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On the finite generation of valuation semigroups on toric
surfaces
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Abstract. We provide a combinatorial criterion for the finite generation of a valuation semigroup
associated with an ample divisor on a smooth toric surface and a non-toric valuation of maximal
rank. As an application, we construct a lattice polytope such that none of the valuation semigroups
of the associated polarized toric variety coming from one-parameter subgroups and centered at a
non-toric point are finitely generated.
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1. Introduction

Finite generation of semigroups or rings arising from geometric situations has been a question of interest
for a long time. As a salient example, we can recall the finite generation of canonical or adjoint rings from
birational geometry, which motivated the field through the minimal model program for several decades;
cf. [BCHM10]. The question of finite generation of valuation semigroups arising from Newton–Okounkov
theory appears to be equally difficult in general, with little progress beyond the completely toric situation, but
potentially great benefits such as the existence of toric degenerations, cf. [And13], and completely integrable
systems, cf. [HK15], to name but a few. In this article, we take a few steps away from the situation where
every participant is toric: we consider valuation semigroups associated with torus-invariant divisors on toric
surfaces with respect to a non-toric valuation.

The main idea behind Newton–Okounkov theory is to attach combinatorial/convex-geometric objects to
geometric situations to facilitate their analysis, in other words, to partially replicate the setup of toric geometry
in settings without any useful group action. The basis for the theory was developed by Kaveh–Khovanskii
[KK12] and Lazarsfeld–Mustaţă [LM09], building on earlier work of Okounkov [Oko96], but the subject has
seen substantial growth in the last decade. By now applications of Newton–Okounkov theory range from
combinatorics and representation theory through birational geometry, cf. [KL17a, KL17b, KL19, KL18a], to
mirror symmetry, cf. [RW19], and geometric quantization in mathematical physics.

Given a projective variety X and a divisor D on X, Newton–Okounkov theory associates to (X,D)
a semigroup SY•(D), the valuation semigroup, and a convex body ∆Y•(D), the Newton–Okounkov body
of D . Both the valuation semigroup and the Newton–Okounkov body depend, however, on a maximal rank
valuation of the function field of X coming from an admissible flag Y• of subvarieties.

The Newton–Okounkov body ∆Y•(D) is an asymptotic version of SY•(D) and is, accordingly, a lot easier
to determine. Newton–Okounkov bodies on surfaces end up being almost rational polygons; cf. [KLM12]. If
the section ring of D is finitely generated, then a suitably general flag valuation will yield a rational simplex
as its Newton–Okounkov body; cf. [AKL14]. In the case of a toric variety X with torus-invariant D and Y•,
the associated Newton–Okounkov body recovers the moment polytope of the polarized toric variety.

In this paper, we will focus on the valuation semigroup SY•(D), more concretely, on the question of
whether or not it is finitely generated. It is a classical fact that SY•(D) is often not finitely generated even
if X is a smooth projective curve.
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It is known that SY•(D) is a finitely generated semigroup if X is a toric variety, D a torus-invariant divisor,
and Y• an admissible flag of torus-invariant subvarieties. We consider the next open question, namely,
the case of toric surfaces and non-torus-invariant flag valuations. Although the divisorial geometry of
toric surfaces themselves is not particularly complicated, things get out of control once we start blowing
up non-toric points. Blowing up just one point on a toric surface can lead to surfaces with infinitely
many negative curves on them, as recent research of Castravet–Laface–Tevelev–Ugaglia [CLTU23] illustrates.
Blowing up many general points quickly leads to notoriously difficult situations like Nagata’s conjecture.

1.1. Newton–Okounkov bodies

Assume that X = TV (Σ) is a smooth projective toric variety of dimension n. Then ample torus-invariant
divisors D or their associated line bundles OX(D) can be understood as lattice polytopes ∆(D) in the
character lattice M � Z

n of the torus T acting on X. Using this description, the starting fan Σ can be
recovered as the normal fan of these polytopes.

Moreover, it is a well-known feature of the toric theory that the vector space Γ (X,OX(D)) has the set of
lattice points ∆(D)∩M as its distinguished basis. That is, the polytope ∆(D) gives Γ (X,OX(D)) not just a
dimension but also a shape.

In [LM09] and [KK12], this concept was generalized to arbitrary projective varieties X (still of dimension n).
If we are given a so-called admissible flag

Y• : X = Y0 ⊇ Y1 ⊇ . . . ⊇ Yn

of nested (irreducible) varieties with dimYi = n− i that are smooth in the special point Yn, then for every
ample divisor D, there is an associated convex body ∆Y•(D) (“Newton–Okounkov body”) in R

n reflecting
many properties of D ; see Section 2.1 for details.

Note that Zn has ceased to be a character lattice because there is no longer a torus around. While the
Newton–Okounkov body ∆Y•(D) depends not on D but only on its numerical class, the dependence on the
chosen flag is striking.

If, for instance, X is toric as at the very beginning, then the construction of ∆Y•(D) recovers the
correspondence between divisors and polytopes we mentioned above. But to make this true requires a toric
flag ; i.e., all subvarieties Yi are supposed to be orbit closures.

The fact that toric varieties with toric flags lead to well-known polytopes is not a one-way street. In fact, if,
for a general variety X, the semigroups SY•(D) are finitely generated, then they provide a toric degeneration
of X. This was shown in [And13]. Observe that in general the semigroup SY•(D) being finitely generated is
much stronger than ∆Y•(D) being polyhedral. This finite generation of the valuation semigroup SY•(D) is
the main point of this paper.

1.2. Results

In [IM19] the finite generation was shown for complexity one T-varieties with toric flags. Note that this
implies the toric case. Whenever one is only interested in the Newton–Okounkov body (instead of the
semigroup), there are more results: The most general one solves the question for surfaces using Zariski
decomposition; cf. [LM09, Theorem 6.4]. In particular, the Newton–Okounkov bodies are polyhedral in this
case. Specializing this situation, [HKW20] has provided an explicit combinatorial description of ∆Y•(D) for
toric surfaces with certain non-toric flags.

In the present paper, partially inspired by [AP20], we consider the very same setup of toric surfaces,
namely with the following admissible flag:

Y• : X = Y0 ⊇ Y1 ⊇ Y2,



4 K. Altmann, C. Haase, A. Küronya, K. Schaller, L. Walter4 K. Altmann, C. Haase, A. Küronya, K. Schaller, L. Walter

where Y1 is the closure of a one-parameter subgroup of the torus, which is non-torus-invariant and Y2 is a
general smooth point. Then we prove that, in dependence on Y1, the semigroups SY•(D) can be both finitely
generated and not finitely generated.

The main result of the paper (Theorem 6.8) comes from understanding the relationship between the
Newton–Okounkov body of D and the Newton polygon associated with the non-toric flag curve Y1. The
significance of our contribution lies in the fact that we infer the finite generation of valuation semigroups
from asymptotic/convex-geometric data and provide a combinatorial criterion.

In order to state our Theorem, we introduce a bit of terminology. For our flag Y•, we consider a
non-torus-invariant curve Y1 given as the closure of the one-parameter subgroup determined by a primitive
vector vN ∈ N ; our flag point is going to be 0⊗

Z
1 on the torus T � N⊗

Z
C
×. For a strongly convex

cone σ ⊆ N
R

and a lattice point u ∈ int(σ )∩N , we say that u is strongly decomposable in σ if u = u′+u′′

for suitable u′ ,u′′ ∈ int(σ )∩N . Given a divisor D on X, we construct strongly convex cones σ+ and σ−

associated with vN that are spanned by certain rays of the fan of X (see Definition 6.7). With this said, our
main result goes as follows.

Theorem (Theorem 6.8). Let X be a smooth toric surface associated with a fan Σ and D an ample divisor on X.
The valuation semigroup SY•(D) is finitely generated if and only if vN is not strongly decomposable in σ+ and
−vN is not strongly decomposable in σ−.

To illustrate the combinatorial content, Figure 1 pictures the situation in the case of the 7-gon of [CLTU23],
where the blow-up surface X = TV (Σ) accomodates infinitely many negative curves (cf. Figure 10 for a
complete picture).

∆(D)

∆(D)vN
×

(A)

vN

−vN

Σ

σ−

σ+

(B)

Figure 1. The good 7-gon ∆(D). (A) The polytope ∆(D) and the rational line segment ∆(D)vN . (B)
The normal fan Σ of ∆(D) together with the two cones σ+ ∋ vN and σ− ∋ −vN .

As an application of the above theory, we construct in Example 6.11 a lattice polygon with a strong
non-finite-generation property. To be more concrete, we look at the ample divisor D associated with the
polytope ∆(D) given in Figure 11A on the toric variety X = TV (Σ) corresponding to the fan Σ in Figure 11B.
Example 6.11 shows that the semigroup SY•(D) will not be finitely generated for any vN ∈N we pick.

2. Notation and preliminaries

Let X be a two-dimensional smooth projective variety, and assume that we are given an admissible flag

Y• : X = Y0 ⊇ Y1 ⊇ Y2,

as in Section 1.1, and an ample divisor D on X.
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2.1. Newton–Okounkov bodies and valuation semigroups

Following [LM09], we obtain a rank two valuation-like function (or, equivalently, a rank two valuation of
the function field of X, see [KMR21])

valY• : Γ (X,OX(D)) \ {0}−!Z
2

as follows: Let f be an equation for Y1 near Y2. For a non-trivial section s ∈ Γ (X,L) of a line bundle L, e.g.,
L = OX(D), we define

valY•(s) = (val1(s),val2(s)) :=
(
ordY1

(s),ordY2

(̃
s|Y1

))
,

where s̃ := s/f val1(s) is a section of L⊗OX(−val1(s) ·Y1).
The valuation semigroup SY•(D) of D (with respect to the flag Y•) is defined as

SY•(D) := {(ℓ,valY•(s)) |s ∈ Γ (X,OX(ℓD)) \ {0}, ℓ ∈N} ⊆N
3.

The Newton–Okounkov body of D (with respect to the flag Y•) is defined as the set

∆Y•(D) :=
⋃
ℓ≥1

1
ℓ

{
valY•(s) |s ∈ Γ (X,OX(ℓD)) \ {0}, ℓ ∈N

}
⊆R

2.

For Newton–Okounkov theory on surfaces, see [KL18b].

2.2. Toric setup

Let N �Z
2 be a two-dimensional lattice with dual lattice M and Σ a smooth complete fan associated

with the toric surface X = TV (Σ). We may assume that our ample divisor D is toric, hence is represented
by a polytope ∆(D). Recall that T = Spec(C[M]) is our torus acting on X; hence M becomes its character
lattice and N the associated lattice of one-parameter subgroups.

Next, fix an admissible flag Y• : X ⊇ Y1 ⊇ Y2 as follows: Choose a primitive element vN ∈ N . The
embedding

ι : N :=ZvN ↪−!N

induces a map of fans, hence a toric map ι : P1 ! X = TV (Σ). Set Y1 := ι(P1) and Y2 := ι(1 ∈ P1).
Within the torus T , the curve C := Y1 is given by the binomial equation f := xvM − 1 with vM ∈M being

one of the two primitive elements of v⊥N ⊂M
R

. The associated Newton polytope ∆newt := newt(f ) is the
line segment [0,vM ] connecting 0 and vM in M

R
. This way ι : P1 ! C is the normalization map.

For a toric line bundle L on X, the pullback ι∗ : Γ (X,L)! Γ (P1, ι∗L) corresponds to the projection

π : M −!M/ZvM =:M,

which we will identify with vN : M !Z �M .
Observe that this almost fits the setup of [IM19] as Y1 is invariant under the codimension one torus given

by vN . We only deviate from [IM19] by choosing a non-invariant flag point Y2.

2.3. Torifying the curve

Note that C is also a prime (Cartier) divisor on X, which properly intersects all torus-invariant curves, i.e.,
all boundary curves of X. Therefore, C is nef and C′ := C −div(f ) is its T-invariant representative.

Lemma 2.1. The polygon ∆nef := ∆(C′) is given by

∆nef =
{
m ∈M

R
| ⟨m,ρ⟩ ≥min{0,⟨vM ,ρ⟩} for all ρ ∈ Σ(1)

}
,

where the rays ρ ∈ Σ(1) are identified with their first (hence primitive) lattice points.
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Proof. The prime divisor Dρ = orb(ρ) associated with a ray ρ ∈ Σ(1) appears in the torus-invariant Weil
divisor C′ as often as it does in the (non-equivariant) principal divisor −div(f ). Thus,

∆nef =
{
m ∈M

R
| ⟨m,ρ⟩ ≥ ordρ(f ) for all ρ ∈ Σ(1)

}
,

and it remains to discuss ordρ(f ). If ρ , ±vN , then the ρ-orders of the two summands of f = xvM − 1 are
different, hence

ordρ(f ) = min{ordρ(1),ordρ(xvM )} =min{0,⟨vM ,ρ⟩}.
If ρ = ±vN , then the situation looks locally like ordy(x − 1) = 0 in A

2. □

See [HKW20, Proposition 3.1] for a different proof.

Example 2.2. Let X = TV (Σ) be the toric surface associated with the fan Σ, where Σ(1) = {ρi |0 ≤ i ≤ 3}
with

ρ0 = (−1,0), ρ1 = (0,−1), ρ2 = (1,2), and ρ3 = (0,1).

As in Lemma 2.1, we identify the rays ρi with their generating lattice points (cf. Figure 2A). We denote by
D i := orb(ρi) (0 ≤ i ≤ 3) the toric prime divisors on X. Then, D := 8D2 +3D3 is an ample divisor on X,
which corresponds to the polytope

∆(D) = conv([0,0], [−8,0], [−2,−3], [0,−3]).

We take C = {(t−2, t3) | t ∈ C} as our curve for the non-toric flag. This means that vN = (−2,3) ∈ N and
vM = [−3,−2] ∈M, hence

∆newt = conv([0,0], [−3,−2]).
Since the boundary part of div(f ) equals −7D2 − 2D3, we obtain C′ = 7D2 + 2D3 with nef polytope (cf.
Figure 2B)

∆nef = conv([0,0], [−7,0], [−3,−2], [0,−2]).

2.4. An alternative view on ∆nef

Beside the explicit description of Lemma 2.1, it is possible to describe the shape of ∆nef in the following
more combinatorial way. The relation vM ∈ v⊥N among our curve parameters means

⟨0,vN ⟩ = ⟨vM ,vN ⟩ = 0;

i.e., ∆newt = conv(0,vM ) is contained in the level set [vN = 0].

ρ0

ρ3

ρ2

ρ1

vN

Σ

(A)

∆(D)

∆newt

∆nef

(B)

Figure 2. Input data. (A) The fan Σ together with its set of rays {ρi |0 ≤ i ≤ 3} and a primitive
element vN = (−2,3) ∈N . (B) The polytope ∆(D) corresponding to the ample divisor D = 8D2+3D3
on X = TV (Σ), the Newton polytope ∆newt given by vM = [−3,−2] ∈M, and the polytope ∆nef

corresponding to C′ .



Finite generation of toric valuation semigroups 7Finite generation of toric valuation semigroups 7

We denote by rmax,rmin ∈ M the vertices of ∆(D), where ⟨∆(D),vN ⟩ admits its extremal values (cf.
Figure 3A). Moreover, we define σmax,σmin to be the two-dimensional cones generated by the two edges of
∆(D) that contain the vertices rmax and rmin, respectively.

We take the line segment ∆newt and fit it inside the cone σmax until it hits both rays of this cone. In
this way, we construct a lattice triangle ∆max with base ∆newt and top vertex rmax. We construct ∆min (cf.
Figure 3A) in a similar way. In other words, the cones σmax and σmin are cut off along vN -constant lines
producing edges of ∆max and ∆min, respectively, of lattice length one. Note that both cut lines are parallel
translates. Gluing ∆max and ∆min along ∆newt (cf. Figure 3B) yields

∆nef = ∆max ∪∆newt ∆min.

Note that ∆nef ⊇ ∆newt is the smallest polytope containing ∆newt and having Σ as a refinement of its
normal fan. Actually, either ∆nef is a quadrangle with ∆newt serving as one of its diagonals, or it is a triangle
with ∆newt as a side.

∆(D)

∆newt∆max

∆min

σmin
σmax

rmax

rmin

(A)

∆newt

∆nef ∆max

∆min

(B)

Figure 3. Alternative view on ∆nef. (A) The two cones σmax, σmin and polytopes ∆max, ∆min
constructed as in Section 2.4 with vM = [−3,−2] ∈M . (B) Gluing ∆max and ∆min along ∆newt yields
∆nef.

3. Valuation semigroups associated with non-toric flags

In this section, we determine the valuation semigroup SY•(D) associated with an ample (Cartier) divisor
D and a non-toric flag Y• as a subset of N3. The main result is Theorem 3.11, where the abstract semigroup
SY•(D) is described in terms of lattice points coming from a polyhedral construction in M .

Let us fix ℓ ≥ 1 and k ≥ 0. The space of sections s ∈ Γ (X, OX(ℓD)) which have vanishing order at least k
along C is the image of

Γ (X, OX(ℓD − kC))
f k ·
−! Γ (X, OX(ℓD)) , s̃ 7−! s.

We set L(ℓ,k) := OX(ℓD − kC) and L(ℓ,k) := Γ
(
X, L(ℓ,k)

)
. If we have ordC(s) = k, then ordY2

(̃s|C) =
ord1∈P1(ι∗(̃s)) using the pullback via ι : P1 ! X.

3.1. Return to toric geometry

Our goal is to understand the restriction of global sections via toric geometry. Therefore, we implement
two changes. First, we will shift the linear series of the flag curve, which enables us to replace some of the
line bundles we study with torus-invariant ones. Second, we will normalize the restriction.

We are going to use C′ = C −div(f ) from Section 2.3. In terms of the associated sheaves, this means

OX(C
′) = f · OX(C),

where f is the equation xvM − 1 of C mentioned earlier. This leads to the possibility of replacing L(ℓ,k) by
the isomorphic, but torus-invariant, line bundle

L′(ℓ,k) := OX(ℓD − kC′) = f −k · L(ℓ,k) ⊆C(X).
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Accordingly, we set
L′(ℓ,k) := Γ

(
X, L′(ℓ,k)

)
and replace s̃ ∈ L(ℓ,k) with s′ := f −k · s̃ ∈ L′(ℓ,k).

Recall that the nef invertible sheaves OX(ℓD) and OX(kC′) correspond to the polytopes ℓ∆(D) and k∆nef,
respectively. This implies that L′(ℓ,k) has a monomial base provided by

Θ(ℓ,k) := (ℓ∆(D) : k∆nef) := {m ∈M
R
|m+ k∆nef ⊆ ℓ∆(D)}

= (ℓ∆(D) : k∆newt) := {m ∈M
R
|m+ k∆newt ⊆ ℓ∆(D)};

see, e.g., the (i = 0)-case of [AP20, Theorem 2].

Remark 3.1. In toric geometry, there is a well-known way to associate to every divisor D a polytope PD
reflecting the global sections of OX(D). If (and only if) D is nef, this mapping D 7! PD allows one to recover
D, i.e., creates a one-to-one correspondence. Therefore, we introduce another polyhedral gadget ∆(D)
providing a complete characterization for more general divisors. If D is nef, then ∆(D) = PD coincides
with the former construction. However, for general divisors D = A−B (A,B nef), ∆(D) becomes a virtual
polytope, i.e., a formal difference of two true polyhedra that is Minkowski-additive in its arguments. More
concretely, we have ∆(A−B) = PA − PB. The global section polytope PD for arbitrary divisors D = A−B can
be recovered as PD = (∆(A) : ∆(B)). If D was nef, then we could choose B as the zero divisor, i.e., D = A,
and obtain again PA = ∆(A).

Example 3.2. Continuing Example 2.2, we obtain

Θ(ℓ,k) =
(
ℓ∆(D) : k∆nef

)
= {m ∈M

R
| ⟨m, (−1,0)⟩ ≥ 0,⟨m, (0,−1)⟩ ≥ 0,

⟨m, (1,2)⟩ ≥ 7k − 8ℓ,⟨m, (0,1)⟩ ≥ 2k − 3ℓ}.

In particular, Θ(1,1) = conv([0,0], [−1,0], [0,−1/2]) (cf. the yellow polytope in Figure 4). The projection
looks like π : M !!M =M/ZvM . This map (cf. Figure 4) can be identified with vN : M !Z, that is,

π : [x,y] 7−! −2x+3y.

M

M

π

×

0

Figure 4. Projection map. π : M !!M =M/Z [−3,−2], [x,y] 7! −2x+3y.
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3.2. An alternative view on Θ(ℓ,k)

In general, Σ is not the normal fan of Θ(ℓ,k) as it was of ∆(D). Geometrically, this means that Θ(ℓ,k)
does, in general, not encode a nef Cartier divisor on X. While Θ(ℓ,k) is defined as some kind of a difference
of polytopes, it is in general not true that the inclusions

Θ(ℓ,k) + k∆nef ⊆ ℓ∆(D) and Θ(ℓ,k) + k∆newt ⊆ ℓ∆(D)

become equalities (cf. Example 3.4). We present a suggestion on how to overcome this.
Recall from Section 2.4 that we had denoted by rmax,rmin ∈M the vertices of ∆(D) where ⟨∆(D),vN ⟩

attains its extremal values. Similarly, we denote by rmax
′(ℓ,k),rmin

′(ℓ,k) ∈M
R

the vN -extremal vertices of
Θ(ℓ,k). The latter lead to the line segments rmax

′(ℓ,k) + k∆newt and rmin
′(ℓ,k) + k∆newt, which cut the

polytope ℓ∆(D) into three subpolytopes which we call □max(ℓ,k), ∆(D)C(ℓ,k), and □min(ℓ,k).
More concretely, here is how we obtain □max(ℓ,k) and □min(ℓ,k): We take the line segment k∆newt and

fit it inside the polytope ℓ∆(D) until it hits the boundary twice. This way, we construct the lattice polygon
(not necessarily a triangle) □max(ℓ,k) such that k∆newt is one of its edges and rmax(ℓ,k) is one of its vertices.
In a similar way, we construct □min(ℓ,k) using rmin(ℓ,k).

As ℓ∆(D) before, the polytope ∆(D)C(ℓ,k) just defined still fulfills the equality

Θ(ℓ,k) =
(
ℓ∆(D)C(ℓ,k) : k∆newt

)
;

however, now we also have the equality

Θ(ℓ,k) + k∆newt = ℓ∆(D)C(ℓ,k).

Remark 3.3. After this point, we will use the shorter notation rmax
′ = rmax

′(ℓ,k), rmin
′ = rmin

′(ℓ,k),
□max = □max(ℓ,k), ∆(D)C = ∆(D)C(ℓ,k), □min = □min(ℓ,k). Nevertheless, one should keep in mind that all
of these quantities depend on ℓ, k.

∆(D)
∆newt

∆nef Θ(`, k)

Θ(`, k) + ∆nef

×

×

(A)

�max

�min

r′max
r′min

∆(D)C

×

×

(B)

Figure 5. Alternative view on Θ(ℓ,k). (A) The Minkowski sum Θ(ℓ,k)+k∆nef and Θ(ℓ,k)+k∆newt.
(B) The cut of ∆(D) along rmax

′ +k∆newt and rmin
′ +k∆newt into □max, □min, and ∆(D)C with

∆(D)C =Θ(ℓ,k) + k∆newt.

Example 3.4. Continuing Example 3.2, Figure 5A shows that the inclusions

Θ(ℓ,k) + k∆nef = conv([0,0], [−8,0], [−3,−5/2], [0,−5/2]) ⊊ ∆(D)

and
Θ(ℓ,k) + k∆newt = conv([0,0], [−1,0], [−4,−2], [−3,−5/2], [0,−1/2]) ⊊ ∆(D)

are strict in general for (ℓ,k) = (1,1). We cut the polytope ∆(D) along the line segments rmax
′+k∆newt

and rmin
′+k∆newt into the subpolytopes □max = conv([−1,0], [−8,0], [−4,−2]), ∆(D)C =Θ(ℓ,k) + k∆newt,

and □min = conv([0,−1/2], [0,−3], [−2,−3], [−3,−5/2]), where rmax
′ = [−1,0] and rmin

′ = [0,−1/2] (cf.
Figure 5B).
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3.3. Projections of polytopes

We start by pulling back the sheaf L′(ℓ,k). To this end, we define

d(ℓ,k) := ℓ ·widthvN (∆(D))− k ·widthvN
(
∆nef

)
,

where widthvN (·) denotes the lattice width of a polytope with respect to the linear functional vN ∈N ; i.e., if
∆ ⊆M

R
is a polytope, then widthvN (∆) := maxm,m′∈∆ |⟨m,vN ⟩ − ⟨m′ ,vN ⟩|. Note that this equals the length

of the line segment ∆ := π(∆); i.e.,

d(ℓ,k) = ℓ · length
(
∆(D)

)
− k · length

(
∆nef

)
.

Proposition 3.5. The pullback ι∗L′(ℓ,k) is a line bundle on P
1 of degree d(ℓ,k).

Proof. We obtain

ι∗L′(ℓ,k) = ι∗OX (ℓD − kC′) = ι∗OX

(
ℓ∆(D)− k∆nef

)
= O

P
1 (ℓ · (D.C′)− k · (C′ .C′))

= O
P

1

(
ℓ ·widthvN (∆(D))− k ·widthvN

(
∆nef

))
. □

Remark 3.6. Altogether, this yields the sequence of inclusions

π(Θ(ℓ,k)∩M) ⊆Θ(ℓ,k) =
(
ℓ∆(D) : k∆nef

)
⊆
(
ℓ∆(D) : k∆nef

)
=: Ξ(ℓ,k),

which might be strict, where ∆ = π(∆) is the projection of any polytope ∆ ⊆M along vM .

Example 3.7. Continuing Example 3.4, let us fix (ℓ,k) = (1,1). Then the projected polytopes along π are

∆(D) = conv([−9], [16]), ∆nef = conv([−6], [14]),

Θ(ℓ,k) = conv([−3/2], [2]), and Ξ(ℓ,k) = conv([−3], [2]),

where d(ℓ,k) = 25− 20 = 5 (cf. Figure 6).

M
π(vM)∆(D) ∆nef

Ξ(`, k) Θ(`, k)

Figure 6. Projected polytopes.

Recall that the (torus-equivariant) global sections of L′(ℓ,k) are encoded by the elements of Θ(ℓ,k)∩M .
Under this identification, their pullbacks via ι∗ are given by their images under π. Denote their number by

e(ℓ,k) := #π(Θ(ℓ,k)∩M).

Summarizing what we have done so far, we obtain the following.

Proposition 3.8. The pullback ι∗L′(ℓ,k) = O
P

1(Ξ(ℓ,k)) is a line bundle on P
1 of degree d(ℓ,k). Its global

sections correspond to the elements of Ξ(ℓ,k)∩M . Under this identification, the subspace ι∗L′(ℓ,k) coincides with
π(Θ(ℓ,k)∩M). In particular,

dim(ι∗L′(ℓ,k)) = e(ℓ,k).

Proof. Proposition 3.5 yields the degree d(ℓ,k) of the pullback of L′(ℓ,k). It remains to show that this sheaf
is precisely given via Ξ(ℓ,k) as O

P
1(Ξ(ℓ,k)), which is slightly finer information. The statement holds since if

∆ ⊆M
R

is a nef polytope (e.g., ℓ∆(D) or k∆nef), then

ι∗OX(∆) = OP
1(π(∆)) = O

P
1

(
∆
)
.
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This claim is valid for any toric map and does not depend on having P
1 as a target. □

Example 3.9. Continuing Example 3.7, we obtain Θ(ℓ,k)∩M = {[0,0], [−1,0]} and therefore π(Θ(ℓ,k)∩M) =
{0,2}; i.e., e(ℓ,k) = 2 for (ℓ,k) = (1,1).

3.4. Shape of the semigroup

As we did before, let us fix a pair (ℓ,k). We know from Section 2.1 that we are supposed to collect the
values ordY2

(̃s|C) for all possible sections s̃, where Y2 = {1} is a smooth point on C. In Section 3.1, we have
transferred this setup to ord1∈P1(ι∗s′), where s′ runs through all global sections represented by the polytope
Θ(ℓ,k) ⊆M

R
.

Proposition 3.8 implies that the pullbacks ι∗s′ run through all e(ℓ,k) elements of π(Θ(ℓ,k)∩M) ⊆M �Z.
Each element of Z represents a rational monomial function on P

1. We are supposed to find the orders of
vanishing at 1 ∈ P1 of all of their linear combinations.

Lemma 3.10. Let Z ⊂Z be a finite subset with e elements leading to the e-dimensional vector space

C[Z] := {f ∈C[t, t−1] | supp(f ) ⊆ Z}.

Then ord1C[Z] = {0,1, . . . , e − 1} = ordcC[Z] for all c ∈C∗ ⊆ P
1.

Proof. Set Z = {p1, . . . ,pe}. For an element f ∈ C[Z] with f = λ1 · tp1 + . . .+λe · tpe and d ∈N, the rows of
the matrix P given as

1 1 . . . 1
p1 p2 . . . pe

p1(p1 − 1) p2(p2 − 1) . . . pe(pe − 1)
p1(p1 − 1)(p1 − 2) p2(p2 − 1)(p2 − 2) . . . pe(pe − 1)(pe − 2)

...
...

. . .
...

p1 · . . . · (p1 − (d − 1)) p2 · . . . · (p2 − (d − 1)) . . . pe · . . . · (pe − (d − 1))


encode f (1) = λ1 ·1+ . . .+λe ·1, f ′(1) = λ1 ·p1 ·1+ . . .+λe ·pe ·1, f ′′(1), . . . , f (d)(1). Let p be an arbitrary
variable. Then the linear spaces

L1(p) := span
Q

{
1,p,p2, . . . ,pd

}
⊆Q[p]

and
L2(p) := span

Q

{
0!
(p
0
)
,1!

(p
1
)
,2!

(p
2
)
, . . . ,d!

(p
d

)}
⊆Q[p]

coincide because L1(p) ⊇ L2(p) and dim(L1(p)) = dim(L2(p)). In particular, there exists an invertible lower
triangular matrix F such that P = F ·V , where V := (pij )0≤i≤d,1≤j≤e is the transposed Vandermonde matrix.
If we choose d = e − 1, the matrices V and thus P are invertible. Hence the system of linear equations

P · (λ1, . . . ,λe)
T = 0,

which is equivalent to the system f (1) = f ′(1) = f ′′(1) = . . . = f (e−1)(1) = 0, has the unique solution f = 0,
so ord1(f ) ≥ e is impossible.

On the other hand, replacing the equation f (k)(1) = 0 by f (k)(1) = 1 (0 ≤ k ≤ e − 1) yields an f with
ord1(f ) = k. □

As a direct consequence, we obtain the following statement.

Theorem 3.11. The valuation semigroup is given as

SY•(D) =
{
(ℓ,k,δ) ∈N3 |0 ≤ δ ≤ e(ℓ,k)− 1

}
,

and e(ℓ,k) = 0 for large k≫ ℓ.
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Proof. The definition of the valuation semigroup can be reformulated as

SY•(D) = {(ℓ,k,δ) ∈N3 |s′ ∈ Γ (X,L′(ℓ,k)) \ {0},ord1∈P1(ι∗s′) = δ}.

Then everything follows from Proposition 3.8. □

4. Shape of the Newton–Okounkov body

Building on Section 3, we determine the Newton–Okounkov body ∆Y•(D) in Theorem 4.3. Consider the
assignment

d(ℓ,k) := widthvN (Θ(ℓ,k)) = length(π(Θ(ℓ,k))) = length(Θ(ℓ,k)) ∈Q⊔ {−∞} .

We extend this definition to all ℓ,k ∈R≥0 using the convention widthvN (∅) = −∞. This becomes necessary
when k ·∆nef does not fit inside ℓ ·∆(D), which will happen for k≫ ℓ.

This should not be confused with d(ℓ,k), which was defined on page 10 as

d(ℓ,k) = ℓ ·widthvN (∆(D))− k ·widthvN (∆
nef).

The chain of inclusions at the end of Section 3.3 gives rise to the inequalities

e(ℓ,k)− 1 ≤ d(ℓ,k) ≤ d(ℓ,k).

Example 4.1. Continuing Example 3.9, i.e., (ℓ,k) = (1,1), d(ℓ,k) = 5, and e(ℓ,k) = 2, we obtain d(ℓ,k) = 7/2
satisfying the inequalities 1 ≤ 7/2 ≤ 5.

Moreover, we observe the following.

Lemma 4.2. For q ∈R≥0, the assignment d(q) := d(ℓ,ℓq)/ℓ does not depend on ℓ. In particular, d(q) = d(1,q).

Proof. The width function is linear in its polyhedral argument. □

Note that the same statement holds true for d(ℓ,k) but not for e(ℓ,k).

From now on, we return to (ℓ,k) ∈N2.

Theorem 4.3. The Newton–Okounkov body ∆Y•(D) coincides with the convex hull of the set

{[q, t] ∈ (R≥0)2 |0 ≤ t ≤ d(q)} =
⋃

q∈R≥0,d(q)≥0
conv([q,0], [q,d(q)]).

Moreover, d(q) is a decreasing piecewise linear function with d(q) = −∞ for q≫ 0.

Proof. Let ϵ > 0 and denote by A,B the vertices of π(Θ(ℓ,k)) =Θ(ℓ,k). First assume that the dimension of
Θ(ℓ,k) equals two. Then the two fibers

π−1(T )∩Θ(ℓ,k)

with T = A+ϵ or B−ϵ have positive lengths greater than (or equal to) some µ > 0. In particular, all fibers in
between do so as well. Hence, setting λ = 1/µ, the fibers

π−1(T ′)∩λΘ(ℓ,k)

have at least length one for λ(A+ ϵ) ≤ T ′ ≤ λ(B− ϵ). If in addition T ′ ∈M, then all of these fibers have to
contain lattice points in M . Thus, we obtain

conv(λ(A+ ϵ),λ(B− ϵ)) ⊆ π(λΘ(ℓ,k)∩M).

Keeping q = k/ℓ constant and using Lemma 4.2, we see that e(ℓ,k) behaves like d(ℓ,k) asymptotically
with respect to dilations. The result then follows by recalling the fact that Newton–Okounkov bodies are
closed.
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It remains to consider the pathological case dim(Θ(1,q)) = 1. Here, we can approximate [q, t] by [q−ϵ, t]
so that the resulting Θ(1,q − ϵ) is full-dimensional and t ≤ d(q) ≤ d(q − ϵ). Then the previous argument
shows that [q − ϵ, t] ∈ ∆Y•(D). As Newton–Okounkov bodies are closed by definition, [q, t] ∈ ∆Y•(D). □

We remark that the case dim(Θ(1,q)) = 1 from the previous proof requires special vN and a unique
q0 = k/ℓ. This configuration is characterized by the fact that (a shift of) q0∆

newt connects two parallel edges
of ∆(D). Note that Θ(ℓ,k) is also parallel to these edges. In contrast to the general case, for k/ℓ = q0, the
number e(ℓ,k) behaves asymptotically like 1/g · d(ℓ,k), where

g := d(ℓ,k)/ lengthM(Θ(ℓ,k)).

Despite that e(ℓ,k) for k/ℓ = q0 does not approach d(ℓ,k) at all, this does not cause a problem: as we have
seen in the proof, for q ≤ q0, the general case applies, and for q > q0, we have d(q) = −∞ anyway.

Example 4.4. We continue Example 4.1 and apply Theorem 4.3. The Newton–Okounkov body ∆Y•(D)
(cf. Figure 7 and [HKW20]) is given as

∆Y•(D) = conv([0,0], [0,25], [8/7,0], [2/3,35/3]).

∆Y•(D)

Figure 7. Newton–Okounkov body ∆Y•(D) with flipped coordinates.

This example already gives an instance of a vertex that does not lift to the semigroup (cf. Definition 5.3)
when building the Newton–Okounkov body in question. Let us consider the vertex [23 ,

35
3 ] and fix ℓ = 3,

k = 2. The respective polyhedra 3∆(D), 2∆newt, 2∆nef, and Θ(ℓ,k) = (3∆(D) : 2∆nef) are pictured in
Figure 8. To hit the vertex [23 ,

35
3 ], the value of e(3,2) would have to coincide with d(3,2) = 35. However,

we only obtain e(3,2) = #
(
π(Θ(ℓ,k)∩M)

)
= 30. The red lines in Figure 8 indicate the gaps, i.e., the fibers

of π with no lattice points in Θ(ℓ,k). No matter how big of a multiple of (ℓ,k) we consider, the gaps will not
be closed in any scaled version of the situation. Hence, the vertex [23 ,

35
3 ] is never hit, and the associated

valuation semigroup SY•(D) is therefore not finitely generated.

3∆(D)
2∆newt

2∆nef

Θ(3, 2)

Figure 8. Combinatorial view on a non-finitely generated semigroup SY•(D). The polytopes
3∆(D), 2∆newt, 2∆nef, and Θ(3,2) = (3∆(D) : 2∆nef). The dashed red lines indicate the difference
between e(3,2)− 1 = 29 and d(3,2) = 35.
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5. Criterion for the finite generation of certain valuation semigroups

We provide a criterion for the finite generation of strictly positive (with respect to their height functions)
semigroups in terms of their limit polyhedra.

5.1. Semigroups with polyhedral limit

We start with a free abelian group M of rank n, i.e., M �Z
n, and a linear form h : M !!Z which we call

a height function. This induces h
R
: M

R
=M ⊗

Z
R!!R, which we will often denote by h as well.

Let S ⊆ h−1(N) be a semigroup that is strictly positive; i.e., S ∩ ker(h) = {0}. In order to refer to the
individual layers of a given height, we will write

Sk := S ∩ h−1(k); i.e., we have S =
⋃

k∈NSk with S0 = {0}.

This setup allows us to define the enveloping cone

CS := coneS ⊆M
R

as well as the convex limit figure
∆S := CS ∩ h−1R (1) ⊇ S1.

In the case of a valuation semigroup SY•(D), the height h : Z3 !!Z is the projection on ℓ, which then
leads to the Newton–Okounkov body ∆Y•(D) = CSY• (D) ∩ h−1R (1) ⊆ h−1

R
(1) �R

2.

Definition 5.1. We say that S has a polyhedral limit if ∆S is a polytope, i.e., if ∆S equals the convex hull of
its (finitely many) vertices.

This property is fulfilled whenever the semigroup S is finitely generated. In this case, ∆S even has
rational vertices; it is a rational polytope. However, the following standard example shows that the converse
implication does not hold in general.

Example 5.2. Let h : Z2 ! Z, [x,y] 7! x + y be the summation map. Then S := {0} ∪ (Z≥1 ×Z≥1) is not
finitely generated, but CS =R

2
≥0 and ∆S equals the line segment connecting the points [1,0] and [0,1].

5.2. Equivalent conditions for finite generation

We assume that S ⊆M is a strictly positive (with respect to h) semigroup that has polyhedral limit ∆S .

Definition 5.3. We say that a point p ∈ ∆S lifts to the semigroup S (i.e., is a valuation point) if there exists
some scalar c ∈R>0 with c · p ∈ S .

Note that in this case, both p and c have to be rational; i.e., p ∈ ∆S ∩MQ
and c ∈Q>0. Hence, it is not

a surprise that the assumption of the next lemma is automatically fulfilled if the semigroup S is finitely
generated.

Lemma 5.4. If all vertices of ∆S lift to S, then they are rational (i.e., ∆S is a rational polytope) and every
rational point p ∈ ∆S ∩MQ

lifts to S .

Proof. Let v1, . . . , vd ∈ ∆S be linearly independent (rational) vertices such that p is contained in their convex
hull. Then the unique coefficients λi in the representation p =

∑d
i=1λi v

i have to be rational, too. Thus, we
may choose an integer µ such that µ ·λi ∈N. On the other hand, there is a joint factor c ∈Z≥1 such that all
multiples c · vi belong to S . This implies

µc · p =
∑d

i=1µλi · (c · vi) ∈ S. □

Next, we formulate the main point of this section.
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Proposition 5.5. A semigroup S with a polyhedral limit ∆S is finitely generated if and only if all vertices of ∆S

lift to S .

We have already seen that this condition is necessary for the finite generation. Now we will show that it is
sufficient, too. Note that, in Example 5.2, the two vertices of the line segment ∆S indeed do not lift to the
semigroup.

Let S ⊆M be a subsemigroup with rational polyhedral limit ∆(S) (with respect to some height function
h : M !Z). Assume that the vertices and thus, by Lemma 5.4, all rational points of ∆S lift to S . Moreover,
we may assume that CS is a full-dimensional cone.

Proof of Proposition 5.5. Assume that S is not finitely generated. Then S has infinitely many indecomposable
elements; i.e.,

H := S \
(
(S \ {0}) + (S \ {0})

)
is infinite; cf. [CLS11, Proposition 1.2.23].

By taking a simplicial subdivision we may, w.l.o.g., assume that the cone CS is simplicial and given as
CS = cone(s1, . . . , sn). Consider the lattice Λ generated by s1, . . . , sn. As M/Λ is finite, there must be a coset
m+Λ which contains infinitely many elements of H. Here we may choose m to be a minimal representative
in CS : m ∈ CS ∩M so that m− si < CS for i = 1, . . . ,n.

As the elements in CS ∩H were indecomposable in S, they certainly are indecomposable in CS ∩ S . In
particular, if we identify (m+Λ)∩CS with N

n, we obtain an infinite set of pairwise incomparable elements,
in contradiction to Dickson’s lemma [CLO15, Chapter 4, Theorem 5]. □

6. Finite generation criterion

6.1. Characterising the lifting property

The following theorem gives a purely combinatorial criterion to check if our valuation semigroup SY•(D)
(in the language of Section 2.2) is finitely generated. Recall the definition

d(k/ℓ) = length(π(Θ(ℓ,k)))

from Section 4 on page 12.

Theorem 6.1. The point (1, k/ℓ,d(k/ℓ)) = (1,q,d(q)) is a valuation point (i.e., a multiple of it lies in SY•(D))
if and only if there exists a λ ∈N such that

π : λΘ(1,q)∩M −! π(λΘ(1,q))∩M

is surjective (i.e., λ · d(q) = e(λ,λq)− 1) and π(λΘ(1,q)) has endpoints in M .

Proof. By definition, (1,q,d(q)) is a valuation point if and only if there exists a λ ∈N such that we have
λ · (1,q,d(q)) ∈ SY•(D) ⊆N

3. By Theorem 3.11, the latter happens exactly if

0 ≤ λ · d(q) ≤ e(λ,λq)− 1,

where e(λ,λq) = #π(λΘ(1,q)∩M). In addition, we see that

λ · d(q) = λ · d(1,q) = λ · length(π(Θ(1,q)))

= length(λπ(Θ(1,q))) = length(π(λΘ(1,q)))

≥ #π(λΘ(1,q))∩M − 1

≥ #π(λΘ(1,q)∩M)− 1 = e(λ,λq)− 1.
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Combining all these inequalities, we obtain the equations

λ · d(q) = #π(λΘ(1,q))∩M − 1(6.1)

and

#π(λΘ(1,q))∩M = #π(λΘ(1,q)∩M),(6.2)

where Equation (6.1) is equivalent to π(λΘ(1,q)) having end points in M, and Equation (6.2) to

π : λΘ(1,q)∩M −! π(λΘ(1,q))∩M

being surjective (i.e., π meets all possible lattice points in π(λΘ(1,q))∩M). □

In the following, the tangent cone of a polygon Θ at a point r ∈ Θ is the cone generated by Θ − r . It is
pointed if and only if r is a vertex.

Lemma 6.2. Suppose that the functional vN : M !Z takes its minimum and maximum values over Θ(1,q) at
the two vertices rmin

′ and rmax
′ , respectively. Denote their tangent cones by σmin

′ and σmax
′ .

Then (1,q,d(q)) is a valuation point if and only if 1 ∈ π(σmin
′∩M) and −1 ∈ π(σmax

′∩M).

Proof. If (1,q,d(q)) is a valuation point, then according to Theorem 6.1, there exists a λ ∈N such that
π(λΘ(1,q)) has vertices in M and such that π : λΘ(1,q)∩M ! π(λΘ(1,q))∩M is surjective. Hence,
1 ∈ π (λ(Θ(1,q)− rmin

′)∩M) ⊂ π(σmin
′∩M) and similarly for σmax

′ .
For the converse, assume 1 ∈ π(σmin

′∩M) and −1 ∈ π(σmax
′∩M). We will construct a suitable scaling

factor λ ∈N for which
π : λΘ(1,q)∩M −! π(λΘ(1,q))∩M

is surjective and π(λΘ(1,q)) is a lattice polytope, in order to again apply Theorem 6.1. To this end, choose
levels δmin ∈Q>0 and δmax ∈Q>0 such that

σmin
′∩ [vN ≤ δmin] ⊂Θ(1,q)− rmin

′ and σmax
′∩ [vN ≥ δmax] ⊂Θ(1,q)− rmax

′ .

We set
εmin = length(σmin

′∩ [vN = δmin]) and εmax = length(σmax
′∩ [vN = δmax]) .

Choose a λ ∈N with λ > 1
εmin

and λ > 1
εmax

such that λrmin
′ and λrmax

′ are lattice points in M . Then the
corresponding projection π is surjective. To show that, we divide the image π(λΘ(1,q)) into three parts.
The first λδmin lattice points in π(λΘ(1,q))∩M are in the image of π because π restricted to σmin

′ is
surjective by assumption. The same argument holds for the last λδmax points since π is surjective on σmax

′ .
The points in between are hit by projecting the lattice points in λΘ(1,q) because all the respective fibers
have length greater than length(vM ) = 1, by construction. Thus π is surjective and (1,q,d(q)) is a valuation
point, according to Theorem 6.1. □

Remark 6.3. The case where vN takes its minimum (or maximum) not at a vertex but at an edge is actually
easier to handle. As soon as λΘ(1,q) is a lattice polytope, the edge is an integral multiple of vM . So we can
omit the first (or last) of the three parts in the above proof.

6.2. Strong decomposability

We have seen that it is important to decide the surjectivity of the projection of lattice points in a cone
in M

R
. Next, we will translate this surjectivity into a statement in N . To this end, we introduce the following

notion.

Definition 6.4. Let σ ⊆ N
R

be a cone. A lattice point u ∈ int(σ ) ∩N is strongly decomposable in σ if
u = u′+u′′ for suitable u′ ,u′′ ∈ int(σ )∩N .

Lemma 6.5. Let σ ⊆N
R
be a cone and u ∈ int(σ )∩N a direction. Then the following statements are equivalent:
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(i) We have 1 < ⟨Hσ∨ ,u⟩, where Hσ∨ denotes the Hilbert basis of σ
∨.

(ii) The direction u is strongly decomposable in σ .
(iii) The closure of the one-parameter subgroup λu(C∗) ⊆ T in TV (σ ) is singular.

Proof. (i) and (iii) are equivalent: The 1-parameter subgroup represented by u can always be extended to
λu : C! TV (σ ). On the dual level of regular functions, however, this corresponds to

⟨ · ,u⟩ : C[σ∨∩M]−! C[N].

The latter map is surjective if and only if 1 ∈ ⟨σ∨∩M,u⟩.
(i) ⇒ (ii): By assumption, there exist primitive lattice points s0, s1 ∈M \ σ∨ such that the line segment

between them lying on [u = 1] contains no interior lattice point but intersects σ∨. Note that {s0, s1} is a
Z-basis because the lattice triangle conv(0, s0, s1) is unimodular. Then

int
(
cone

(
s0, s1

))
⊃ σ∨ and thus cone

(
t0, t1

)
⊂ int(σ ),

where {t0, t1} denotes the basis dual to {s0, s1}. By the definition of the dual basis, this yields ⟨si ,u⟩ = 1 =
⟨si , t0 + t1⟩ for all i; i.e., the two linear functionals coincide on the basis. Therefore, u = t0 + t1.

(ii)⇒ (i): Let u be strongly decomposable in σ . Then u = u′+u′′ for some u′ ,u′′ ∈ int(σ )∩N . Therefore,
we have ⟨m,u⟩ = ⟨m,u′⟩+ ⟨m,u′′⟩ ∈Z for m ∈ Hσ∨ . Since u′ and u′′ lie in the interior of σ , both summands
are positive. Thus, 1 < ⟨Hσ∨ ,u⟩. □

r′min

σ′
min

Θ(3, 2)

(A)

ρ0

ρ2

vN

(σ′
min)

∨

(B)

Figure 9. Strongly decomposable primitive element. (A) The polytope Θ(3,2) with tangent
cone σmin

′ at the vN -extremal vertex rmin
′ . (B) The dual cone (σmin

′)∨ together with the strong
decomposition (−2,3) = (−2,1) + (0,2) of vN inside it.

Example 6.6. We continue Example 4.4 and fix (ℓ,k) = (3,2). Then

Θ(ℓ,k) = conv([0,0], [−10,0], [0,−5])

(cf. Figure 8). Its two vN -extremal vertices are rmax
′ = [−10,0] and rmin

′ = [0,−5]. Thus, the corresponding
tangent cones σmin

′ and σmax
′ are given as cone([0,1], [−2,1]) and cone([1,0], [2,−1]), respectively (cf.

Section 3.2). Hence the direction vN = (−2,3) is contained in the interior of (σmin
′)∨ = cone((−1,0), (1,2)).

It is strongly decomposable in (σmin
′)∨ because vN = (−2,1) + (0,2) (cf. Figure 9). An application of

Lemma 6.5 yields that we do not obtain 1 via ⟨Hσmin
′ ,vN ⟩.

Now we are ready to formulate our finite generation criterion. The essence is that it suffices to check
strong decomposability of vN in two specific cones which we now define.

Definition 6.7. Given ∆(D) and vN , we define the rational line segment ∆(D)vN ⊆ ∆(D) as a line segment
∆(D)∩ [vN = c] of maximal length orthogonal to vN . We call its vertices v1 and v2 ∈MR

and its length
q̂ so that v2 − v1 = q̂vM . Moreover, we denote by e+1 the part of the edge of ∆(D) with vertex v1 lying in
the half-plane [vN ≥ c], and by e+2 the part of the edge of ∆(D) with vertex v2 also lying in the half-plane
[vN ≥ c]. The cone σ− ⊆N

R
is the cone generated by the inner normal vectors of e+1 and e+2 .

In the same manner, we define the line segments e−1 and e−2 contained in [vN ≤ c], which yield the
cone σ+.
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Observe that Θ(1,q) , ∅ (and thus d(q) ≥ 0) if and only if q ∈ [0, q̂].

Theorem 6.8. The valuation semigroup SY•(D) is finitely generated if and only if vN is not strongly decomposable
in σ+ and −vN is not strongly decomposable in σ−.

Proof. Combining Lemmas 6.2 and 6.5, we see that SY•(D) is finitely generated if and only if for every rational
q ∈ [0, q̂], the vector vN is not strongly decomposable in (σmin

′)∨ and −vN is not strongly decomposable in
(σmax

′)∨.
Now we use that for all q ∈ [0, q̂),

(σ+)∨ ⊆ σmin
′ and (σ−)∨ ⊆ σmax

′ ,

so vN is strongly decomposable in (σmin
′)∨ for some q if and only if it is strongly decomposable in σ+, and

correspondingly for −vN . □
Corollary 6.9. The valuation semigroup SY•(D) is finitely generated if and only if the morphism P

1 ! X ′ given
by vN is a smooth embedding, where X ′ is the toric variety associated with the fan generated by σ+ and σ−.

Example 6.10. We apply Theorem 6.8 to the 7-gon ∆(D) (cf. Figure 10A) with vertices [4,1], [7,2], [9,3],
[6,5], [1,8], [1,7], and [2,4] from [CLTU23, Example 4.8], which is a good polytope in the language of op. cit..

∆(D)

v1 v2
∆(D)vNe+1

e+2

e−1 e−2

×

(A)

vN

−vN

Σ

ρ0

ρ1

ρ2

ρ3

ρ4ρ5

ρ6

σ−

σ+

(B)

Figure 10. The good 7-gon ∆(D). (A) The polytope ∆(D) having seven vertices together with
the rational line segment ∆(D)vN = ∆(D)∩ [vN = 3] and its two vertices v1 = [8/3,3], v2 = [9,3].
(B) The normal fan Σ of ∆(D) having seven rays ρi (0 ≤ i ≤ 6) together with the two cones
σ+ = cone(ρ4,ρ6) ∋ vN and σ− = cone(ρ0,ρ4) ∋ −vN .

In op. cit., the authors construct examples of projective toric surfaces whose blow-ups at the general point
have a non-polyhedral pseudo-effective cone. In particular, this is the case for projective toric surfaces
associated with good polytopes; cf. [CLTU23, Definition 4.3, Theorem 4.4].

Consider the projective toric surface X = TV (Σ) associated with the normal fan Σ of ∆(D) with rays

ρ0 = (−2,−3), ρ1 = (−3,−5), ρ2 = (1,0), ρ3 = (3,1),

ρ4 = (3,2), ρ5 = (−1,3), and ρ6 = (−1,2)

(cf. Figure 10B) and an admissible flag Y• : X ⊇ C ⊇ {1} on X with vN = (0,1).
To apply Theorem 6.8, we compute the following data:

∆(D)vN = ∆(D)∩ [vN = 3] = conv([8/3,3], [9,3]),

i.e., v1 = [8/3,3] and v2 = [9,3]. The inner normal vectors of e+1 , e+2 and e−1 , e−2 are ρ4, ρ0 and ρ4, ρ6,
respectively. Therefore,

σ+ = cone(ρ4,ρ6) ∋ (0,1) = vN and σ− = cone(ρ4,ρ0) ∋ (0,−1) = −vN .
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Thus the associated semigroup SY•(D) is finitely generated because vN = (0,1) is not strongly decomposable
in σ+ and −vN = (0,−1) is not strongly decomposable in σ−.

6.3. Varying vN and D

The strategy to obtain a finitely generated semigroup by choosing an appropriate direction vN does not
always work. For the following example, there is no direction vN that works.

Example 6.11. Consider the ample divisor D associated with the polytope ∆(D) depicted in Figure 11A on
the toric variety X = TV (Σ) corresponding to the fan Σ depicted in Figure 11B. We claim that no matter
what vN ∈N we pick, the resulting semigroup SY•(D) will not be finitely generated.

∆(D)

(A)

Σ

(B)

Figure 11. SY•(D) non-finitely generated for all vN . (A) The polytope ∆(D) associated with an
ample divisor D on X = TV (Σ). (B) The fan Σ of TV (Σ) with 16 rays.

We will use our characterization in Theorem 6.8. As ∆(D) is centrally symmetric, the longest line segment
∆(D)vN in Definition 6.7 will pass through the origin, whatever vN .

We distinguish two cases: either the endpoints of the segment ∆(D)vN are vertices of ∆(D), or they belong
to the interior of an edge. Up to symmetry, there are four vertices and four edges to consider. We will carry
out the argument for one vertex and for one edge. The others are left to the reader.

If ∆(D)vN hits the interior of the edges e±1 , e
±
2 indicated in Figure 12A, then vN must belong to the interior

of the red region in Figure 12B. In this case, the cones σ± from Definition 6.7 will be the two half-planes
bounded by the dotted line which is perpendicular to the direction of e±1 , e

±
2 . But all lattice vectors in the red

region are strongly decomposable in their half-plane as they all have lattice distance greater than one from
the dotted line. (The vectors which are not strongly decomposable are the vectors at distance one; i.e., they
lie on the dashed lines.)

If, on the other hand, ∆(D)vN contains the vertices v1,v2 indicated in Figure 12C, then vN is determined
up to sign, as are σ± (cf. Figure 12D). Again, we see that vN is strongly decomposable. (And again, the
vectors which are not strongly decomposable are the vectors which lie on the dashed lines.)

Proposition 6.12. Given a fan Σ and a direction vN , the valuation semigroup SY•(D) is finitely generated for
all ample divisors D on X if and only if vN and −vN are not strongly decomposable in σ for all cones σ ⊆N

R

generated by rays of the given fan Σ.

Proof. “⇐”: Theorem 6.8. “⇒”: Assume there exists a cone σ built from rays of Σ such that vN is strongly
decomposable in σ . We will construct an ample divisor D such that SY•(D) is not finitely generated.

In a first step, we build a torus-invariant divisor DΘ(ℓ,k) =
∑

ρ∈Σ(1) bρDρ whose associated polytope
Θ(ℓ,k) has a vertex rmin

′ with tangent cone σmin
′ = σ∨. For that we choose coefficients bρ ∈Z such that

DΘ(ℓ,k) has positive intersection numbers with all curves corresponding to rays ρ ⊈ int(σ ). Then we relax
the inequalities at rmin

′ by choosing the coefficients bρ≫ 0 for all ρ ⊆ int(σ ). This guarantees that σ∨ is
the tangent cone of Θ(ℓ,k) at its vertex rmin

′ .
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∆(D)

∆(D)vN ×
×

e±2e±1
v1

v2

(A)

σ−

σ+

vN

−vN

(B)

∆(D)

∆(D)vN

v1

v2

e+1

e+2

e−1

e−2

(C)

σ−

σ+

vN

−vN

(D)

Figure 12. Illustration of Example 6.11. (A) The line segment ∆(D)vN containing the interior of
the edges e±1 , e

±
2 . (B) The possible region for ±vN in red together with the two cones σ±. (C) The line

segment ∆(D)vN hitting two vertices v1,v2 of ∆(D). (D) The cones σ± containing ±vN .

Now, we want to define an ample torus-invariant divisor D such that Θ(ℓ,k) = (∆(D) : ∆nef). As an
intermediate step, set D ′ =

∑
ρ∈Σ(1) a

′
ρDρ := C′ +DΘ(ℓ,k). Then by construction, the associated polytope

∆(D ′) contains the Minkowski sum Θ(ℓ,k) +∆nef. Moreover, the defining inequalities of Θ(ℓ,k) +∆nef

coincide with the ones for the polytope ∆(D ′) for all rays ρ ⊈ int(σ ).
In general, D ′ is not nef and in particular not ample because it might have negative intersection with

curves associated with remaining rays ρ ⊆ int(σ ). Hence, as a last step, we define a torus-invariant
divisor D =

∑
ρ∈Σ(1) aρDρ with aρ = a′ρ for all ρ ∈ Σ(1) \ int(σ ). For the remaining rays ρ ⊆ int(σ ), choose

coefficients aρ small enough such that D is ample and big enough such that Θ(ℓ,k) +∆nef ⊆ ∆(D). Then

we have Θ(ℓ,k) = (∆(D) : ∆nef), and Θ(ℓ,k) has a vertex rmin
′ with tangent cone σmin

′ = σ∨. Since vN
is strongly decomposable in σ , it follows from Theorem 6.8 that the semigroup SY•(D) is not finitely
generated. □

Example 6.13. We illustrate the construction from the proof of Proposition 6.12 for a modification of our
running Example 6.6 with vN = (−2,3) ∈N . Let X ′ = TV (Σ′) be the toric surface associated with the fan
Σ′ , where Σ′(1) = Σ(1)∪{ρ4,ρ5} and ρ4 = (1,0), ρ5 = (−1,1). Then (as in Example 6.6) vN = (−2,1)+(0,2)
is strongly decomposable in σ = cone(ρ0,ρ2) (cf. Figure 13A). Moreover,

C′ = 7D2 +2D3 +3D4

in X ′ = TV (Σ′) with ∆nef = conv([0,0], [−3,0], [−3,−2], [−2,−2]) (cf. Figure 13B). Choose the divisor
DΘ(ℓ,k) as

DΘ(ℓ,k) = 6D2 +4D3 +2D4 +6D5,
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ρ0

ρ3
ρ2

ρ1

ρ4ρ5

vN

Σ′

σ

(A)

vM
∆nef

(B)

Θ(`, k)

σ∨

r′min

(C)

∆(D′)

Θ(`, k) + ∆nef

(D)

Θ(`, k)

××∆(D)

∆nef

(E)

Figure 13. Illustration of Proposition 6.12. (A) The set of rays Σ′(1) = Σ(1)∪ {ρ4,ρ5}, a primitive
element vN = (−2,3) ∈N , and the cone σ in which vN is strongly decomposable. (B) The Newton
polytope ∆newt given by vM = [−3,−2] and the polytope ∆nef corresponding to C′ in X ′ = TV (Σ′).
(C) The polytope Θ(ℓ,k) having a vertex rmin

′ with tangent cone σ∨. (D) The polytope ∆(D ′)
corresponding to the non-ample divisor D ′ containing Θ(ℓ,k) + ∆nef. (E) The polytope ∆(D)
corresponding to the ample divisor D with Θ(ℓ,k) = (∆(D) : ∆nef).

i.e., Θ(ℓ,k) = conv([0,0], [−2,0], [−2,−2], [0,−3]) (cf. Figure 13C). We obtain the divisor

D ′ =DΘ(ℓ,k) +C′ = 13D2 +6D3 +5D4 +6D5

with ∆(D ′) = conv([0,0], [−5,0], [−5,−4], [−1,−6], [0,−6]) and Θ(ℓ,k)+∆nef ⊆ ∆(D ′) (cf. Figure 13D). Note
that D ′ is not ample since we have D ′ ·D5 = 0.

To make it ample, adjust the coefficient of D5 to 5.5. Then D is ample with ∆(D) = conv([0,0], [−5,0],
[−5,−4], [−1,−6], [−0.5,−6], [0,−5.5]) (cf. Figure 13E). Moreover, we have Θ(ℓ,k) = (∆(D) : ∆nef).
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