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Tautological relations and integrable systems

Alexandr Buryak and Sergey Shadrin

Abstract. We present a family of conjectural relations in the tautological cohomology of the
moduli spaces of stable algebraic curves of genus g with n marked points. A large part of these
relations has a surprisingly simple form: the tautological classes involved in the relations are given
by stable graphs that are trees and that are decorated only by powers of the psi-classes at half-edges.
We show that the proposed conjectural relations imply certain fundamental properties of the
Dubrovin-Zhang (DZ) and the double ramification (DR) hierarchies associated to F-cohomological
field theories. Our relations naturally extend a similar system of conjectural relations, which were
proposed in an earlier work of the first author together with Guéré and Rossi and which are
responsible for the normal Miura equivalence of the DZ and the DR hierarchy associated to an
arbitrary cohomological field theory. Finally, we prove all of the above-mentioned relations in the
case 1 = 1 and arbitrary g using a variation of the method from a paper by Liu and Pandharipande;
this can be of independent interest. In particular, this proves the main conjecture from our previous
joint work together with Hernandez Iglesias. We also prove all of the above-mentioned relations in
the case g = 0 and arbitrary n.
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1. Introduction

A remarkable relation between the geometry of the moduli spaces Mg'n of stable algebraic curves of
genus ¢ with # marked points and integrable systems has been an object of intensive research during more
than 30 years. This relation was first manifested by Witten’s conjecture, see [Wit91], proved by Kontsevich,
see [Kon92], saying that the generating series of the integrals

n
d,
(L) fM ]_1[ o, gn>0,d;>0,

&N j=

where ; € Hz(ﬂg,n,([f), 1 <i < n, is the first Chern class of the i" cotangent line bundle over ﬂg,n,

gives a solution of the Korteweg-de Vries (KdV) hierarchy. It was then realized by Dubrovin and Zhang,
see [DZ01], that integrable systems appear in a much more general context where the central role is played
by the notion of a cohomological field theory (CohFT), introduced by Kontsevich and Manin; see [KM94]. A
cohomological field theory is a family of cohomology classes on the moduli spaces Mg,n,
a vector in the n'? tensor power of a fixed vector space V, that satisfy certain compatibility properties with

depending also on

respect to natural maps between different moduli spaces. Given a CohFT, Dubrovin and Zhang constructed
N := dimV generating series w'°P**, 1 < a < N, by inserting cohomology classes forming the CohFT
in the integrals (L1) and proved that the resulting N-tuple w'P := (w'°P:1 ... w!'°PiN) js a solution of an
integrable hierarchy (of evolutionary PDEs with one spatial variable) canonically associated to our CohFT.
This integrable hierarchy is called the Dubrovin-Zhang (DZ) hierarchy, and the solution W'°P is called the
topological solution. However, certain fundamental properties of this hierarchy, including the polynomiality of
the equations, were left as an open problem. The polynomiality of the equations of the hierarchy was proved
in [BPS12] for semisimple CohFTs (together with the polynomiality of the Hamiltonian structure, which we do
not discuss in our paper). However, a satisfactory formula for the equations of the hierarchy was not found.

In [Burl5], the first author suggested a new construction of an integrable system associated to an arbitrary
CohFT. The construction uses certain cohomology classes on Mg,n called the double ramification (DR) cycles,
and so the new hierarchy was called the DR hierarchy. In contrast to the DZ hierarchy, the equations of the
DR hierarchy are polynomial by construction, with a relatively simple formula for the coefficients given in
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terms of the intersection numbers of cohomology classes forming the CohFT and basic cohomology classes
on ﬂg,n including the DR cycles and the classes ;. However, it is not known how to single out a solution
of the DR hierarchy that has such a simple geometric interpretation as the topological solution of the DZ
hierarchy. There is a choice of a solution that is natural for other reasons; see [Burl5, BDGRI18].

In [Burlb], the first author conjectured that for an arbitrary CohFT, the DR and the DZ hierarchies are
Miura equivalent, and in [BDGRI18], this conjecture was made more precise, giving a precise description of
the required Miura transformation in terms of the partition function of the CohFT. In [BGR19], the authors
presented a family of relations in the cohomology of Mg,n implying the Miura equivalence of the DR and
the DZ hierarchies.

In [BR21, ABLR21], the authors extended the construction of the DR hierarchy to objects that are much
more general than CohFTs, the so-called F-CohFT5, introduced in [BR21]. Regarding the DZ hierarchies,
their generalization for F-CohFTs was not considered in the literature before. In this paper, following the
approach from [BPSI2], we show that there is a natural generalization of the DZ hierarchies for F-CohFTs.

In this paper, for any m > 0, we present a family of conjectural relations in the cohomology of Mg,nm
parameterized by integers dy,...,d, > 0 satisfying ) d; > 2¢+m —1. For fixed g,n,m,dy,...,d,, our
conjectural relation lies in H 2y d; (mg,nm,([:). We explain that these conjectural relations naturally imply
the following fundamental properties of the DR and the DZ hierarchies:

e For m > 2, the relations imply the polynomiality of the DZ hierarchy associated to an arbitrary
F-CohFT (Theorem 4.7).

e For m = 1, the relations imply that the DR and the DZ hierarchies associated to an arbitrary F-CohFT
are related by a Miura transformation (Theorem 4.10). For n = 1, the relation already appeared
in [BHIS22] and proved to be true in the Gorenstein quotient of ﬂg,z in [Gub22].

e For m = 0, the relations already appeared in [BGR19]. According to [DZ01, BDGRI18], the DR and the
DZ hierarchies associated to an arbitrary CohFT are endowed with an additional structure, called a
tau-structure. There are Miura transformations that preserve a tau-structure; they are called normal
Miura transformations. By a result from [BGR19], for m = 0 the relations imply that the DR and the
DZ hierarchies associated to an arbitrary CohFT are related by a normal Miura transformation (see
Section 4.4.4).

We can thus view our family of conjectural relations as a natural extension of the family of relations presented

in [BGRI9).

Example 1.1. Let us present our relations in the case n = 1, leaving the general case to Section 2. For any
k>1 and m,g,d > 0, let us introduce the following set:

8120m<1> 82 &=L, g1+ +g% =g,

Jk ]
Seq = {(g,d) ezk, =2zt
di+-+di+i—-1<2(g+---+g)-2+mforanyi=1,...,

di+-+dp+k-1=d,
k—l}

where g =(g1,...,¢) and d = (dy,...,dy).

e Suppose m > 2. Our relations form a family of cohomological relations in H 2d(Mg'm+l,C), for any
d>2g—1+m, and are given by

T TN
Y Y R @D @1 -0,

k>1 (gyg)esg;lk m+1

where we use the standard way to represent tautological cohomology classes using decorated stable
graphs (see the details in Section 2).
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e Suppose m = 1. Our relations form a family of cohomological relations in H?2? (ﬂg,bq:), for any
d > 2g, and are given by

_1\k-1 Pph e - P

;( 1) (gd)ZSIkz @ @@
I-1 g

= ! 2 ,g_ll @I e ,EI 1;

R (F e e e ]

2.8i=8

where [ =d -2g+1, = A¢DR¢(1,-1), DR¢(1,-1) denotes the double ramification
cycle, and A, is the top Chern class of the Hodge bundle over ﬂg,n

e Suppose m = 0. Our relations form a family of cohomological relations in H? (ﬂg,l,d:), for any
d > 2g—1, and are given by

. i e i1 g
Y Y @@t @@
k21 (gd)eSeh
I-1 g
= ! 7, (2 g1} ! farl 1),
Z[H]( =] &)
) 8i=¢

where | =d —2¢ + 2 and the map 7t: ﬂg,z — ng forgets the second marked point.

We then prove all our relations in the case n = 1 and arbitrary g (Theorem 2.2) using the method for
constructing relations in H* (Mg 1, C) from the paper [LP11]. In particular, this proves the main conjecture
from [BHIS22] and the conjectural relations from [BGR19] in the case n = 1. We also prove all our relations
in the case ¢ = 0 and arbitrary n (Theorem 2.3).

Finally, we fill a gap in the understanding of the equations of the DZ hierarchy mentioned above. An
equation of the DZ hierarchy associated to an F-CohFT is the sum of the polynomial part and the fractional
part (which conjecturally vanishes). We present a geometric formula for the polynomial part. The formula
expresses the coefficient of a monomial in the polynomial part as the intersection of some universal
cohomology class on Mg,n with an element of the F-CohFT. Since the polynomiality of the equations of the
DZ hierarchy is proved for semisimple CohFTs, this gives a geometric formula for the equations of the DZ
hierarchy in this case.

Organization of the paper

Our conjectural relations are presented in Section 2. For the case m > 2, this is formulated in Conjecture 1,
for the case m =1 in Conjecture 2, and for the case m = 0 in Conjecture 3. As we already explained,
Conjecture 3 was first proposed in [BGR19]. Then in Section 3, we present an alternative formula for
classes Bg (dy..,d,) Appearing in the conjectures (Theorem 3.10) and a particularly elegant reformulation of
Conjecture 1 (Theorem 3.4). In Section 4, we explain the role of our conjectures in the study of integrable
systems associated to cohomological field theories and F-cohomological field theories (see Theorems 4.7
and 4.10 and Section 4.4.4). This section is independent of the other sections; a reader who is interested only
in the geometrical part of our results can skip it. In Section 5, we prove the conjectures in the case n =1,
arbitrary g. In Section 6, we prove the conjectures in the case g = 0, arbitrary n. In Section 7, we prove
that the whole system of conjectural relations for m > 2 (i.e., Conjecture 1) follows from its subsystem with
Y di=2g+m—1 and d; > 1 (Theorem 7.1). Finally, in the appendix, we review a localization formula for



Tautological relations and integrable systems 5

the moduli space of stable relative maps to (IP!, c0), which is the main tool for our proof of the conjectures
in the case n =1.

Notation and conventions

e We denote by H'(X) the cohomology groups of a topological space X with coefficients in C. Let
Heven(X) = @izo HZi(X).

o Let [n] :={1,...,n}. Given a map [n] - Z, i — d;, and a subset I C [n], let d; denote ) ;.; d; (in
particular, dp = 0 and d;y = d).

e Let (a),, denote the Pochhammer symbol (a),, :=T'(a+1)/T'(a+ 1 —n). In particular, (a)g = 1 and
(a),=a(a-1)---(a—n+1) forn>1.

e We use the standard convention for sums over repeated Greek indices.

e We will work with the moduli spaces ﬂg,n of stable algebraic curves of genus g with 7 marked points,
which are defined for g,n > 0 satisfying the condition 2¢ —2 + n > 0. We will often omit mentioning
this condition explicitly and silently assume that it is satisfied when a moduli space is considered.

2. Conjectural cohomological relations

2.1. Tautological cohomology of Hg,n

Let us recall briefly the standard notation concerning tautological cohomology classes on ﬂg,n, referring
a reader to [PPZ15, Sections 0.2 and 0.3] for more details.
We use the standard cohomology classes on M, ;:

e The ith psi class P; € H 2(ﬂg’n), 1 <i < n, is the first Chern class of the cotangent line bundle
L;,— Mg,n whose fibers are the cotangent spaces at the i marked point on stable curves.

e The ith kappa class x; € H2"(mg,n), i >0, is defined as x; := 7,( ;111), where 7t: ﬂg’nﬂ — ./Vg,n is

the map forgetting the last marked point.
e The i Hodge class ); € HZi(./\/lg,n), i > 0, is the i Chern class of the Hodge vector bundle

E, — ﬂg,n whose fibers are the spaces of holomorphic differentials on stable curves.

We denote by G ;, the set of stable graphs of genus ¢ with 1 legs marked by numbers 1,...,n. For a
stable graph I', we use the following notation:

e V(I'), E(T'), H(T'), and L(I') are the sets of vertices, edges, half-edges, and legs of I', respectively.
The leg of I' marked by 1 <i <|L(T')| is denoted by o;.

For h € H(T), let v(h) be the vertex incident to h.

Set H¢(I') := H(I')\L(T'), and for h € H*(T'), we denote by (/) a unique half-edge that together with
h forms an edge of I'.

For v € V(T), let

g(v) be the genus of v,

n(v) be the degree of v,

H[v] be the set of half-edges incident to v,

r(v):=2g(v)-2+n(v).

Consider a stable graph I'.

e We associate to I' the space My := ﬂvev(r)ﬂg(v),n(v>.

e There is a canonical morphism &p: Mp — ﬂg(r),lL(F)r Here g(I') := b1(I) + L_yev(r)§(v), where
b1(T) is the first Betti number of T.

e A decoration on T is a choice of numbers x;[v],p[h] >0, i >1, ve V(I), h € H(I'). Given such
numbers, we say that we have a decorated stable graph.
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e To a decorated stable graph, we associate the cohomology classes

r[ r[ Jopel. ]_[ lpi[h]eH*(ﬂr) and  &p,(y) € H' (M) L)),

veV(l) ix1 heH(T)

where «;[v] is the i" kappa class on ﬂ )n(v) @and Py is a psi class on M n(v(h))- The class
Er«(y) is called a basic tautological class on ./\/l 1), JL(r)- We will often denote 1t by a picture of the
decorated stable graph.

Denote by R*(mg’n) the subspace of H*(mg,n) spanned by all basic tautological classes. The subspace
R*(M,,,) C H*(Mgn) is closed under multiplication and is called the tautological ring of M, ,. Let
Ri(M n) = R"(./\/lg 2)NH 2l(./\/l »)- Linear relations between basic tautological classes are called tautological
relations.

The Hodge classes on Mg,n are tautological; A; € Ri(mg,n).

Recall the string equation, see [Wit91], in the following form. Let 7t: Mgy, .1 — Mgy be the projection
forgetting the last g + 1 marked points. Then

k k
qi q+1 pz
o e N et
i=1 0<p;<q;,ie[k] 1_[ i=1
qrxp—Pr =9+1

For A = (ay,...,a,) €Z", Y " 1a; =0, let DR, (A) € HZg(JVg,n) be the double ramification (DR) cycle.
Let us briefly recall the definition. The positive a; define a partition p = (p1,..., pij()), and the negative
a; define a second partition v = (vy,...,vy(,)) of the same size. Let ny :=n—1I(y)—I(v), and consider the
moduli space Mg,no(lljl,y, V)™ of stable relative maps to rubber IP! with ramification profiles M, v over the
points 0, co € IP!, respectively. Then the double ramification cycle DR, (A) is defined as the Poincaré dual

to the pushforward of the virtual fundamental class [./\/lg o (P, ]/t,v)N]Vlr to ng,n via the forgetful map
Mg,no( 24 ) - Mg,n-

Abusing notation, for A = (ay,...,a,) € Z" and B = (by,...,b,) € Z"™ satisfying ) a; +} b; = 0, we
denote by DR, (A, B) the double ramification cycle DRy (ay, ..., a,, b1, ..., by).

We have DRy (A) € Rg(ﬂg,n) (see, eg, [JPPZ17]). The restriction DR,(A) HZg(J\/lCt ) depends

S
|Mct
olynomially on the a;, where b MCt C M, , we denote the moduli space of curves of compact type.
poly y i Y Men p p YpP
This implies that the class A;DR,(A) € € R% (Mg'n) depends polynomially on the ;. Moreover, the resulting
polynomial (with the coefficients in R*€ (ﬂgn)) is homogeneous of degree 2g. There is also the following

property that we will need. If g > 1 and t: Mg,nﬂ - Mg,n is the map forgetting the last marked point,
then, see [BDGRI18, Lemma 5.1],

(2.2) the polynomial class 7, (/\gDRg (— Zai,al,...,an)) € RZg(Mg,n) is divisible by a,%.

The polynomiality of the class DR(A) € R& (ﬂgn) has been proved by A. Pixton and D. Zagier (we thank
A. Pixton for informing us about that), but the proof is not published yet.

2.2. Preliminary combinatorial definitions

By a stable tree, we mean a stable graph I' with the first Betti number b (I') equal to zero. A stable rooted
tree is a stable tree together with a choice of a vertex v € V(T) called the roo0t.
Consider a stable rooted tree T.

e We denote by H,(T) the set of half-edges of T that are directed away from the root. Clearly,
L(T)c H(T). Let H{(T) := H,(T)\L(T) and H%(T) := H¥(T)\H(T).
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e A pathin T is a sequence of pairwise distinct vertices vy,...,vx € V(T) such that for any 1 <i <k-1,
the vertices v; and v;,; are connected by an edge.

e A vertex w € V(T) is called a descendant of a vertex v € V(T) if v is on the unique path from the
root to w. Denote by Desc[v] the set of all descendants of v. Note that v € Desc[v].

e A vertex w is called a direct descendant of v if w € Desc[v], w # v, and w and v are connected by an
edge. In this case, the vertex v is called the mother of w.

e For two half-edges hy,h, € H.(T), we say that h, is a descendant of hy if hy = hy or v(h,) €
Desc[v(i(hy))].

e A function I: V(T) — Z> is called a level function if the following conditions are satisfied:

a) The value of I on the root is equal to 1.
b) If a vertex v is the mother of a vertex v’, then I(v’) > I(v).
c) For every 1 <i < deg(l), the set [7!(i) is nonempty, where deg(!) := maxy, ey (1) (V).

e There is a natural level function I7: V(T) — Z5; uniquely determined by the condition that if a
vertex v is the mother of a vertex v’, then I7(v’) = I7(v) + 1. We call this level function canonical.
The number deg(T) := deg(lr) is called the degree of T.

e For a level function I: V(T) — Z, it is convenient to extend it to H,(T) by taking I(h) := k if the
half-edge h is attached to a vertex of level k.

e For k> 1, we set gk(T) = ZVEV(T)g(V)-
lT(V)Sk

Let m > 0 and n > 1. Let us consider stable rooted trees T with at least n+ m legs, where we split the set
of legs L(T) = {o;} into three subsets:

a) The legs o071,...,0, are called the regular legs.

b) The legs 0,,1,...,0,,, are called the frozen legs; we require that they are attached to the root.

c) Any extra legs, whose set is denoted by F(T), correspond to additional marked points that we will
eventually forget.

The set of such trees will be denoted by SRT, ; ;... We will also use the following notation:

SRTg 1 = {T € SRTg o | F(T) = a)} CSRTg 1 s
SRTK .= {T € SRTg 1 o | IV(T)] = k} CSRTy o

g1, 11150
Consider a tree T € SRTg ;, ;0.

o A vertex of T is called potentially unstable if it becomes unstable once we forget all of the extra legs.
o Let

He™T):= HYT)U{0y,..., 0pem), HE™T):=HY(T)U{0oy,...,0,).
e For h e H(T), define I;, := {1 <i < 1| 0; is a descendant of h} C [1].
A tree T € SRTy ;150 is called balanced if

a) there are no extra legs attached to the root;
b) for every vertex except the root, there is at least one extra leg attached to it.

The set of all balanced trees will be denoted by SRT;@LM;O C SRTg 4,ms0-

For a balanced tree T, define a function q: H{(T) — Zs( by requiring that for a half-edge h € H{(T),
there are exactly g(h)+ 1 extra legs attached to the vertex v = v(i(h)). Given an n-tuple of nonnegative
integers d=(dy,...,d,), we extend the function q to the set ﬁfm(T) by setting gq(0;) :=d;, 1 <i < n.

We say that a balanced tree T € SRT(;,)M,“O is complete if the following conditions are satisfied:

a) Every vertex has at least one descendant v € V(T) with I7(v) = deg(T).
b) We have I1(0;) = deg(T) for 1 <i <n.
c¢) Each vertex v with I7(v) = deg(T) is attached to at least one regular leg.
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d) For every 1 <1< deg(T), the set of vertices I7!(I) contains at least one vertex that is not potentially
unstable.

The set of all complete trees will be denoted by SRT(;;f,)m;O C SRT(;L,,”;O.

We say that a tree T € SRTgf;f,)m;o is admissible if for every 1 < k < deg(T), the following condition is

satisfied:

(2.3) ) ah) <2g(T)=2+m.
heH:(T)
Ir(h)=k
(b,c,a

The set of all admissible trees will be denoted by SRTg i m)o C SRT(g n:n o

Note that the sets SRTg,,)”,l;O and S.er"(g,nlzﬂ;O are infinite except for a finite number of triples (g, n, m).

However, the set SRT‘(glf;f, f:z)o is finite, which follows from condition (2.3).

2.3. Conjectural tautological relations

For a balanced tree T € SRT(gI?,L,m;O and an n-tuple of nonnegative integers d = (d,...,d,,), define

[ CST* rl l,b RZd+#F (Mgn+m+#F(T))
heHer

Consider the map

e: Mg,n+m+#F(T) B Mg,n+m

forgetting all of the extra legs, and the class
e.[T,d] € RE% (Mg ).
Definition 2.1. For m>0,¢g>0,n>1, and d=(dy,...,d,) e 7z, we define

Bl = Z (-1)48 T e [T,d] € RE% (Mg, ).
(b,c,a)

TeSRTg oo

Note that
e the class ng coincides with the class B d, from the paper [BGR19],

.....

o the class B! 2,2 coincides with the class Bg from the paper [BHIS22].

We can now formulate our first conjecture.

Conjecture 1. Foranym>2,¢>0,n>1, andd = (dy,...,d,) € 7% such that )} d; > 2g+m—1, we have
B;’fa =0 in REG (Mg ).

In order to present our second conjecture, we need more definitions. Let 1,k > 1. Consider a stable
tree T € ST(’;%1 and integers ay,...,a,,1 such that a; +---+4a,,1 = 0. There is a unique way to assign an
integer a(h) to each half-edge h € H(T) in such a way that the following conditions hold:

a) For any leg 0; € L(T), we have a(o;) = a;.
b) If h € H*(T), then a(h) + a(i(h)) = 0.
c) For any vertex v € V(T), we have ZheH[v a(h) = 0.

Consider the space Mr = [Toev(r) Mg(v),n(v)- For each vertex v € V(T), the numbers a(h), h € H[v], define
the double ramification cycle DRy (A ) e R8lv (Mg(v),n(v))) where Apy) is the tuple (a(hy), ..., a(hyy))),
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where {hy,..., h,)} = H[v]. If we multiply all of these DR cycles, we get the class

]_[ DR AHV])GHg(MT)
veV(T

We define a class DRp(ay,...,d,.1) € Rg+k 1(/\/lg ni1) by

DRT(all--';arHl)::[ ]_[ ]‘ST*[ ]_[ DR AHV])
)

heH{(T veV(T

After multiplication by A, this class becomes a polynomial in ay,...,a,,1 with coefficients in the space

R28+k= 1(Mg n+1), which is homogeneous of degree 2¢ + k — 1. To the stable tree T, we also assign a
number C(T) by setting

[
V(T) ZVEDesc[v] T(’IT)

ve

C(T):=

We introduce the following cohomology class:

Avg(alt- . wan+1) = Z C(T)/\gDRT(alr' . -lan+1) € R2g+k_1(mg,n+l)l

k
TeSRT,

depending on integers ay,...,4a,, with vanishing sum. The class

Ag(al,...,an,—Zai)

is a polynomial in ay,...,a,, homogeneous of degree 2g + k — 1. For an n-tuple of integers d = (dy,...,d,) €
7L, satisfying } d; > 2g, define

VZd,-—Z +1 i
A;E = Coefa‘f1 ~-~aZ”Ag g (al,...,an,—Zai) eRZd,(Mg,nH).
We can now present our second conjecture.

Conjecture 2. Forany g >0, n> 1, and an n-tuple of nonnegative integers d = (dy,...,d,) with ¥ d; > 2g, we
have B1 = A1 in RL4 (Mg nal)-

Note that the 7 =1 case of this conjecture appeared in [BHISQQ] and in [Gub22], the author proved that
the relation B = Al ¢d is true in the Gorenstein quotient of R? (Mg,Z)

Let us now recall the conjecture from [BGRI19], which together with our Conjectures 1 and 2 naturally forms
a series of conjectures involving the classes ng for all m > 0. Let n,k > 1. Consider the map 7: Mg’n_'_l —

Mg,n forgetting the last marked point. By [BGR19, Lemma 2.2], the class m/ig(al,...,an,—Zai) (as a
polynomial in ay,...,a,) is divisible by ) a;. Following the paper [BGR19], we define

1 o
Ag(al,...,an) = ﬂn*Ag(al,...,an,—Zai) € R®8+k 2(/\/lg,n),

which is a polynomial in ay,...,4,, homogeneous of degree 2¢ + k — 2, and then define
di—2 +2 A g
AE,E = Coefa,iz1 ‘..agnAgZ $%ay,...,a,) € de,(/\/lg,n)
for any n-tuple d = (dy,...,d,) € 7L, satisfying } d; > 2¢—1.

Conjecture 3 (¢f: [BGR19)). For any g > 0, n > 1, and an n-tuple of nonnegative integers d = (d,,...,d,,) with
Y d; >2g—1, we have B0 = A0 in RL% (Mg,n)

We can prove all of the above conjectures in the following cases.

Theorem 2.2. Conjectures 1, 2, and 3 are true forn =1.
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Theorem 2.3. Conjectures 1, 2, and 3 are true for g = 0.

The proofs will be presented in Sections 5 and 6, respectively.

3. An equivalent formulation of the conjectures

3.1. The case m > 2

Let x1,...,x, be formal variables assigned to the legs oy,...,0,. Recall that for I C [n] we use the
notation Xy =} .y X;.
Definition 3.1. For g,m >0 and n > 1, define the following class in R*(ﬂg,nm)[xl,...,xn]:

n

(3.0) Py ;:]_[xi—l Z (=1)E(T) Z r[ % H xi(h)ﬂ‘

i=1 TeSRTgm p: ﬁfm(T)—>Z>o heH{™(T heH™(T)

Note that given T € SRTg, ,, and p: Itfim(T) — Zsp, we have &1, (nheﬁi'”(T) v,bg(h)) = 0 unless
Y pemenp) P(h) < 38(v) =3 + n(v) for each v € V(T). This implies that the second sum in the defini-
tion of Py, , has a finite number of nonzero terms. Clearly, the coefficient of x1 xn” in Py, pmisa

tautological class from R4 (ﬂg,,ﬁm), and it is equal to the sum of I,l)fl ---ll)g” and a class supported on the
boundary of ﬂg,mm.

Example 3.2. For instance, let T € SRTg 35 be as in the following picture, with ¢ = ¢1 + ¢ + g3 (the root
vertex is labeled by g;, and hence the legs 04 and o5 are attached to it) and the values of the function
p: H{™(T) — Zs( being py,...,ps at the corresponding half-edges in the picture:

PP o

0y

05 PP3 oy 0y
Then the class that this pair (T, p) contributes to P, 3 ; is multiplied by the factor

+ps+1
xPl P2+ps Ps3

1
1 x5 x5 (xq +xp)Pa

Remark 3.3. Since in our notation we have xp = 0, this implies the following condition for a tree T to be
able to contribute nontrivially to P, ;, ;. Namely, for each h € ﬁim(T), there must exist at least one leg o;,
i=1,...,n, which is a descendant of h; that is, I;, # 0. This means that any vertex of T that does not have
direct descendants should have at least one leg 0;, 1 <1 <, attached to it.

Theorem 3.4. The following two statements are equivalent:

(1) Conjecture 1is true.
(2) We havedegPq,, , <2¢+m—2 forallg>0,n>1, andm > 2.

Proof. Let us introduce an auxiliary cohomology class on ﬂg’,ﬁm. We will say that a tree T € SRT(;,L,m;O

is nondegenerate if it does not have potentially unstable vertices. The set of such trees will be denoted
by Ser"(gbnn,tQo - SRTg ,)1 mso- The set SRTg u, m) o is infinite, except for a finite number of triples (g, n, m).

However, we have the following statement.

(b,nd)

Lemma 3.5. Givend € Z", the set of trees T € SRTg oo such that [T,d] =0 € RZdi+|F(T)|(mg,n+m+|F(T)|)

>0°
is finite.
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Proof- For T € SRT(glfilil);o, denote by 7t(T) € SRTy ;, ,,, the stable tree obtained from T by forgetting all of the

extra legs in T. Clearly, we can identify V(T) = V(7t(T)). It is sufficient to prove that for any Te SRTg 1,ms

there exists a constant N5 such that if 7t(T) = T and [T,d] =0 for T € SRTgbnnzl)o, then |F(T)| < N7. Let

us prove it by induction on |V(~)| If |V(T)| = 1, then we can obviously set N7 := 0. Suppose |V(T)| > 2.
Let us choose a vertex v € V(T) that does not have direct descendants. Denote by w the mother of v and
by T’ the stable tree obtained from T by deleting the vertex v together with all of the half-edges incident to
it. Let us show that we can set
N7 := 2Ng + 3g(w) = 2+ n+m+|E(T)|.
Indeed, denote by & € H{[w] the half-edge such that v(:(h)) = v and by T the stable tree obtained from T
by deleting the vertex v together with all of the half-edges incident to it. If [T, d] # 0, then clearly
q(h) < 3g(w) =3+ n(w) < 3g(w) =3+ |E(T)|+ n+m+|F(T')|.

Since q(h) = |[F[v]|—1, using the induction assumption, we see that |F(T)| = |[F(T’)|+|F[v]| < 2N7 +3g(w) -
2+n+m+ |E(T)|, as required. O

For g,m>0,n>1,and dy,...,d,, > 0, let us consider the following cohomology class:

(3.2) Broi= Y (-1)FMle[T,d] € REH (Mg i)
v TESRT e

Lemma 3.5 implies that this class is well defined.

Proposition 3.6. Conjecture 1is true if and only sz;”g =0forallg>0,n>1,m>2,anddy,...,d, >0 such
that ) d; >2¢—2+m.

Proof- The proof consists of two steps.
Step 1. Let us prove that
(3.3) Bro= ) ()t e [T,d] e RE (M .)€ ZL,,

gd
TESRT i ho

Consider a tree T € SRT‘(;L,m;O. It is clear that any potentially unstable vertex v in T does not coincide
with the root and has genus 0, and there is exactly one half-edge h; from H¢"(T) attached to it. Moreover,

there is exactly one half-edge h, from H®(T) attached to it, and e,[T, d] =0 unless q(hy) = q(i(hy)). Let us

denote by SRTg L m;o the set of trees T € SRTgf,)q,m;o such that the condition

(34) q(h1) = q(1(hy))
is satisfied for any potentially unstable vertex. Note that 1 in condition (3.4) can be a leg 0;, 1 <i <n, so

the set SRT( ) depends on the choice of d.

g,n,m;o
T

Let us fix d. Consider a tree T € SRTg .

away the vertex v together with all of the half-edges attached to it except h; and identify the half-edges

hy and i(h,). We obtain a tree from SRT(g Zl m;o With one less potentially unstable vertex. Repeating this

(b,nd
procedure until there are no potentially unstable vertices, we obtain a tree from SRTg nnm) o, which we denote

and a potentially unstable vertex v € V(T). Let us throw

by Core(T). We obviously have
e.[T,d]=e,[Core(T),d]
Therefore, Equation (3.3) is a corollary of the following lemma.

Lemma 3.7. For anya €Zlyand T € SRTgbnnz1 o, We have ZT SRt (- l)deg(ﬂ‘1 = (=1)ETI,

gnmo

Core(T) T
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Proof- The proof is by the induction on |V (T)|. The base case |V(T)| =1 is obvious.

Suppose |V (T)| > 1. Since T = Core(T) is obtained from T by deleting some vertices, we can consider
the set V(T) as a subset of V(T). Denote by VH(T) the set of vertices v € V(T) that do not have direct
descendants. Consider a nonempty subset I C V!(T), and let

ny:= {1 <i<mn|o;is attached to a vertex from I}|, gj:= Zg(v).
vel
Denote by T’ the tree obtained from T by deleting all of the vertices from I together with all of the half-edges
attached to them, where we consider the half-edges i(h), for h € H¢(T) attached to the vertices from I, as
regular legs of the tree T’. Therefore, T’ € SRT(gb_'Zi)n IR T, Denote by S the set of trees Te §R‘ffgh; )m;o
such that
{v e V(T) | Ir(v) = deg(T) and v is not potentially unstable} =1

Deleting all of the vertices v with I7(v) = deg(T) together with all of the half-edges attached to them
e Core(T’) = T’}. Using the induction

gives a bijection from the set S to the set {T’ € SRTg—g,,n—n,+|I|,m;o

assumption, we obtain

B IVI(T)| WV(T)
Z (—1)des(T)-1 _ Z (1) BT )E(T)1 (_1)k( IE )):(_1)|E(T)|’
TeSRT 1 IeVi(T) k=l
Core(f):T I=0
as required. g

Step 2. Let us now prove the proposition using Equation (3.3). For a tree T € SRrI"(;’C,)m;O and an n-tuple

d satisfying ) d; > 2¢ — 2+ m, denote by /; the minimal level such that Zheﬁi"’(T) q(h)>2g,(T) =2+ m.

Ir(h)=ly
Let us also introduce the following notation:

Iy:={he HS™(T) | Ip(h) =L}, Vo:={veV(T)|Ir(v)<lo}, go:=g8,(T),
and for h € I, let

Vi :={ve V(T)|v € Desc[v(i(h))]}, gn:= Zg(v)‘
veV,
Denote by T, the subtree of T formed by the vertices from V), and denote by Tj, the subtree of T formed by
the vertices from V},, h € I,. We see that T € SR>

aollohmso and Tj, € SRTg, 1, 1,0, where we consider i(h) as
a unique frozen leg in Tj,.
Suppose that Conjecture 1 is true. In the sum over T € SRTg;ﬁ )m;o on the right-hand side of (3.3), we

can collect together the terms with fixed gy, |Iy|, and trees T;,. Denote it by S, and let d be an |Io|-tuple
consisting of the numbers q(h), h € I. There is a gluing map from a product of moduli space, determined
by the decomposition of the tree T into the trees Ty and Tj, h € Iy, to ﬂg,n+m, and it is easy to see that the
class S is equal to the pushforward under this gluing map of the tensor product of the class B" Vi and the

0r
classes determined by the trees Tj,. Since we assumed that Conjecture 1 is true, we conclude that S = 0, and
thus also B”- = 0.
gd
Now suppose B;"E =0forallg>0,n>1, m>2,and dy,...,d, > 0 such that ) d; >2¢g—2+m. Let
us prove that B;’ZE = 0 in the same range of g,n, m,d by induction on 2¢ — 2 + n+ m. The base case
2¢g—-2+n+m=m-1, which is achieved only for g = 0 and n =1, is trivial because we obviously have

= d . . ion A
Bgidl = B(’)”d1 =1, which is zero because d; >m —2 = dim M 1.
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Now suppose 2¢g —2 +n+m > m—1. We split the sum on the right-hand side of (3.3) as follows:

(3.5) Broi= ) (-)feDlerdle ) (-)dsle[T,d].
v TeSRTVS) o TESRT o
lo<deg(T) lo=deg(T)

Foratree T € SRT(;;::,),,Z;O, it is clear that if Ij < deg(T), then 2gy — 2 + |Iy| + m < 2¢g — 2 + n + m; this follows
from the fact that for each 1 <1< deg(T), there is at least one vertex v with I7(v) =1 that is not potentially
unstable. Therefore, by the induction assumption, the first sum on the right-hand side of (3.5) is equal to
zero. The second sum on the right-hand side of (3.5) is obviously equal to B(Za, and thus it is equal to zero,

as required. U

Let us now continue the proof of Theorem 3.4. Using Proposition 3.6, we see that it is sufficient to prove
the following lemma.

Lemma 3.8. Foranyn>1,g,m>0, andd = (dy,...,d,) € ZL,, we have EZE = Coefx;ar1 gl Py e

Proof. Consider an arbitrary tree T € SRTg ;, ,, and a function g: HE™(T) — Zs. For any h € HS(T), let
us attach q(h) + 1 extra legs to the vertex v(1(h)). We obtain a tree from SRTg;ﬁwa, which we denote by T,.

The definition of the class g;"E can be rewritten in the following way:

Bro= ) (P e, ]_[ wh

TESRTg,n,m q: ﬁim(T)—)ZZO hEHem
q((fi ):dx

Therefore, we have to prove that

(_1)|E(T)| Z e*chq* ]_[ 1;bh Hi = Lo n,m-

TESRTg,n’m q: ﬁfm(T)_’ZzO heHam i=1

Clearly, this follows from the equation

(3.6) ) el r[ lph Hi

q: HS"(T)—Zs heH™ (T, i=1

n

- Z ]_[ ‘Ph l_[ xfh(h)ﬂl_[xf(m)’ T € SRTg,u,m/

p: ﬁimm_)z>0 heH™(T heH:(T) i=1

which we are going to prove by induction on |V (T)|.

The base case |V(T)| =1 is obvious. We proceed to the induction step and assume |V (T)| > 2. Choose
a vertex v € V(T) that does not have direct descendants. Denote by ha unique half-edge from H(T)
incident to v, and let b’ := t(ﬁ) Denote by T’ the tree obtained from T by deleting the vertex v together
‘f’jth all of t}ie half-edges incident to it. We have T’ € SRTy_g(y) |1, |+1,m> and we have a natural inclusion
HS™(T’) c HS™(T).

For a function q: H"(T) — Zs, set g’ := q|Hem 1) We can express the cohomology class in a summand
on the left-hand side of (3.6)

e.dr,. ]—[ ¢h = gl.|e.ér. ]_[ it ®n*{]_[¢?(aj)],

heHS" (T, heHS"(T/)) j€lw

as follows:
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where gl: /\/l V=T [+ 14m X M L +1 = /\/lg nam is the map given by gluing the marked points cor-

responding to the half-edges h and h’, and 7t: ./\/l W+ 24q/(h) = ./\/l (v)I,|+1 is the map forgetting the
q’(h’)+ 1 marked points corresponding to the extra legs attached to vE V( y)- Therefore, the left-hand side
of (3.6) is equal to

q'(0}) 1(j

Z gl|elr. H Il’h H X ® Z m[r[(ll)jxj) (”] -
q: H™(T")—Zsy heH{™(T ie[n]\ly I lp—Zs0  \jely

From the string equation (2.1), it follows that

. /(h/) 1 .
[ w0z 3 ] T,

I: Ih’_)ZZO jEI;,/ I: Ih/—hzzojelhf

TC

*

which allows us to rewrite the previous expression as

gl Z L ]_[ 'vbh Ih’ ]_[ x?/(ai)‘g’ Z ]_[(ll)jxj)l(])

g’ HO"(T)—Zsg heH™(T ") i€[n]\y I: Iy —Zs jely

Applying the induction assumption to the first factor in the tensor product, we obtain exactly the expression
on the right-hand side of (3.6), as required. O

This concludes the proof of Theorem 3.4. O

3.2. Another reformulation for any m > 0

In the case m < 1, an analog of Theorem 3.4 becomes more subtle. Namely, we no longer can combine
conjectural relations and their corollaries as we did in the proof of Theorem 3.4 since the conjectural
identities given in Conjectures 2 and 3 for B! 7 and B° - respectively, have nontrivial right-hand sides.

, g

However, there exists some simplification of the expression for Bmg along the same lines that holds for
any m. &
Consider a tree T € SRT, ;, ,, and a function p: H{"(T) — Z. Let [T, p] denote the class

<

g,n+m)'

Tpl=er| [ of"|eREOI Rt
heH™(T)

Let us also define two coefficients. One coefficient Cj (T, p) is a weighted count of possible level structures
and depends only on the structure of the tree T and the function p, and another coefficient Cg, (T, p,d) is a
combinatorial coefficient that also takes into account a given vector d (the subscript “str” refers to the fact
that it reflects the combinatorics of the string equation).

A level function I: V(T) — Z; is called p-admissible if for every 1 <i < deg(!), we have the following
inequality:

Y pU)+lthe HUT)| Ih) <) <2 Z —24m

heH™(T) veV(T
I(h)<i (v )<z

(informally, the left-hand side of this expression is just the degree of the class defined by the stable tree
obtained from T by cutting at the level i). Let £(T, p) denote the set of all p-admissible level functions on T.
Define

Clvl(T;p) = Z (_1)deg(l)71

leL(T,p)
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For each h € ﬁfm(T), let H, C ﬁi"l(T) be the subset of all half-edges that are descendants of & excluding

h itself. The combinatorial coefficient Cg, (T, p,d) is set to zero (or, alternatively, just undefined) unless
|E(T)| + Zheﬁi'"(T)p(h) = d[y)- If that equality holds, then

ColTpd) =gy [ [L@0= Y won|

heﬁim(T) iEIh h’GHh (p(h)Jrl)
where we recall that (a);) =a(a—1)---(a—b+1) is the Pochhammer symbol. Note that from this definition,

Cotr(T, p,E) is equal to zero unless Ij, is nonempty for every h € ﬁim( T) (or, equivalently, unless each vertex
that does not have direct descendants has at least one regular leg attached to it).

Example 3.9. Recall Example 3.2. In this case, the corresponding coefficients are Ci(T,p) =
Opytps<2g, Opy+pstpstpstl<(g +g,) (here by o-symbols we denote the functions that take value 1 once
the inequality in the subscript is satisfied and O otherwise). Note that there is at most one admissible level

function | € £(T, p), which assigns to a vertex of genus g; the value i. The coefficient Cy (T, p,d) is equal to

(d2 = p2)(ps+1)(d1 +da = p1 = p2—ps = sty [Tio1 (di + 1) p11)
[T, (d; +1)!
A simplified formula for BZE is given by the following theorem.

Theorem 3.10. We have
BZE = Z Z Cri(T,p)Coir(T, p,d) - [T, p].

TGSRTg,n,m p: ﬁfm(T)ﬁZZO
|E(T)|+Zheﬁim(T) p(h):d[[n]]

Proof. The proof follows essentially the same ideas as some steps of the proof of Theorem 3.4. However, we
arrange it a bit differently to stress the origin of the coefficients Cy1(T, p) and Cgi (T, p,d). In a nutshell, we
just carefully describe in steps the pushfoward e, in the definition of the class Bmg.

Recall Definition 2.1. Our goal is to explicitly compute e,[T,d] for any T € SRTgi’%o. We perform the

pushforward in two steps. In the first step, we formally apply the string equation given by Equation (2.1) to
the vertices of the graph T. To this end, in order to efficiently treat the case of potentially unstable vertices,
we introduce an extra convention that extends the string equation. In the string equation (2.1), one has to
assume 2¢—2+k>0and p; >0,i=1,...,k. It is convenient to formally extend the range of applications
of the string equation. We consider the case g =0, k = 2, and g > 0, and we formally set

(3.7) m(@Wily,, ) = 91,

for the map : Mo,q 3= mo’z that forgets the last g + 1 marked points. This map has to be understood

formally: we are going to apply e, to the graphs in SRTgfi’,{Z);O, and Equation (3.7) just means that at an
intermediate step of the computation, we will use unstable vertices of genus 0 with two incident half-edges
(these vertices will disappear in the final formula for the pushforward). To make this precise, let us introduce
auxiliary definitions.

We consider rooted trees in RTy , ,,, which is an extension of SRT, , ,, where we allow trees to have
unstable vertices of type (0, 2); that is, we allow vertices v of genus g(v) = 0 with just two incident half-edges,
one in H?"(T) and one in the direction of the mother of v. The root cannot be unstable, however. Denote by
DRTyg ;1 the set of pairs (T, p), where T € RT, ,, ;, and p: ﬁim(T) — Z~_, is a function such that p~1(~1)
is exactly the subset of H{™(T) attached to unstable vertices. Let us call such pairs decorated rooted trees.

In the same way as for stable rooted trees, for T € RTg ;, ;;, we consider level functions I: V(T) — Z
and the canonical level function I7: V(T) — Z;. We say that a rooted tree in RTg , ,,, is complete if the
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canonical level function satisfies exactly the same conditions as the canonical level function of a complete

balanced stable rooted tree in SRTg;ZC,)m;O (¢f- Section 2.2) with the condition “for every 1 <1 < deg(T),

the set of vertices 17" (1) contains at least one vertex that is not potentially unstable” replaced by “for every

1 <1< deg(T), the set of vertices 17" (I) contains at least one vertex that is not unstable.” Let RTE;}L,m denote

the subset of complete rooted trees. Denote by DRT(gf)n,m C DRTg ,,, the subset of pairs (T,p) where

Te RT(chm Let DRT‘(gC,’a,)m C DRT((;,)HM be the set of so-called admissible complete decorated rooted trees

(T, p) satisfying the additional system of inequalities

(3.8) Y p(h)+I{he HY(T)| Ip(h) <K}l < 2gi(T) =2+ m, for any 1 <k <deg(T).

heH:(T)
Ir(h)<k

We can now proceed to the description of the first step in our computation of the pushforward e,[T,d],

T e SRT'(;;f, ::Z)o We construct a map f; : SRTg;f,’:l);o x 2%, — Q<DRT§;L,m> as follows.

e For a pair (T,d) € SRT(;;IC, ,i)o x ZY, consider a potentially unstable vertex v. There is exactly one
half-edge in ﬁim(T) attached to v; denote it by h’, and denote by h the half-edge attached to v
that is directed to the mother of v. If g(h’) = q(l(ﬁ)), then we replace v with an unstable genus 0
vertex that retains just the two half-edges h’ and h (forgetting all of the extra legs attached to v),
and we set p(h’) := —1. We do this for each potentially unstable vertex v. If there is at least one
potentially unstable vertex v with gq(h’) # q(l(ﬁ)), then we set fi(T, d):=0 (note that if g(h”) = q(L(ﬁ)),
then e,[T,d] = 0).

e Consider a not potentially unstable vertex v of T that also does not coincide with the root. Let
hy,...,hy be the half-edges in H¢"(T) attached to v, and denote by T the half-edge attached to v
that is directed to the mother of v. We replace v with a vertex of the same genus that retains just
the half-edges hl,...,hk,FE and take the weighted sum over all choices of p(hy),..., p(hy) such that
Y q(h;)=Y p(h;) = q(l(ﬁ)) + 1 with the weights equal to the coefficients on the right-hand side of
Equation (2.1). We do this for each vertex v that is not potentially unstable and that is not the root.

e For the root of T, we just define p(h) := g(h) for any half-edge h € H®"(T) attached to it.

Clearly, as the outcome of the above procedure, we obtain a linear combination of decorated rooted trees

from DRTS;L,m. We take this linear combination as the value of the function f; on the pair (T,H).

We claim that

Mhegen(ry (Zier, (di + 1) = Zpen, (p(H) + 1))
q(di+1)!

(P(h)+1)(

(9  ATd= )
(T’,p)€DRTS), .
(T',p)~(T,d)

T',p),

where the notation (T/,p) ~ (T,d) means that (T’,p) is obtained from (T,d) by removing all extra legs
and making a choice of the values of the function p according to the construction of the map f;. Indeed,
the coefficient of (T, p) on the right-hand side of (3.9) is equal to the product of coefficients prescribed by
choices of summands made according to Equation (2.1): we just rewrite the product of these coefficients in
terms of the vector d and the function p on H"(T’).

Moreover, several remarks are in order:

e It follows from the string equations that Equation (2.3) for T implies Equation (3.8) for every (T’,p) ~

(T, d); thus (T’, p) belongs to DRT(gC,',fI)m. Therefore, the image of f; belongs to Q<DRTS;,},&,)m>.
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e It also follows from the string equations that

(3.10) Z p(h) +|E(T")| = dpyg-
heH™(T”)

e The function g on Hem(T) is uniquely reconstructed from d and the function p on ﬁfm(T'), but,

given arbitrary (T/,p) € DRT(g n)m and d € Z>0, such a function g may not exist. Note however that

if condition (3.10) is satisfied, then such a function g exists if and only if the coefficient of (T’, p) on
the right-hand side of (3.9) is nonzero.
e The vertices of T and T’ are in a natural bijection, and the canonical level functions for both trees
are identified by this bijection. In particular, deg(T’) = deg(T).
(c,a)

In the second step, we contract all unstable vertices of a decorated rooted tree (T’,p) € DRTg ,m-
This defines a map f,: DRT;’;')m — SRTg > fo: (T',p) = T”, where the functions p and I7/ defined
for T’ naturally descend to functions p: H(T”) — Zsq and I: V(T”) — Zs; (all values of p are
now nonnegative since there are no unstable vertices left). The resulting level function I: V(T"”) —
Z, is obviously p-admissible. Also, given d € Z%,, condition (3.10) is equivalent to the condition
Zheﬁﬁ"‘(T”)p(h) +|E(T”)| = du). Conversely, given T” € SRTg 1, p: V(T”) = Zs¢, and I € L(T”, p),

there is a unique (T/,p) € DRT(gC,'na,)m such that f,(T’,p) = T” and p and | on T” are induced by the

corresponding functions p and I> on T’ (with deg(T’) = deg(l)). Finally, note that, also given d € Z%,, the
coefficient of (T’,p) in Equation (3.9) is equal to Cstr( " p,d).
This implies that for any (T,d) € SRngan,i)o ZL,, the class ¢,[T, d] is equal to
e*[T'd]: Z str(fz(T’rP)fP'd)[f2(T/;P):P];
(T’,p)eDRT S,
(T",p)~(T.d)
and therefore
m _ _1\deg(T)-1 3
Bl = Z (-1) e.[T,d]
TeSRT Eqn m;o
= Y (DRI (KT p)p,d) (T p).p]
TESRTY o (T/,p)EDRT 1
(T'p)~(T.d)
= Z (- l)deg () 1CStI‘ (fZ ) [fZ ]
(T',p)EDRTg
Zheﬁi‘m('}v)p(h)"'lE(T,)l:d[[n]]
_ Z Z Cuir (T”,p,a) [T”;p] . Z (_1)deg(l)—1’
T”ESRTg,n’m p: Hem(T//)_>Z>0 lEE(T”,p)
ZhEHim(T”) h)+E(T”)|= d[n]]
which proves the theorem. g

4. Conjectural relations and the fundamental properties of the DR and the
DZ hierarchies

In this section, we show how certain fundamental properties of the Dubrovin-Zhang (DZ) and the double
ramification (DR) hierarchies associated to F-cohomological field theories (F-CohFTs) on M, , naturally
follow from our Conjectures 1 and 2. This extends the results from [BGR19], where the authors showed that
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Conjecture 3 naturally implies that the DZ and the DR hierarchies associated to an arbitrary CohFT are
Miura equivalent. Actually, in all of the aspects of the theory of integrable systems associated to CohFTs that
we consider in this paper, a CohFT can be replaced by a slightly more general object called a partial CohFT,
introduced in [LRZ15]. In the theory of the DR hierarchies, it was first noticed in [BDGRIS, Section 9.1]. So
we will systematically work with partial CohFTs instead of CohFTs.

We also discuss the role of the classes Bma with ) d; = 2¢—2+m, which are not involved in the conjectural

relations from Conjectures 1, 2, and 3. It occurs that these classes control the polynomial parts of the
equations (which are conjecturally polynomial) of the DZ hierarchies and the Miura transformation that
conjecturally relates the DZ and the DR hierarchies.

4.1. Differential polynomials and evolutionary PDEs

1

Let us fix N > 1 and consider formal variables w!,...,wN. Let us briefly recall main notions and

notation in the formal theory of evolutionary PDEs with one spatial variable (and refer a reader, for example,
to [BRS21] for details):

e To the formal variables w®, we attach formal variables wZ‘ with d > 0, and we introduce the ring of
differential polynomials A,, := C[[w*]][wl,] (in [BRS21], it is denoted by AY). We identify wj} = w®
and also set w{ := w{, wg, :=w9, ....

e The operator d,: A, — A, is defined by d, :=} ;5o w5,, 8;3/5

e Let A,y C A, be the homogeneous component of (differential) degree d, where degw;" :=i. For
f € A,, we denote by fl4l € A,,.; the image of f under the canonical projection A, — A,,.;. We
will also use the notation A, := @?:0 Awsi-

e The extended space of differential polynomials is defined by .Zl\w = Ayl[e]]- Let -Zl\w;k C .Zl\w be the
homogeneous component of degree k, where dege := —1.

o A Miura transformation (that is close to the identity) is a change of variables w® +— w*(w}, €) of the
form w*(w}, ¢) = w* + e f *(w}, €), where f% € .;l\w;l.

e A system of evolutionary PDEs (with one spatial variable) is a system of equations of the form % = P9,
1 < a < N, where P* € A,,. Two systems %Lta = P% and % = Q% are said to be compatible (or,
equivalently, the flows % and % are said to commute) if ano(ap ZonQP — 8&:% Pﬁ) = 0 for any

¢9w5 Jw
1<a<N.

4.2. F-CohFTs and partial CohFTs

4.2.1. Definitions.—
Definition 4.1 (¢f. [BR21]). An F-cohomological field theory (F-CohFT) is a system of linear maps
Cont1: V' ®VE — HY (M, 1), gn>0,2g-1+n>0,

where V is an arbitrary finite-dimensional vector space, together with a special element e € V, called the
unit, such that, choosing a basis ej,...,eqim v of V and the dual basis el,...,edmV of V* the following
axioms are satisfied:

(i) The maps ¢y ;1 are equivariant with respect to the S,-action permuting the 1 copies of V' in
V*® V®" and the last n marked points in M, ,,,1, respectively.

(i) We have 717cg 141 (e @ ®[_ €q,) = Cgni2(e™ ®®)_ €q, ®e) for 1 < ag,@y,...,a, < dimV, where
7 Mg i — Mg i1 is the map that forgets the last marked point. Moreover, ¢ 3(e* ® eg®¢) = 6;‘
for1<a,fp<dimV.
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ny+n
(iii) We have gl*cg1+g2,n1+n2+l( '®®;L ‘eq) = Cony+2(670 ® ®ierey, ®e;4) ® Cg, np41(€F ®®je]eaj) for

1 <ag ay,..., 0, 1y, <dimV, where I UJ = [n; +ny + 1]\{1}, |I| = ny, |J| = ny, and gl: Mg1,n1+2 X
Mgz,nfrl - Mgl gy +m,+1 1S the corresponding gluing map.

The gluing map gl creates a nodal curve sewing the last marked point on a curve in Mg, , ,» (the
point labeled by 71 + 2) and the first marked point on a curve in M, ;. .1 (the point labeled by 1)
into a node. Under the gluing map gl, the first marked point of a curve in My, ,, 1> becomes the
first marked point on the resulting nodal curve in Mg 1o,y 14,41, and the other marked points are
relabeled according to the identification I U] = [y + 1, + 1]\{1}.

It is easy to see that the validity of the above properties does not depend on the choice of a basis of V.
Definition 4.2. [LRZ15] A partial CohFT is a system of linear maps

Con: V" — HYM,,), 2g-2+n>0,

where V is an arbitrary finite-dimensional vector space, together with a special element e € V, called the

®2

unit, and a symmetric nondegenerate bilinear form # € (V*)®<, called the metric, such that, choosing a basis

e1,...,edimv of V, the following axioms are satisfied:
(i) The maps cg ,, are equivariant with respect to the S,-action permuting the 7 copies of V in V" and
the n marked points in M, ,,
(ii) We have 1c°cg ,(®)_ €a,) = Cns1(®]_ €q, ®€) for 1 < ay,...,a, <dimV, where 7t: Mg .1 — M, ,
is the map that forgets the last marked point. Moreover, ¢q3(e, ® eg ®€) = 17(€q ® €g) =: 1]4p for
1<a,p<dimV.
(iii) We have gl*cgﬁgz n1+n2(®lnl-1mzea) = 77’“/ g1, n1+1(®ielea ®e )® Co,, n2+1(®]€]ea ® ev) for 1 <

respectively.

Appes Ay < dim V, where I U] = [ny + ny], [I| = ny, |J| = ny, and gl: /\/lg1 1 X /\/lg2 Hytl =
Mg g, n +n, is the corresponding gluing map and where 7% is defined by 7 g = Oﬁ for
1<a,p<dimV.

Clearly, given a partial CohFT {c, , Ve > H everl(ﬂg’n)}, the maps g ,y1: V'® ven - H eve“(mg,nﬂ)
defined by g ,11(e" ®®]_ e4,) 1= 1 0”Cg n+1(€, ®®_, €,,) form an F-CohFT.

4.2.2. Various potentials associated to partial CohFTs and F-CohFTs.— First consider an arbitrary
partial CohFT {cg ,;: ven Heve“(ﬂg,n)} with dim V = N, metric 17: V®? — C, and unit e € V. We fix a
basis eq,...,enx € V and define the potential of our partial CohFT by

}"::Z%[J-M O e, ]_[¢ ]]_[t e ([t} €]).

&n
The potential satisfies the string and the dilaton equations:

(4.1) — =) twmig.a T 5Maptoty tE J c1,1(e),
alLO r; " at’% 2 M,
oF dF  OF )
(4.2) — =) g te=——-2F +¢ J Pycy4(e),
at%l ; dty de M,
where 8?1 = AH ai and the coefficients A* are given by e = AFe;,. Let us also define formal power series
0
topsa . apu_0°F top;a | _ grwtorie
w = Ao and wy, = Gy

For d > 0, denote by C[[:]]®) the subset of C[[}]] formed by infinite linear combinations of monomials
l_[tff," with ¥ d; > d. Clearly, C[[t;]]) ¢ C[[#!]] is an ideal. From the string equation (4.1), it follows that

(4.3) w P = 1 46, 1A% + RE(£1)+ O(e?)  for some RY € C[[£]]*),
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The following obvious statement will be very useful, so we would like to present it as a separate lemma.

Lemma 4.3. Suppose that a family of formal power series w € C[[t;,€]], 1 <a <N, n > 0, satisfies the property
WY = t& + 6, | A% + RE () + O(?) for some RS € C[[:]]"+V). Then any formal power series in the variables t&,
1<a<N,a>0, and ¢ can be expressed as a formal power series in (ﬁf - 5;,,1A/g) and € in a unique way. In

particular, for any two differential polynomials P, Q € Ay, the equality Plo_go = Qlyo—ge implies that P = Q.

In [BDGRIS, Proposition 7.2], the authors proved that there exists a unique differential polynomial
P € Ay, such that the difference
Fred = f — lez/:wzop;y
satisfies the condition
o ]_—red
& a.a,
dty' -t

n

Coef,2

=0 if ) di<2g-2
t:=0
(formally, this was proved for CohFTs, but the proof works for partial CohFTs as well). The formal power series
Fred js called the reduced potential of the partial CohFT. Consider the expansions F €9 = Y ¢>0 €28 f;ed

and P =) .o €8 Pq. Note that .7-"0red = Fy. In [BGRI19, Proposition 3.5], the authors proved that
d
an‘/f:;gre
a ay
dty -0ty

_ 0 n nzl,dl,...,d,ZZO,Zdi22g—1,
_JM Bgﬁcg’n(@i:lea")' 1<ay,...,a,<N.

t:=0 on

red _
Also note that .T-é |t;:0 =0.

We can now present an explicit formula for the differential polynomial P.

(4.4)

Theorem 4.4. For g > 1, we have Pg|w*20 =0 and

anPg O ; n 2 1,
(45) W = J‘ Bg’ECg,n(®i:1€ai); dl}-.-ydﬂ > O; Zdl = 2g— 2,
Wq, 1 0Wg, wi=0 M 1<ay,...,a, <N.

Proof. Let us first recall the construction of the differential polynomial P, following [BGR19, proof of
Proposition 3.5].

The reduced potential F™¢ is constructed by a recursive procedure that kills all of the monomials
’SZgl_[tg; with ¢ > 1 and } d; < 2g — 2 in the potential 7. Let us assign to such a monomial a level
l:=(g—1)>+Y d;. We see that (g—1)> < < g2, which implies that g is uniquely determined by /. Denote
this ¢ by g(I). Let us define a sequence of formal power series F(-1) := 7, 70, 7(1) by

a .
Sy A%
we)  FO=Fin_Y 0y [Mwy) ‘d,,l )
n>0 di,...,d,>0 n:
¥ d=1-(g(1)-1)?

8”_7(1_1)

[>0.
aq oy, ’ -
TR

Coef 240

=0

From (4.3) it follows that going from F (I=1) to FO, we kill all of the monomials of level I and do not touch
the monomials of level strictly less than /. Then Fred jg equal to the limit Fred.— lim;_, FD, and the
underlined terms (multiplied by £2€1)), for all I > 0, produce the required differential polynomial P.

In order to show that P € .;l\w;_g, we have to check that Pg[k] =0 for g > 2 and k < 2¢— 2. Suppose

that this is not true, and denote by g, the minimal g such that P}k] # 0 for some k < 2g — 2. Consider the
operator

_d a0 0 d
(4-7) L.—W—nzttnﬂ—é'%.
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The dilaton equation (4.2) implies that Lw,tfp; - nw}fpﬂ. Therefore, we have the following sequence of

equalities:

e | praa@=(L+2F =(L+2)F+) &% ) (k+2-2)P ”
My §2  k<2g-2

top;y *
: W

We see that the coefficient €280 in (L + 2)F is zero. However, the coefficient of €28 in (L + 2).7:red belongs
to C[[:]]?8~2), while the coefficient of €28 in the underlined sum does not belong to C[[£]](28072), which
follows from (4.3). This contradiction proves that P, € A,,5,_2, and we also see that Pg|w*:0 =0.

In order to prove Equation (4.5), note that the underlined terms in (4.6) give a differential polynomial from
Auw;<i—(g(1)-1)2- Using that Py € A5, 5, we therefore obtain
d"P,

0(1 ay
Jw d, - dw q

on F(g*-2)

= CoefSZg (X—
1 ay
ot d, ot i -

wi=0

, gn=1) di=2g-2

Following [BGR19, proof of Proposition 3.5], we call a tree T € SRT;’;’)O;O (j,d)-admissible if for any
1 <k <deg(T), we have g(T) <j and

y q(h)s{zgkm—z if g(T) <,

heHE(T) d if g (T) = .
I(h)=k
Denote by SRTU 2™ « ST the set of such trees. By [BGRI9, Equation (19)], we h
Yy 1,030 g.n,0;0 the set of such trees. y [ , Equation (19)], we have
9" Fl&-2
Cocte St - Y e el )

ot at)" M

=0 & e SRT );(8,2¢-3)

grzOo

for g,n>1and ) d; = 2¢— 2, and it remains to check that

(~1)%8M e [T,d] =
TESRT, o8
Clearly, SRT(g n)()(f 2873 C SRT gbncg )O The converse inclusion is not necessarily true; however,
{T € SRT gbncg )o T, d] = O} c SRTY o, )o(f 2873 thanks to the following statement proved in [BGRI19].

Lemma 4.5 (¢f. [BGRI9, Lemma 3.6]). Let g > 0, 1> 1, dy,....d, > 0, and T € SRT\ 'y, Suppose
e, [T,d]#0 and g(T) = gxs1(T) for some 1 < k < deg(T). Then

Y oam> Y q().

heH™(T) heH"(T)
I(h)=k+1 1(h)=k
This concludes the proof of Theorem 4.4. 0

Now consider an arbitrary F-CohFT {cg,,1: V' ® ven Heven(ﬂg,n+l)} with dimV = N and unit
ee€ V. We fix a basis eq,...,exy € V and assign to the F-CohFT a collection of potentials F*% 1 <a <N,
a > 0, by setting

zg n n
Z € | | d; | | @; *
Fa;a = W(‘I\M Cg:n+1(ea®®?:]ea,')“l}{f ll)1+1 tdz € C[[tx_, 8]]-
i=1 i=1

gn+l



22 A. Buryak and S. Shadrin

These potentials satisfy the following system of equations, which can be considered as an analog of the string
equation (4.1):

8.7'- 1 B afa 4
(48) —u—faa tn+1 , 1SCYSN,QZO,
It Zo ot
where we adopt the convention F* ! := t¢. There is also an analog of the dilaton equation:
IF L1 dF e 8]:“'“
(4.9) =) th -—-F, 1<a<Na>0.
atl n>0 atn €

Similarly to the case of a partial CohFT, let us define w'°P% := aaft »2 and wy P = a(“;: ;);’na From (4.8), it
0 0

satisfy the property (4.3).
For m,n > 1, denote by perm,, , the map Mg ,,,, = Mg 1, induced by the permutation of marked
points (1,...,m,m+1,...,m+n)—> (m+1,...,m+mn,1,...,m).

follows that the formal power series w'°P:¢

Theorem 4.6. Let us fix | < a <N, a>0, k >0, and k-tuples p = (B1,--., Br)s b = (by,...,by), where
1<Bi<N,b;>0.

(1) There exists a unique differential polynomial ﬁ%g € “Iw;k—l such that the difference

red;a,a , _ ak]:a,a _ oo
Po oot P =™
1 k
satisfies the condition
nQEeii;a,a
Bb .
Coefers —zt—re| =0 if ) di<2g-1+k
oty oty
’l t 0
We consider the expansions 5%’; =Y g>0 enggZ and Qrﬁe: =Y es0 g2gQgg;;’“.
(2) We have Qrediaa =0 and
Bb.g |p=g

anQred a,a

ng = Bk ( ®® ®®

9t ... gt - i permk+1 n\"gd Con+k+1 € i=1€p; j= lea lﬁbl llbz+1’

d; d g n+k+1 i=1
n {1=0
whereg>0,n>1,dy,...,d,; >0,) di >2¢g+k,and 1 < ay,...,a, <N.
(3) We have Q% ‘ =0 and
] -
Qe k
B.b.g _ * k+1 «a k n a b;

a ay . awan - \I\ permk+1,n (Bgya Cg,n+k+1 (e ®®izleﬁi ®®]:1ea])llbl H llbi_'.];

wdl dn w*=0 Mg'"JrkJrl i=1

whereg>0,n>1,dy,...,d,; >0,) di=2¢g—-1+k,and1 <ay,...,a, <N.

Proof. (1) The result is analogous to [BDGRI8, Proposition 7.2], whose proof we briefly explained in the
proof of Theorem 4.4. Regarding the existence part, we construct the formal power series Q%eg;a’a, together

with the differential polynomial ﬁg’f by a recursive procedure that kills all of the monomials £28 ]_[t:;”
pb

with g >0 and ) d; <2¢—-1+k in ﬁ One then checks that the resulting differential polynomial
1

a,a k Ta,a
ﬁ = (k- )atilfw (where the operator L was defined
b b by

tbk

ﬁ%g has degree k — 1 using the equation L
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in (4.7)), which is a consequence of Equation (4.9), and property (4.3), which, as we already remarked, holds
for F-CohFTs. The uniqueness part follows again from (4.3).

(2) The result is analogous to [BGR19, Proposition 3.5], and the proof is obtained from the proof of that
proposition by easily seen adjustments.

(3) This is analogous to Theorem 4.4. O

4.3. The DZ hierarchy for an F-CohFT and Conjecture 1

We consider an arbitrary F-CohFT.

4.3.1. Construction of the DZ hierarchy.— Denote by AWK the ring of formal power series in the
shifted variables (wy, — A%9,, 1), and let ,zl\zu"k := A¥K[[£]]. We have the obvious inclusion A, C _,vau\)'k From
property (4.3), it follows that for any 1 <a <N, a >0, and k-tuples g € [N]¥ and b € Zgo’ there exists a

unique element Q%% e Z‘zﬁ,"k such that

B.b
ak Faa _ Qa,a
1 B Bb| y_ topy’
ot -0ty we =we
Clearly, we have % = ang'S »  wopy» Which implies that the N-tuple of formal powers series w'P'*
lwe=we

satisfies the system of generalized PDEs

o
(4.10) T 5.0

f)’ ﬁ,b, 4 ’ ’

which we call the Dubrovin-Zhang (DZ) hierarchy associated to our F-CohFT. We say “generalized PDEs”
because the right-hand sides are not differential polynomials but elements of the larger ring AYX. The
N-tuple WP := (w'°P:1, ., w'°PiN) is clearly a solution of the DZ hierarchy, which is called the topological
solution.

4.3.2. Conjecture 1 and the polynomiality of the DZ hierarchy.— From Theorem 4.6, it follows that the
validity of Conjecture 1 for some fixed m > 2 implies that Qgg;a’a =0if [(B) =1(b) = m—1, or equivalently

Q%’g = ﬁ%g € ./Zl\w;m_g. In particular, we obtain the following result.

Theorem 4.7. The validity of Conjecture 1 for m = 2 implies that the right-hand sides of the equations of the DZ
hierarchy (4.10) associated to an arbitrary F-CohFT are differential polynomials of degree 1. Moreover, part (3) of
Theorem 4.6 then gives a geometric formula for these differential polynomials.

Also note that, assuming the validity of Conjecture 1 for m = 2, we have

a,0
i Jwtopia Z a(axQﬂ’b ) el g0
Y - " X V,c
dte atf n>0 dwy wd :w;OP;b
[l
. ,0
9 dwPT Z 8(8,@% ) grlho
7/ - ’/l x Vb !
atf atc >0 awn p wszw;op;a

which, by Lemma 4.3, implies that the flows of the DZ hierarchy commute pairwise.
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4.4. The DR hierarchy for an F-CohFT and Conjectures 2 and 3

4.4.1. The definition of the DR hierarchy.— Consider an arbitrary F-CohFT of rank N. Let ul, .. ulN
be formal variables, and consider the associated ring of differential polynomials A,,. Define differential
polynomials Pp’ad €Ay0, 1<a,<N,d>0,by

Pa . ezg s aj
R
gn>0,2g+n>0 j=1

ki, k, =0

Z;’:l ki=2g

n
x Coef(; Ji1...(a, )k [j /\gDRg( - Zaj, O,al,...,a,l)l,bgcg,%z(ea ®ep ®®7:16aj) .
j=1

gn+2

The DR hierarchy, see [BR21], is the following system of evolutionary PDEs:

aua—apa 1< <N,d>0
o, 1<ap<N, d20
d
In [BR21, Theorem 5.1], the authors proved that all of the equations of the DR hierarchy are compatible with
each other.

In [ABLR21, Theorem 1.5], the authors proved that
oPg, {p[;fd_l ifd>1,

4.11
(1) dull o4 ifd=0.

Lemma 4.8. The DR hierarchy satisfies the following properties.
Japr¢
(1)

B,0

Jull

(2) The DR hierarchy has a unique solution ©®" = (u"1,. .., us'"N) satisfying the condition u
d

ot

Proof. (1) This follows immediately from (2.2) and the definition of P/ffo.

=0.

str;a — ta
t;1:0 0

where we identify the derivatives d, and

(2) Using Equation (4.11) and part (1), we compute

a a
9 apn =, 20 Mo
Jull x*B,0 xau}? Jull B’
which completes the proof. g

4.4.2. A collection of potentials associated to the DR hierarchy.— Define up e = % Let us
0

introduce N formal power series FPR¢ € C[[t;,¢]], 1 < a < N, by the relation

y_ sty
Uy =Up

b pb

with the constant terms defined to be equal to zero, F DR;O‘| := 0. Consider the expansion FPR@ =

2 DR;«
ZgZO € gf:? .

=0

Theorem 4.9. Let g>0,n>1,dy,...,d,,>0,and 1 <a,ay,...,a, < N. Then we have
an%DRFOK 0 lediSZg—l,
Btjll ---atZ’ 0 f— perm] , (A;’E)Cg,rﬁl (e"‘ ®®?Zleaj) if Y d; >2g.

gn+l
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Proof. The proof is very similar to the proof of analogous statements in the case of the DR hierarchy
associated to a CohFT (see [BDGRI18, Proposition 6.10] and [BDGR20, Theorem 6.1]). So we only very briefly
sketch the details.

Consider a stable tree T € SRT, ;, ;. We will call a level function I: V(T) — Z injective if 7)) =1
for each 1 < i < deg(l). Clearly, such a function gives a bijection between the sets V(T) and [|V(T)|].
Denote by L9(T) the set of all injective level functions on T. For | € L9(T), denote by (T,1) the stable tree
from the set SRT ,,4jv(7),1 obtained as follows:

e We attach to each vertex v of T a new regular leg and label it by the number [(v) + n.
e We relabel the unique frozen leg of T by the number n+|V(T)|+ 1.

For an N-tuple Q = (Q!,...,QV) ¢ 217;’, denote by D the linear operator in A,, defined by
Dy = Z(c?"QV)—a
Q™ x ou!”
k>0 k
Let Fﬁ’d = (Pﬁl d,...,PﬁI\'] ;) From the definition of the formal power series ustt@ and FPRa it follows that

n DR}O(
I

ay ay
G-Ity

= Coef,> (D 5 Dy Dyp P ) .
o €8 axpan,dn axpa3,d3 axpaz,dz alrdl ulz/zék,lAy
In the same way as in the proof of [BDGRI8, Lemma 6.9], this formula implies that

n —~DR;a
R

a ay
dty -0ty

t:=0

1
=B | ) )
TESRT 5oy, 1€LO(T)

n

* ) 2g+n-1 d;
J Ag perm1,2g+2n—1DRm(Al Onf_zai) Cg2¢+2n (ea ® 228" )®®?:1eai)l_[11b2g+n+i ’

Mg,2g+2n i=1

where A = (ay,...,d244,-1) and 0,,:=(0,...,0) € Z". In the case ) d; < 2¢ — 1, the proof of the vanishing
of the right-hand side of this equation goes along the same lines as the proof of [BDGRI18, Lemma 6.11].
Indeed, [BDGR18, Lemma 6.11] says that the right-hand side of the equation vanishes if we replace the
class cgogion(e” ® e®(28+n-1) ®®;_, ey,) with the class cg,2g+2n(e®e®(2g+”_1) ®®;_;eq,) With cg 2017, being
a CohFT. However, one can easily see that the same proof works in our case as well.

We now consider the case ) d; > 2g. For a tree SRT, | and v € V(T), define

ind(v) := min{l <i <n|o; is attached to v}.
If v is not incident to any regular leg, then we write ind(v) := co. Let us call the tree T special (in [BDGR20,
Section 6.5.1], the authors said “admissible”) if
a) ind(v) < oo for any vertex v € V(T);
b) ind(v;) < ind(v;) for any two distinct vertices v{,v, € V(T) such that v, is a descendant of v;.
Denote by SRT(S) C SRTy ;1 the subset of all special trees.

gn,l
For atree T € SRT(S) define

gn,1°

¢; = 0 unless i = ind(v) for}

o— - — n
St:= {c =(c1,...,cn) €ZS, some v € V(T)
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Let d > 2g. We claim that

b
Z (2g+—nl)Coefgl “A2gin-1 Z Z’

dlféd—n? TESRT} 5, 11 l€LO)
n
* n _ (2 +1n— 1
J. /\gPerm1,2g+2n—lDR(T,l)(A’O”’ Z )828+2”(6 ®eTE ®®1 lea ¢2g+n+z
Mg,2g+2n i=1
n
- Z ) _f Agpermi ,DR7(B,~) bi)cgu(e? ®® ea)| |(bitia1)®,
TeSRTY CEST Mg i=1

g“Zc =d- (2g+|v )I-1)

where B = (bl, ..,b,). Indeed, in [BDGR20, Section 6.5. 2] this equation is proved if we replace the classes
Cokr1(e” ®®1 1Vi), vi € V, with the classes cg, k+1(e®® 1Vi) with cg 41 being a CohFT. However, one can
easily check that the same proof works in our case as well.
Therefore, it is sufficient to check the cohomological relation

n

Z ) AgDRy (b1, by, =Y bi)[ (i)
1

TeSRT" ceSt i=
g’”Zc =d—(2g+|V(T)|-1)

= ) C(DADRy(bysby=) i),

TeSRT,, &
but this was done in [BDGR20, Equation (6.13)]. O
. DR;a strya
Note that the definition of formal power series FPR® implies that 2 977 — T Since, by
atﬁ atll P B
a %M ta
DR;a
Theorem 4.9, we have agtu = 0, we conclude that
o It=0
DR;
8‘7: ; _ ., Str;a
n ’
dt;

4.4.3. Conjecture 2 and the equivalence of the two hierarchies for F-CohFTs.— Consider an arbitrary
F-CohFT. Suppose that Conjecture 2 is true. Then Theorems 4.6 and 4.9 imply that Qred@0 = FPRa 554

therefore

f&,o - Qa,0| Va top;y = fDR,(X‘
We =W

Differentiating both sides by 8%“’ we obtain
0

top;a a0 str;ar
w'°P —(QXQ ) s oy = U
We =Wc
Consider the Miura transformation
(4.12) w® — u%(wl,e) = w® — 9,Q*°

and its inverse u® — w®(u}, €). We see that the Miura transformation (4.12) transforms the DR hierarchy to
a hierarchy having the N-tuple w'°P as its solution. Lemma 4.3 implies that this hierarchy coincides with
the DZ hierarchy corresponding to our F-CohFT. In particular, we obtain that the right-hand side of each
equation of the DZ hierarchy (4.10) is a differential polynomial of degree 1.

Summarizing, we obtain the following result.
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Theorem 4.10. Conjecture 2 implies that the DZ hierarchy corresponding to an arbitrary F-CohFT is polynomial
and that it is related to the DR hierarchy by the Miura transformation (4.12). Moreover, there is a geometric formula
for the differential polynomials Q%° defining this Miura transformation, given by part (3) of Theorem 4.6.

4.4.4. Conjecture 3 and the DR/DZ equivalence conjecture for partial CohFTs.— Following [BGRI19],
let us recall here the relation between Conjecture 3 and the DR/DZ equivalence conjecture for partial CohFTs,
proposed in [BDGRI8]. Again, what we will say was discussed in [BGR19] and [BDGRI18] for CohFTs, but the
required results are true for partial CohFTs, with the same proofs.

Consider an arbitrary partial CohFT, the associated F-CohFT, and the corresponding DR hierarchy.
Define

hopi= 7711,4P0’:p+1 €A, 1<a<N,p>-1.

In [BDGRIS8], the authors proved that for any 1 < a, < N and p,q > 0, there exists a unique differential

polynomial le; g € .Zl\u;o such that

DR DR
9O 0 =Dyp, hap1r Q

apBg apipa|, :O‘

In [BDGRI8|, the authors proved that there exists a unique formal power series FPR(t!,¢) =
Zg>0£23.7:DR( 1) € C[[#, €]] such that
aszR _ DR
ggoth T PP=
JdFPR . OFPR 1 a.B
j;ﬁ‘-}irwrgg*+iﬂwhﬁw
0 n>0
DR —
F |t:::0_

The formal power series F PR is called the potential of the DR hierarchy. By [BDGRIS8, Proposition 6.10] and
[BDGR20, Theorem 6.1], for g>0,n>1, dy,...,d,; >0,and 1 < ay,...,a,, <N, we have

1<a,<N, pg=0,

str;y 7
c

if Y d<2g-2,
{LVlg,, ALa Con(®] ea;) if Ld;>2g-1.
Suppose that Conjecture 3 is true. Then Equations (4.4) and (4.13) imply that Fred — FDR o equivalently,
(4.14) F Pl = PO

anfDR

(4.13) ——a
oug - org|

which was formulated in [BDGRI18] and called the strong DR/DZ equivalence conjecture. Let us discuss
consequences of Equation (4.14).
Consider the Miura transformation

u® v— u(u;,e):=n" Q}AOHO

The variables u® are called the normal coordinates of the DR hierarchy. Obviously, the N-tuple of formal

power series
st ot 92.7- DR
ustr,a(t*,g);:r] EWEWIL 1 SQSN,
dt,dt;,
is a solution of the DR hierarchy written in the normal coordinates. Now consider the following Miura
transformation relating the variables w® and u®:

(4.15) w' r— u(wy, ) :=w* —n*d,D, 5 P
x

Equation (4.14) implies that the DR hierarchy written in the variables w® has the N-tuple w'°P as its solution.
Therefore, by Lemma 4.3, this hierarchy coincides with the DZ hierarchy corresponding to our partial CohFT.
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So we obtain that the DZ hierarchy corresponding to our partial CohFT is polynomial and that it is related
to the DR hierarchy by a Miura transformation.

In fact, as is explained in [BDGRI18], Equation (4.14) implies that there is a relation between the two
hierarchies that is stronger than the Miura equivalence. Both hierarchies are Hamiltonian, and they are
endowed with a tau-structure, meaning that there a special choice of densities of the Hamiltonians satisfying
certain properties. For the DZ hierarchy, these densities are 71y FQ’;"(; +1> and for the DR hierarchy, these
densities are 1, p, 1 <a <N, p > 0. In [BDGRI8], the authors proved that Equation (4.14) implies that the
two hierarchies, together with their Hamiltonian structure and tau-structure, are related by the normal Miura
transformation given by (4.15). Moreover, there is a geometric formula for the differential polynomial P
describing this normal Miura transformation, given by Theorem 4.4.

5. Proof of Theorem 2.2

5.1. Proof of Conjecture 1 for n =1

In the case n =1, Conjecture 1 says that B?d =0for m>2andd>2g+m—1. Let us prove that. To
explain the proof, we need some notation. We denote by F; | ZZ, g>0, k> 1, the following tautological class:

2
P S S ) LS o S <l 5 v R
|k = 82 TR gm+1)
81rr8k mi+1

where dy +---+dp+k-1=d, g1+ +% =981, 1>, g=>0if m>2and gg >1if m=0,1, and
forany i =2,...,k,we have d; +---+dy +k—i < 2(g; +---+ &)+ m—2.

d-2g-m+1

Lemma 5.1. WeﬁaveB?d:B agem-1¥1 ford>2g+m—1 and

(]
k+1rg ,m
g2g+m 2g+m—1]k’
k:

Proof. This follows directly from unfolding the definitions. Note that the sum over k is in fact finite since
rg|k =0 for k> g+2 for any m and I’ |k I =0fork>g+1form=0,1. U

By this lemma, it is sufficient to prove that Bg 2gem—1 = =0, g>0, m>2. The proof is based on the
following Liu-Pandharipande relations, see [LP1l, Propositions 1.1 and 1.2] (see also [BHIS22, Corollary 3.2]),
in the tautological ring:

2g+r 2g+r
(5.0) 12+(—1)2g+’+112 = Z )% 4;1 v (82)
8§1182=§
gl:gzzl
di+dy=2g+r-1
dy,d,>0
2
lPZg-ﬁ-m—H—r l[)dl l[)d
o LR -y @t ter
it 1 81182=¢ nir1
8121, 8,20
di+dy=2g+m-2+r
dy,d,>0

for any r > 0.
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We introduce more notation. For g>1, k> 1, and d <2g—1, let 7/§|k be the sum of decorated stable
graphs given as

Pl P -1 e
A= ¥ — @@ — @@
81728k
dy,d,

where dy + - +dy+k-1=d, g1+ +g% =9, g1,.-,8 =1, and for any i = 1,...,k — 1, we have
dy+--+di+i=1<2(g +---+g)-1. For d > 2g, we define yj,, = 0. Note that y}, =0 for k> g. We
also define

om _ |Tip ifd<2g+m-2,
Yk =

0 otherwise.

Let 1 ¢y, be the operation of concatenation of two decorated stable graphs y1 € Gg, > and y; € G, 41
that forms an edge from the second leg of ; and the first leg of y,.

Lemma 5.2. Forany{>1, m > 2, we have

0+1
k+118Mm
(5'3) Z(_l) Iﬁ2g+mfl |k
k=1
p 2
p)
di+0-1_ 8 g :
= Z () o1 — @2 —
81+82=¢ i1
121,820
d1+d2:2g+m—2
dy,d,>0
of ¥" dy+1 i 8,1
D M e SR oy N Y
811t82=8
121,820
di+dy=2g+m-2
dy,d,>0
d+0-1,81 P dy+1 - &3,
+ Z (1)l o 12+(—1) 2 12 oV
811t82+83=8

81,8221,8320
dy+dy+d;=2g+m-3
dy,d,,d3>0
kl +k3:€, kl'kSZl

Before proving this lemma, let us show how to derive the desired vanishing B;’fz gm—1 = 0 from it. Indeed,

consider Equation (5.3) for £ = g+ 1. Note that since m > 2, we have I‘fl;f =0 for g+ 1 < k. Hence the

m

left-hand side of Equation (5.3) with £ > g, so in particular for £ = g + 1, is equal to BY g im-1-

On the right-hand side, we have 7/511 lg+1

the second term (since g, + 1 < g+ 1). Consider the third term. We have k; + k3 =g¢+1 and g1 + g3 < g,
so either g; <kj, or g3 + 1 <kj3, or both. Hence in the third term either Vgll“cl =0, or 75;7:3 =0, or both.
Hence the right-hand side of Equation (5.3) with € = g+ 1 is equal to 0.

= 0 in the first term (since g; < g < g+1) and )75;'?“ =0in

Proof of Lemma 5.2. We prove the lemma by induction. The base is the £ = 1 case. It is equivalent to

2
1,bd2 ¢d1
8,m _ d, .81 : d ~82,M
G4 Tl = > (~1)hygt 0 1—82] i E (D) —@O—2 0
81182=8 m+1 81+82=8§
g1>1,4,>0 g121,8,20
di+dy=2g+m-2 dy+dy=2g+m-2

dy,d,>0 dy,dr>0
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which is just a way to rewrite Equation (5.2) for » = 0. Indeed, on the right-hand side of Equation (5.2) for
r =0, we have

e P2
(-1 —@—2 01 —(&f— |,

€+8=8,8121,8,>0 e
dy+d,=2g+m-2,d,d,>0

and either d; < 2g; —1, which gives us the first summand on the right-hand side of (5.4), or d, < 2g, + m—2,
which gives us the second summand on the right-hand side of (5.4).
For the induction step, we have to prove that

2

) Il)dz l"'.
(65 U ) ()Pt o 4(

81+8=8,8121,8>0 m+1
dy+dy=2g+m-2,d,,d,>0

(5.6)  + Y (—1)5( 12 +(—1)d1“12]°?§§’|e

81+82=8,8121,8>0
d+d,=2g+m-2,d,,d,>0

d+-1 pe dy+1 Y —g3m
(5.7) + Z Y, © (1 @2+ () —@—2 | Ty,

811t82+83=8
81,8221,83>0
dl +d2+d3:2g+m—3

dy,dy,d3>0
k1+k3:€,kl,k321
2
4408 L
_ +0., .81
(5.8) = E DM Ya e 00 (&)
81+82=8,8121,8>0 m+1
d1+d2:2g+m—2,d1,d220

d,dl , J 4,d1 ,
(5.9) + Z (-1)%1 12 07§2|€+1 + Z (—=1)%+¢y @ 207(5;'?”

81182=8 81182=8
821,820 g121,4,>0
dy+dy=2g+m-2 dy+dy=2g+m-2
dl,d220 dl,dZZO

d

v ,
(5.10) + ) " Y, o1 —@D—2 0 Vi,

81+82+83=8,81,8221,8320
dl +d2+d3:2g+m—3, dl)led3 >0
ki+k3=C0+1,kq,k3>1

=12 Cy k3 =Cret gy 52 Ciy ks

d2
dy+dy+€+1 81 \ 583
(5.11) ¥ ) (1B Y f, 01— @D —2 0 T,

81+82+83=8,81,8221, 8320
d1+d2+d3:2g+m—3, dl’d21d320
k1+k3:€+1,k1,k321

::Z Dk1 k3 :+Zk3 >2 Dkl k3

Note that the first summand in (5.5) is equal to the first summand in (5.9) by definition.
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Consider the second summand in (5.5). Since d; < 2g; — 1, we have d, > 2g, + m — 1; hence we can apply
the Liu-Pandharipande relation (5.2). We obtain

2
) l1bd3
(5.12) ) ()bl 8 o (@Y 2o 1 Iy
m+1

81+82+83=8,81,8221,8320
dy+dy+d3=2g+m-3,d1,d,,d3>0

Note that either dy + d, < 2(g; + g2) — 2 or d3 < 2g3 + m —2, but not both. Hence (5.12) is equal to the sum
of (5.8) and the k3 =1 term in (5.11).

Consider (5.6). Since d, < 2g, + m — 2, we have d; > 2g;, hence we can apply the Liu-Pandharipande
relation (5.1). We obtain

(5.13) Y (-1)"+h 12 o 12 oTET

81+82+83=8,81,8221,8320
dl +d2+d3 :2g+m—3, dl!dZ’d?) >0

Note that either dy <2g; —1 or d, +d3 < 2(g, + g3) + m — 3, but not both. Hence (5.13) is equal to the sum
of the k; =1 term in (5.10) and the second summand in (5.9).

Finally, consider (5.7). Since d; < 2g; — 1 and d3 < 2g3 + m — 2, we have d, > 2g;; hence we can apply the
Liu-Pandharipande relation (5.1). We obtain

d3 d3
dy+dy+0-1 81 \ ¥ S8

(5-14) ) R @2 o1 @) —2 o Tk

81782+83+81=8

81,82,8321,8320

dy+dy+ds+d,=2g+m—4
dy,dy,ds,d, >0

k]+k4:€, kl,k421
Note that either d; +d) < 2(g; + g2) —2 or d3 +dy < 2(g3 + g4) + m — 3, but not both. Hence (5.14) is equal
to the sum of the ky > 2 terms in (5.10) and the k3 > 2 terms in (5.11).

Summarizing the computations above, we see that the sum of (5.5), (5.6), and (5.7) is equal to the sum

of (5.8), (5.9), (5.10), and (5.11). This proves the induction step and completes the proof of Lemma 5.2. [J

5.2. Proof of Conjecture 2 for n =1

We have to check that B;d = A; ; forany ¢ > 1 and d > 2¢. From the definition of the class B;d, it
follows that
1 _ o d-2¢p1
Bg,d - Bglg'
On the other hand, setting k := d — 2g, we have

k-1

Al = 8k—i

g'd - g + ..+ g .
gi+Tg=g\i=0 ! k=i
8178k 21

Ag DRy (1,-1)0 Ay DRy (1,~1) 0+ 0 1o DRy (1,~1).

Using the formula

82
P1ADR(1,-1)= ) 220y DRy (1,-1) 0 A, DRy, (1,-1),

811t82=8 8
81,8221

cf. [BSSZ15, Theorem 4], it is easy to check by induction that

1 _ d4-28 41
Ag,d_l/’l Ag,2g'

We conclude that it is sufficient to prove that

(5.15) By y = A¢DRg(1,-1).
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As a preliminary step, in Section 5.2.1, we derive a new tautological relation using a variation of the
method from the paper [LP1l] by Liu and Pandharipande, and then in Section 5.2.2, we use it to prove
Equation (5.15).

5.2.1. A new relation via the Liu-Pandharipande method.— We use the same notation as in Section 5.1,
with the following addendum to the notation. Let

1—{&]—2 = A;DRy(-1,1).

Theorem 5.3. Forany g>1 and r >0, we have

l,by I,DZgH d l,bdl l,bdz
(5.16) 12 +(=1)XH (g = Z (-1)"1—(81) 2.
81t8=8
81,8221
d1+d2:2g1+1’—1
dy,d,>0

1, 00), which we review

Proof- The proof is by localization in the moduli space of stable relative maps to (IP
in detail in the appendix.

We consider the moduli space ﬂg,n(]l)l,y) of stable relative maps to (IP!,c0) with n=1 and p = 1. The
source curves of these maps have two marked points, and we assume that the marked point corresponding

to the only part of y is labeled by 1. Consider the C*-action on IP! given by
t-[x,v]:=[tx,y], [xv]eP!, teC,
and the induced C*-action on Mg,l (P!, 1). Denote by
m: U— Mg (PL1), f:U—P,

the C*-equivariant universal curve and the universal map, respectively. Consider a lifting of the C*-action on
IP! to the line bundle Opi(~1) — P! with fiber weights —1, 0 over the fixed points 0, co € IP!, respectively.
The sheaf
B:=R'mt, f*(Opi(-1)) — Mg (P, 1)
is a C*-equivariant vector bundle of rank g.
We consider the following C*-equivariant cohomology class on ﬂg,l(IPl, 1):

I, := ev5([0))ec: (B) € Hof ™ (Mg 1 (P, 1)),

g

where ev,: ﬂgrl(IPl, 1) — P! is the evaluation map corresponding to the second marked point, [0] €
Hé(IPl) is the C*-equivariant cohomology class dual to the point 0 € P!, and by ec.(-) we denote the
C*-equivariant Euler class of a C*-equivariant vector bundle. Denote by

e: Mg (P!, 1) — M,

the forgetful map, which is C*-equivariant with respect to the trivial C*-action on ﬂg,z. Consider the
pushforward

(5.17) eIy N [Mg1 (P, 1)]") € H, (Mg ),

where [Mg,l (P!, 1)]¥I* is the C*-equivariant virtual fundamental class of the moduli space Mg,l (P!, 1). Since
HE (Mg,z) = H*(ﬂg,z) ®¢ C[u], where u is the generator of the equivariant cohomology ring of a poigt,
the class (5.17) is a polynomial in u with coefficients in the space H.(Mg ). The class Io N [M, (P, 1)]vir
considered as an element of Hf:*(mgll(ll’l,l)) ®C[u] C[u,u"'] can be computed using the localization
formula (A.4), and then using formulas (A.5) and (A.6), one can get an explicit formula for the pushforward

of this class to M, 5 in terms of tautological classes. The fact that the coefficients of the negative powers of
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u in the resulting expression vanish gives relations in the homology of ﬂglz. Let us compute these relations
explicitly.

Consider the connected components of the C*-fixed point set Mg,l(IPl, 1)®". Apart from the component
F formed by the stable relative maps with the target equal to P!, we have components F labeled by
decorated bipartite graphs I (see the appendix for details). Note that the decorated bipartite graphs I' such
that Fp # 0 have one of the following two forms:

T,

1
g8 = 2 . . L, €120,82>1,
0 o

1
Elng = , 81,8 =>0.
2

0

Since L% (ev3([0])) = 0, we have i (I;) = 0, where we refer a reader to the appendix for a definition of
81.82 81,82 -

spaces Mr and natural surjective maps 1g: Mg — Foand ip: My — Fr.
Using Equations (A.3) and (A.4), we obtain the following equality in H,,(Mg,z) ®c Clu, u™!]:

A 1 vir * Ig
e*(Igﬂ[Mg,l(IP ,1)] =€*lo*(lo(—)ﬂ[/\/lg’2])

ec-(Ny™)
D WY Py g S A
o) g0* Lo e@(Nvir ) Teyer ’
£120,8,>1 Terer
81+82=§

where N ir and Nf’ir are the virtual normal bundles to the connected components F and frql o
81-82 81

respectively. Let us now compute explicitly the contribution of each connected component.

Consider the component 7. Note that we have an isomorphism ;B = IE;’ ®C_; as C*-equivariant vector
bundles, where by C, we denote the trivial line bundle with ¢t € C* acting on it by the multiplication by t*.
Therefore,

* _ \
loly = ulg(-u),

where

i=0
Using Equation (A.5), we obtain
l*( s . ): Ag(—u)/\g(u) :(_1)gﬁ
ec-(Ng™) u—1 1-4

(5.18) 6*10*(16(ﬁ) N [Mg,z]) =(-1)% Zng—l—i 21.
V0

>0
Now consider the component ?To,g of the fixed point set. We have ﬂl‘g,g = ﬂ;O(IPI,l,l), where
M;O(H’l,l,l) is the moduli space of relative stable maps to rubber (lPl,O,oo) and L’fo B =~ IE;,/ as C*-
h ,8

equivariant vector bundles, where we emphasize that C* acts trivially on lEg Therefore,

l*Fo,gIg =u(=1)%Ag.

Using Equation (A.6), we obtain

e Iy _ (18 )e-1 Ut A
I |- = = (= =,
“lec(Np)) | —u—io 1+ %
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where I;DVO is the first Chern class of the cotangent line bundle over /V;O(IPl, 1,1) corresponding to the point 0
in the target curve of a stable relative map (see the appendix for details). Noting that (g = (€ o I, ) P2, we

obtain

519 Ig vir g —-i-1 i-1 ¢

(5.19) eutrype| | e | M, ) (-1) Z (-1~ o —{8}—1.
* e (NFOg) iZO

Consider the component 7&1’ o with g1, g, > 1. We have ./\/lr =M
IEJ,;1 ®C_; & IEV as C*-equivariant vector bundles. Therefore,

’zx./\/l o(PL, I,1)and i B=

81,82

* _ Vv _ _ g
lrgl.gzlg =ulg (—u)(-1)% A,

Using Equation (A.6), we obtain

2g,-2
p I, _ Agl(—u)(—l)gZAnggl(u) (! u=2 ),
, vir _ _ _"" ~
@2 ec(NL' ) (1 =1)(=u = o) (1-8)(1+ &)
€.l i L N[Mp, T
*Tor 0% | Ty 00 eC*(leir ) o100
81-82
- ph ll)dz
(5.20) = (-1)¢ Z 2g1-2-dy=dy(_1)d-1,
dy,d,>0
-r—1

Summing the coefficients of u in the expressions on the right-hand side of Equations (5.18), (5.19),

and (5.20), multiplying the sum by (~1)8*", applying the map perm] |, and equating the result to 0, we
obtain exactly the desired relation. g

5.2.2. Proof of Equation (5.15).— Let us prove by induction that

4

dp
_ k+1 g1 Ayl 81 Y
(5.21) 12_2( 1" perm] Ty y + Z D)2yl 01 2, €>1.
k=1 $1+8=¢
81,822
d1+d2:2g1—1
dy,dy>0

Indeed, for € = 1, this is exactly Equation (5.16) when r = 0. For the induction step, we have to check that

Z ( )dz+€ 81 l‘bdz 5
Viyje® 2

8118278, 81,8221
d1+d2:2g1—1, dl,dZZO

¢ + gl dyC41 ) 8 ye
=(-1) perm Iy /0y + Z (—1)%2*cF 7/d11|€+1°1 2, €>1,

81+82=9, 81,8221
dyvdy=2g,-1,dy,dr>0
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or equivalently

P

1

2 (~1)%y5 01 2
81182=8

81,8221

dy+dr=2g1-1

dy,d,>0

= Y @ Y (e —@ e Hm s,

81182=8 81+82+83=8

81,821 81,82,83>1
dy+d,=2g-1 di+dy+d3=2(g1+82)-2

dq,d>>0 dy,d,,d3>0

which follows from Equation (5.16).
Since yﬁlk =0 if k > g, substituting € = g in Equation (5.21), we obtain
* 1
A¢DRg(1,-1) = perm ; B, 5.,
which, because of the obvious property perm] ; A;DR,(1,-1) = A,DR,(1,-1), implies Equation (5.15).

5.3. Proof of Conjecture 3 for n =1
As is proved in [BHIS22, Theorem 2.4], for n = 1, Conjecture 3 follows from Conjecture 2.

6. Proof of Theorem 2.3

Consider an arbitrary CohFT cg ,,. In [BPS12], the authors proved that

92 9°
“Toﬁ: foﬁ , 1<a,B<N,a,b>0,
Jtjot,  JtFot, 7 =5, yvtop
where v'°P7 ;= yVH 8(3” i Consider formal variables v',...,v" and the associated algebra of differential
polynomials A,,. Define
2
0 . 9% [0ha ._ apl0] S00] . _ o)1 [N
Qa,u;ﬁ,b' (?taat ’ Pﬁ _77 Q Oﬁb’ Pﬁ,b = (Pﬁ,b '“"’Pﬁ,b )
aYry 1 =5, gv7

We see that for any m > 2, we have

" Fy —(D

(0]
—a & = o D, Sl Q
ot Ity
dl dm

8XPal’dl aXPDtmfz,dmfz am—lfdm—llamrdm)

’
v _ topiy
Vi =V

which by Theorem 4.6 implies that

m m+n _
_[M BO,(dl,.,,,d”)CO,ern(@j:l vi)=0

0,m+n

forany m>2,n>1,) d;>2¢g+m~-1, and v; € V. Using the nondegeneracy of the Poincaré pairing in
cohomology, we see that it is sufficient to prove the following statement.

Proposition 6.1. Cohomology classes w € H*(M,,) of the form
(6.) W= co,n(®?:1vj), where cg ,, is an arbitrary CohFT and vj €V,

linearly span the cohomology space H*(mom).
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Proof. For I C [n], 2 <|I| < n—2, denote by &; € H*(M,,,) the cohomology class that is Poincaré dual to
the fundamental class of the closure in Mo,n of the subvariety formed by curves with exactly one node and
marked points x; with i € I on one bubble, and marked points x; with j € [n]\I on the other bubble. The
cohomology algebra of the moduli space ﬂo,n is generated by the classes O; (see, e.g,, [Man99]). Using the
tensor product of CohFTs, we see that it is sufficient to prove the following special case of the proposition.

Lemma 6.2. Any cohomology class o € H 2(ﬂ0m) can be obtained as a linear combination of cohomology classes
of the form (6.1).

Proof. Consider the CohFT C(go,)z defined as follows:

e V := C? with standard basis ey, e,,
e c:=e;+ey,
® fap = Oap,
(0) 1 ifa;=...=0a,,

0)  on
® Con(®_ €q,):=
& i=1 0 otherwise.

For t € C, define

R(z) := exp(r1z), where ry := (? é)

‘(gO,L and denote the resulting CohFT (with unit) by c((gtL (we follow
)

the approach from [PPZ15, Section 2]). It is clear that an(@)?:lvi) depends polynomially on t and, moreover,

Let us apply this R-matrix to the CohFT ¢

Coef cg)r,(@l’-zzlvi) € sz(ﬂg,n).

t:
For any 0 < k < 3¢—3+n, this coefficient can be obtained as a linear combination of the classes Céf,j(@?:lvi),
1 <j<3g-2+n, where ty,..., 135 2, are arbitrary pairwise distinct complex numbers. Therefore, it is
sufficient to check that

(6.2) o7 = Coeftcét’)n(@)?:lvi) for some vectors vy,...,v, € V.

Let us prove that Equation (6.2) is true for

{e1 ifiel,
v =

e, otherwise.

Indeed, we compute

, (*) 1 (0) (13- o (0)
(6.3) Coeftco’n(®?:1vi):§ Z gl*(co’mﬂ(@iefvi@ey)c‘)” v®C0,n_|ﬂ+1(®je[[n]]\l~vj®eV))

I
2<|I|<n-2

0
=) bicoav1 @@ (1))@ 8v,)
i=1
2 (0
+ 70| Yis1Co e (V1 @ - @, ® 11 (e)) ),
where gl: M0,|ﬂ+l ®Mo,n—|'f|+1 - Mo’n is the obvious gluing map and 7: MO,HH - Mo’n forgets the

last marked point. From the definition of the CohFT cé?)z, it is easy to see that the first summand on the

right-hand side of Equation (6.3) is exactly the class o7, while the second and the third summands vanish.
This completes the proof of the lemma. g

This concludes the proof of Proposition 6.1. 0
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7. A reduction of the system of relations in the case m > 2

Recall that in Section 3, we introduced the polynomial Py ;, (x1,...,%;,) € R*(Mg,mm)[xl,...,xn] and
considered the following cohomology classes:

(7'1) EZE = Coefx'l’ll oyt Pg,n,m
= ) () le T, d] € REY (Mypim);
TESRT s

see Equation (3.2) and Lemma 3.8. By Theorem 3.4, an equivalent way to state Conjecture 1 is to conjecture
that

(7.2) gf—O forany g>0,n>1,m>2,deZ" So satisfying dy +---+d, > 2¢g+m—1.
One more equivalent reformulation reduces the number of relations one has to check.
Theorem 7.1. The system of relations (7.2), as a whole, is equivalent to the following one:

(7.3) E;E:O foranyg>0,n>1,m>2,d; >1 satisfyingd +---+d, =2g+m—1.

Proof. For a tree T € SRT, ,, ,, and h € ﬁfm(T), let us use the more detailed notation Ij, 1 instead of Ij,.
We start with the following lemma.

Lemma 7.2. We have E?,(dl,...,d”,O) = n*EZ(dl ..... i) where Tt ﬂg,mm - Mg,,wm forgets the marked point
number n+ 1 (and shifts the numbers of the last m marked points).

Proof. Up to a relabeling of the marked points or legs in the stable rooted trees, it is convenient to assume
that the marked point that we forget under the projection 7t is labeled by 0 and that the labels of all other
n+m points are preserved by 7t. With this new convention, we have to prove that ng(o, d.
or equivalently

Py 1m0, X100, %) = TPy (X1, Xy)-

We use the formula (3.1) for the polynomial P, ,, and consider the contribution of a pair (T,p),
T € SRTg m, P H™(T) — Zs. From the pullback formula for the -classes, we have

(7.4) wen| [ th Z‘ET* [1 ybh” - & | g

heHe"(T veV(T heHe" (T, FeH™(T) heH™ (Ty)

Here T, is the tree T with an extra leg oy attached to the vertex v. Naturally, HS"(T,) = H"(T) U {0y},
and we define p,(0g) := 0, and p,(h) := p(h) for any h € H{"(T). The tree Ty is obtained as follows (see
also (7.5)):

o If f is aleg 0;, 1 <i<wn, then we attach to it a new vertex of genus 0 and attach to this new vertex
the leg 0; and an extra leg 0.

e If f is a part of an edge, then we break this edge into two half-edges, insert a vertex of genus 0
between them, and attach an extra leg oy to this vertex.

We have a natural inclusion ﬁfm(T) C ﬁim(Tf) with |ﬁﬁm(Tf)\ﬁfrm(T)| = 2. The two half-edges from
ﬁfm(Tf)\ﬁfm(T) are attached to the new vertex of genus 0: one of them is 0y, and we denote the
other one by f By definition, the function p; coincides with p on ﬁi"l(T)\{f}, ps(f)=p(f) -1, and
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1][10

(f)
(7.5) @4”’/ = ()
0 g

This way, we see that taking the sum over all pairs (T, p) contributing to P ;, (X1,...,%;) and using (7.4),

0o

we can list all pairs contributing to Py ;;41,,(0,x1,...,;), and moreover the signs are exactly the ones we
have to use in the formula for Py ., 1,,,(0,x1,...,x,).

So we just have to check the coefficients. In the case of the pairs (T, p, ), the equality of the coefficients is

(h)+1 p(h)

obvious because x}’ =Xy ! for any h € ﬁfm(T) = Hﬁim(Tv)\{GO}. In the case of the pairs (T, py),

Ty xp=0
h)+1 ~ —
we have xff( " = x; " for any h € HY"™(T)\{f} c H{"(Tf). Regarding the remaining half-edges,
h,Tf XOZO , T B
1 1
note that x;__ = x; = x1, ., which implies that xF (D1 _ el (Fy xpf dd . Thus, the coefficients
i 1T x0=0 rr If'T If’Tf If’Tf xo=0

match for this type of trees as well, and we conclude that Py ;,11,m(0,X1,..., %) = TPy u(X1,..., %) O

Lemma 7.3. Assume that the relations (7.2) hold for all triples (g',n’, m’) with either g’ < g, n" <norg’ <g,
n’ <mn, form’ =m and m’ = 2. Then the difference

nm nm
(7.6) Betdydir dii1,diss,ed) ~ WiBoa, )

is equal to zero for any d.,...,d,, > 0 such thatd, +---+d,, >2g+m—1.

Proof. Using the formula (7.1), we see that the pairs (T,p), T € SRTy ; 1y, p: H"™(T) — Zs, contributing to

the difference gg(dl ’’’’’ ditl,d,) wigg(dl,...,dn) satisfy the property p(o;) = 0; these graphs come from the

. . . di+1 .
first summand. Obviously, 0; cannot be attached to the root vertex (otherwise, the coefficient of x; s

equal to zero). So 0; is attached to the vertex that is the first descendant of some f € HS™(T).

We cut the edge that contains f and obtain two trees, T} and T, of genera g; and g,, respectively. The
regular legs of Tj are 0}, j € I 7, and f, the root vertex is the original root vertex, and the frozen legs are
the frozen legs of T. The root vertex of T is the one where 0; is attached, the regular legs are 0}, j € I1 7\{i},
and the frozen legs are o; and the half-edge f’ that formed an edge with f in T. So T} € SRTgl,n—IIf,TIH,m
and T, € SRT, |1 | 1,. We have natural inclusions He™(Ty) € HS™(T) and HS™(T,) € H"(T), and we

denote by p'!) and p(?), respectively, the restrictions of the function p to these subsets.

Example 7.4. Consider, for instance, the following tree T, which is cut into T; and T, at the dashed place on
the picture:

01 PP4 oy

p(h3)
f’ ¥ @ s
o

5

Here we assume n =5, m=3,¢g=g¢) + g, where g1 = g1 1 +g12+ 81,3 and o = g1 + §2.2, i = 1. The tree
T is cut into two trees at the edge (f, f'), Ir,7 = {1,4,5}, and we set {hy, hy, h3, f} := H(T).
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Note that if I 7 # {i}, then the number of regular legs both in T; and in T} is less than n. If Iy 7 = {i},
then the genus of Tj is less than g.
We can express the contribution of the pair (T, p) to the difference (7.6) as follows:

- E(T, J(h)+1
(7.7) Coef it a,gle| (1) ]_[ x b (1) EMlg ]—[ % ;)”
i€[n\Isr heHI™(Ty) heH"(Ty)
E(T,) p (h)
o 15"l [T ui™ |
j€ls,r\i} heH™(T,) heﬁi’"(T)

where gl: mgl,(n—llf,rl+l)+m Xmgz,(llml—l)ﬁ — ﬂg’,ﬁm is the natural gluing map that glues the marked
point corresponding to the regular leg f on the curves of the first space and the marked point corresponding
to the frozen leg f’ on the curves of the second space into a node.

Summing the expressions (7.7) over all pair (T,p), T € SRTg 1, T H™(T) — Zs, such that p(o;) =0
and o; is not attached to the root of T, we obtain that the difference (7.6) is equal to

—Coef i a1, w ) ) el [XI 1,|1|+1,m(XIfx1)®sz,|J|—1,z(X/\{i})]
g1+g2 8 IUJ=[n]

81,8220 je]={i) A= B:=
_Coefxfl.,.xfi“...xgn Z gl, [xl glnm(xl,...,E,...,xn,xi)®l],

8178=¢

820,821 o

where by X; we denote the tuple of numbers Xipreeor Xigs {i1,..., 75} = I. By the assumptions of the lemma,
we have

degA<2g1+m—-2+1, degB<2g,+2-2, degC<2g1+m—-2+1<2g+m-—1,

which implies that the difference (7.6) is equal to 0 when ) d; > 2g+m—1. 0

Now we can complete the proof of Theorem 7.1. With Lemma 7.3, we can first prove the equivalence
of (7.2) and (7.3) for m = 2 by induction on the pairs (g, ) ignoring the condition d; > 1 in (7.3). The
condition d; > 1 is then restored by Lemma 7.2. Once it is done for m = 2, we can do it for any m > 2,
again, first using Lemma 7.3 and induction on the pairs (g, 7) ignoring the condition d; > 1 in (7.3) and then
applying Lemma 7.2 to restore this condition. g

Remark 7.5. Theorem 7.1 reduces the whole system of tautological relations from Conjecture 1 to a finite
number of relations of fixed degree 2¢ + m —1 for each g and m. The total number of relations to check is
equal to the number of partitions of 2g +m —1.

In particular, the crucial case for the application to the polynomiality of the Dubrovin-Zhang hierarchies
for arbitrary F-CohFTs (see Section 4.3.2), the case m = 2, is reduced to [{A + (2¢ + 1)}| relations for each
g > 0. One of these relations is proved for any g > 0 in Section 5.1.

Appendix. Localization in the moduli space of stable relative maps

For convenience of a reader, we briefly review here the localization formula for the moduli space of stable
relative maps to (IP!, c0), following the papers [GV05] (which presents the formula in a much more general
setting) and [Liull] (containing details in the case of stable relative maps to (IP!, c0)).
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Al Stable relative maps

For m > 1, we denote by P!(m) = P{ U... U}, a chain of m copies of P!. For I =1,...,m—1, let g
be the node at which Pl1 and ]Pll+1 intersect. Let g( € IP% and ¢,, € P}, be smooth points. Identifying g,
with co € P! = 11"(1), we obtain a chain of 7+ 1 copies of P! that we denote by IP![m]. In the case m = 0,
we define P![0] := P! =P} and g := co. The component P! = IP(l] is called the ro0f component, and the
components IP1,..., P} are called the bubble components.

Given g>0,d > 1, n> 0, and a partition y of d of length i = [(p), a stable relative map to (P!, o) is the

following data:
(A'l) (f C _>H)1[m];xll"'th+n)f

where C is a connected complex algebraic curve of genus g, with at most nodal singularities, f is a morphism,
and x1,...,Xp,, € C are smooth pairwise distinct marked points with the following properties:

a) We have the degree condition over each lP}, 0<i<m.

b) We have f~1(g,,) = {x1,...,xp}, and the map f is ramified at x;, 1 < i < h, with multiplicity p;.

c) We have the predeformability condition over each node of P! [m].

d) The automorphism group of (A.1) is finite, where in the target IP![m], we allow automorphisms fixing
all of the points from IP(l) U{gm}-

The space of isomorphism classes of stable relative maps is denoted by ﬂg,n(ll’l, ). This space is connected,
and it is endowed with a virtual fundamental class

[ﬂg,n(ﬂ)lnu)]‘]ir € HZ-Vdim(Mg,n(IPll I‘)l C), vdim = 2g —2+d+h
Given g>0,d > 1, n >0, and partitions v, y of d of lengths k = [(v) and h = [(u), a stable relative map to
rubber P! is the following data:

(A-2) (f: C—PHm)x1, o Xpysk)s

where C is a connected complex algebraic curves of genus ¢ with at most nodal singularities, f is a
morphism, and x1,..., X, € C are smooth pairwise distinct marked points with the following properties:

a) We have the degree condition over each IPil, 1<i<m.

b) We have f~1(qg) = {Xhsns1r--+» Xhinsk), and the map f is ramified at xj,,,i, 1 < i < k, with
multiplicity v;.

c) We have f~1(g,,) = {x1,...,xp,}, and the map f is ramified at x;, 1 <i < h, with multiplicity p;.

d) We have the predeformability condition over each node of P! (m).

e) The automorphism group of (A.2) is finite, where in the target IP!(111), we allow automorphisms fixing
the points gy and g,,.

The space of isomorphism classes of stable relative maps to rubber P! is denoted by ./V;’H(Hﬂ, v, u). This
space is connected, and it is endowed with a virtual fundamental class

[Mg,n

We define M;,n(ll)l,v,y) =0 if |u| = |v| or if |u| = |v| = 0.

One can also consider stable relative maps to rubber P! where the source curve is not necessarily

(PY, v, )]"'" € Hyygim(Mg, (P!, v, ),C), vdim =2g -3 +k+h.

connected. The moduli space of such maps will be denoted by ﬂ;,:(ll’l, v, i). Note that the genus g can be
negative here. This space is not necessarily connected. The connected components can be described as
follows. For r > 1, consider a decomposition

r r
[[h+n+k]]:|_|Ai, g:Zgi+1—r, gi>0.
i=1 i=1
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We denote by A the set of pairs

={(g1,A1),(82,A2),---, (8 A})}
Denote by

Mg:n (H)l, v, V)A

the subspace of M;,:(]Pl, v, ) formed by stable relative maps to rubber IP!, where the source curve has
r connected components, and for each 1 < j <r, all of the points from {xi}ieAj belong to one connected
component of genus g;. If M;,Z(IPI, v, 1) # 0, then it is a connected component of ./V;,:(IPI, v, 1)

Assigning to a stable relative map to rubber P! the cotangent space at the point gq € IP(m) gives a line
bundle over M;’,:(ll’l, v, i) whose first Chern class is denoted by 1, € HZ(M;,:(IPI, v, })).

A.2. C*-fixed points

Consider the C*-action on P! given by
t-[x,9]:=[tx,v], [xv]eP!l, teC,

and the induced C*-action on mg,n(IPl, ). For the localization formula, we will need a description of the
connected components of the C*-fixed point set Mg,n(IPl,]/t)C*
We assume 2g—-2+h+n>0.
Consider a stable relative map (f: C — P'[m];xy,...,X),,) from ﬂg,n(ﬂ)l,y)cw. Then we have the
following:
e f1(IP{\{0,00}) is a disjoint union of twice-punctured spheres Si,...,Sk, k > 1, and fls;: Si —
IP(I)\{O oo} is an honest covering map, whose degree we denote by d;.
° f ) is a disjoint union of connected nodal curves C§O),..., CI(,O) and of some number of points.
Regarding the behavior of f over oo, there are two cases.
Case 1: m = 0. Then we have f~1(co) = {x1,...,x;}, p=1, f7! 1 , ) k= h, and after a renumbering
of the spheres S1,...,Sp, we have d; = u;. Denote the space of such maps by FoC Mg,n(IPl,y) Tt is

(0)

0
connected. Note that xj,1,..., X, € C; ', and therefore the curve C§ ) equipped with the marked points

0) .= . . A :
C§ ) NS, 1 <i<h,and Xp;1,..., X, is a stable curve from M, ;.. Conversely, given a stable curve from
Mg 4, let us attach h copies of P! at the first & marked points and construct a map from the resulting

curve to P! by sending the original stable curve to 0 and mapping the i copy of P! to the target IP! by
[x,y] > [xFi,pli]. This gives a surjective map

lo: Mg,h+n — Fo,

for which we have

h
10<[ Mg hin] = I_[ﬂi [Fol™.
i=1
Case 2: m>1. Then f~'(IP!(m)) is a disjoint union of connected nodal curves Cro),...,Cﬁoo). Let us

assign to our stable relative map a decorated bipartite graph I' as follows:

e The vertices v € V(') are labeled by 0 or co, which gives a decomposition V(') = VO(T') U V(T).
The vertices from V°(T) correspond to the connected components of f~1(0), and the vertices from
V(I') correspond to the curves CEOO), 1<i<r.

o A vertex v € VO(T) is called unstable if it corresponds to a point in f~1(0). All other vertices from
VO(T) are called stable. The sets of stable and unstable vertices are denoted by V +(I') and Vunst( ),
respectively; VO(T) = V()L V2 . (T).

e Each vertex v € V(I') is decorated with a number g(v) € Z5 that is equal to
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- the genus of the corresponding curve if v corresponds to a curve,
- 0 if v corresponds to a point.

e The edges e € E(T) correspond to the spheres S,...,S;. The edge e € E(T) corresponding to S; is
decorated with d, := d;. By definition, we assign the same number to both half-edges h;, h, forming
the edge e; that is, d,, = dj, :=d,.

e The graph I carries h + 1 legs L(I') that correspond to the marked points on C.

e We say that an unstable vertex v € V2 (T) is of
- first type if n(v) =1 (the set of such vertices is denoted by Vl?ﬁlst(r)),
- second type if n(v) =2 and |L[v]| = 1 (the set of such vertices is denoted by Vl?r’ét(l“)),

- third type if n(v) = 2 and L[v] = 0 (the set of such vertices is denoted by ij;t(r)).
If v is an unstable vertex of first type or of second type, then it is incident to exactly one edge
ec E(T'). Set d,, :=d,. If v is an unstable vertex of third type, then it is incident to exactly two edges
e,ec E(I). Setd, :=d, and gi:, =dg
e The graph I is connected.
Denote by Fr the subspace of ﬂg’n(ﬂ)l, #)® formed by stable relative maps with a given decorated

bipartite graph T. If F # 0, then it is a connected component of Mg,n(ll’l, #)® . Introduce the following
notation:

gol)i= ) (gW)-1+1, ng(D)i= ) [L[v]l-h.
veV>(T) veVe(I)
Consider the set of pairs

AL) :={(g(), H[v]}veve(r)
and denote by v(I') the partition of d = |y| given by the numbers d,, e € E(I'). Set

Mre= [ | Moy M ey B v(0) ey

veVy(r)

We have

_ . [ — 0 vir
[Mp]™ = r[ [Mg(v),n(v)] % [Mgm(f),nm(r)(lpll v(D), #)A(r)] ,
veva(r)

and for the natural surjective morphism

Ir: Mr —> fr,
we have
(A.3) i [Mr] = [Awt(D)] [ | de- [Fr]™
ecE(T)

A.3. Localization formula

For a topological space X with a C*-action, we denote by H (X) and Hg.(X) the C*-equivariant
homology and cohomology groups of X with coefficients in C, respectively. We denote by u the generator of
the equivariant cohomology ring of a point: H.(pt) = C[u]. The equivariant Euler class of a C*-equivariant
complex vector bundle V' — X is denoted by ec+(V).

We now consider the C*-action on ﬂg,n(IPl,,u) given in the previous section. The moduli space

mg,n(IPl,,u) is endowed with a C*-equivariant virtual fundamental class, which abusing notation we

denote by [Mg’n(ll’l, W' e HE (mg,n(]Pl, #)). The virtual localization formula for the moduli space

2-vdim

Mg,n(IPl,]/t) proved in [GV0J5] gives the following formula for this class considered as an element of
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HF(ﬂg,n(H)l; M) R¢[u] Clu, u! I:

(A4)

[Mg,n(lpll V)]Vir =

f vir f vir L
% + L]wr eHE (/\/lg,n(lpl, ) ®cpu) Clu, ut],
eC*(NO ) decorated eC*(Nr )

graphs T’

where N I and Ny i are the virtual normal bundles to the subspaces F and Fr, respectively. The following

formulas are very useful for applications of the localization formula:

h pi+l 1—u.
1 2%, utHi
Ab ——— = AJ(u)u! - ,
(A9) heg (N ¢ ]] pit U= pi
dp+1
1 ]. dhh ulfdh
(A.6) = — | ] [AYmu —
* 8() | u—
d,~1 d, dy+15d,+1 g _ 7
dv 1-d dV —d dV dv u v v
1 ) 1 () 1 1)
Ve V(L) veVara(T) veVam(D\ TV T Y
where
g . .
AY(u):= Z(—nu,-ug—l.
i=0
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