that a morphism of perfect modules
with homotopy finite projective cofiber is a monomorphism if and only if it is after passage to an fpqc cover.

Let A→ A• be an fpqc hypercover of an R-algebra. For a morphism f : M→N of A-modules to be a
monomorphism is equivalent to the fact that the natural maps πiN → πi cofib(f ) are surjections for all
i ∈Z. By the flatness of A→ A•, for any A-module L, we have that πi(L⊗AA•) � πi(L)⊗AA•. Note that
by assumption, the πi cofib(f ) are finite projective and compatible with base change. Thus, we see that it is
enough to check that any morphism of classical A-modules with finite projective target is surjective if it is so
after passage to an fpqc cover. But this is classical (see [GW10, Proposition 8.4]). □

Definition 3.50. Let τ : Z→N
Z

0 be a function with finite support. We define the derived stack of strong
F-zips of type τ as

sF-ZipτR : (R-Alg) −→ S

A 7−→ sF-Zipτ∞,R(A)≃.

Next, we want to show that the stack of strong derived F-zips is geometric. This is clear if we know that
strong bounded perfect filtrations are open and closed in bounded perfect filtrations (note that the proof of
Theorem 3.26 shows that the derived stack of bounded perfect filtrations is geometric). This is an immediate
consequence of the following lemma.

Lemma 3.51. Let A be a (classical ) ring and M,N be perfect A-modules. Let V : (A-Alg)→ S be the derived
stack classifying A-module morphisms f : M → N such that M and cofib(f ) are homotopy finite projective of
some types. Further, letW be the derived substack defined by those morphisms f : M→N that are monomorphisms.
Then the inclusionW ↪→V is an open and closed immersion.
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Proof. The locus where N → cofib(f ) is surjective is represented by an open subscheme of Spec(A)cl (see
[GW10, Proposition 8.4]). In particular, W ↪→V is represented by an open immersion. By the projectivity of
the πi(M), the locus where πif is injective for all i ∈Z is equivalently the locus where πi cofib(f )→ πi−1M
vanishes. But this is closed in Spec(A)cl (again by [GW10, Proposition 8.4]). □

Lemma 3.52. Let R be a ring and τ : Z→N
Z

0 be a function with finite support. Let Funbτ (Z,PerfR) be the
derived stack of perfect filtrations that are homotopy finite projective of type τ . Let

Funsτ (Z,PerfR) ⊆ t0 Funτ (Z,PerfR)

be the derived substack of strong perfect filtrations that are homotopy finite projective of type τ . Then the inclusion

Funsτ (Z,PerfR) ↪−−→ t0 Funτ (Z,PerfR)

is an open and closed immersion.
The same holds if we replace Z with Zop.

Proof. By Lemma 3.51, the stack classifying monomorphisms between perfect complexes is open and closed.
As the filtrations are bounded, this proves the lemma (see Remark 3.28). □

Proposition 3.53. Let τ : Z→N
Z

0 be a function with finite support. The inclusion sF-ZipτR ↪→ t0F-ZipτR is an
open and closed immersion.

Proof. This follows from Lemma 3.52. □

In the next proposition, we want to show that the stack of classical F-zips lies quasi-compact open in
t0F-ZipR. To do so, we fix some type of a classical F-zip, let us say σ (as the classical F-zips are the disjoint
union of such, this is enough). Then we only look at strong derived F-zips where the graded pieces are all
finite projective modules sitting in one degree. This can also be achieved by fixing a type τ of the strong
derived F-zips (see Remark 3.28). But if we choose τ nicely in relation to σ , we see that strong derived F-zips
of type τ are precisely classical F-zips of type σ . Since we only work with derived F-zips corresponding to
finite projective modules, we thus see the quasi-compact openness of classical F-zips in derived ones.

Lemma 3.54. Let σ : Z→N0 be a function with finite support. Let us define τ
σ : Z→N

Z

0 to be the function
given by k 7→ τσ (k)0 = σ (k) and τσ (k)j = 0 for j , 0. Let clF-ZipR denote the classical stack of F-zips. Then
the inclusion clF-ZipσR ↪→ t0F-ZipR is a quasi-compact open.

Proof. We know that t0F-Zip≤τ
σ

R is open in t0F-ZipR, but by our construction, for an element F = (C•,D•,ϕ•)
given by Spec(A)→ t0F-Zip≤τ

σ

R , we have that grkC is equivalent to a finite projective module sitting in
degree 0. In particular, the function βgrkC is locally constant. Therefore, even t0F-Zipτ

σ

R is quasi-compact

open in t0F-ZipR. Now we have an equivalence clF-ZipσR ≃ t0 sF-Zipτ
σ

R , concluding the proof using Proposi-
tion 3.53. □

3.5. Globalization

3.5.1. Globalization of derived stacks. In the following, we want to look at derived F-zips over derived
schemes. We also want to look at some properties of the corresponding sheaf. Important here is that derived
stacks take affine derived schemes as parameters and not derived schemes. Let us show how to fix this.

Let R be a ring. We start by extending a derived stack X : ARR→ S via right Kan extension to a presheaf
RX : P (AR

op
R )op→ S. Using Remark 2.41, we see that RX is in fact an étale sheaf. In particular, since every

derived scheme has an open cover by affines, RX|dSch is uniquely determined by RX|ARR ≃ X.

In the case of derived F-zips, we could finish this section with the arguments above. But we can also
define derived F-zips over derived schemes analogously to Definition 3.24. We will see that this definition
agrees with the definition given by right Kan extension.
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3.5.2. Filtrations over derived schemes. We want to globalize the construction of derived F-zips. We
could do this by right Kan extension but also give a direct definition by globalizing filtrations and define
derived F-zips over derived schemes analogously to Definition 3.24. In fact, both definitions will agree (see
Lemma 3.65).

When working with derived schemes, we always assume that our module categories are small; i.e. for any
animated ring A, we assume that ModA is small. This is because we want to use Proposition 2.39 to see that
quasi-coherent modules satisfy descent.

Let us look at the functor from ARR to Cat∞ given by A 7→ Fun(Z,ModA). By Lemma 3.22, we know
that this functor satisfies fpqc hyperdescent. So its right Kan extension to derived schemes will still be
an fpqc sheaf (see Remark 2.43). Since Fun(Z,−) commutes with limits (which was used in the proof of
Lemma 3.22), we immediately see that RFun(Z,Mod−)(S) ≃ Fun(Z,QCoh(S)) for any derived scheme S .

We have that boundedness can be checked fpqc hyperlocally (which was used in the proof of Proposi-
tion 3.23). Thus, we can right Kan extend to derived schemes and get a sheaf we denote by

Funb(Z,QCoh(−)).

By Proposition 2.42, we see that for a derived scheme S, an element in Funb(Z,QCoh(−)) is given by a
functor F ∈ Fun(Z,QCoh(S)) such that for any affine open ι : Spec(A) ↪→ S , the ascending filtration ι∗F is
bounded.

Also, we have that a functor F ∈ Fun(Z,QCoh(S)) is in Funb(Z,QCoh(−)) if and only if there is a flat

atlas (Spec(Ai)
pi−−→ S)i∈I such that p∗iF is bounded.

The same argumentation as above also works for perfect filtrations and strong filtrations of some given
type (here we have to restrict to classical schemes). Let us note that the above stays true if we replace Z with
Z

op (or in general with any ∞-category, but we do not need this).

Definition 3.55. Let τ : Z → N
Z

0 be a function with finite support. Let S be a derived scheme. An
ascending (resp. descending ) filtration of quasi-coherent modules over S is an element F ∈ Fun(Z,QCoh(S))
(resp. F ∈ Fun(Zop,QCoh(S))).

(1) We say that F is locally bounded if F lies in Funb(Z,QCoh(S)) (resp. Funb(Zop,QCoh(S))),
(2) We say that F is perfect if F lies in Funperf(Z,QCoh(S)) (resp. Funperf(Zop,QCoh(S))).
(3) Moreover, if S is a (classical) scheme, then we say that F is strong of type τ if F lies in

Funsτ (Z,QCoh(S)) (resp. Funsτ (Zop,QCoh(S))).

Remark 3.56. Note that for any derived scheme S ∈ P (AR
op
R ), the ∞-categories Funperf(Z,QCoh(S)) and

Funb(Z,QCoh(S)) (resp. Funsτ (Z,QCoh(S))) can be seen as full sub-∞-categories of Fun(Z,QCoh(S))
(resp. t0 Fun(Z,QCoh(S))) (the same holds with Z replaced by Z

op).

Lemma 3.57. Let τ : Z→N
Z

0 be a function with finite support. Let S be a (classical ) scheme and F an ascending
(resp. descending ) strong filtration of OS -modules of type τ . Then for all i ∈Z, the morphism ∂i : F(i − 1)→ F(i)
(resp. F(i + 1)→ F(i)) is a monomorphism.

Proof. For all n ∈Z, the morphism πnF(i)→ πn cofib(∂i) is a morphism of OS-modules (this follows from
Proposition 2.44). In particular, surjectivity can be checked Zariski locally (see [GW10, Proposition 8.4]). □

Notation 3.58. Let S be a derived scheme, and let F be an OS-module. If F is a descending filtration on
F , we write Fk B F(k) for k ∈Z and F• B F. If G is an ascending filtration on F , we write G• for G and
denote its points by Gk .

Definition 3.59. Let S be a derived scheme, and let F be an OS-module. Let F be an ascending (resp.
descending) filtration on F . For any i ∈Z, we define the ith graded piece of F as gri F B cofib(F(i−1)→ F(i))
(resp. gri F B cofib(F(i + 1)→ F(i))).
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3.5.3. Derived F -zips over schemes. Before defining derived F-zips for derived schemes, we first have
to make sense of the Frobenius of derived schemes. Classically, the Frobenius on a scheme X is equivalent
to the morphism given by composition X→ X(1)→ X of the relative Frobenius and the natural map. The
points of X(1) are given by restriction along the Frobenius. This can be used to define the Frobenius for
derived schemes (even for derived stacks) as in the following.

Remark and Definition 3.60. Let X be a derived scheme over R. For an animated R-algebra A, we have an R-
morphism Spec(A)→ X(1) B X ×Spec(R),FrobR Spec(R) if and only if there is a morphism Spec(AFrobR)→ X,

where AFrobR is the restriction of A along the Frobenius,(21) i.e. X(1)(A) ≃ X(AFrobR). Also, we have an
R-algebra map FrobA : A→ AFrobR . Thus X(FrobA) induces a map FX/S : X → X(1), which we call the
relative Frobenius of X. The composition with the projection gives a map FX : X → X(1)→ X, called the
Frobenius of X.

Remark 3.61. Let S be a classical scheme. As the (nerve of the) category of schemes lies fully in the
∞-category of derived schemes, we see by construction that FS agrees with the classical Frobenius morphism.
This can be tested on points given by R-algebras, where it holds by definition.

The definition above also agrees with the definition of the Frobenius on animated R-algebras, as we have
ARR ≃ Funπ(Polyop

R ,S) (recall that the Frobenius is induced by the Frobenius on polynomial R-algebras).
Moreover, this argument shows that the Frobenius morphism on derived schemes defined above is

equivalent to the morphism induced by right Kan extension of the Frobenius on animated rings.

Definition 3.62. Let S be a derived scheme over R. A derived F-zip over S is a tuple (C•,D•,φ,ϕ•)
consisting of

• a descending locally bounded perfect filtration C• of quasi-coherent modules over S ,
• an ascending locally bounded perfect filtration D• of quasi-coherent modules over S ,
• an equivalence φ : colim

Z
opC• ≃ colim

Z
D• and

• a family of equivalences ϕk : F∗S grkC ∼−→ grkD .

The ∞-category of F-zips over S , i.e. the full subcategory of(
Funperf(Z

op,QCoh(S)) ×colim,QCoh(S),colim Funperf(Z,QCoh(S))
)

×∏
Z

Fun(∂∆1,QCoh(S))

∏
Z

Fun(∆1,QCoh(S))

consisting of F-zips, is denoted by F-Zip∞,R(S).
For a morphism S ′ → S of derived schemes over R, we have an obvious base change functor

F-Zip∞,R(S)→ F-Zip∞,R(S ′) via the pullback.

Remark 3.63. By definition, for any affine derived scheme Spec(A), the ∞-category F-Zip∞,R(Spec(A))
indeed recovers Definition 3.24.

Also, as in Remark 3.17, on affine schemes, up to equivalence we may assume that the equivalence between
the colimits of the filtrations of a derived F-zip is given by the identity.

Remark 3.64. Note that if we have a locally bounded perfect filtration C• over some derived scheme S,
we have that its colimit in QCoh(S) is actually perfect. This can be checked Zariski locally, where the
filtrations actually become bounded (note that the colimit is filtered), so the colimit can be taken over a finite
subcategory of Z and thus is perfect.

The next lemma shows that the ∞-category of derived F-zips satisfies fpqc descent and that we can
extend the definition of derived F-zips to arbitrary derived (pre-)stacks.

(21)Using the Frobenius on R, we can restrict any R-algebra A along the Frobenius FrobR : R→ R; i.e. AFrobR is the animated

R-algebra obtained by composing the natural morphism R→ A with FrobR.
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Lemma 3.65. Let RF-Zip∞,R be the the right Kan extension of F-Zip∞,R : ARR → S along the Yoneda

embedding ARR ↪→P (AR
op
R )op. Then for any derived scheme S over R, the natural morphism induced by base

change
F-Zip∞,R(S) −→RF-Zip∞,R(S)

is an equivalence.

Proof. Affine locally on S, the assertion is certainly true. So it is enough to show that for an affine open
cover (Spec(Ai) ↪→ S)i∈I , we have

F-Zip∞,R(S) ≃ lim
∆
F-Zip∞,R

(
Č

(∐
Spec(Ai)/S

)
•

)
.

This is again completely analogous to the proof in the affine case (see Proposition 3.23), where we embedded
derived F-zips into a larger category that satisfied descent. Here we have to use that

S 7→ Funperf(Z
op,QCoh(−))×colim,QCoh(−),colim Funperf(Z,QCoh(S))

×∏
Z

Fun(∂∆1,QCoh(−))

∏
Z

Fun(∆1,QCoh(S))

is given by the limit of right Kan extensions (see the discussion in Section 3.5.2) of sheaves and Remark 2.41.
□

Lemma 3.65 allows us to globalize the derived stack of derived F-zips and gives us a direct description of
its points.

Definition and Remark 3.66. We define

F-ZipR : P (ARR)op −→ S

as the right Kan extension of F-Zip : ARR→ S along the inclusion ARR ↪→P (ARR)op.
By Remark 2.41, we see that F-Zip is a hypercomplete fpqc sheaf.
Further, for any derived R-scheme S, we have that F-ZipR(S) ≃ F-Zip∞,R(S)≃ by Lemma 3.65 as (−)≃

commutes with limits.

Example 3.67. Let us globalize Example 3.18. Let f : X → S be a proper smooth morphism of schemes.
Again, the associated Hodge and conjugate filtrations HDG and conj define, respectively, a descending
and an ascending perfect bounded filtration of quasi-coherent modules over S . We also have equivalences
ϕn : F∗S grnHDG ∼−→ grn conj between the graded pieces (up to Frobenius twist), induced by the Cartier
isomorphism. Therefore, we get a derived F-zip associated to the proper smooth map f of schemes

Rf∗Ω
•
X/S B (HDG•,conj•,ϕ•).

Example 3.68. The above construction works analogously for log smooth scheme morphisms (i.e. schemes
with a fine log structure as explained in [Kat89]).

If f : X→ S is a proper log smooth morphism of Cartier type (note that f is by definition integral and
thus flat; see [Kat89, Corollary 4.5]), then Ω1

X/S (the sheaf of log differentials) is locally free of finite rank
(see [Kat89, Proposition 3.10]), and because f is proper and flat, the associated Hodge filtrations HDGlog
are perfect (use the distinguished triangle associated to the stupid truncation and conclude via induction
and the fact that f is proper, locally of finite presentation and flat; see [Sta24, 0B91]; this is analogous to the
proof of [Sta24, 0FM0]). We also have a Cartier isomorphism in this setting (see [Kat89, Theorem 4.12]) (this
implies, using the distinguished triangles for the conjugate filtration conjlog and induction, that the conjugate

filtration is perfect). Hence, we have equivalences ϕn : F∗S grnHDGlog
∼−→ grn conjlog; thus analogously to

the above, we can attach the structure of a derived F-zip to f via, again,(
HDG•log,conj

log
• ,ϕ•

)
.
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Let us consider the notion of strong F-zips. The condition that the filtration is given by monomorphisms
seems very natural, but as Theorem 3.74 will show, in this case we cannot expect a generalization from
classical theory. In particular, the following lemma shows that perfect complexes with finite projective
cohomologies are particularly easy to handle.

Lemma 3.69. Let A be a ring, and let P be a perfect complex over A such that for all i ∈Z, the A-module πi(P )
is finite projective. Then there exists a quasi-isomorphism P ∼−→

⊕
n∈Zπn(P )[n].

Proof. Since P is perfect, we may assume that there exist a ≤ b ∈Z such that P has Tor-amplitude in [a,b].
We further assume that P is represented by the complex of finite projective A-modules

· · · −→ 0 −→ Pb
∂b−−→ Pb−1

∂b−1−−−→ ·· ·
∂a+1−−−→ Pa −→ 0→ ·· · .

Let us define a new complex P ≤a given by

· · · −→ 0 −→ Pb
∂b−−→ Pb−1

∂b−1−−−→ ·· ·
∂a+1−−−→ im(∂a+1) −→ 0 −→ ·· · .

We get a short exact sequences of complexes

0 −→ P ≤a −→ P −→ πa(P )[a] −→ 0.

Since πa(P ) is projective, this induces a section πa(P ) → Pa, and we can extend this to a morphism
πa(P )[a]→ P which induces a section of P → πa(P )[a]. Also, this induces a retraction of P ≤a→ P , and,
in particular, P ≃ P ≤a ⊕πa(P )[a]. Now we claim that P ≤a is perfect and has Tor-amplitude in [a + 1,b],
concluding the proof by induction on the Tor-amplitude of P .

Indeed, note that P ≤a is equivalent to the complex

· · · −→ 0 −→ Pb
∂b−−→ Pb−1

∂b−1−−−→ ·· ·
∂a−−→ Pa+1 −→ 0 −→ ·· ·

which is by construction a complex of finite projective modules concentrated in degrees [a + 1,b], i.e. a
perfect complex of Tor-amplitude in [a+ 1,b]. □

We can use Lemma 3.69 to see that a morphism of perfect complexes with finite projective homotopy
groups is a split monomorphism if and only if it is so on the cohomologies. This is clear since if the
induced map on the cohomologies is injective, then the long exact homotopy sequence corresponding to
a fiber sequence consists of short exact sequences. The projectiveness gives us retractions on the level of
cohomology groups and thus a retraction on the whole complex.

Remark 3.70. Let A be a ring, and let P and Q be a perfect complexes over A. Further assume we have a
morphism f : P →Q such that for all i ∈Z, the A-modules πiP , πiQ and πi cofib(f ) are finite projective.
Then we claim that f is a split monomorphism if and only if f is a monomorphism.

Indeed, the “only if” direction is clear.(22) For the “if” direction, let πif be injective for all i ∈ Z. By
Lemma 3.69, we may assume that P ∼−→

⊕
n∈ZπnP [n] and Q ∼−→

⊕
n∈ZπnQ[n]. It is enough to find

retractions gi of πif since then this induces a retraction of f .
Since πif is injective for all i ∈Z, we get short exact sequences

(3.1) 0→ πiP
πif−−−→ πiQ→ πi cofib(f )→ 0.

As πi cofib(f ) is projective, we see that the short exact sequence (3.1) is split, giving us the retractions of
πif .

(22)Let P
f
−→Q

g
−→ cofib(f ) be a cofiber sequence of A-modules, and let h : cofib(f )[−1]→ P be the naturally induced morphism.

By construction, we have f ◦ h ≃ 0, and as f is a monomorphism, this implies h ≃ 0 and so indeed ker(πif ) = im(πi+1h) = 0.
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Let f : X→ S be a proper smooth morphism. In the following, we want to prove that the derived F-zip
Rf∗Ω

•
X/S of Example 3.67 is strong if and only if the Hodge–de Rham spectral sequence degenerates and

the OS-modules Rif∗Ω
j
X/S are finite locally free.

We first treat the “only if” direction in the case where S is locally Noetherian. This is done by proving the
case where S is a local Artinian ring and then reducing from complete Noetherian rings to local Artinian
rings. After this, we insert a lemma showing us that we can reduce to the Noetherian case from the
non-Noetherian one. Next, we treat the “‘if” direction more generally, for arbitrary perfect bounded strong
filtrations in the derived category and the spectral sequence associated to it.

Proposition 3.71. Let f : X → S be a proper smooth morphism of schemes, with S locally Noetherian. If the
filtrations of the derived F-zip Rf∗Ω

•
X/S of Example 3.67 are strong (i.e. HDG and conj are strong), then the

Hodge–de Rham spectral sequence degenerates and Rif∗Ω
j
X/S is finite locally free for all i, j ∈Z.

Proof. Since the question is local, we may assume that S = Spec(A) is a Noetherian affine scheme.
Let us first treat the case where A is a local Artinian ring with maximal ideal m and residue field k. We

can check the degeneracy of the Hodge–de Rham spectral sequence via comparing lengths of the limit term
and the E1-terms of the spectral sequence. But in this case this is clear since we get a short exact sequence

0 −→Hn
(
X,σ≥i+1Ω

•
X/S

)
−→Hn

(
X,σ≥iΩ

•
X/S

)
−→Hn−i

(
X,Ωi

X/S

)
−→ 0

for all i ≥ 0 and n ∈Z (by the strongness of our filtration). This implies that

lengthAH
n
(
X,σ≥nΩ

•
X/S

)
= lengthAH

n
(
X,σ≥i+1Ω

•
X/S

)
+ lengthAH

n−i
(
X,Ωn

X/S

)
for all i ≥ 0 and n ∈Z. As Hn

dR(X/S) =Hn(X,σ≥0Ω
•
X/S ), this implies inductively that

lengthAH
n
dR(X/S) =

∑
i≥0

lengthAH
n−i

(
X,Ωi

X/S

)
=

∑
p+q=n

lengthAH
q
(
X,Ω

p
X/S

)
.

Thus, for all n ∈Z, we get the equation∑
p+q=n

lengthAE
p,q
∞ = lengthAH

n
dR(X/S) =

∑
p+q=n

lengthAH
q
(
X,Ω

p
X/S

)
,

so, in particular, in this case the Hodge–de Rham spectral sequence degenerates.
Analogously, we see that the conjugate spectral sequence also degenerates (again by a length argument

using the strongness of the conjugate filtration). Let us now show, following the arguments of the proof of

[DI87, Proposition 4.1.2], that the H i(X,Ωj
X/S ) are finite (locally) free.

Since f is proper smooth, we know that Rf∗Ω
j
X/S is a perfect complex and its formation commutes with

arbitrary base change (see [Sta24, 0FM0]). In particular, (Rf∗Ω
j
X/S )⊗A k � Rf∗Ω

j
Xk/k

. Therefore, we may

assume that Rf∗Ω
j
X/S is given by a complex K

j
• of free A-modules K

j
i = Ah

ij
, where hij B dimkH

i(X,Ωj
Xk/k

)
(see [Sta24, 0BCD]). In particular, we see that

dimk(K
j
• ⊗A k) = dimkH

i(K j• ⊗A k) = hij .

Thus, we get the following inequality:

(3.2) lengthAH
i
(
X,Ω

j
X/S

)
= lengthAH

i(K j•) ≤ lengthAK
j
• = hij lengthAA.

Equality in (3.2) holds if and only if the differentials of K
j
• are zero, implying that H i(X,Ωj

X/S ) is finite
(locally) free. The inequality (3.2) also shows that equality holds if and only if

(3.3)
∑
i+j=n

lengthAH
i
(
X,Ω

j
X/S

)
=

∑
i+j=n

hij lengthAA.
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By the degeneracy of the Hodge–de Rham spectral sequence, the left-hand side of (3.3) is equal to
lengthAH

n
dR(X/S). The degeneracy of the conjugate spectral sequence, together with the Cartier isomor-

phism, implies that

(3.4)
∑
i+j=n

lengthAH
i
(
X,Ω

j
X/S

)
=

∑
i+j=n

lengthAH
i
(
X(1),Ω

j
X(1)/S

)
,

where the notation is induced by the pullback diagram

X(1) X

S S ,

FX/S

f (1) f

FrobS

where FrobS denotes the Frobenius of S . We will show that

(3.5)
∑
i+j=n

lengthAH
i
(
X(1),Ω

j
X(1)/S

)
=

∑
i+j=n

hij lengthAA

by induction on the length of A, proving the lemma in the local Artinian case.
If A is a field, the assertion is trivial. So let us assume that lengthAA =N and assume the lemma was

shown for N ′ < N . Let 1 ≤N ′ < N be such that pN ′ > N , and let us set T = Spec(A/mN ′ ). The choice of
N ′ assures that FrobS factors through T . So, we get the following diagram with pullback squares:

X(1) XT X

S T S .

FX/S

f (1) fT f

FrobS

By the induction hypothesis, H i(XT ,Ω
j
XT /T

) is finite locally free of rank hij and commutes with arbitrary

base change. Therefore, the base change along S→ T also has this property. Hence, H i(X(1),Ω
j
X(1)/S

) is

finite locally free of rank hij , and therefore (3.5) is fulfilled. But this shows that (3.4) and thus (3.3) are

fulfilled. So, by the discussion above, we see that H i(X,Ωj
X/S ) is finite locally free of rank hij , concluding

the induction.
Now let us show how to reduce to the case where A is a local Artinian ring. As the question is local, we

can even assume that A is given by a local Noetherian ring (see [GW10, Proposition 7.27]). By the faithful
flatness of completion (see [Sta24, 00MC]), we can assume that A is a complete Noetherian local ring (A,m).

Let us first show that H i(X,Ωj
X/S ) is finite locally free and commutes with arbitrary base change. Let us

set An B A/mn and Xn B X ⊗AAn. Then fn : Xn→ Spec(An) is proper smooth, and the Hodge filtration is
strong. Since An is a local Artinian ring, we know that the Hodge–de Rham spectral sequence relative to

Xn/An degenerates, the H i(Xn,Ω
j
Xn/An

) are finite locally free and

H i
(
Xn,Ω

j
Xn/An

)
⊗An An−1 �H

i
(
Xn−1Ω

j
Xn−1/An−1

)
for n− 1 ≥ n for all n ≥ 0. The theorem of formal functions (see [Sta24, 02OC]) now implies that

(3.6) lim
n≥0

H i
(
Xn,Ω

j
Xn/An

)
� lim
n≥0

H i
(
X,Ω

j
X/A

)
⊗AAn.

Using [Sta24, 0D4B], we see that the left-hand side of (3.6) is finite projective and H i(Xn,Ω
j
Xn/An

) ≃
H i(X,Ωj

X/S )⊗AAn. But as A is complete and Noetherian and H i(X,Ωj
X/S ) is finite (by the perfectness of

Rf∗Ω
j
X/S ), the right-hand side of (3.6) is equal to Rf∗Ω

j
X/S (see [Sta24, 00MA]). In particular, it is finite
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locally free, and its formation commutes with arbitrary base change. Again, since finite modules over
complete Noetherian rings are complete, we see that if the Hodge spectral sequence degenerates for all
Sn = Spec(A/mn), then it degenerates on the limit of all A/mn, namely A (see [Sta24, 00MA] and note that

the H i(X,Ωj
X/S ) are finite projective, and therefore their formation commutes with arbitrary base change).

Hence, we may assume that A is a local Artinian ring, which we already discussed at the beginning. □

Lemma 3.72. Let f : X→ S be a proper smooth morphism of schemes, with S = Spec(A) affine. Assume that
the Hodge filtration HDGf associated to f is strong. Then there exists a Noetherian scheme S

′ with a morphism
g : S→ S ′ and a proper smooth morphism of schemes f ′ : X ′→ S ′ such that the diagram

X S

X ′ S ′

f

g

f ′

is Cartesian. Further, the Hodge filtration HDGf ′ associated to f
′ is strong.

Proof. The existence of an affine scheme S0 = Spec(A0) with a morphism g0 : S→ S0 and a proper smooth
S0-scheme X0 such that the base change of f0 : X0 → S0 along g0 is equal to f is standard.(23) By
Proposition 3.71, the locus where HDGf0 is strong is equivalently the locus where HDGf0 is strong and
the graded pieces are homotopy finite projective (of some type). Thus, by Lemma 3.52 there is an open
subscheme U ⊆ S0 such that g0 factors through U and the Hodge filtration associated to X0,U → U is
strong. So, in particular, setting S ′ =U and X ′ = X0,U finishes the proof. □

On the other hand, we can show that if the Hodge–de Rham spectral sequence degenerates, then the
Hodge filtration is strong. Also, we do not need the particular form of the Hodge filtration, and thus we will
show generally that a bounded perfect filtration with degenerate associated spectral sequence is automatically
strong. Later on in Section 4, we will use this result to show that the derived F-zips associated to a proper
smooth morphism with degenerative Hodge–de Rham spectral sequence and finite projective E1-terms is
completely determined by the underlying classical F-zips. So, for example in the abelian scheme case, the
theory of derived F-zips gives us no new information and recovers the classical theory by passing to the
cohomologies of the filtration (in a suitable sense as explained in Section 4).

Proposition 3.73. Let A be a ring and C• be a descending bounded perfect filtration of A-modules. Assume that
the πi grkC are finite projective for all i,k ∈Z and that the spectral sequence

E
p,q
1 = πp+q grpC =⇒ πp+q colim

Z
op
C•

associated to C• degenerates. Then the filtration C• is strong, and the statement stays true if we replace C• with
an ascending filtration.

Proof. For convenience, let us set M B colim
Z

opC•.
It is enough to show(24) that

• if for any k ∈ Z, the natural map Ck → M is a monomorphism, then the map Ck+1 → Ck is a
monomorphism.

(23)Use [GW10, Theorem 10.69] to find an affine Noetherian S̃ = Spec(Ã) and morphisms S → S̃ and X̃ → S̃ such that the
induced base change morphism identifies with f . Then write S as a projective limit of affine S̃-schemes of finite type by adjoining
variables to Ã and conclude with [GD66, Théorème (8.10.5)] and [GD67, Proposition (17.7.8)].

(24)As the C• is bounded, there exists an n large enough such that Cn→M is an equivalence and thus also a monomorphism.
Hence, induction indeed shows that C• is strong.
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Also, we will see that changing a descending filtration to an ascending one only changes the indices in the
following proof and thus works similarly.

So let us fix some k ∈ Z and assume that Ck → M is a monomorphism. The degeneracy of the

spectral sequence implies that E
k,q
1 = πk+q grkC is naturally isomorphic to E

k,q
∞ for any q ∈ Z. By the

construction of the spectral sequence (see [Lur17, Section 1.2.2]), we see that E
k,q
∞ � im(hq)/ im(gq), where

hq : πk+qC
k → πk+qM and gq : πk+qC

k+1 → πk+qM . As Ck → M is a monomorphism, we see that hq
is injective and therefore im(hq) � πk+qC

k . As the filtration on M induced by the spectral sequence is
bounded and the graded pieces are finite projective by degeneracy, we see that πk+qC

k is finite projective
(since it is isomorphic to a filtered piece by the relation im(hq) � πk+qC

k ). We claim that the morphism
fq : πk+qC

k→ πk+q grkC induced by the fiber sequence

Ck+1 −→ Ck −→ grkC

is surjective for all q ∈Z.
Indeed, recall from [Lur17, Section 1.2.2] that E

p,q
r is defined by

im
(
πp+q cofib

(
Cp+r −→ Cp

)
−→ πp+q cofib

(
Cp+1 −→ Cp−r+1

))
.

As the spectral sequence is degenerate, the proof of [Lur17, Proposition 1.2.2.7(2)] shows that for any r ≥ 2,
we get a commutative diagram

πk+q cofib
(
Ck+r −→ Ck

)
πk+q cofib

(
Ck+1 −→ Ck−r+1

)

E
k,q
r−1,

φr

ϑr

where φr is surjective and ϑr is injective. The morphism φr is induced by the natural morphism
cofib(Ck+r → Ck)→ cofib(Ck+1→ Ck−r+1). Since C• is bounded, we see that for r large enough, we have

cofib(Ck+r → Ck) ≃ Ck . Thus, we get a morphism αq : πk+qC
k→ E

k,q
1 = πk+p grkC that is surjective, using

the φr and the degeneracy. But by construction, αq is induced by the natural map Ck→ grkC, and hence
αq agrees with fq, showing the desired surjectivity. □

Combining all the arguments, we get the connection between the degeneracy of the Hodge–de Rham
spectral sequence and the strongness of the Hodge filtration.

Theorem 3.74. Let f : X → S be a smooth proper morphism of schemes. Let us consider the Hodge–de Rham
spectral sequence

E
p,q
1 = Rqf∗Ω

p
X/S ⇔ Rp+qf∗Ω

•
X/S .

The filtrations of the derived F-zip Rf∗Ω
•
X/S of Example 3.67 are strong (in the sense that HDG and conj are

strong) if and only if the Hodge–de Rham spectral sequence degenerates and Rif∗Ω
j
X/S is finite locally free for all

i, j ∈Z

Proof. The “if” part follows from Proposition 3.73, where we use that degeneracy of the Hodge–de Rham
spectral sequence implies that the conjugate spectral sequence is degenerate (see [Kat72, Proposition (2.3.2)];

note that we need that the Rif∗Ω
j
X/S are finite locally free).

For the “only if” part, we may assume that S = Spec(A) is affine, as the question is local. We can
use Lemma 3.72 to find a proper smooth scheme morphism f ′ : X ′ → S ′ , where S ′ is Noetherian, and a
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morphism g : S→ S ′ such that the following diagram is a pullback diagram:

X S

X ′ S ′ .

f

g

f ′

Also, by the lemma the Hodge filtration associated to f ′ is strong. Now if the Hodge–de Rham spectral

sequence associated to f ′ degenerates and the Rif ′∗Ω
j
X ′/S ′ are finite locally free, by the compatibility of the

spectral sequence with base change, we have that the Hodge–de Rham spectral sequence associated to f

degenerates and the Rif∗Ω
j
X/S are finite locally free. In particular, we may assume that S is Noetherian and

affine. But this case was already treated in Proposition 3.71. □

We conclude this section by defining the substacks corresponding to a function τ : Z→N
Z

0 . Again, we
could do this by right Kan extension, but as before, there is also an ad hoc definition that agrees with the
one given by right Kan extension.

The following definitions are globalizations of the definitions given in Section 3.3.

Definition 3.75. Let S be a derived scheme, and let F ∈ Perf(S). We define the function

βF : Scl −→N
Z

0

s 7−→ (dimκ(s)πi(cl
∗F ⊗LOScl

κ(s)))i∈Z,

where cl : Scl→ S is the natural morphism.
This function is locally upper semi-continuous in the sense that for every s ∈ Scl, there is a neighbourhood

Us such that for any family (ki)i ∈NZ

0 , the set β−1
F |Us

(([0, ki])i) is open (see [Sta24, 0BDI]).

Remark 3.76. Note that in Definition 3.75, we implicitly assume that cl∗F is a perfect complex of quasi-
coherent OScl

-module. This makes sense as cl∗F is in Dqc(Scl) by Proposition 2.44 and is by definition
perfect.

Definition and Remark 3.77. Let S be a derived scheme. Let F B (C•,D•,φ,ϕ•) be a derived F-zip over S .
Consider the function

βF : s 7−→ (k 7−→ βgrkC(s))

from Scl to functions Z→N
Z

0 .

(1) The function βF is called the type of the derived F-zip F.
(2) Let τ : Z→N

Z

0 be a function with finite support. We say that F has type at most τ if for all s ∈ Scl,
we have βF(s) ≤ τ (again, the relation is given pointwise as functions Z×Z→N0).

Further, for any s ∈ Scl, there exist a quasi-compact open (resp. locally closed) neighbourhood Us of s and
a function τ : Z→N

Z

0 with finite support, such that βF|Us ≤ τ in the sense above (resp. βF|Us is constant
and equal to τ ) (this follows from Lemma 2.52).

Definition and Remark 3.78. Let S be a derived scheme. Let F B (C•,D•,φ,ϕ•) be a derived F-zip over S .
Let us look at the function

χk(F) : Scl −→Z

s 7−→ χ(cl∗grkC ⊗OScl
κ(s)),

where cl : Scl→ S is the natural morphism. This is a locally constant function (see [Sta24, 0B9T]). Since
the filtrations on derived F-zips are locally bounded, we know that the function χF : s 7→ (k 7→ χk(F)(s))
is also locally constant as a map from Scl to functions Z→ Z with finite support. We call χF the Euler
characteristic of F.
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If τ : Z→ Z is a function with finite support, we say that F has Euler characteristic τ if χF is constant
with value τ .

Definition 3.79. Let S be a derived scheme.

(1) Let M ∈ Perf(S) be a perfect module over S . Fix a map r : Z→N0. We call M homotopy finite locally
free of rank r if for each scheme f : X→ Scl, the OX-module πi(f ∗cl

∗M) is finite locally free of rank
ri , where we say that it is finite locally free of rank 0 if it is isomorphic to 0.

(2) Let F B (C•,D•,ϕ•) be a derived F-zip over S and τ : Z→N
Z

0 be a function with finite support.
We say that F is homotopy finite locally free of type τ if for all i ∈Z, we have that griC is homotopy
finite locally free of rank τ(i).

Definition 3.80. Let τ : Z→N
Z

0 be a function with finite support, and let S be a derived R-scheme. We
define F-Zip≤τ∞,R(S) (resp. F-Zipτ∞,R(S), F-Zipχ=τ

∞,R(S)) as the full subcategory of derived F-zips over S of type
at most τ (resp. homotopy finite locally free of type τ , of Euler characteristic τ).

Lemma 3.81. Let τ : Z→N
Z

0 be a function with finite support. Let RF-Zip≤τ∞,R (resp. RF-Zipτ∞,R, RF-Zipχ=τ
∞,R)

be the right Kan extension of F-Zip≤τ∞,R (resp. F-Zipτ∞,R, F-Zipχ=τ
∞,R) along the Yoneda embedding ARR ↪→

P (AR
op
R )op. Then for any derived scheme S over R, the natural morphism induced by base change

F-Zip≤τ∞,R(S) −→RF-Zip≤τ∞,R(S)

(resp. F-Zipτ∞,R(S) −→RF-Zipτ∞,R(S), F-Zipχ=τ
∞,R(S) −→RF-Zipχ=τ

∞,R(S))

is an equivalence.

Proof. The proof is completely analogous to that of Lemma 3.65. We only need to verify that the properties
“has type ≤ τ”, “is homotopy finite locally free of type τ” and “has Euler characteristic τ” can be checked on
an affine open cover of S , but this is clear. □

Definition and Remark 3.82. Let τ : Z→ N
Z

0 be a function with finite support, and let S be a derived
R-scheme. We define

F-Zip≤τR : P (AR
op
R )op −→ S

(resp. F-ZipτR, F-Zipχ=τ
R ) as the right Kan extension of F-Zip≤τR (resp. F-ZipτR, F-Zipχ=τ

R ) along the Yoneda
embedding ARR ↪→P (AR

op
R )op.

By Remark 2.41, these define fpqc sheaves and define subsheaves of F-ZipR.

3.6. Perfect complexes on the pinched projective space

In this subsection, we want to understand the perfect complexes on the pinched projective space, i.e. the
∞-category QCohperf(XS ) for a scheme S in characteristic p > 0. (See the appendix for the notation). We
show in the appendix that the vector bundles on X are precisely the F-zips. In this section, we will see a
similar result for derived F-zips; namely, we will show that QCohperf(XS ) ≃ F-Zip∞,R(S).

As explained in [HL13, Proposition 4.1.1], quasi-coherent sheaves on [A1
S /Gm,S ] are the same as Z-indexed

diagrams of quasi-coherent OS-modules, so a chain of morphisms of OS-modules

· · · −→ Fi −→ Fi+1 −→ Fi+2 −→ ·· ·

(for vector bundles, we showed the computation behind it in Theorem A.2). Equivalently, the category of
quasi-coherent sheaves on [A1

S /Gm,S ] is given by the category of graded OS-modules together with an
endomorphism of degree 1 (this endomorphism is induced by multiplication with X). This gives a description
of the category of chain complexes and so

Dqc

([
A

1
S /Gm,S

])
≃ Fun(Z,Dqc(S)).
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Now let us endow the abelian category of chain complexes of quasi-coherent modules over [A1
S /Gm,S ]

with the usual model structure and Fun(Z,Ch(QCoh(S))) with the pointwise model structure. The natural
identification of the categories explained above induces a Quillen equivalence and therefore an equivalence
of ∞-categories

Dqc

([
A

1
S /Gm,S

])
≃ Fun(Z,Dqc(S)).

In fact, this equivalence can be upgraded naturally to a symmetric monoidal equivalence.

We will compute QCohperf(XS ) via descent. For this, we want to understand the pullback of perfect
complexes along [{0}/Gm,Fp ]→ [A1

S /Gm,Fp ]. We will need the following proposition to ease computation.

Lemma 3.83. Let S be a scheme. Further, let G be a group scheme over S , and let X and Z be S-schemes with a
smooth G-action denoted by aX and aZ , respectively. Let i : Z ↪→ X be a G-equivariant closed immersion such
that the diagram

G ×S Z G ×S X

Z X

id×i

aZ aX

i

is Cartesian. Then the restriction functor i∗ : Dqc([Z/G])→Dqc([X/G]) is conservative.

Proof. Using the Barr resolution of [Z/G] and [X/G], we get a commutative diagram

. . . G ×S Z Z

. . . G ×S X X,

aZ

p

id×i i

aX

p

where the vertical arrows are all closed immersion. The derived pushforward along the vertical arrows
is therefore conservative (see [Sta24, 08I8]). As the derived ∞-category with quasi-coherent cohomology
satisfies fpqc descent (see Remark 2.43), this concludes the proof. □

Proposition 3.84. Let Gm,S act on A
1
S by multiplication of degree 1 (resp. −1) and trivially on the closed

subscheme {0} ⊆A
1
S . We denote by f : [{0}/Gm,S ]→ [A1

S /Gm,S ] the naturally induced morphism. Further, let
M ∈ Dqc([A

1
S /Gm,S ]). Then we have

Lf ∗M ≃
⊕
i∈Z

griM,

where we consider M as an element of Fun(Z,Dqc(S)).

Proof. We first claim that it is enough to show that after restricting to Dqc([A
1
S /Gm,S ]), we have Lf ∗M ≃⊕

i∈ZgriM . In particular, to compute Lf ∗, we may resolve OS as a K-flat complex in Dqc([A
1
S /Gm,S ]),

which is straightforward as we are going to see.
Indeed, let F : Dqc([A

1
S /Gm,S ])→Dqc([{0}/Gm,S ]) denote the graded functor M 7→

⊕
i∈ZgriM . As-

sume that f∗Lf
∗M ≃ f∗F(M). Then by adjunction, we get a morphism α : Lf ∗M→ F(M) in Dqc([{0}/Gm,S ])

induced by the identity on Lf ∗M . But α is an equivalence by Lemma 3.83 (the smoothness of the Gm,S-action
on A

1
S follows from the proof of Lemma A.1), concluding the reduction step.

We will give a proof in the case where Gm,S acts by multiplication of degree 1. The degree −1 case is
completely analogous; we will note the places where the proof changes.

Important for us is that, as explained above, a quasi-coherent Gm,S-equivariant O
A

1
S
-module F is

equivalently a graded OS-module F =
⊕

i∈ZF
i together with an endomorphism F → F of degree 1

(resp. −1) that is induced by multiplication with X.
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The category of quasi-coherent modules over [{0}/Gm,S ] is analogously equivalent to the category of quasi-
coherent graded OS-modules. As f is equivariant, we get a pullback functor f ∗ from the category of cochain
complexes of graded OS-modules with endomorphism of degree 1 (resp. −1) to the category of cochain
complexes of graded OS-modules. Let us write M as (M•,∂•) = (

⊕
i∈ZM

i
•,
⊕

i∈Z∂
i
•) (a chain complex of

graded OS-modules) together with an endomorphism X : M→M that is induced by multiplication with X.
The complex f ∗M is given by M ⊗O

A
1
S

OS , where we identify OS with OS [X]/(X) (which endows OS with a

trivial grading and degree 1 (resp. −1) endomorphism given by 0).
To compute Lf ∗M , it is enough to find a cochain complex P ∈ Dqc([A

1
S /Gm,S ]) with a quasi-isomorphism

P ∼−→ OS in Dqc([A
1
S /Gm,S ]), such that the functor P ⊗O

A
1
S

− in the category of cochain complexes of

Gm,S-equivariant O
A

1
S
-modules is exact. Then Lf ∗M is equivalent to M⊗O

A
1
S

P . We claim that P is naturally

given by the Koszul complex of OS .
Indeed, a flat resolution of OS is given by the complex P • that is zero everywhere except in degrees −1

and 0, where it is given by the morphism

OS [X]
·X−−→OS [X].

Now OS [X] is endowed with the obvious grading together with an endomorphism of degree 1 (resp. −1) by
multiplication with X. Then P • becomes an element of Dqc([A

1
S /Gm,S ]) by shifting the grading of P −1 by

−1 (resp. 1). Note that the functor P • ⊗O
A

1
S

− is exact, and therefore we have

Lf ∗M ≃ P • ⊗O
A

1
S

M.

Now let us explicitly compute Lf ∗M . By the definition of the tensor product of chain complexes, we
deduce from the above that M ⊗O

A
1
S

P • is equivalent to the complex

(Mn+1 ⊕Mn, ιn)n∈Z,

where the differentials ιn are given by (
∂n+1 0

(−1)nX ∂n

)
.

The induced grading is given by (Mn+1 ⊕Mn)i =M i−1
n+1 ⊕M i

n (resp. (Mn+1 ⊕Mn)i =M i+1
n+1 ⊕M i

n).
Now let us analyze the graded pieces griM . As explained above, we can also consider

· · · −→ (M i−1
• ,∂−1

• )
·X−−→ (M i

•,∂
i
•) −→ ·· ·

as a filtration in Dqc(S). Let us calculate cofib((M i−1
• ,∂i−1

• )
·X−−→ (M i

•,∂
i
•)). We can do so by calculating the

cone of multiplication with X, which is given by(
M i−1
n+1 ⊕M

i
n, ι

i
n

)
n∈Z

,

where the differentials ιin are, up to equivalence, given by(
∂i−1
n+1 0

(−1)nX ∂in

)
.

(For cofib((M i+1
• ,∂i−1

• )
·X−−→ (M i

•,∂
i
•)), this is analogous; one just changes the indices).

Finally, these constructions imply that Lf ∗M ≃
⊕

i∈ZgriM in Dqc([A
1
S /Gm,S ]). □

We are finally ready to compute the perfect complexes on XS for any scheme S . We will describe it as a
full subcategory of

C(S)B (Fun(Zop,Dqc(S))×colim,Dqc(S),colim Fun(Z,Dqc(S)))

×(
⊕

(gri )(1),
⊕

gri ),Dqc(S)×Dqc(S),dom×codom Fun(∆1,Dqc(S)).
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Theorem 3.85. For any scheme S , the ∞-category QCohperf(XS ) is equivalent to the full subcategory in C(S) of
tuples (C•,D•,φ,ϕ), where

• C• ∈ Fun(Zop,Dqc(S)) is such that all griC and
⊕

i∈ZgriC are perfect;
• D• ∈ Fun(Z,Dqc(S)) is such that all griD and

⊕
i∈ZgriD are perfect;

• φ : colim
Z

opC• ∼−→ colim
Z
D• is an equivalence; and

• ϕ :
⊕

i∈ZgriC(1) ∼−→
⊕

i∈ZgriD is an equivalence.

Proof. By Proposition 2.39, we can use the Barr resolution of XS to see that

(3.7) QCohperf(XS ) ≃ lim
(
QCohperf(XS ) QCohperf

(
XS ×Fp Gm,Fp

)
· · ·

)
.

We can again use Proposition 2.39 to see that we have a limit diagram of the form

QCohperf(XS ) QCohperf

(
P

1
S

)
QCohperf({∞}) QCohperf({∞})×QCohperf({0}).

Since the Gm,Fp-action on XS is induced by the pushout of the Gm,Fp-actions on P
1
S , {∞} and {∞}⨿ {0}

(see (A.1)), we see that an object X ∈QCohperf(XS ) corresponds to a tuple (M,N,ϕ), where

• M ∈QCohperf([P
1
S /Gm,Fp ]),

• N ∈QCohperf([{∞}/Gm,Fp ]), and
• ϕ is an equivalence of the images of M and N in

QCohperf

([
{∞}/Gm,Fp

])
×QCohperf

([
{0}/Gm,Fp

])
.

Using the standard cover of P1
S by affine lines and the discussion at the beginning of this subsection, we see

that M ∈QCohperf([P
1
S /Gm,Fp ]) is equivalently given by a tuple (C•,D•,φ), where C• ∈ Fun(Zop,Dqc(S))

is perfect, D• ∈ Fun(Z,Dqc(S)) is perfect and φ : colim
Z

opC• ∼−→ colim
Z
D• is an equivalence.(25) Further

(as explained in the proof of Proposition 3.84), QCohperf([{∞}/Gm,Fp ]) consists of perfect chain complexes
of graded OS-modules. Also, we have seen in Proposition 3.84 that the image of (C•,D•) in the product
QCohperf([{∞}/Gm,Fp ])×QCohperf([{0}/Gm,Fp ]) is equivalent to

(⊕
i griC,

⊕
i griD

)
. Lastly, we want to

note that by [GP18, Proposition 2.45], an element in Fun(Zop,Dqc(S)) (resp. Fun(Z,Dqc(S))) is perfect if
and only if each graded piece is perfect.

Combining all of this, we get the desired description of QCohperf(XS ) as a full subcategory of C(S). □

It is clear by construction that F-Zip(S) is a full subcategory of QCohperf(XS ). But let us show that we
have an equivalence. This will follow immediately if we can show that the filtrations associated to an element
in QCohperf(XS ) are locally bounded.

Lemma 3.86. Let S be a scheme, and let F ∈ Fun(Z,Dqc(S)) be an ascending filtration such that gri F and⊕
i∈Zgri F are perfect OS -modules. Then F is locally bounded and perfect.
The assertion stays true if we replace Z with Zop.

Proof. As this is a local question, we may assume that S = Spec(A) is affine. Fiberwise, the question is
clear since a perfect complex over a field is quasi-isomorphic to a finite direct sum of finite-dimensional
vector spaces sitting in one degree. For every point s ∈ S , we can find an open neighbourhood Us around s

(25)By construction, P1
S is the pushout of the maps Spec(OS [X,X−1])

x 7→x−1
−−−−−−−→ Spec(OS [X]) and Spec(OS [X,X−1])

x 7→x−−−−−→
Spec(OS [X]), where the maps are given on T -valued points. So again, the description of QCohperf(P

1
S ) follows from Proposi-

tion 2.39 and the fact that the derived pullback along open immersions is given by the usual pullback.
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such that only finitely many gri F are non-zero (see [Sta24, 0BCD]). As S is quasi-compact, we deduce the
lemma.(26) □

Corollary 3.87. Let R be an Fp-algebra and S an R-scheme. Then we have

F-Zip∞,R(S) ≃QCohperf(XS ).

Proof. This follows immediately by combining Theorem 3.85, Lemma 3.86 and that finite direct sums in
Dqc(S) are the same as finite products as Dqc(S) is stable.(27) □

4. Connection to classical theory

Again, in the following R will be an Fp-algebra.

4.1. Derived F -zips with degenerating spectral sequences

In Lemma 3.54, we showed that classical F-zips can be included in the theory of derived F-zips. But what
if the homotopy groups associated to the graded pieces of a derived F-zip are finite locally free and the
associated spectral sequences degenerate (see Definition 4.1)? Then we would expect that we have a functor
πn : X → clF-Zip, where X is a suitable substack of t0F-Zip, given by sending the underlying module to its
nth homotopy group and looking at the associated filtrations.

In fact, we will show that there is even more. For a smooth proper scheme morphism with degenerating
Hodge–de Rham spectral sequence and finite locally free cohomologies, we get an F-zip. Important here is
that the graded pieces and de Rham cohomology are finite locally free. For filtrations in our sense, we also
get spectral sequences; i.e. for some R-algebra A and bounded perfect filtrations C• ∈ Fun(Zop,D(A)) and
D• ∈ Fun(Z,D(A)), we have spectral sequences

E
p,q
1 = πp+q(grpC) =⇒ πp+q colim

Z
op
C• and E

p,q
1 = πp+q(grpD) =⇒ πp+q colim

Z

D•

(see [Lur17, Proposition 1.2.2.14]). If we assume that the πp+q(grpC) are finite projective and that the above
spectral sequences are degenerate, we can associate, for any n ∈ Z, a classical F-zip to a derived F-zip
F B (C•,D•,φ,ϕ•) via

F 7→ πnF B
(
πn

(
colim
Z

op
C•

)
, C̃•, D̃•,πnϕ•

)
,

where C̃•, resp. D̃•, is the filtration associated to the spectral sequences induced by C•, resp. D•. Let us
verify that (πn(colim

Z
opC•), C̃•, D̃•,πnϕ•) is a classical F-zip.

For convenience, let us set M B πn(colim
Z

opC•). By definition, we also have πn colim
Z
D �M . First of

all, note that both C̃• and D̃• are finite and that by the degeneracy of the spectral sequences, their graded
pieces are equivalent to

gri
C̃
M = πn(griC), gri

D̃
M = πn(griD).

By homotopy finite projectiveness, all graded pieces of C̃• and D̃• are finite projective.(28) Since the filtrations
are bounded, we see that the pieces of the filtrations are also finite projective, and thus M also is. The
only thing left to see is that πnϕi induce isomorphisms (gri

C̃
M)(1) ∼−→ gri

D̃
M . But this again follows from

the degeneracy of the spectral sequences (resp. the description above induced by the degeneracy) and
the fact that homotopy finite projectiveness implies compatibility with base change (along Frobenius) by
Lemma 3.40(3).

(26)Inductively, any bounded filtration with perfect graded pieces is perfect.
(27)The equivalence between finite direct sums and products shows that for an element (C•,D•,φ,ϕ) ∈ QCohperf(XS ), the

equivalence ϕ :
⊕

i∈Z gri C(1) ∼−→
⊕

i∈Z griD is equivalently given by equivalences ϕi : gri C(1) ∼−→ griD .
(28)Note that the homotopy finite projectiveness of πn gri C implies the compatibility with base change (along Frobenius), by

Lemma 3.40(3), and so πn griD � πn(gri C(1)) � πn(gri C)(1) is finite projective.
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Further, if the derived F-zip F is homotopy finite projective of some type τ , then πnF has type τn : k 7→
τ(k)n.

Moreover, using the arguments in the proof of Theorem 3.74, we see that a derived F-zip homotopy
finite projective of some type with degenerating spectral sequences associated to the filtrations (as above) is
automatically strong. Let us make everything we said above more precise.

Definition 4.1. Let A be an R-algebra. A derived F-zip (C•,D•,φ,ϕ•) is called degenerate if the spectral
sequences

E
p,q
1 = πp+q(grpC) =⇒ πp+q colim

Z
op
C• and E

p,q
1 = πp+q(grpD) =⇒ πp+q colim

Z

D•

associated to the filtrations (see [Lur17, Proposition 1.2.2.14]) degenerate.

Lemma 4.2. Let A be an R-algebra, and let τ : Z→N
Z

0 be a function with finite support. If a derived F-zip F
over A is homotopy finite projective of type τ and degenerate, then F is strong.

Proof. This follows from Proposition 3.73. □

Proposition 4.3. Let A be an R-algebra, and let τ : Z→N
Z

0 be a function with finite support. Further, let
X τ∞,R(A) ⊆ F-Zipτ∞,R(A) denote the full subcategory of those derived F-zips that are homotopy finite projective of
type τ and degenerate. Then A 7→ X τ∞,R(A) defines a hypercomplete sheaf for the fpqc topology.
Moreover, let X τR denote the associated derived stack. Then the inclusion

i : X τR ↪−−→ t0F-ZipτR

is a closed immersion.

Proof. Analogously to the proof of Proposition 3.49, it suffices to check that the transition maps of the
spectral sequences are zero if and only if they are zero fpqc locally, but as these are maps between discrete
modules, we see that this is certainly an fpqc local property.

Let Spec(A)→ t0F-ZipτR be given by a derived F-Zip F that is homotopy finite projective of type τ . This
in particular implies that the formation of the homologies of the graded pieces commutes with arbitrary base
change, by Lemma 3.40(3). Now a morphism f : Spec(T )→ Spec(A) factors through X τR ×t0 F-ZipτR

Spec(A)
if and only if the spectral sequences associated to the filtrations of f ∗F degenerate. Again, this is equivalent
to the differentials of the spectral sequences being zero. By the commutativity of the homologies with base
change and the fact that being zero for a morphism of finite projective modules is a closed property (see
[GW10, Proposition 8.4(2)]), we see that i is in fact a closed immersion. □

Remark 4.4. Let A be an R-algebra. Let τ : Z→N
Z

0 be a function with finite support, and let n ∈Z. As
explained at the beginning of this section, we get a map of derived stacks

πn : X τR −→ clF-ZipτnR

that is induced by F 7→ πnF, where τn : Z→N0 is given by the function k 7→ τ(k)n. Also, by Lemma 4.2,
we see that the inclusion X τR ↪→ t0F-ZipτR factors through the open derived substack t0 sF-ZipτR.

We can also include clF-ZipτnR in X τR by considering the functor

(−)[n] : M B (M,C•,D•,ϕ•) 7−→M[n]B (C•n,D
n
• , id

n
M ,ϕ

n
• ),

where Ckn B Ck[n], Dn
k B Dk[n], idnM B idM [n] and ϕnk B ϕk[n] (this is just the n-shift of M[0] in

F-ZipR(A)). Thus, πn defines a section of (−)[n].
We see that the morphism given by∏

n∈Z
clF-ZipτnR ↪−−→X τR , (Mn)n∈Z 7−→

⊕
n∈Z

Mn[n]

is a monomorphism, as it is a product of monomorphisms (note that τ has finite support, and so the
morphism above is induced by the termwise inclusions).
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Lemma 4.5. Let τ : Z→N
Z

0 be a function with finite support and finitely many values. Then the monomorphism∏
n∈Z clF-ZipτnR ↪→X τR defined in Remark 4.4 is an equivalence of derived stacks.

Proof. We have to show that the map
∏
n∈Z clF-ZipτnR ↪→X τR is an effective epimorphism.

It is enough to show that for an R-algebra A, every F ∈ X τR (A) is equivalent to
⊕

n∈ZMn[n] for some
F-zips Mn ∈ clF-ZipτnR (A).

Let us set F ≃ (C•,D•,ϕ•) (see Remark 3.17). We can assume that for every k ∈ Z, we have Ck ≃⊕
n∈ZC

k
n[n] and Dk ≃

⊕
n∈ZD

n
k [n], by Lemma 3.69. Let πnF = (M,C̃•, D̃•,πnϕ•), as in the beginning of

this section. By the strongness of F and the constructions of C̃• and D̃•, we see that C̃k = Ckn and D̃k =Dn
k .

Thus, we immediately see that F ≃
⊕

n∈ZπnF[n]. □

Lemma 4.6. Let us fix some n ∈Z. Further, let σ : Z→N0 be a function with finite support and τ
σ
n : Z→N

Z

0
be given by k 7→ τσn (k)n = σ (k) and k 7→ τσn (k)m = 0 for m , n. Then the inclusion X σR ↪→ t0F-ZipσR is
quasi-compact open.

Proof. By Lemma 4.5, we have an equivalence X σR ≃ clF-Zip
τσn
R which is quasi-compact open and closed

in t0F-ZipσR by Lemma 3.54 (note that Lemma 3.54 assumes n = 0, but the proof for arbitrary n works
similarly). □

The results in this section show us that for morphisms with degenerating Hodge–de Rham spectral
sequence, there is no new information coming from the theory of derived F-zips. This, for example, will
also show that in the case of abelian schemes, where the F-zips associated to its de Rham cohomology are
already determined by its H1

dR, the derived F-zip is also determined by H1
dR (see Section 4.2.1).

In the next section, we want to discuss some classical examples, like curves and K3-surfaces. Analogously
to the abelian scheme case, we can use Lemma 4.5 to determine the associated derived F-zips by their
classical counterparts. We will not do this, as this is completely analogous, but will focus on derived F-zips
with type given by the types associated to proper smooth curves and K3-surfaces. As the type Rf∗ΩX/S

in these cases will have a certain form, we will see that any strong derived F-zip with the same type is
equivalent to a derived F-zip coming from a classical one.

4.2. Classical examples

We want to look at derived F-zips associated to abelian schemes, proper smooth curves and K3-surfaces,
and explicitly show that we do not get anything new from the theory of derived F-zips.

4.2.1. Abelian schemes. Let X→ S be an abelian scheme of relative dimension n. A classical result is
that

H i
dR(X/S) = ∧iH1

dR(X/S),

H1
dR(X/S) is locally free of rank 2n (and thus the H i

dR(X/S) are also finite locally free), the Rjf∗Ω
j
X/S are

finite locally free and the Hodge–de Rham spectral sequence degenerates (see [BBM82, Proposition 2.5.2]).
In this way, we can associate to any abelian scheme X → S of relative dimension n and any i ∈N an

F-zip H i
dR(X/S). We can even go further and say that H i

dR(X/S) is characterized by H1
dR(X/S), i.e.

H i
dR(X/S) = ∧iH1

dR(X/S)

(see [PWZ15, Example 9.9]).
Therefore, Lemma 4.5 (or rather its proof) implies the following.

Proposition 4.7. Let f : X→ S be an abelian scheme of relative dimension n. The derived F-zip RΓdR(X/S) is

equivalent to the derived F-zip
⊕2n

k=0∧
kH1

dR(X/S)[k] (see Remark 4.4 for the notation).

Proof. See the discussion above. □
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4.2.2. Proper smooth curves. Let C be a proper smooth connected curve of genus g over an algebraically
closed field k of characteristic p > 0. The de Rham complex consists of two terms. By the degeneracy of the
spectral sequence, we know that

Hn
dR(C/k) �


Γ (C,OC) = k if n = 0,

H1(C,OC)⊕ Γ (C,Ω1
C/k) if n = 1,

H1(C,Ω1
C/k) = k if n = 2,

0 else.

Further, we know that g = dimkH
1(C,OC) = dimΓ (C,Ω1

C/k). Therefore, the de Rham hypercohomology of
C is a perfect complex of Tor-amplitude in [−2,0], and the filtrations are of the form

HDG• : · · · −→ 0 −→HDG1 −→ RΓdR(C/k) −→ RΓdR(C/k) −→ ·· ·
conj• : · · · −→ 0 −→ conj0 −→ RΓdR(C/k) −→ RΓdR(C/k) −→ ·· · .

The graded pieces are given by

gr0HDG ≃ RΓ (C,OC) and gr1HDG ≃ RΓ (C,Ω1
C/k)[−1],

which are perfect complexes of Tor-amplitude in [−1,0] and [−2,−1] (in homological notation).
LetM denote the moduli stack of smooth proper curves X→ S (see [Sta24, 0DMJ]). The map

RΓdR : X/S 7−→ RΓdR(X/S)

fromM to t0F-Zip[−2,0],{−1,0} gives a decompositionM =
∐
gMg into open and closed substacks classifying

smooth proper curves of genus g . This follows from the fact that the Euler characteristic of the graded
pieces of the de Rham hypercohomology are determined by the genus and from Proposition 3.43.

Consider the function σ : Z→N
Z

0 defined as σ (0)0 = σ (1)−2 = 1 and σ (0)−1 = σ (1)−1 = g for some
g ∈N and with value zero otherwise. An example of a strong derived F-zip homotopy finite projective of type
σ is RΓdR(C/k) by the above (the strongness follows from Theorem 3.74). As the de Rham cohomologies are
finite projective and the Hodge spectral sequence degenerates, we see that locally RΓdR(C/k) is determined
by the graded pieces of the Hodge and conjugate filtrations (see Lemma 3.69). This allows us to construct
RΓdR(C/k) from the classical F-zip H1

dR(C/k). But not only that, since σ is not too complicated (there is
only one non-trivial homotopy with non-trivial filtration), it seems reasonable that any derived F-zip of type
σ is equivalent to one that is induced by a classical F-zip (see below for more details).

First let us show how to extend a classical F-zip of type τ : Z→N0, k 7→ σ (k)−1 to a derived F-zip of
type σ .

Construction 4.8. Let A be an Fp-algebra. Recall that the natural morphism A→ A(1) is an isomorphism
of rings. Further, let τ be as above.

Let M = (M,C•,D•,ϕ•) be a classical F-zip over A of type τ . We define M+ B A[0]⊕M[−1]⊕A[−2],
C+ B C1[−1]⊕A[−2] and D+ BD0[−1]⊕A[0] as complexes in D(A). This defines a descending filtration
C•+ : C+ → M+, where M+ is in degree 0, and an ascending filtration D+

• : D+ → M+, where M+ is in
degree 1, of A-modules. We also get natural equivalences between the graded pieces of the filtrations up to
Frobenius twist induced by A(1) ∼−→ A and ϕ•, denoted by ϕ+

• . We define a new derived F-zip over A via

M+ B (C•+,D
+
• ,ϕ

+
• ).

The idea of the above construction is to take a classical F-zip and extend it by a trivial F-zip in the
homotopical direction. So in the above construction, M+ is a classical F-zip shifted to (homological) degree
−1, and then we add a trivial F-zip via the direct sum to the homotopical degree 0 and −2. All the
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information of M+ as a derived F-zip lies in homotopical degree −1. In particular, we can recover derived
F-zips with type like M+ from classical F-zips.

Proposition 4.9. Let σ and τ be defined as above. Then for an Fp-algebra A, the map

α : clF-ZipτR(A) −→ sF-ZipσR(A)

M 7−→M+

induces an effective epimorphism clF-ZipτR→ sF-ZipσR of derived stacks.

Proof. Let A be an Fp-algebra. Consider a derived F-zip F = (C•F ,D
F
• ,ϕ

F
• ) over A that is homotopy finite

projective of type σ over A. We claim that there is a classical M-zip M = (M,C•,D•,ϕ) of type τ that
induces an equivalence M+ ∼−→ F.

We can apply Lemma 3.69 to the filtrations and graded pieces of F and may only work with perfect
complexes over A that have vanishing differentials, i.e. direct sums of shifts of finite free modules (note that
we use that the filtrations are finite).

Using the explicit type of F, we get a long exact homotopy sequence

0 −→ (C0
F)0 −→ A

∂−−→ (C1
F)−1 −→ (C0

F)−1 −→ Ag
∂′−−→ (C1

F)−2 −→ (C0
F)−2 −→ 0,

and using the ascending filtration, we get the long exact homotopy sequence

0 −→ (DF
0 )0 −→ (DF

1 )0 −→ 0 −→ (DF
0 )−1 −→ (DF

1 )−1 −→ (Ag )(1) −→ 0 −→ (DF
1 )−2 −→ A(1) −→ 0.

The strongness of our filtrations show that ∂ and ∂′ are zero, and we see that we can set

M = F−1,

C• : 0 = C2 ⊆ (C1
F)−1 ⊆ F−1 = C0,

D• : 0 =D−1 ⊆ (DF
0 )−1 ⊆ F−1 =D1 and

ϕ0 = π−1ϕ
F
0 , ϕ1 = π−1ϕ

F
1 .

The acyclicity of the complexes involved give us an equivalence M+ ∼−→ F. □

4.2.3. K3-surfaces. Let X be a K3-surface over a field k. It is well known that the Hodge–de Rham
spectral sequence of X/k degenerates and that the Hodge numbers are given by h0,0 = h0,2 = h2,0 = h2,2 = 1,
h1,1 = 20 and are otherwise zero. This in particular gives us the type of the derived F-zip associated to a
K3-surface over an arbitrary scheme in positive characteristic (which is written out in the following remark).

Using this, we will show as in the case of proper smooth curves that every derived F-zip of the same type
as in the K3-surface case is equivalent to one which comes from the classical F-zip of type associated to
H2

dR of a K3-surface.

Remark 4.10. Let σ : Z→N
Z

0 be the function given by σ (0)0 = σ (0)−2 = σ (2)−2 = σ (2)−4 = 1, σ (1)−2 = 20
and otherwise zero.

Let F B (C•,D•,ϕ•) ∈ t0F-Zipσ (A). We may assume by Lemma 3.69 that every perfect complex
associated to F has vanishing differentials; i.e. the filtrations and graded pieces are perfect complexes of
A-modules with vanishing differentials. So, we can write

C• ≃
⊕
n∈Z

(C•)n[n] and D• ≃
⊕
n∈Z

(D•)n[n].

By this C2 ≃ π−2 gr2
C[−2]⊕π−4 gr2

C[−4], and we have long exact homotopy sequences

0 −→ (C2)−2 −→(C1)−2 −→ π−2 gr1
C −→ 0 −→ (C2)−3

−→ 0 −→ 0 −→ (C2)−4 −→ (C1)−4 −→ 0,
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0 −→ (C0)0 −→π0 gr0
C −→ 0 −→ (C0)−1 −→ 0 −→ (C1)−2 −→ (C0)−2 −→ π−2 gr0

C

−→ 0 −→ (C0)−3 −→ 0 −→ (C1)−4 −→ (C0)−4 −→ 0.

Further, we have D0 ≃ π0 gr0
D [0]⊕π−2 gr0

D [−2] and long exact homotopy sequences

0 −→ (D0)0 −→ (D1)0 −→ 0 −→ 0 −→ (D1)−1 −→ 0 −→ (D0)−2 −→ (D1)−2 −→ π−2 gr1
D −→ 0,

0 −→ (D1)0 −→(D2)0 −→ 0 −→ 0 −→ (D2)−1 −→ 0 −→ (D1)−2 −→ (D2)−2

−→ π−2 gr2
D −→ 0 −→ (D2)−3 −→ 0 −→ 0 −→ (D2)−4 −→ π−4 gr2

D −→ 0.

In particular, we have that F is a strong derived F-zip as the homotopies are finite locally free, which allows
us to construct sections.

Corollary 4.11. Let X/S be a K3-surface. Then the Hodge–de Rham spectral sequence associated to X/S
degenerates.

Proof. Combine Remark 4.10 and Theorem 3.74. □

Lemma 4.12. Let σ : Z→N
Z

0 be the function given by some

σ (0)0,σ (0)−2,σ (1)−2,σ (2)−2,σ (2)−4 ∈N0

and otherwise zero. Then the inclusion

sF-Zipσ ↪−−→ F-Zipσ

is an equivalence.

Proof. We only have to check that it is an effective epimorphism, which can be checked locally. Now the
argumentation as in Remark 4.10 concludes the proof. □

Again, as in the proper smooth curve case, we want to construct a derived F-zip of type σ out of a
classical F-zip and show that all derived F-zips of type σ are given by those.

In particular, the derived F-zip associated to a K3-surface will carry no additional information besides
the classical F-zip attached to its H2

dR.

Construction 4.13. Let M = (M,C•,D•,ϕ•) be a classical F-zip over A of type τ , where τ(2) = τ(0) = 1
and τ(1) = 20 and τ is otherwise zero. We set M+ B A[0] ⊕M[−2] ⊕ A[−4], C2

+ B C2[−2] ⊕ A[−4],
C1

+ = C1
+[−2]⊕A[−4], D+

0 BD0[−2]⊕A[−4] and D+
1 = A[0]⊕D1[−2]. This defines a descending filtration

C•+ : C2
+→ C1

+→M+ and an ascending filtration D+
• : D+

0 →D+
1 →M+. We also get natural equivalences

between the graded pieces of the filtrations up to Frobenius twist induced by A(1) ∼−→ A and ϕ•, denoted by
ϕ+
• . We define a new derived F-zip over A via

M+ B (C•+,D
+
• ,ϕ

+
• ).

Proposition 4.14. let τ be as in Construction 4.13, and let σ be as in Remark 4.10. Then for an Fp-algebra A,
the map

α : clF-ZipτR(A) −→ F-ZipσR(A)

M 7−→M+

induces an effective epimorphism clF-ZipτR→ t0F-ZipσR of derived stacks.

Proof. Using that a derived F-zip of type σ is automatically strong (see Lemma 4.12), we see that the proof is
analogous to the proof of Proposition 4.9 with Construction 4.13. □
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5. Application to Enriques surfaces

One of the main reasons behind the theory of derived F-zips is to extend the theory of F-zips so that we
can use it on geometric objects that have non-degenerate Hodge–de Rham spectral sequence. One example
of such geometric objects consists of Enriques surfaces in characteristic 2. Here, we have three types of
Enriques surfaces: Z/2Z, µ2 and α2. The Enriques surfaces of type α2 are of particular interest for us since
they have non-degenerate Hodge–de Rham spectral sequences (for the other types, the spectral sequences
degenerate). One can show (see [Lie15]) that the moduli stackM of Enriques surfaces has three substacks
Mα2

, M
Z/2Z andMµ2

that classify precisely these three types. Further, Mα2
andM

Z/2Z are open and
Mµ2

is closed inM. We will come to the same result using the theory of derived F-zips (see Proposition 5.9)
since the substacks corresponding to the types of Enriques surfaces can be classified by the corresponding
type of the derived F-zip associated to the de Rham hypercohomology.

5.1. Overview

We will briefly recall the definition of Enriques surfaces and some properties. We use the upcoming book
of Cossec, Dolgachev and Liedtke as a reference (see [CDL24]). For this, fix an algebraically closed field k of
characteristic p > 0.

Definition 5.1. An Enriques surface is a proper smooth surface over k with Kodaira dimension 0 and
b2(X)B dim

Qℓ
H2

ét(X,Qℓ) = 10, where ℓ , p is a prime.

Proposition 5.2. Let S be an Enriques surface over k. If the characteristic is p = 2, then the group scheme of
divisor classes which are numerically equivalent to 0, denoted by PicτS/k , is either Z/2Z,µ2 or α2. In characteristic
greater than 2, we have PicτS/k �Z/2Z.

Definition 5.3. Let S be an Enriques surface over k, and assume p = 2. Then we call S classical (resp.
singular or supersingular ) or of type Z/2Z (resp. µ2 or α2) if PicτS/k is isomorphic to Z/2Z (resp. µ2 or α2).

Proposition 5.4. Let S be an Enriques surface over k. The associated Hodge–de Rham spectral sequence degenerates
if and only if S is not supersingular.

Proof. This is [CDL24, Corollary 1.4.15], but let us recall the arguments (note that there is a typo in the
reference, as the authors compute the crystalline cohomology and conclude the de Rham cohomology by the
universal coefficient formula, which implies the numbers in Table (5.2)).

In [CDL24, Section 1.4, Tables 1.2 and 1.3], the authors give the exact Hodge numbers and dimensions of
the de Rham cohomology, which in particular implies the result about degeneracy.

Let us be a bit more precise and recall the important numbers. Let hi,j denote the k-dimension of
H j(S,Ωi

S/k) and hidR the dimension of H i(S,Ω•S/k). Then we have the following table linking the type of S
with the Hodge numbers:

(5.1)

PicτS/k h0,0 h1,0 h0,1 h0,2 h1,1 h2,0

µ2 1 0 1 1 10 1
Z/2Z 1 1 0 0 12 0
α2 1 1 1 1 12 1

The dimension of the de Rham cohomology is given as follows (this does not depend on the type of the
Enriques surfaces):

(5.2)
h0

dR h1
dR h2

dR h3
dR h4

dR

1 1 12 0 1

By Serre duality, this table is enough to conclude (non-)degeneracy. □
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We denote by (PicτS/k)
D the Cartier dual of PicτS/k . Note that αD2 = α2, Z/2ZD = µ2 and µD2 = Z/2Z.

Proposition 5.5. Let S be an Enriques surface over k. There exists a non-trivial (PicτS/k)
D -torsor

π : X −→ S.

In particular, π is finite flat of degree 2. Note that if p , 2 or S is of type µ2, then π is étale.

Proof. See [CDL24, Theorem 1.3.1]. □

Definition 5.6. A finite flat map X→ S of degree 2 is called a K3-cover.

Proposition 5.7. Let S be an Enriques surface over k. Let π : X → S be a K3-cover. Then X is integral
Gorenstein, satisfying

H1(X,OX) = 0, ωX � OX .
Further, we have the following:

(1) If p , 2 or S is of type µ2, then X is a smooth K3-surface.
(2) If p = 2 and S is of type Z/2Z or α2, then X is not a smooth surface.

Proof. See [CDL24, Proposition 1.3.3]. □

Definition 5.8. Let S be a Fp-scheme. An Enriques surface X over S is a proper smooth morphism of
algebraic spaces f : X→ S such that the geometric fibers of f are Enriques surfaces.

5.2. Derived F -zips associated to Enriques surfaces

In the following, every scheme will be in characteristic 2.
We let M denote the stack classifying Enriques surfaces with “nice” polarization, i.e. the functor that

sends an F2-scheme S to the groupoid of pairs (X/S,L) consisting of Enriques surfaces X→ S with “nice”
line bundle L on X – the term “nice” means a polarization such thatM defines an Artin stack. Examples
of such classifying stacks are given in [CDL24, Theorem 5.11.6] and [Lie15, Section 5] (we only need that
M is an Artin stack and are not interested in the polarization itself and as there are many different such
polarizations such thatM is an Artin stack, we omit the explicit description). By our previous constructions,
we get a morphism

p : M−→ t0F-ZipS , (X/S,L) 7−→ Rf∗Ω
•
X/S .

The Hodge numbers and dimension of the de Rham cohomology for Enriques surfaces over algebraically
closed fields define types for the underlying F-zip (see Tables (5.1) and (5.2)). We denote those by
τ
Z/2Z, τµ2

, τα2
(29) for the types defined by the Hodge numbers of Z/2Z, µ2, α2 Enriques surfaces, re-

spectively.
We denote the corresponding loci byM

Z/2Z andMµ2
; i.e. these denote the substacks classifying Enriques

surfaces of types Z/2Z and µ2, respectively. We denote the substack of α2 Enrique surfaces f : X→ S such

that Rif∗Ω
j
X/S is finite locally free for all i, j ∈Z byMα2

.(30) With these definitions, we see that

p−1(t0F-Zip≤τα2 )BM×t0 F-ZipS t0F-Zip≤τα2 ≃M,

and we will see in the following that the substacks M
Z/2Z and Mµ2

are open in M and Mα2
is closed

inM.

Proposition 5.9. The substacksM
Z/2Z andMµ2

are open algebraic substacks, andMα2
is a closed algebraic

substack ofM locally of finite presentation.
(29)Recall that the types are given by τ∗(i)j B hi,−j−i (the Hodge numbers of the corresponding types). Table (5.1) shows that

τµ2 ≤ τα2 and τZ/2Z ≤ τα2 and that there is no relation between τµ2 and τZ/2Z.
(30)Note that if f : X→ S is a locally Noetherian reduced Enriques surface, we can use [GD63, Proposition (7.8.4)] to deduce

that Rif∗Ω
j
X/S is finite locally free for all i, j ∈Z.
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Proof. Let us look atM
Z/2Z ≃ p−1(t0F-Zip≤τZ/2Z). We claim that this is an open substack ofM. SinceM is

an Artin stack, we know that it is a 1-geometric 1-truncated derived stack in our sense. In particular, since the
base changes of open immersions are open immersions (i.e. flat, locally finitely presented monomorphisms),
we know by Remark 2.30 and Proposition 3.42 that M

Z/2Z ↪→ M is a flat, locally finitely presented
monomorphism and in particular M

Z/2Z is 1-geometric. Since M
Z/2Z ↪→M is a monomorphism (i.e.

(−1)-truncated), we see thatM
Z/2Z is 1-truncated (see [Lur09, Lemma 5.5.6.14]). In fact, we claim that this

shows thatM
Z/2Z is an algebraic stack.

To see this, note that sinceM
Z/2Z ↪→M is a monomorphism, the diagonal ofM

Z/2Z is representable by
an algebraic space. Further, we claim that the 1-geometricity ofM

Z/2Z implies that we have a smooth atlas
by a coproduct of affine schemes, so a scheme.

To see the last part, let us look at a smooth 0-atlas q :
∐

Spec(Ai)↠MZ/2Z. We have to check that this
is smooth in the classical sense. For that consider the base change with an affine scheme Spec(B)→M

Z/2Z,
denoted by X. This is an algebraic space and by geometricity has a smooth cover

∐
Spec(Bi) by some

smooth B-algebras Bi such that each g : Spec(Bi)→ X is affine. So, we have a diagram of the following
form with Cartesian square:

∐
Spec(Bi) X Spec(B)

∐
Spec(Ai) M

Z/2Z.

g f

q

As g is smooth and surjective and f ◦ g is smooth, we know by descent that f is smooth (as the property
“smooth” is smooth local on the source for algebraic spaces, see [Sta24, 06F2]). Certainly f is also surjective,
as it is the base change of an effective epimorphism. Therefore, by definition we see that p is smooth and
surjective.

The same argumentation works if we replaceM
Z/2Z withMµ2

.
For the supersingular locus, we note that the inclusion

t0F-Zipτα2 ↪−−→ t0F-Zipτ≤α2

is a closed immersion locally of finite presentation (again by Proposition 3.42). So, analogously to the above,
we see thatMα2

is an algebraic substackM such thatMα2
↪→M is a closed immersion of algebraic stacks

locally of finite presentation. □

6. Derived F -zips with cup product

Here we discuss two possible generalizations of derived F-zips. Firstly, we could try to extend the theory
of derived F-zips in such a way that we can attach a derived F-zip to an lci morphism. Secondly, we could
extend the theory of derived F-zips to the theory of derived G-zips as in [PWZ15], for a reductive group
G, and hope that the extra structure on the de Rham hypercohomology given by the cup product (see
Section 6.2) endows it with a G-zip structure.

We will discuss both cases and show that the naive way of extending a derived F-zip does not work in
either case. But for completeness, we will look at derived F-zips with some extra structure that is given by a
perfect pairing. Again, we cannot connect this to the theory of G-zips, but this is just a very naive approach
we want to discuss.

6.1. Problems

Now let us discuss the problems that occurred when trying to generalize the theory.



64 C. Yaylali64 C. Yaylali

6.1.1. Derived F -zips for lci morphisms. We could have defined derived F-zips not over animated rings
but over usual commutative rings in positive characteristic. One benefit of the animation process is that
simplicially every commutative ring can be approximated by smooth rings. One often uses this to generalize
theories that work in the smooth case to the non-smooth case. To define derived F-zips, we looked at
the de Rham hypercohomology of a smooth proper scheme. So to define a theory of derived F-zips that
works for non-smooth schemes, we would need a non-smooth analogue of the de Rham hypercohomology.
The most natural generalization comes from looking at the de Rham complex as a functor from smooth
Fp-algebras and looking at its left Kan extension to animated Fp-algebras. This is done for example in
[Bha12b, Bha12a, Ill71] and is called the derived de Rham complex, denoted by dRX/R(31) for a scheme X
over some ring R of positive characteristic. Let us state some facts about the derived de Rham complex that
can also be found in the mentioned articles by Bhatt or in the book by Illusie.

In the smooth case, this gives the usual de Rham hypercohomology RΓdR(X/R). The derived de Rham
complex naturally comes with two filtrations; one is the conjugate filtration, and one is the Hodge filtration.
These come from, respectively, the conjugate and Hodge filtration on the de Rham complex by extending via
left Kan extension. The graded pieces are given by

griconj dRX/R ≃ ∧iLX(1)/R, griHDG dRX/R ≃ ∧iLX/R;

in particular, they are isomorphic up to Frobenius twist.
Even though it seems natural, it is not clear that the Hodge filtration is complete, i.e. lim

←− i
HDG(i) ≃ 0.

Further, the filtrations may not be finite in any way. This holds more or less for any variety with isolated lci
singularities. One very generic example is AB k[ε]/(εp) for some field k of characteristic p > 0. One can
show that ∧nLA/k is not quasi-isomorphic to 0 for any n ∈N0 (see [Bha14, Remark 2.2]). This obstruction
comes from the fact that in the lci case, LA/k is a complex concentrated in two degrees, and after base change
to k, one can see that it is given by the direct sum of exterior powers and shifts of k (see the proof of [Bha14,
Lemma 2.1]). Now the exterior power of the shift of a module can be computed by its free divided power,
which will not vanish even for higher powers (see [Lur18, Proposition 25.2.4.2]). To avoid problems, we could
define derived F-zips using non-complete filtrations, but the problem here is actually the unboundedness of
the filtrations. There is no need for an n-atlas if we allow infinite filtrations since we would need to cover
finitely many data at once, which renders this approach a priori useless.

6.1.2. Derived G-zips. The theory of G-zips, for a connected reductive group G over a field of charac-
teristic p > 0, endows the theory of F-zips with extra structure related to the group. The motivation behind
this is that we have a cup product on the de Rham cohomologies of smooth proper maps, where the relative
Hodge–de Rham spectral sequence degenerates. In even degrees, this endows the F-zip associated to the
de Rham cohomology with a twisted symmetric structure, and in odd degrees with a twisted symplectic
structure. All of this can be found in [PWZ15].

There are three equivalent approaches to the theory of G-zips. The first one is to first identify the stack of
F-zips over a scheme S with the stack of vector bundles on some quotient stack X, where the quotient stack
is defined via the following recipe. We take P

1 and pinch the point at ∞ and the point at 0 together up to
Frobenius twist. Now we let Gm act on the affine line around 0 in degree 1 and on the affine line around
∞ in degree −1. Let us make precise what happens here. Vector bundles on [A1/Gm] are finitely filtered
vector bundles, where depending on the action of Gm, in our case multiplication with an element in Gm

resp. with the inverse, we get an increasing, resp. decreasing, filtration (see the appendix for further details).
Thus, a vector bundle on [P1/Gm] gives a vector bundle with an ascending and a descending filtration. The

(31)We define dR−/R as the left Kan extension of the functor P 7→Ω•P /R along the inclusion PolyR ↪→ ARR. Then, we denote by

RdR−/R the right Kan extension of dR−/R along the Yoneda embedding ARR ↪→P (AR
op
R )op and set dRX/R BRdR−/R(X).
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pullback to 0, resp. ∞, gives us the graded pieces. Gluing 0 and ∞ together along the Frobenius, we see
that a vector bundle on X gives us an F-zip. Now a G-zip is just a G-torsor over X (see Theorem A.5).

Secondly, one can realize G-zips as exact fiber functors from finite G-representations to F-zips. Using
that F-zips are the same as finite-dimensional vector bundles over the above quotient stack X and using
Tannaka duality, one sees that this description and the first one agree.

Lastly, there is a description of G-zips as a quotient stack [G/E]. We spare the details for the reader and
refer to [PWZ15], where the equivalence with the second description can also be found.

In our context, the first and second approaches seem to be the natural ones. The first approach seems to
be a bit tricky since we would need to show that there is a quotient stack such that perfect complexes over
this stack give us the derived F-zips. Naturally, one could take X as the desired stack, and as explained in
Section 3.6, the perfect complexes on X recover derived F-zips. But we still lack a good notion of derived
groups and torsors attaching extra structure to perfect complexes.

For the second approach, we would need a replacement for finite G-representations. Looking at the works
of Iwanari and Bhatt on derived Tannaka duality, it seems natural to replace Rep(G

Fp
) with Perf(BG

Fp
).

But even though natural, it will turn out not to be the right approach. The problem here is BG. It is the
classifying stack associated to a classical group scheme. Thus looking at exact fiber functors and Tannaka
duality (which we do not have), one could argue that it should give us the classical theory of G-zips embedded
into the derived setting. This is not the same as a derived analogue. For example, Gm-zips are the same as
F-zips of rank 1. We would expect derived Gm-zips to be derived F-zips of Euler characteristic ±1. But
we will see that this is not completely true for exact fiber functors from Perf(BGm,Fp ) to F-Zip(A) for some
Fp-algebra A. Instead of derived F-zips of Euler characteristic ±1, they give us derived F-zips where the
cohomologies are finite locally free, meaning that they give us (more or less) the classical theory.

To make everything we wrote precise, let F be an exact monoidal functor from Perf(BGm,Fp ) to F-Zip(A)
for an Fp-algebra A. Since over a field, any complex is quasi-isomorphic to a complex with zero differentials,
we see that the descent condition (induced by the Barr resolution of BGm,Fp ) for a complex in Perf(BGm,Fp )
is a condition on the cohomologies of the complex. With this, we see that E ∈ Perf(BGm,Fp ) is equivalent
to a finite direct sum of Ei[i], where i ∈ Z and the Ei are finite projective graded modules. Since F is
exact, we see that F is already determined, up to equivalence, by its image on vector bundles on BGm, i.e.
finite Gm-representations, seen as complexes concentrated in degree 0. But finite Gm-representations are
generated under the tensor product by the standard representation, hence F is already determined, up to
equivalence, by the image of Fp, seen as a graded vector space in degree 1. This is certainly an invertible
element in Perf(BGm,Fp ), and thus F(Fp) must also be invertible. Since the monoidal structure on F-Zip(A)
is given componentwise, we see that the underlying module of the F-zip has to be invertible. But invertible
perfect complexes over A are locally shifts of line bundles and are globally given by the direct sum of shifts
of finite projective modules (see [Sta24, 0FNT]). This is too much and would give us the classical theory of
F-zips after passing to the cohomology.

6.2. Extra structure coming from geometry

In this section, we naively put extra structure on derived F-zips by looking at the extra structure on
the de Rham hypercohomology coming from the cup product, namely a perfect pairing on the underlying
module of a derived F-zip.

In the following, we fix a ring R of characteristic p > 0.

Definition 6.1. Let A be an animated ring. Let M and N be perfect A-modules. A perfect pairing of M and
N is a morphism M ⊗N → A such that the induced morphism M→N∨ is an equivalence.
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Remark 6.2. Let A be an animated ring. Note that any equivalence between perfect A-modules M and N
of the form M → N∨ induces a perfect pairing M ⊗N → A by adjunction. So giving a perfect pairing
M ⊗N → A is equivalent to giving an equivalence M→N∨.

Definition 6.3. Let A be an animated ring. We define the ∞-category of perfect pairings PPA over A as the
full subcategory of X, where X is given by the pullback diagram

X Modperf
A ×Modperf

A

Fun(∆1,Modperf
A ) Fun(∂∆1,Modperf

A ),

(M,N )7→(M,N∨)

r

of those morphisms M→N∨ that are equivalences. (Note that r is given by restriction and by [Lur24, 01F3]
is an isofibration of simplicial sets. Thus X is equivalent in Cat∞ to the usual pullback of simplicial sets,(32)

so indeed X classifies morphisms of A-modules M→N∨).

Definition 6.4. Let A be an animated Fp-algebra, a ≤ b ∈ Z and S ⊂ Z be a finite subset. Let

dR-Zip[a,b],S
∞ (A) denote the ∞-category

F-Zip[a,b],S
∞ (A)×(colim[b−a],(colim)∨),Modperf

A ×Modperf
A

PPA,

i.e. the ∞-category consisting of tuples (F,ψ), where F B (C•,D•,φ,ϕ•) is a derived F-zip with M B
colim

Z
opC and ψ : M ⊗M→ 1[a− b] is a perfect pairing.(33) We set

dR-Zip∞(A)B colim
a≤b,

S⊆Z finite

dR-Zip[a,b],S
∞ (A)

and call its elements dR-zips over A.

Next we want to show that for any proper smooth morphism f : X → S of schemes, we can attach a
dR-zip structure to the derived F-zip Rf∗Ω

•
X/S . This structure comes naturally from the cup product.

Lemma 6.5. Let A be a ring and X be a proper smooth scheme over A of relative dimension n. The de Rham
hypercohomology RΓ (X,Ω•X/A) has Tor-amplitude in [−2n,0].

Proof. Indeed, first of all, we claim that dimκ(a)πi(Xκ(a),Ω
•
Xa/κ(a)) is zero for all a ∈ Spec(A) if i < [−2n,0].

This follows from Grothendieck vanishing (see [Har77, Theorem 2.7]) in the following way. By Grothendieck
vanishing, the perfect complex RΓ (Xκ(a),Ω

k
Xκ(a)/κ(a))[−k] has non-zero homotopies in degrees −n− k, . . . ,−k.

Now, the distinguished triangle associated to the stupid truncation

RΓ (Xκ(a),σ≥k+1Ω
•
Xκ(a)/κ(a)) −→ RΓ (Xκ(a),σ≥kΩ

•
Xκ(a)/κ(a)) −→ RΓ (Xκ(a),Ω

k
Xκ(a)/κ(a))[−k]

shows by induction that dimκ(a)πi(Xκ(a),Ω
•
Xa/κ(a)) is non-zero if and only if i ∈ [−2n,0].

Further, it suffices to check Zariski locally on Spec(A) that RΓ (X,Ω•X/A) has Tor-amplitude in [−2n,0].
Any point a ∈ Spec(A) has an affine open neighbourhood U = Spec(Af ), where f ∈ A, such that
RΓ (X,Ω•X/A)|U is, by [Sta24, 0BCD], equivalent to a complex of the form

· · · −→ 0 −→ Ad0
f −→ Ad−1

f −→ ·· · −→ Ad−2n
f −→ 0 −→ ·· · ,

(32)To check that X is equivalent to the usual pullback of simplicial sets, we may use the Yoneda lemma and check that for any
∞-category C, the ∞-groupoid Fun(C,X)≃ is given by the usual pullback of simplicial sets, but this follows from Remark 3.25

(33)Again, as explained in the definition of PPA, we have that the pullback diagram defining dR-Zip
[a,b],S
∞ (A) is equivalent in

Cat∞ to the ordinary pullback of simplicial sets, as the projection from PPA to ModA×ModA is an isofibration (since isofibrations
are stable under pullbacks of simplicial sets by [Lur24, 01H4]).
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where Adif sits in homological degree −i and

di B dimκ(a)πi(RΓ (X,Ω•X/A)⊗LA κ(a)) = dimκ(a)πi(Xκ(a),Ω
•
Xa/κ(a))

(the last equality follows as the formation of the de Rham hypercohomology commutes with arbitrary base
change; see [Sta24, 0FM0]). □

Example 6.6. Let A be a ring and X be a proper smooth scheme over A with non-empty fibers of
equidimension n. By Lemma 6.5, RΓ (X,Ω•X/A) has Tor-amplitude in [−2n,0]. Further, the de Rham
hypercohomology admits a perfect pairing

RΓ (X,Ω•X/A)⊗LA RΓ (X,Ω•X/A)[2n] −→ A

(see [Sta24, 0G8K]). Hence, this induces a dR-zip structure on RΓdR(X/A).

Proposition 6.7. The functor

dR-Zip∞,R : ARR −→ Cat∞

A 7−→ dR-Zip∞(A)

defines a hypercomplete sheaf for the fpqc topology. We denote the associated derived stack by dR-ZipR. Let S ⊆Z

be a finite subset, a ≤ b ∈Z, and set nB b − a. Then the induced morphism

p[a,b],S : dR-Zip[a,b],S
R −→ F-Zip[a,b],S

R

is 2n-geometric and smooth. Further, dR-Zip[a,b],S
R is 2n-geometric if n ≥ 1 and 1-geometric if n = 0 and is locally

of finite presentation.

Proof. Fix a finite subset S ⊆Z, a ≤ b ∈Z, and set nB b − a. For a derived F-zip F = (C•,D•,φ,ϕ•), let us
set MF B colim

Z
opC•. Let us look at the following pullback square:

X Fun(∆1,Perf)

F-Zip[a,b],S
∞,R Fun(∂∆1,Perf).

F 7→(MF ,M
∨
F [−n])

Noting that a perfect pairing of MF and M∨F [−n] is the same as an equivalence MF
∼−→M∨F [−n], we see that

dR-Zip[a,b],S
∞ ≃ X. In particular, dR-Zip[a,b],S

∞,R satisfies fpqc hyperdescent.

Finally, let p[a,b],S : dR-Zip[a,b],S
R → F-Zip[a,b],S

R denote the induced morphism of derived stacks. For a
derived F-zip F over some animated Fp-algebra A, we have that (p[a,b],S )−1(F) ≃ Equiv(MF ,M

∨
F [−n]), which

is 2n-geometric and smooth as MF ⊗AM∨F [−n] has Tor-amplitude in [−2n,0] (see Lemmas 2.55 and 2.56).
Now the assertions on p follow immediately by definition, and by Theorem 3.26, we get the results on

dR-Zip[a,b],S
R . □

Corollary 6.8. The derived stack dR-ZipR is locally geometric and locally of finite presentation.

Proof. Let τ : Z→N
Z

0 be a function with finite support. We know that the inclusion F-Zip≤τR ↪→ F-ZipR is

a quasi-compact open immersion and factors as a geometric morphism through F-Zip[a,b],S
R for some finite

subset S ⊆ Z and a ≤ b ∈ Z (see Remark 3.44). In particular, we see that the pullback of F-Zip≤τR along
p[a,b],S , denoted by dR-Zip≤τ , is again geometric by Proposition 6.7 and Theorem 3.26 and is quasi-compact
open in dR-ZipR. Since F-ZipR ≃ colimτ F-Zip≤R, we see that dR-ZipR ≃ colimτ dR-Zip≤τR , and so dR-ZipR
is locally geometric. That dR-ZipR is locally of finite presentation follows analogously from the fact that
F-Zip≤τR is locally of finite presentation. □
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Appendix. Comparison of G-zips and G-torsors

Throughout, we let k be a field of characteristic p > 0.
Let us first construct the quotient stack that will classify F-zips. Let S be a k-scheme. Consider the two

closed subschemes {0} and {∞} inside P
1 that are naturally isomorphic. Let ϕ denote the isomorphism of

{∞} and {0} composed with the Frobenius. We know by [Fer03, Theorem 7.1] that the following pushout
exists in the category of Fp-schemes:

{∞}⨿ {0} {∞}

P
1
S XS

(id,ϕ)

ι

(note that the Frobenius is integral, and thus the morphism from the coproduct is integral, and obviously the
inclusion of the two points is a closed immersion). The new space XS is the P

1
S where we pinch the points 0

and ∞ together. We have a Gm,S-action on P
1
S , where we act on the affine line around 0 via multiplication

and on the affine line around ∞ via multiplication with the inverse. Since Gm,S ×SP1
S �Gm,Fp ×FpP

1
S , we

see that the Gm-action on P
1
S as an Fp-scheme is the same as the action as an S-scheme. Therefore, we get

an induced Gm,Fp-action on X.
We have the following pushout diagram:

(A.1)

Gm,Fp ×Fp {∞}⨿ {0} Gm,Fp ×Fp {∞}

Gm,Fp ×FpP
1
S Gm,Fp ×FpXS ,

id×(id,ϕ)

id×ι

which is induced by the Gm-actions. The following diagram with commutative squares shows that, indeed,
Gm,Fp ×FpXS fulfils the universal property of the pushout above:

{∞}⨿ {0} {∞}

{∞}⨿ {0} Gm,Fp ×Fp {∞}⨿ {0} Gm,Fp ×Fp {∞}

P
1
S Gm,Fp ×FpP

1
S ,

(id,ϕ)

s s

ι

s id×(id,ϕ)

id×ι

s

where the morphism s denotes the natural 0-section.
Now let us define XS as the quotient stack [XS /Gm,Fp ]. We claim that XS is an Artin stack, which follows

from the following lemma and [Sta24, 04TK].

Lemma A.1. The group action of Gm,Fp on XS is smooth.

Proof. Since the action of Gm,Fp on XS is induced by the pushout diagram A.1, we see by(34) [Sta24, 08KQ]

that the Gm,Fp -action is smooth if and only if the Gm,Fp -action on {∞} and P
1
S is smooth. The smoothness

of the former action is clear. For the latter, it is enough to see that the Gm,S-action on A
1
S by multiplication

of degree 1 is smooth (the degree −1 case is completely similar).

(34)Locally, the pushout of schemes is given by the fiber product of the rings corresponding to affine opens, as one sees in the
construction (see for example the proof of the existence given in [Sta24, 0E25]). So, in particular, we can apply the reference.
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Indeed, the question is local, so we may assume that S = Spec(R) is affine. Then the ring map
corresponding to the Gm,S-action is equivalently given by

R[X] −→ R[X][Y1,Y2,Z]/(Y1Y2 − 1,ZY1 −X).

The Jacobi matrix corresponding to this map is given by(
Y2 Y1 0
Z 0 Y1

)
.

For any point in p ∈ Spec(R[X][Y1,Y2,Z]/(Y1Y2 − 1,ZY1 −X)), this matrix has full rank as Y1Y2 − 1 ∈ p.
Therefore, we see that indeed the Gm,S-action A

1
S via multiplication of degree 1 is smooth of relative

dimension 1, concluding the proof. □

We will start by showing that vector bundles over X are the same as F-zips. Then the comparison of
G-zips and G-torsors on X is a Tannaka duality-like statement.

Theorem A.2. Let S be a k-scheme, and let n ∈N. There is an equivalence of categories

VBn(XS ) ≃ clF-Zipn(S).

Proof. By descent, a vector bundle on XS is a Gm,Fp-equivariant vector bundle on XS . Since XS is the
coequalizer of {0}, where one of the morphisms is given by the identity and the other sends {0} to {∞}
and twists by Frobenius, we see that a vector bundle on X is given by a finite locally free P

1
S-module with

an isomorphism after pullback to {∞}, respectively {0}, with Frobenius twist (see [TT16, Corollary 6.5]).
A vector bundle of rank n on P

1
S is given by a pair (V ,W ) of vector bundles of rank n on A

1
S such that

V|D(0) �W|D(∞). Let (V ,W ) be such a pair. Further assume that we have an isomorphism W
(1)
|{∞}→ V|{0}; this

defines a vector bundle on XS . The Gm,Fp-equivariance induces gradings on V and W (this is for example
explained in [Sta24, 03LE]). Since Gm,Fp acts on the affine line around {0} by multiplying in degree 1 and
on the affine line around {∞} by multiplying in degree −1, we see that by definition of the grading, the
corresponding endomorphisms of V and W seen as k-vector spaces are morphisms of graded vector spaces
in degree 1 and −1, respectively. This construction gives an ascending chain

· · · −→ Vi−1 −→ Vi −→ Vi+1 −→ ·· ·

and a descending chain

· · · −→W i+1 −→W i −→W i−1 −→ ·· · .

The pullback to {0} gives the direct sum of graded pieces, and considering the Frobenius twist, we see
that this isomorphism is the same as the datum of a family of isomorphisms ϕ : (griW )(1)→ griV for each i.
Moreover, since the pullback to {0} also has to be a vector bundle, we see that each graded piece has to
be finite locally free (since the direct sum of all has to be finite locally free of rank n). This in particular
shows that the filtrations stabilize; i.e. there are only finitely many non-zero graded pieces. The pullbacks of
these filtrations to D(0) and D(∞), respectively, give the underlying modules of the filtrations, which have to
be isomorphic; i.e. V• and W • define, respectively, an ascending and a descending filtration on the same
module.

Putting all these data together, we see that the category of vector bundles on XS of rank n is equivalent to
the category of F-zips over S of rank n. □

Remark A.3. Theorem A.2 shows. in particular, that the functor

VB(X) : S 7−→ VB(XS )

is a sheaf for the fppf topology and even an Artin stack.
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Corollary A.4. There is an equivalence of Artin stacks

VB(X) ≃ clF-Zipk .

Further, for any scheme S , we have a monoidal equivalence of symmetric monoidal categories VB(XS ) ≃ clF-Zipk(S).

Proof. This is clear from Theorem A.2. Note that the proof of Theorem A.2 shows that this equivalence
respects the symmetric monoidal structures. □

Corollary A.5. Let G be a linear algebraic group over k such that its identity component is reductive. We have an
isomorphism of Artin stacks

G-Tors(X) � G-zipk .

Proof. Using Theorem A.2, we deduce from [PWZ15, Theorem 7.13] that it is enough to show that G-Tors(X)
is equivalent to the stack of fiber functors from the symmetric monoidal category of G representations to the
symmetric monoidal category VB(X), which we denote by Hom⊗(Rep(G),VB(X)).(35)

Let S be a k-scheme and X•S denote the Čech nerve of XS (which by construction is termwise given by a
scheme). Since BG is a sheaf for the fppf topology, we get by definition G-Tors(XS ) = HomP ((Sch/k))(XS ,BG) =
limn∈NHomP ((Sch/k))(X

n
S ,BG). By Tannaka duality (see [Zie15, Theorem 2.3]), we have

lim
n∈N

HomP ((Sch/k))(X
n
S ,BG) = lim

n∈N
Hom⊗

(
Rep(G),VB

(
XnS

))
.

Here we embed the categories involved, which are (2,1)-categories, naturally into the world of ∞-categories
(for example via the Duskin nerve, which is explained in [Lur24, 009P]); then the limit above is the usual
limit in the ∞-categorical sense. Since the pre-stack of fiber functors Hom⊗(Rep(G),VB(X)) satisfies fpqc
decent (see [SR72, Section III.3.2.1.2]; in fact, one uses this reference together with [Zie15, Theorem 2.1] to
see that the stack of fiber functors defines a gerbe, which is needed in [Zie15, Theorem 2.3]), we have

lim
n∈N

Hom⊗(Rep(G),VB(XnS )) = Hom⊗(Rep(G),VB(XS )),

concluding the proof. □
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