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Etale descent obstruction and anabelian geometry of curves
over finite fields

Brendan Creutz and José Felipe Voloch

Abstract. Let C and D be smooth, proper and geometrically integral curves over a finite field F .
Any morphism D → C induces a morphism of étale fundamental groups π1(D)→ π1(C). The
anabelian philosophy proposed by Grothendieck suggests that, when C has genus at least 2, all
open homomorphisms between the étale fundamental groups should arise in this way from a
nonconstant morphism of curves. We relate this expectation to the arithmetic of the curve C
considered as a curve over the global function field K = F (D). Specifically, we show that there is a
bijection between the set of conjugacy classes of well-behaved morphisms of fundamental groups
and locally constant adelic points of C that survive étale descent. We use this to provide further
evidence for the anabelian conjecture and relate it to another recent conjecture by Sutherland and
the second author.
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1. Introduction

For a smooth, proper and geometrically integral curve X over a global field k, it is well known that the
Hasse principle can fail. That is, X may contain points over every completion of k, yet fail to have any
k-rational point. All known examples of this phenomenon can be explained by a finite descent obstruction.
This means that there is a torsor f : Y → X under a finite group scheme over k such that no twist of Y
contains points over every completion. Since any k-rational point must lift to some twist of f , this yields an
obstruction to the existence of k-rational points on X. A central question in the arithmetic of curves over
global fields is to determine whether this is the only obstruction to the existence of k-rational points.

This problem is expected to be very hard in general. For curves of genus 1, it is equivalent to standard
conjectures concerning the Tate–Shafarevich groups of elliptic curves. For curves of genus at least 2 over
number fields, it is known to follow from Grothendieck’s section conjecture, but there are essentially no
general results. For a discussion of the finite descent obstruction over number fields, we refer to [Sto07],
which, despite being published over a decade ago, still conveys the state of the art.

The situation is much more promising when X is defined over a global function field, i.e., when k = F (D)
is the function field of a smooth, proper and geometrically connected curve D over a finite field F . Building
on work of Poonen–Voloch, see [PV10], and Rössler, see [Rös13], [CV23, Appendix], the authors have recently
completed a proof that finite descent is the only obstruction for all nonisotrivial curves of genus at least 2;
see [CV23]. It thus remains to consider the situation for isotrivial curves. Recall that X is called constant if
it is isomorphic to the base change of a curve defined over F , and that X is called isotrivial if it becomes
constant after base change to a finite extension of k.

We formulate a precise version of the conjecture that finite descent is the only obstruction to the existence
of k-rational points on a constant curve over a global function field (Conjecture 1.1) and prove the equivalence
of this conjecture with an analogue of Grothendieck’s section conjecture for curves over finite fields (see
Theorem 3.8). This enables us to use techniques from anabelian geometry which we combine with results of
[CV22] to establish new instances of these conjectures. We prove that finite descent is the only obstruction
to the existence of k-rational points for a constant curve X ≃ C ×

F
k such that the Jacobian of C is not an

isogeny factor of the Jacobian of D (see Theorem 1.3).

1.1. Main results and conjectures

Let C and D be smooth, proper and geometrically integral curves over a finite field F . We consider the
arithmetic of the curve C ×

F
K over the global function field K := F (D) (which we still denote by C by

abuse of notation). We denote by AK the ring of adèles of K and consider the set C(AK ) of adelic points
of C, which is also the product

∏
vC(Kv), where v runs through the places of K , with its natural product

topology. Let C(K) denote the topological closure of C(K) inside C(AK ).
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The definition of the set C(AK )ét of adelic points surviving descent by all torsors under finite étale group
schemes over K is recalled in Section 2.2. We also consider the set C(AK )ét -Br of adelic points surviving
the étale-Brauer obstruction; see [Poo17, Section 8.5.2]. These are closed subsets of C(AK ) containing C(K).
A special case of [PV10, Conjecture C] implies that C(K) = C(AK )ét -Br. For any of the other containments
in the sequence

C(K) ⊂ C(K) ?= C(AK )
ét -Br ⊂ C(AK )

ét ⊂ C(AK ),

there are examples showing that, in general, they can be proper. The first will be proper when C(K) is
infinite, which occurs whenever there is a nonconstant morphism φ ∈Mor

F
(D,C) = C(K), as it may be

composed with the Frobenius endomorphism of C. Examples where the third inclusion is proper are given
in [CV22, Proposition 4.5] and are accounted for by a descent obstruction coming from torsors under finite
abelian group schemes that are not étale.

Despite this, it is still expected that the information obtained from C(AK )ét should determine the set of
rational points, as we now describe. For a place v, let Fv denote the residue field of the integer ring Ov ⊂ Kv .
We define C(AK,F ) :=

∏
vC(Fv), which is a closed subset of C(AK ) =

∏
vC(Kv) admitting a continuous

retraction r : C(AK )→ C(AK,F ) (see Section 2.1). Define C(AK,F )ét = C(AK,F )∩C(AK )ét. Then r(C(K))
is a closed subset of C(AK,F )ét. We conjecture the following.

Conjecture 1.1. We have r(C(K)) = C(AK,F )ét. In particular, C(AK,F )ét = C(F ) if and only if the set
C(K) = Mor

F
(D,C) contains no nonconstant morphisms.

Conjecture 1.1 is a nonabelian analogue of a conjecture in the number field case by Poonen, see [Poo06],
in a setup first studied in [Sch99]. It is equivalent, by [CV22, Theorem 1.2], to the conjecture that
C(K) = C(AK )ét -Br. When C has genus 1, Conjecture 1.1 follows from the Tate conjecture for abelian varieties
over finite fields. It is also known when the genera of C and D satisfy g(D) < g(C) by [CV22, Theorem 1.5],
and in some other cases where C(K) = C(F ); see [CVV18, Theorem 2.14]. The goal of this paper is to
provide further evidence for this conjecture, by relating it to anabelian geometry.

Fix geometric points x ∈ C(F ) and y ∈ D(F ), where F denotes an algebraic closure of F , and let
π1(C) := π1(C,x) and π1(D) := π1(D,y) be the étale fundamental groups of C and D with these base
points. Any morphism of curves D→ C induces a morphism of étale fundamental groups π1(D)→ π1(C)
up to conjugation by an element of the geometric fundamental group π1(C) := π1(C×F F ,x). Grothendieck’s
anabelian philosophy suggests that, when C has genus at least 2, all open homomorphisms between the étale
fundamental groups should arise in this way from a nonconstant morphism of schemes; see [ST09, ST11].
In Section 3 we define a notion of well-behaved morphisms between fundamental groups of curves (see
Definition 3.1). We expect all open homomorphisms are well behaved, but we have not been able to prove
this.

Our main result is the following theorem, which relates the set C(AK,F )ét appearing in Conjecture 1.1 to
an object of interest in anabelian geometry.

Theorem 1.2 (cf. Theorem 3.8). There is a bijection (explicitly constructed in the proof ) between the set
Homwb

π1(C)
(π1(D),π1(C)) of well-behaved morphisms of fundamental groups up to π1(C)-conjugation and the set

C(AK,F )ét of locally constant adelic points surviving étale descent.

This theorem is a strengthening of an analogous result for curves over number fields, which shows that
an adelic point surviving étale descent gives rise to a section of the fundamental exact sequence; see
[HS12, Sto07]. Combining Theorem 1.2 with the results in [CV22], we prove the following.

Theorem 1.3. If the Jacobian JC of C is not an isogeny factor of JD , then Conjecture 1.1 holds for C and D .

In addition to establishing new instances of the conjecture, this result allows us to relate it in the case
g(D) = g(C) to a recent conjecture of Sutherland and the second author, see [SV19], which we now recall.
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We embed C into its Jacobian JC by a choice of divisor of degree 1 (which always exists by the Lang–Weil
estimates since C is defined over a finite field). The Hilbert class field is defined as follows. Let Φ : JC → JC
denote the F -Frobenius map. Define H(C) := (I −Φ)∗(C) ⊂ JC , where I denotes the identity map on J .
Then H(C) is an unramified abelian cover of C with Galois group JC(F ), well defined up to a twist that
corresponds to a choice of divisor of degree 1 embedding C into JC . Define H0(C) := C, H1(C) :=H(C),
and successively define Hn+1(C) :=Hn(H(C)) for integers n ≥ 1.

Conjecture 1.4 (cf. [SV19, Conjecture 2.2]). Let C,D be smooth projective curves of equal genus at least 2 over a
finite field F . If, for each n, there are choices of twists such that the L-function of Hn(C) is equal to the L-function
of Hn(D) for all n ≥ 0, then C is isomorphic to a conjugate of D .

Theorem 1.5. Suppose g(C) = g(D) ≥ 2 and assume Conjecture 1.4. Then C(AK,F )ét , C(F ) if and only if there
is a nonconstant morphism D→ C.

Acknowledgements

The authors thank Jakob Stix for suggestions leading to the proof of Proposition 3.9 and for a correction
to Remark 3.2.

2. Notation and preliminaries

2.1. Notation

The set of places of the global field K = F (D) is in bijection with the set D1 of closed points of D . Given
v ∈D1, we use Kv , Ov and Fv to denote the corresponding completion, ring of integers and residue field,
respectively. Fix a separable closure Ks of K , and let F denote the algebraic closure of F inside Ks. For
each v ∈D1, fix a separable closure Ks

v of Kv and an embedding Ks ↪→ Ks
v . This determines an embedding

Fv ⊂ F and an inclusion θv : Gal(Kv)→Gal(K). The embedding Fv ⊂ F fixes a geometric point v ∈D(F )
in the support of the closed point v ∈ D . The inclusions F ⊂ Fv ⊂ Ov ⊂ Kv endow Ov ,Kv and the adele
ring AK with the structure of an F -algebra. We define the locally constant adele ring AK,F :=

∏
v∈D1 Fv .

This is an F -subalgebra of the adele ring AK .
The constant curve C ×Spec(F ) Spec(K) spreads out to a smooth proper model C ×Spec(F )D over D . For

any v ∈D1, this gives a reduction map rv : C(Kv)→ C(Fv). Since C is proper, C(AK ) =
∏
C(Kv) and the

reduction maps give rise to a continuous projection r : C(AK )→ C(AK,F ) sending (xv) to (rv(xv)).
Any locally constant adelic point (xv) ∈ C(AK,F ) determines a unique Galois equivariant map

of sets ψ : D(F ) → C(F ) with the property that φ(v) = xv . This induces a bijection C(AK,F ) ↔
MapG

F

(D(F ),C(F )). Moreover, a locally constant adelic point on C determines, and is uniquely
determined by, a map f : D1 → C1 together with an embedding Ff (v) ⊂ Fv for each v ∈ D1 (see
[CV22, Lemma 2.1]).

Lemma 2.1. The composition C(K) → C(AK )
r→ C(AK,F ) is injective. Composing this with the map

C(AK,F ) → Map(D1,C1) induces an injective map C(K)/F → Map(D1,C1), where C(K)/F denotes the
set of K-rational points up to Frobenius twist; i.e., P ∼Q if and only if there are m,n ≥ 0 such that FmP = FnQ.

Proof. The first statement follow from the fact (e.g., [GW10, Exercise 5.17]) that a morphism defined on a
geometrically reduced variety is determined by what it does to geometric points. For the second statement,
see [Sti02, Proposition 2.3]. □

The set C(K)/F is finite by the theorem of de Franchis [Lan83, Chapter 8, pp. 223-224]. Over a finite
field F , there is a simpler proof. The degree of a separable map D→ C is bounded by Riemann–Hurwitz.
Looking at coordinates of an embedding of C, it now suffices to show that there are only finitely many
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functions on D/F of degree bounded by some m. The zeros and poles of such a function have degree at
most m over F , so there are only finitely choices for the divisor of such a function. Finally, the function
itself is determined up to a scalar in F

∗ by its divisor, but F ∗ is finite by hypothesis.

2.2. Etale descent obstruction

Let f : C′→ C be a torsor under a finite étale group scheme G/K . We use H1(K,G) to denote the étale
cohomology set parameterizing isomorphism classes of G-torsors over K (and similarly with K replaced by
Kv ,Ov ,Fv , etc.). The distinguished element of this pointed set is represented by the trivial torsor.

Following the terminology in [Sto07], we say an adelic point (xv) ∈ C(AK ) survives f if the element of∏
vH

1(Kv ,G) given by evaluating f at (xv) lies in the image of the diagonal map

H1(K,G)
∏
θ∗v−→

∏
v∈D1

H1(Kv ,G).

Equivalently, (xv) survives f if and only if (xv) lifts to an adelic point on some twist of f by a cocycle
representing a class in H1(K,G). We use C(AK )ét to denote the set of adelic points surviving all C-torsors
under étale group schemes over K . Then C(AK )ét is a closed subset of C(AK ) containing C(K). We define
C(AK,F )ét = C(AK )ét ∩C(AK,F ). By [CV22, Proposition 4.6], an adelic point lies in C(AK )ét if and only if
its image under the reduction map r : C(AK )→ C(AK,F ) lies in C(AK,F )ét.

The following lemma is a special case of a well-known statement in étale cohomology over a henselian
ring (cf. [Mil80, Remark 3.11(a) on p. 116]).

Lemma 2.2. For an étale group scheme G over F , we have H1(Ov ,G) = H1(Fv ,G).

Proof. The canonical surjection q : Ov → Fv induces a map q∗ : H1(Ov ,G) → H1(Fv ,G). This map is
injective by Hensel’s lemma. On the other hand, the inclusion i : Fv →Ov satisfies q ◦ i = id. It follows that
q∗ must also be surjective. □

An element of H1(Kv ,G) is called unramified if it lies in the image of the map H1(Ov ,G)→H1(Kv ,G)
induced by the inclusion Ov ⊂ Kv . Thus, the lemma identifies H1(Fv ,G) with the set of unramified elements
in H1(Kv ,G).

3. Connection to anabelian geometry

Fix a base point x : SpecF → D := D ×Spec(F ) Spec(F ). Composing with the canonical maps D → D
and D → Spec(F ), this serves as well to fix base points of D and Spec(F ). The base point of Spec(F )
agrees with that determined by the algebraic closure F ⊂ F fixed above. This leads to the fundamental
exact sequence

(3.1) 1 −→ π1(D) −→ π1(D) −→Gal(F ) −→ 1,

where π1(−) denotes the étale fundamental group with base point as chosen above. A choice of base point
SpecF → C determines a similar sequence for C.

The choice of separable closure of K identifies π1(D) with the Galois group of the maximal extension Kunr

of K which is everywhere unramified. For each closed point v ∈D1, the embedding θv : Gal(Kv)→Gal(Ks)
induces a section map tv : Gal(Fv) ≃ Gal(Kunr

v |Kv) → π1(D) whose image is a decomposition group
Tv ⊂ π1(D) above v.

Definition 3.1. A continuous morphism π1(D)→ π1(C) is well behaved if every decomposition group of
π1(D) is mapped to an open subgroup of a decomposition group of π1(C). Let Homwb(π1(D),π1(C))
denote the set of well-behaved homomorphisms of profinite groups, and for a subgroup H < π1(C), let
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Homwb
H (π1(D),π1(C)) denote the quotient of Homwb(π1(D),π1(C)) by the action given by composition

with an inner automorphism of π1(C) coming from an element of H .

Remark 3.2. Here is an example of a poorly behaved homomorphism. Suppose the genus of C is at least 2.
By [Sti13, Theorem 226], there are uncountably many sections Gal(F )→ π1(C) that are not conjugate
to any section coming from a point in C(F ). Composing such a section with the canonical surjection
π1(D)→Gal(F ) gives a continuous morphism π1(D)→ π1(C) that is not well behaved.

Proposition 3.3. Suppose (xv) ∈ C(AK,F )ét. For each v ∈ D1, let Sv ⊂ π1(CFv
) ⊂ π1(C) be a decomposition

group above the closed point xv ∈ CFv
. Then there exists a well-behaved homomorphism φ : π1(D)→ π1(C)

inducing a morphism of exact sequences

1 // π1(D)

φ
��

// π1(D)

φ

��

// Gal(F ) // 1

1 // π1(C) // π1(C) // Gal(F ) // 1

such that, for each v ∈D1, there exists a γv ∈ π1(C) such that φ(Tv) = γv(Sv)γ−1v .

Proof. For each v ∈ D1, the choice of decomposition group Sv ⊂ π1(CFv
) above xv determines a section

map sv : Gal(Fv)→ π1(CFv
) ⊂ π1(C) with image Sv . For any finite continuous quotient ρG : π1(C)→ G,

the composition ρG ◦ sv : Gal(Fv)→ G determines a class in H1(Fv ,G) = HomG(Gal(Fv),G), the group of
homomorphisms up to G-conjugation. Here we view G as a constant group scheme over F . By Lemma 2.2,
we may view H1(Fv ,G) as a subgroup of H1(Kv ,G). In terms of descent, ρG corresponds to a torsor in
H1(C,G) = H1(π1(C),G) = HomG(π1(C),G), and ρG ◦ sv is the evaluation of this torsor at xv ∈ C(Fv). So
the fact that (xv) survives étale descent implies that there is a global class s ∈ H1(K,G) such that for all
v ∈D1, θ∗v(s) = ρG ◦ sv in H1(Fv ,G) ⊂H1(Kv ,G). Note that such an s must lie in (the image under inflation
of) the group H1(π1(D),G) = HomG(π1(D),G) since the sv are all unramified.

For each v ∈D1, the condition θ∗v(s) = ρG ◦ sv ∈H1(Kv ,G) is equivalent to s◦ tv = ρG ◦ sv in H1(Fv ,G) =
HomG(Gal(Fv),G). Let Gv = ρG(π1(CFv

)) ⊂ G be the image of ρG restricted to the normal subgroup
π1(CFv

). Then Gv is normal in G and contains the image of ρG ◦ sv , so it must also contain the image of
s ◦ tv . Since G is constant, the map H1(Fv ,Gv)→H1(Fv ,G) induced by the inclusion Gv ⊂ G is injective. It
follows that ρG ◦ sv and s ◦ tv are equal as elements of H1(Fv ,Gv).

By the Borel–Serre theorem (see [Poo17, Theorem 5.12.29]), the fibers of the map H1(K,G) →∏
v∈D1 H1(Kv ,G) are finite. It follows that the set

SG :=
{
s′ : π1(D)→ G | ∀v ∈D1, s′ ◦ tv = ρG ◦ sv in H1(Fv ,Gv)

}
is finite, and it is nonempty by the discussion above. As in the proof of [HS12, Proposition 1.2], it follows
that the inverse limit over G of these sets is nonempty. An element of lim←−−SG is a homomorphism

φ : π1(D)→ lim←−−G = π1(C) with the property that for all v ∈D1, the maps φ ◦ tv and sv are conjugate by

an element of π1(CFv
) = lim←−−Gv . We claim that φ ◦ tv and sv are in fact π1(C)-conjugate. To see this, let

p : π1(C)→ Gal(F ) be the canonical surjection. Suppose γv ∈ π1(CFv
) conjugates sv to φ ◦ tv . We claim

γ ′v := γv · sv(p(γ−1v )) is an element of π1(C) and conjugates sv to φ ◦ tv . (Note that sv(p(γ−1v )) makes sense
as p(γv) ∈Gal(Fv).) To see that γ ′v ∈ π1(C), we use that p ◦ sv is the identity map on Gal(Fv) to compute

p(γ ′v) = p
(
γv · sv

(
p(γ−1v )

))
= p(γv) · (p ◦ sv)

(
p(γ−1)

)
= p(γ)p(γ−1) = 1.
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To see that γ ′v conjugates sv to φ ◦ tv , we compute, for arbitrary σ ∈Gal(Fv),

γ ′v · sv(σ ) ·γ ′−1v =
[
γv · sv

(
p(γ−1v )

)]
· sv(σ ) ·

[
γv · sv

(
p(γ−1v )

)]−1
= γv · sv

(
p(γ−1)σp(γ)

)
·γ−1v

= γv · sv(σ ) ·γ−1v ,

where the final equality uses that Gal(Fv) is abelian.
Finally, let us show that φ induces a morphism of exact sequences as in the statement. Write pD : π1(D)→

Gal(F ) for the canonical map, and use pC similarly. Since pC ◦ sv is the identity on the abelian group
Gal(Fv), for any σ ∈Gal(Fv), we have

pC(φ(tv(σ ))) = pC
(
γv · sv(σ ) ·γ−1v

)
= pC(sv(σ )) = σ.

So for any x ∈ π1(D) whose image under pD lies in Gal(Fv), we have pD(x) = pC(φ(x)). As this holds for
all v ∈D1, we must have pD = pC ◦φ. So φ induces a morphism of exact sequences as stated. □

Remark 3.4. The construction of the morphism φ in the preceding proof is similar to the proof of [HS12,
Proposition 1.1]. However, the verification that it interpolates the sv up to conjugation in π1(C) rather than
just in π1(C) is necessarily different from the approach in the proof of [HS12, Proposition 1.2].

Construction 3.5. Let φ : π1(D)→ π1(C) be a well-behaved homomorphism. From this we construct a
locally constant adelic point (xv) ∈ C(AK,F ) as follows. Let D̃ and C̃ denote the universal covers of D
and C. The decomposition groups of π1(D) and π1(C) correspond to closed points on D̃ and C̃. As we have
assumed C to be hyperbolic, the intersection of any two distinct decomposition groups of π1(C) is open in
neither (see for example [ST11, Proposition 1.5]). So the well-behaved map φ determines a map φ̃ : D̃1→ C̃1

by declaring φ̃(ṽ) to be the point of C̃ whose corresponding decomposition group contains φ(Dṽ). Given a
closed point v ∈D1, the embedding θv : Gal(Kv)→Gal(K) determines a decomposition group Tv above v
and consequently a pro-point ṽ ∈ D̃ . Define xv ∈ C(Fv) = CFv

(Fv) to be the image of φ̃(ṽ) on C
Fv
. Ranging

over the closed points of D, this determines a locally constant adelic point (xv) ∈
∏
v∈D1C(Fv) = C(AK,F ).

Remark 3.6. Note that π1(C) acts on the set of pro-points w̃ above a given w ∈ C1 and that any two
pro-points above w ∈ C1 in the same π1(C)-orbit have the same image on C

Fw
. It follows that the adelic

point (xv) from Construction 3.5 depends on φ only up to π1(C)-conjugacy. Similarly, the image of (xv) in
Map(D1,C1) under the map in Lemma 2.1 depends on φ only up to π1(C)-conjugacy.

Lemma 3.7. Suppose φ ∈Homwb
π1(C)

(π1(D),π1(C)), and let (xv) ∈ C(AK,F ) be the locally constant adelic point

given by Construction 3.5. Then (xv) ∈ C(AK,F )ét.

Proof. For v ∈ D1, let tv : Gal(Fv) → π1(D) be the section map as defined at the beginning of this
section. Define sv = φ ◦ tv : GFv

→ π1(C). By construction, the image of sv is a decomposition group
of π1(C) above xv ∈ C(Fv). Let α : C′ → C be a torsor under a finite group scheme G/F . Then α
represents a class in H1(C,G) = H1(π1(C),G(F )), where the action of π1(C) on G(F ) is induced by
the projection π1(C) → Gal(F ). The evaluation of α at xv is the class of α ◦ sv in H1(Fv ,G). Since
α ◦ sv = α ◦φ ◦ tv = t∗v(α ◦φ), we see that α ◦φ lies in the images of the horizontal maps in the following
commutative diagram whose vertical maps come from inflation:

H1(K,G)
θ∗v

// H1(Kv ,G)

H1(π1(D),G)
t∗v
//

?�

OO

H1(Fv ,G).
?�

OO
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As this holds for all v ∈ D1, we see that the evaluation of α at the adelic point (xv) lies in the diagonal
image of H1(K,G). □

Theorem 3.8. Construction 3.5 induces bijections

C(AK,F )ét

����

Homwb
π1(C)

(π1(D),π1(C))//oo

����

Map(D1,C1)ét oo // Homwb
π1(C)

(π1(D),π1(C)),

where Map(D1,C1)ét denotes the image of C(AK,F )ét in Map(D1,C1) under the map in Lemma 2.1.

Proof. Proposition 3.3 gives a map of sets

C(AK,F )
ét −→Homwb

π1(C)
(π1(D),π1(C)),

while Construction 3.5 and Lemma 3.7 give an injective map

Homwb
π1(C)

(π1(D),π1(C)) ↪−−→ C(AK,F )
ét.

One easily checks that these maps are inverse to one another, so they are inverse bijections.
The surjectivity of the first vertical map is given in Lemma 2.1, and the surjectivity of the other is

immediate from the definition. One deduces the bijection in the bottom row from that in the top row using
Remark 3.6. □

Proposition 3.9. Let φ : π1(D)→ π1(C) be a well-behaved morphism corresponding to a locally constant adelic
point surviving étale descent (xv) ∈ C(AK,F )ét as given by Proposition 3.3. If (xv) < C(F ), then φ has open image
and the map ψ : D(F )→ C(F ) induced by (xv) is surjective.

Corollary 3.10. Let φ : π1(D)→ π1(C) be a well-behaved homomorphism. The image of φ either is open or is a
decomposition group above a point v ∈ C(F ).

Proof. Suppose the image of φ is not open. Then we find a sequence of open subgroups Ui ⊂ π1(C)
of index approaching infinity all of which contain the image of φ. By Proposition 3.3, the image of φ
maps surjectively onto Gal(F ) under the canonical map π1(C) → Gal(F ). Hence, the induced maps
Ui →Gal(F ) are surjective, so that the Ui correspond to geometrically connected étale coverings Ci → C
of genus approaching infinity. For each we have a well-behaved homomorphism π1(D)→Ui = π1(Ci). By

Theorem 3.8, these correspond to unobstructed adelic points (x(i)v ) ∈ Ci(AK,F )ét which lift (xv) ∈ C(AK,F ).
Eventually g(Ci) > g(D), in which case [CV22, Theorems 1.2, 1.3 and 1.5] imply that Ci(AK,F )ét = Ci(F ). But
then (xv) ∈ C(F ). Therefore, if (xv) is nonconstant, then φ must have open image. In this case, the image
of φ contains a finite-index subgroup of each decomposition group. This implies that ψ : D(F )→ C(F ) is
surjective. □

4. Proofs of the theorems in the introduction

4.1. Proof of Theorem 1.3

Suppose (xv) ∈ C(AK,F )ét \C(F ). By Proposition 3.9, the Galois equivariant map ψ : D(F )→ C(F )
induced by (xv) is surjective. By [CV22, Corollary 5.3], this induces a surjective G

F
-equivariant homomor-

phism φ∗ : JD(F )→ JC(F ). For any ℓ , p, this yields a surjective homomorphism of the ℓ-adic Tate modules
of Tℓ(JD )→ Tℓ(JC), so JC is an isogeny factor of JD by the Tate conjecture for abelian varieties over finite
fields; see [Tat66].



Etale descent obstruction and anabelian geometry of curves over finite fields 9Etale descent obstruction and anabelian geometry of curves over finite fields 9

4.2. Proof of Theorem 1.5

Let x = (xv) ∈ C(AK )ét \ C(F ). Since H(C) → C is an étale cover, x lifts to a twist of H(C) by an
element ξ ∈H1(K,JC(F )) = Hom(GK , JC(F )). Let L/K be the fixed field of ker(ξ). Then L/K is unramified
since, locally, it is given as the extension generated by the roots of (I −Φ)(y) = xv , and L/K is abelian
since Gal(L/K) is a subgroup of JC(F ). Thus L is a subfield of the function field K ′ of H(D) (for a
suitable embedding D → JD ). Viewing x as an adelic point on C over K ′ , we have x ∈ C(AK ′ )ét by
[Sto07, Proposition 5.15]. By the above, this adelic point lifts to H(C)(AK ′ )ét.

From Theorem 1.3, we get that H(C) and H(D) have the same L-function. Now we are in the same
situation as before with H(C), H(D) in place of C, D . Iterating this process, we obtain towers such that
Hn(D) and Hn(C) have the same L-functions. Assuming Conjecture 1.4, this implies C(K) , C(F ).

Remark 4.1. The paper [BV20] proves a theorem very close in spirit to Conjecture 1.4 using L-functions with
characters. It would be very desirable to have a proof of Conjecture 1.1 in the equigenus case from the main
theorem of [BV20] along the lines of the above proof, but we have not succeeded in producing it.
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