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1. Introduction

1.1. The main goal of this paper and its companion [FM22] is to prove several results about algebraic cycles
on Gushel–Mukai (GM) varieties. The focus of the present paper is on GM varieties in characteristic 0. Several
results that we obtain here are used in [FM22], in which we prove the Tate conjecture for even-dimensional
GM varieties in characteristic p ≥ 5.

GM varieties form a class of Fano varieties that admit a simple explicit definition and that are interesting
because of their rich geometry and their connections to hyperkähler varieties. We refer to the series of
papers by Debarre and Kuznetsov (see [DK18, DK19, DK20a, DK20b]) for an in-depth study. A nice starting
point is Debarre’s overview paper [Deb20].

We work over an algebraically closed field K of characteristic 0. For the purposes of this paper, only
smooth GM varieties of dimension greater than 2 are of interest. These exist in dimensions n ∈ {3,4,5,6};
they can be realised as intersections

X = CGr(2,V5)∩P(W )∩Q

of the cone CGr(2,V5) ⊂ P(K⊕∧2V5) over the Grassmannian of 2-planes in a 5-dimensional vector space V5
with a linear subspace P(W ) ⊂ P(K ⊕∧2V5) of dimension n+4 and a quadric Q.

1.2. The cohomology of an n-dimensional GM variety X is purely of Tate type, except in middle degree. If
n is odd, Hn(X) corresponds to a 10-dimensional abelian variety, the intermediate Jacobian. If n is even,
Hn(X) is of K3 type, with Hodge numbers 1-22-1. A first main theme in this paper is that almost all Chow
groups also have a relatively simple structure.

In Section 4 we compute all Chow groups of complex GM varieties with integral coefficients, except for
the two infinite-dimensional cases, namely 1-cycles on GM fourfolds and 2-cycles on GM sixfolds. For
GM fivefolds, the result is due to Zhou in her thesis [Zho23]. In dimensions 3 and 4, the results are easily
deduced from the results of Bloch and Srinivas, see [BS83], and Laterveer, see [Lat98]. Similar results with
Q-coefficients were obtained by Laterveer using different methods.
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Our main new contribution concerns 1-cycles and 3-cycles on GM sixfolds X. We prove that the Fano
variety of lines on X is rationally chain connected, so that all lines on X have the same class in CH5(X). By
a nice geometric argument using “successive ruled surfaces” as in the work [TZ14] of Tian and Zong, we
show that every 1-cycle on X is equivalent to an integral multiple of the class of a line, so that we obtain
CH5(X) �Z.

For cycles of codimension 3 on a GM sixfold, we show that CH3(X)hom = 0. The main step is to show
that the Griffiths group Griff3(X) is zero. As the Hodge conjecture with Q-coefficients for X is true (see
below), the image of CH3(X) in cohomology is of finite index in the space of Hodge classes in H6(X,Z) (3).

1.3. A second main result of the paper concerns the (generalised) Hodge conjecture and the Tate conjecture,
and, as a bridge between them, the Mumford–Tate conjecture. (See Section 6 for the formulation of these
conjectures.) The result we obtain is the following.

Theorem. Let X be a complex GM variety.

(i) The generalised Hodge conjecture for X is true.
(ii) If dim(X) is even, the Mumford–Tate conjecture for X is true.
(iii) If dim(X) is even, the generalised Tate conjecture for X is true.

Most cases of the generalised Hodge conjecture (GHC) are in fact covered by work of Laterveer, and the
remaining case of GM sixfolds is easily deduced from our calculations of Chow groups.

Our proof of the Mumford–Tate conjecture (MTC) is based on the work of André [And96]. It is crucial
here that the middle cohomology of X is of K3 type, which is why we have to assume that dim(X) is even.
(For GM varieties of odd dimension, the Mumford–Tate conjecture is not known; in this case it is a problem
about 10-dimensional abelian varieties, which is a much more difficult case to handle.) The convenience of
André’s results is that we only need to verify a couple of conditions, the most important of which is that X
should appear as a fibre in a smooth family whose image under the period map contains an open subset
of the appropriate period domain. This is known to be true for GM varieties by the work of Debarre and
Kuznetsov.

The generalised Tate conjecture, finally, is a formal consequence of the GHC and the MTC.
The above theorem is an important ingredient for our proof of the Tate conjecture for GM varieties in

characteristic p ≥ 5 in [FM22].

1.4. In the final section of the paper, we turn to Chow motives of GM varieties, and we prove a result
about so-called generalised partners or generalised duals. A central theme in the study of GM varieties
is that a lot of important information about them can be encoded in terms of multilinear algebra data.
In particular, to a GM variety over an algebraically closed field K (with char(K) = 0), one can associate
a “Lagrangian data set”, which is a triple (V6,V5,A) consisting of a 6-dimensional K-vector space V6,
a hyperplane V5 ⊂ V6, and a Lagrangian subspace A ⊂ ∧3V6 with respect to the natural symplectic
form ∧3V6 ×∧3V6 → det(V6). GM varieties X and X ′ whose dimensions have the same parity are said
to be generalised partners (resp. generalised duals) if there exists an isomorphism f : V6(X) ∼−→ V6(X ′)
such that the induced isomorphism ∧3V6(X) ∼−→ ∧3V6(X ′) sends A(X) to A(X ′) (resp. an isomorphism
f : V6(X) ∼−→ V6(X ′)∨ with (∧3f ) (A(X)) = A(X ′)⊥). We prove that the Chow motives in middle degree of
such generalised partners or duals are isomorphic.

Theorem. Let X and X ′ be GM varieties of dimensions n and n′ over a field K = K of characteristic 0 which are
generalised partners or generalised duals. Then there is an isomorphism of rational Chow motives

hn(X) � hn
′
(X ′)

(
n′−n
2

)
.

This theorem, too, is used in an essential way in [FM22]. The proof relies on a result of Kuznetsov and
Perry, see [KP23], which says that in this situation the Kuznetsov components of X and X ′ are equivalent.
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1.5. We are certainly not the first to study algebraic cycles on Gushel–Mukai varieties, and part of our work
here is a refinement or completion of work done by other people. In particular, let us note that during the
preparation of this paper (together with [FM22]), a preprint [BL24] by Bolognesi and Laterveer was posted
that has some overlap with part of the work presented here.

It is a pleasure for us to dedicate this paper to Claire Voisin, who has contributed so much to complex
geometry, Hodge theory, and the study of algebraic cycles.

1.6. Notation. For a variety X, we write CHi(X) for the Chow group in codimension i with integral

coefficients, and CHi(X)
Q
= CHi(X)⊗Q. If X is of pure dimension n, then CHi(X) := CHn−i(X). We denote

by CH(X)alg ⊂ CH(X)hom ⊂ CH(X) the subgroups of classes that are algebraically (resp. homologically)
trivial.

If X is a complete non-singular complex algebraic variety and i is a natural number, we denote by
J2i+1(X) the intermediate Jacobian in degree 2i +1.

Acknowledgment. We thank the referee for their pertinent comments and careful reading.

2. Generalities on Gushel–Mukai varieties

Throughout this section, K denotes an algebraically closed field of characteristic 0.

2.1. If V5 is a 5-dimensional K-vector space, let Gr(2,V5) ⊂ P(∧2V5) be the Grassmannian variety of
2-planes in V5, in its Plücker embedding.

A Gushel–Mukai (GM ) variety of dimension n ∈ {3,4,5,6} over K is a non-singular projective variety X
with dim(X) = n that can be realised as a scheme-theoretic intersection

X = CGr(2,V5)∩P(W )∩Q,

where V5 is a 5-dimensional K-vector space, CGr(2,V5) ⊂ P(K ⊕∧2V5) is the cone over the Grassmannian,
W ⊂ K ⊕∧2V5 is a linear subspace of dimension n+5, and Q ⊂ P(K ⊕∧2V5) is a quadric. We refer to the
series of papers by Debarre and Kuznetsov (notably [DK18, DK19, DK20b]) for an in-depth study of such
varieties and for references to the contributions by many other people. A good starting point is the overview
paper [Deb20]. We will follow the notation of these papers; here we only record some basic facts that we
need later.

Because X is non-singular, it does not contain the vertex O of CGr(2,V5), and we have a morphism
γ : X → Gr(2,V5), which is called the Gushel map. The corresponding rank 2 subbundle of V5 ⊗OX is
denoted by UX and is called the Gushel bundle on X.

GM varieties come in two flavours: with notation as above, we say that X is

• of Mukai type if γ is a closed embedding, which happens if and only O < P(W ) (in this case, projection
from O gives a realisation of X as an intersection of the Grassmannian Gr(2,V5) ⊂ P(∧2V5) with a
linear subspace and a quadric);
• of Gushel type if O ∈ P(W ), in which case γ is a double cover of its image, which is an n-dimensional
linear section of Gr(2,V5), denoted by M . The branch divisor of this double cover X →M is an
(n− 1)-dimensional GM variety of Mukai type contained in M .

In other papers these two types are referred to as “ordinary” and “special”, respectively. As our work in the
paper [FM22] concerns GM varieties in characteristic p > 0 and the term “ordinary” has a well-established
(different) meaning in algebraic geometry in characteristic p > 0, we prefer to use the above terminology.

Note that GM varieties of Gushel type with dim(X) < 6 are specialisations of GM varieties of Mukai type
and that all GM sixfolds are of Gushel type (as in this case necessarily W = K ⊕∧2V5).
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2.2. It is shown in [DK18] that to a GM variety X, one can canonically associate a so-called GM data set
(V6,V5,W ,L,q,µ,ϵ) and a corresponding Lagrangian data set (V6,V5,A). We refer to [DK18, Sections 2.2
and 3.2] (especially Theorems 2.9 and 3.10) for details. We only recall that V6 is a 6-dimensional K-vector
space, V5 ⊂ V6 is a 5-dimensional subspace, and A is a Lagrangian subspace of ∧3V6 for the natural
det(V6)-valued symplectic form on ∧3V6.

The vector spaces V6, V5, A, and W can be constructed from X in a functorial way. If the context requires
it, we write V6(X), V5(X), etc.

2.3. Being Fano varieties, GM varieties are rationally connected, by the well-known results of Campana,
see [Cam92], and Kollár–Miyaoka–Mori, see [KMM92]. Further, it is known that for every GM variety X/K
(non-singular, as always, and in characteristic 0 by convention), we have PicX/K �Z; cf. [DK18, Lemma 2.29].
(This last result is also true in characteristic p > 0; see [FM22].)

3. Generalities on Chow motives

We recall an important result due to Bloch and Srinivas, see [BS83], which is the basis of many results
about Chow motives.

Theorem 3.1 (Bloch–Srinivas). Let X be a complete non-singular complex algebraic variety. Assume that the
Chow group of 0-cycles CH0(X) is supported on an r-dimensional closed algebraic subset of X.

(i) If r ≤ 3, then the Hodge conjecture for H4(X,Q) is true.
(ii) If r ≤ 2, then the Griffiths group Griff2(X) is zero, and also H3,0(X) = 0; hence, the intermediate

Jacobian J3(X) is an abelian variety.
(iii) If r ≤ 1, then the group CH2(X)alg of algebraically trivial cycles of codimension 2 is weakly representable

by an abelian subvariety J3a (X) of the intermediate Jacobian J3(X).

Note that the assertions on H3,0(X) and J3(X) in (ii) are not in [BS83] but can be easily deduced; this is
known as the generalised Mumford theorem; see for example [Voi14, Theorem 3.13]. Assertion (iii) is not
explicit in [BS83]; see however [Mur85, Theorem C]. The weak representability means, in particular, that we
have an isomorphism of groups CH2(X)alg

∼−→ J3a (X)(C).

3.1. For a field k, we denote by CHM(k) the category of Chow motives over k (with rational coefficients).
We use the contravariant (cohomological) notion of motives, so that the functor sending a smooth projective
variety X over k to its Chow motive h(X) is contravariant.

Let 1(1) denote the Tate motive and, as usual, write 1(m) = 1(1)⊗m. (So 1(−1) is the Lefschetz
motive.) The Chow groups (with rational coefficients) of a motive M over k are defined by the rule
CHi(M)

Q
= HomCHM(k) (1(−i),M), and CH(M)

Q
=
⊕

i∈Z CHi(M)
Q
. With this notation we have the

following very useful lemma.

Lemma 3.2. Let Ω be an algebraically closed field which is of infinite transcendence degree over its prime field.
Let f : M→N be a morphism in CHM(Ω) such that the induced homomorphism CH(M)

Q
→ CH(N )

Q
is an

isomorphism. Then f is an isomorphism.

Proof. This follows from [Huy18, Lemma 1.1] together with [Via17, Lemma 3.2]. □

3.2. Let X/k be a smooth projective k-scheme of dimension d. A decomposition

[∆X] =
2d∑
i=0

πi
X
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in CHd(X×X)
Q
is said to be a Chow–Künneth decomposition if the πi

X (viewed as correspondences from X to
itself) are mutually orthogonal projectors and (for a Weil cohomology theory H ) the endomorphism of H(X)
induced by πi

X is the projection onto the summand H i(X). Such a decomposition can also be viewed as a
direct sum decomposition

h(X) =
2d⊕
i=0

hi(X)

(with hi(X) = (X,πi
X ,0)) such that H

(
hi(X)

)
=H i(X). We shall use both points of view interchangeably. Note

that the projector πi
X can be viewed both as a morphism hi(X)→ h(X) and as a morphism h(X)→ hi(X).

A Chow–Künneth decomposition as above is said to be self-dual if tπi
X = π2d−i

X for all i.
The diagonal morphism ∆X : X→ X ×X gives a morphism ∆∗X : h(X)⊗ h(X)→ h(X). A Chow–Künneth

decomposition is said to be multiplicative if for all indices i and j the composition

hi(X)⊗ hj(X) −→ h(X)⊗ h(X)
∆∗X−−−−→ h(X)

factors through hi+j(X). See [FLV21, Lemma 1.6] for other formulations of this property. (Multiplicativity in
fact implies that the decomposition is self-dual; see [FLV21, Proposition 1.7].)

3.3. The subcategory of abelian motives CHM(k)ab ⊂ CHM(k) is defined as the smallest full replete rigid
tensor subcategory that is closed under taking direct summands and contains all motives of 1-dimensional
smooth proper k-schemes. (“Replete” means that if a motive is isomorphic to an abelian motive, it is itself
an abelian motive.)

A Chow motive M is said to be finite-dimensional (in the sense of Kimura–O’Sullivan) if there exist a
decomposition M =M+ ⊕M− and a positive integer n such that ∧nM+ = SymnM− = 0. It is known that
all abelian motives are finite-dimensional; see [Kim05] or [And05, Section 2].

We will use the following result; see [And05, Corollaire 3.16].

Theorem 3.3. The natural functor CHM(k)ab→Motnum(k) from the category of abelian Chow motives to the
category of numerical motives is conservative (i.e. it detects isomorphisms ).

We will also use the following result of Vial; see [Via13, Theorem 4]. For an abelian variety J , we define

h1(J) = h1(J)∨, where h(J) = ⊕2gi=0 h
i(J) is the Deninger–Murre decomposition of the Chow motive of J as in

[DM91, Theorem 3.1].

Theorem 3.4 (Vial). Let X be a non-singular complex projective variety of dimension d. Assume that the
Abel–Jacobi map CHi(X)

Q,hom→ J2i−1(X)⊗Q is injective for all i. Then J2i−1(X) is an abelian variety, and
there is a Chow–Künneth decomposition h(X) = ⊕2di=0 h

i(X) with

h2i(X) �H2i(X,Q)⊗ 1(−i), h2i−1(X) � h1

(
J2i−1(X)

)
(−i).

In particular, h(X) is an abelian motive.

4. Integral Chow groups of GM varieties

In this section we collect the computation of all the representable Chow groups, with integral coefficients,
of complex GM varieties. The results are essentially new only in dimension 6.

Gushel–Mukai threefolds. The following result is essentially just an application of the Bloch–Srinivas
theorem, Theorem 3.1.

Theorem 4.1. Let X be a complex GM threefold, and let J = J3(X) be its intermediate Jacobian.

(i) The cycle class map induces isomorphisms CHi(X) ∼−→Z for i = 0, 1, 3.
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(ii) For codimension 2 cycles, algebraic equivalence and homological equivalence coincide, i.e. Griff2(X) = 0,
and the Abel–Jacobi map CH2(X)alg→ J(C) is an isomorphism.

(iii) We have H4(X,Z) �Z, and this group is spanned by the cohomology class of a line on X. We have a split
short exact sequence

0 −→ J(C) −→ CH2(X)
cl−−−→Z −→ 0.

Proof. (i) For i = 0 this is clear, for i = 1 this is true because every complex GM variety has Picard group Z,
and for i = 3 this follows from the fact that X is rationally connected.

(ii) As CH0(X) is supported on a point, this follows from the Bloch–Srinivas theorem (Theorem 3.1),
taking into account that CH2(X)alg → J(C) is surjective because X is rationally connected. (See [Voi02,
Theorem 12.22].)

(iii) By [DK19, Proposition 3.4], the groups H i(X,Z) are torsion-free and H2(X,Z) =Z ·cl(H), where H ⊂
X is a hyperplane section for the given embedding X ⊂ P(C⊕∧2V5). Further, H4(X,Q) is 1-dimensional,
and X contains lines. As any line L ⊂ X has L ·H = 1, it follows that H4(X,Z) =Z ·cl(L). The last assertion
is then immediate from (ii). □

Gushel–Mukai fourfolds

Proposition 4.2. Let X be a complex GM fourfold.

(i) The cycle class map induces isomorphisms CHi(X) ∼−→Z for i = 0, 1, 4.
(ii) The cycle class map CH2(X) → H4(X,Z) (2) is injective, with image the subgroup of integral Hodge

classes; hence, we obtain an isomorphism

CH2(X) ∼−−→
[
H4(X,Z)∩H2,2(X,C)

]
.

Proof. (i) This is true by the same argument as for Theorem 4.1(i).
(ii) Because CH0(X) is supported on a point, Theorem 3.1 together with the fact that H3(X,Z) = 0 gives

that CH2(X)hom = CH2(X)alg = 0. Hence the cycle class map in (ii) is injective. The last assertion follows
from the integral Hodge conjecture for GM fourfolds, which is proven by Perry in [Per22]. □

Remark 4.3. The Chow group CH1(X) is not representable and is very much related to the CH0 of the
double Eisenbud–Popescu–Walter (EPW) sextic hyperkähler fourfold.

Gushel–Mukai fivefolds. The integral Chow groups of GM fivefolds were recently computed in the
thesis of Zhou [Zho23], following the strategy of Fu–Tian in [FT19]. Analogous results with Q-coefficients
had been obtained by Laterveer; see [Lat21].

Theorem 4.4 (Zhou). Let X be a complex GM fivefold, and let J = J5(X) be the intermediate Jacobian.

(i) The cycle class maps induce isomorphisms

CH0(X) �Z, CH1(X) �Z, CH2(X) �Z⊕Z, CH4(X) �Z, CH5(X) �Z.

(ii) For codimension 3 cycles, algebraic equivalence and homological equivalence coincide; i.e. Griff3(X) = 0.
The Abel–Jacobi map CH3(X)alg

∼−→ J(C) is an isomorphism.
(iii) We have H6(X,Z) �Z⊕Z, and there is a split short exact sequence

0 −→ J(C) −→ CH3(X) −→H6(X,Z) −→ 0.

Gushel–Mukai sixfolds. We now turn to GM sixfolds, which require more work. The proof of the
following result will take up the rest of this section. With rational coefficients, similar results were also
obtained in [BL24].
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Theorem 4.5. Let X be a complex GM sixfold.

(i) The cycle class maps induce isomorphisms

CH0(X) �Z, CH1(X) �Z, CH6(X) �Z.

(ii) We have H10(X,Z) �Z, generated by the class of a line contained in X. The cycle class map CH5(X)→
H10(X,Z) (5) is an isomorphism.

(iii) We have H4(X,Z) �Z⊕Z, generated by the classes H2 and c2(UX), where UX is the Gushel bundle on X
and H ∈ CH1(X) �Z is the class of an ample generator. The cycle class map CH2(X)→H4(X,Z) (2) is
an isomorphism.

(iv) We have H6(X,Z) � Z
24 with Hodge numbers h4,2 = h2,4 = 1 and h3,3 = 22. The cycle class map

CH3(X)→H6(X,Z) (3) is injective.

Remarks 4.6.

(i) The theorem does not give any information about the structure of the Chow group CH4(X), which is
certainly the most interesting one. It is not representable and is closely related to the Chow group of
0-cycles on the associated double EPW sextic.

(ii) As we shall show in the next section, the Hodge conjecture (with rational coefficients) is true for
GM varieties. Moreover, H6(X,Z) has no torsion (see [DK19, Proposition 3.4]), so that the image of
CH3(X)→H6(X,Z) (3) is a subgroup of finite index in the space of Hodge classes in H6(X,Z) (3).

4.1. The proof of Theorem 4.5 uses the same strategy as in [FT19] and [Zho23], which is very much inspired
by the work of Colliot-Thélène–Voisin [CTV12] and Voisin [Voi12].

The proof of (i) is the same as for Theorem 4.1(i).
Part (iii) is an application of the Bloch–Srinivas theorem. Indeed, as CH0(X) is supported on a point,

parts (ii) and (iii) of Theorem 3.1 imply that CH2(X)hom = CH2(X)alg = 0 since H3(X,Z) = 0. Hence the
cycle class map CH2(X)→H4(X,Z) is injective. On the other hand, as is shown in [DK19, Proposition 3.4],
H ∗(X,Z) is torsion-free, and the homomorphism γ∗ : H4 (Gr(2,V5),Z)→H4(X,Z) induced by the Gushel
map γ is an isomorphism. This gives (iii) because H2 − c2(UX) and c2(UX) are the images under γ∗ of the
Schubert classes σ2 and σ1,1, respectively, which generate H4 (Gr(2,V5),Z).

We next turn to the proof of part (ii). Again by [DK19, Proposition 3.4], the assertions about H10(X,Z)
and the surjectivity of the cycle class map are clear because by [DK19, Theorem 4.7] X contains lines. (See
also below.) As for the injectivity of the cycle class map, we first need some geometric facts.

Lemma 4.7. Any two points of X can be connected by at most four lines.

Proof. Recall from Section 2.1 that the Gushel bundle UX on X is the pull-back of the tautological rank 2
bundle on the Grassmannian via the Gushel map γ : X→ Gr(2,V5). The embedding UX ⊂ V5⊗OX induces
a natural morphism

(4.1) ρ1 : PX(UX) −→ P(V5),

which is a flat morphism whose fibres are isomorphic to quadrics in P
4. We refer to [DK18, Section 4] and

[DK19, Section 2.3] for details. (Note that for a GM variety X of dimension 6, the locus that in loc. cit. is
called Σ1(X) is empty.)

Let F1(X) be the Fano variety of lines in X. If L ⊂ X is a line, then there are uniquely determined
subspaces U1 ⊂U3 ⊂ V5 (depending on L, of course) such that

γ(L) =
{
U2 ∈ Gr(2,V5)

∣∣∣U1 ⊂U2 ⊂U3

}
.

The map L 7→U1 gives a morphism σ : F1(X)→ P(V5). By [DK19, Proposition 4.1], F1(X) can be identified,
as a scheme over P(V5), with the relative Hilbert scheme of lines in the quadric fibration ρ1:

(4.2) F1(X) �HilbP
1
(PX(UX)/P(V5)) .
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Let x and x′ be points of X. Write γ(x) = [U2] and γ(x′) = [U ′2] in Gr(2,V5). It is clear that there exists
a third 2-dimensional subspace U ′′2 ⊂ V5 such that U2 ∩U ′′2 and U ′2 ∩U ′′2 are both 1-dimensional. Let

x′′ ∈ X be a point in γ−1
{
[U ′′2 ]

}
. Let y be a generator of U2 ∩U ′′2 , which defines a point [y] ∈ P(V5).

By construction, (x, [y]) and (x′′ , [y]) are points of PX(UX) that lie on the fibre of ρ1 over [y]. This
fibre is a quadric of dimension 3; hence any two points on it can be connected by at most two lines in it.
Therefore, x and x′′ can be connected by two lines in X. Similarly, x′ and x′′ can be connected by at most
two lines, and we are done. □

Remark 4.8. Lemma 4.7 will be applied in Proposition 4.10, where only the following weaker assertion is
needed: any two points of X can be connected by finitely many lines. Let us sketch an alternative argument for
this fact that was kindly indicated to us by the referee. First, it is easy to see that through every point of X
passes a line. Then, by [Kol96, Theorem IV.4.16], one can perform the rationally connected quotient Xd Z
for the (pre)relation of line-chain connectedness in X. We claim that Z is a point. Suppose dim(Z) ≥ 1, and
consider the Zariski closure D of the inverse image of a prime divisor of Z . Since N1(X) �R, the divisor D
is ample; on the other hand, (D ·L) = 0 for any line L in X. This gives a contradiction. This argument is
also in [Kol96, Corollary IV.4.14].

Lemma 4.9. The variety F1(X) of lines on X is rationally chain connected. In particular, all lines contained in
X have the same class in CH1(X).

Note that we do not claim that F1(X) is irreducible; this is probably true, but we do not need it.

Proof. We use (4.2). By [DK18, Proposition 4.5], the fibres of the map (4.1) are quadrics in P
4 of corank at

most 3. If Q ⊂ P
4 is a non-degenerate quadric, its Hilbert scheme of lines is isomorphic to P

3. If Q has
corank 1, its Hilbert scheme is the union of two P

1-bundles over P1, glued along a 2-dimensional quadric.
If the corank is 2, the Hilbert scheme is obtained from a P

2-bundle over P1 by contracting a section, and if
the corank is 3, we get a union of two copies of P3, glued along a P

2. So in all cases the fibres are rationally
chain connected. Moreover, there is a non-empty open subset U ⊂ P(V5) over which σ is a P

3-bundle. Let
Z ⊂ F1(X) be the closure of σ−1(U ). By [GHS03, Corollary 1.3], Z is rationally connected, and since Z
meets all fibres, the assertion follows. □

Proposition 4.10. There exists an integer N > 0 such that for any α ∈ CH1(X) the class Nα is a multiple of the
class of a line in X. In particular, CH1(X)

Q
�Q, generated by the class of a line.

Proof. The following argument of “successive ruled surfaces” is taken from [TZ14, Proposition 3.1], which
is essentially [Kol96, Proposition IV.3.13.3]. We reproduce it here for the reader’s convenience. Fix a
point x0 ∈ X. Let I = {(L,x) ∈ F1(X)×X | x ∈ L} be the incidence variety, and let I (2) = I ×F1(X) I =
{(L,x1,x2) ∈ F1(X)×X ×X | x1,x2 ∈ L}. Let e : I → X and e1, e2 : I (2)→ X be the evaluation morphisms.
Then

B = e−11 {x0} e2×e1 I
(2)

e2×e1 I
(2)

e2×e I
is the scheme of tuples (L1,x1,L2,x2,L3,x3,L4) with x0 ∈ L1 and xj ∈ Lj∩Lj+1 for j = 1,2,3. For j = 1, . . . ,4,
let

Lj =
{
((L1,x1,L2,x2,L3,x3,L4) , y) ∈ B×X

∣∣∣ y ∈ Lj} .
The first projection makes Lj a P

1-bundle over B. The second projection gives an evaluation morphism
ej : Lj → X. Furthermore, we have sections

L1 L2 L3 L4

B B B B

s0 s′1 s1 s′2 s2 s′3 s3
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where sj (j = 0,1,2,3) is obtained by taking y = xj , viewed as a point of Lj+1, and s′j (j = 1,2,3) is obtained
by taking y = xj , viewed as a point of Lj . Let π : L → B be the scheme over B obtained by gluing Lj

and Lj+1 along their sections s′j and sj . The fibres of π are chains of four lines connected at points. By
construction, the morphisms ej glue to an evaluation morphism e : L → X, which by Lemma 4.7 is surjective.
By taking general successive hyperplane sections of L , we obtain a generically finite morphism L ′→ X,
whose degree is denoted by m ∈Z>0. Set N =m!.

Without loss of generality, we may assume that α is the class of an irreducible curve C ⊂ X. Our goal is
to show that N [C] ∈ CH1(X) is a linear combination of classes of lines. We may assume C is not itself a
line. There exists an irreducible curve Ĉ ⊂L ′ such that e restricts to a non-constant morphism Ĉ→ C.
Because C is not a line, π(Ĉ) is a curve. Let B0 be the normalisation of this curve, and define Y = B0 ×B L ,
which is a union of four ruled surfaces Yj over B0, glued along sections. The normalisation of Ĉ maps to Y ;
let C̃ ⊂ Y be the image. By construction, the evaluation map e : Y → X gives a non-constant morphism
C̃→ C, so that e∗[C̃] =m′ · [C] ∈ CH1(X) for some 0 < m′ ≤m.

Y4

Y3

Y2

Y1

s3

s2

s1

s0

C̃

Y

e
X

B0

In each component Yj (j = 1, . . . ,4), every ruling pushes forward to a line in X. If t is any section of Yj ,
then CH1(Yj ) is generated by the class of t(B0) together with the rulings. Because s0 comes from the

constant section x0, we have e∗ [s0(B0)] = 0. Therefore, e∗
[
sj(B0)

]
∈ CH1(X) lies in the subgroup spanned

by the classes of lines, for each j = 1, . . . ,4. As C̃ is contained in one of the components Yj , it follows that
m′ · [C] = e∗[C̃], hence N · [C], lies in this subgroup, which is what we wanted to prove. □

Now we are ready to compute the Chow group of 1-cycles of a GM sixfold.

Proof of Theorem 4.5 (ii). By Proposition 4.10, there is an integer N > 0 such that multiplication by N kills
CH1(X)alg. Combining this with the divisibility of CH1(X)alg, we conclude that CH1(X)alg = 0.

On the other hand, by the blow-up formula, the Griffiths group of 1-cycles is a birational invariant for
smooth projective varieties. Because X is rational, it follows that Griff1(X) = Griff1(P6) = 0; hence,

CH1(X)hom = CH1(X)alg = 0.
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In other words, the cycle class map CH1(X)→H10(X,Z) is injective. The surjectivity follows from the fact
that H10(X,Z) is generated by the class of a line in X. □

Finally, we turn to part (iv) of Theorem 4.5.

Lemma 4.11. There exist an integer n > 0, a (possibly reducible) smooth projective variety T of dimension 4, a
generically injective morphism j : T → X, and an algebraic cycle Z ∈ CH4(X×T ), such that we have the following
equality in CH6(X ×X):

(4.3) n · [∆X] = n · ([pt]× [X]) +n · ([line]×H) + (idX ×j)∗(Z).

Proof. Since we have already proven that CH0(X) �Z and CH1(X) �Z, Laterveer’s refined decomposition
of the diagonal [Lat98, Theorem 1.7] applies. This gives that there exists an integer n > 0 such that in
CH6(X ×X) we have a relation

n · [∆X] = n · ([pt]× [X]) +n · ([line]×H) +Z ′ ,

where Z ′ is supported on X × T ′ for some closed algebraic subset T ′ ⊂ X of codimension 2. Now let T be
the disjoint union of resolutions of the irreducible components of T ′ , and let Z be an algebraic cycle in
X × T which pushes forward to Z ′ . □

Proposition 4.12. Algebraic and homological equivalence coincide for cycles of codimension 3 on a GM sixfold X;
i.e. Griff3(X) = 0.

Proof. We first show that Griff3(X) is torsion. Let both sides of (4.3), viewed as correspondences from X to
itself, act on Griff3(X). For any α ∈ Griff3(X), the correspondence n · [∆X] sends α to n ·α. The first two
terms of the right-hand side of (4.3) send α to zero for dimension reasons, and the third term sends α to
j∗ (Z∗(α)). Therefore, we have

n ·α = j∗(Z∗(α))

in Griff3(X). However, Z∗(α) is an element of Griff1(T ), which is trivial as homological equivalence and
algebraic equivalence coincide for divisors. We conclude that Griff3(X) is killed by n.

It remains to show that Griff3(X) is torsion-free. For any abelian group A, let H i
A be the Zariski sheaf

associated to the presheaf U 7→ H i(U,A). Bloch and Ogus, see [BO74], showed that, starting from the
E2-page, the coniveau spectral sequence agrees with the Leray spectral sequence associated to the continuous
map X(C)→ XZar and the constant sheaf A. Therefore, we have

(4.4) E
p,q
2 =Hp

(
X,H

q
A

)
=⇒N pHp+q(X,A),

where N • denotes the coniveau filtration.
We need two basic properties of this spectral sequence.

• In (4.4), E
0,q
2 =H0(X,H

q
A ) is the so-called unramified cohomology H i

nr(X,A), which is a birational
invariant; see [CTV12, Theorem 2.8]. As X is rational (see [DK18, Proposition 4.2]), its unramified

cohomology groups all vanish except in degree 0; i.e. E0,q
2 = 0 for any q > 0.

• For p > q, we have E
p,q
2 = 0. This is a consequence of the Gersten conjecture for homology theory

proved by Bloch–Ogus; cf. [BO74, Equation (0.3)].

Using these properties, if we take A =Z, (4.4) gives rise to an exact sequence

(4.5) 0 −→H5(X,Z)/N2H5(X,Z) −→H1
(
X,H 4

Z

)
−→H3

(
X,H 3

Z

)
−→H6(X,Z),

where H3(X,H 3
Z
) is identified with the group of codimension 3 cycles modulo algebraic equivalence

(see [BO74, Section (0.5)]) and the last arrow is the cycle class map. Therefore, the kernel of the last arrow is
exactly the Griffiths group Griff3(X).
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Since H5(X,Z) = 0, the first term in (4.5) vanishes, and we obtain that

(4.6) H1
(
X,H 4

Z

)
� Griff3(X).

Now we use a result of Colliot-Thélène and Voisin [CTV12, Theorem 3.1], which is based on the Bloch–Kato
conjecture (proven by Voevodsky, see [Voe03, Voe11]). This result implies that for any integer n, we have a
short exact sequence of Zariski sheaves

0 −→H 4
Z

·n−−→H 4
Z
−→H 4

Z/nZ −→ 0.

From the associated long exact sequence, we obtain a short exact sequence

0 −→H0
(
X,H 4

Z

)
/n −→H0

(
X,H 4

Z/nZ

)
−→H1

(
X,H 4

Z

)
[n] −→ 0,

where the last term denotes the n-torsion subgroup of H1(X,H 4
Z
). Now observe that the middle term

is the unramified cohomology group H4
nr(X,Z/nZ), which is trivial since X is rational. It follows that

H1(X,H 4
Z
) has no n-torsion. On the other hand, we had already shown that Griff3(X) is killed by n; so

Griff3(X) = 0. □

Proof of Theorem 4.5 (iv). Let both sides of (4.3) act on CH3(X)alg. The same argument as in the first part of
the proof of Proposition 4.12 shows that the multiplication by n map on CH3(X)alg factors through

Z∗ : CH
3(X)alg −→ CH1(T )alg.

However, we have the commutative diagram

CH3(X)alg CH1(T )alg

J5(X) Pic0(T ),

Z∗

≀
cl(Z)∗

where the vertical arrows are Abel–Jacobi maps. Since the right vertical arrow is an isomorphism and
J5(X) = 0 (since H5(X,Z) = 0), the top arrow Z∗ : CH

3(X)alg→ CH1(T )alg is zero. Hence CH3(X)alg is
killed by n. On the other hand, CH3(X)alg is a divisible group; hence CH3(X)alg = 0. Combining this with
Proposition 4.12, we conclude that CH3(X)hom = 0; i.e. the cycle class map is injective. □

5. The generalised Hodge conjecture

We refer to the generalised Hodge conjecture as the one proposed by Grothendieck in [Gro69] as an
amendment of Hodge’s initial generalisation. The main result of this section is the following.

Theorem 5.1. Let X be a complex Gushel–Mukai variety. Then the generalised Hodge conjecture is true for X.

Proof. Most of this can be extracted from the literature together with the computation of the Chow groups
of X. For GM varieties of dimension 3 or 4, the result is proven in [Lat98, Corollary 2.5(ii)]. For GM varieties
of dimension 5, the result can be found in [Lat21, Remark 3.2] (which refines a result by Nagel in [Nag98]).
For GM varieties of dimension 6, Theorem 5.1 follows from Theorem 4.5 (or rather Proposition 4.10) together
with [Lat98, Proposition 2.4(ii)]. □

Remark 5.2. Both in [KP18, Remark 2.26] and in [Deb20, Remark 4.2], it is stated that the (usual) Hodge
conjecture for GM sixfolds can be proven using the results of [DK19], but no details are provided. While it is
clear how to proceed for general X (see below), we have not been able to make this method work for all GM
sixfolds.
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First assume that X is a GM variety of dimension 6 which is general, in the sense that condition (10)
in [DK19, Section 5.1] is satisfied. As in [DK19], let Fσ

2 (X) be the Hilbert scheme of σ -planes in X, and let
L σ

2 (X) be the universal plane over Fσ
2 (X). We then have a diagram

L σ
2 (X)

X Fσ
2 (X)

ỸA,V5
ỸA,

q p

σ̃

ι

where ỸA,V5
⊂ ỸA is a subvariety of codimension 1 and σ̃ : Fσ

2 (X) → ỸA,V5
is a P

1-bundle. By [DK19,
Corollary 5.13], Fσ

2 (X) is a non-singular fourfold, and hence L σ
2 (X) is non-singular of dimension 6.

Let [P] ∈ H6
(
Fσ
2 (X),Q

)
denote the class of a fibre of σ̃ , and define H2

(
Fσ
2 (X),Q

)
0
= [P]⊥ ⊂

H2
(
Fσ
2 (X),Q

)
. By [DK19, Proposition 5.14], (ι ◦ σ̃ )∗ gives an isomorphism

H2
(
ỸA,Q

)
∼−−→H2

(
Fσ
2 (X),Q

)
0
.

Let H2(ỸA,Q)0 ⊂ H2(ỸA,Q) be the primitive subspace, and write H2
(
Fσ
2 (X),Q

)
00

for its image under
(ι ◦ σ̃ )∗. By [DK19, Theorem 5.19], we then have a commutative diagram

H2
(
ỸA,Q

)
H2

(
Fσ
2 (X),Q

)
0

H2
(
ỸA,Q

)
0

H2
(
Fσ
2 (X),Q

)
00

H6(X,Q)00.

p∗ (q∗(z)) z

∼
(ι◦σ̃ )∗

∼

⋃ ⋃
∼

To deduce the Hodge conjecture for X, it now suffices to show that there exists a class ξ ∈ CH6
(
X ×Fσ

2 (X)
)

such that the inverse isomorphism H2
(
Fσ
2 (X),Q

)
00
∼−→H6(X,Q)00 is given by y 7→ prX,∗

(
cl(ξ)∪pr∗F(y)

)
,

where prX : X ×Fσ
2 (X)→ X and prF : X ×F

σ
2 (X)→ Fσ

2 (X) are the projections. This is proven as follows.
Let h ∈H2(X,Q) be the class of the very ample line bundle H = OX(1). As explained before Theorem 5.19

in [DK19, Section 5], p : L σ
2 (X)→ Fσ

2 (X) is a P
2-bundle for which q∗(h) is a relative hyperplane class.

Hence there is a vector bundle E of rank 3 on Fσ
2 (X) such that L σ

2 (X) � P(E ). As q : L σ
2 (X)→ X is

generically finite of degree 12 (cf. [DK19, Lemma 5.15]), it follows from the proof of [DK19, Theorem 5.19]
that the class

ξ = 1
12 ·

[
q∗(h2) + p∗(c1(E )) · q∗(h) + p∗(c2(E ))

]
(viewed as a class in CH6

(
X ×Fσ

2 (X)
)
) has the required property. This completes the argument in case X is

general.
If X is arbitrary, then, by considering a family of GM varieties, we can still show that there exists a

class γ ∈ CH4(ỸA × X) that induces an isomorphism H2
(
ỸA,Q(1)

)
0
∼−→ H6 (X,Q(−3))00 given by z 7→

pr2,∗
(
pr∗1(z)∩ [γ]

)
. (The reader will hopefully be able to guess the meaning of the notation.) However, it is

not clear to us if the Hodge conjecture in cohomological degree 2 is true for the variety ỸA, as in general this
variety is singular.
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6. The Mumford–Tate conjecture and the generalised Tate conjecture

In this section we first recall the statements of the Mumford–Tate conjecture and the generalised Tate
conjecture (in characteristic 0). The main result that we prove is that these conjectures are true for Gushel–
Mukai varieties of even dimension. We deduce this from a theorem of André; see [And96]. This argument
uses that, as shown in the previous section, the Hodge conjecture is true for these varieties.

In all of this section, ℓ is a fixed (but arbitrary) prime number.

6.1. As explained in [Moo17, Section 1], the Mumford–Tate conjecture and the Tate conjecture can be viewed
as statements about complex algebraic varieties, and we will take that perspective.

Let X be a complete non-singular algebraic variety over C. Fix an integer i, and writeHℓ forH
2i (X,Qℓ(i)).

Choose any subfield F ⊂C that is finitely generated over Q and a model XF of X over F. As Hℓ is canonically
isomorphic to H2i

(
XF ,Qℓ(i)

)
, the choice of the model XF gives us a continuous Galois representation

ρℓ : Gal
(
F/F

)
−→GL(Hℓ).

Define Gℓ to be the Zariski closure of the image of ρℓ , and let G0
ℓ denote its identity component. The

algebraic subgroup G0
ℓ ⊂ GL(Hℓ) only depends on X and is independent of the choice of F and XF ; see

[Moo17, Proposition 1.3].
Let HB = H2i (X(C),Q(i)), and let GB ⊂ GL(HB) be its Mumford–Tate group. (Here “B” is for “Betti

realisation”.) Artin’s comparison isomorphism HB ⊗Qℓ
∼−→Hℓ induces an isomorphism of algebraic groups

GL(HB)⊗Qℓ
∼−→GL(Hℓ). The Mumford–Tate conjecture (for the chosen X, ℓ, and i) is the assertion that this

isomorphism restricts to an isomorphism

GB ⊗Qℓ
∼−−→
?

G0
ℓ .

6.2. With notation as above, a class ξ ∈Hℓ is called a Tate class if it is fixed under the action of G0
ℓ ; this is

equivalent to the condition that the stabiliser of ξ in Gal(F/F) is an open subgroup. All elements in the
image of the cycle class map clℓ : CH

i(X)⊗Qℓ→Hℓ are Tate classes.
The Tate conjecture (again: for the chosen X, ℓ, and i) says that the algebraic group G0

ℓ is reductive and
that the ℓ-adic cycle class map

(6.1) clℓ : CH
i(X)⊗Qℓ −→ {Tate classes in Hℓ}

is surjective.

6.3. Retaining the above notation and assumptions, let W ⊂Hℓ =H2i (X,Qℓ(i)) be a G
0
ℓ -subrepresentation.

If r is a natural number, W is said to be of Tate coniveau at least r if there exist a normal domain R ⊂C

which is of finite type over Z and a smooth proper model XR→ Spec(R) of X over R, such that

(a) over the fraction field of R, the group Gℓ as above is connected;
(b) at every closed point x of Spec(R[1/ℓ]), all eigenvalues of the Frobenius at x acting on W (r − i) and

on W∨(r − i) are algebraic integers.

(For any XR/R as above, condition (a) is satisfied after replacing R by a finite extension.)
If Z ⊂ X is a closed subscheme of which all components have codimension at least r, then the kernel

Ker
(
Hℓ→H2i((X \Z),Qℓ(i))

)
is a G0

ℓ -subrepresentation of Tate coniveau at least r .
The generalised Tate conjecture (which goes back to Grothendieck, see [Gro68, Section 10.3]) states that,

conversely, every G0
ℓ -subrepresentation W ⊂ Hℓ of Tate coniveau at least r is supported on a subscheme

Z ⊂ X whose components have codimension at least r , in the sense thatW ⊂ Ker
(
Hℓ→H2i((X \Z),Qℓ(i))

)
.

(For r = i, this says that the ℓ-adic cycle class map (6.1) is surjective.)
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Remark 6.1. The Mumford–Tate conjecture and the (generalised) Tate conjecture are usually formulated as
statements for varieties over number fields or finitely generated fields. The conjectures as formulated above
(for X over C) are true if and only if the analogous conjectures over arbitrary finitely generated fields (of
characteristic 0) are true.

Theorem 6.2. Let X be a complex Gushel–Mukai variety of even dimension. Then the Mumford–Tate conjecture
and the generalised Tate conjecture for X are true.

To avoid any confusion: the assertion is that the mentioned conjectures are true for all i and ℓ. However,

this is non-trivial only for the cohomology in middle degree (i = dim(X)
2 ), and in the proof the choice of ℓ

plays no particular role. Let us further note that for K3 surfaces, the Mumford–Tate and Tate conjectures
were proven in [And96].

Proof. Let h ∈ H2 (X,Z(1)) be the class of the ample generator of Pic(X). Let i = dim(X)
2 . We need to

show that (X,h) satisfies conditions Ai and B+
i as in [And96, Section 1.4]; if this is true, then the Tate

conjecture and the Mumford–Tate conjecture follow from [And96, Theorems 1.5.1 and 1.6.1(4)]. (Note that
these results are stated over number fields, but the proofs are valid over arbitrary finitely generated base
fields of characteristic 0, and as just remarked, this is what we need. Further, for one step in the proof,
details are missing in [And96]; this is corrected in [Moo17, Section 2].)

It is clear that condition Ai , which says that the middle cohomology should be of K3 type, is satisfied.
The conditions B+

i state that (X,h) should be a fibre in a connected family of polarised varieties such that
the image of the period map contains an open subset of the period domain, and (condition B+

i (iv)) such that
the Hodge conjecture in middle degree is true for the fibres in this family. To see that these conditions are
satisfied, fix a 5-dimensional C-vector space V5 and abbreviate T =C⊕∧2V5. If n = 4, let S to be the open
subscheme of Gr(9,T )×P

(
Sym2(T ∨)

)
consisting of the pairs (W,Q) such that CGr(2,V5)∩P(W )∩Q is a

non-singular GM fourfold, and let f : Y → S be the tautological family of GM fourfolds. Similarly, for n = 6
we take S to be the open subscheme of quadrics Q ∈ P

(
Sym2(T ∨)

)
such that CGr(2,V5)∩Q is non-singular

of dimension 6, and again we naturally have a family of GM varieties f : Y → S (cf. the proof of [KP18,
Proposition A.2].) In either case it is clear that there exists a point 0 ∈ S(C) such that the fibre Y0 is the
GM variety X of the theorem and that the polarisation class H extends to a section of R2f∗Z(1). By what is
explained in [Deb20, Section 4], condition Bi (iii) is satisfied, and condition B+

i (iv) follows from Theorem 5.1.
For the generalised Tate conjecture, finally, we have shown in the previous section (as part of the generalised

Hodge conjecture) that the cohomology in middle degree (i.e. degree 2i) is supported on a subscheme
of codimension i − 1. Suppose W ⊂ H2i (X,Qℓ(i)) has coniveau at least i. Choose a model XR/R as in
Section 6.3 such that the image of the representation

ρ : π1 (Spec(R)) −→GL(W )

is contained in the group of automorphisms of W ∩H2i (X,Zℓ(i)) that are the identity modulo ℓ3, which
is a torsion-free group (see for instance [DdS+99, Theorems 4.5 and 5.2]). Then by the hypothesis on the
coniveau of W , all eigenvalues of Frobenii on W and on W∨ are algebraic integers, and because W is pure
of weight 0, these eigenvalues have norm 1 at all infinite places. Therefore, all eigenvalues of Frobenii are
roots of unity by Kronecker’s theorem. As the image of ρ is torsion-free and the Frobenius conjugacy classes
are dense in π1 (Spec(R)), it follows that W consists of Tate classes. By the Tate conjecture, W is supported
on a subscheme of codimension i, and we are done. □

Remark 6.3. By [And96, Theorem 1.5.1], the motive (in the sense of André) of an even-dimensional Gushel–
Mukai variety X is an abelian motive; therefore, the Mumford–Tate group GB of H(X,Q) equals the motivic
Galois group of the André motive H(X). This gives a strengthening of the Mumford–Tate conjecture that is
usually referred to as the “motivated Mumford–Tate conjecture”.
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Note that we do not know if the Chow motive of X is an abelian motive. (This is much stronger than
saying that its André motive is abelian.)

7. Chow–Künneth decompositions and their refinements

For later use, we recall some basic results on Chow–Künneth decompositions of (the Chow motives of)
Gushel–Mukai varieties. We first work over the complex numbers; at the end of the section, we explain how
to extend this to GM varieties over an arbitrary algebraically closed field of characteristic 0.

Let X be a GM n-fold. The Gushel map γ : X→ Gr(2,V5) induces a homomorphism γ∗ : H ∗ (Gr(2,V5),Q)
→ H ∗(X,Q), which is surjective in all degrees different from n. The cohomology of X in even degrees
different from n is therefore purely of Tate type, spanned by classes of algebraic cycles, and the cohomology
in odd degrees different from n is zero.

We first consider a complex GM variety X of dimension n ∈ {3,5}. Its intermediate Jacobian J = Jn(X) (in
middle degree) is a 10-dimensional abelian variety. We refer to [DK20b] for a detailed study of J .

Proposition 7.1. Let X be a complex GM variety of dimension n = 3 or 5, with intermediate Jacobian J = Jn(X).
Then h(X) is an abelian Chow motive, and there is a Chow–Künneth decomposition

(7.1) for n = 3: h(X) � 1⊕ 1(−1)⊕ h1(J) (−1)⊕ 1(−2)⊕ 1(−3),

resp.

(7.2) for n = 5: h(X) � 1⊕ 1(−1)⊕ 1(−2)2 ⊕ h1(J) (−2)⊕ 1(−3)2 ⊕ 1(−4)⊕ 1(−5).

Proof. This follows from Theorems 4.1 and 4.4, together with Theorem 3.4. □

Remark 7.2. It was shown by Laterveer, see [Lat21], that for dim(X) = 5, there exists a decomposition as
above which is multiplicative (see Section 3.2). For dim(X) = 3, the corresponding result is not yet known.

The above decompositions can be made explicit, as follows.

7.1. Let X be a complex GM threefold. Let H = −KX ∈ CH1(X)
Q
be the class of the ample generator of the

Picard group, and write pt = 1
10 ·H

3 for the class of a point on X. (By Theorem 4.1(iii), all points on X are
rationally equivalent.) We have a self-dual Chow–Künneth decomposition [∆X] =

∑6
i=0 πi

X in CH3(X ×X)
Q
,

given by

π0
X = pt×X, π6

X = X ×pt,

π1
X = 0, π5

X = 0,

π2
X = 1

10 ·H
2 ×H, π4

X = 1
10 ·H ×H

2,

and

π3
X = [∆X]−π0

X −π
2
X −π

4
X −π

6
X .

These projectors realise a decomposition as in (7.1); this follows from Theorem 3.3 (which applies because
h(X) is an abelian motive), where we use that the category Motnum(C) is semisimple (as proven by Jannsen
in [Jan92]) and that in cohomology the above projectors πi

X cut out H i(X,Q).

7.2. Next consider a complex GM fivefold X. Let H = −13 ·KX ∈ CH1(X)
Q

be the class of the ample

generator of the Picard group, and write pt = 1
10 ·H

5 for the class of a point on X. Let σi,j ∈ CHi+j (Gr(2,V5))
(for 3 ≥ i ≥ j ≥ 0) be the Schubert classes.
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The classes e1 =H2 and e2 = γ∗(σ1,1) = c2(UX) form a Q-basis of CH2(X)
Q
. Define f1 =

1
2 ·H

3 −He2
and f2 = −H3 + 5

2 ·He2 in CH3(X)
Q
. By using the intersection matrix

e2 H2

He2 2 4
H3 4 10

we find that deg(ei · fj ) = δi,j . Hence we obtain a self-dual collection of mutually orthogonal projectors by
setting π2i−1

X = 0 for i , 3,

π0
X = pt×X, π10

X = X ×pt,

π2
X = 1

10 ·H
4 ×H, π8

X = 1
10 ·H ×H

4,

π4
X = f1 × e1 + f2 × e2, π6

X = e1 × f1 + e2 × f2,

and π5
X = [∆X]−

∑
i,5 π

i
X . As before, this gives a Chow–Künneth decomposition.

7.3. Next we turn to GM varieties of even dimension n ∈ {4,6}. Let H = − 1
n−2 ·KX ∈ CH1(X) be the class

of the ample generator of the Picard group, and write pt = 1
10 ·H

n for the class of a point on X. (By the
results in Section 4, all points are rationally equivalent.) We have a self-dual Chow–Künneth decomposition
[∆X] =

∑2n
i=0 πi

X in CHn(X ×X)
Q

with πi
X = 0 for all odd integers i. For n = 4, the projectors in even

degree are given by

π0
X = pt×X, π8

X = X ×pt,

π2
X = 1

10 ·H
3 ×H, π6

X , =
1
10 ·H ×H

3,

and

π4
X = [∆X]−π0

X −π
2
X −π

6
X −π

8
X .

These projectors realise a decomposition (for dim(X) = 4)

(7.3) h(X) � 1⊕ 1(−1)⊕ h4(X)⊕ 1(−3)⊕ 1(−4).

For dim(X) = n = 6, the classes

e1 =H2, e2 = γ∗(σ1,1) = c2(UX)

form a basis of CH2(X)
Q
. Define the classes

f1 =
1
2 ·H

4 −H2e2, f2 = −H4 + 5
2 ·H

2e2

in CH4(X)
Q
. Then deg(ei · fj ) = δi,j , and the even Chow–Künneth projectors are given by

π0
X = pt×X, π12

X = X ×pt,

π2
X = 1

10 ·H
5 ×H, π10

X = 1
10 ·H ×H

5,

π4
X = f1 × e1 + f2 × e2, π8

X = e1 × f1 + e2 × f2,

and

π6
X = [∆X]−π0

X −π
2
X −π

4
X −π

8
X −π

10
X −π

12
X .

These projectors realise a decomposition (for dim(X) = 6)

(7.4) h(X) � 1⊕ 1(−1)⊕ 1(−2)⊕2 ⊕ h6(X)⊕ 1(−4)⊕2 ⊕ 1(−5)⊕ 1(−6).
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7.4. For later use, we will also need a refinement of the Chow–Künneth decomposition in the even-
dimensional case (cf. [KMP07, Section 7.2.2].)

Let dim(X) = n ∈ {4,6}. By the results in Section 4, the cycle class map induces an isomorphism
of CHn/2(X)

Q
with the space of Hodge classes in Hn(X,Q). Let {a1, . . . , ar} be an orthogonal basis of

CHn/2(X)
Q
, and define

πn
X,alg =

r∑
i=1

1

deg
(
a2i
) · ai × ai , πn

X,tr = πn
X −π

n
X,alg.

These are projectors, which are independent of the chosen orthogonal basis. In cohomology, πn
X,alg and πn

X,tr

are the projectors onto the subspace of Hodge classes in H4(X,Q), respectively its orthogonal complement.
Set hnalg(X) := (X,πn

X,alg,0) and hntr(X) := (X,πn
X,tr,0). Then hnalg(X) � 1(−n/2)⊕r , and we have a

refinement of (7.3) and (7.4) by further decomposing hn(X) as

hn(X) = hnalg(X)⊕ hntr(X).

Remark 7.3. Thus far in this section we have been working over C. We in fact have Chow–Künneth
decompositions as above for Gushel–Mukai varieties over an arbitrary field K = K of characteristic 0. The
best way to approach this would be to prove all results from Section 4 (at least with Q-coefficients) over such
fields. As some of the results that we have used are documented in the literature only for complex varieties,
here we take a more direct approach.

Let X be a GM variety of dimension n ∈ {3,4,5,6} over K . It is clear from the above explicit description
of the Chow–Künneth projectors πi

X that these same projectors are meaningfully defined over K . (All we
have used is the existence of the Gushel map; with a little more work, even the assumption K = K could be
dropped.) Taking the explicit formulas in Sections 7.1–7.3 as definitions of the projectors πi

X , we obtain a
Chow–Künneth decomposition h(X) = ⊕2ni=0 h

i(X) in CHM(K).
These projectors are invariant under extension of the base field: if K ⊂ L is a field extension, the Chow–

Künneth projectors πi
XL
∈ CHn(XL ×L XL) that we obtain are the images of the projectors πi

X ∈ CH
n(X ×X)

under the natural map CHn(X ×X)→ CHn(XL ×L XL). Hence also hi(XL) = hi(X)L for all i.

8. Motives of generalised partners and duals

Throughout this section, K is an algebraically closed field of characteristic 0, and n, n′ are two integers
in {3,4,5,6} of the same parity.

Definition 8.1 (cf. [KP18, Definition 3.5]). Let X and X ′ be GM varieties over K of dimensions n and n′ ,
respectively. We say that X and X ′ are

• generalised partners if there exists an isomorphism V6(X) � V6(X ′) inducing an identification between
the Lagrangian subspaces A(X) ⊂ ∧3V6(X) and A(X ′) ⊂ ∧3V6(X ′);
• generalised dual if there exists an isomorphism V6(X) � V6(X ′)∨ inducing an identification between
the Lagrangian subspaces A(X) ⊂ ∧3V6(X) and A(X ′)⊥ ⊂ ∧3V6(X ′)∨.

For n and n′ odd, it follows from [DK20b, Theorem 1.1] that if X and X ′ are generalised partners or duals
over C, their middle cohomology groups are isomorphic as rational Hodge structures, up to a Tate twist.
With some work, a similar conclusion can be proven for n and n′ even. The main result of this section is a
motivic strengthening of this.

Theorem 8.2. Let n and n′ be as above. Let X and X ′ be GM varieties of dimensions n and n′ over K . If X
and X ′ are generalised partners or generalised duals, their rational Chow motives in middle degrees are isomorphic;
i.e.

(8.1) hn(X) � hn
′
(X ′)

(
n′−n
2

)
in CHM(K).
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Our proof will employ techniques from derived categories and is based on an idea that we learned from a
draft version of the paper [BL24] by Bolognesi and Laterveer.

8.1. The derived category of a GM variety X admits a semi-orthogonal decomposition consisting of an
exceptional collection together with an admissible subcategory Ku(X), called its Kuznetsov component, which
is a K3 or Enriques category depending on the parity of the dimension of the GM variety. More precisely,

(8.2) Db(X) =
〈
Ku(X),OX ,U

∨
X ,OX(1),U

∨
X (1), . . . ,OX(n− 3),U ∨

X (n− 3)
〉
,

where OX(1) is the ample generator of the Picard group of X and UX is the Gushel bundle. We denote by
i : Ku(X) ↪→Db(X) the natural inclusion functor and let i∗ and i! be, respectively, the left and right adjoints
of i, which may be viewed as projection functors from Db(X) to the Kuznetsov component. We refer to the
work of Kuznetsov–Perry [KP18] for details.

The following result is deduced from the so-called quadratic homological projective duality.

Theorem 8.3 (Kuznetsov–Perry, cf. [KP23]). Let X and X ′ be GM varieties of dimension n and n′ over K . If X
and X ′ are generalised partners or generalised duals, there exists a Fourier–Mukai equivalence

(8.3) Ψ : Ku(X)
eq
−−−→ Ku(X ′)

between their Kuznetsov components.

The assertion that the equivalence is of Fourier–Mukai type means that there exists an object E in
Db(X ×X ′) such that the composition

(8.4) Db(X)
i∗−−−→ Ku(X)

Ψ−−−→ Ku(X ′)
i′−−−→Db(X ′)

is the Fourier–Mukai transformation ΦE defined by E . This is not explicitly stated in [KP23], but it follows
from [LPZ23, Theorem 1.3].

8.2. For the proof of Theorem 8.2, we shall first work over the complex numbers. In Section 8.3 we shall

explain how to deduce the result over a field K = K of characteristic 0. The overall strategy is close to
[Huy18] and uses some arguments in [FV21, FV23].

If Z is a smooth complex projective variety, an admissible subcategory of its bounded derived category of
coherent sheaves C ⊂ Db(Z) may be viewed as a non-commutative smooth proper scheme. Let K0(C) be
the Grothendieck group of C. By the work of Blanc [Bla16], we can also consider the topological K-theory
K

top
0 (C) of C, which for C = Db(Z) agrees with topological K-theory of Z (see [Bla16, Proposition 4.32]).

The functors K0 and K
top
0 are both additive invariants, in the sense that they transform a semi-orthogonal

decomposition into a direct sum decomposition. Sending an algebraic vector bundle to its underlying
complex vector bundle defines a natural transformation K0→ K

top
0 .

We define a new invariant, which might be called the “topologically trivial Grothendieck group”:

(8.5) A(C) := ker
(
K0(C)Q→ K

top
0 (C)

Q

)
.

For a smooth complex projective variety Z, we simply write A(Z) for A
(
Db(Z)

)
. Naturally, A being the

kernel of a morphism between additive functors, it is again an additive invariant. We make two basic
observations:

• It is easy to check that A(pt) = 0. Therefore, if there is a semi-orthogonal decomposition

Db(Z) = ⟨Ku(Z),E1, · · · ,Em⟩ ,

with ⟨E1, · · · ,Em⟩ an exceptional collection (in particular, ⟨Ei⟩ � Db(pt) for every i), the inclusion
functor i : Ku(Z) ↪→Db(Z) induces an isomorphism

(8.6) A (Ku(Z)) �A(Z),



20 L. Fu and B. Moonen20 L. Fu and B. Moonen

with inverse induced by the (left or right) adjoint functor of i.
• For any smooth complex projective variety Z, we have a commutative diagram

K0(Z)Q K
top
0 (Z)

Q

CH∗(Z)
Q

H2∗(Z,Q),

≀v vtop≀

cl

where the bottom arrow is the cycle class map and the vertical isomorphisms are given by “Mukai
vector maps” that send a class e to ch(e) ·

√
td(X) . (The right vertical map is an isomorphism by

a classical result of Atiyah and Hirzebruch; see for instance [FF16, Section 38.4].) From the above
diagram, we obtain that the Mukai vector map induces an isomorphism between A(Z) and the
homologically trivial part of the rational Chow group:

(8.7) v : A(Z) ∼−−→ CH∗(Z)hom,Q.

We can now give the proof of Theorem 8.2 for X and X ′ defined over C.

Proof of Theorem 8.2 over C. In order to avoid case distinctions, let us make the convention that when n is
odd, hntr(X) = hn(X).

By Theorem 8.3, there exists an object E ∈Db(X ×X ′) such that the composition

Ku(X)
i

↪−−→Db(X)
ΦE−−−−→Db(X ′)

i′ ∗−−−→ Ku(X ′)

is an equivalence of smooth proper dg-categories. (This is the same as (8.4) because i∗ ◦ i is the identity
on Ku(X), and likewise for X ′ .) Applying the invariant A, we find that the composition

(8.8) A (Ku(X)) −→A(X)
[E ]∗−−−−−→A(X ′) −→A (Ku(X ′))

is an isomorphism. However, since the Kuznetsov component of a GM variety is defined as the right
orthogonal of an exceptional collection (see (8.2)), (8.6) implies that the first and last maps in (8.8) are
isomorphisms. Therefore, the middle map of (8.8) is an isomorphism between A(X) and A(X ′).

Now consider the Grothendieck–Riemann–Roch diagram

(8.9)

A(X) A(X ′)

CH∗(X)hom,Q CH∗(X ′)hom,Q,

[E ]∗
∼

v≀ v≀
v(E )∗

where the top map is an isomorphism as explained above and the vertical isomorphisms are the ones
obtained from (8.7). It follows that the bottom arrow is an isomorphism. Furthermore, by our computations
of Chow groups in Section 4, we have that

CH(X)hom,Q = CH⌊
n+2
2 ⌋(X)hom,Q = CH(hntr(X))

Q
,

and likewise for X ′ . Now consider the morphism vm(E ) : h(X)→ h(X ′)
(
n′−n
2

)
in CHM(C) defined by the

component of v(E ) in degree m = n+n′
2 . It follows from the above that the morphism

πn′
X ′ ,tr ◦ vm(E ) ◦πn

X,tr : h
n
tr(X) −→ hn

′
tr (X

′)
(
n′−n
2

)
induces an isomorphism on Chow groups. By Lemma 3.2, this implies that this morphism is an isomorphism.

In case n and n′ are even, it remains to pass from hntr(X) and hn
′

X ′ ,tr to hn(X) and hn
′

X ′ . By construction,
there exist integers r and r ′ such that

hn(X) = hntr(X)⊕ 1
(
−n2

)⊕r
, hn

′
(X ′) = hn

′
tr (X

′)⊕ 1
(
−n′2

)⊕r ′
.
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Taking Hodge realisations and using that the middle Betti numbers of X and X ′ are the same, it follows that
r = r ′ , and therefore hn(X) � hn

′
(X ′)

(
n′−n
2

)
. □

8.3. To finish, we explain how to obtain Theorem 8.2 over an arbitrary algebraically closed field K of
characteristic 0. Let X and X ′ be generalised partners or duals over K , of dimensions n, n′ ∈ {3,4,5,6} of
the same parity. There exists a subfield K0 ⊂ K which is finitely generated over Q such that X and X ′ both
have models, say X0 and X ′0, over K0, and such that moreover the Chow–Künneth projectors πn

X and πn′
X ′

that cut out the submotives hn(X) and hn
′
(X ′) are defined over K0. Clearly, Theorem 8.2 for X0 and X ′0

over an algebraic closure of K0 implies the result over K .
Choose an embedding K0 ↪→C, and let K0 be the algebraic closure of K0 inside C. By the now proven

Theorem 8.2 over C, there exists an isomorphism α : hn(X0,C) � hn
′
(X ′0,C)

(
n′−n
2

)
in CHM(C). There exists

a finitely generated field extension K0 ⊂ K1 inside C such that α and α−1 are defined over K1. Concretely,
this means there exist cycle classes Z1, . . . ,Zm ∈ CH

(
(X0 ×X ′0)K1

)
and rational numbers ai and bi such that

α = πn′

X ′0
◦
(∑

ai ·Zi

)
◦πn

X0
, α−1 = πn

X0
◦
(∑

bi · tZi

)
◦πn′

X ′0
.

The field K1 is the function field of a variety S over K0. Choose a point s ∈ S(K0). By specialisation from
the generic point of S to s, we obtain cycle classes Z1,s, . . . ,Zm,s ∈ CH

(
(X0 ×X ′0)K0

)
. Then

πn′

X ′0
◦
(∑

ai ·Zi,s

)
◦πn

X0
and πn

X0
◦
(∑

bi · tZi,s

)
◦πn′

X ′0

define mutually inverse morphisms hn(X0)⇄ hn
′
(X ′0)

(
n′−n
2

)
in CHM(K0), and this gives what we want.
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