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Tautological relations and integrable systems

Alexandr Buryak and Sergey Shadrin

Abstract. We present a family of conjectural relations in the tautological cohomology of the
moduli spaces of stable algebraic curves of genus g with n marked points. A large part of these
relations has a surprisingly simple form: the tautological classes involved in the relations are given
by stable graphs that are trees and that are decorated only by powers of the psi-classes at half-edges.
We show that the proposed conjectural relations imply certain fundamental properties of the
Dubrovin–Zhang (DZ) and the double ramification (DR) hierarchies associated to F-cohomological
field theories. Our relations naturally extend a similar system of conjectural relations, which were
proposed in an earlier work of the first author together with Guéré and Rossi and which are
responsible for the normal Miura equivalence of the DZ and the DR hierarchy associated to an
arbitrary cohomological field theory. Finally, we prove all of the above-mentioned relations in the
case n = 1 and arbitrary g using a variation of the method from a paper by Liu and Pandharipande;
this can be of independent interest. In particular, this proves the main conjecture from our previous
joint work together with Hernández Iglesias. We also prove all of the above-mentioned relations in
the case g = 0 and arbitrary n.
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1. Introduction

A remarkable relation between the geometry of the moduli spaces Mg,n of stable algebraic curves of
genus g with n marked points and integrable systems has been an object of intensive research during more
than 30 years. This relation was first manifested by Witten’s conjecture, see [Wit91], proved by Kontsevich,
see [Kon92], saying that the generating series of the integrals∫

Mg,n

n∏
i=1

ψdii , g,n ≥ 0, di ≥ 0,(1.1)

where ψi ∈ H2(Mg,n,C), 1 ≤ i ≤ n, is the first Chern class of the ith cotangent line bundle over Mg,n,
gives a solution of the Korteweg–de Vries (KdV) hierarchy. It was then realized by Dubrovin and Zhang,
see [DZ01], that integrable systems appear in a much more general context where the central role is played
by the notion of a cohomological field theory (CohFT), introduced by Kontsevich and Manin; see [KM94]. A
cohomological field theory is a family of cohomology classes on the moduli spacesMg,n, depending also on
a vector in the nth tensor power of a fixed vector space V , that satisfy certain compatibility properties with
respect to natural maps between different moduli spaces. Given a CohFT, Dubrovin and Zhang constructed
N := dimV generating series wtop;α , 1 ≤ α ≤ N , by inserting cohomology classes forming the CohFT
in the integrals (1.1) and proved that the resulting N -tuple w top := (wtop;1, . . . ,wtop;N ) is a solution of an
integrable hierarchy (of evolutionary PDEs with one spatial variable) canonically associated to our CohFT.
This integrable hierarchy is called the Dubrovin–Zhang (DZ ) hierarchy, and the solution w top is called the
topological solution. However, certain fundamental properties of this hierarchy, including the polynomiality of
the equations, were left as an open problem. The polynomiality of the equations of the hierarchy was proved
in [BPS12] for semisimple CohFTs (together with the polynomiality of the Hamiltonian structure, which we do
not discuss in our paper). However, a satisfactory formula for the equations of the hierarchy was not found.

In [Bur15], the first author suggested a new construction of an integrable system associated to an arbitrary
CohFT. The construction uses certain cohomology classes onMg,n called the double ramification (DR) cycles,
and so the new hierarchy was called the DR hierarchy. In contrast to the DZ hierarchy, the equations of the
DR hierarchy are polynomial by construction, with a relatively simple formula for the coefficients given in
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terms of the intersection numbers of cohomology classes forming the CohFT and basic cohomology classes
onMg,n including the DR cycles and the classes ψi . However, it is not known how to single out a solution
of the DR hierarchy that has such a simple geometric interpretation as the topological solution of the DZ
hierarchy. There is a choice of a solution that is natural for other reasons; see [Bur15, BDGR18].

In [Bur15], the first author conjectured that for an arbitrary CohFT, the DR and the DZ hierarchies are
Miura equivalent, and in [BDGR18], this conjecture was made more precise, giving a precise description of
the required Miura transformation in terms of the partition function of the CohFT. In [BGR19], the authors
presented a family of relations in the cohomology ofMg,n implying the Miura equivalence of the DR and
the DZ hierarchies.

In [BR21, ABLR21], the authors extended the construction of the DR hierarchy to objects that are much
more general than CohFTs, the so-called F-CohFTs, introduced in [BR21]. Regarding the DZ hierarchies,
their generalization for F-CohFTs was not considered in the literature before. In this paper, following the
approach from [BPS12], we show that there is a natural generalization of the DZ hierarchies for F-CohFTs.

In this paper, for any m ≥ 0, we present a family of conjectural relations in the cohomology ofMg,n+m
parameterized by integers d1, . . . ,dn ≥ 0 satisfying

∑
di ≥ 2g +m − 1. For fixed g,n,m,d1, . . . ,dn, our

conjectural relation lies in H2
∑
di (Mg,n+m,C). We explain that these conjectural relations naturally imply

the following fundamental properties of the DR and the DZ hierarchies:

• For m ≥ 2, the relations imply the polynomiality of the DZ hierarchy associated to an arbitrary
F-CohFT (Theorem 4.7).
• For m = 1, the relations imply that the DR and the DZ hierarchies associated to an arbitrary F-CohFT
are related by a Miura transformation (Theorem 4.10). For n = 1, the relation already appeared
in [BHIS22] and proved to be true in the Gorenstein quotient ofMg,2 in [Gub22].
• For m = 0, the relations already appeared in [BGR19]. According to [DZ01, BDGR18], the DR and the
DZ hierarchies associated to an arbitrary CohFT are endowed with an additional structure, called a
tau-structure. There are Miura transformations that preserve a tau-structure; they are called normal
Miura transformations. By a result from [BGR19], for m = 0 the relations imply that the DR and the
DZ hierarchies associated to an arbitrary CohFT are related by a normal Miura transformation (see
Section 4.4.4).

We can thus view our family of conjectural relations as a natural extension of the family of relations presented
in [BGR19].

Example 1.1. Let us present our relations in the case n = 1, leaving the general case to Section 2. For any
k ≥ 1 and m,g,d ≥ 0, let us introduce the following set:

Sm,kg,d B

(g,d) ∈Zk
≥0 ×Z

k
≥0

∣∣∣∣∣∣∣
d1 + · · ·+ dk + k − 1 = d,
g1 ≥ δm≤1, g2, . . . , gk ≥ 1, g1 + · · ·+ gk = g ,
d1 + · · ·+di + i−1 ≤ 2(g1 + · · ·+gi)−2+m for any i = 1, . . . , k−1

 ,
where g = (g1, . . . , gk) and d = (d1, . . . ,dk).

• Suppose m ≥ 2. Our relations form a family of cohomological relations in H2d(Mg,m+1,C), for any
d ≥ 2g − 1 +m, and are given by

∑
k≥1

(−1)k−1
∑

(g,d)∈Sm,kg,d

g1

2

m+1

ψd1
g2

ψd2

· · · gk−1
ψdk−1

gk 1
ψdk

= 0,

where we use the standard way to represent tautological cohomology classes using decorated stable
graphs (see the details in Section 2).



4 A. Buryak and S. Shadrin4 A. Buryak and S. Shadrin

• Suppose m = 1. Our relations form a family of cohomological relations in H2d(Mg,2,C), for any
d ≥ 2g , and are given by∑

k≥1

(−1)k−1
∑

(g,d)∈S1,k
g,d

g12
ψd1

g2
ψd2

· · · gk−1
ψdk−1

gk 1
ψdk

=
∑

g1,...,gl≥1∑
gi=g

 l−1∏
i=1

gi
gi + gi+1 + · · ·+ gl

 g12 g2 · · · gl 1 ,

where l = d − 2g + 1, g B λgDRg(1,−1), DRg(1,−1) denotes the double ramification

cycle, and λg is the top Chern class of the Hodge bundle overMg,n.

• Suppose m = 0. Our relations form a family of cohomological relations in H2d(Mg,1,C), for any
d ≥ 2g − 1, and are given by∑

k≥1

(−1)k−1
∑

(g,d)∈S0,k
g,d

g1
ψd1

g2
ψd2

· · · gk−1
ψdk−1

gk 1
ψdk

=
∑

g1,...,gl≥1∑
gi=g

 l−1∏
i=1

gi
gi + gi+1 + · · ·+ gl

π∗ ( g12 g2 · · · gl 1
)
,

where l = d − 2g + 2 and the map π : Mg,2→Mg,1 forgets the second marked point.

We then prove all our relations in the case n = 1 and arbitrary g (Theorem 2.2) using the method for
constructing relations in H ∗(Mg,n,C) from the paper [LP11]. In particular, this proves the main conjecture
from [BHIS22] and the conjectural relations from [BGR19] in the case n = 1. We also prove all our relations
in the case g = 0 and arbitrary n (Theorem 2.3).

Finally, we fill a gap in the understanding of the equations of the DZ hierarchy mentioned above. An
equation of the DZ hierarchy associated to an F-CohFT is the sum of the polynomial part and the fractional
part (which conjecturally vanishes). We present a geometric formula for the polynomial part. The formula
expresses the coefficient of a monomial in the polynomial part as the intersection of some universal
cohomology class onMg,n with an element of the F-CohFT. Since the polynomiality of the equations of the
DZ hierarchy is proved for semisimple CohFTs, this gives a geometric formula for the equations of the DZ
hierarchy in this case.

Organization of the paper

Our conjectural relations are presented in Section 2. For the case m ≥ 2, this is formulated in Conjecture 1,
for the case m = 1 in Conjecture 2, and for the case m = 0 in Conjecture 3. As we already explained,
Conjecture 3 was first proposed in [BGR19]. Then in Section 3, we present an alternative formula for
classes Bmg,(d1,...,dn) appearing in the conjectures (Theorem 3.10) and a particularly elegant reformulation of
Conjecture 1 (Theorem 3.4). In Section 4, we explain the role of our conjectures in the study of integrable
systems associated to cohomological field theories and F-cohomological field theories (see Theorems 4.7
and 4.10 and Section 4.4.4). This section is independent of the other sections; a reader who is interested only
in the geometrical part of our results can skip it. In Section 5, we prove the conjectures in the case n = 1,
arbitrary g . In Section 6, we prove the conjectures in the case g = 0, arbitrary n. In Section 7, we prove
that the whole system of conjectural relations for m ≥ 2 (i.e., Conjecture 1) follows from its subsystem with∑
di = 2g +m− 1 and di ≥ 1 (Theorem 7.1). Finally, in the appendix, we review a localization formula for
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the moduli space of stable relative maps to (P1,∞), which is the main tool for our proof of the conjectures
in the case n = 1.

Notation and conventions

• We denote by H i(X) the cohomology groups of a topological space X with coefficients in C. Let
Heven(X) :=

⊕
i≥0H

2i(X).
• Let JnKB {1, . . . ,n}. Given a map JnK→Z≥0, i 7→ di , and a subset I ⊆ JnK, let dI denote

∑
i∈I di (in

particular, d∅ = 0 and d{i} = di ).
• Let (a)n denote the Pochhammer symbol (a)n B Γ (a+ 1)/Γ (a+ 1 − n). In particular, (a)0 = 1 and

(a)n = a(a− 1) · · · (a−n+ 1) for n ≥ 1.
• We use the standard convention for sums over repeated Greek indices.
• We will work with the moduli spacesMg,n of stable algebraic curves of genus g with n marked points,
which are defined for g,n ≥ 0 satisfying the condition 2g − 2 +n > 0. We will often omit mentioning
this condition explicitly and silently assume that it is satisfied when a moduli space is considered.

2. Conjectural cohomological relations

2.1. Tautological cohomology ofMg,n

Let us recall briefly the standard notation concerning tautological cohomology classes onMg,n, referring
a reader to [PPZ15, Sections 0.2 and 0.3] for more details.

We use the standard cohomology classes onMg,n:

• The ith psi class ψi ∈ H2(Mg,n), 1 ≤ i ≤ n, is the first Chern class of the cotangent line bundle

Li →Mg,n whose fibers are the cotangent spaces at the ith marked point on stable curves.

• The ith kappa class κi ∈H2i(Mg,n), i ≥ 0, is defined as κi := π∗(ψ
i+1
n+1), where π : Mg,n+1→Mg,n is

the map forgetting the last marked point.
• The ith Hodge class λi ∈ H2i(Mg,n), i ≥ 0, is the ith Chern class of the Hodge vector bundle

Eg →Mg,n whose fibers are the spaces of holomorphic differentials on stable curves.

We denote by Gg,n the set of stable graphs of genus g with n legs marked by numbers 1, . . . ,n. For a
stable graph Γ , we use the following notation:

• V (Γ ), E(Γ ), H(Γ ), and L(Γ ) are the sets of vertices, edges, half-edges, and legs of Γ , respectively.
• The leg of Γ marked by 1 ≤ i ≤ |L(Γ )| is denoted by σi .
• For h ∈H(Γ ), let v(h) be the vertex incident to h.
• Set He(Γ ) :=H(Γ )\L(Γ ), and for h ∈He(Γ ), we denote by ι(h) a unique half-edge that together with
h forms an edge of Γ .
• For v ∈ V (Γ ), let

– g(v) be the genus of v,
– n(v) be the degree of v,
– H[v] be the set of half-edges incident to v,
– r(v) := 2g(v)− 2 +n(v).

Consider a stable graph Γ .

• We associate to Γ the spaceMΓ :=
∏
v∈V (Γ )Mg(v),n(v).

• There is a canonical morphism ξΓ : MΓ →Mg(Γ ),|L(Γ )|. Here g(Γ ) B b1(Γ ) +
∑
v∈V (Γ ) g(v), where

b1(Γ ) is the first Betti number of Γ .
• A decoration on Γ is a choice of numbers xi[v], y[h] ≥ 0, i ≥ 1, v ∈ V (Γ ), h ∈ H(Γ ). Given such
numbers, we say that we have a decorated stable graph.
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• To a decorated stable graph, we associate the cohomology classes

γ :=
∏
v∈V (Γ )

∏
i≥1

κi[v]xi [v] ·
∏
h∈H(Γ )

ψ
y[h]
h ∈H ∗(MΓ ) and ξΓ ∗(γ) ∈H ∗(Mg(Γ ),|L(Γ )|),

where κi[v] is the ith kappa class onMg(v),n(v) and ψh is a psi class onMg(v(h)),n(v(h)). The class

ξΓ ∗(γ) is called a basic tautological class onMg(Γ ),|L(Γ )|. We will often denote it by a picture of the
decorated stable graph.

Denote by R∗(Mg,n) the subspace of H ∗(Mg,n) spanned by all basic tautological classes. The subspace

R∗(Mg,n) ⊂ H ∗(Mg,n) is closed under multiplication and is called the tautological ring of Mg,n. Let

Ri(Mg,n) := R∗(Mg,n)∩H2i(Mg,n). Linear relations between basic tautological classes are called tautological
relations.

The Hodge classes onMg,n are tautological; λi ∈ Ri(Mg,n).
Recall the string equation, see [Wit91], in the following form. Let π : Mg,k+q+1→Mg,k be the projection

forgetting the last q+ 1 marked points. Then

π∗

 k∏
i=1

ψ
qi
i

 =
∑

0≤pi≤qi , i∈JkK
qJkK−pJkK=q+1

(q+ 1)!∏k
i=1(qi − pi)!

k∏
i=1

ψ
pi
i .(2.1)

For A = (a1, . . . , an) ∈ Zn,
∑n
i=1 ai = 0, let DRg(A) ∈ H2g(Mg,n) be the double ramification (DR ) cycle.

Let us briefly recall the definition. The positive ai define a partition µ = (µ1, . . . ,µl(µ)), and the negative
ai define a second partition ν = (ν1, . . . ,νl(ν)) of the same size. Let n0 := n− l(µ)− l(ν), and consider the

moduli spaceMg,n0
(P1,µ,ν)∼ of stable relative maps to rubber P1 with ramification profiles µ,ν over the

points 0,∞∈ P1, respectively. Then the double ramification cycle DRg(A) is defined as the Poincaré dual

to the pushforward of the virtual fundamental class
[
Mg,n0

(P1,µ,ν)∼
]vir

to Mg,n via the forgetful map

Mg,n0
(P1,µ,ν)∼→Mg,n.

Abusing notation, for A = (a1, . . . , an) ∈ Zn and B = (b1, . . . , bm) ∈ Zm satisfying
∑
ai +

∑
bj = 0, we

denote by DRg(A,B) the double ramification cycle DRg(a1, . . . , an,b1, . . . , bm).
We have DRg(A) ∈ Rg(Mg,n) (see, e.g., [JPPZ17]). The restriction DRg(A)

∣∣∣Mct
g,n
∈ H2g(Mct

g,n) depends

polynomially on the ai , where by Mct
g,n ⊂ Mg,n we denote the moduli space of curves of compact type.

This implies that the class λgDRg(A) ∈ R2g(Mg,n) depends polynomially on the ai . Moreover, the resulting

polynomial (with the coefficients in R2g(Mg,n)) is homogeneous of degree 2g . There is also the following

property that we will need. If g ≥ 1 and π : Mg,n+1→Mg,n is the map forgetting the last marked point,
then, see [BDGR18, Lemma 5.1],

the polynomial class π∗
(
λgDRg

(
−
∑

ai , a1, . . . , an
))
∈ R2g(Mg,n) is divisible by a2

n.(2.2)

The polynomiality of the class DRg(A) ∈ Rg(Mg,n) has been proved by A. Pixton and D. Zagier (we thank
A. Pixton for informing us about that), but the proof is not published yet.

2.2. Preliminary combinatorial definitions

By a stable tree, we mean a stable graph Γ with the first Betti number b1(Γ ) equal to zero. A stable rooted
tree is a stable tree together with a choice of a vertex v ∈ V (T ) called the root.

Consider a stable rooted tree T .

• We denote by H+(T ) the set of half-edges of T that are directed away from the root. Clearly,
L(T ) ⊂H+(T ). Let He

+(T ) :=H+(T )\L(T ) and He
−(T ) :=He(T )\He

+(T ).
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• A path in T is a sequence of pairwise distinct vertices v1, . . . , vk ∈ V (T ) such that for any 1 ≤ i ≤ k−1,
the vertices vi and vi+1 are connected by an edge.
• A vertex w ∈ V (T ) is called a descendant of a vertex v ∈ V (T ) if v is on the unique path from the
root to w. Denote by Desc[v] the set of all descendants of v. Note that v ∈Desc[v].
• A vertex w is called a direct descendant of v if w ∈Desc[v], w , v, and w and v are connected by an
edge. In this case, the vertex v is called the mother of w.
• For two half-edges h1,h2 ∈ H+(T ), we say that h2 is a descendant of h1 if h1 = h2 or v(h2) ∈

Desc[v(ι(h1))].
• A function l : V (T )→Z≥1 is called a level function if the following conditions are satisfied:

a) The value of l on the root is equal to 1.
b) If a vertex v is the mother of a vertex v′ , then l(v′) > l(v).
c) For every 1 ≤ i ≤ deg(l), the set l−1(i) is nonempty, where deg(l) := maxv∈V (T ) l(v).

• There is a natural level function lT : V (T )→ Z≥1 uniquely determined by the condition that if a
vertex v is the mother of a vertex v′ , then lT (v′) = lT (v) + 1. We call this level function canonical.
The number deg(T ) := deg(lT ) is called the degree of T .
• For a level function l : V (T )→Z≥1, it is convenient to extend it to H+(T ) by taking l(h) := k if the
half-edge h is attached to a vertex of level k.
• For k ≥ 1, we set gk(T ) :=

∑
v∈V (T )
lT (v)≤k

g(v).

Let m ≥ 0 and n ≥ 1. Let us consider stable rooted trees T with at least n+m legs, where we split the set
of legs L(T ) = {σi} into three subsets:

a) The legs σ1, . . . ,σn are called the regular legs.
b) The legs σn+1, . . . ,σn+m are called the frozen legs; we require that they are attached to the root.
c) Any extra legs, whose set is denoted by F(T ), correspond to additional marked points that we will

eventually forget.

The set of such trees will be denoted by SRTg,n,m;◦. We will also use the following notation:

SRTg,n,m :=
{
T ∈ SRTg,n,m;◦ | F(T ) = ∅

}
⊂ SRTg,n,m;◦,

SRTkg,n,m;◦ :=
{
T ∈ SRTg,n,m;◦ | |V (T )| = k

}
⊂ SRTg,n,m;◦.

Consider a tree T ∈ SRTg,n,m;◦.

• A vertex of T is called potentially unstable if it becomes unstable once we forget all of the extra legs.
• Let

Hem
+ (T ) :=He

+(T )⊔ {σ1, . . . ,σn+m}, H̃em
+ (T ) :=He

+(T )⊔ {σ1, . . . ,σn}.

• For h ∈ H̃em
+ (T ), define Ih := {1 ≤ i ≤ n | σi is a descendant of h} ⊆ JnK.

A tree T ∈ SRTg,n,m;◦ is called balanced if

a) there are no extra legs attached to the root;
b) for every vertex except the root, there is at least one extra leg attached to it.

The set of all balanced trees will be denoted by SRT(b)
g,n,m;◦ ⊂ SRTg,n,m;◦.

For a balanced tree T , define a function q : He
+(T )→Z≥0 by requiring that for a half-edge h ∈ He

+(T ),
there are exactly q(h) + 1 extra legs attached to the vertex v = v(ι(h)). Given an n-tuple of nonnegative
integers d = (d1, . . . ,dn), we extend the function q to the set H̃em

+ (T ) by setting q(σi) := di , 1 ≤ i ≤ n.
We say that a balanced tree T ∈ SRT(b)

g,n,m;◦ is complete if the following conditions are satisfied:

a) Every vertex has at least one descendant v ∈ V (T ) with lT (v) = deg(T ).
b) We have lT (σi) = deg(T ) for 1 ≤ i ≤ n.
c) Each vertex v with lT (v) = deg(T ) is attached to at least one regular leg.
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d) For every 1 ≤ l ≤ deg(T ), the set of vertices l−1
T (l) contains at least one vertex that is not potentially

unstable.

The set of all complete trees will be denoted by SRT(b,c)
g,n,m;◦ ⊂ SRT(b)

g,n,m;◦.

We say that a tree T ∈ SRT(b,c)
g,n,m;◦ is admissible if for every 1 ≤ k < deg(T ), the following condition is

satisfied: ∑
h∈H e

+(T )
lT (h)=k

q(h) ≤ 2gk(T )− 2 +m.(2.3)

The set of all admissible trees will be denoted by SRT(b,c,a)
g,n,m;◦ ⊂ SRT(b,c)

g,n,m;◦.

Note that the sets SRT(b)
g,n,m;◦ and SRT(b,c)

g,n,m;◦ are infinite except for a finite number of triples (g,n,m).

However, the set SRT(b,c,a)
g,n,m;◦ is finite, which follows from condition (2.3).

2.3. Conjectural tautological relations

For a balanced tree T ∈ SRT(b)
g,n,m;◦ and an n-tuple of nonnegative integers d = (d1, . . . ,dn), define

[T ,d] := ξT ∗

 ∏
h∈H̃ em

+ (T )

ψ
q(h)
h

 ∈ R∑
di+#F(T )(Mg,n+m+#F(T )).

Consider the map

e : Mg,n+m+#F(T ) −→Mg,n+m

forgetting all of the extra legs, and the class

e∗[T ,d] ∈ R
∑
di (Mg,n+m).

Definition 2.1. For m ≥ 0, g ≥ 0, n ≥ 1, and d = (d1, . . . ,dn) ∈Zn
≥0, we define

Bm
g,d

:=
∑

T ∈SRT(b,c,a)
g,n,m;◦

(−1)deg(T )−1e∗[T ,d] ∈ R
∑
di (Mg,n+m).

Note that

• the class B0
g,d

coincides with the class B
g
d1,...,dn

from the paper [BGR19],

• the class B1
g,2g coincides with the class Bg from the paper [BHIS22].

We can now formulate our first conjecture.

Conjecture 1. For any m ≥ 2, g ≥ 0, n ≥ 1, and d = (d1, . . . ,dn) ∈Zn
≥0 such that

∑
di ≥ 2g +m− 1, we have

Bm
g,d

= 0 in R
∑
di (Mg,n+m).

In order to present our second conjecture, we need more definitions. Let n,k ≥ 1. Consider a stable
tree T ∈ STkg,n,1 and integers a1, . . . , an+1 such that a1 + · · ·+ an+1 = 0. There is a unique way to assign an
integer a(h) to each half-edge h ∈H(T ) in such a way that the following conditions hold:

a) For any leg σi ∈ L(T ), we have a(σi) = ai .
b) If h ∈He(T ), then a(h) + a(ι(h)) = 0.
c) For any vertex v ∈ V (T ), we have

∑
h∈H[v] a(h) = 0.

Consider the spaceMT =
∏
v∈V (T )Mg(v),n(v). For each vertex v ∈ V (T ), the numbers a(h), h ∈H[v], define

the double ramification cycle DRg(v)

(
AH[v]

)
∈ Rg(v)(Mg(v),n(v)), where AH[v] is the tuple (a(h1), . . . , a(hn(v))),
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where {h1, . . . ,hn(v)} =H[v]. If we multiply all of these DR cycles, we get the class∏
v∈V (T )

DRg(v)

(
AH[v]

)
∈H2g(MT ).

We define a class DRT (a1, . . . , an+1) ∈ Rg+k−1(Mg,n+1) by

DRT (a1, . . . , an+1) :=

 ∏
h∈H e

+(T )

a(h)

ξT ∗
 ∏
v∈V (T )

DRg(v)

(
AH[v]

) .
After multiplication by λg , this class becomes a polynomial in a1, . . . , an+1 with coefficients in the space

R2g+k−1(Mg,n+1), which is homogeneous of degree 2g + k − 1. To the stable tree T , we also assign a
number C(T ) by setting

C(T ) :=
∏

v∈V (T )

r(v)∑
ṽ∈Desc[v] r(ṽ)

.

We introduce the following cohomology class:

Ǎkg(a1, . . . , an+1) :=
∑

T ∈SRTkg,n,1

C(T )λgDRT (a1, . . . , an+1) ∈ R2g+k−1(Mg,n+1),

depending on integers a1, . . . , an+1 with vanishing sum. The class

Ǎkg
(
a1, . . . , an,−

∑
ai
)

is a polynomial in a1, . . . , an, homogeneous of degree 2g + k − 1. For an n-tuple of integers d = (d1, . . . ,dn) ∈
Z
n
≥0 satisfying

∑
di ≥ 2g , define

A1
g,d

:= Coef
a
d1
1 ···a

dn
n
Ǎ

∑
di−2g+1

g

(
a1, . . . , an,−

∑
ai
)
∈ R

∑
di (Mg,n+1).

We can now present our second conjecture.

Conjecture 2. For any g ≥ 0, n ≥ 1, and an n-tuple of nonnegative integers d = (d1, . . . ,dn) with
∑
di ≥ 2g , we

have B1
g,d

= A1
g,d

in R
∑
di (Mg,n+1).

Note that the n = 1 case of this conjecture appeared in [BHIS22], and in [Gub22], the author proved that
the relation B1

g,d = A1
g,d is true in the Gorenstein quotient of Rd(Mg,2).

Let us now recall the conjecture from [BGR19], which together with our Conjectures 1 and 2 naturally forms
a series of conjectures involving the classes Bm

g,d
for all m ≥ 0. Let n,k ≥ 1. Consider the map π : Mg,n+1→

Mg,n forgetting the last marked point. By [BGR19, Lemma 2.2], the class π∗Ǎ
k
g(a1, . . . , an,−

∑
ai) (as a

polynomial in a1, . . . , an) is divisible by
∑
ai . Following the paper [BGR19], we define

Akg(a1, . . . , an) :=
1∑
ai
π∗Ǎ

k
g

(
a1, . . . , an,−

∑
ai
)
∈ R2g+k−2(Mg,n),

which is a polynomial in a1, . . . , an, homogeneous of degree 2g + k − 2, and then define

A0
g,d

:= Coef
a
d1
1 ···a

dn
n
A

∑
di−2g+2

g (a1, . . . , an) ∈ R
∑
di (Mg,n)

for any n-tuple d = (d1, . . . ,dn) ∈Zn
≥0 satisfying

∑
di ≥ 2g − 1.

Conjecture 3 (cf. [BGR19]). For any g ≥ 0, n ≥ 1, and an n-tuple of nonnegative integers d = (d1, . . . ,dn) with∑
di ≥ 2g − 1, we have B0

g,d
= A0

g,d
in R

∑
di (Mg,n).

We can prove all of the above conjectures in the following cases.

Theorem 2.2. Conjectures 1, 2, and 3 are true for n = 1.
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Theorem 2.3. Conjectures 1, 2, and 3 are true for g = 0.

The proofs will be presented in Sections 5 and 6, respectively.

3. An equivalent formulation of the conjectures

3.1. The case m ≥ 2

Let x1, . . . ,xn be formal variables assigned to the legs σ1, . . . ,σn. Recall that for I ⊂ JnK we use the
notation xI =

∑
i∈I xi .

Definition 3.1. For g,m ≥ 0 and n ≥ 1, define the following class in R∗(Mg,n+m)[x1, . . . ,xn]:

Pg,n,m B
n∏
i=1

x−1
i

∑
T ∈SRTg,n,m

(−1)|E(T )|
∑

p : H̃ em
+ (T )→Z≥0

ξT ∗

 ∏
h∈H̃ em

+ (T )

ψ
p(h)
h

 ∏
h∈H̃ em

+ (T )

x
p(h)+1
Ih

.(3.1)

Note that given T ∈ SRTg,n,m and p : H̃em
+ (T ) → Z≥0, we have ξT ∗

(∏
h∈H̃ em

+ (T )ψ
p(h)
h

)
= 0 unless∑

h∈H̃ em
+ [v]p(h) ≤ 3g(v) − 3 + n(v) for each v ∈ V (T ). This implies that the second sum in the defini-

tion of Pg,n,m has a finite number of nonzero terms. Clearly, the coefficient of xd1
1 · · ·x

dn
n in Pg,n,m is a

tautological class from R
∑
di (Mg,n+m), and it is equal to the sum of ψd1

1 · · ·ψ
dn
n and a class supported on the

boundary ofMg,n+m.

Example 3.2. For instance, let T ∈ SRTg,3,2 be as in the following picture, with g = g1 + g2 + g3 (the root
vertex is labeled by g1, and hence the legs σ4 and σ5 are attached to it) and the values of the function
p : H̃em

+ (T )→Z≥0 being p1, . . . ,p5 at the corresponding half-edges in the picture:

g2

σ1ψp1

ψp5
g1

ψp4

σ3ψp3

σ4

σ5

g3

σ2

ψp2
.

Then the class that this pair (T ,p) contributes to Pg,3,2 is multiplied by the factor

x
p1
1 x

p2+p5+1
2 x

p3
3 (x1 + x2)p4+1.

Remark 3.3. Since in our notation we have x∅ = 0, this implies the following condition for a tree T to be
able to contribute nontrivially to Pg,n,m. Namely, for each h ∈ H̃em

+ (T ), there must exist at least one leg σi ,
i = 1, . . . ,n, which is a descendant of h; that is, Ih , ∅. This means that any vertex of T that does not have
direct descendants should have at least one leg σi , 1 ≤ i ≤ n, attached to it.

Theorem 3.4. The following two statements are equivalent:

(1) Conjecture 1 is true.
(2) We have degPg,n,m ≤ 2g +m− 2 for all g ≥ 0, n ≥ 1, and m ≥ 2.

Proof. Let us introduce an auxiliary cohomology class onMg,n+m. We will say that a tree T ∈ SRT(b)
g,n,m;◦

is nondegenerate if it does not have potentially unstable vertices. The set of such trees will be denoted

by SRT(b,nd)
g,n,m;◦ ⊂ SRT(b)

g,n,m;◦. The set SRT(b,nd)
g,n,m;◦ is infinite, except for a finite number of triples (g,n,m).

However, we have the following statement.

Lemma 3.5. Given d ∈Zn
≥0, the set of trees T ∈ SRT(b,nd)

g,n,m;◦ such that [T ,d] , 0 ∈ R
∑
di+|F(T )|(Mg,n+m+|F(T )|)

is finite.
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Proof. For T ∈ SRT(b,nd)
g,n,m;◦, denote by π(T ) ∈ SRTg,n,m the stable tree obtained from T by forgetting all of the

extra legs in T . Clearly, we can identify V (T ) = V (π(T )). It is sufficient to prove that for any T̃ ∈ SRTg,n,m,

there exists a constant NT̃ such that if π(T ) = T̃ and [T ,d] , 0 for T ∈ SRT(b,nd)
g,n,m;◦, then |F(T )| ≤ NT̃ . Let

us prove it by induction on |V (T̃ )|. If |V (T̃ )| = 1, then we can obviously set NT̃ := 0. Suppose |V (T̃ )| ≥ 2.
Let us choose a vertex v ∈ V (T̃ ) that does not have direct descendants. Denote by w the mother of v and
by T̃ ′ the stable tree obtained from T̃ by deleting the vertex v together with all of the half-edges incident to
it. Let us show that we can set

NT̃ := 2NT̃ ′ + 3g(w)− 2 +n+m+ |E(T̃ )|.

Indeed, denote by h ∈He
+[w] the half-edge such that v(ι(h)) = v and by T ′ the stable tree obtained from T

by deleting the vertex v together with all of the half-edges incident to it. If [T ,d] , 0, then clearly

q(h) ≤ 3g(w)− 3 +n(w) ≤ 3g(w)− 3 + |E(T̃ )|+n+m+ |F(T ′)|.

Since q(h) = |F[v]|−1, using the induction assumption, we see that |F(T )| = |F(T ′)|+ |F[v]| ≤ 2NT̃ ′ +3g(w)−
2 +n+m+ |E(T̃ )|, as required. □

For g,m ≥ 0, n ≥ 1, and d1, . . . ,dn ≥ 0, let us consider the following cohomology class:

B̃m
g,d

:=
∑

T ∈SRT(b,nd)
g,n,m;◦

(−1)|E(T )|e∗[T ,d] ∈ R
∑
di (Mg,n+m).(3.2)

Lemma 3.5 implies that this class is well defined.

Proposition 3.6. Conjecture 1 is true if and only if B̃m
g,d

= 0 for all g ≥ 0, n ≥ 1, m ≥ 2, and d1, . . . ,dn ≥ 0 such

that
∑
di > 2g − 2 +m.

Proof. The proof consists of two steps.
Step 1. Let us prove that

B̃m
g,d

=
∑

T ∈SRT(b,c)
g,n,m;◦

(−1)deg(T )−1e∗[T ,d] ∈ R
∑
di (Mg,n+m), d ∈Zn

≥0.(3.3)

Consider a tree T ∈ SRT(b)
g,n,m;◦. It is clear that any potentially unstable vertex v in T does not coincide

with the root and has genus 0, and there is exactly one half-edge h1 from H̃em
+ (T ) attached to it. Moreover,

there is exactly one half-edge h2 from He
−(T ) attached to it, and e∗[T ,d] = 0 unless q(h1) = q(ι(h2)). Let us

denote by �SRT
(b)
g,n,m;◦ the set of trees T ∈ SRT(b)

g,n,m;◦ such that the condition

q(h1) = q(ι(h2))(3.4)

is satisfied for any potentially unstable vertex. Note that h1 in condition (3.4) can be a leg σi , 1 ≤ i ≤ n, so
the set �SRT

(b)
g,n,m;◦ depends on the choice of d.

Let us fix d. Consider a tree T ∈�SRT
(b)
g,n,m;◦ and a potentially unstable vertex v ∈ V (T ). Let us throw

away the vertex v together with all of the half-edges attached to it except h1 and identify the half-edges

h1 and ι(h2). We obtain a tree from �SRT
(b)
g,n,m;◦ with one less potentially unstable vertex. Repeating this

procedure until there are no potentially unstable vertices, we obtain a tree from SRT(b,nd)
g,n,m;◦, which we denote

by Core(T ). We obviously have
e∗[T ,d] = e∗[Core(T ),d].

Therefore, Equation (3.3) is a corollary of the following lemma.

Lemma 3.7. For any d ∈Zn
≥0 and T ∈ SRT(b,nd)

g,n,m;◦, we have
∑
T̃ ∈�SRT

(b,c)
g,n,m;◦

Core(T̃ )=T

(−1)deg(T̃ )−1 = (−1)|E(T )|.
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Proof. The proof is by the induction on |V (T )|. The base case |V (T )| = 1 is obvious.
Suppose |V (T )| > 1. Since T = Core(T̃ ) is obtained from T̃ by deleting some vertices, we can consider

the set V (T ) as a subset of V (T̃ ). Denote by V l(T ) the set of vertices v ∈ V (T ) that do not have direct
descendants. Consider a nonempty subset I ⊂ V l(T ), and let

nI := |{1 ≤ i ≤ n | σi is attached to a vertex from I}|, gI :=
∑
v∈I

g(v).

Denote by T ′ the tree obtained from T by deleting all of the vertices from I together with all of the half-edges
attached to them, where we consider the half-edges ι(h), for h ∈He

−(T ) attached to the vertices from I , as

regular legs of the tree T ′ . Therefore, T ′ ∈ SRT(b,nd)
g−gI ,n−nI+|I |,m;◦. Denote by S the set of trees T̃ ∈�SRT

(b,c)
g,n,m;◦

such that {
v ∈ V (T̃ )

∣∣∣ lT (v) = deg(T̃ ) and v is not potentially unstable
}

= I.

Deleting all of the vertices v with lT (v) = deg(T ) together with all of the half-edges attached to them

gives a bijection from the set S to the set
{
T̃ ′ ∈�SRT

(b,c)
g−gI ,n−nI+|I |,m;◦

∣∣∣∣ Core(T̃ ′) = T ′
}
. Using the induction

assumption, we obtain

∑
T̃ ∈�SRT

(b,c)
g,n,m;◦

Core(T̃ )=T

(−1)deg(T̃ )−1 =
∑

I⊂V l (T )
I,∅

(−1)|E(T )|−|I |+1 = (−1)|E(T )|+1
|V l (T )|∑
k=1

(−1)k
(
|V l(T )|
k

)
= (−1)|E(T )|,

as required. □

Step 2. Let us now prove the proposition using Equation (3.3). For a tree T ∈ SRT(b,c)
g,n,m;◦ and an n-tuple

d satisfying
∑
di > 2g − 2 +m, denote by l0 the minimal level such that

∑
h∈H̃ em

+ (T )
lT (h)=l0

q(h) > 2gl0(T )− 2 +m.

Let us also introduce the following notation:

I0 :=
{
h ∈ H̃em

+ (T )
∣∣∣ lT (h) = l0

}
, V0 := {v ∈ V (T ) | lT (v) ≤ l0} , g0 := gl0(T ),

and for h ∈ I0, let

Vh := {v ∈ V (T ) | v ∈Desc[v(ι(h))]}, gh :=
∑
v∈Vh

g(v).

Denote by T0 the subtree of T formed by the vertices from V0, and denote by Th the subtree of T formed by

the vertices from Vh, h ∈ I0. We see that T0 ∈ SRT(b,c,a)
g0,|I0|,m;◦ and Th ∈ SRTgh,|Ih|,1;◦, where we consider ι(h) as

a unique frozen leg in Th.

Suppose that Conjecture 1 is true. In the sum over T ∈ SRT(b,c)
g,n,m;◦ on the right-hand side of (3.3), we

can collect together the terms with fixed g0, |I0|, and trees Th. Denote it by S, and let d
′
be an |I0|-tuple

consisting of the numbers q(h), h ∈ I0. There is a gluing map from a product of moduli space, determined
by the decomposition of the tree T into the trees T0 and Th, h ∈ I0, toMg,n+m, and it is easy to see that the
class S is equal to the pushforward under this gluing map of the tensor product of the class Bm

g0,d
′ and the

classes determined by the trees Th. Since we assumed that Conjecture 1 is true, we conclude that S = 0, and
thus also B̃m

g,d
= 0.

Now suppose B̃m
g,d

= 0 for all g ≥ 0, n ≥ 1, m ≥ 2, and d1, . . . ,dn ≥ 0 such that
∑
di > 2g − 2 +m. Let

us prove that Bm
g,d

= 0 in the same range of g,n,m,d by induction on 2g − 2 + n +m. The base case

2g − 2 + n+m = m − 1, which is achieved only for g = 0 and n = 1, is trivial because we obviously have

Bm0,d1
= B̃m0,d1

= ψd1
1 , which is zero because d1 > m− 2 = dimM0,m+1.
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Now suppose 2g − 2 +n+m >m− 1. We split the sum on the right-hand side of (3.3) as follows:

B̃m
g,d

:=
∑

T ∈SRT(b,c)
g,n,m;◦

l0<deg(T )

(−1)deg(T )−1e∗[T ,d] +
∑

T ∈SRT(b,c)
g,n,m;◦

l0=deg(T )

(−1)deg(T )−1e∗[T ,d].(3.5)

For a tree T ∈ SRT(b,c)
g,n,m;◦, it is clear that if l0 < deg(T ), then 2g0 − 2 + |I0|+m < 2g − 2 +n+m; this follows

from the fact that for each 1 ≤ ł ≤ deg(T ), there is at least one vertex v with lT (v) = l that is not potentially
unstable. Therefore, by the induction assumption, the first sum on the right-hand side of (3.5) is equal to
zero. The second sum on the right-hand side of (3.5) is obviously equal to Bm

g,d
, and thus it is equal to zero,

as required. □

Let us now continue the proof of Theorem 3.4. Using Proposition 3.6, we see that it is sufficient to prove
the following lemma.

Lemma 3.8. For any n ≥ 1, g,m ≥ 0, and d = (d1, . . . ,dn) ∈Zn
≥0, we have B̃

m
g,d

= Coef
x
d1
1 ···x

dn
n
Pg,n,m.

Proof. Consider an arbitrary tree T ∈ SRTg,n,m and a function q : H̃em
+ (T )→Z≥0. For any h ∈He

+(T ), let

us attach q(h) + 1 extra legs to the vertex v(ι(h)). We obtain a tree from SRT(b,nd)
g,n,m;◦, which we denote by Tq.

The definition of the class B̃m
g,d

can be rewritten in the following way:

B̃m
g,d

=
∑

T ∈SRTg,n,m

(−1)|E(T )|
∑

q : H̃ em
+ (T )→Z≥0
q(σi )=di

e∗ξTq∗

 ∏
h∈H̃ em

+ (Tq)

ψ
q(h)
h

 .
Therefore, we have to prove that

∑
T ∈SRTg,n,m

(−1)|E(T )|
∑

q : H̃ em
+ (T )→Z≥0

e∗ξTq∗

 ∏
h∈H̃ em

+ (Tq)

ψ
q(h)
h


n∏
i=1

x
q(σi )
i = Pg,n,m.

Clearly, this follows from the equation

(3.6)
∑

q : H̃ em
+ (T )→Z≥0

e∗ξTq∗

 ∏
h∈H̃ em

+ (Tq)

ψ
q(h)
h


n∏
i=1

x
q(σi )
i

=
∑

p : H̃ em
+ (T )→Z≥0

ξT ∗

 ∏
h∈H̃ em

+ (T )

ψ
p(h)
h

 ∏
h∈H e

+(T )

x
p(h)+1
Ih

n∏
i=1

x
p(σi )
i , T ∈ SRTg,n,m,

which we are going to prove by induction on |V (T )|.
The base case |V (T )| = 1 is obvious. We proceed to the induction step and assume |V (T )| ≥ 2. Choose

a vertex v ∈ V (T ) that does not have direct descendants. Denote by h̃ a unique half-edge from He
−(T )

incident to v, and let h′ := ι(̃h). Denote by T ′ the tree obtained from T by deleting the vertex v together
with all of the half-edges incident to it. We have T ′ ∈ SRTg−g(v),n−|Ih′ |+1,m, and we have a natural inclusion

H̃em
+ (T ′) ⊂ H̃em

+ (T ).
For a function q : H̃em

+ (T )→Z≥0, set q
′ := q|H̃ em

+ (T ′). We can express the cohomology class in a summand
on the left-hand side of (3.6) as follows:

e∗ξTq∗

 ∏
h∈H̃ em

+ (Tq)

ψ
q(h)
h

 = gl∗

e∗ξT ′q′ ∗


∏

h∈H̃ em
+ (T ′q′ )

ψ
q′(h)
h

⊗π∗
∏
j∈Ih′

ψ
q(σj )
j


 ,
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where gl : Mg−g(v),n−|Ih′ |+1+m ×Mg(v),|Ih′ |+1 →Mg,n+m is the map given by gluing the marked points cor-

responding to the half-edges h̃ and h′ , and π : Mg(v),|Ih′ |+2+q′(h′) →Mg(v),|Ih′ |+1 is the map forgetting the
q′(h′) + 1 marked points corresponding to the extra legs attached to v ∈ V (Tq). Therefore, the left-hand side
of (3.6) is equal to

∑
q′ : H̃ em

+ (T ′)→Z≥0

gl∗

e∗ξT ′q′ ∗


∏

h∈H̃ em
+ (T ′q′ )

ψ
q′(h)
h


∏

i∈JnK\Ih′
x
q′(σi )
i ⊗

∑
l : Ih′→Z≥0

π∗

∏
j∈Ih′

(ψjxj )
l(j)


 .

From the string equation (2.1), it follows that∑
l : Ih′→Z≥0

π∗

∏
j∈Ih′

(ψjxj )
l(j)

 = xq
′(h′)+1
Ih′

∑
l : Ih′→Z≥0

∏
j∈Ih′

(ψjxj )
l(j),

which allows us to rewrite the previous expression as

gl∗


∑

q′ : H̃ em
+ (T ′)→Z≥0

e∗ξT ′q′ ∗


∏

h∈H̃ em
+ (T ′q′ )

ψ
q′(h)
h

xq′(h′)+1
Ih′

∏
i∈JnK\Ih′

x
q′(σi )
i ⊗

∑
l : Ih′→Z≥0

∏
j∈Ih′

(ψjxj )
l(j)

 .
Applying the induction assumption to the first factor in the tensor product, we obtain exactly the expression
on the right-hand side of (3.6), as required. □

This concludes the proof of Theorem 3.4. □

3.2. Another reformulation for any m ≥ 0

In the case m ≤ 1, an analog of Theorem 3.4 becomes more subtle. Namely, we no longer can combine
conjectural relations and their corollaries as we did in the proof of Theorem 3.4 since the conjectural
identities given in Conjectures 2 and 3 for B1

g,d
and B0

g,d
, respectively, have nontrivial right-hand sides.

However, there exists some simplification of the expression for Bm
g,d

along the same lines that holds for
any m.

Consider a tree T ∈ SRTg,n,m and a function p : H̃em
+ (T )→Z≥0. Let [T ,p] denote the class

[T ,p]B ξT ∗

 ∏
h∈H̃ em

+ (T )

ψ
p(h)
h

 ∈ R|E(T )|+
∑
h∈H̃em+ (T ) p(h)(Mg,n+m).

Let us also define two coefficients. One coefficient Clvl(T ,p) is a weighted count of possible level structures
and depends only on the structure of the tree T and the function p, and another coefficient Cstr(T ,p,d) is a
combinatorial coefficient that also takes into account a given vector d (the subscript “str” refers to the fact
that it reflects the combinatorics of the string equation).

A level function l : V (T )→Z≥1 is called p-admissible if for every 1 ≤ i < deg(l), we have the following
inequality: ∑

h∈H̃ em
+ (T )

l(h)≤i

p(h) + |{h ∈He
+(T ) | l(h) < i}| ≤ 2

∑
v∈V (T )
l(v)≤i

g(v)− 2 +m

(informally, the left-hand side of this expression is just the degree of the class defined by the stable tree
obtained from T by cutting at the level i). Let L(T ,p) denote the set of all p-admissible level functions on T .
Define

Clvl(T ,p)B
∑

l∈L(T ,p)

(−1)deg(l)−1.
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For each h ∈ H̃em
+ (T ), let Hh ⊂ H̃em

+ (T ) be the subset of all half-edges that are descendants of h excluding
h itself. The combinatorial coefficient Cstr(T ,p,d) is set to zero (or, alternatively, just undefined) unless
|E(T )|+

∑
h∈H̃ em

+ (T )p(h) = dJnK. If that equality holds, then

Cstr(T ,p,d)B
1∏n

i=1(di + 1)!

∏
h∈H̃ em

+ (T )

∑
i∈Ih

(di + 1)−
∑
h′∈Hh

(p(h′) + 1)


(p(h)+1)

,

where we recall that (a)(b) = a(a− 1) · · · (a− b+ 1) is the Pochhammer symbol. Note that from this definition,

Cstr(T ,p,d) is equal to zero unless Ih is nonempty for every h ∈ H̃em
+ (T ) (or, equivalently, unless each vertex

that does not have direct descendants has at least one regular leg attached to it).

Example 3.9. Recall Example 3.2. In this case, the corresponding coefficients are Clvl(T ,p) =
δp3+p4≤2g1

δp1+p3+p4+p5+1≤2(g1+g2) (here by δ-symbols we denote the functions that take value 1 once
the inequality in the subscript is satisfied and 0 otherwise). Note that there is at most one admissible level
function l ∈ L(T ,p), which assigns to a vertex of genus gi the value i. The coefficient Cstr(T ,p,d) is equal to

(d2 − p2)(p5+1)(d1 + d2 − p1 − p2 − p5 − 1)(p4+1)
∏3
i=1(di + 1)(pi+1)∏3

i=1(di + 1)!
.

A simplified formula for Bm
g,d

is given by the following theorem.

Theorem 3.10. We have

Bm
g,d

=
∑

T ∈SRTg,n,m

∑
p : H̃ em

+ (T )→Z≥0
|E(T )|+

∑
h∈H̃em+ (T ) p(h)=dJnK

Clvl(T ,p)Cstr(T ,p,d) · [T ,p].

Proof. The proof follows essentially the same ideas as some steps of the proof of Theorem 3.4. However, we
arrange it a bit differently to stress the origin of the coefficients Clvl(T ,p) and Cstr(T ,p,d). In a nutshell, we
just carefully describe in steps the pushfoward e∗ in the definition of the class Bm

g,d
.

Recall Definition 2.1. Our goal is to explicitly compute e∗[T ,d] for any T ∈ SRT(b,c,a)
g,n,m;◦. We perform the

pushforward in two steps. In the first step, we formally apply the string equation given by Equation (2.1) to
the vertices of the graph T . To this end, in order to efficiently treat the case of potentially unstable vertices,
we introduce an extra convention that extends the string equation. In the string equation (2.1), one has to
assume 2g − 2 + k > 0 and pi ≥ 0, i = 1, . . . , k. It is convenient to formally extend the range of applications
of the string equation. We consider the case g = 0, k = 2, and q ≥ 0, and we formally set

π∗(ψ
q
1 |M0,q+3

) = ψ−1
1 |M0,2

(3.7)

for the map π : M0,q+3→M0,2 that forgets the last q+ 1 marked points. This map has to be understood

formally: we are going to apply e∗ to the graphs in SRT(b,c,a)
g,n,m;◦, and Equation (3.7) just means that at an

intermediate step of the computation, we will use unstable vertices of genus 0 with two incident half-edges
(these vertices will disappear in the final formula for the pushforward). To make this precise, let us introduce
auxiliary definitions.

We consider rooted trees in RTg,n,m, which is an extension of SRTg,n,m where we allow trees to have
unstable vertices of type (0,2); that is, we allow vertices v of genus g(v) = 0 with just two incident half-edges,
one in H̃em

+ (T ) and one in the direction of the mother of v. The root cannot be unstable, however. Denote by
DRTg,n,m the set of pairs (T ,p), where T ∈ RTg,n,m and p : H̃em

+ (T )→Z≥−1 is a function such that p−1(−1)
is exactly the subset of H̃em

+ (T ) attached to unstable vertices. Let us call such pairs decorated rooted trees.
In the same way as for stable rooted trees, for T ∈ RTg,n,m, we consider level functions l : V (T )→Z≥1

and the canonical level function lT : V (T )→ Z≥1. We say that a rooted tree in RTg,n,m is complete if the
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canonical level function satisfies exactly the same conditions as the canonical level function of a complete

balanced stable rooted tree in SRT(b,c)
g,n,m;◦ (cf. Section 2.2) with the condition “for every 1 ≤ l ≤ deg(T ),

the set of vertices l−1
T (l) contains at least one vertex that is not potentially unstable” replaced by “for every

1 ≤ l ≤ deg(T ), the set of vertices l−1
T (l) contains at least one vertex that is not unstable.” Let RT(c)

g,n,m denote

the subset of complete rooted trees. Denote by DRT(c)
g,n,m ⊂ DRTg,n,m the subset of pairs (T ,p) where

T ∈ RT(c)
g,n,m. Let DRT(c,a)

g,n,m ⊂DRT(c)
g,n,m be the set of so-called admissible complete decorated rooted trees

(T ,p) satisfying the additional system of inequalities∑
h∈H e

+(T )
lT (h)≤k

p(h) + |{h ∈He
+(T ) | lT (h) < k}| ≤ 2gk(T )− 2 +m, for any 1 ≤ k < deg(T ).(3.8)

We can now proceed to the description of the first step in our computation of the pushforward e∗[T ,d],

T ∈ SRT(b,c,a)
g,n,m;◦. We construct a map f1 : SRT(b,c,a)

g,n,m;◦ ×Zn
≥0→Q

〈
DRT(c)

g,n,m

〉
as follows.

• For a pair (T ,d) ∈ SRT(b,c,a)
g,n,m;◦ ×Zn

≥0, consider a potentially unstable vertex v. There is exactly one

half-edge in H̃em
+ (T ) attached to v; denote it by h′ , and denote by h̃ the half-edge attached to v

that is directed to the mother of v. If q(h′) = q(ι(̃h)), then we replace v with an unstable genus 0
vertex that retains just the two half-edges h′ and h̃ (forgetting all of the extra legs attached to v),
and we set p(h′) := −1. We do this for each potentially unstable vertex v. If there is at least one
potentially unstable vertex v with q(h′) , q(ι(̃h)), then we set f1(T ,d) := 0 (note that if q(h′) , q(ι(̃h)),
then e∗[T ,d] = 0).
• Consider a not potentially unstable vertex v of T that also does not coincide with the root. Let
h1, . . . ,hk be the half-edges in H̃em

+ (T ) attached to v, and denote by h̃ the half-edge attached to v
that is directed to the mother of v. We replace v with a vertex of the same genus that retains just
the half-edges h1, . . . ,hk , h̃ and take the weighted sum over all choices of p(h1), . . . ,p(hk) such that∑
q(hi) −

∑
p(hi) = q(ι(̃h)) + 1 with the weights equal to the coefficients on the right-hand side of

Equation (2.1). We do this for each vertex v that is not potentially unstable and that is not the root.
• For the root of T , we just define p(h) := q(h) for any half-edge h ∈ H̃em

+ (T ) attached to it.

Clearly, as the outcome of the above procedure, we obtain a linear combination of decorated rooted trees

from DRT(c)
g,n,m. We take this linear combination as the value of the function f1 on the pair (T ,d).

We claim that

f1(T ,d) =
∑

(T ′ ,p)∈DRT(c)
g,n,m

(T ′ ,p)∼(T ,d)

∏
h∈H̃ em

+ (T )

(∑
i∈Ih(di + 1)−

∑
h′∈Hh(p(h′) + 1)

)
(p(h)+1)∏n

i=1(di + 1)!
(T ′ ,p),(3.9)

where the notation (T ′ ,p) ∼ (T ,d) means that (T ′ ,p) is obtained from (T ,d) by removing all extra legs
and making a choice of the values of the function p according to the construction of the map f1. Indeed,
the coefficient of (T ′ ,p) on the right-hand side of (3.9) is equal to the product of coefficients prescribed by
choices of summands made according to Equation (2.1): we just rewrite the product of these coefficients in
terms of the vector d and the function p on H̃em

+ (T ′).
Moreover, several remarks are in order:

• It follows from the string equations that Equation (2.3) for T implies Equation (3.8) for every (T ′ ,p) ∼
(T ,d); thus (T ′ ,p) belongs to DRT(c,a)

g,n,m. Therefore, the image of f1 belongs to Q

〈
DRT(c,a)

g,n,m

〉
.
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• It also follows from the string equations that∑
h∈H̃ em

+ (T ′)

p(h) + |E(T ′)| = dJnK.(3.10)

• The function q on H̃em
+ (T ) is uniquely reconstructed from d and the function p on H̃em

+ (T ′), but,

given arbitrary (T ′ ,p) ∈DRT(c,a)
g,n,m and d ∈Zn

≥0, such a function q may not exist. Note however that
if condition (3.10) is satisfied, then such a function q exists if and only if the coefficient of (T ′ ,p) on
the right-hand side of (3.9) is nonzero.
• The vertices of T and T ′ are in a natural bijection, and the canonical level functions for both trees
are identified by this bijection. In particular, deg(T ′) = deg(T ).

In the second step, we contract all unstable vertices of a decorated rooted tree (T ′ ,p) ∈ DRT(c,a)
g,n,m.

This defines a map f2 : DRT(c,a)
g,n,m → SRTg,n,m, f2 : (T ′ ,p) 7→ T ′′ , where the functions p and lT ′ defined

for T ′ naturally descend to functions p : H̃em
+ (T ′′) → Z≥0 and l : V (T ′′) → Z≥1 (all values of p are

now nonnegative since there are no unstable vertices left). The resulting level function l : V (T ′′) →
Z≥1 is obviously p-admissible. Also, given d ∈ Z

n
≥0, condition (3.10) is equivalent to the condition∑

h∈H̃ em
+ (T ′′)p(h) + |E(T ′′)| = dJnK. Conversely, given T ′′ ∈ SRTg,n,m, p : V (T ′′)→ Z≥0, and l ∈ L(T ′′ ,p),

there is a unique (T ′ ,p) ∈ DRT(c,a)
g,n,m such that f2(T ′ ,p) = T ′′ and p and l on T ′′ are induced by the

corresponding functions p and lT ′ on T
′ (with deg(T ′) = deg(l)). Finally, note that, also given d ∈Zn

≥0, the

coefficient of (T ′ ,p) in Equation (3.9) is equal to Cstr(T ′′ ,p,d).

This implies that for any (T ,d) ∈ SRT(b,c,a)
g,n,m;◦ ×Zn

≥0, the class e∗[T ,d] is equal to

e∗[T ,d] =
∑

(T ′ ,p)∈DRT(c,a)
g,n,m

(T ′ ,p)∼(T ,d)

Cstr

(
f2(T ′ ,p),p,d

)[
f2(T ′ ,p),p

]
,

and therefore

Bm
g,d

=
∑

T ∈SRT(b,c,a)
g,n,m;◦

(−1)deg(T )−1e∗[T ,d]

=
∑

T ∈SRT(b,c,a)
g,n,m;◦

∑
(T ′ ,p)∈DRT(c,a)

g,n,m

(T ′ ,p)∼(T ,d)

(−1)deg(lT ′ )−1Cstr

(
f2(T ′ ,p),p,d

)[
f2(T ′ ,p),p

]

=
∑

(T ′ ,p)∈DRT(c,a)
g,n,m∑

h∈H̃ em
+ (T ′) p(h)+|E(T ′)|=dJnK

(−1)deg(lT ′ )−1Cstr

(
f2(T ′ ,p),p,d

)[
f2(T ′ ,p),p

]

=
∑

T ′′∈SRTg,n,m

∑
p : H̃ em

+ (T ′′)→Z≥0∑
h∈H̃ em

+ (T ′′) p(h)+|E(T ′′)|=dJnK

Cstr

(
T ′′ ,p,d

)[
T ′′ ,p

]
·

∑
l∈L(T ′′ ,p)

(−1)deg(l)−1,

which proves the theorem. □

4. Conjectural relations and the fundamental properties of the DR and the
DZ hierarchies

In this section, we show how certain fundamental properties of the Dubrovin–Zhang (DZ) and the double
ramification (DR) hierarchies associated to F-cohomological field theories (F-CohFTs) on Mg,n naturally
follow from our Conjectures 1 and 2. This extends the results from [BGR19], where the authors showed that
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Conjecture 3 naturally implies that the DZ and the DR hierarchies associated to an arbitrary CohFT are
Miura equivalent. Actually, in all of the aspects of the theory of integrable systems associated to CohFTs that
we consider in this paper, a CohFT can be replaced by a slightly more general object called a partial CohFT,
introduced in [LRZ15]. In the theory of the DR hierarchies, it was first noticed in [BDGR18, Section 9.1]. So
we will systematically work with partial CohFTs instead of CohFTs.

We also discuss the role of the classes Bm
g,d

with
∑
di = 2g−2+m, which are not involved in the conjectural

relations from Conjectures 1, 2, and 3. It occurs that these classes control the polynomial parts of the
equations (which are conjecturally polynomial) of the DZ hierarchies and the Miura transformation that
conjecturally relates the DZ and the DR hierarchies.

4.1. Differential polynomials and evolutionary PDEs

Let us fix N ≥ 1 and consider formal variables w1, . . . ,wN . Let us briefly recall main notions and
notation in the formal theory of evolutionary PDEs with one spatial variable (and refer a reader, for example,
to [BRS21] for details):

• To the formal variables wα , we attach formal variables wαd with d ≥ 0, and we introduce the ring of
differential polynomials Aw := C[[w∗]][w∗≥1] (in [BRS21], it is denoted by A0

w). We identify wα0 = wα

and also set wαx := wα1 , w
α
xx := wα2 , . . . .

• The operator ∂x : Aw→Aw is defined by ∂x :=
∑
d≥0w

α
d+1

∂
∂wαd

.

• Let Aw;d ⊂ Aw be the homogeneous component of (differential) degree d, where degwαi := i. For
f ∈ Aw, we denote by f [d] ∈ Aw;d the image of f under the canonical projection Aw→Aw;d . We

will also use the notation Aw;≤d :=
⊕d

i=0Aw;i .

• The extended space of differential polynomials is defined by Âw :=Aw[[ε]]. Let Âw;k ⊂ Âw be the
homogeneous component of degree k, where degε := −1.
• A Miura transformation (that is close to the identity) is a change of variables wα 7→ w̃α(w∗∗, ε) of the
form w̃α(w∗∗, ε) = wα + εf α(w∗∗, ε), where f α ∈ Âw;1.
• A system of evolutionary PDEs (with one spatial variable) is a system of equations of the form ∂wα

∂t = P α ,

1 ≤ α ≤ N , where P α ∈ Âw. Two systems ∂wα

∂t = P α and ∂wα

∂s = Qα are said to be compatible (or,

equivalently, the flows ∂
∂t and

∂
∂s are said to commute) if

∑
n≥0

(
∂P α

∂w
β
n
∂nxQ

β − ∂Q
α

∂w
β
n
∂nxP

β
)

= 0 for any

1 ≤ α ≤N .

4.2. F-CohFTs and partial CohFTs

4.2.1. Definitions.

Definition 4.1 (cf. [BR21]). An F-cohomological field theory (F-CohFT) is a system of linear maps

cg,n+1 : V ∗ ⊗V ⊗n −→Heven(Mg,n+1), g,n ≥ 0, 2g − 1 +n > 0,

where V is an arbitrary finite-dimensional vector space, together with a special element e ∈ V , called the
unit, such that, choosing a basis e1, . . . , edimV of V and the dual basis e1, . . . , edimV of V ∗, the following
axioms are satisfied:

(i) The maps cg,n+1 are equivariant with respect to the Sn-action permuting the n copies of V in

V ∗ ⊗V ⊗n and the last n marked points inMg,n+1, respectively.
(ii) We have π∗cg,n+1(eα0 ⊗ ⊗ni=1eαi ) = cg,n+2(eα0 ⊗ ⊗ni=1eαi ⊗ e) for 1 ≤ α0,α1, . . . ,αn ≤ dimV , where

π : Mg,n+2→Mg,n+1 is the map that forgets the last marked point. Moreover, c0,3(eα ⊗ eβ ⊗ e) = δαβ
for 1 ≤ α,β ≤ dimV .
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(iii) We have gl∗cg1+g2,n1+n2+1(eα0 ⊗ ⊗n1+n2
i=1 eαi ) = cg1,n1+2(eα0 ⊗ ⊗i∈Ieαi ⊗ eµ) ⊗ cg2,n2+1(eµ ⊗ ⊗j∈Jeαj ) for

1 ≤ α0,α1, . . . ,αn1+n2
≤ dimV , where I ⊔ J = Jn1 +n2 + 1K\{1}, |I | = n1, |J | = n2, and gl : Mg1,n1+2 ×

Mg2,n2+1→Mg1+g2,n1+n2+1 is the corresponding gluing map.

The gluing map gl creates a nodal curve sewing the last marked point on a curve inMg1,n1+2 (the

point labeled by n1 + 2) and the first marked point on a curve inMg2,n2+1 (the point labeled by 1)
into a node. Under the gluing map gl, the first marked point of a curve inMg1,n1+2 becomes the

first marked point on the resulting nodal curve inMg1+g2,n1+n2+1, and the other marked points are
relabeled according to the identification I ⊔ J = Jn1 +n2 + 1K\{1}.

It is easy to see that the validity of the above properties does not depend on the choice of a basis of V .

Definition 4.2. [LRZ15] A partial CohFT is a system of linear maps

cg,n : V ⊗n −→Heven(Mg,n), 2g − 2 +n > 0,

where V is an arbitrary finite-dimensional vector space, together with a special element e ∈ V , called the
unit, and a symmetric nondegenerate bilinear form η ∈ (V ∗)⊗2, called the metric, such that, choosing a basis
e1, . . . , edimV of V , the following axioms are satisfied:

(i) The maps cg,n are equivariant with respect to the Sn-action permuting the n copies of V in V ⊗n and

the n marked points inMg,n, respectively.

(ii) We have π∗cg,n(⊗ni=1eαi ) = cg,n+1(⊗ni=1eαi ⊗ e) for 1 ≤ α1, . . . ,αn ≤ dimV , where π : Mg,n+1→Mg,n

is the map that forgets the last marked point. Moreover, c0,3(eα ⊗ eβ ⊗ e) = η(eα ⊗ eβ) =: ηαβ for
1 ≤ α,β ≤ dimV .

(iii) We have gl∗cg1+g2,n1+n2
(⊗n1+n2
i=1 eαi ) = ηµνcg1,n1+1(⊗i∈Ieαi ⊗ eµ) ⊗ cg2,n2+1(⊗j∈Jeαj ⊗ eν) for 1 ≤

α1, . . . ,αn1+n2
≤ dimV , where I ⊔ J = Jn1 + n2K, |I | = n1, |J | = n2, and gl : Mg1,n1+1 ×Mg2,n2+1 →

Mg1+g2,n1+n2
is the corresponding gluing map and where ηαβ is defined by ηαµηµβ = δαβ for

1 ≤ α,β ≤ dimV .

Clearly, given a partial CohFT {cg,n : V ⊗n→Heven(Mg,n)}, the maps c̃g,n+1 : V ∗⊗V ⊗n→Heven(Mg,n+1)
defined by c̃g,n+1(eα0 ⊗⊗ni=1eαi ) := ηα0µcg,n+1(eµ ⊗⊗ni=1eαi ) form an F-CohFT.

4.2.2. Various potentials associated to partial CohFTs and F-CohFTs. First consider an arbitrary

partial CohFT {cg,n : V ⊗n→Heven(Mg,n)} with dimV =N , metric η : V ⊗2→ C, and unit e ∈ V . We fix a
basis e1, . . . , eN ∈ V and define the potential of our partial CohFT by

F :=
∑ ε2g

n!

∫Mg,n

cg,n(⊗ni=1eαi )
n∏
i=1

ψdii

 n∏
i=1

tαidi ∈C[[t∗∗ , ε]].

The potential satisfies the string and the dilaton equations:

∂F
∂t110

=
∑
n≥0

tαn+1
∂F
∂tαn

+
1
2
ηαβt

α
0 t
β
0 + ε2

∫
M1,1

c1,1(e),(4.1)

∂F
∂t111

=
∑
n≥0

tαn
∂F
∂tαn

+ ε
∂F
∂ε
− 2F + ε2

∫
M1,1

ψ1c1,1(e),(4.2)

where ∂
∂t110

:= Aµ ∂
∂t
µ
0
and the coefficients Aµ are given by e = Aµeµ. Let us also define formal power series

wtop;α := ηαµ ∂2F
∂t
µ
0∂t

11
0
and w

top;α
n := ∂nwtop;α

(∂t110 )n
.

For d ≥ 0, denote by C[[t∗∗]]
(d) the subset of C[[t∗∗]] formed by infinite linear combinations of monomials∏

tαidi with
∑
di ≥ d. Clearly, C[[t∗∗]]

(d) ⊂C[[t∗∗]] is an ideal. From the string equation (4.1), it follows that

w
top;α
n = tαn + δn,1A

α +Rαn (t∗∗) +O(ε2) for some Rαn ∈C[[t∗∗]]
(n+1).(4.3)
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The following obvious statement will be very useful, so we would like to present it as a separate lemma.

Lemma 4.3. Suppose that a family of formal power series w̃αn ∈C[[t∗∗ , ε]], 1 ≤ α ≤N , n ≥ 0, satisfies the property
w̃αn = tαn +δn,1Aα +Rαn (t∗∗) +O(ε2) for some Rαn ∈C[[t∗∗]]

(n+1). Then any formal power series in the variables tαa ,

1 ≤ α ≤N , a ≥ 0, and ε can be expressed as a formal power series in
(
w̃
β
b − δb,1A

β
)
and ε in a unique way. In

particular, for any two differential polynomials P ,Q ∈ Âw, the equality P |wαa =w̃αa =Q|wαa =w̃αa implies that P =Q.

In [BDGR18, Proposition 7.2], the authors proved that there exists a unique differential polynomial
P ∈ Âw;−2 such that the difference

F red := F − P |wγc =wtop;γ
c

satisfies the condition

Coefε2g
∂nF red

∂tα1
d1
· · ·∂tαndn

∣∣∣∣∣∣∣
t∗∗=0

= 0 if
∑

di ≤ 2g − 2

(formally, this was proved for CohFTs, but the proof works for partial CohFTs as well). The formal power series
F red is called the reduced potential of the partial CohFT. Consider the expansions F red =

∑
g≥0 ε

2gF red
g

and P =
∑
g≥1 ε

2gPg . Note that F red
0 = F0. In [BGR19, Proposition 3.5], the authors proved that

∂nF red
g

∂tα1
d1
· · ·∂tαndn

∣∣∣∣∣∣∣
t∗∗=0

=
∫
Mg,n

B0
g,d
cg,n

(
⊗ni=1eαi

)
,

n ≥ 1, d1, . . . ,dn ≥ 0,
∑
di ≥ 2g − 1,

1 ≤ α1, . . . ,αn ≤N .
(4.4)

Also note that F red
g

∣∣∣
t∗∗=0

= 0.
We can now present an explicit formula for the differential polynomial P .

Theorem 4.4. For g ≥ 1, we have Pg
∣∣∣
w∗∗=0

= 0 and

∂nPg
∂wα1

d1
· · ·∂wαndn

∣∣∣∣∣∣∣
w∗∗=0

=
∫
Mg,n

B0
g,d
cg,n(⊗ni=1eαi ),

n ≥ 1,
d1, . . . ,dn ≥ 0,

∑
di = 2g − 2,

1 ≤ α1, . . . ,αn ≤N .
(4.5)

Proof. Let us first recall the construction of the differential polynomial P , following [BGR19, proof of
Proposition 3.5].

The reduced potential F red is constructed by a recursive procedure that kills all of the monomials
ε2g∏ tαidi with g ≥ 1 and

∑
di ≤ 2g − 2 in the potential F . Let us assign to such a monomial a level

l := (g − 1)2 +
∑
di . We see that (g − 1)2 ≤ l < g2, which implies that g is uniquely determined by l. Denote

this g by g(l). Let us define a sequence of formal power series F (−1) := F ,F (0),F (1), . . . by

F (l) := F (l−1) −
∑
n≥0

ε2g(l)
∑

d1,...,dn≥0∑
di=l−(g(l)−1)2

Coefε2g(l)
∂nF (l−1)

∂tα1
d1
· · ·∂tαndn

∣∣∣∣∣∣∣
t∗∗=0


∏

(wαidi − δdi ,1A
αi )

n!
, l ≥ 0.(4.6)

From (4.3) it follows that going from F (l−1) to F (l), we kill all of the monomials of level l and do not touch
the monomials of level strictly less than l. Then F red is equal to the limit F red := liml→∞F (l), and the
underlined terms (multiplied by ε2g(l)), for all l ≥ 0, produce the required differential polynomial P .

In order to show that P ∈ Âw;−2, we have to check that P [k]
g = 0 for g ≥ 2 and k < 2g − 2. Suppose

that this is not true, and denote by g0 the minimal g such that P [k]
g , 0 for some k < 2g − 2. Consider the

operator

L :=
∂

∂t111
−
∑
n≥0

tαn
∂
∂tαn
− ε ∂

∂ε
.(4.7)
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The dilaton equation (4.2) implies that Lw
top;α
n = nw

top;α
n . Therefore, we have the following sequence of

equalities:

ε2
∫
M1,1

ψ1c1,1(e) = (L+ 2)F = (L+ 2)F red +
∑
g≥2

ε2g
∑

k<2g−2

(k + 2− 2g) P [k]
g

∣∣∣∣
w
γ
n=wtop;γ

c

.

We see that the coefficient ε2g0 in (L+ 2)F is zero. However, the coefficient of ε2g0 in (L+ 2)F red belongs
to C[[t∗∗]]

(2g0−2), while the coefficient of ε2g0 in the underlined sum does not belong to C[[t∗∗]]
(2g0−2), which

follows from (4.3). This contradiction proves that Pg ∈ Aw;2g−2, and we also see that Pg
∣∣∣
w∗∗=0

= 0.
In order to prove Equation (4.5), note that the underlined terms in (4.6) give a differential polynomial from

Aw;≤l−(g(l)−1)2 . Using that Pg ∈ Aw;2g−2, we therefore obtain

∂nPg
∂wα1

d1
· · ·∂wαndn

∣∣∣∣∣∣∣
w∗∗=0

= Coefε2g
∂nF (g2−2)

∂tα1
d1
· · ·∂tαndn

∣∣∣∣∣∣∣
t∗∗=0

, g,n ≥ 1,
∑

di = 2g − 2.

Following [BGR19, proof of Proposition 3.5], we call a tree T ∈ SRT(b,c)
g,n,0;◦ (j,d)-admissible if for any

1 ≤ k < deg(T ), we have gk(T ) ≤ j and∑
h∈H e

+(T )
l(h)=k

q(h) ≤

2gk(T )− 2 if gk(T ) < j,

d if gk(T ) = j.

Denote by SRT(b,c);(j,d)
g,n,0;◦ ⊂ SRT(b,c)

g,n,0;◦ the set of such trees. By [BGR19, Equation (19)], we have

Coefε2g
∂nF (g2−2)

∂tα1
d1
· · ·∂tαndn

∣∣∣∣∣∣∣
t∗∗=0

=
∫
Mg,n


∑

T ∈SRT(b,c);(g,2g−3)
g,n,0;◦

(−1)deg(T )−1e∗[T ,d]

cg,n(⊗ni=1eαi )

for g,n ≥ 1 and
∑
di = 2g − 2, and it remains to check that∑

T ∈SRT(b,c);(g,2g−3)
g,n,0;◦

(−1)deg(T )−1e∗[T ,d] = B0
g,d
.

Clearly, SRT(b,c);(g,2g−3)
g,n,0;◦ ⊂ SRT(b,c,a)

g,n,0;◦. The converse inclusion is not necessarily true; however,{
T ∈ SRT(b,c,a)

g,n,0;◦

∣∣∣∣ e∗[T ,d] , 0
}
⊂ SRT(b,c);(g,2g−3)

g,n,0;◦ thanks to the following statement proved in [BGR19].

Lemma 4.5 (cf. [BGR19, Lemma 3.6]). Let g ≥ 0, n ≥ 1, d1, . . . ,dn ≥ 0, and T ∈ SRT(b,c)
g,n,0;◦. Suppose

e∗[T ,d] , 0 and gk(T ) = gk+1(T ) for some 1 ≤ k < deg(T ). Then∑
h∈H̃ em

+ (T )
l(h)=k+1

q(h) >
∑

h∈H̃ em
+ (T )

l(h)=k

q(h).

This concludes the proof of Theorem 4.4. □

Now consider an arbitrary F-CohFT {cg,n+1 : V ∗ ⊗ V ⊗n → Heven(Mg,n+1)} with dimV = N and unit
e ∈ V . We fix a basis e1, . . . , eN ∈ V and assign to the F-CohFT a collection of potentials F α,a, 1 ≤ α ≤N ,
a ≥ 0, by setting

F α,a :=
∑ ε2g

n!

∫Mg,n+1

cg,n+1(eα ⊗⊗ni=1eαi )ψ
a
1

n∏
i=1

ψdii+1

 n∏
i=1

tαidi ∈C[[t∗∗ , ε]].
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These potentials satisfy the following system of equations, which can be considered as an analog of the string
equation (4.1):

∂F α,a

∂t110
= F α,a−1 +

∑
n≥0

t
β
n+1

∂F α,a

∂t
β
n

, 1 ≤ α ≤N, a ≥ 0,(4.8)

where we adopt the convention F α,−1 := tα0 . There is also an analog of the dilaton equation:

∂F α,a

∂t111
=

∑
n≥0

t
β
n
∂F α,a

∂t
β
n

+ ε
∂F α,a

∂ε
−F , 1 ≤ α ≤N, a ≥ 0.(4.9)

Similarly to the case of a partial CohFT, let us define wtop;α := ∂F α,0

∂t110
and w

top;α
n := ∂nwtop;α

(∂t110 )n
. From (4.8), it

follows that the formal power series wtop;α satisfy the property (4.3).
For m,n ≥ 1, denote by permm,n the map Mg,n+m→Mg,n+m induced by the permutation of marked

points (1, . . . ,m,m+ 1, . . . ,m+n) 7→ (m+ 1, . . . ,m+n,1, . . . ,m).

Theorem 4.6. Let us fix 1 ≤ α ≤ N , a ≥ 0, k ≥ 0, and k-tuples β = (β1, . . . ,βk), b = (b1, . . . , bk), where
1 ≤ βi ≤N , bi ≥ 0.

(1) There exists a unique differential polynomial Ω̃α,a
β,b
∈ Âw;k−1 such that the difference

Ω
red;α,a
β,b

:=
∂kF α,a

∂t
β1
b1
· · ·∂tβkbk

− Ω̃
α,a
β,b

∣∣∣∣∣
w
γ
c =wtop;γ

c

satisfies the condition

Coefε2g

∂nΩred;α,a
β,b

∂tα1
d1
· · ·∂tαndn

∣∣∣∣∣∣∣∣
t∗∗=0

= 0 if
∑

di ≤ 2g − 1 + k.

We consider the expansions Ω̃α,a
β,b

=
∑
g≥0 ε

2gΩ̃
α,a
β,b,g

and Ωred;α,a
β,b

=
∑
g≥0 ε

2gΩ
red;α,a
β,b,g

.

(2) We have Ωred;α,a
β,b,g

∣∣∣∣∣
t∗∗=0

= 0 and

∂nΩred;α,a
β,b,g

∂tα1
d1
· · ·∂tαndn

∣∣∣∣∣∣∣∣
t∗∗=0

=
∫
Mg,n+k+1

perm∗k+1,n

(
Bk+1
g,d

)
cg,n+k+1

(
eα ⊗⊗ki=1eβi ⊗⊗

n
j=1eαj

)
ψa1

k∏
i=1

ψbii+1,

where g ≥ 0, n ≥ 1, d1, . . . ,dn ≥ 0,
∑
di ≥ 2g + k, and 1 ≤ α1, . . . ,αn ≤N .

(3) We have Ω̃α,a
β,b,g

∣∣∣∣∣
w∗∗=0

= 0 and

∂nΩ̃α,a
β,b,g

∂wα1
d1
· · ·∂wαndn

∣∣∣∣∣∣∣∣
w∗∗=0

=
∫
Mg,n+k+1

perm∗k+1,n

(
Bk+1
g,d

)
cg,n+k+1

(
eα ⊗⊗ki=1eβi ⊗⊗

n
j=1eαj

)
ψa1

k∏
i=1

ψbii+1,

where g ≥ 0, n ≥ 1, d1, . . . ,dn ≥ 0,
∑
di = 2g − 1 + k, and 1 ≤ α1, . . . ,αn ≤N .

Proof. (1) The result is analogous to [BDGR18, Proposition 7.2], whose proof we briefly explained in the
proof of Theorem 4.4. Regarding the existence part, we construct the formal power series Ωred;α,a

β,b
, together

with the differential polynomial Ω̃α,a
β,b

, by a recursive procedure that kills all of the monomials ε2g∏ tαidi

with g ≥ 0 and
∑
di ≤ 2g − 1 + k in ∂kF α,a

∂t
β1
b1
···∂tβkbk

. One then checks that the resulting differential polynomial

Ω̃
α,a
β,b

has degree k − 1 using the equation L ∂kF α,a

∂t
β1
b1
···∂tβkbk

= (k − 1) ∂kF α,a

∂t
β1
b1
···∂tβkbk

(where the operator L was defined
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in (4.7)), which is a consequence of Equation (4.9), and property (4.3), which, as we already remarked, holds
for F-CohFTs. The uniqueness part follows again from (4.3).

(2) The result is analogous to [BGR19, Proposition 3.5], and the proof is obtained from the proof of that
proposition by easily seen adjustments.

(3) This is analogous to Theorem 4.4. □

4.3. The DZ hierarchy for an F-CohFT and Conjecture 1

We consider an arbitrary F-CohFT.

4.3.1. Construction of the DZ hierarchy. Denote by Awk
w the ring of formal power series in the

shifted variables (wαn −Aαδn,1), and let Âwk
w :=Awk

w [[ε]]. We have the obvious inclusion Âw ⊂ Âwk
w . From

property (4.3), it follows that for any 1 ≤ α ≤ N , a ≥ 0, and k-tuples β ∈ JN Kk and b ∈Zk
≥0, there exists a

unique element Ωα,a
β,b
∈ Âwk

w such that

∂kF α,a

∂t
β1
b1
· · ·∂tβkbk

= Ω
α,a
β,b

∣∣∣∣∣
w
γ
c =wtop;γ

c

.

Clearly, we have ∂wtop;α

∂t
β
b

= ∂xΩ
α,0
β,b

∣∣∣∣
w
γ
c =wtop;γ

c

, which implies that the N -tuple of formal powers series wtop;α

satisfies the system of generalized PDEs

∂wα

∂t
β
b

= ∂xΩ
α,0
β,b , 1 ≤ α,β ≤N, b ≥ 0,(4.10)

which we call the Dubrovin–Zhang (DZ ) hierarchy associated to our F-CohFT. We say “generalized PDEs”
because the right-hand sides are not differential polynomials but elements of the larger ring Âwk

w . The
N -tuple w top := (wtop;1, . . . ,wtop;N ) is clearly a solution of the DZ hierarchy, which is called the topological
solution.

4.3.2. Conjecture 1 and the polynomiality of the DZ hierarchy. From Theorem 4.6, it follows that the

validity of Conjecture 1 for some fixed m ≥ 2 implies that Ωred;α,a
β,b

= 0 if l(β) = l(b) =m− 1, or equivalently

Ω
α,a
β,b

= Ω̃
α,a
β,b
∈ Âw;m−2. In particular, we obtain the following result.

Theorem 4.7. The validity of Conjecture 1 for m = 2 implies that the right-hand sides of the equations of the DZ
hierarchy (4.10) associated to an arbitrary F-CohFT are differential polynomials of degree 1. Moreover, part (3) of
Theorem 4.6 then gives a geometric formula for these differential polynomials.

Also note that, assuming the validity of Conjecture 1 for m = 2, we have

∂

∂t
γ
c

∂wtop;α

∂t
β
b

=
∑
n≥0

∂
(
∂xΩ

α,0
β,b

)
∂w

µ
n

∂n+1
x Ω

µ,0
γ,c

∣∣∣∣∣∣∣∣
wδd=wtop;δ

d

=

∂

∂t
β
b

∂wtop;α

∂t
γ
c

=
∑
n≥0

∂
(
∂xΩ

α,0
γ,c

)
∂w

µ
n

∂n+1
x Ω

µ,0
β,b

∣∣∣∣∣∣∣
wδd=wtop;δ

d

,

which, by Lemma 4.3, implies that the flows of the DZ hierarchy commute pairwise.
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4.4. The DR hierarchy for an F-CohFT and Conjectures 2 and 3

4.4.1. The definition of the DR hierarchy. Consider an arbitrary F-CohFT of rank N . Let u1, . . . ,uN

be formal variables, and consider the associated ring of differential polynomials Âu . Define differential
polynomials P αβ,d ∈ Âu;0, 1 ≤ α,β ≤N , d ≥ 0, by

P αβ,d B
∑

g,n≥0,2g+n>0
k1,...,kn≥0∑n
j=1 kj=2g

ε2g

n!

n∏
j=1

u
αj
kj

×Coef(a1)k1 ···(an)kn


∫
Mg,n+2

λgDRg

(
−

n∑
j=1

aj ,0, a1, . . . , an

)
ψd2cg,n+2(eα ⊗ eβ ⊗⊗nj=1eαj )

 .
The DR hierarchy, see [BR21], is the following system of evolutionary PDEs:

∂uα

∂t
β
d

= ∂xP
α
β,d , 1 ≤ α,β ≤N, d ≥ 0.

In [BR21, Theorem 5.1], the authors proved that all of the equations of the DR hierarchy are compatible with
each other.

In [ABLR21, Theorem 1.5], the authors proved that

∂P αβ,d
∂u11 =

P αβ,d−1 if d ≥ 1,

δαβ if d = 0.
(4.11)

Lemma 4.8. The DR hierarchy satisfies the following properties.

(1)
∂P αβ,0

∂u11
x

= 0.

(2) The DR hierarchy has a unique solution ustr = (ustr;1, . . . ,ustr;N ) satisfying the condition ustr;α
∣∣∣
t∗≥1=0

= tα0 ,

where we identify the derivatives ∂x and
∂
∂t110
.

Proof. (1) This follows immediately from (2.2) and the definition of P αβ,0.
(2) Using Equation (4.11) and part (1), we compute

∂

∂u11
x
∂xP

α
β,0 = ∂x

∂P αβ,0

∂u11
x

+
∂P αβ,0
∂u11 = δαβ ,

which completes the proof. □

4.4.2. A collection of potentials associated to the DR hierarchy. Define ustr;α
n := ∂nustr;α

(∂t110 )n
. Let us

introduce N formal power series F DR;α ∈C[[t∗∗ , ε]], 1 ≤ α ≤N , by the relation

∂F DR;α

∂t
β
b

:= P αβ,b

∣∣∣∣
u
γ
n=ustr;γ

n

,

with the constant terms defined to be equal to zero, F DR;α
∣∣∣
t∗∗=0

:= 0. Consider the expansion F DR;α =∑
g≥0 ε

2gF DR;α
g .

Theorem 4.9. Let g ≥ 0, n ≥ 1, d1, . . . ,dn ≥ 0, and 1 ≤ α,α1, . . . ,αn ≤N . Then we have

∂nF DR;α
g

∂tα1
d1
· · ·∂tαndn

∣∣∣∣∣∣∣
t∗∗=0

=

0 if
∑
di ≤ 2g − 1,∫

Mg,n+1
perm∗1,n

(
A1
g,d

)
cg,n+1

(
eα ⊗⊗nj=1eαj

)
if

∑
di ≥ 2g.
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Proof. The proof is very similar to the proof of analogous statements in the case of the DR hierarchy
associated to a CohFT (see [BDGR18, Proposition 6.10] and [BDGR20, Theorem 6.1]). So we only very briefly
sketch the details.

Consider a stable tree T ∈ SRTg,n,1. We will call a level function l : V (T )→Z≥1 injective if |l−1(i)| = 1
for each 1 ≤ i ≤ deg(l). Clearly, such a function gives a bijection between the sets V (T ) and J|V (T )|K.
Denote by L(i)(T ) the set of all injective level functions on T . For l ∈ L(i)(T ), denote by (T , l) the stable tree
from the set SRTg,n+|V (T )|,1 obtained as follows:

• We attach to each vertex v of T a new regular leg and label it by the number l(v) +n.
• We relabel the unique frozen leg of T by the number n+ |V (T )|+ 1.

For an N -tuple Q = (Q1, . . . ,QN ) ∈ ÂNu , denote by DQ the linear operator in Âu defined by

DQ :=
∑
k≥0

(
∂kxQ

γ
) ∂

∂u
γ
k

.

Let P β,d := (P 1
β,d , . . . , P

N
β,d). From the definition of the formal power series ustr;α and F DR;α , it follows that

∂nF DR;α
g

∂tα1
d1
· · ·∂tαndn

∣∣∣∣∣∣∣
t∗∗=0

= Coefε2g

(
D∂xP αn,dn

· · ·D∂xP α3 ,d3
D∂xP α2 ,d2

P αα1,d1

)∣∣∣∣∣
u
γ
k =δk,1Aγ

.

In the same way as in the proof of [BDGR18, Lemma 6.9], this formula implies that

∂nF DR;α
g

∂tα1
d1
· · ·∂tαndn

∣∣∣∣∣∣∣
t∗∗=0

=
1

(2g +n− 1)!
Coefa1···a2g+n−1

 ∑
T ∈SRTng,2g+n−1,1

∑
l∈L(i)(T )∫

Mg,2g+2n

λg perm∗1,2g+2n−1DR(T ,l)

(
A,0n,−

∑
ai
)
cg,2g+2n

(
eα ⊗ e⊗(2g+n−1) ⊗⊗ni=1eαi

) n∏
i=1

ψdi2g+n+i

 ,
where A = (a1, . . . , a2g+n−1) and 0n := (0, . . . ,0) ∈Zn. In the case

∑
di ≤ 2g − 1, the proof of the vanishing

of the right-hand side of this equation goes along the same lines as the proof of [BDGR18, Lemma 6.11].
Indeed, [BDGR18, Lemma 6.11] says that the right-hand side of the equation vanishes if we replace the
class cg,2g+2n(eα ⊗ e⊗(2g+n−1) ⊗⊗ni=1eαi ) with the class cg,2g+2n(e⊗ e⊗(2g+n−1) ⊗⊗ni=1eαi ) with cg,2g+2n being
a CohFT. However, one can easily see that the same proof works in our case as well.

We now consider the case
∑
di ≥ 2g . For a tree SRTg,n,1 and v ∈ V (T ), define

ind(v) := min{1 ≤ i ≤ n | σi is attached to v}.

If v is not incident to any regular leg, then we write ind(v) :=∞. Let us call the tree T special (in [BDGR20,
Section 6.5.1], the authors said “admissible”) if

a) ind(v) <∞ for any vertex v ∈ V (T );
b) ind(v1) < ind(v2) for any two distinct vertices v1,v2 ∈ V (T ) such that v2 is a descendant of v1.

Denote by SRT(s)
g,n,1 ⊂ SRTg,n,1 the subset of all special trees.

For a tree T ∈ SRT(s)
g,n,1, define

ST :=
{
c = (c1, . . . , cn) ∈Zn

≥0

∣∣∣∣∣ ci = 0 unless i = ind(v) for
some v ∈ V (T )

}
.
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Let d ≥ 2g . We claim that

∑
d1,...,dn≥0∑

di=d

∏
bdii

(2g +n− 1)!
Coefa1···a2g+n−1

 ∑
T ∈SRTng,2g+n−1,1

∑
l∈L(i)(T )∫

Mg,2g+2n

λg perm∗1,2g+2n−1DR(T ,l)

(
A,0n,−

∑
ai

)
cg,2g+2n

(
eα ⊗ e⊗(2g+n−1) ⊗⊗ni=1eαi

) n∏
i=1

ψdi2g+n+i


=

∑
T ∈SRT(s)

g,n,1

∑
c∈ST∑

ci=d−(2g+|V (T )|−1)

∫
Mg,n+1

λg perm∗1,nDRT
(
B,−

∑
bi
)
cg,n+1(eα ⊗⊗ni=1eαi )

n∏
i=1

(biψi+1)ci ,

where B = (b1, . . . , bn). Indeed, in [BDGR20, Section 6.5.2], this equation is proved if we replace the classes
cg,k+1(eα ⊗⊗ki=1vi), vi ∈ V , with the classes cg,k+1(e⊗⊗ki=1vi) with cg,k+1 being a CohFT. However, one can
easily check that the same proof works in our case as well.

Therefore, it is sufficient to check the cohomological relation∑
T ∈SRT(s)

g,n,1

∑
c∈ST∑

ci=d−(2g+|V (T )|−1)

λgDRT
(
b1, . . . , bn,−

∑
bi
) n∏
i=1

(biψi)
ci

=
∑

T ∈SRTd−2g+1
g,n,1

C(T )λgDRT
(
b1, . . . , bn,−

∑
bi
)
,

but this was done in [BDGR20, Equation (6.13)]. □

Note that the definition of formal power series F DR;α implies that ∂
∂t
β
d

∂F DR;α

∂t110
= ∂ustr;α

∂t
β
d

. Since, by

Theorem 4.9, we have ∂F DR;α

∂t110

∣∣∣∣
t∗∗=0

= 0, we conclude that

∂F DR;α

∂t110
= ustr;α .

4.4.3. Conjecture 2 and the equivalence of the two hierarchies for F-CohFTs. Consider an arbitrary
F-CohFT. Suppose that Conjecture 2 is true. Then Theorems 4.6 and 4.9 imply that Ωred;α,0 = F DR;α and
therefore

F α,0 − Ω̃α,0
∣∣∣
w
γ
c =wtop;γ

c
= F DR,α .

Differentiating both sides by ∂
∂t110

, we obtain

wtop;α −
(
∂xΩ̃

α,0
)∣∣∣∣
w
γ
c =wtop;γ

c

= ustr;α .

Consider the Miura transformation

wα 7−→ uα(w∗∗, ε) = wα −∂xΩ̃α,0(4.12)

and its inverse uα 7→ wα(u∗∗ , ε). We see that the Miura transformation (4.12) transforms the DR hierarchy to
a hierarchy having the N -tuple w top as its solution. Lemma 4.3 implies that this hierarchy coincides with
the DZ hierarchy corresponding to our F-CohFT. In particular, we obtain that the right-hand side of each
equation of the DZ hierarchy (4.10) is a differential polynomial of degree 1.

Summarizing, we obtain the following result.
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Theorem 4.10. Conjecture 2 implies that the DZ hierarchy corresponding to an arbitrary F-CohFT is polynomial
and that it is related to the DR hierarchy by the Miura transformation (4.12). Moreover, there is a geometric formula
for the differential polynomials Ω̃α,0 defining this Miura transformation, given by part (3) of Theorem 4.6.

4.4.4. Conjecture 3 and the DR/DZ equivalence conjecture for partial CohFTs. Following [BGR19],
let us recall here the relation between Conjecture 3 and the DR/DZ equivalence conjecture for partial CohFTs,
proposed in [BDGR18]. Again, what we will say was discussed in [BGR19] and [BDGR18] for CohFTs, but the
required results are true for partial CohFTs, with the same proofs.

Consider an arbitrary partial CohFT, the associated F-CohFT, and the corresponding DR hierarchy.
Define

hα,p := η11µP
µ
α,p+1 ∈ Âu;0, 1 ≤ α ≤N, p ≥ −1.

In [BDGR18], the authors proved that for any 1 ≤ α,β ≤ N and p,q ≥ 0, there exists a unique differential
polynomial ΩDR

α,p;β,q ∈ Âu;0 such that

∂xΩ
DR
α,p;β,q =D∂xP β,qhα,p−1, ΩDR

α,p;β,q

∣∣∣∣
u∗∗=0

= 0.

In [BDGR18], the authors proved that there exists a unique formal power series F DR(t∗∗ , ε) =∑
g≥0 ε

2gF DR
g (t∗∗) ∈C[[t∗∗ , ε]] such that

∂2F DR

∂tαp ∂t
β
q

= ΩDR
α,p;β,q

∣∣∣∣
u
γ
c =ustr;γ

c

, 1 ≤ α,β ≤N, p,q ≥ 0,

∂F DR

∂t110
=

∑
n≥0

tαn+1
∂F DR

∂tαn
+

1
2
ηαβt

α
0 t
β
0 ,

F DR
∣∣∣
t∗∗=0

= 0.

The formal power series F DR is called the potential of the DR hierarchy. By [BDGR18, Proposition 6.10] and
[BDGR20, Theorem 6.1], for g ≥ 0, n ≥ 1, d1, . . . ,dn ≥ 0, and 1 ≤ α1, . . . ,αn ≤N , we have

∂nF DR

∂tα1
d1
· · ·∂tαndn

∣∣∣∣∣∣∣
t∗∗=0

=

0 if
∑
di ≤ 2g − 2,∫

Mg,n
A0
g,d
cg,n

(
⊗ni=1eαi

)
if

∑
di ≥ 2g − 1.

(4.13)

Suppose that Conjecture 3 is true. Then Equations (4.4) and (4.13) imply that F red = F DR or, equivalently,

F − P |wγc =wtop;γ
c

= F DR,(4.14)

which was formulated in [BDGR18] and called the strong DR/DZ equivalence conjecture. Let us discuss
consequences of Equation (4.14).

Consider the Miura transformation

uα 7−→ ũα(u∗∗ , ε) := ηαµΩDR
µ,0;11,0.

The variables ũα are called the normal coordinates of the DR hierarchy. Obviously, the N -tuple of formal
power series

ũ str;α(t∗∗ , ε) := ηαµ
∂2F DR

∂t
µ
0∂t

11
0

, 1 ≤ α ≤N,

is a solution of the DR hierarchy written in the normal coordinates. Now consider the following Miura
transformation relating the variables wα and ũα :

wα 7−→ ũα(w∗∗, ε) := wα − ηαµ∂xD∂xP µ,0P .(4.15)

Equation (4.14) implies that the DR hierarchy written in the variables wα has the N -tuple w top as its solution.
Therefore, by Lemma 4.3, this hierarchy coincides with the DZ hierarchy corresponding to our partial CohFT.
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So we obtain that the DZ hierarchy corresponding to our partial CohFT is polynomial and that it is related
to the DR hierarchy by a Miura transformation.

In fact, as is explained in [BDGR18], Equation (4.14) implies that there is a relation between the two
hierarchies that is stronger than the Miura equivalence. Both hierarchies are Hamiltonian, and they are
endowed with a tau-structure, meaning that there a special choice of densities of the Hamiltonians satisfying

certain properties. For the DZ hierarchy, these densities are η11µΩ
µ,0
α,p+1, and for the DR hierarchy, these

densities are hα,p, 1 ≤ α ≤N , p ≥ 0. In [BDGR18], the authors proved that Equation (4.14) implies that the
two hierarchies, together with their Hamiltonian structure and tau-structure, are related by the normal Miura
transformation given by (4.15). Moreover, there is a geometric formula for the differential polynomial P
describing this normal Miura transformation, given by Theorem 4.4.

5. Proof of Theorem 2.2

5.1. Proof of Conjecture 1 for n = 1

In the case n = 1, Conjecture 1 says that Bmg,d = 0 for m ≥ 2 and d ≥ 2g +m− 1. Let us prove that. To

explain the proof, we need some notation. We denote by Γ
g,m
d |k , g ≥ 0, k ≥ 1, the following tautological class:

Γ
g,m
d |k B

∑
g1,...,gk
d1,...,dk

g11
ψd1

g2
ψd2

· · · gk−1
ψdk−1

gk
ψdk

2

m+1

∈ Rd(Mg,m+1),

where d1 + · · ·+ dk + k − 1 = d, g1 + · · ·+ gk = g , g1, . . . , gk−1 ≥ 1, gk ≥ 0 if m ≥ 2 and gk ≥ 1 if m = 0,1, and
for any i = 2, . . . , k, we have di + · · ·+ dk + k − i ≤ 2(gi + · · ·+ gk) +m− 2.

Lemma 5.1. We have Bmg,d = Bmg,2g+m−1ψ
d−2g−m+1
1 for d ≥ 2g +m− 1 and

Bmg,2g+m−1 =
∞∑
k=1

(−1)k+1Γ
g,m
2g+m−1 |k .

Proof. This follows directly from unfolding the definitions. Note that the sum over k is in fact finite since
Γ
g,m
d |k = 0 for k ≥ g + 2 for any m and Γ

g,m
d |k = 0 for k ≥ g + 1 for m = 0,1. □

By this lemma, it is sufficient to prove that Bmg,2g+m−1 = 0, g ≥ 0, m ≥ 2. The proof is based on the
following Liu–Pandharipande relations, see [LP11, Propositions 1.1 and 1.2] (see also [BHIS22, Corollary 3.2]),
in the tautological ring:

g1
ψ2g+r

2 + (−1)2g+r+1 g 2
ψ2g+r

1 =
∑

g1+g2=g
g1,g2≥1

d1+d2=2g+r−1
d1,d2≥0

(−1)d1 g1
ψd1

1 g2
ψd2

2 ,(5.1)

g1
ψ2g+m−1+r 2

m+1

=
∑

g1+g2=g
g1≥1, g2≥0

d1+d2=2g+m−2+r
d1,d2≥0

(−1)d1 g11
ψd1

g2
ψd2

2

m+1

(5.2)

for any r ≥ 0.
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We introduce more notation. For g ≥ 1, k ≥ 1, and d ≤ 2g − 1, let γgd |k be the sum of decorated stable
graphs given as

γ
g
d |k B

∑
g1,...,gk
d1,...,dk

g11
ψd1

g2
ψd2

· · · gk−1
ψdk−1

gk 2
ψdk

,

where d1 + · · · + dk + k − 1 = d, g1 + · · · + gk = g , g1, . . . , gk ≥ 1, and for any i = 1, . . . , k − 1, we have
d1 + · · ·+ di + i − 1 ≤ 2(g1 + · · ·+ gi)− 1. For d ≥ 2g , we define γ

g
d |k B 0. Note that γ

g
d |k = 0 for k > g . We

also define

γ̃
g,m
d |k B

Γ
g,m
d |k if d ≤ 2g +m− 2,

0 otherwise.

Let γ1 ⋄γ2 be the operation of concatenation of two decorated stable graphs γ1 ∈ Gg1,2 and γ2 ∈ Gg2,m+1
that forms an edge from the second leg of γ1 and the first leg of γ2.

Lemma 5.2. For any ℓ ≥ 1, m ≥ 2, we have

ℓ+1∑
k=1

(−1)k+1Γ
g,m
2g+m−1 |k(5.3)

=
∑

g1+g2=g
g1≥1, g2≥0

d1+d2=2g+m−2
d1,d2≥0

(−1)d1+ℓ−1γ
g1
d1 |ℓ ⋄

g2

2

m+1

1
ψd2

+
∑

g1+g2=g
g1≥1, g2≥0

d1+d2=2g+m−2
d1,d2≥0

(−1)ℓ
 g1 21

ψd1

+ (−1)d1+1 g11 2
ψd1

 ⋄ γ̃g2,m
d2 |ℓ

+
∑

g1+g2+g3=g
g1,g2≥1, g3≥0

d1+d2+d3=2g+m−3
d1,d2,d3≥0

k1+k3=ℓ,k1,k3≥1

(−1)d1+ℓ−1γ
g1
d1 |k1
⋄
 g2 21

ψd2

+ (−1)d2+1 g21 2
ψd2

 ⋄ γ̃g3,m
d3 |k3

.

Before proving this lemma, let us show how to derive the desired vanishing Bmg,2g+m−1 = 0 from it. Indeed,

consider Equation (5.3) for ℓ = g + 1. Note that since m ≥ 2, we have Γ
g,m
d |k = 0 for g + 1 < k. Hence the

left-hand side of Equation (5.3) with ℓ ≥ g , so in particular for ℓ = g + 1, is equal to Bmg,2g+m−1.

On the right-hand side, we have γ
g1
d1 |g+1 = 0 in the first term (since g1 ≤ g < g + 1) and γ̃g2,m

d2 |g+1 = 0 in
the second term (since g2 + 1 < g + 1). Consider the third term. We have k1 + k3 = g + 1 and g1 + g3 < g ,
so either g1 < k1, or g3 + 1 < k3, or both. Hence in the third term either γ

g1
d1 |k1

= 0, or γ̃g3,m
d3 |k3

= 0, or both.
Hence the right-hand side of Equation (5.3) with ℓ = g + 1 is equal to 0.

Proof of Lemma 5.2. We prove the lemma by induction. The base is the ℓ = 1 case. It is equivalent to

Γ
g,m
2g+m−1 |1 =

∑
g1+g2=g
g1≥1, g2≥0

d1+d2=2g+m−2
d1,d2≥0

(−1)d1γ
g1
d1 |1 ⋄

g2

2

m+1

1
ψd2

+
∑

g1+g2=g
g1≥1, g2≥0

d1+d2=2g+m−2
d1,d2≥0

(−1)d1 g11 2
ψd1

⋄ γ̃g2,m
d2 |1 ,(5.4)
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which is just a way to rewrite Equation (5.2) for r = 0. Indeed, on the right-hand side of Equation (5.2) for
r = 0, we have

∑
g1+g2=g,g1≥1, g2≥0

d1+d2=2g+m−2,d1,d2≥0

(−1)d1 g11 2
ψd1

⋄ g2

2

m+1

1
ψd2

,

and either d1 ≤ 2g1−1, which gives us the first summand on the right-hand side of (5.4), or d2 ≤ 2g2 +m−2,
which gives us the second summand on the right-hand side of (5.4).

For the induction step, we have to prove that

(−1)ℓ+1Γ
g,m
2g+m−1 |ℓ+2 +

∑
g1+g2=g,g1≥1, g2≥0

d1+d2=2g+m−2,d1,d2≥0

(−1)d1+ℓ−1γ
g1
d1 |ℓ ⋄

g2

2

m+1

1
ψd2

(5.5)

+
∑

g1+g2=g,g1≥1, g2≥0
d1+d2=2g+m−2,d1,d2≥0

(−1)ℓ
 g1 21

ψd1

+ (−1)d1+1 g11 2
ψd1

 ⋄ γ̃g2,m
d2 |ℓ(5.6)

+
∑

g1+g2+g3=g
g1,g2≥1, g3≥0

d1+d2+d3=2g+m−3
d1,d2,d3≥0

k1+k3=ℓ,k1,k3≥1

(−1)d1+ℓ−1γ
g1
d1 |k1
⋄
 g2 21

ψd2

+ (−1)d2+1 g21 2
ψd2

 ⋄ γ̃g3,m
d3 |k3

(5.7)

=
∑

g1+g2=g,g1≥1, g2≥0
d1+d2=2g+m−2,d1,d2≥0

(−1)d1+ℓγ
g1
d1 |ℓ+1 ⋄ g2

2

m+1

1
ψd2

(5.8)

+
∑

g1+g2=g
g1≥1, g2≥0

d1+d2=2g+m−2
d1,d2≥0

(−1)ℓ+1 g1 21
ψd1

⋄ γ̃g2,m
d2 |ℓ+1 +

∑
g1+g2=g
g1≥1, g2≥0

d1+d2=2g+m−2
d1,d2≥0

(−1)d1+ℓ g11 2
ψd1

⋄ γ̃g2,m
d2 |ℓ+1(5.9)

+
∑

g1+g2+g3=g,g1,g2≥1, g3≥0
d1+d2+d3=2g+m−3,d1,d2,d3≥0

k1+k3=ℓ+1, k1,k3≥1

(−1)d1+ℓγ
g1
d1 |k1
⋄ g2 21

ψd2

⋄ γ̃g3,m
d3 |k3

︸                                                                           ︷︷                                                                           ︸
=:

∑
Ck1 ,k3 =C1,ℓ+

∑
k1≥2Ck1 ,k3

(5.10)

+
∑

g1+g2+g3=g,g1,g2≥1, g3≥0
d1+d2+d3=2g+m−3,d1,d2,d3≥0

k1+k3=ℓ+1, k1,k3≥1

(−1)d1+d2+ℓ+1γ
g1
d1 |k1
⋄ g21 2

ψd2

⋄ γ̃g3,m
d3 |k3

︸                                                                                 ︷︷                                                                                 ︸
=:

∑
Dk1 ,k3 = Dℓ,1 +

∑
k3≥2Dk1 ,k3

.(5.11)

Note that the first summand in (5.5) is equal to the first summand in (5.9) by definition.
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Consider the second summand in (5.5). Since d1 ≤ 2g1 −1, we have d2 ≥ 2g2 +m−1; hence we can apply
the Liu–Pandharipande relation (5.2). We obtain∑

g1+g2+g3=g,g1,g2≥1, g3≥0
d1+d2+d3=2g+m−3,d1,d2,d3≥0

(−1)d1+d2+ℓ−1γ
g1
d1 |ℓ ⋄ g21 2

ψd2

⋄ g3

2

m+1

1
ψd3

.(5.12)

Note that either d1 + d2 ≤ 2(g1 + g2)− 2 or d3 ≤ 2g3 +m− 2, but not both. Hence (5.12) is equal to the sum
of (5.8) and the k3 = 1 term in (5.11).

Consider (5.6). Since d2 ≤ 2g2 +m− 2, we have d1 ≥ 2g1, hence we can apply the Liu–Pandharipande
relation (5.1). We obtain ∑

g1+g2+g3=g,g1,g2≥1, g3≥0
d1+d2+d3=2g+m−3,d1,d2,d3≥0

(−1)ℓ+d1 g11 2
ψd1

⋄ g2 21
ψd2

⋄ γ̃g3,m
d3 |ℓ .(5.13)

Note that either d1 ≤ 2g1 − 1 or d2 + d3 ≤ 2(g2 + g3) +m− 3, but not both. Hence (5.13) is equal to the sum
of the k1 = 1 term in (5.10) and the second summand in (5.9).

Finally, consider (5.7). Since d1 ≤ 2g1 −1 and d3 ≤ 2g3 +m−2, we have d2 ≥ 2g2; hence we can apply the
Liu–Pandharipande relation (5.1). We obtain∑

g1+g2+g3+g4=g
g1,g2,g3≥1, g3≥0

d1+d2+d3+d4=2g+m−4
d1,d2,d3,d4≥0

k1+k4=ℓ,k1,k4≥1

(−1)d1+d2+ℓ−1γ
g1
d1 |k1
⋄ g21 2

ψd3

⋄ g3 21
ψd3

⋄ γ̃g4,m
d4 |k4

.(5.14)

Note that either d1 + d2 ≤ 2(g1 + g2)− 2 or d3 + d4 ≤ 2(g3 + g4) +m− 3, but not both. Hence (5.14) is equal
to the sum of the k1 ≥ 2 terms in (5.10) and the k3 ≥ 2 terms in (5.11).

Summarizing the computations above, we see that the sum of (5.5), (5.6), and (5.7) is equal to the sum
of (5.8), (5.9), (5.10), and (5.11). This proves the induction step and completes the proof of Lemma 5.2. □

5.2. Proof of Conjecture 2 for n = 1

We have to check that B1
g,d = A1

g,d for any g ≥ 1 and d ≥ 2g . From the definition of the class B1
g,d , it

follows that
B1
g,d = ψd−2g

1 B1
g,2g .

On the other hand, setting k := d − 2g , we have

A1
g,d =

∑
g1+···+gk=g
g1,...,gk≥1

k−1∏
i=0

gk−i
g1 + · · ·+ gk−i

λg1
DRg1

(1,−1) ⋄λg2
DRg2

(1,−1) ⋄ · · · ⋄λgkDRgk (1,−1).

Using the formula

ψ1λgDRg(1,−1) =
∑

g1+g2=g
g1,g2≥1

g2

g
λg1

DRg1
(1,−1) ⋄λg2

DRg2
(1,−1),

cf. [BSSZ15, Theorem 4], it is easy to check by induction that

A1
g,d = ψd−2g

1 A1
g,2g .

We conclude that it is sufficient to prove that

B1
g,2g = λgDRg(1,−1).(5.15)
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As a preliminary step, in Section 5.2.1, we derive a new tautological relation using a variation of the
method from the paper [LP11] by Liu and Pandharipande, and then in Section 5.2.2, we use it to prove
Equation (5.15).

5.2.1. A new relation via the Liu–Pandharipande method. We use the same notation as in Section 5.1,
with the following addendum to the notation. Let

g1 2 B λgDRg(−1,1).

Theorem 5.3. For any g ≥ 1 and r ≥ 0, we have

g1
ψr

2 + (−1)2g+r+1 g 2
ψ2g+r

1 =
∑

g1+g2=g
g1,g2≥1

d1+d2=2g1+r−1
d1,d2≥0

(−1)d1 g1
ψd1

1 g2
ψd2

2 .(5.16)

Proof. The proof is by localization in the moduli space of stable relative maps to (P1,∞), which we review
in detail in the appendix.

We consider the moduli spaceMg,n(P1,µ) of stable relative maps to (P1,∞) with n = 1 and µ = 1. The
source curves of these maps have two marked points, and we assume that the marked point corresponding
to the only part of µ is labeled by 1. Consider the C

∗-action on P
1 given by

t · [x,y] := [tx,y], [x,y] ∈ P1, t ∈C∗,

and the induced C
∗-action onMg,1(P1,1). Denote by

π : U −→Mg,1(P1,1), f : U −→ P
1,

the C∗-equivariant universal curve and the universal map, respectively. Consider a lifting of the C∗-action on
P

1 to the line bundle O
P

1(−1)→ P
1 with fiber weights −1, 0 over the fixed points 0,∞∈ P1, respectively.

The sheaf
B := R1π∗f

∗(O
P

1(−1)) −→Mg,1(P1,1)

is a C
∗-equivariant vector bundle of rank g .

We consider the following C
∗-equivariant cohomology class onMg,1(P1,1):

Ig := ev∗2([0])e
C
∗(B) ∈H2(g+1)

C
∗ (Mg,1(P1,1)),

where ev2 : Mg,1(P1,1) → P
1 is the evaluation map corresponding to the second marked point, [0] ∈

H2
C
∗(P1) is the C

∗-equivariant cohomology class dual to the point 0 ∈ P1, and by e
C
∗(·) we denote the

C
∗-equivariant Euler class of a C

∗-equivariant vector bundle. Denote by

ϵ : Mg,1(P1,1) −→Mg,2

the forgetful map, which is C
∗-equivariant with respect to the trivial C∗-action on Mg,2. Consider the

pushforward

ϵ∗(Ig ∩ [Mg,1(P1,1)]vir) ∈HC
∗

2g (Mg,2),(5.17)

where [Mg,1(P1,1)]vir is the C∗-equivariant virtual fundamental class of the moduli spaceMg,1(P1,1). Since
HC

∗
∗ (Mg,2) = H∗(Mg,2)⊗

C
C[u], where u is the generator of the equivariant cohomology ring of a point,

the class (5.17) is a polynomial in u with coefficients in the space H∗(Mg,2). The class Ig ∩ [Mg,1(P1,1)]vir

considered as an element of HC
∗
∗ (Mg,1(P1,1)) ⊗

C[u] C[u,u−1] can be computed using the localization
formula (A.4), and then using formulas (A.5) and (A.6), one can get an explicit formula for the pushforward
of this class toMg,2 in terms of tautological classes. The fact that the coefficients of the negative powers of
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u in the resulting expression vanish gives relations in the homology ofMg,2. Let us compute these relations
explicitly.

Consider the connected components of the C∗-fixed point setMg,1(P1,1)C
∗
. Apart from the component

F 0 formed by the stable relative maps with the target equal to P
1, we have components F Γ labeled by

decorated bipartite graphs Γ (see the appendix for details). Note that the decorated bipartite graphs Γ such
that F Γ , ∅ have one of the following two forms:

Γg1,g2
:= g1

0

1
2 g2

∞
1 , g1 ≥ 0, g2 ≥ 1,

Γ̃g1,g2
:= g1

0

1 g2
∞

1

2
, g1, g2 ≥ 0.

Since ι∗
Γ̃g1 ,g2

(ev∗2([0])) = 0, we have ι∗
Γ̃g1 ,g2

(Ig ) = 0, where we refer a reader to the appendix for a definition of

spacesMΓ and natural surjective maps ι0 : Mg,2→F 0 and ιΓ : MΓ →F Γ .

Using Equations (A.3) and (A.4), we obtain the following equality in H∗(Mg,2)⊗
C
C[u,u−1]:

ϵ∗(Ig ∩ [Mg,1(P1,1)]vir = ϵ∗ι0∗

(
ι∗0

(
Ig

e
C
∗(N vir

0 )

)
∩ [Mg,2]

)

+
∑

g1≥0, g2≥1
g1+g2=g

ϵ∗ιΓg1 ,g2 ∗

ι∗Γg1 ,g2
 Ig

e
C
∗(N vir

Γg1 ,g2
)

∩ [MΓg1 ,g2
]vir

 ,
where N vir

0 and N vir
Γg1 ,g2

are the virtual normal bundles to the connected components F 0 and F Γg1 ,g2
,

respectively. Let us now compute explicitly the contribution of each connected component.
Consider the component F 0. Note that we have an isomorphism ι∗0B � E

∨
g ⊗C−1 as C∗-equivariant vector

bundles, where by Ca we denote the trivial line bundle with t ∈ C∗ acting on it by the multiplication by ta.
Therefore,

ι∗0Ig = uΛ∨g (−u),

where

Λ∨g (u) :=
g∑
i=0

(−1)iλiu
g−i .

Using Equation (A.5), we obtain

ι∗0

(
Ig

e
C
∗(N vir

0 )

)
=
Λ∨g (−u)Λ∨g (u)

u −ψ1
= (−1)g

u2g−1

1− ψ1
u

,

ϵ∗ι0∗

(
ι∗0

(
Ig

e
C
∗(N vir

0 )

)
∩ [Mg,2]

)
= (−1)g

∑
i≥0

u2g−1−i g 1
ψi

2 .(5.18)

Now consider the component F Γ0,g
of the fixed point set. We have MΓ0,g

= M∼g,0(P1,1,1), where

M∼g,0(P1,1,1) is the moduli space of relative stable maps to rubber (P1,0,∞) and ι∗
Γ0,g
B � E

∨
g as C

∗-

equivariant vector bundles, where we emphasize that C∗ acts trivially on E
∨
g . Therefore,

ι∗Γ0,g
Ig = u(−1)gλg .

Using Equation (A.6), we obtain

ι∗Γ0,g

 Ig

e
C
∗(N vir

Γ0,g
)

 =
(−1)gλg
−u − ψ̃0

= (−1)g−1u
−1λg

1 + ψ̃0
u

,
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where ψ̃0 is the first Chern class of the cotangent line bundle overM∼g,0(P1,1,1) corresponding to the point 0
in the target curve of a stable relative map (see the appendix for details). Noting that ψ̃0 = (ϵ ◦ ιΓ0,g

)∗ψ2, we
obtain

ϵ∗ιΓ0,g∗

ι∗Γ0,g

 Ig

e
C
∗(N vir

Γ0,g
)

∩ [MΓ0,g
]vir

 = (−1)g
∑
i≥0

u−i−1(−1)i−1 g 12
ψi

.(5.19)

Consider the component F Γg1 ,g2
with g1, g2 ≥ 1. We haveMΓg1 ,g2

=Mg1,2 ×M
∼
g2,0(P1,1,1) and ι∗

Γg1 ,g2
B �

E
∨
g1
⊗C−1 ⊕E∨g2

as C∗-equivariant vector bundles. Therefore,

ι∗Γg1 ,g2
Ig = uΛ∨g1

(−u)(−1)g2λg2
.

Using Equation (A.6), we obtain

ι∗Γg1 ,g2

 Ig

e
C
∗(N vir

Γg1 ,g2
)

 =
Λ∨g1

(−u)(−1)g2λg2
Λ∨g1

(u)

(u −ψ1)(−u − ψ̃0)
= (−1)g−1 u2g1−2λg2

(1− ψ1
u )(1 + ψ̃0

u )
,

ϵ∗ιΓg1 ,g2 ∗

ι∗Γg1 ,g2
 Ig

e
C
∗(N vir

Γg1 ,g2
)

∩ [MΓg1 ,g2
]vir


= (−1)g

∑
d1,d2≥0

u2g1−2−d1−d2(−1)d2−1 g1
ψd1

2 g2
ψd2

1 .(5.20)

Summing the coefficients of u−r−1 in the expressions on the right-hand side of Equations (5.18), (5.19),
and (5.20), multiplying the sum by (−1)g+r , applying the map perm∗1,1, and equating the result to 0, we
obtain exactly the desired relation. □

5.2.2. Proof of Equation (5.15). Let us prove by induction that

g 21 =
ℓ∑
k=1

(−1)k+1perm∗1,1Γ
g,1
2g |k +

∑
g1+g2=g
g1,g2≥1

d1+d2=2g1−1
d1,d2≥0

(−1)d2+ℓγ
g1
d1 |ℓ ⋄ g2 21

ψd2

, ℓ ≥ 1.(5.21)

Indeed, for ℓ = 1, this is exactly Equation (5.16) when r = 0. For the induction step, we have to check that

∑
g1+g2=g,g1,g2≥1

d1+d2=2g1−1,d1,d2≥0

(−1)d2+ℓγ
g1
d1 |ℓ ⋄ g2 21

ψd2

= (−1)ℓperm∗1,1Γ
g,1
2g |ℓ+1 +

∑
g1+g2=g,g1,g2≥1

d1+d2=2g1−1,d1,d2≥0

(−1)d2+ℓ+1γ
g1
d1 |ℓ+1 ⋄ g2 21

ψd2

, ℓ ≥ 1,
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or equivalently∑
g1+g2=g
g1,g2≥1

d1+d2=2g1−1
d1,d2≥0

(−1)d2γ
g1
d1 |ℓ ⋄ g2 21

ψd2

=
∑

g1+g2=g
g1,g2≥1

d1+d2=2g−1
d1,d2≥0

γ
g1
d1 |ℓ ⋄ g2 2

ψd2

1 +
∑

g1+g2+g3=g
g1,g2,g3≥1

d1+d2+d3=2(g1+g2)−2
d1,d2,d3≥0

(−1)d3+1γ
g1
d1 |ℓ ⋄ g2 2

ψd2

1 ⋄ g3 21
ψd3

,

which follows from Equation (5.16).
Since γ

g
d |k = 0 if k > g , substituting ℓ = g in Equation (5.21), we obtain

λgDRg(1,−1) = perm∗1,1B
1
g,2g ,

which, because of the obvious property perm∗1,1λgDRg(1,−1) = λgDRg(1,−1), implies Equation (5.15).

5.3. Proof of Conjecture 3 for n = 1

As is proved in [BHIS22, Theorem 2.4], for n = 1, Conjecture 3 follows from Conjecture 2.

6. Proof of Theorem 2.3

Consider an arbitrary CohFT cg,n. In [BPS12], the authors proved that

∂2F0

∂tαa ∂t
β
b

=
∂2F0

∂tαa ∂t
β
b

∣∣∣∣∣∣∣
t
γ
c =δc,0vtop;γ

, 1 ≤ α,β ≤N, a,b ≥ 0,

where vtop;γ := ηγµ ∂2F0

∂t
µ
0∂t

11
0
. Consider formal variables v1, . . . , vN and the associated algebra of differential

polynomials Av . Define

Ω
[0]
α,a;β,b :=

∂2F0

∂tαa ∂t
β
b

∣∣∣∣∣∣∣
t
γ
c =δc,0vγ

, P
[0];α
β,b := ηαµΩ[0]

µ,0;β,b, P
[0]
β,b := (P [0];1

β,b , . . . , P
[0];N
β,b ).

We see that for any m ≥ 2, we have

∂mF0

∂tα1
d1
· · ·∂tαmdm

=
(
D
∂xP

[0]
α1 ,d1

· · ·D
∂xP

[0]
αm−2 ,dm−2

Ω
[0]
αm−1,dm−1;αm,dm

)∣∣∣∣∣
v
γ
k =vtop;γ

k

,

which by Theorem 4.6 implies that∫
M0,m+n

Bm0,(d1,...,dn)c0,m+n(⊗m+n
j=1 vj ) = 0

for any m ≥ 2, n ≥ 1,
∑
di ≥ 2g +m− 1, and vj ∈ V . Using the nondegeneracy of the Poincaré pairing in

cohomology, we see that it is sufficient to prove the following statement.

Proposition 6.1. Cohomology classes ω ∈H ∗(M0,n) of the form

ω = c0,n(⊗nj=1vj ), where cg,n is an arbitrary CohFT and vj ∈ V ,(6.1)

linearly span the cohomology space H ∗(M0,n).
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Proof. For I ⊂ JnK, 2 ≤ |I | ≤ n− 2, denote by δI ∈H2(M0,n) the cohomology class that is Poincaré dual to
the fundamental class of the closure inM0,n of the subvariety formed by curves with exactly one node and
marked points xi with i ∈ I on one bubble, and marked points xj with j ∈ JnK\I on the other bubble. The

cohomology algebra of the moduli spaceM0,n is generated by the classes δI (see, e.g., [Man99]). Using the
tensor product of CohFTs, we see that it is sufficient to prove the following special case of the proposition.

Lemma 6.2. Any cohomology class δI ∈H2(M0,n) can be obtained as a linear combination of cohomology classes
of the form (6.1).

Proof. Consider the CohFT c
(0)
g,n defined as follows:

• V := C
2 with standard basis e1, e2,

• e := e1 + e2,
• ηαβ := δαβ ,

• c(0)
g,n(⊗ni=1eαi ) :=

1 if α1 = . . . = αn,

0 otherwise.

For t ∈C, define

R(z) := exp(r1z), where r1 :=
(
0 t
t 0

)
.

Let us apply this R-matrix to the CohFT c
(0)
g,n and denote the resulting CohFT (with unit) by c

(t)
g,n (we follow

the approach from [PPZ15, Section 2]). It is clear that c
(t)
g,n(⊗ni=1vi) depends polynomially on t and, moreover,

Coeftkc
(t)
g,n(⊗ni=1vi) ∈H

2k(Mg,n).

For any 0 ≤ k ≤ 3g−3+n, this coefficient can be obtained as a linear combination of the classes c
(tj )
g,n(⊗ni=1vi),

1 ≤ j ≤ 3g − 2 + n, where t1, . . . , t3g−2+n are arbitrary pairwise distinct complex numbers. Therefore, it is
sufficient to check that

δI = Coeftc
(t)
0,n(⊗ni=1vi) for some vectors v1, . . . , vn ∈ V .(6.2)

Let us prove that Equation (6.2) is true for

vi =

e1 if i ∈ I,
e2 otherwise.

Indeed, we compute

Coeftc
(t)
0,n(⊗ni=1vi) =

1
2

∑
Ĩ⊂JnK

2≤|̃I |≤n−2

gl∗

(
c

(0)
0,|̃I |+1

(⊗i∈Ĩvi ⊗ eµ)δµ,3−ν ⊗ c(0)
0,n−|̃I |+1

(⊗j∈JnK\Ĩvj ⊗ eν)
)

(6.3)

−
n∑
i=1

ψic
(0)
0,n(v1 ⊗ · · · ⊗ r1(vi)⊗ · · · ⊗ vn)

+π∗
(
ψ2
n+1c

(0)
0,n+1(v1 ⊗ · · · ⊗ vn ⊗ r1(e))

)
,

where gl : M0,|̃I |+1 ⊗M0,n−|̃I |+1 →M0,n is the obvious gluing map and π : M0,n+1 →M0,n forgets the

last marked point. From the definition of the CohFT c
(0)
g,n, it is easy to see that the first summand on the

right-hand side of Equation (6.3) is exactly the class δI , while the second and the third summands vanish.
This completes the proof of the lemma. □

This concludes the proof of Proposition 6.1. □
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7. A reduction of the system of relations in the case m ≥ 2

Recall that in Section 3, we introduced the polynomial Pg,n,m(x1, . . . ,xn) ∈ R∗(Mg,n+m)[x1, . . . ,xn] and
considered the following cohomology classes:

B̃m
g,d

= Coef
x
d1
1 ···x

dn
n
Pg,n,m(7.1)

=
∑

T ∈SRT(b,nd)
g,n,m;◦

(−1)|E(T )|e∗[T ,d] ∈ R
∑
di (Mg,n+m);

see Equation (3.2) and Lemma 3.8. By Theorem 3.4, an equivalent way to state Conjecture 1 is to conjecture
that

B̃m
g,d

= 0 for any g ≥ 0, n ≥ 1, m ≥ 2, d ∈Zn
≥0 satisfying d1 + · · ·+ dn ≥ 2g +m− 1.(7.2)

One more equivalent reformulation reduces the number of relations one has to check.

Theorem 7.1. The system of relations (7.2), as a whole, is equivalent to the following one:

B̃m
g,d

= 0 for any g ≥ 0, n ≥ 1, m ≥ 2, di ≥ 1 satisfying d1 + · · ·+ dn = 2g +m− 1.(7.3)

Proof. For a tree T ∈ SRTg,n,m and h ∈ H̃em
+ (T ), let us use the more detailed notation Ih,T instead of Ih.

We start with the following lemma.

Lemma 7.2. We have B̃mg,(d1,...,dn,0) = π∗B̃mg,(d1,...,dn), where π : Mg,n+1+m→Mg,n+m forgets the marked point
number n+ 1 (and shifts the numbers of the last m marked points).

Proof. Up to a relabeling of the marked points or legs in the stable rooted trees, it is convenient to assume
that the marked point that we forget under the projection π is labeled by 0 and that the labels of all other
n+m points are preserved by π. With this new convention, we have to prove that B̃mg,(0,d1,...,dn) = π∗B̃mg,(d1,...,dn)
or equivalently

Pg,n+1,m(0,x1, . . . ,xn) = π∗Pg,n,m(x1, . . . ,xn).

We use the formula (3.1) for the polynomial Pg,n,m and consider the contribution of a pair (T ,p),
T ∈ SRTg,n,m, p : H̃em

+ (T )→Z≥0. From the pullback formula for the ψ-classes, we have

π∗ξT ∗

 ∏
h∈H̃ em

+ (T )

ψ
p(h)
h

 =
∑

v∈V (T )

ξTv∗

 ∏
h∈H̃ em

+ (Tv)

ψ
pv(h)
h

− ∑
f ∈H̃ em

+ (T )

ξTf ∗

 ∏
h∈H̃ em

+ (Tf )

ψ
pf (h)
h

 .(7.4)

Here Tv is the tree T with an extra leg σ0 attached to the vertex v. Naturally, H̃em
+ (Tv) = H̃em

+ (T )⊔ {σ0},
and we define pv(σ0) := 0, and pv(h) := p(h) for any h ∈ H̃em

+ (T ). The tree Tf is obtained as follows (see
also (7.5)):

• If f is a leg σi , 1 ≤ i ≤ n, then we attach to it a new vertex of genus 0 and attach to this new vertex
the leg σi and an extra leg σ0.
• If f is a part of an edge, then we break this edge into two half-edges, insert a vertex of genus 0
between them, and attach an extra leg σ0 to this vertex.

We have a natural inclusion H̃em
+ (T ) ⊂ H̃em

+ (Tf ) with |H̃em
+ (Tf )\H̃em

+ (T )| = 2. The two half-edges from

H̃em
+ (Tf )\H̃em

+ (T ) are attached to the new vertex of genus 0: one of them is σ0, and we denote the

other one by f̃ . By definition, the function pf coincides with p on H̃em
+ (T )\{f }, pf (f ) := p(f ) − 1, and
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pf (σ0) = pf (f̃ ) := 0.

h

ψp(f )

{ 0
ψ0

σ0
ψ0

h

ψp(f )−1(7.5)

This way, we see that taking the sum over all pairs (T ,p) contributing to Pg,n,m(x1, . . . ,xn) and using (7.4),
we can list all pairs contributing to Pg,n+1,m(0,x1, . . . ,xn), and moreover the signs are exactly the ones we
have to use in the formula for Pg,n+1,m(0,x1, . . . ,xn).

So we just have to check the coefficients. In the case of the pairs (Tv ,pv), the equality of the coefficients is

obvious because x
pv(h)+1
Ih,Tv

∣∣∣∣
x0=0

= xp(h)+1
Ih,T

for any h ∈ H̃em
+ (T ) = H̃em

+ (Tv)\{σ0}. In the case of the pairs (Tf ,pf ),

we have x
pf (h)+1
Ih,Tf

∣∣∣∣∣
x0=0

= x
p(h)+1
Ih,T

for any h ∈ H̃em
+ (T )\{f } ⊂ H̃em

+ (Tf ). Regarding the remaining half-edges,

note that xIf̃ ,Tf
= xIf ,Tf

∣∣∣∣
x0=0

= xIf ,T , which implies that x
p(f )+1
If ,T

= x
pf (f )+1
If ,Tf

x
pf (f̃ )+1
If̃ ,Tf

∣∣∣∣∣
x0=0

. Thus, the coefficients

match for this type of trees as well, and we conclude that Pg,n+1,m(0,x1, . . . ,xn) = π∗Pg,n,m(x1, . . . ,xn). □

Lemma 7.3. Assume that the relations (7.2) hold for all triples (g ′ ,n′ ,m′) with either g ′ < g , n′ ≤ n or g ′ ≤ g ,
n′ < n, for m′ =m and m′ = 2. Then the difference

B̃mg,(d1,...,di−1,di+1,di+1,...,dn) −ψiB̃
m
g,(d1,...,dn)(7.6)

is equal to zero for any d1, . . . ,dn ≥ 0 such that d1 + · · ·+ dn ≥ 2g +m− 1.

Proof. Using the formula (7.1), we see that the pairs (T ,p), T ∈ SRTg,n,m, p : H̃em
+ (T )→Z≥0, contributing to

the difference B̃mg,(d1,...,di+1,...,dn) −ψiB̃
m
g,(d1,...,dn) satisfy the property p(σi) = 0; these graphs come from the

first summand. Obviously, σi cannot be attached to the root vertex (otherwise, the coefficient of xdi+1
i is

equal to zero). So σi is attached to the vertex that is the first descendant of some f ∈ H̃em
+ (T ).

We cut the edge that contains f and obtain two trees, T1 and T2, of genera g1 and g2, respectively. The
regular legs of T1 are σj , j < If ,T , and f , the root vertex is the original root vertex, and the frozen legs are
the frozen legs of T . The root vertex of T2 is the one where σi is attached, the regular legs are σj , j ∈ If ,T \{i},
and the frozen legs are σi and the half-edge f ′ that formed an edge with f in T . So T1 ∈ SRTg1,n−|If ,T |+1,m

and T2 ∈ SRTg2,|If ,T |−1,2. We have natural inclusions H̃em
+ (T1) ⊂ H̃em

+ (T ) and H̃em
+ (T2) ⊂ H̃em

+ (T ), and we

denote by p(1) and p(2), respectively, the restrictions of the function p to these subsets.

Example 7.4. Consider, for instance, the following tree T , which is cut into T1 and T2 at the dashed place on
the picture:

g2,1

f ′

σ1 σ4ψp4

ψp(h3)
g2,2

σ5

ψp5

g1,2

fψp(f )

ψp(h2)
g1,1

ψp(h1)

σ3ψp3

σ6

σ7

σ8

g1,3

σ2

ψp2

Here we assume n = 5, m = 3, g = g1 + g2, where g1 = g1,1 + g1,2 + g1,3 and g2 = g2,1 + g2,2, i = 1. The tree
T is cut into two trees at the edge (f , f ′), If ,T = {1,4,5}, and we set {h1,h2,h3, f } :=He

+(T ).
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Note that if If ,T , {i}, then the number of regular legs both in T1 and in T2 is less than n. If If ,T = {i},
then the genus of T1 is less than g .

We can express the contribution of the pair (T ,p) to the difference (7.6) as follows:

Coef
x
d1
1 ···x

di+1
i ···xdnn

gl∗

(−1)
∏

i∈JnK\If ,T

x−1
i · (−1)|E(T1)|ξT1∗

 ∏
h∈H̃ em

+ (T1)

ψ
p(1)(h)
h

 ∏
h∈H̃ em

+ (T1)

x
p(1)(h)+1
Ih,T

(7.7)

⊗
∏

j∈If ,T \{i}
x−1
j · (−1)|E(T2)|ξT2∗

 ∏
h∈H̃ em

+ (T2)

ψ
p(2)(h)
h

 ∏
h∈H̃ em

+ (T2)

x
p(2)(h)+1
Ih,T

 ,
where gl : Mg1,(n−|If ,T |+1)+m ×Mg2,(|If ,T |−1)+2 →Mg,n+m is the natural gluing map that glues the marked
point corresponding to the regular leg f on the curves of the first space and the marked point corresponding
to the frozen leg f ′ on the curves of the second space into a node.

Summing the expressions (7.7) over all pair (T ,p), T ∈ SRTg,n,m, T : H̃em
+ (T )→Z≥0, such that p(σi) = 0

and σi is not attached to the root of T , we obtain that the difference (7.6) is equal to

−Coef
x
d1
1 ···x

di+1
i ···xdnn

∑
g1+g2=g
g1,g2≥0

∑
I⊔J=JnK
i∈J,{i}

gl∗

[
xJPg1,|I |+1,m(XI ,xJ )︸                ︷︷                ︸

A:=

⊗Pg2,|J |−1,2(XJ\{i})︸            ︷︷            ︸
B:=

]

−Coef
x
d1
1 ···x

di+1
i ···xdnn

∑
g1+g2=g
g1≥0, g2≥1

gl∗

[
xiPg1,n,m(x1, . . . , x̂i , . . . ,xn,xi)︸                             ︷︷                             ︸

C:=

⊗1
]
,

where by XI we denote the tuple of numbers xi1 , . . . ,xi|I | , {i1, . . . , i|I |} = I . By the assumptions of the lemma,
we have

degA ≤ 2g1 +m− 2 + 1, degB ≤ 2g2 + 2− 2, degC ≤ 2g1 +m− 2 + 1 ≤ 2g +m− 1,

which implies that the difference (7.6) is equal to 0 when
∑
di ≥ 2g +m− 1. □

Now we can complete the proof of Theorem 7.1. With Lemma 7.3, we can first prove the equivalence
of (7.2) and (7.3) for m = 2 by induction on the pairs (g,n) ignoring the condition di ≥ 1 in (7.3). The
condition di ≥ 1 is then restored by Lemma 7.2. Once it is done for m = 2, we can do it for any m ≥ 2,
again, first using Lemma 7.3 and induction on the pairs (g,n) ignoring the condition di ≥ 1 in (7.3) and then
applying Lemma 7.2 to restore this condition. □

Remark 7.5. Theorem 7.1 reduces the whole system of tautological relations from Conjecture 1 to a finite
number of relations of fixed degree 2g +m− 1 for each g and m. The total number of relations to check is
equal to the number of partitions of 2g +m− 1.

In particular, the crucial case for the application to the polynomiality of the Dubrovin–Zhang hierarchies
for arbitrary F-CohFTs (see Section 4.3.2), the case m = 2, is reduced to |{λ ⊢ (2g + 1)}| relations for each
g ≥ 0. One of these relations is proved for any g ≥ 0 in Section 5.1.

Appendix. Localization in the moduli space of stable relative maps

For convenience of a reader, we briefly review here the localization formula for the moduli space of stable
relative maps to (P1,∞), following the papers [GV05] (which presents the formula in a much more general
setting) and [Liu11] (containing details in the case of stable relative maps to (P1,∞)).



40 A. Buryak and S. Shadrin40 A. Buryak and S. Shadrin

A.1. Stable relative maps

For m ≥ 1, we denote by P
1(m) = P

1
1 ∪ . . .∪P1

m a chain of m copies of P1. For l = 1, . . . ,m− 1, let ql
be the node at which P 1

l and P
1
l+1 intersect. Let q0 ∈ P1

1 and qm ∈ P1
m be smooth points. Identifying q0

with ∞ ∈ P1 = P
1
0, we obtain a chain of m+ 1 copies of P1 that we denote by P

1[m]. In the case m = 0,
we define P

1[0] := P
1 = P

1
0 and q0 :=∞. The component P1 = P

1
0 is called the root component, and the

components P1
1, . . . ,P

1
m are called the bubble components.

Given g ≥ 0, d ≥ 1, n ≥ 0, and a partition µ of d of length h = l(µ), a stable relative map to (P1,∞) is the
following data:

(f : C −→ P
1[m];x1, . . . ,xh+n),(A.1)

where C is a connected complex algebraic curve of genus g , with at most nodal singularities, f is a morphism,
and x1, . . . ,xh+n ∈ C are smooth pairwise distinct marked points with the following properties:

a) We have the degree condition over each P
1
i , 0 ≤ i ≤m.

b) We have f −1(qm) = {x1, . . . ,xh}, and the map f is ramified at xi , 1 ≤ i ≤ h, with multiplicity µi .
c) We have the predeformability condition over each node of P1[m].
d) The automorphism group of (A.1) is finite, where in the target P1[m], we allow automorphisms fixing

all of the points from P
1
0 ∪ {qm}.

The space of isomorphism classes of stable relative maps is denoted byMg,n(P1,µ). This space is connected,
and it is endowed with a virtual fundamental class

[Mg,n(P1,µ)]vir ∈H2·vdim(Mg,n(P1,µ),C), vdim = 2g − 2 + d + h.

Given g ≥ 0, d ≥ 1, n ≥ 0, and partitions ν,µ of d of lengths k = l(ν) and h = l(µ), a stable relative map to
rubber P1 is the following data:

(f : C −→ P
1(m);x1, . . . ,xh+n+k),(A.2)

where C is a connected complex algebraic curves of genus g with at most nodal singularities, f is a
morphism, and x1, . . . ,xh+n+k ∈ C are smooth pairwise distinct marked points with the following properties:

a) We have the degree condition over each P
1
i , 1 ≤ i ≤m.

b) We have f −1(q0) = {xh+n+1, . . . ,xh+n+k}, and the map f is ramified at xh+n+i , 1 ≤ i ≤ k, with
multiplicity νi .

c) We have f −1(qm) = {x1, . . . ,xh}, and the map f is ramified at xi , 1 ≤ i ≤ h, with multiplicity µi .
d) We have the predeformability condition over each node of P1(m).
e) The automorphism group of (A.2) is finite, where in the target P1(m), we allow automorphisms fixing

the points q0 and qm.

The space of isomorphism classes of stable relative maps to rubber P1 is denoted byM∼g,n(P1,ν,µ). This
space is connected, and it is endowed with a virtual fundamental class

[M∼g,n(P1,ν,µ)]vir ∈H2·vdim(M∼g,n(P1,ν,µ),C), vdim = 2g − 3 + k + h.

We defineM∼g,n(P1,ν,µ) := ∅ if |µ| , |ν| or if |µ| = |ν| = 0.
One can also consider stable relative maps to rubber P

1 where the source curve is not necessarily
connected. The moduli space of such maps will be denoted byM∼,•g,n(P1,ν,µ). Note that the genus g can be
negative here. This space is not necessarily connected. The connected components can be described as
follows. For r ≥ 1, consider a decomposition

Jh+n+ kK =
r⊔
i=1

Ai , g =
r∑
i=1

gi + 1− r, gi ≥ 0.
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We denote by A the set of pairs

A := {(g1,A1), (g2,A2), . . . , (gr ,Ar )}.

Denote by
M∼,•g,n(P1,ν,µ)A

the subspace ofM∼,•g,n(P1,ν,µ) formed by stable relative maps to rubber P1, where the source curve has
r connected components, and for each 1 ≤ j ≤ r, all of the points from {xi}i∈Aj belong to one connected

component of genus gj . IfM
∼,•
g,n(P1,ν,µ)A , ∅, then it is a connected component ofM∼,•g,n(P1,ν,µ).

Assigning to a stable relative map to rubber P1 the cotangent space at the point q0 ∈ P(m) gives a line
bundle overM∼,•g,n(P1,ν,µ) whose first Chern class is denoted by ψ̃0 ∈H2(M∼,•g,n(P1,ν,µ)).

A.2. C∗-fixed points

Consider the C
∗-action on P

1 given by

t · [x,y] := [tx,y], [x,y] ∈ P1, t ∈C∗,

and the induced C
∗-action onMg,n(P1,µ). For the localization formula, we will need a description of the

connected components of the C
∗-fixed point setMg,n(P1,µ)C

∗
.

We assume 2g − 2 + h+n > 0.
Consider a stable relative map (f : C → P

1[m];x1, . . . ,xh+n) from Mg,n(P1,µ)C
∗
. Then we have the

following:

• f −1(P1
0\{0,∞}) is a disjoint union of twice-punctured spheres S1, . . . ,Sk , k ≥ 1, and f |Si : Si →

P
1
0\{0,∞} is an honest covering map, whose degree we denote by di .

• f −1(0) is a disjoint union of connected nodal curves C
(0)
1 , . . . ,C

(0)
p and of some number of points.

Regarding the behavior of f over ∞, there are two cases.

Case 1: m = 0. Then we have f −1(∞) = {x1, . . . ,xh}, p = 1, f −1(0) = C(0)
1 , k = h, and after a renumbering

of the spheres S1, . . . ,Sh, we have di = µi . Denote the space of such maps by F 0 ⊂ Mg,n(P1,µ)C
∗
; it is

connected. Note that xh+1, . . . ,xh+n ∈ C
(0)
1 , and therefore the curve C

(0)
1 equipped with the marked points

C
(0)
1 ∩ S i , 1 ≤ i ≤ h, and xh+1, . . . ,xh+n is a stable curve fromMg,h+n. Conversely, given a stable curve from

Mg,h+n, let us attach h copies of P1 at the first h marked points and construct a map from the resulting
curve to P

1 by sending the original stable curve to 0 and mapping the ith copy of P1 to the target P1 by
[x,y] 7→ [xµi , yµi ]. This gives a surjective map

ι0 : Mg,h+n −→ F 0,

for which we have

ι0∗[Mg,h+n] =
h∏
i=1

µi · [F 0]vir.

Case 2: m ≥ 1. Then f −1(P1(m)) is a disjoint union of connected nodal curves C
(∞)
1 , . . . ,C

(∞)
r . Let us

assign to our stable relative map a decorated bipartite graph Γ as follows:

• The vertices v ∈ V (Γ ) are labeled by 0 or ∞, which gives a decomposition V (Γ ) = V 0(Γ )⊔V∞(Γ ).
The vertices from V 0(Γ ) correspond to the connected components of f −1(0), and the vertices from

V∞(Γ ) correspond to the curves C
(∞)
i , 1 ≤ i ≤ r .

• A vertex v ∈ V 0(Γ ) is called unstable if it corresponds to a point in f −1(0). All other vertices from
V 0(Γ ) are called stable. The sets of stable and unstable vertices are denoted by V 0

st(Γ ) and V 0
unst(Γ ),

respectively; V 0(Γ ) = V 0
st(Γ )⊔V 0

unst(Γ ).
• Each vertex v ∈ V (Γ ) is decorated with a number g(v) ∈Z≥0 that is equal to
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– the genus of the corresponding curve if v corresponds to a curve,
– 0 if v corresponds to a point.

• The edges e ∈ E(Γ ) correspond to the spheres S1, . . . ,Sk . The edge e ∈ E(Γ ) corresponding to S i is
decorated with de := di . By definition, we assign the same number to both half-edges h1, h2 forming
the edge e; that is, dh1

= dh2
:= de.

• The graph Γ carries h+n legs L(Γ ) that correspond to the marked points on C.
• We say that an unstable vertex v ∈ V 0

unst(Γ ) is of
– first type if n(v) = 1 (the set of such vertices is denoted by V 0,1

unst(Γ )),
– second type if n(v) = 2 and |L[v]| = 1 (the set of such vertices is denoted by V 0,2

unst(Γ )),
– third type if n(v) = 2 and L[v] = ∅ (the set of such vertices is denoted by V 0,3

unst(Γ )).
If v is an unstable vertex of first type or of second type, then it is incident to exactly one edge
e ∈ E(Γ ). Set dv := de. If v is an unstable vertex of third type, then it is incident to exactly two edges
e, ẽ ∈ E(Γ ). Set dv := de and d̃v := dẽ.
• The graph Γ is connected.

Denote by F Γ the subspace of Mg,n(P1,µ)C
∗
formed by stable relative maps with a given decorated

bipartite graph Γ . If F Γ , ∅, then it is a connected component ofMg,n(P1,µ)C
∗
. Introduce the following

notation:

g∞(Γ ) :=
∑

v∈V∞(Γ )

(g(v)− 1) + 1, n∞(Γ ) :=
∑

v∈V∞(Γ )

|L[v]| − h.

Consider the set of pairs

A(Γ ) := {(g(v),H[v])}v∈V∞(Γ ),

and denote by ν(Γ ) the partition of d = |µ| given by the numbers de, e ∈ E(Γ ). Set

MΓ :=
∏

v∈V 0
st(Γ )

Mg(v),n(v) ×M
∼,•
g∞(Γ ),n∞(Γ )(P

1,ν(Γ ),µ)A(Γ ).

We have

[MΓ ]vir =
∏

v∈V 0
st(Γ )

[Mg(v),n(v)]×
[
M∼,•g∞(Γ ),n∞(Γ )(P

1,ν(Γ ),µ)A(Γ )

]vir
,

and for the natural surjective morphism

ιΓ : MΓ −→ F Γ ,

we have

ιΓ ∗[MΓ ]vir = |Aut(Γ )|
∏
e∈E(Γ )

de · [F Γ ]vir.(A.3)

A.3. Localization formula

For a topological space X with a C
∗-action, we denote by HC

∗
∗ (X) and H ∗

C
∗(X) the C

∗-equivariant
homology and cohomology groups of X with coefficients in C, respectively. We denote by u the generator of
the equivariant cohomology ring of a point: H ∗

C
∗(pt) = C[u]. The equivariant Euler class of a C

∗-equivariant
complex vector bundle V → X is denoted by e

C
∗(V ).

We now consider the C
∗-action on Mg,n(P1,µ) given in the previous section. The moduli space

Mg,n(P1,µ) is endowed with a C
∗-equivariant virtual fundamental class, which abusing notation we

denote by [Mg,n(P1,µ)]vir ∈ HC
∗

2·vdim(Mg,n(P1,µ)). The virtual localization formula for the moduli space

Mg,n(P1,µ) proved in [GV05] gives the following formula for this class considered as an element of
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HC
∗
∗ (Mg,n(P1,µ))⊗

C[u] C[u,u−1]:

[Mg,n(P1,µ)]vir =
[F 0]vir

e
C
∗(N vir

0 )
+

∑
decorated
graphs Γ

[F Γ ]vir

e
C
∗(N vir

Γ
)
∈HC

∗
∗ (Mg,n(P1,µ))⊗

C[u] C[u,u−1],(A.4)

where N vir
0 and N vir

Γ
are the virtual normal bundles to the subspaces F 0 and F Γ , respectively. The following

formulas are very useful for applications of the localization formula:

1

ι∗0eC∗(N
vir
0 )

= Λ∨g (u)u−1
h∏
i=1

µµi+1
i

µi !
u1−µi

u −µiψi

 ,(A.5)

1

ι∗
Γ
e
C
∗(N vir

Γ
)

=
1

−u − ψ̃0

∏
v∈V 0

st(Γ )

Λ∨g(v)(u)u−1
∏

h∈H[v]\L[v]

ddh+1
h

dh!
u1−dh

u − dhψh

(A.6)

×
∏

v∈V 0,1
unst(Γ )

ddv−1
v

dv!
u1−dv

 ∏
v∈V 0,2

unst(Γ )

ddvvdv!
u−dv

 ∏
v∈V 0,3

unst(Γ )

ddv+1
v d̃

d̃v+1
v

dv!d̃v!

u−dv−d̃v

dv + d̃v

 ,
where

Λ∨g (u) :=
g∑
i=0

(−1)iλiu
g−i .
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