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Interpolation and moduli spaces of vector bundles on very
general blowups of P2
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Abstract. In this paper, we study certain moduli spaces of vector bundles on the blowup of P2

in at least ten very general points. Moduli spaces of sheaves on general type surfaces may be
nonreduced, reducible, and even disconnected. In contrast, moduli spaces of sheaves on minimal
rational surfaces and certain del Pezzo surfaces are irreducible and smooth along the locus of
stable bundles. We find examples of moduli spaces of vector bundles on more general blowups
of P2 that are disconnected and have components of different dimensions. In fact, assuming the
SHGH conjecture, we can find moduli spaces with arbitrarily many components of arbitrarily large
dimension.
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1. Introduction

In this paper, we study certain moduli spaces of vector bundles on the blowup of P2
C
at n ≥ 10 very general

points. We describe their geometry very explicitly and find that they can have many connected components
of different dimensions. In fact, assuming the Segre–Harbourne–Gimigliano–Hirschowitz (SHGH) conjecture
(see Conjecture 2.2), we find that they can have arbitrarily many components of arbitrarily large dimension.
This is in strong contrast to the behavior of moduli spaces on minimal rational surfaces and certain del
Pezzo surfaces. To the best of our knowledge, our examples are the first time these phenomena have been
observed on rational surfaces.

Throughout the paper, let X be the blowup of P2 at n very general points p1, . . . ,pn. Let H denote the
pullback of the class of a line. Let Ei denote the exceptional divisor lying over pi , and set E =

∑n
i=1Ei .

The canonical divisor K = KX = −3H +E has self-intersection K2 = 9−n. The geometry of the surface X
changes dramatically based on the sign of K2. For n ≤ 8, the divisor −K is ample and X is a del Pezzo
surface. For n = 9, the divisor −K is still effective. On the other hand, for n ≥ 10, the divisor −K is not even
effective. Our results will show that this dramatic change is also reflected in the behavior of moduli spaces of
vector bundles on X.

We polarize the surface X by an ample divisor of the form At = tH −E. When n ≥ 10, Nagata conjectures
that At is ample if t >

√
n; see [Nag59]. Set B = A√n =

√
nH − E to be the conjectural nef ray. Nagata’s

conjecture is only known when n is a perfect square, but the full Nagata conjecture is a consequence of the
SHGH conjecture. We record the numerical invariants of a vector bundle by (r, c1,χ), where r is the rank, c1
is the first Chern class, and χ is the Euler characteristic. We let MX,At

(r, c1,χ) denote the moduli space of
At-semistable sheaves with numerical invariants (r, c1,χ).

In this paper, we study the moduli spaces MX,At
(2,K,χ). We mostly focus on the case where χ ≥ 1 is

positive, with special emphasis on the case where χ is the maximal Euler characteristic of an At-stable
bundle. For 10 ≤ n ≤ 17, this maximal Euler characteristic turns out to be χ = 2. On the one hand, the
moduli spaces MX,At

(2,K,χ) are easiest to describe when χ is as large as possible; on the other hand, these
spaces are also typically among the most pathological moduli spaces. We show that when n ≤ 9, the moduli
spaces MX,A(2,K,χ ≥ 1) are empty for any ample divisor A (see Proposition 3.7). Similarly, if n ≥ 10, then
MX,At

(2,K,χ ≥ 1) is empty for t > n
3 (see Proposition 3.8). Hence, we will be interested in these moduli

spaces when n ≥ 10 and the polarization is close to the Nagata bound.
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Our first main result shows that for any bundle V with invariants (2,K,χ ≥ 1), there is a unique effective
divisor D such that V fits in an exact sequence of the form

0 −→O(D) −→ V −→ K(−D)⊗ IZ −→ 0,

where Z is a zero-dimensional scheme (see Theorem 3.2). We will say that V is a bundle of type D . The
moduli spaces MX,At

(2,K,χ) are therefore stratified by the type of a bundle, and different types frequently
give rise to different components in moduli spaces. However, the possible types D of stable bundles are
extremely special: if there is an At-stable bundle of type D , then D must satisfy 2B ·D < B ·K and χ(D) ≥ 1
(see Proposition 3.9). Given an effective D with χ(D) ≥ 1 and 2B ·D < B ·K , there is a unique value tD where
2AtD ·D = AtD ·K . A bundle V of type D can only be semistable for polarizations At with t ≤ tD . As t
decreases past tD towards

√
n, the moduli spaces MX,At

(2,K,χ) can gain points parameterizing bundles of
type D .

When n = 16 or 25, we are able to give the following description of moduli spaces that is unconditional
on the Nagata or SHGH conjectures. In these cases, there are only finitely many possible types D of a
semistable bundle. Similar arguments could extend these descriptions to higher perfect squares n.

Theorem 1.1.

(1) Let n = 16. For 14
3 < t < 16

3 , the moduli space MX,At
(2,K,2) is isomorphic to P5. For 4 < t < 14

3 , the
moduli space MX,At

(2,K,2) is isomorphic to a blowup of P5 at 16 points.
(2) Let n = 25. For 5 < t ≤ 27

5 , the moduli space MX,At
(2,K,4) is isomorphic to a disjoint union of 25 copies

of P8.

In particular, part (2) gives an explicit example of a reducible moduli space of vector bundles on a rational
surface.

On the other hand, for n which is not a perfect square, there are typically infinitely many effective
divisors D satisfying χ(D) ≥ 1 and 2B ·D < B ·K . If we assume the Nagata conjecture, these divisors can be
classified by solving a series of Pell’s equations; we do this explicitly in Section 4.

Example 1.2. Suppose the Nagata conjecture holds. If n = 10, then the effective divisors D satisfying
χ(D) ≥ 1 and 2B ·D < B ·K form an infinite list

O, 57H − 18E, 2220H − 702E, 84357H − 26676E, . . . .

These divisors can be read off from the continued fraction expansion of
√
10; see Theorem 4.8.

If we assume the SHGH conjecture, then the types D which could contribute to the moduli spaces have
good cohomological properties which makes it possible to completely describe the moduli spaces. For
example, if 10 ≤ n ≤ 16, then D is the class of a reduced, irreducible, rigid curve on X (see Theorem 5.2).
The next theorem then summarizes our results from Section 6 which describe the structure of the moduli
spaces.

Theorem 1.3. Let 10 ≤ n ≤ 15, and assume the SHGH conjecture.

(1) If t > n
3 , then MX,At

(2,K,2) is empty.
(2) Suppose 11 ≤ n ≤ 15. As t decreases past n

3 , MX,At
(2,K,2) acquires a component isomorphic to Pn−11.

For 11 ≤ n ≤ 12, this component persists without modification as t decreases to
√
n. For 13 ≤ n ≤ 15,

this component is blown up at n points as t decreases past n−2
3 and then persists without modification as t

decreases to
√
n.

(3) For every nontrivial, nonexceptional divisor D satisfying χ(D) ≥ 1 and 2B ·D < B ·K , MX,At
(2,K,2)

acquires a new component isomorphic to P−χ(2D−K)−1 as t decreases past tD . This component persists
without modification as t decreases to

√
n.

(4) This is a complete description of the components of MX,At
(2,K,2), and they are all disjoint.
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We list the first several components of each of the moduli spaces when 10 ≤ n ≤ 13 in tables in
Examples 6.8 and 6.9. A detailed study of the possible divisors D shows that each of the moduli spaces in
Theorem 1.3 will have arbitrarily many components of arbitrarily large dimension if t is sufficiently close
to
√
n. This observation implies the following corollary that applies to moduli spaces with arbitrary Euler

characteristic.

Corollary 1.4. Assume the SHGH conjecture, and let 10 ≤ n ≤ 12. Let χ ≤ 2 be an integer, and let k and r be
positive integers. There exists an ϵ > 0 such that if

√
n < t <

√
n+ ϵ, then the moduli space MX,At

(2,K,χ) has at
least k irreducible components of dimension r .

When the polarization is fixed, moduli spaces of sheaves on surfaces behave well as χ tends to negative
infinity. For example, by a theorem of O’Grady, see [O’G96], the moduli spaces are irreducible, reduced, and
normal. However, for arbitrary χ, the moduli spaces can be poorly behaved. For example, moduli spaces
of sheaves on general type or elliptic surfaces can be reducible, nonreduced, and even disconnected (see
[CH18a, CHK22, FM88, Fri89, Kot89, Mes97, MS11, OVdV86] for some examples).

Let Y be a birationally ruled surface, and let F be the class of the fiber. Let A be a polarization such
that (KY + F) ·A < 0. Walter proves that the moduli space MY ,A(v) is then irreducible provided that it is
nonempty; see [Wal98]. In particular, all nonempty moduli spaces of sheaves on P

2, Hirzebruch surfaces
and X with n ≤ 6 are irreducible for every polarization; these moduli spaces have been studied in detail (see
for example [LeP97, CH21, LZ19]). Similarly, for any rational surface Y , there exist polarizations A satisfying
(KY + F) ·A < 0. For example, this is the case on X for At with t≫ 0. The nonempty moduli spaces are
irreducible on X for such polarizations and have been studied in [Zha22]. In contrast, our results show that
the irreducibility may fail when Walter’s condition is violated.

Our results are in part inspired by questions concerning the topology of moduli spaces. Göttsche, see
[Göt90], computed the Betti numbers of the Hilbert schemes Y [n] of n-points on a smooth projective surface
Y and observed that they stabilize as n tends to infinity. In fact, the Betti numbers monotonically increase as
n increases. Coskun and Woolf, see [CW22], conjectured that the Betti numbers stabilize for moduli spaces
of sheaves in general as χ tends to negative infinity and that the stable Betti numbers are independent of
the rank and the polarization. They proved the conjecture for moduli spaces on rational surfaces when the
polarization satisfies KY ·A < 0 and the moduli space does not contain any strictly semistable sheaves. Our
examples show that in the absence of the assumption KY ·A < 0, the topology of the moduli spaces can
be fairly complicated. In particular, even on rational surfaces, the Betti numbers of moduli spaces are not
monotonically increasing as χ decreases. Examples of this phenomenon were previously known on certain
elliptic and general type surfaces; see [CHK22, Kot89, OVdV86].

Organization of the paper

In Section 2, we recall the Nagata and SHGH conjectures and collect basic facts concerning very general
blowups of P2. In Section 3, we define the type of a bundle V with character (2,K,χ ≥ 1) and show that it
is unique. In Section 4, we study effective divisors D that satisfy χ(D) ≥ 1 and 2B ·D < B ·K and explain
how to classify them. In Section 5, we study the cohomology of such D and associated divisors which are
relevant to the calculation of the tangent space of the moduli space. In Section 6, we classify the components
of the moduli spaces and prove our main theorems. Finally, in Section 7, we study the cases where n is a
perfect square, where we can make our results independent of the SHGH conjecture.
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2. Preliminaries

2.1. Notation

Throughout the paper, we work over the field C of complex numbers. Let X be the blowup of P2 at n
very general points p1, . . . ,pn. The Picard group of X is

PicX �ZH ⊕ZE1 ⊕ · · · ⊕ZEn,

where H is the pullback of a line in P
2 and E1, . . . ,En are the exceptional divisors. We have H2 = 1,

H ·Ei = 0, E2
i = −1, and Ei ·Ej = 0 for i , j . We set E =

∑n
i=1Ei . For brevity, we let Ei1...ik :=

∑k
j=1Eij . For

example, E123 = E1 +E2 +E3. We write O = OX and K = KX for the trivial bundle and canonical bundle,
respectively, and note that

K = −3H +E.

We compute K2 = 9−n.

2.2. Ample divisors

In this paper, we will study polarizations of X of the form At = tH −E, where t is a real number. Since
A2
t = t2 − n and At ·H = t, if At is ample, then t >

√
n. The famous conjecture of Nagata claims that the

converse is true once n ≥ 10.

Conjecture 2.1 (Nagata, cf. [Nag59]). Let n ≥ 10. If t >
√
n, then At is ample. In particular,

B := A√n =
√
nH −E

is nef.

Nagata shows the conjecture is true when n is a perfect square. For other n, partial results towards the
Nagata conjecture can be proved by exhibiting ample divisors At with t as close to

√
n as possible. For

α ≥
√
n, we will call the statement that Aα is nef the α-Nagata conjecture.

2.3. Linear series and the SHGH conjecture

Consider a divisor class D = dH −
∑

imiEi on X with d ≥ 0. In general, it is a highly nontrivial problem
to compute the dimension of the linear series |D | or, equivalently, the cohomology of the line bundle O(D).
The Segre–Harbourne–Gimigigliano–Hirschowitz (SHGH) conjecture provides an algorithm to compute this
dimension. We will call D special if both h0(O(D)) and h1(O(D)) are nonzero. Otherwise, D is nonspecial.
If D is nonspecial, then the cohomology of O(D) is easily determined by the Euler characteristic χ(O(D)).
Recall that a (−1)-curve on X is a smooth rational curve C ⊂ X with C2 = −1.

Conjecture 2.2 (SHGH, cf. [Seg60, Har86, Gim87, Hir89]). The divisor D is special if and only if it contains
a multiple (−1)-curve in its base locus.

If n ≤ 9, then the SHGH conjecture is true (see e.g. [CM11]), so the conjecture becomes most interesting
for n ≥ 10.

Remark 2.3. The following consequences of the conjecture are frequently useful:

(1) If D is a reduced curve on X, then D is nonspecial and χ(D) ≥ 1.
(2) If D is a reduced and irreducible curve on X with D2 < 0, then D is a (−1)-curve. Indeed, by

Riemann–Roch, a large multiple kD has χ(kD) < 0, but kD is effective. Therefore, kD is special, and
the only possibility is that D is a (−1)-curve.

(3) Suppose D = dH −mE is a homogeneous divisor class. If n ≥ 10, then D is nonspecial.
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(4) The SHGH conjecture implies the Nagata conjecture. For suppose that t >
√
n and At is not ample,

so that by the Nakai–Moishezon criterion, there is an irreducible curve class C = dH −
∑

imiEi with
C ·At < 0. Then C is nonspecial, and if we permute the exceptional divisors, we get additional
nonspecial classes. Summing over the symmetric group, we can obtain an effective homogeneous
divisor class D = d′H −m′E with D ·At < 0. This implies d

m <
√
n and D2 < 0. Then large multiples

kD have χ(kD) < 0 and they are effective, contradicting that they are nonspecial by (3).

Since the full SHGH conjecture is quite challenging, it is useful to have results which make partial
progress towards the SHGH conjecture. Here there are two main flavors of result: either one can bound the
multiplicities mi (see e.g. [DJ07] and [Yan07]), or one can focus on homogeneous series.

Studying homogeneous series essentially boils down to two infinite families of statements. Let D = dH−mE
be a homogeneous series. For α ≥

√
n, we say that α-nonspeciality holds if whenever d

m ≥ α, D is nonspecial.
On the other hand, for β ≤

√
n, we say that β-emptiness holds if whenever d

m ≤ β, D is noneffective. Note that
if β ≤

√
n, then Aβ ·An/β = 0, so β-emptiness implies An/β is nef by the same argument as in Remark 2.3(4).

Thus β-emptiness implies the n
β -Nagata conjecture. Various instances of these statements are theorems in

the literature; see for example [Pet14, CM11]. Many of the strongest statements have been proved in the first
case n = 10.

Example 2.4. For n = 10, we have 2280
721 -emptiness, see [Pet14], and 174

55 -nonspeciality, see [CM11], and the
721
228 -Nagata conjecture holds.

2.4. Moduli spaces of vector bundles

Let A be an ample divisor on X. Let V be a torsion-free sheaf on X with Chern character v. In this
paper, it will be convenient to record v = (r, c1,χ) by the rank r, the first Chern class c1(V ), and the Euler
characteristic χ(V ). The A-slope µA(V ), the Hilbert polynomial PA,V (m), and the reduced Hilbert polynomial
pA,V (m) are defined by

µA(V ) =
c1(V ) ·A

r
, PA,V (m) = χ(V (mA)), pA,V (m) =

PA,V (m)
r

,

respectively. The sheaf V is µA-stable (respectively, µA-semistable) if for all proper subsheaves W ⊂ V ,
µA(W ) < µA(V ) (respectively, µA(W ) ≤ µA(V )). The sheaf V is A-stable (respectively, A-semistable) if for
all proper subsheaves W ⊂ V , pA,W (m) < pA,V (m) (respectively, pA,W (m) ≤ pA,V (m)) for m≫ 0. Gieseker,
see [Gie77], and Maruyama, see [Mar78], constructed projective moduli spaces MX,A(v) parameterizing
A-semistable sheaves. We refer the reader to [HL10] and [LeP97] for the properties of these moduli spaces.

3. Types of bundles with positive Euler characteristic

3.1. Types of bundles

Throughout this section, we let v be the Chern character v = (r, c1,χ) = (2,K,χ), where χ ≥ 1 is a
positive integer. The first main result in the paper shows that the positivity assumption on χ allows us to
neatly classify vector bundles of character v into various types. These will give rise to distinct components
in moduli spaces.

Definition 3.1. Let v = (2,K,χ) with χ ≥ 1, and let D ∈ Pic(X) be a (possibly trivial) effective divisor class
on X satisfying χ(D) ≥ 1. A vector bundle V of character v has type D if it fits in an exact sequence of the
form

0 −→O(D) −→ V −→ K(−D)⊗ IZ −→ 0

for some zero-dimensional scheme Z of length 2χ(O(D))−χ.
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Observe that χ(K(−D)) = χ(O(D)) and χ(K(−D)⊗IZ ) = χ(O(D))−l(Z), so the assumption on the length
of Z is necessary to give χ(V ) = χ. The divisor D must also have χ(D) ≥ 1 in order for χ ≥ 1 to be possible.
We first show that the type exists and is unique.

Theorem 3.2. Let v = (2,K,χ) with χ ≥ 1. Any vector bundle V of character v is of type D for exactly one
effective divisor class D .

Proof. First we show that a type exists. Since χ(V ) ≥ 1, at least one of h0(V ) or h2(V ) is nonzero.
Suppose h2(V ) , 0. Then h0(V ∗⊗K) , 0, so Hom(V ,K) , 0. Pick a nonzero map V → K , and let F ⊂ K

be its image. Then F is of the form K(−D)⊗ IZ for an effective divisor D and a zero-dimensional scheme
Z ⊂ X. Consider the kernel

0 −→ G −→ V −→ K(−D)⊗ IZ −→ 0.

Basic facts about homological dimension and the Auslander–Buchsbaum formula imply that G is locally free
since it is the kernel of a surjective mapping from a vector bundle to a torsion-free sheaf on a smooth surface
(see [HL10, Section 1.1, p. 4]). By Chern class considerations, we deduce G � O(D), and V has type D .

If instead h0(V ) , 0, we reduce to the previous case. Since H0(V ) � Hom(O,V ), we pick a nonzero
(hence injective) homomorphism O→ V and consider its cokernel

0 −→O −→ V −→ F −→ 0.

Let T be the torsion subsheaf of F, so we have an exact sequence

0 −→ T −→ F −→ G −→ 0.

The first Chern class of T is a positive Z-linear combination of any curves in the support of T , so it is a
(possibly empty) effective divisor D . Then G is a rank 1 torsion-free sheaf with c1(G) = K −D , so it is of the
form

G = K(−D)⊗ IZ
for a zero-dimensional scheme Z . Then h2(G) , 0, so h2(F) , 0. Hence, h2(V ) , 0, and we are reduced to
the previous case.

For the uniqueness, suppose V has type D and type D ′ . Twisting the type D exact sequence by −D shows
that V (−D) has a section. But twisting the type D ′ exact sequence by −D gives

0 −→O(D ′ −D) −→ V (−D) −→ K(−D −D ′)⊗ IZ −→ 0.

Since H · (K −D −D ′) < 0, the divisor K −D −D ′ is not effective. Therefore, D ′ −D is effective. By a
symmetric argument, D −D ′ is effective. These two facts are only compatible if D =D ′ . □

In particular, we have the following corollary.

Corollary 3.3. Let V be a vector bundle of rank 2 with c1(V ) = K and χ(V ) ≥ 1. Then h0(V ) and h2(V ) are
both nonzero.

Proof. The bundle V has type D for some D , and from the defining sequence, we see that V has the required
cohomology. □

Remark 3.4. In the special case where χ = 1, all three cohomology groups H0(V ), H1(V ), and H2(V ) must
be nonzero.

For example, let us discuss what happens when n = 10 and χ = 1. The type O bundles fitting into
sequences of the form

0 −→O −→ V −→ K ⊗ Ip −→ 0

have h0(V ) = h1(V ) = h2(V ) = 1. Additionally, if A is any ample divisor and U ⊂MA(v) is any component
whose general member is a vector bundle, then every sheaf in that component must have nonvanishing
cohomology in every degree. This exhibits a strong failure of the “weak Brill–Noether” property for these
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spaces, in stark contrast with known results for minimal rational surfaces and del Pezzo surfaces (see for
example [CH18b, CH20, LZ19]).

The type of a bundle V can be determined cohomologically.

Corollary 3.5. Let V be a bundle of character v = (2,K,χ) with χ ≥ 1. Partially order Pic(X) by the relation
D ′ ≤D if D −D ′ is effective. Then the type of V is the unique maximal element in

{D ′ ∈ Pic(X) :D ′ effective and h0(V (−D ′)) , 0}.

Proof. Suppose V has type D . By definition, D is in the set. Let D ′ be any effective divisor with
h0(V (−D ′)) , 0. Twisting the type D sequence by −D ′ gives

0 −→O(D −D ′) −→ V (−D ′) −→ K(−D −D ′)⊗ IZ −→ 0.

Since h0(V (−D ′)) , 0, we must have that D −D ′ is effective, so D ′ ≤D . □

This cohomological definition of type restricts the ways in which bundles of one type can specialize to
another.

Corollary 3.6. Let v = (2,K,χ) with χ ≥ 1. Suppose Vs/S is a flat family of vector bundles on X of character v,
parameterized by an irreducible base S , and that Vs has type D for a general s ∈ S . If s′ ∈ S is such that Vs′ has
some type D ′ , then D ≤D ′ .

Proof. For a general s ∈ S, we have h0(Vs(−D)) , 0. By semicontinuity, we get h0(Vs′ (−D)) , 0. Then
Corollary 3.5 gives D ≤D ′ . □

3.2. Preliminary results on stability

The next result shows that once we are concerned with stability, the spaces MA(v) are not interesting
until 10 or more points are blown up.

Proposition 3.7. Let v = (2,K,χ) with χ ≥ 1. If n ≤ 9, then the moduli space MA(v) is empty for every ample
divisor A.

Proof. Suppose V ∈ MA(v) is an A-semistable sheaf. Since χ ≥ 1, we have either h0(V ) > 0 and
Hom(O,V ) , 0, or h2(V ) > 0 and Hom(V ,K) , 0. Notice that because n ≤ 9, we have A · K < 0
since −K is effective. We have µA(V ) = 1

2A ·K , so µA(K) < µA(V ) < µA(O). Then either a map O→ V or a
map V → K destabilizes V . □

On the other hand, for n ≥ 10, we focus on polarizations of the form At = tH −E. Here we find that the
spaces MAt

(v) are empty until At becomes sufficiently close to B = A√n =
√
nH −E.

Proposition 3.8. Let v = (2,K,χ) with χ ≥ 1. If n ≥ 10, then the moduli space MAt
(v) is empty when t > n

3 .

Proof. When t > n
3 , we have At ·K < 0, and we proceed as in the previous proof. □

Next we investigate the stability of bundles of type D . The existence of a stable bundle of type D imposes
strong restrictions on D .

Proposition 3.9. Suppose V is a bundle of character v and type D, and assume there is a polarization At0 such
that V is µAt0

-semistable. Then we must have

2B ·D < B ·K,

and there is a unique polarization AtD such that O(D) and K(−D) have the same slope. It satisfies

2AtD ·D = AtD ·K.
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Proof. Suppose V is µAt0
-semistable and that it fits in an exact sequence

0 −→O(D) −→ V −→ K(−D)⊗ IZ −→ 0.

We have t0 ≤ n
3 by Proposition 3.8, and we must have

At0 ·D ≤ At0 · (K −D),

or

2At0 ·D ≤ At0 ·K.

Now for variable t, consider the relationship between 2At ·D and At ·K . Both quantities vary linearly in t.
For t = t0, we have 2At ·D ≤ At ·K , and for t > n

3 , we find 2At ·D > At ·K . Thus there is a unique tD
between t0 and n

3 such that 2AtD ·D = AtD ·K . Furthermore, if we take t =
√
n, we get 2B ·D < B ·K . □

Due to the proposition, we study curves D satisfying the inequality 2B ·D < B ·K in more detail in the
next section.

4. Effective divisors D satisfying 2B ·D < B ·K

In this section, we classify the effective divisors D satisfying 2B ·D < B ·K and χ(D) ≥ 1, at least when
n is small. For a complete answer to this question, we will need the Nagata conjecture to know that B
is nef. However, with a little more care, we can avoid using the Nagata conjecture and instead classify
divisors satisfying 2At ·D ≤ At ·K whenever At is known to be an ample divisor. Notice that the inequality
2At ·D ≤ At ·K implies 2B ·D < B ·K , as in the proof of Proposition 3.9. Conversely, if the Nagata conjecture
holds, then 2B ·D < B ·K implies that 2At ·D < At ·K for t slightly greater than

√
n. Also, since An/3 ·K = 0,

the polarizations we are interested in all have t ≤ n
3 .

4.1. General restrictions on D

In this subsection, we prove several preliminary results which restrict the possibilities for a divisor D .

Proposition 4.1. Suppose D is an effective divisor and At is an ample divisor with

2At ·D ≤ At ·K.

Then

χ(D) <
n− 1
8

.

In particular, if 10 ≤ n ≤ 17 and χ(D) ≥ 1, then χ(D) = 1.

Proof. Since 2An/3 ·D > 0 = An/3 ·K , the assumption 2At ·D ≤ At ·K implies there is an ample divisor
A = AtD with 2A ·D = A ·K . Then A · (2D −K) = 0, so by the Hodge index theorem, we have (2D −K)2 < 0.
Expanding and rearranging, we get 4D · (D −K) < −K2, and so

1
2
D · (D −K) <

n− 9
8

.

The required inequality follows from the Riemann–Roch formula χ(D) = 1+ 1
2D · (D −K). □

Definition 4.2. Let D = dH−
∑

imiEi be a divisor. We say that the multiplicities are balanced if |mi−mj | ≤ 1
for all i, j .

On the other hand, if D is not balanced, we construct a sequence D =D0, . . . ,Dk of divisors by iteratively
increasing one of the smallest multiplicities by 1 and decreasing one of the largest multiplicities by 1,
stopping when we arrive at a balanced divisor Dk . We say that D is k steps away from having balanced
multiplicities. The number k is independent of any choices made in this construction.



10 I. Coskun and J. Huizenga10 I. Coskun and J. Huizenga

Lemma 4.3. Suppose D0 = dH −
∑

imiEi is any divisor and that D0 is k steps away from having balanced
multiplicities. Let Dk be the balanced divisor obtained from D0 as in Definition 4.2. Then

χ(Dk) ≥ χ(D0) + k.

Proof. We claim that each step of “rebalancing” the multiplicities increases the Euler characteristic by at
least 1. Without loss of generality, suppose that D0 is not balanced, m1 −m2 ≥ 2, and D1 = D0 +E1 −E2.
Write F = E1 −E2. Then since D0 · (D0 −K) = 2χ(D0)− 2, we have

D1 · (D1 −K) =D0 · (D0 −K) + 2F ·D0 −F ·K +F2 = 2χ(D0)− 2+2m1 − 2m2 − 2 ≥ 2χ(D0),

so χ(D1) ≥ χ(D0) + 1. Repeating proves the result. □

Proposition 4.4. Suppose D = dH −
∑

imiEi is an effective divisor with χ(D) ≥ 1 and At is an ample divisor
with

2At ·D ≤ At ·K.

Let χmax be the maximal Euler characteristic among effective divisors D satisfying this inequality. If we put
ℓ = χmax −χ(D), then D is at most ℓ steps away from having balanced multiplicities.
In particular, if we additionally assume 10 ≤ n ≤ 17, then χ(D) = χmax = 1, and so D is balanced.

Proof. Consider the divisor Dk which rebalances D . Since χ(Dk) ≥ χ(D) + k and χ(D) ≥ 1, we see that
Dk is effective. Also, Dk ·At = D0 ·At , so we have 2At ·Dk ≤ At ·K . By the definition of χmax, we find
χ(D) + k ≤ χ(Dk) ≤ χmax, so k ≤ χmax −χ(D). □

Next we quantify how far away a balanced divisor is from having equal multiplicities.

Definition 4.5. Let D = dH −
∑

imiEi be a balanced divisor, so that |mi −mj | ≤ 1 for all i, j . Then there
are k copies of some multiplicity m+1 and n− k copies of multiplicity m. We let ℓ =min{k,n− k}, and we
say that D is ℓ steps away from having equal multiplicities.

Proposition 4.6. Suppose D is a balanced effective divisor with χ(D) ≥ 1 and At is an ample divisor with

2At ·D ≤ At ·K.

Suppose that D is ℓ steps away from having equal multiplicities. Then

ℓ <
1
2

(
n−

√
(8χ(D) + 1)n

)
.

In particular, if 10 ≤ n ≤ 12, then we get χ(D) = 1, ℓ = 0, and D has equal multiplicities.

Proof. Suppose there are 1 ≤ k ≤ n− 1 copies of multiplicity m+1 and (n− k) copies of multiplicity m, so
that the average multiplicity is m+ k

n . Let E
′ be the sum of the k exceptional divisors with multiplicity m+1,

and let E′′ be the sum of the remaining n− k exceptional divisors, so that D = dH − (m+1)E′ −mE′′ . Put

G =
(
1− k

n

)
E′ − k

n
E′′ ,

so that D ′ :=D +G = dH − (m+ k
n )E is a Q-divisor with equal multiplicities. Observe that the sum of the

multiplicities in G is zero, so G intersects any divisor with equal multiplicities in 0. In particular, as in the
proof of Proposition 4.1, the Hodge index theorem still gives 1

2D
′ ·(D ′−K) < n−9

8 . Since D ·(D−K) = 2χ(D)−2,
we compute

D ′ · (D ′ −K) = 2χ(D)− 2+2G ·D −G ·K +G2 = 2χ(D)− 2+ k(n− k)
n

.

But k(n− k) = ℓ(n− ℓ), so we must have the inequality

χ(D)− 1+ ℓ(n− ℓ)
2n

=
1
2
D ′ · (D ′ −K) <

n− 9
8

.
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Solving the inequality for ℓ and recalling that by definition ℓ ≤ n/2, we get the required upper bound
on ℓ. □

In fact, the results in this section have the following partial converse, which will help us to find all the
divisors D .

Proposition 4.7. Suppose D = dH − (m + 1)E′ −mE′′ is a balanced effective divisor with 1 ≤ χ(D) < n−1
8 .

Assume m ≥ 0 and that D is ℓ steps away from having equal multiplicities, where

ℓ <
1
2

(
n−

√
(8χ(D) + 1)n

)
.

Then

2B ·D < B ·K.

Proof. First suppose that D ′ = dH−mE is a Q-divisor with d ≥ 0, m ≥ 0, and (2D ′−K)2 < 0. This inequality
is

(2d +3)2 −n(2m+1)2 < 0,

which factors as a difference of squares

((2d +3)−
√
n(2m+1))((2d +3) +

√
n(2m+1)) < 0.

The first factor in this product is just 1√
n
B · (2D ′ −K). The second factor is positive since d ≥ 0 and m ≥ 0,

so we conclude that B · (2D ′ −K) < 0 and 2B ·D ′ < B ·K .
Now letting D be the divisor in the statement of the proposition, we form a balanced Q-divisor D ′ with

the same average multiplicity as in the proof of Proposition 4.6. As in the proof of Proposition 4.6, we find
that

1
8
(2D ′ −K)2 =

1
2
D ′ · (D ′ −K) +

K2

8
= χ(D)− 1+ ℓ(n− ℓ)

2n
+
9−n
8

.

Our upper bound on ℓ then implies that (2D ′ − K)2 < 0, and by the argument in the first paragraph,
2B ·D ′ < B ·K . As B ·D ′ = B ·D, we are done. □

4.2. Ten through twelve points

When 10 ≤ n ≤ 12, it is now a matter of number theory to describe all the possible divisors D .

Theorem 4.8. For 10 ≤ n ≤ 12, we consider the sequence of convergents

p1
q1

,
p2
q2

,
p3
q3

,
p4
q4

, . . .

of the continued fraction expansion of
√
n. Here the odd convergents are less than

√
n, and the even convergents are

greater than
√
n.

(1) For any positive odd integer k, we let dk =
1
2 (pk − 3) and mk =

1
2 (qk − 1), and we define a divisor

Dk = dkH −mkE.

Then Dk is an (integral ) effective divisor with χ(Dk) = 1 and 2B ·Dk < B ·K .
(2) Suppose D is an effective divisor with χ(D) ≥ 1 and there is an ample divisor At with 2At ·D < At ·K .

Then there is a positive odd integer k such that D =Dk .

Proof. (1) The continued fraction expansion of
√
n is as follows:

√
10 = [3;6],

√
11 = [3;3,6],

√
12 = [3;2,6].
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We write a = 6/(n− 9), so that in every case
√
n = [3;a,6]. Then p1

q1
= 3

1 , and for odd k ≥ 3, we have the
recurrence

pk = 6pk−1 + pk−2,

qk = 6qk−1 + qk−2.

Thus for odd k, we have pk ≡ pk−2 (mod 2) and qk ≡ qk−2 (mod 2), so pk and qk are both odd. Therefore,
Dk is an integral divisor.

To show that Dk is effective, we will show that χ(Dk) = 1. Since χ(Dk) = 1 + 1
2Dk · (Dk −K), this is

equivalent to proving the equality

p2k −nq
2
k = (2Dk −K)2 = 4Dk · (Dk −K) +K2 = K2 = 9−n.

For k = 1, the equality is trivial. From the fact that the continued fraction expansion of
√
n has period

dividing 2, we can manipulate continued fractions to see that

pk+2
qk+2

=
(3a+1)pk + (9a+6)qk

apk + (3a+1)qk
.

Here the numerator and denominator are already coprime because the matrix
(
3a+1 9a+6
a 3a+1

)
has determinant

1, so for k odd, we have the recurrence

pk+2 = (3a+1)pk + (9a+6)qk ,

qk+2 = apk + (3a+1)qk .

Then we compute

p2k+2 −nq
2
k+2 = ((3a+1)pk + (9a+6)qk)

2 −n(apk + (3a+1)qk)
2

= (a(6− (n− 9)a) + 1)p2k
+2(3a+1)(6− (n− 9)a)pkqk
+ ((9a+6)(6− (n− 9)a)−n)q2k

= p2k −nq
2
k .

Here the second equality is a direct computation, and the third follows since a = 6/(n− 9). Thus p2k −nq
2
k =

9−n holds in every case.
Next we show that 2B ·Dk < B ·K . Let t = nqk/pk . Since pk/qk <

√
n, we have t >

√
n. Then 2Dk and K

have the same At-slope:

At · (2Dk −K) = tpk −nqk = 0.

As t decreases to
√
n, we get the required inequality.

(2) Let D be an effective divisor with χ(D) ≥ 1 and 2At ·D < At ·K . By Proposition 4.6, it takes the form
D = dH −mE. Since χ(D) = 1, we have D · (D −K) = 0, and

(2d +3)2 −n(2m+1)2 = (2D −K)2 = 4D · (D −K) +K2 = K2 = 9−n.

Thus (x,y) = (2d +3,2m+1) is a positive solution to the generalized Pell’s equation

x2 −ny2 =N

with N = 9− n < 0. It is known that when |N | <
√
n (which holds here since 10 ≤ n ≤ 12), every positive

solution (x,y) to this equation is of the form (x,y) = (pk ,qk) (see [Sho67, Theorem 20, p. 204]). For k even,
we have p2k −nq

2
k > 0. Therefore, there must be an odd integer k such that D =Dk . □

When 10 ≤ n ≤ 12, we can now give a complete list of all the possible curves D . They are closely related
to the odd convergents in the continued fraction expansion of

√
n.
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Remark 4.9. For n = 10, the convergents in the continued fraction expansion of
√
10 are

3
1
,
19
6
,
117
37

,
721
228

,
4443
1405

,
27379
8658

,
168717
53353

, . . . .

The odd terms in this sequence give the corresponding divisors

O, 57H − 18E, 2220H − 702E, 84357H − 26676E, . . . .

When n = 11, the convergents in the continued fraction expansion of
√
11 are

3
1
,
10
3
,
63
19

,
199
60

,
1257
379

,
3970
1197

,
25077
7561

, . . . ,

and the corresponding divisors are

O, 30H − 9E, 627H − 189E, 12537H − 3780E, . . . .

Finally, when n = 12, the convergents in the continued fraction expansion of
√
12 are

3
1
,
7
2
,
45
13

,
97
28

,
627
181

,
1351
390

,
8733
2521

, . . . ,

with corresponding divisors

O, 21H − 6E, 312H − 90E, 4365H − 1260E, . . . .

4.3. Thirteen through seventeen points

For the blowup at 13 to 17 points, divisors D must still be balanced, but they are no longer required to
have equal multiplicities. This makes the classification more complicated, but it is still tractable in each
case. It becomes necessary to solve several quadratic Diophantine equations, according to how unequal the
multiplicities can be. We discuss the cases n = 13 and n = 16 in more detail; the remaining cases can be
handled identically.

Example 4.10. Let n = 13. Here we classify the effective divisors D such that χ(D) ≥ 1 and 2At ·D ≤ At ·K
for some ample divisor At . We know that D must have χ(D) = 1 and that D is balanced. Furthermore,
D is at most one step away from having equal multiplicities (see Proposition 4.6). Then D has the form
D = dH −mE′ − (m− 1)E′′ , where E′ is a sum of n− k exceptional divisors, E′ +E′′ = E, and k is one of
0,1, or 12. We must have

(2D −K)2 = 4D · (D −K) +K2 = K2 = −4.
Considering the three possible values for k separately gives us three possible Diophantine equations to solve.
Conversely, note that χ(D) can be determined from (2D −K)2, so that each solution to the Diophantine
equations will necessarily give a divisor D with χ(D) = 1. Proposition 4.7 furthermore shows that the
solutions with d ≥ 0 and m ≥ 1 give divisors D satisfying 2B ·D < B ·K , and so 2At ·D ≤ At ·K for some
ample At if we are assuming the Nagata conjecture.

In more detail, we can expand the equation (2D −K)2 = 9−n to obtain

(2d +3)2 − 13(2m+1)2 +8km = −4.

Specializing to the values k = 0,1,12 gives the three associated equations:

k = 0 : (2d +3)2 − 13(2m+1)2 = −4,
k = 1 : (2d +3)2 − 13(2m+1)2 +8m = −4,

k = 12 : (2d +3)2 − 13(2m+1)2 +96m = −4.
Quadratic Diophantine equations like this can be solved using Lagrange’s method to transform them to
generalized Pell’s equations. We used the online Alpertron generic two integer variable equation solver(1) to
find all the solutions in each case.

(1)https://www.alpertron.com.ar/QUAD.HTM
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Case k = 0. In this case, there are four fundamental solutions (d,m) = (−3,0), (0,0), (0,−1), and (−3,−1)
(note that the third and fourth solutions can be obtained from the first two by Serre duality). Given a solution
(d,m), new solutions can be obtained by applying the transformation

(d,m) 7−→ (649d +2340m+2142,180d +649m+594)

or the inverse of this transformation. In this way, each fundamental solution gives rise to infinitely many
solutions indexed by the integers. The solutions fit into the following chains:

· · · 7−→ (−2782263,771660) 7−→ (−2145,594) 7−→ (−3,0) 7−→ (195,54) 7−→ (255057,70740) 7−→ · · · ,

· · · 7−→ (−255060,70740) 7−→ (−198,54) 7−→ (0,0) 7−→ (2142,594) 7−→ (2782260,771660) 7−→ · · · ,
· · · 7−→ (2782260,−771661) 7−→ (2142,−595) 7−→ (0,−1) 7−→ (−198,−55) 7−→ (−255060,−70741) 7−→ · · · ,
· · · 7−→ (255057,−70741) 7−→ (195,−55) 7−→ (−3,−1) 7−→ (−2145,−595) 7−→ (−2782263,−771661) 7−→ · · · .
Out of all the solutions, the ones giving rise to effective divisors with 2B ·D < B ·K are the rightward chains

(0,0) 7−→ (2142,594) 7−→ (2782260,771660) 7−→ · · · ,

(195,54) 7−→ (255057,70740) 7−→ (331065735,91821114) 7−→ · · · .
The corresponding divisors D come from two infinite families beginning with

(I) O, 2142H − 594E, 2782260H − 771660E, . . .

and

(II) 195H − 54E, 255057H − 70740E, 331065735H − 91821114E, . . . .

Case k = 1. This time there are two fundamental solutions (−3,0), (0,0), and the recurrence transformation
is

(d,m) 7−→ (−649d − 2340m− 1965,−180d − 649m− 545).
The fundamental solutions fit into the chains

· · · 7−→ (−2548623,706860) 7−→ (1962,−545) 7−→ (−3,0) 7−→ (−18,−5) 7−→ (21417,5940) 7−→
7−→ (−27801198,−7710665) 7−→ (36085931637,10008436680) 7−→ · · ·

and

· · · 7−→ (−21420,5940) 7−→ (15,−5) 7−→ (0,0) 7−→ (−1965,−545) 7−→ (2548620,706860) 7−→
7−→ (−3308108745,−918504285) 7−→ (4293922600440,1190919854520) 7−→ · · · .

In each case, the geometrically relevant solutions are the ones obtained from the fundamental solutions
by applying the recurrence an even number of times. Note that (0,0) is actually a geometrically relevant
solution, corresponding to the divisor E13. Up to permuting the exceptional divisors, the corresponding
divisors D form two infinite families beginning with

(III)
21417H − 5940E1,...,12 − 5939E13,

36085931637H − 10008436680E1,...,12 − 10008436679E13, . . .

and

(IV) E13, 2548620H − 706860E1,...,12 − 706859E13, . . . .

Case k = 12. This case is very similar to the previous. The fundamental solutions are again (−3,0) and
(0,0), and there is a recurrence

(d,m) 7−→ (−649d − 2340m+15,−180d − 649m+5).

We get chains of solutions

· · · 7−→ (0,0) 7−→ (15,5) 7−→ (−21420,−5940) 7−→ (27801195,7710665) 7−→ · · ·
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and

· · · 7−→ (−3,0) 7−→ (1962,545) 7−→ (−2548623,−706860) 7−→ (3308108742,917504285) 7−→ · · · .

In each case, applying the transformation an odd number of times to the fundamental solution gives a
solution of geometric significance, and we get two infinite families of divisors beginning with the divisors

(V) 15H − 5E1 − 4E2,...,13, 27801195H − 7710665E1 − 7710664E2,...,13, . . .

and

(VI) 1962H − 545E1 − 544E2,...,13, 3308108742H − 917504285E1 − 917504284E2,...,13, . . . .

The solution (0,0) corresponds to the divisor E2,...,13, which does not satisfy 2B ·D < B ·K .

Theorem 4.11. Let n = 13. If D is an effective divisor with χ(D) ≥ 1 such that 2At ·D < At ·K holds for some
ample divisor At , then D comes from one of the six infinite families (I)–(VI) discussed above. Conversely, if the
Nagata conjecture holds for n = 13, then the divisors in these six families are precisely the effective divisors D with
χ(D) = 1 such that 2B ·D < B ·K .

Example 4.12. Let n = 16. Since the Nagata conjecture is true for 16 points, our results here are sharper,
and we can completely classify effective divisors D such that χ(D) ≥ 1 and 2B ·D < B ·K .

The method is the same as the method for n = 13: we find several quadratic Diophantine equations and
determine all their solutions. However, these Diophantine equations turn out to only have finitely many
solutions, so our answer is considerably more concrete.

Suppose D has χ(D) ≥ 1 and 2B ·D < B ·K . We know χ(D) = 1 and D is balanced. Furthermore, by
Proposition 4.6, it is at most one step away from having equal multiplicities. Write D = dH −mE′− (m−1)E′′
as in the previous example. Then the Diophantine equation (2D −K)2 = 9−n becomes

(2d +3)2 − 16(2m+1)2 +8km = −7.

We need to find all solutions for k = 0,1,15.
Note that the pairs (d,m) = (0,0) and (−3,0) are solutions for every k. The solution (−3,0) is not

geometrically relevant. On the other hand, (0,0) corresponds to a sum of k exceptional divisors. This
will satisfy 2B ·D < B ·K = 4 only if k is 0 or 1. In what follows, we ignore these solutions and search for
additional solutions.
Case k = 0. The only additional solutions are (0,−1), (−3,−1). Neither is geometrically relevant.
Case k = 1,15. There are no additional solutions.
We summarize the discussion in the following theorem.

Theorem 4.13. Let n = 16. The only effective divisors D with χ(D) ≥ 1 and 2B ·D < B ·K are O and the
exceptional divisors Ei .

4.4. Twenty-five points

Here we classify the effective divisors D with χ(D) ≥ 1 and 2B ·D < B ·K when n = 25. Again in this
case, the Nagata conjecture holds and B = 5H −E is nef.

Example 4.14. Let n = 25, and suppose D is an effective divisor with χ(D) ≥ 1 and 2B ·D < B ·K . By
Proposition 4.1, we have 1 ≤ χ(D) ≤ 2.

First suppose χ(D) = 2. By Proposition 4.4, we know that D has balanced multiplicities, and by
Proposition 4.6, we know that D is at most two steps away from having equal multiplicities. The equality
χ(D) = 2 is equivalent to (2D −K)2 = 8χ(D)− 8+K2 = −8. Writing D = dH −mE′ − (m− 1)E′′ as in the
previous example, we have the Diophantine equation

(2d +3)2 − 25(2m+1)2 +8km = −8,
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and we must find solutions when k = 0,1,2,23,24. The only solutions are when (d,m,k) takes the following
values:

(1,−1,1), (−4,−1,1), (−4,1,24), (1,1,24).
Only the solution (1,1,24) is relevant, and it corresponds to the divisors of the form H −Ei for some i.

Theorem 4.15. Let n = 25. The only effective divisors D with χ(D) ≥ 2 and 2B ·D < B ·K are the divisors
H −Ei .

In the rest of the paper, we will only need our classification when χ(D) = 2, but we briefly state the
classification for χ(D) = 1 for completeness. Here we have to allow for the possibility that D does not have
balanced multiplicities since Proposition 4.4 only guarantees that the multiplicities of D are at most one step
away from being balanced. If D does not have balanced multiplicities, then the balanced divisor D1 obtained
from D will satisfy χ(D1) ≥ 2 and 2B ·D1 < B ·K . But then we must actually have χ(D1) = 2, and D1 must
be of the form H − Ei from the previous case. For the divisor D to have χ(D) = 1 and become equal to
H −Ei after a single rebalancing step, we must have that D is of the form H −Ei −Ej +Ek for distinct i, j,k.

The other possibility is that D does have balanced multiplicities. By Proposition 4.6, the multiplicities
of D are at most four steps away from being equal. Using the methods from the previous classifications, we
list all the divisors D satisfying χ(D) ≥ 1 and 2B ·D < B ·K in the following table, ordered so that tD is
decreasing. For brevity, we only list divisor classes up to permutations of the exceptional divisors.

D 2B ·D χ(D) tD
O 0 1 25/3
E1 2 1 23/3
E12 4 1 7
E123 6 1 19/3

H −E12 6 1 29/5
E1234 8 1 17/3

H −E12 +E3 8 1 27/5
H −E1 8 2 27/5

6H − 2E1 −E2,...,25 8 1 77/15

5. Cohomological properties of D and the SHGH conjecture

When we analyze stability, we will need to know various cohomological properties about the divisors D .
To analyze these, we will assume the SHGH conjecture.

Lemma 5.1. (Assume SHGH ) Suppose 10 ≤ n ≤ 16. Then there is no reduced, irreducible curve D satisfying

4B ·D < B ·K.

Proof. Suppose there is such a reduced, irreducible curve D . By the SHGH conjecture, χ(D) ≥ 1. Since
4B ·D < B ·K , we also have 2B ·D < B ·K , so Proposition 4.1 gives χ(D) = 1. We now consider three cases
based on the value of D2.
Case 1: D2 > 0. In this case, 2D is an effective divisor satisfying 2B · 2D < B ·K , and

χ(2D) = 2χ(D) +D2 − 1 ≥ 2.

This contradicts Proposition 4.1.
Case 2: D2 < 0. In this case, the SHGH conjecture implies D is a (−1)-curve, so D2 = −1 and D ·K = −1.

We write

B = −K + (
√
n− 3)H
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and conclude that
B ·D = 1+ (

√
n− 3)H ·D ≥ 1.

Since n ≤ 16, we have B ·K = n− 3
√
n ≤ 4, so 4B ·D ≥ B ·K .

Case 3: D2 = 0. Since χ(D) = 1, we find that D ·K = 0. Thus D has arithmetic genus 1, and D ·H ≥ 3.
Using the above decomposition of B shows

B ·D = (
√
n− 3)H ≥ 3(

√
n− 3).

Then 12(
√
n− 3) = 4B ·D ≥ B ·K = n− 3

√
n is seen to hold as long as 9 ≤ n ≤ 144. □

Theorem 5.2. (Assume SHGH ) Suppose 10 ≤ n ≤ 16. If D is an effective divisor with 2B ·D < B ·K , then D is
a reduced, irreducible curve with h0(O(D)) = 1 and h1(O(D)) = h2(O(D)) = 0.

Proof. If D is not reduced and irreducible, then we can write it as D =D ′ +D ′′ +D ′′′ , where D ′ and D ′′ are
reduced and irreducible curves and D ′′′ is effective (possibly empty). Since 2B ·D < B ·K , at least one of
4B ·D ′ or 4B ·D ′′ is less than B ·K , contradicting Lemma 5.1. Therefore, D is a reduced and irreducible
curve. By the SHGH conjecture, χ(D) ≥ 1, so Proposition 4.1 gives χ(D) = 1. The cohomology of D then
follows from the SHGH conjecture. □

When analyzing the tangent space to the moduli space, we will need to understand the cohomology of
O(2D), so we now compute this.

Corollary 5.3. (Assume SHGH ) Let 10 ≤ n ≤ 16, and suppose D is an effective divisor with 2B ·D < B ·K .
(1) If D is not an exceptional divisor Ei , then h0(2D) ≥ 1 and h1(2D) = h2(2D) = 0.
(2) If D is an exceptional divisor Ei , then h0(2Ei) = h1(2Ei) = 1 and h2(2Ei) = 0.

Proof. Statement (2) is clear.
(1) By Theorem 5.2, we just need to make sure that D is not a (−1)-curve. If D is a (−1)-curve, so

D2 = −1 and D ·K = −1, then as in the proof of Lemma 5.1, we have

2B ·D = 2+ (2
√
n− 6)H ·D < n− 3

√
n = B ·K.

This implies

H ·D <
n− 3

√
n− 2

2
√
n− 6

,

but since 10 ≤ n ≤ 16, this inequality implies H ·D < 1. The only such (−1)-curves are the exceptional
divisors. □

Finally, we also compute the cohomology of O(2D −K) because bundles of type D are parameterized by
an extension class in Ext1(K(−D),O(D)) �H1(O(2D −K)).

Proposition 5.4. (Assume SHGH ) Let 10 ≤ n ≤ 16, and suppose D is an effective divisor with 2B ·D < B ·K .
The line bundle O(2D −K) has no h0 or h2, and its h1 is nonzero unless D is trivial and n = 10.

Proof. Since 2B ·D < B ·K , we have At · (2D −K) < 0 for t slightly greater than
√
n, so 2D −K is not effective.

There is no h2 because the coefficient of H is positive. Thus χ(O(2D −K)) ≤ 0, and it remains to show that
the inequality is strict unless D is trivial and n = 10. We use Riemann–Roch to write

χ(O(2D −K)) = 1+
1
2
(2D −K) · (2D − 2K) = 1+

1
2
(2D −K)2 +

1
2
(2D −K) · (−K).

Since χ(D) = 1, we know that
(2D −K)2 = K2 = 9−n ≤ −1.

Since −K = A3, the inequality 2B ·D < B ·K also implies 2A3 ·D < A3 ·K , so

(2D −K) · (−K) ≤ −1.
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In order to have χ(O(2D −K)) = 0, we must then have both n = 10 and (2D −K) · (−K) = −1.
When n = 10, we have fully classified the possible divisors D using the odd convergents in the continued

fraction expansion of
√
10. Suppose k ≥ 3 is odd and D =Dk in the classification of Theorem 4.8. Then

2Dk −K = pkH − qkE

and

(2Dk −K) · (−K) = 3pk − 10qk = qk

(
3
pk
qk
− 10

)
< qk

(
3
√
10− 10

)
≈ −0.51qk .

Since k ≥ 3, we have qk ≥ 37, so (2D −K) · (−K) is less than −1. □

Remark 5.5. Let 10 ≤ n ≤ 12, and let Dk be the divisor of Theorem 4.8. To avoid the special case D = O,
we may as well assume k ≥ 3. By a similar analysis, we can give a formula for χ(O(2Dk −K)) which shows
more explicitly how this quantity grows with k. As in the proof of the lemma, we have

χ(O(2Dk −K)) = 1+
9−n
2

+
1
2
(3pk −nqk).

We estimate the final term from above as

3pk −nqk = qk

(
3
pk
qk
−n

)
< qk

(
3
√
n−n

)
.

The error in this approximation is only

qk(3
√
n−n)− qk

(
3
pk
qk
−n

)
= 3qk

(√
n−

pk
qk

)
< 1.

Here in the final step we have used the well-known fact, see [Dav99, Section IV.6], that the convergents of
the continued fraction expansion of a real number x satisfy∣∣∣∣∣x − pk

qk

∣∣∣∣∣ < 1
qkqk+1

,

together with the observation that qk+1 is considerably greater than 3 since k ≥ 3. Thus in fact

3pk −nqk =
⌊
qk(3
√
n−n)

⌋
and

χ(O(2Dk −K)) =
1
2

(
11−n+

⌊
qk

(
3
√
n−n

)⌋)
.

The Euler characteristic χ(O(2Dk −K)) has the same growth rate as the denominators of the continued
fractions of

√
n.

6. Stability, components, and the SHGH conjecture

Throughout this section, we assume the SHGH conjecture holds, and we prove our main theorems on the
components of the moduli spaces MAt

(v), where v = (r, c1,χ) = (2,K,2) and 10 ≤ n ≤ 16. These spaces are
particularly nice because this is the maximal possible value of the Euler characteristic χ. We will see that
this causes the moduli spaces to be smooth and the irreducible components to be disjoint from one another.
It also causes every semistable sheaf to be a vector bundle, so the moduli space is stratified by the type of a
bundle.

Lemma 6.1. Every µAt
-semistable sheaf V with rank 2 and c1 = K has χ(V ) ≤ 2. In particular, every

µAt
-semistable sheaf of character v = (2,K,2) is a vector bundle.
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Proof. Let V be a µAt
-semistable sheaf with rank 2 and c1 = K , and suppose χ(V ) ≥ 2. Let W = V ∗∗ be the

double dual. Then there is an exact sequence

0 −→ V −→W −→ T −→ 0,

where T is torsion and (at most) zero-dimensional. Then W is a µAt
-semistable vector bundle with rank

2 and c1 = K . Furthermore, χ(W ) ≥ χ(V ) ≥ 2, so W has a type D . By Propositions 3.9 and 4.1, we have
χ(O(D)) ≤ 1 and therefore χ(W ) ≤ 2. But then χ(W ) = χ(V ) = 2, so χ(T ) = 0 and T = 0 and V =W is a
vector bundle. □

For the rest of the section, let 10 ≤ n ≤ 16 and v = (r, c1,χ) = (2,K,2). We let D be a (possibly trivial)
effective divisor satisfying χ(D) = 1 and 2B ·D < B ·K . We denote by V any bundle of character v and type
D given by a nonsplit extension

0 −→O(D) −→ V −→ K(−D) −→ 0.

6.1. Stability

We next study the stability of V . Stability behaves slightly differently for the trivial type D = O and
nontrivial types, where D is actually effective. We focus on the latter case first.

Proposition 6.2. (Assume SHGH ) If D is nontrivial, then V is µAt
-stable for all t such that

√
n < t < tD .

Proof. Suppose that
√
n < t < tD and that V is not µAt

-stable. Then there is a saturated line subbundle
L ⊂ V with µAt

(L) > µAt
(V ). The bundle V is a nonsplit extension

0 −→O(D) −→ V −→ K(−D) −→ 0,

and the assumption t < tD gives µAt
(O(D)) < µAt

(K(−D)). Then the composition L→ V → K(−D) must
be nonzero, for otherwise there would be an inclusion L→O(D). Thus L takes the form K(−D ′) for an
effective divisor D ′ , and D ′ −D must be nontrivial (otherwise V is split) and effective. In particular, by
summing a curve of class D ′ −D and one of class D, it follows that D ′ can be represented by a nonintegral
curve. However, the inequality µAt

(L) > µAt
(V ) reads

At · (K −D ′) >
1
2
At ·K,

or

2At ·D ′ < At ·K.

This implies 2B ·D ′ < B ·K . Additionally, V fits in an exact sequence

0 −→ K(−D ′) −→ V −→O(D ′) −→ 0,

which forces χ(D ′) ≥ 1. This all contradicts Theorem 5.2. □

Proposition 6.3. (Assume SHGH ) Suppose D = O is trivial and V is a nonsplit bundle of type O. (This implies
n ≥ 11.)

(1) If n = 11 or 12, then V is µAt
-stable for every t with

√
n < t < tO = n

3 .
(2) If 13 ≤ n ≤ 16, then the same result is true except that there are n points in PExt1(K,O) parameterizing

bundles V which are only µAt
-stable if t satisfies n−2

3 = tE1
< t < tO . These points are given by the images

of the inclusions of 1-dimensional spaces

Hom(K,OEi
(−1)) −→ Ext1(K,O).
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Proof. We begin as in the previous proof. If there is a t with
√
n < t < tO such that V is not µAt

-stable,
then there is a saturated line subbundle of V of the form K(−D ′), where D ′ is a nontrivial effective divisor
satisfying 2B ·D ′ < B ·K and χ(D ′) = 1. Also, V fits as an extension

0 −→ K(−D ′) −→ V −→O(D ′) −→ 0,

and this extension cannot be split since then V would have both type O and type D ′ . However,
Ext1(O(D ′),K(−D ′)) = H1(K(−2D ′)) = H1(O(2D ′)). By Corollary 5.3, the only way this is nonzero is
if D ′ is one of the exceptional divisors Ei .

(1) When n = 11 or 12, the exceptional divisors do not satisfy 2B ·Ei < B ·K , so V is always stable.
(2) Suppose 13 ≤ n ≤ 16. Fix one of the exceptional divisors; without loss of generality say it is E1.

We seek to describe the extension classes e ∈ Ext1(K,O) such that the corresponding bundle V admits a
nonzero map to O(E1).

From the defining sequence
0 −→O −→ V −→ K −→ 0

and the restriction sequence
0 −→O −→O(E1) −→OE1

(−1) −→ 0,

we get the following commuting diagram which has exact rows and columns:

Ext1(K,OE1
(−1))

Hom(K,O(E1)) // Hom(V ,O(E1)) // Hom(O,O(E1)) // Ext1(K,O(E1))

OO

Hom(V ,O) //

OO

Hom(O,O) //

OO

Ext1(K,O)

OO

0 //

OO

Hom(K,OE1
(−1))

OO

Hom(K,O(E1)).

OO

We can compute many of the terms in this diagram to get a diagram

0

0 // Hom(V ,O(E1)) //
C

//
C
n−11

OO

0 //

OO

C
//

�

OO

C
n−10

OO

0 //

OO

C

OO

0.

OO

Then Hom(V ,O(E1)) is nonzero if and only if the map

Hom(O,O(E1)) −→ Ext1(K,O(E1))
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is zero, which holds if and only if the composition

Hom(O,O) −→Hom(O,O(E1)) −→ Ext1(K,O(E1))

is zero. This composition is the same as the composition

Hom(O,O) −→ Ext1(K,O) −→ Ext1(K,O(E1)),

and this is zero if and only if the image of the first map is contained in the kernel of the second. The image
of the first map is the 1-dimensional subspace of Ext1(K,O) determined by the bundle V , and the kernel of
Ext1(K,O)→ Ext1(K,O(E1)) is 1-dimensional. Therefore, Hom(V ,O(E1)) is nonzero if and only if V is
the bundle defined by an extension class in the 1-dimensional image of the canonical map

C �Hom(K,OE1
(−1)) −→ Ext1(K,O).

Such a bundle is not µAt
-stable for any t with t ≤ tE1

because the map V →O(E1) would destabilize V .
Additionally, we note that if V fits in the exact sequence

0 −→ K(−Ei) −→ V −→O(Ei) −→ 0,

then Hom(V ,O(Ej )) = 0 for i , j since n ≥ 13. Therefore, the n points in PExt1(K,O) corresponding to
such bundles are distinct. □

6.2. Tangent space

Now that we have determined when nonsplit bundles V of type D are stable, we investigate the components
of the moduli space given by bundles of the various types. The tangent space to the moduli space at V is
given by Ext1(V ,V ), so we compute this space now.

Lemma 6.4. (Assume SHGH ) The spaces Exti(V ,V ) have dimensions given as follows:

(1) If D is not one of the exceptional divisors Ei , then we have

hom(V ,V ) = 1,

ext1(V ,V ) = −χ(2D −K)− 1,

ext2(V ,V ) = χ(2D).

(2) In particular, if n ≥ 11 and D = O, we get

hom(V ,V ) = 1,

ext1(V ,V ) = n− 11,

ext2(V ,V ) = 1.

(3) If D = Ei (which forces n ≥ 13), then we also have

hom(V ,V ) = 1,

ext1(V ,V ) = n− 11,

ext2(V ,V ) = 1.

Proof. Let V be a nonsplit bundle of type D, given by a nonsplit extension as

0 −→O(D) −→ V −→ K(−D) −→ 0.
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We first apply Hom(−,O(D)) to this sequence. We display the dimensions exti(A,B) for the relevant pairs
(A,B) of objects in the following table:

(K(−D),O(D)) (V ,O(D)) (O(D),O(D))
hom 0 −→ 0 → 1
ext1 −→ −χ(2D −K) −→ −χ(2D −K)− 1 −→ 0
ext2 −→ 0 −→ 0 −→ 0

Here the first column of values exti(K(−D),O(D)) are given by hi(O(2D − K)), which were computed
in Proposition 5.4. The third column is clear, and the map Hom(O(D),O(D))→ Ext1(K(−D),O(D)) is
injective because V is nonsplit. The values of exti(V ,O(D)) follow.

Let e be 0 if D is not exceptional, and let e be 1 if D is exceptional. Then by Corollary 5.3, the line bundle
O(2D) has h1(O(2D)) = e and h2(O(2D)) = 0. When we apply Hom(−,K(−D)) to the sequence, we get the
following cohomology since in the third column, we have exti(O(D),K(−D))) = hi(K(−2D)) = h2−i(O(2D)):

(K(−D),K(−D)) (V ,K(−D)) (O(D),K(−D))
hom 1 −→ 1 −→ 0
ext1 −→ 0 −→ e −→ e
ext2 −→ 0 −→ h0(O(2D)) −→ h0(O(2D))

Finally, we apply Hom(V ,−) to the sequence and get the following table:

(V ,O(D)) (V ,V ) (V ,K(−D))
hom 0 −→ 1 −→ 1
ext1 −→ −χ(2D −K)− 1 −→ −χ(2D −K)− 1+ e −→ e
ext2 −→ 0 −→ h0(O(2D)) −→ h0(O(2D))

Clearly hom(V ,V ) ≥ 1, but Hom(V ,V )→ Hom(V ,K(−D)) is an injection and hence an isomorphism.
The rest of the table is immediate. This proves part (1), and specializing to the situations of (2) and (3)
completes the proof. □

6.3. Components of nontrivial type

In fact, each nontrivial type D other than the exceptional divisors Ei gives rise to a disjoint component of
the moduli space MAt

(v) whenever t < tD , and this component is a projective space of extensions.

Theorem 6.5. (Assume SHGH ) Assume that D is not trivial or one of the exceptional divisors Ei . If
√
n < t < tD ,

then the nonsplit bundles of type D sweep out an irreducible component of MAt
(2,K,2) which is isomorphic to the

projective space

PExt1(K(−D),O(D)) � PH1(O(2D −K)) � P
−χ(2D−K)−1.

This component is disjoint from all other components of the moduli space.

Proof. By Proposition 6.2, every nonsplit extension

0 −→O(D) −→ V −→ K(−D) −→ 0

of K(−D) by O(D) gives rise to an At-stable bundle of type D . Then the universal extension over
PExt1(K(−D),O(D)) induces a natural morphism

φ : PExt1(K(−D),O(D)) −→MAt
(2,K,2).

To complete the proof, it suffices to show that φ is an injection and an isomorphism on tangent spaces.
In the proof of Lemma 6.4, we showed that Hom(V ,K(−D)) = C. It follows that if V fits as an extension

of K(−D) by O(D) in two different ways, then the corresponding classes in Ext1(K(−D),O(D)) are multiples
of each other. Therefore, φ is injective.
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Let V be given by the extension class e ∈ Ext1(K(−D),O(D)), and let [e] denote its image in
PExt1(K(−D),O(D)). We let

φ̃ : Ext1(K(−D),O(D)) \ {0} −→MAt
(2,K,2)

be the composition of the quotient map Ext1(K(−D),O(D)) \ {0} → PExt1(K(−D),O(D)) and φ. Then the
derivative dφ̃e factors as the composition of the natural maps

Ext1(K(−D),O(D))
α−→ Ext1(K(−D),V )

β
−→ Ext1(V ,V )

coming from applying various Hom functors to the defining sequence of V . The map α fits into the sequence

Ext1(K(−D),O(D))
α−→ Ext1(K(−D),V ) −→ Ext1(K(−D),K(−D)) = 0,

so α is surjective. The map β fits into the sequence

Ext1(K(−D),V )
β
−→ Ext1(V ,V ) −→ Ext1(O(D),V ),

and therefore β is surjective since we compute Ext1(O(D),V ) =H1(V (−D)) = 0 from the sequence

H1(O) −→H1(V (−D)) −→H1(K(−2D)),

where H1(K(−2D)) =H1(O(2D)) = 0 by Corollary 5.3.
We conclude that dφ̃e is surjective, with Ce contained in its kernel. The tangent space to

PExt1(K(−D),O(D)) at [e] is naturally identified with Ext1(K(−D),O(D))/Ce, and dφ̃e factors through
dφ[e] to show that

dφ[e] : Ext
1(K(−D),O(D))/Ce −→ Ext1(V ,V )

is surjective. These spaces have the same dimension by Lemma 6.4, so dφ[e] is an isomorphism. This
completes the proof. □

6.4. The component of trivial type

When n = 11 or 12, bundles of trivial type again sweep out a component.

Theorem 6.6. (Assume SHGH ) Suppose n = 11 or 12. For any t with
√
n < t < tO , the nonsplit bundles of type

O sweep out a component of MAt
(2,K,2) isomorphic to PExt1(K,O) � P

n−11.

Proof. The proof is the same as that of Theorem 6.5, using Proposition 6.3(1) to establish stability of nonsplit
extensions. □

On the other hand, bundles of type Ei complicate the picture for 13 ≤ n ≤ 16. Nevertheless, we completely
identify the moduli space in this case.

Theorem 6.7. (Assume SHGH ) Suppose 13 ≤ n ≤ 16.

(1) For any t with tE1
< t < tO , the nonsplit bundles of type O sweep out a component of MAt

(2,K,2)
isomorphic to PExt1(K,O) � P

n−11.
(2) For any t with

√
n < t < tE1

, the component of MAt
(2,K,2) containing stable bundles of type O consists

of all the stable bundles of type O together with the nonsplit bundles of each type Ei . This component is
isomorphic to the blowup of the projective space PExt1(K,O) at the n points determined by the canonical
inclusions of 1-dimensional spaces

Hom(K,OEi
(−1)) −→ Ext1(K,O),

and it is disjoint from all other components.
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Proof. (1) The proof is the same as that of Theorem 6.6.
(2) We know from Theorem 6.5 that components of the moduli space parameterizing bundles of types D

other than O or Ei are disjoint from any components which parameterize a bundle of type O or Ei . Thus we
can let M ⊂MAt

(2,K,2) be the subscheme parameterizing any bundles of type O or Ei . By Lemma 6.4, the
tangent space of M has dimension n− 11 at every point V ∈M .

Let us write q1, . . . , qn for the n points in PExt1(K,O) corresponding to the inclusionsHom(K,OEi
(−1))→

Ext1(K,O). Then M is projective and contains the subvariety

U = PExt1(K,O) \ {q1, . . . , qn} ⊂M,

which parameterizes the µAt
-stable bundles of type O. Let Yi ⊂M be the locus of stable bundles of type Ei ,

so that each Yi is the bijective image of the projective space PExt1(K(−Ei),O(Ei)). Then M is the disjoint
union of U and the Yi .

The most important step of the proof is to construct the blowdown map π : M→ PExt1(K,O), which we
now describe. Every bundle V ∈M is either of type O or of type Ei , so fits in one of the sequences

0 −→O −→ V −→ K −→ 0

and
0 −→O(Ei) −→ V −→ K(−Ei) −→ 0.

In each case, V has a unique section, so we can canonically consider an exact sequence of the form

0 −→O −→ V −→ F −→ 0.

If V has type O, then the sheaf F is isomorphic to K . On the other hand, if V has type Ei , then F has a
torsion subsheaf OEi

(−1) and F is isomorphic to K(−Ei)⊕OEi
(−1) since there are no nontrivial extensions

of K(−Ei) by OEi
(−1). In either case, Hom(K,F) is a 1-dimensional space, and applying Hom(K,−) to the

sequence gives us an inclusion
0 −→Hom(K,F) −→ Ext1(K,O)

since Hom(K,V ) = 0. This inclusion therefore determines a point in PExt1(K,O), which we denote by
π(V ). Carrying out this construction in families defines a morphism π : M→ PExt1(K,O).

If V has type O, it is clear that π(V ) is precisely (the linear space spanned by) the extension class
defining V . Thus π acts on U by the natural inclusion U → PExt1(K,O).

Suppose that V has type Ei . Then we claim that π(V ) = qi . In fact, we have an isomorphism Hom(K,F) �
Hom(K,OEi

(−1)), so we just need to see that up to this isomorphism, the inclusion Hom(K,F)→ Ext1(K,O)
is the same map as the canonical inclusion Hom(K,OE1

(−1))→ Ext1(K,O). We have the following diagram
of short exact sequences:

0 // O // V // F // 0

0 // O // O(Ei)

OO

// OEi
(−1)

OO

// 0.

Applying Hom(K,−), we get the commutative square

Hom(K,F) // Ext1(K,O)

Hom(K,OEi
(−1)) //

�

OO

Ext1(K,O),

which shows that the image of Hom(K,F) in Ext1(K,O) is the subspace corresponding to qi .
Next we will show that M is smooth and irreducible. Since M has a component of dimension n − 11

and every tangent space of M has dimension n − 11, it suffices to show that M is connected. Consider
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any mapping of a smooth curve C → PExt1(K,O) having a point p ∈ C mapping to qi . Then the map
C \ {p} →M extends to a regular map C →M, and the point p maps to a point representing a bundle
of some type Ej . By the continuity of the map π, the only possibility is that j = i. The locus Yi is itself
connected, so we conclude that M is connected. Therefore, M is smooth.

By the universal property of the blowup, the map π : M→ PExt1(K,O) factors through the blowup of
PExt1(K,O) at {q1, . . . , qn} as

M −→ Blq1,...,qn PExt1(K,O) −→ PExt1(K,O).

The first map is a bijection between smooth varieties, so it is an isomorphism by Zariski’s main theorem. □

6.5. Summary of results

We briefly summarize our description of the moduli spaces MAt
(2,K,2) for 10 ≤ n ≤ 15, assuming that

the SHGH conjecture holds. In the next section, we will unconditionally describe the moduli space when
n = 16.

(1) If t > tO = n
3 , then the moduli space MAt

(2,K,2) is empty.
(2) If 11 ≤ n ≤ 15, a new component parameterizing bundles of type O arises when t decreases past

tO . This component is isomorphic to P
n−11, and the component persists as t decreases to

√
n. If

13 ≤ n ≤ 15, then as t decreases past tE1
= n−2

3 , this component is blown up at n points, with the
exceptional divisors parameterizing bundles of type Ei .

(3) For each nontrivial, nonexceptional effective divisor D satisfying χ(D) ≥ 1 and 2B ·D < B ·K , a new
component of MAt

(2,K,2) parameterizing bundles of type D arises when t decreases past tD . This
component is isomorphic to P

−χ(2D−K)−1, and it persists and is unmodified as t decreases to
√
n. All

components of the moduli space are disjoint from each other.

Example 6.8. For 10 ≤ n ≤ 12, our classification of the possible divisors D in terms of the continued fraction
expansion of

√
n allows us to easily list all the wall-crossings that arise in the following tables:

n = 10 n = 11

D tD New component

57H − 18E 370
117 P

8

2220H − 702E 14050
4443 P

359

84357H − 26676E 533530
168717 P

13688

...
...

...

D tD New component

O 11
3 P

0

30H − 9E 209
63 P

9

627H − 189E 4169
1257 P

198

12537H − 3780E 83171
25077 P

3969

...
...

...

n = 12

D tD New component

O 4 P
1

21H − 6E 52
15 P

10

312H − 90E 724
209 P

145

4365H − 1260E 10084
2911 P

2026

...
...

...

Example 6.9. Since we also have the classification of divisors D for n = 13, we can similarly list all the wall-
crossings in this case. The main additional complication is that D does not have to have equal multiplicities.
For such a D, when t decreases past tD , many components will simultaneously arise by permuting the
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multiplicities of D . We list, in order of decreasing tD , all of the wall-crossings where tD −
√
13 > 10−13. The

“type” indicates the infinite family that the divisor comes from in Theorem 4.11.

n = 13

D Type tD New components

O I 13
3 P

2

E1 IV 11
3 none; previous P2 blown up 13 times

15H − 5E1 − 4E2,...,13 V 119
33 13 copies of P10

195H − 54E II 1417
393 P

119

1962H − 545E1 − 544E2,...,13 VI 14159
3927 13 copies of P1189

2142H − 594E I 15457
4287 P

1298

21417H − 5950E1,...,12 − 5949E13 III 1181
327 13 copies of P12970

2782260H − 771660E I 20063173
5564523 P

1684802

255057H − 70740E II 1839253
510117 P

154451

2548620H − 706860E1,...,12 − 706859E13 IV 18378371
5097243 13 copies of P1543321

...
...

...
...

6.6. Smaller Euler characteristic

We have focused entirely on the moduli spaces MAt
(2,K,2) so far in this section, but our analysis makes it

easy to prove a qualitative statement about the components of MAt
(2,K,χ) for any χ ≤ 2. For concreteness,

we will restrict our attention to 10 ≤ n ≤ 12, although with a detailed analysis of the divisors D , it would be
easy to extend the statement to 10 ≤ n ≤ 15.

Theorem 6.10. (Assume SHGH ) Suppose 10 ≤ n ≤ 12 and χ is an integer with χ ≤ 2. Fix positive integers k
and r . There exists an ϵ > 0 such that if

√
n < t <

√
n+ ϵ, then the moduli space MAt

(2,K,χ) has at least k
irreducible components of dimension at least r .

Proof. As t approaches
√
n, the moduli space MAt

(2,K,2) gets components corresponding to the divisors
D3,D5,D7, . . .. We know that the dimensions of these components grow like the denominators in the
continued fraction expansion of

√
n by Remark 5.5. Then if t is sufficiently close to

√
n, we can arrange that

MAt
(2,K,2) has at least k irreducible components M1, . . . ,Mk of dimension at least r . Thus the theorem is

true for χ = 2. If χ < 2, we can additionally arrange that the difference in the dimensions between any two
of these components is as large as we want; for concreteness, let us say that any two of these components
differ in dimension by more than 2−χ. These components are projective spaces, and in particular they are
smooth.

Recall that if V is a torsion-free sheaf and p ∈ X is a point where V is locally free, then an elementary
modification of V at p is a sheaf V ′ fitting in a sequence

0 −→ V ′ −→ V −→Op −→ 0.

If V is µAt
-stable, then so is V ′ . Then the locus in MAt

(2,K,1) parameterizing the elementary modifications
of sheaves in M1 is irreducible, so lies in an irreducible component M ′1 of MAt

(2,K,1). By the analysis in
[CH18a, Section 3.3], the dimension of the component M ′1 satisfies

dimM1 +3 ≤ dimM ′1 ≤ dimM1 +4.
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Similarly, if we instead perform 2 − χ general elementary modifications to the bundles in M1, then the

resulting bundles will lie in an irreducible component M
(2−χ)
1 of MAt

(2,K,χ) whose dimension satisfies

dimM1 +3(2−χ) ≤ dimM
(2−χ)
1 ≤ dimM1 +4(2−χ).

If we carry out this process for each of the components M1, . . . ,Mk , we obtain a list of components

M
(2−χ)
1 , . . . ,M

(2−χ)
k of MAt

(2,K,χ). Our assumption on the dimensions of M1, . . . ,Mk implies that these
components each have distinct dimensions, and they all have dimension at least r . □

Remark 6.11. In contrast, if the polarization At is fixed but χ becomes arbitrarily negative, then the moduli
spaces MAt

(2,K,χ) become irreducible by O’Grady’s theorem; see [O’G96]. Thus it is necessary to choose
the polarization At after fixing the Euler characteristic χ in the previous theorem.

7. Moduli spaces for sixteen or twenty-five points

When n = 16, the results of the previous section can all be proven independently of the SHGH conjecture.
In this section, we indicate the modifications that need to be made to the arguments to remove this
dependency. We then also discuss the moduli space MAt

(2,K,4) when n = 25; by similar arguments, these
spaces can also be completely described, independently of the SHGH conjecture. We begin with the following
theorem, which summarizes our results in case n = 16.

Theorem 7.1. Let n = 16.

(1) For any t with tE1
< t < tO , the moduli space MAt

(2,K,2) is isomorphic to P5

(2) For any t with 4 < t < tE1
, the moduli space MAt

(2,K,2) is isomorphic to the blowup of P
5 at sixteen

points. Under the identification P
5 � PExt1(K,O), these sixteen points correspond to the images of the

inclusions Hom(K,OEi
(−1))→ Ext1(K,O).

Proof. We essentially have to repeat the sequence of arguments in Section 6, making modifications whenever
the SHGH conjecture was used. The conjecture was primarily used when appealing to Section 5 to determine
cohomological properties of possible divisors D which could lead to destabilizing objects. However, when
n = 16, we have the complete unconditional classification of divisors D satisfying χ(D) ≥ 1 and 2B ·D < B ·K
provided by Theorem 4.13: the only possible D are O and the Ei . For these divisors, the statements in
Section 5 become trivial, so this will be fairly straightforward.

In the proof of Proposition 6.2, if a bundle of type Ei is destabilized, then it is destabilized by a line
bundle K(−D ′) such that D ′ −Ei is nontrivial effective, 2At ·D ′ < At ·K , and χ(D ′) ≥ 1. By Theorem 4.13,
there are no such possible D ′ .

Similar modifications can be made to the first paragraph of the proof of Proposition 6.3, and the rest of
the proof of that proposition does not refer to SHGH.

The only portion of Lemma 6.4 that is relevant is part (3), which clearly holds without SHGH.
Theorem 6.5 only discusses components corresponding to nontrivial, nonexceptional divisors D satisfying

χ(D) ≥ 1 and 2B ·D < B ·K ; as there are no such divisors, the moduli space does not have any additional
components.

The proof of Theorem 6.7 makes use of the previous results from Section 6, but does not make any
additional use of SHGH. □

Next we consider the case n = 25 and the moduli space MAt
(2,K,4). Note that the maximal Euler

characteristic of an effective divisor D satisfying 2B ·D < B ·K is χ(D) = 2. The argument in Lemma 6.1
then shows that the maximal Euler characteristic of an µAt

-semistable rank 2 bundle V with c1(V ) = K is
χ(V ) = 4 and that any At-semistable sheaf of character (2,K,4) is a vector bundle.
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Theorem 7.2. Let n = 25. For any t with 5 < t < 27
5 , the moduli space MAt

(2,K,4) is isomorphic to a disjoint
union of 25 copies of P8. The copies can be naturally identified with the spaces PExt1(K(−D),O(D)), where D
is one of the divisors H −Ei .

Proof. Recall that by Theorem 4.15, any effective divisor D satisfying χ(D) ≥ 2 and 2B ·D < B ·K is of the
form D = H −Ei for some i. If a bundle V of type D = H −Ei is not At-stable, then it is destabilized by
a line bundle L = K(−D ′). Here D ′ must be an effective divisor such that D ′ −D is nontrivial effective,
2At ·D ′ < At ·K , and χ(D ′) ≥ 2, as in the proof of Proposition 6.2. There are no such divisors D ′ .

For these divisors D, Lemma 6.4 clearly holds without SHGH. The proof of Theorem 6.5 goes through
without further modification to complete the result. □

References

[CM11] C. Ciliberto and R. Miranda, Homogeneous interpolation on ten points, J. Algebraic Geom. 20
(2011), no. 4, 685–726.

[CH18a] I. Coskun and J. Huizenga, The moduli spaces of sheaves on surfaces, pathologies, and Brill-Noether
problems, in: Geometry of Moduli ( J. Christophersen and K. Ranestad, eds), pp. 75–105, Abel
Symp. Springer, Cham, 2018.

[CH18b] , Weak Brill-Noether for rational surfaces, in: Local and Global Methods in Algebraic
Geometry, pp. 81–104, Contemp. Math. vol. 712, Amer. Math. Soc., Providence, RI, 2018.

[CH20] , Brill-Noether theorems and globally generated vector bundles on Hirzebruch surfaces, Nagoya
Math. J. 238 (2020), 1–36.

[CH21] , Existence of semistable sheaves on Hirzebruch surfaces, Adv. Math. 381 (2021), Paper
No. 107636.

[CHK22] I. Coskun, J. Huizenga, and J. Kopper, Disconnected moduli spaces of stable bundles on surfaces,
Bull. Lond. Math. Soc. 54 (2022), no. 2, 812–824.

[CW22] I. Coskun and M. Woolf, The stable cohomology of moduli spaces of sheaves on surfaces, J. Differential
Geom. 121 (2022), no. 2, 291–340.

[Dav99] H. Davenport, The higher arithmetic, 7th ed., Cambridge Univ. Press, Cambridge, 1999.

[DJ07] M. Dumnicki and W. Jarnicki, New effective bounds on the dimension of a linear system in P
2,

J. Symbolic Comput. 42 (2007), no. 6, 621–635.

[Fri89] R. Friedman, Rank two vector bundles over regular elliptic surfaces, Invent. Math. 96 (1989), no. 2,
283–332.

[FM88] R. Friedman and J.W. Morgan, On the diffeomorphism types of certain algebraic surfaces. I.,
J. Differential Geom. 27 (1988), no. 2, 297–369.

[Gie77] D. Gieseker, On the moduli space of vector bundles on an algebraic surface, Ann. of Math. (2) 106
(1977), no. 1, 45–60.

[Gim87] A. Gimigliano, On linear systems of plane curves, PhD thesis, Queen’s University, Kingston, ON,
Canada, 1987.

[Göt90] L. Göttsche, The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math.
Ann. 286 (1990), no. 1-3, 193–207.



Interpolation and moduli spaces of vector bundles on very general blowups of P2 29Interpolation and moduli spaces of vector bundles on very general blowups of P2 29

[Har86] B. Harbourne, The geometry of rational surfaces and Hilbert functions of points in the plane, in:
Proceedings of the 1984 Vancouver conference in algebraic geometry, pp. 95–111, CMS Conf. Proc.,
vol. 6, Amer. Math. Soc., Providence, RI, 1986.

[Hir89] A. Hirschowitz, Une conjecture pour la cohomologie des diviseurs sur les surfaces rationnelles génériques,
J. reine angew. Math. 397 (1989), 208–213.

[HL10] D. Huybrechts and M. Lehn, The Geometry of Moduli Spaces of Sheaves, 2nd ed., Cambridge Math.
Lib., Cambridge Univ. Press, Cambridge, 2010.

[Kot89] D. Kotschick, On manifolds diffeomorphic to CP 2#8CP 2, Invent. Math. 95 (1989), no. 3, 591–600.

[LeP97] J. Le Potier, Lectures on vector bundles (translated by A. Maciocia), Cambridge Stud. Adv. Math.,
vol. 54, Cambridge Univ. Press, Cambridge, 1997.

[LZ19] D. Levine and S. Zhang, Brill-Noether and existence of semistable sheaves for del Pezzo surfaces, to
appear in Ann. Inst. Fourier, preprint arXiv:1910.14060 (2019).

[Mar78] M. Maruyama, Moduli of stable sheaves II, J. Math. Kyoto 18 (1978), no. 3, 557–614.

[Mes97] N. Mestrano, Sur les espaces de modules des fibrés vectoriels de rang deux sur des hypersurfaces de P3,
J. reine angew. Math. 490 (1997), 65–79.

[MS11] N. Mestrano and C. Simpson, Obstructed bundles of rank two on a quintic surface, Internat. J. Math.
22 (2011), no. 6, 789–836.

[Nag59] M. Nagata, On the 14-th problem of Hilbert, Amer. J. Math. 81 (1959), 766–772.

[O’G96] K. G. O’Grady, Moduli of vector bundles on projective surfaces: some basic results, Invent. Math. 123
(1996), no. 1, 141–207.

[OVdV86] C. Okonek and A. Van de Ven, Stable bundles and differentiable structures on certain elliptic
surfaces, Invent. Math. 86 (1986), no. 2, 357–370.

[Pet14] I. Petrakiev, Homogeneous interpolation and some continued fractions, Trans. Amer. Math. Soc.
Ser. B 1 (2014), 23–44.

[Seg60] B. Segre, Alcune questioni su insiemi finiti di punti in geometria algebrica, Univ. e Politec. Torino
Rend. Sem. Mat. 20 1960/1961, 67—85.

[Sho67] J. E. Shockley, Introduction to Number Theory, Holt, Rinehart and Winston, Inc., New York-Toronto-
London, 1967.

[Wal98] C. Walter, Irreducibility of moduli spaces of vector bundles on birationally ruled surfaces, in: Algebraic
Geometry (Catania, 1993/Barcelona, 1994), pp. 201–211, Lecture Notes in Pure and Appl. Math.,
vol. 200, Marcel Dekker, Inc., New York, 1998.

[Yan07] S. Yang, Linear systems in P
2 with base points of bounded multiplicity, J. Algebraic Geom. 16

(2007), no. 1, 19–38.

[Zha22] J. Zhao, Moduli spaces of sheaves on general blow-ups of P2, preprint arXiv:2208.03619 (2022).

https://arxiv.org/abs/1910.14060
https://arxiv.org/abs/2208.03619

	Introduction
	Preliminaries
	Types of bundles with positive Euler characteristic
	Effective divisors D satisfying 2BD < BK
	Cohomological properties of D and the SHGH conjecture
	Stability, components, and the SHGH conjecture
	Moduli spaces for sixteen or twenty-five points 
	References

