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Abstract. We prove that every toric monoid appears in a space of maps from tropical curves to an
orthant. It follows that spaces of logarithmic maps to Artin fans exhibit arbitrary toric singularities:
a virtual universality theorem for logarithmic maps to pairs. The target rank depends on the chosen
singularity: we show that the cone over the 7-gon never appears in a space of maps to a rank 1
target. We obtain similar results for tropical maps to affine space.
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1. Introduction

Mnëv universality – also known as Murphy’s or Vakil’s law – asserts that a given class of moduli spaces
exhibits arbitrary singularities. It is known to hold in many important cases, including incidence schemes,
Hilbert schemes, Chow varieties and moduli of toric vector bundles; see [Mnë85,Mnë88,Vak06,LV13,Pay08,
KP11,Erm12, Jel20,BJLR18,Uts20,APT15,AP16].

Spaces of stable maps satisfy universality; see [Vak06]. But while they can be arbitrarily singular, they are
always “virtually” smooth: a space of stable maps admits a perfect obstruction theory (see [BF97,LT98]), which
controls deformations and furnishes the space with many “virtual” structures analogous to those found on a
smooth variety: fundamental class (see [BM96]), torus localisation (see [GP99]), Hirzebruch–Riemann–Roch
theorem (see [FG10]) and so on. These virtual structures play a central role in Gromov–Witten theory.

Recent years have witnessed the ascendance of logarithmic Gromov–Witten theory and the associated
moduli spaces of stable logarithmic maps; see [GS13,Che14,AC14]. This class of moduli spaces includes
ordinary stable maps, hence automatically satisfies universality.

On the virtual level, however, there is a crucial difference: the obstruction theory for the space of
stable logarithmic maps is defined relative to the space of prestable logarithmic maps to the Artin fan
(see [AW18, Proposition 6.3.1])

Log(X |D) −→ Log(AX |D ).

The stack Log(AX |D ) is irreducible, so virtual pullback furnishes Log(X |D) with a virtual fundamental class;
see [Man12]. However, Log(AX |D ) is not in general smooth, or even virtually smooth. As a result, Log(X |D)
does not admit a perfect obstruction theory in the absolute sense. This marks a sharp departure from the
theory of ordinary stable maps.

1.1. Universality

A basic question arises: which singularities does Log(AX |D ) exhibit? Equivalently: which “virtual
singularities” does Log(X |D) exhibit?

The question is not only of theoretical interest: virtual singularities pose novel technical difficulties –
e.g. for torus localisation (see [Gra19]) and logarithmic intersection theory (see [MR21]) – so it is worthwhile
investigating their complexity.

Though Log(AX |D ) is singular, it carries a logarithmic structure with respect to which it is logarithmically
smooth; see [AW18, Proposition 1.6.1]. It follows that it has at worst toric singularities. The main result of
this paper is that it exhibits arbitrary toric singularities. This is a (virtual, toric) universality theorem for
logarithmic maps.
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Theorem A (Theorem 3.7). Every toric singularity appears in a moduli space of prestable logarithmic maps
Log(An), where A = [A1/Gm] and n ∈N (depending on the singularity). This phenomenon occurs already for
genus zero source curves.

The proof is tropical. Given a prestable logarithmic map to An, the associated discrete data is recorded
in a tropical type of map to R

n
+ (see Definition 2.3). This tropical type defines a toric monoid, whose

corresponding affine toric variety gives the local singularity type of Log(An) (see Proposition 2.12). Hence
Theorem A results immediately from the following.

Theorem B (Theorem 3.4). Given a toric monoid P , there exist an n ∈N and a representable tropical type of
map to Rn

+ whose associated tropical monoid is P . Moreover, we may choose a tropical type with genus zero source
curve.

To prove this, we start with an arbitrary presentation of the monoid P . We then modify it to a presentation
which is both “bipartite” and “positive” (see Definitions 3.1 and 3.2). Bipartite means that the generators can
be partitioned into two sets

G = G1 ⊔G2

such that elements of G1 only appear on left-hand sides of relations and elements of G2 only appear on
right-hand sides. Positive simply means that none of the generators are zero.

After reducing to a bipartite and positive presentation (see Proposition 3.3), we then build a tropical type
whose shape mirrors the special structure of this presentation (see the proof of Theorem 3.4). The source
graph Γ consists of two paths, whose edges are indexed by the generators belonging to the two sets G1,G2.
The relations are encoded in a single continuity equation in a high-dimensional tropical target Rn

+. Here n
depends on P and is the number of relations in the chosen bipartite and positive presentation.

While we focus on tropical maps to orthants, our techniques also establish universality for tropical maps
to affine spaces; see Section 3.4.

1.2. Boundedness

As remarked, in our construction the target rank n depends on the chosen monoid P . We do not know
whether this dependence is essential.

Question C (Question 4.1). Does there exist a single n ∈N such that every toric monoid appears as the
tropical monoid associated to some tropical type of map to R

n
+?

In Section 4 we prove that n = 1 does not suffice.

Theorem D (Theorem 4.17). For k ⩾ 7, the cone over a k-gon does not appear as the tropical monoid associated to
any tropical type of map to R+.

The proof strategy is to bound both the rank and the minimal number of generators of a tropical monoid
in terms of the number of vertices of the source graph. This leads to a contradiction when the rank is much
smaller than the minimal number of generators, as happens for cones over polygons with large numbers of
edges.

In the opposite direction we also show (see Theorem 4.12) that every rank 2 monoid does appear as the
monoid associated to a tropical type of map to R+. The argument is quite subtle, with saturation playing an
essential role (see Example 4.13). We hope that the ideas developed there will shed light on Question C for
n ⩾ 2.

1.3. Sources and targets

In the enumerative geometry of logarithmic and tropical curves, there is a tension between two types of
complexity (see [BNR22, Section 0.1]):
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• Source complexity: genus of the source curve;
• Target complexity: rank of the target.

Together our results show that, at least as far as singularities of the moduli space are concerned, target
complexity is the more fundamental obstruction: with trivial source genus and arbitrary target rank, we
obtain all toric monoids (see Theorem B), but with arbitrary source genus and trivial target rank, we do not
(see Theorem D).

1.4. Context

This paper forms part of a broader research direction: investigating the geometry of moduli spaces
of logarithmic maps. The present paper focuses on local aspects; for recent progress on global aspects,
see [Ran17,Kan23,KHN+24].

Spaces of logarithmic maps form a rich class of modular toroidal embeddings, and as such their geometry
is of intrinsic interest. In addition, this direction has produced novel approaches to enumerative problems;
see [NR22,BNR22].

As already remarked, virtual singularities pose unique technical challenges. In many cases – e.g. for virtual
localisation or applications of Fulton’s blowup formula – these are circumvented, either explicitly or implicitly,
by passing to a resolution. Our results imply that, in principle, this step is as complicated as the full toric
resolution algorithm.

It is currently unknown whether there exists a general-purpose modular desingularisation of the space of
logarithmic maps. For maps to A, such a desingularisation is provided by the space of maps to expansions,
which is described tropically as the space of image-ordered maps to R+ (see e.g. [BNR21, Section 3.1]). For
maps to An, the analogous space depends on combinatorial choices, see [Ran22,MR20], and it is natural to
wonder whether there is a choice which produces smooth moduli. It follows from our results that such a
putative moduli space would automatically implement resolution of arbitrary toric singularities.

Notation

For a positive integer n, we set [n] := {1, . . . ,n}. We let Rn
+ denote the rational polyhedral cone Rn

⩾0 with
Z

n as the underlying lattice.
To declutter notation, we write Log(X |D) for a space of stable logarithmic maps and Log(AX |D ) for a

space of prestable logarithmic maps to the Artin fan. Stability, however, plays no essential role: all results
concerning the singularities of moduli spaces apply whether or not we impose stability.

Acknowledgements

We thank Luca Battistella and Dhruv Ranganathan for inspiring conversations. G.C. is indebted to
Jacqueline Jones for her sustained dedication and support, without which he would not have had many
opportunities.

2. Preliminaries

The purpose of this section is to establish conventions and set notation. Detailed treatments of the
material can be found in the following references: for monoids, [Ogu18, Part I]; for logarithmic and tropical
maps, [ACGS20, Section 2.5]; for Artin fans, [ACM+16, Section 5] and [AW18].
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2.1. Presentations of monoids

A monoid is a set with a single binary operation, satisfying all the axioms of an abelian group except the
existence of inverses. A monoid presentation is a pair (G|R), where G is a finite generating set and

R ⊆N
G ×NG

is a finite relation set. All monoids will be assumed finitely presented. We often write

(w1 = w2) ∈ R

to denote the pair (w1,w2) ∈ R. The presentation (G|R) defines a monoid N
G/R as the colimit

N
R

N
G

N
G/R.

w1

w2

For a discussion of limits and colimits of monoids, see [Ogu18, Chapter I.1.1]. A monoid is toric if it is finitely
generated, torsion-free, integral, saturated and sharp; for a list of terminology, see [Che14, Appendix A].
Toric monoids are precisely those of the form

P = σ∨ ∩M,

where M is a lattice and σ ⊆ M∨
R

is a strictly convex rational polyhedral cone of full dimension. The
association P ↔ σ is a duality. Every finitely generated monoid P admits a torification

P −→ P tor

which is the universal toric monoid to which P maps. This construction is functorial, forming a left adjoint
to the inclusion of the full subcategory of toric monoids.

Definition 2.1. Given a monoid presentation (G|R), the associated toric monoid is the torification of NG/R.

Remark 2.2. The precise order of operations for torification is as follows:

(1) Integralise and remove torsion. This is achieved in a single step by replacing the monoid by its image
in the torsion-free part of its groupification.

(2) Saturate. It follows immediately from the definitions that this preserves integrality and torsion-freeness.
(3) Sharpen. This preserves integrality, torsion-freeness and saturatedness by [Ogu18, Propositions I.1.3.3

and I.1.3.5(4)].

During this process, saturation is the only step where the minimal number of generators can increase, and
sharpening is the only step where the rank of the groupification can change. These facts will be used in
Section 4.

Removing torsion in (1) is in fact unnecessary since the sharpening in (3) also guarantees this. We keep
the redundancy to align more closely with the existing literature; see Remark 2.7.

2.2. Tropical maps

We focus on tropical maps to orthants, as these are the tropicalisations of logarithmic maps to pairs;
further details can be found in [ACGS20, Section 2.5]. However, our arguments also apply to tropical maps
to affine spaces (see Section 3.4).

Consider the strictly convex rational polyhedral cone

R
n
+ := (σ =R

n
⩾0,N =Z

n).

Definition 2.3. A tropical type of map to R
n
+ consists of the following data:

(1) A finite connected graph Γ consisting of vertices, edges and semi-infinite legs, where each leg l ∈ L(Γ )
carries an index label il ∈ [m] and each vertex v ∈ V (Γ ) carries a genus and multi-degree labels

gv ∈N, dv ∈Zn;
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(2) To every vertex, edge and leg of Γ , an associated face of Rn
+

v⇝ σv , e⇝ σe, l⇝ σl

such that if v ⩽ e, then σv ⩽ σe for every vertex v and adjacent edge or leg e;
(3) For every oriented edge or leg e⃗, a slope vector

me⃗ ∈Zn

contained in the linear space spanned by σe and satisfying me⃗ = −m ⃗e.

These data are required to satisfy the balancing condition at each vertex: for every v ∈ V (Γ ),

dv =
∑
v⩽e⃗

me⃗,

where the sum is over adjacent edges and legs, all oriented away from v. The balancing condition uniquely
determines the dv in terms of the me⃗.

2.3. Tropical monoids

Fix a tropical type τ. There is an associated tropical moduli cone parametrising maps

f : ⊏ −→R
n
+

of type τ. Here ⊏ is a metric enhancement of Γ , and the map f is constrained to have slope me⃗ along every
oriented edge and leg. Following [GS13] we formulate the discussion in terms of the toric monoid dual to the
tropical moduli cone.

Notation 2.4. Given a set I ⊆ [n], we let

σI ⩽R
n
+

denote the face spanned by the standard basis vectors {ei : i ∈ I}. For every vertex v ∈ V (Γ ), let I(v) ⊆ [n]
denote the set with σI(v) = σv and similarly for edges and legs.

Definition 2.5. Given a tropical type τ, the corresponding tropical presentation (Gτ|Rτ) is defined as follows.
Generators are given by the symbols

Gτ := {ℓe : e ∈ E(Γ )} ⊔ {f(v)i : v ∈ V (Γ ), i ∈ I(v)}.

Here ℓe is the length of the finite edge e, and the vector (f(v)i : i ∈ I(v)) is the position f(v) ∈ σI(v) of the
vertex v.

The relations in Rτ are indexed by pairs (e⃗, i), where e⃗ is an oriented edge and i ∈ I(e). The associated
relation is

(2.1) f(v2)i = f(v1)i + (me⃗)i ℓe,

where e⃗ starts at v1 and ends at v2. Here (me⃗)i is the component of the vector me⃗ ∈ Zn in the direction
i ∈ I(e) ⊆ [n]. This relation imposes that f has slope me⃗ along e⃗.

Note that (me⃗)i ∈ Z, whilst f(v2)i , f(v1)i , ℓe ∈ Gτ are all generators. If (me⃗)i < 0, then we rearrange the
relation so that all coefficients are non-negative. If it happens that the containment σvj ⩽ σe is strict, then
for i ∈ I(e) \ I(vj ), we replace f(vj )i by 0 in (2.1).

Definition 2.6. The tropical monoid Pτ is the toric monoid associated to the tropical presentation (Gτ|Rτ),
in the sense of Definition 2.1.
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Remark 2.7. The tropical monoid defined above is the sharpening of the basic monoid defined in [GS13,
Construction 1.16]. In Gross–Siebert’s construction, saturating the relations amounts to taking the torsion-free
part of the monoid, while quotienting the groupification and taking the image of the prequotient amounts to
integralising. Note that Gross–Siebert’s basic monoid is not always sharp, though it is when the tropical
type is representable (see [GS13, Proposition 1.19] and Lemma 4.9 below). For Theorem B we are only
interested in monoid presentations (G|R) such that NG/R is sharp, so whether or not we sharpen at the end
is unimportant.

2.4. Representability

Tropical types record the combinatorial data of a tropical map. However, not all tropical types arise in
this way.

Definition 2.8. A tropical type τ is representable if there exists a map

f : ⊏ −→R
n
+,

where ⊏ is a metric enhancement of Γ with strictly positive edge lengths, and f is a map with slope me⃗ along
every oriented edge and leg, such that

f(RelInt(p)) ⊆ RelInt(σp)

for all polyhedra p ∈ V (Γ )⊔E(Γ )⊔L(Γ ).

Remark 2.9. It is essential to impose that all edge lengths are strictly positive and that the relative interior
of p is mapped to the relative interior of σp. Otherwise, every tropical type would be trivially representable,
by setting all edge lengths to zero and letting f be the map collapsing ⊏ to the point 0 ∈Rn

+.

Remark 2.10. Representability is referred to as smoothability in [BNR22, Section 3.4]. This notion should not
be confused with realisability, which is typically a condition on individual tropical maps rather than tropical
types (see e.g. [Spe14,RSPW19]).

Lemma 2.11. A tropical type is representable if and only if there exists a monoid morphism

u : Pτ −→R+

which is non-zero on the generators ℓe and f(v)i appearing in Definition 2.5.

Proof. The given presentation of Pτ gives an inclusion of rational polyhedral cones

Hom(Pτ,R+) ↪−−→
∏
e∈E(Γ )

R+ℓ
∨
e ×

∏
v∈V (Γ )

∏
i∈I(v)

R+f(v)
∨
i

which realises Hom(Pτ,R+) as the tropical moduli cone associated to τ. Every

u ∈Hom(Pτ,R+)

thus determines a metric enhancement of Γ together with a map f to R
n
+. The condition that u is non-zero

on generators is then precisely the condition that the edge lengths are strictly positive and that f maps the
relative interior of every p into the relative interior of the associated cone σp. □

2.5. Logarithmic maps and Artin fans

Let (X |D) be a normal crossings pair. This means that, étale locally, the pair (X |D) is isomorphic to
affine space equipped with a collection of coordinate hyperplanes. The Artin fan

AX |D
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is a smooth toric Artin stack of pure dimension zero. There is a smooth morphism X → AX |D which
identifies the strata of (X |D) with the toric strata of AX |D . The Artin fan has an open cover by stacks of the
form An, where

A := [A1/Gm].

There is a pushforward morphism on spaces of logarithmic maps

Log(X |D) −→ Log(AX |D ),

where AX |D carries the toric logarithmic structure. This morphism is equipped with a relative perfect
obstruction theory. This identifies the virtual singularities of Log(X |D) with the actual singularities of
Log(AX |D ). The latter are controlled by tropical combinatorics.

Proposition 2.12. Let τ be a tropical type of map to Rn
+. If τ is representable, there exists a logarithmic map to

the Artin fan

C −→An

whose tropicalisation has type τ. In a neighbourhood of this map, the moduli space Log(An) has singularity type
Speck[Pτ], where Pτ is the tropical monoid corresponding to τ.

Proof. Let Γ be the dual graph encoded in the tropical type τ. In the tropical presentation (Gτ|Rτ) given in
Definition 2.5, there is a natural inclusion E(Γ ) ⊆ Gτ as the edge length generators ℓe. This gives rise to a
homomorphism

v : NE(Γ ) −→ Pτ.

By Lemma 2.11 and the representability assumption, it follows that v is sharp; i.e. we have v−1(0) = 0.
Sharpness is a necessary and sufficient condition for a morphism of toric monoids to lift to a morphism of
logarithmic points. Hence we may choose an arbitrary such lift

(2.2) (Speck, Pτ) −→
(
Speck,NE(Γ )

)
.

Now take C to be any algebraic curve with dual graph Γ . The logarithmic structure on the space of prestable
curves produces a universal enhancement of C to a logarithmic curve over the logarithmic point(

Speck,NE(Γ )
)
.

Pulling back along (2.2) then produces a logarithmic curve

C

(Speck, Pτ)

which tropicalises to a family of tropical curves, which is a morphism of cone complexes

(2.3)

⊏

Hom(Pτ,R+).

It is well known (see e.g. [ACGS20, Proposition 2.10]) that logarithmic morphisms C → An correspond to
cone complex morphisms ⊏→R

n
+. We construct the latter directly, working fibrewise with respect to (2.3).

By the definition of the generators of Pτ, a point

u ∈Hom(Pτ,R+)

defines edge lengths ℓe ⩾ 0 for e ∈ E(Γ ) and vertex positions f(v) ∈ σv for v ∈ V (Γ ). This defines the
morphism ⊏u → R

n
+ on the fibre over u. The relations in the definition of Pτ ensure that this map has
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integral slopes along edges, which in turn ensures that these fibrewise morphisms glue to a global morphism
of cone complexes. This produces the desired diagram

⊏ R
n
+

Hom(Pτ,R+).

We have thus shown that there exists a logarithmic map to An with tropical type τ.
The space Log(An) is logarithmically smooth over the trivial logarithmic point; see [AW18, Proposi-

tion 1.6.1]. Hence its singularities are governed by its charts, which are given by the tropical monoids Pτ
(see [GS13, Definition 1.20] and Remark 2.7). □

Remark 2.13. More generally, in Proposition 2.12 we may replace Rn
+ by any cone complex Σ and An by the

Artin fan AΣ.

3. Universality

Given a toric monoid P , we wish to construct a representable tropical type τ with Pτ = P . The strategy is to
choose a special presentation (G|R) of P and to construct τ from the combinatorics of this presentation.

We begin in Section 3.1 by showing that we can always find a presentation which is both “bipartite” and
“positive”. Then in Section 3.2 we give the main construction, building a tropical type which mirrors the
structure of this special presentation. In Section 3.3 we present applications to singularities of spaces of
logarithmic maps, and finally in Section 3.4 we adapt our construction to deal with tropical maps to affine
spaces.

3.1. Presentation surgery

We show that every monoid presentation can be replaced by one of a very specific form.

Definition 3.1. A presentation (G|R) is bipartite if there exists a partition of the generators

G = G1 ⊔G2

such that every relation in R is of the form (w1 = w2), where w1 is a word in the elements of G1 and w2 is a
word in the elements of G2.

Definition 3.2. A presentation (G|R) is positive if under the quotient homomorphism

π : NG −→N
G/R,

we have π(g) , 0 for all g ∈ G, where by abuse of notation g ∈NG denotes the associated standard generator.

Proposition 3.3. Every presentation (G|R) can be replaced by a presentation (G′ |R′) which is bipartite and
positive, and induces the same monoid:

N
G′ /R′ =N

G/R.

Proof. For each g ∈ G, introduce two symbols g1, g2, and define

G1 := {g1 : g ∈ G}, G2 := {g2 : g ∈ G}.

Set G′ = G1 ⊔G2. For every relation in R, replace each appearance of g on the left-hand side by g1 and
each appearance of g on the right-hand side by g2. Let R

′ be the set of such relations, together with the
relations g1 = g2 for all g ∈ G. The presentation (G′ |R′) is then bipartite and satisfies

N
G′ /R′ =N

G/R.
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It remains to replace an arbitrary bipartite presentation (G|R) with a bipartite and positive presentation
(G′ |R′). Let

G0 = {g ∈ G : π(g) = 0}
and set G′ = G \G0. Define R′ by taking each relation in R and removing all appearances of elements
g ∈ G0. The presentation (G′ |R′) is still bipartite. To show that it induces the same monoid, consider the
composite

N
G′ ↪−−→N

G π−−−→N
G/R.

Since π(g) = 0 for g ∈ G0, it follows that the map N
G′ →N

G/R is surjective.
We now show that this map respects R′ . Given (w1,w2) ∈ R′ , its image in N

G ×NG belongs to R up to
adding elements of G0 to both sides. Hence w1 and w2 map to the same element of NG/R, and so the map
N

G′ →N
G/R respects R′ . It follows that there is a surjective homomorphism

(3.1) N
G′ /R′ −→N

G/R.

It remains to show that it is injective. Consider u,v ∈NG′ mapped to the same point in N
G/R. By [Ogu18,

Proposition I.1.1.3(2)] this means that there exists a sequence

p0, . . . ,pn ∈NG

such that p0 = u,pn = v and for i ∈ [n], either (pi−1,pi) or (pi ,pi−1) belongs to the set

R+ =
{
(w1 + c,w2 + c) : (w1,w2) ∈ R,c ∈NG

}
.

For p ∈NG, let p′ ∈NG′ denote the image under the projection. Then p′0 = u′ = u,p′n = v′ = v, and if
(pi−1,pi) = (w1 + c,w2 + c) ∈ R+, then

(p′i−1,p
′
i) = (w′1 + c′ ,w′2 + c′) ∈ R′+

and similarly for (pi ,pi−1). Hence the sequence p′0, . . . ,p
′
n ∈NG′ witnesses the identity u = v in N

G′ /R′ . We
conclude that (3.1) is injective, and hence there is an isomorphism

(3.2) N
G′ /R′ �N

G/R.

This isomorphism fits into a commuting square

N
G′

N
G

N
G′ /R′ N

G/R

π′ π

�

from which it follows that π′(g) , 0 for all g ∈ G′ , so (G′ |R′) is positive, as required. □

3.2. Main construction

We come to the main result.

Theorem 3.4 (Theorem B). Let P be an arbitrary toric monoid. Then there exist an n ∈N (depending on P ) and
a representable tropical type τ of map to Rn

+ such that

P = Pτ.

Moreover, the tropical type can be chosen with g(Γ ) = 0.

Proof. By Proposition 3.3 we may choose a bipartite and positive presentation (G|R) of P . Since by
assumption P is toric, it is the toric monoid associated to (G|R). By Definition 2.6 it suffices to find a
representable tropical type τ whose associated tropical presentation (Gτ|Rτ) coincides with (G|R).
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Since the presentation is bipartite, we have G = G1 ⊔G2, with elements of G1 only appearing on the
left-hand side of relations in R, and elements of G2 only appearing on the right-hand side. Write

G1 = {g1, . . . , gk1}, G2 = {gk1+1, . . . , gk1+k2},

and let Γ be the following graph, with edges labelled by the generators g ∈ G:

(3.3)

v1

g1

g2

...

gk1

v2

gk1+1

gk1+2

...

gk1+k2
v0

so that the path from vi to v0 contains precisely the generators in Gi . To incorporate the relations, set
n := |R|. We will define a tropical type of map to R

n
+ with source graph Γ . For g ∈ G, let g⃗ be the

corresponding edge oriented as in (3.3), and define the corresponding slope

mg⃗ ∈Zn

as follows: for i ∈ [n], the component (mg⃗ )i is defined to be the coefficient with which g appears in the ith

relation of R. Note that we always have
(mg⃗ )i ⩾ 0.

For v ∈ V (Γ ), define
dv ∈Zn

as the sum of the slopes of the adjacent edges (oriented away from v), so that the balancing condition is
satisfied. To define the cones associated to vertices, we first set

σv1 = σv2 = 0 ⩽Rn
+.

The other cones σv are defined recursively by flowing along the oriented graph (3.3). If g⃗ is an oriented
edge from v to v′ and if I(v) ⊆ [n] is already determined, define

I(v′) := I(v)∪ {i ∈ [n] : (mg⃗ )i > 0}.

This recursively defines the indexing sets I(v) and hence the cones σv = σI(v). For an edge g ∈ E(Γ )
connecting v and v′ , we declare I(g) := I(v)∪ I(v′). We only need to check consistency at v0. We claim that
whether we approach from v1 or from v2, we must have

(3.4) σv0 =R
n
+.

Indeed, each index i ∈ [n] corresponds to a relation in R. Since the presentation is positive and the monoid
is sharp, it follows that this relation must have a generator on each side with a strictly positive coefficient,
guaranteeing (3.4).

This completes the description of the tropical type τ. By design, the associated tropical presentation
(Gτ|Rτ) coincides with the initial presentation (G|R) and so Pτ = P as required.

It remains to show that τ is representable. By Lemma 2.11 it is equivalent to show that there exists a
monoid morphism

u : Pτ −→R+
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which is non-zero on the standard generators appearing in Definition 2.5. For the tropical type we have
constructed, it is enough for this morphism to be non-zero on the generators gi corresponding to the edge
lengths; indeed, by the structure of the cone assignments σv , this implies that the relative interior of every
vertex and edge is mapped into the relative interior of the corresponding cone.

By assumption the monoid P is toric, so it includes into the lattice M := P gp as

P = σ∨ ∩M,

where σ is a strictly convex rational polyhedral cone of full dimension in the dual vector space M∨
R
. Since σ

has full dimension, σ∨ is strictly convex, i.e. it contains the origin as a face, so there exists a normal vector
u ∈M∨

R
with P ⊆ {u ⩾ 0} and P ∩ {u = 0} = 0. Therefore, u restricts to a monoid morphism

u : P −→R+

with u−1(0) = 0. Since the presentation is positive, it follows that u(gi) , 0 for all gi ∈ G. We conclude that
τ is representable. □

Remark 3.5. Since P is assumed toric, the presentation (G|R) already gives rise to a toric monoid, and so
the torification step in the construction of Pτ is redundant. However, torification plays an important and
subtle role in the boundedness results of Section 4.

Example 3.6. Consider the following strictly convex rational polyhedral cone σ∨ ⊆R
2

σ∨
(1,3)

(1,0)

(1,1)

(1,2)

and let P = σ∨ ∩Z2 be the monoid of lattice points. Set

e0 = (1,0), e1 = (1,1), e2 = (1,2), e3 = (1,3).

Then P is generated by e0, e1, e2, e3 subject to the relations

e0 + e2 = 2e1
e1 + e3 = 2e2
e0 + e3 = e1 + e2.

To construct a corresponding tropical type, we first replace the above presentation by a bipartite and positive
presentation. This is given by generators G = {e0, e1, e2, e3, f1, f2} subject to the relations

e0 + f2 = 2e1
f1 + e3 = 2e2
e0 + e3 = e1 + e2

f1 = e1

f2 = e2
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so that G1 = {e0, e3, f1, f2} and G2 = {e1, e2}. Since there are five relations, we consider maps to R
5
+ and

produce the following tropical type, with slope vectors me⃗ indicated in blue:

e0(1,0,1,0,0)

e3(0,1,1,0,0)

f1(0,1,0,1,0)

f2
(1,0,0,0,1)

e1 (2,0,1,1,0)

e2
(0,2,1,0,1)

3.3. Singularities of moduli

Theorem 3.4 establishes universality for moduli spaces of tropical maps. The algebraic analogues of
tropical maps are logarithmic maps to Artin fans, and so we immediately obtain the following.

Theorem 3.7 (Theorem A). Every toric singularity appears in a moduli space Log(An) of (genus zero) prestable
logarithmic maps to the Artin fan, for some n ∈N depending on the singularity.

Proof. Since toric singularities are classified by toric monoids, the claim follows from Theorem 3.4 and
Proposition 2.12. □

3.4. Variations on a theme: Tropical maps to affine spaces

We now study tropical maps
⊏ −→R

n

where the target Rn does not carry any fan structure. These arise as tropicalisations of maps to an algebraic
torus over a field with a real valuation; see [Mik05,NS06].

Tropical types of such maps are defined exactly as in Definition 2.3, except that we do not include the
data of cones σp associated to polyhedra p ∈ V (Γ )⊔E(Γ )⊔L(Γ ) and we set all dv = 0. This last assumption
results in the classical balancing condition ∑

v⩽e⃗

me⃗ = 0.

We consider moduli of such maps up to overall target translation. As in Definition 2.6, each tropical type
determines a moduli cone, defined equivalently via its dual monoid as follows.

Definition 3.8. The tropical presentation associated to a tropical type τ of map to R
n has generating set

indexed by the edge lengths
Gτ := {ℓe : e ∈ E(Γ )}.

The relations Rτ are defined as follows. Given an oriented cycle γ of edges in Γ , we consider the expression∑
e⃗∈γ

me⃗ ℓe = 0.

Here each me⃗ is in Z
n, and so this expression gives n relations amongst the generators ℓe. Each such relation

can be uniquely rearranged into a relation with non-negative coefficients. These constitute the set Rτ. The
tropical monoid Pτ is by definition the toric monoid associated to the presentation (Gτ|Rτ).

Remark 3.9. We can also consider tropical maps to R
n without identifying maps up to overall translation.

In this case we simply replace the tropical monoid Pτ by the product Pτ ×Zn. Since Speck[Zn] = G
n
m is

smooth, this does not affect the singularity type in the sense of [Vak06, Section 1].
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We now establish universality for tropical maps to affine spaces. Unlike in Theorem 3.4, we cannot
produce all toric monoids using only source graphs of genus zero. Indeed, if Γ contains no cycles, then
Definition 3.8 simply gives

Pτ =N
E(Γ ).

Nevertheless, we will see that it is sufficient to use source graphs of genus 1. The proof illustrates a general
principle: higher-genus continuity relations for tropical maps to affine spaces are equivalent to genus zero
continuity relations for tropical maps to orthants. This is due to the constraints on the image cones imposed
in the latter case. This same principle is lurking in the discussion of monogenic types in Section 4.1.1; see in
particular the proof of Proposition 4.6.

Theorem 3.10. Let P be an arbitrary toric monoid. Then there exist an n ∈N and a representable tropical type τ
of map to Rn such that P = Pτ. The tropical type can be chosen with g(Γ ) = 1.

Proof. Run the construction given in the proof of Theorem 3.4. This produces a tropical type of map to R
n
+

whose tropical monoid is isomorphic to P and whose source graph Γ takes the form (3.3). Note that g(Γ ) = 0.
Now glue together the leaf vertices v1,v2 ∈ V (Γ ), and forget all cones σp. To remove the multi-degrees at

the vertices, attach to each v ∈ V (Γ ) a semi-infinite leg lv and set

ml⃗v
:= −dv .

Such semi-infinite legs are referred to as τ-rays in the literature. Finally, set dv = 0 and observe that the
balancing condition is still satisfied at v.

This produces a tropical type τ of map to R
n satisfying the balancing condition and with g(Γ ) = 1. The

relations arising from the single cycle of Γ produce the same relations as in the proof of Theorem 3.4. □

Remark 3.11 (Embedded tropical curves). In contrast to tropical maps, the moduli space of embedded tropical
curves (either in R

n
+ or in R

n) is only well defined as a cone complex up to further subdivision. The issue is
the same as that which arises when defining moduli spaces of embedded 1-complexes; see [MR20, Section 3].

As such, the universality problem is not well posed. Every toric monoid P is trivially obtained from some
moduli space of embedded tropical curves: simply take one such moduli space, resolve singularities, and
then subdivide so that one of the cones becomes isomorphic to the dual cone of P .

4. Boundedness

In Theorem 3.4 above, the dimension n of the tropical target depends on the chosen monoid P (it is the
number of relations in a given bipartite and positive presentation of P ). We do not know whether this
dependence is essential.

Question 4.1 (Question C). Does there exist a single n ∈N such that every toric monoid appears as the
tropical monoid associated to some tropical type of map to R

n
+?

We conclude the paper by proving that n = 1 does not suffice. We show that while every rank 2 monoid
does appear (see Theorem 4.12), there are certain rank 3 monoids which do not appear (see Theorem 4.17).

4.1. Monoid rank

For the rest of the paper, we consider only tropical types of maps to R+. We begin by relating the rank of
the tropical monoid Pτ to the combinatorics of τ. The main result of this section is the following.

Theorem 4.2. Let τ be a representable tropical type of map to R+. Then there exists another representable tropical
type τ̃ such that

Pτ = Pτ̃ ⊕NE0(Γ ),
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where E0(Γ ) ⊆ E(Γ ) is the set of edges e with me⃗ = 0. Moreover,

rkP gp
τ̃ = |V (̃Γ )| − 1.

4.1.1. Monogenic types. The strategy is to reduce to a special class of tropical types whose associated
monoids can be easily controlled.

Definition 4.3. A tropical type τ is monogenic if the following two conditions hold:

(1) There is precisely one vertex v0 ∈ V (Γ ) with σv0 = 0.

(2) For every other vertex v , v0, there exists at least one adjacent edge e ∈ E(Γ ) with

me⃗ < 0,

where e⃗ is oriented to point away from v.

A monogenic type has a unique root vertex v0 lying over 0 ⩽R+. All other vertices can be reached from
v0 along a path of rightward-sloping edges.

Not monogenic Not monogenic Monogenic Monogenic

The tropical monoid associated to a monogenic type has a presentation which is more efficient than the
general-purpose presentation given in Definition 2.5.

Definition 4.4. Let τ be a monogenic tropical type of map to R+. The monogenic presentation has generating
set

Gτ := {ℓe : e ∈ E(Γ )}.

The relations Rτ are indexed by closed cycles of oriented edges in Γ . Given such a cycle γ, we consider the
relation ∑

e⃗∈γ

me⃗ ℓe = 0.

Here each me⃗ is in Z. This expression can be uniquely rearranged to ensure that all coefficients are
non-negative, giving the relation in Rτ associated to γ.

The toric monoid associated to the monogenic presentation coincides with the tropical monoid of
Definition 2.6. When dealing with monogenic types, we will only ever use the monogenic presentation; hence
we overload notation and also denote it by (Gτ|Rτ).

Remark 4.5. The monogenic presentation is similar to the tropical presentation associated to a tropical type
of map to affine space; see Definition 3.8.

Proposition 4.6. To every tropical type τ, there is an associated monogenic type τ̃ with

Pτ = Pτ̃.

If τ is representable, then so is τ̃.
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Proof. Consider vertices v ∈ V (Γ ) which have σv =R+ and are such that me⃗ ⩾ 0 for every outward-pointing
adjacent edge e⃗. These vertices violate condition (2) in Definition 4.3.

For every such vertex, introduce a new vertex v′ with σv′ = 0 and a new edge e connecting v′ to v with
slope me⃗ = 1, where e⃗ is oriented from v′ to v. To satisfy the balancing condition, set dv′ = 1 and replace dv
by dv − 1.

This results in a new tropical type which has the same tropical monoid as τ. Moreover, this new tropical
type is guaranteed at least one vertex with σv = 0 and is such that all vertices v with σv = R+ have an
adjacent outward-pointing edge e⃗ with me⃗ < 0.

Finally, glue together all vertices with σv = 0. This gives a new tropical type τ̃ which is monogenic and
has the same tropical monoid as τ. Clearly, τ̃ is representable if τ is. □

The following example illustrates the above process. Note that the genus of Γ increases.

⇝ ⇝

4.1.2. Expansive types.

Definition 4.7. A tropical type τ is expansive if there are no edges e ∈ E(Γ ) with me⃗ = 0.

Proposition 4.8. To every tropical type τ, there is an associated monogenic and expansive type τ̃ with

(4.1) Pτ = Pτ̃ ⊕NE0(Γ ),

where E0(Γ ) is the set of edges of slope zero in the tropical type τ. If τ is representable, then so is τ̃.

Proof. First apply Proposition 4.6 to replace τ by a monogenic type, also denoted by τ, with the same tropical
monoid. Then contract all edges e ∈ E0(Γ ) and identify vertices of Γ as necessary (notice that a slope zero
edge may be a loop or may have distinct endpoints). This produces a monogenic and expansive type τ̃.
Since the lengths ℓe of slope zero edges e ∈ E0(Γ ) are free parameters in Pτ, we immediately conclude (4.1).
Again the representability statement is clear. □

4.1.3. Monoid rank. We will now control the rank of the tropical monoid associated to a monogenic and
expansive type. Recall from Definition 2.6 that the tropical monoid Pτ is the torification of

N
Gτ/Rτ.

Recall in addition from Remark 2.2 that torification consists of three steps:

(1) Integralise and remove torsion;
(2) Saturate;
(3) Sharpen.

Of these steps, only sharpening can change the rank of the groupification. With this in mind, the following
technical lemma is necessary in order to control the monoid rank.

Lemma 4.9. If τ is a representable tropical type, then the final sharpening step in the construction of Pτ is
redundant.

Proof. Let P ♭
τ denote the pre-sharpened monoid, and consider the sharpening morphism

w : P ♭
τ −→ Pτ.
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Recall that w is the quotient of P ♭
τ by the subgroup of units; see [Ogu18, Chapter I.1.3]. Assume towards

a contradiction that w is not an isomorphism. Then there exists a non-zero p ∈ P ♭
τ with w(p) = 0. By

assumption τ is representable, so by Lemma 2.11 there exists a morphism

u : Pτ −→R+

which is non-zero on the standard generators of Definition 2.5. Since these generate P ♭
τ , it follows that the

composite u ◦w is sharp; i.e. (u ◦w)−1(0) = 0. This contradicts w(p) = 0.
There is one caveat in the argument above: the saturation step in the construction of P ♭

τ can introduce
additional generators. However, these are all Q>0-linear combinations of the standard generators, so the
same argument applies. □

Remark 4.10. Lemma 4.9 essentially appears, in somewhat greater generality, as part of [GS13, Proposition 1.19].

Theorem 4.11. Let τ be a representable, monogenic and expansive tropical type. Then

rkP gp
τ = |V (Γ )| − 1.

Proof. Since τ is representable, Lemma 4.9 shows that the final sharpening step in the construction of Pτ is
redundant. The other torification steps – integralising and saturating – do not change the groupification
of the monoid. As such, we may identify P

gp
τ with the torsion-free part of the groupification of the

not-necessarily-toric monoid

N
Gτ/Rτ.

The torsion-free part is extracted by saturating the relations Rτ. Since groupification commutes with direct
limits (see [Ogu18, Chapter I.1.3]), we conclude that

P
gp
τ =Z

Gτ/Rsat
τ .

Recall we are using the monogenic presentation of Definition 4.4. We have Gτ = E(Γ ), while the relations Rτ

are indexed by cycles in Γ . Fix a spanning tree

Γ0 ⊆ Γ .

Let b = b1(Γ ) denote the genus of the graph. Then Γ0 is obtained from Γ by deleting some edges e1, . . . , eb.
For each i ∈ [b], the graph Γ0∪ ei contains a single closed cycle giving rise to a single relation in Rτ. Since τ
is expansive, we have me⃗i , 0, so that the edge length ℓei appears in this relation with non-zero coefficient.

Taken together, these relations span Rτ over Z. They are linearly independent since each relation contains
a protected variable ℓei which does not appear in any other relation. Because of this independence, Rsat

τ is
generated by the saturations of the generators of Rτ. We conclude that it has rank b, and hence

rkP gp
τ = rk

(
Z

Gτ/Rsat
τ

)
= |E(Γ )| − b1(Γ ) = |V (Γ )| − 1

as required. □

Proof of Theorem 4.2. Combine Proposition 4.8 and Theorem 4.11. □

4.2. Cautionary tale: Redemption through saturation

Now consider a toric monoid P with

rkP gp = 2.

Such monoids are given by P = σ∨ ∩M for M �Z
2 a 2-dimensional lattice and σ ⊆M∨

R
a strictly convex

rational polyhedral cone of full dimension in the dual vector space. Assume that σ is singular, so that
P �N

2.
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If τ is a representable tropical type with Pτ � P , then τ must be expansive since P does not contain any
N factors. By Proposition 4.8 we may therefore assume that τ is monogenic. From Theorem 4.11 we conclude
|V (Γ )| − 1 = rkP gp

τ = 2 and so

|V (Γ )| = 3.

Representable, monogenic, expansive tropical types with three vertices are easily enumerated. Those giving
rise to singular monoids all essentially take the form

(4.2)

m1 m2

m3

for some mi > 0. (We can also have parallel edges, but the resulting monoid will be isomorphic to one
associated to a tropical type with no parallel edges; see Section 4.3.)

On initial inspection, this seems to rule out many monoids: since there are only three edges, the resulting
monoid must be generated by three elements, and there are certainly monoids of rank 2 requiring more
than three generating elements.

However, this argument overlooks a crucial technical point. The tropical monoid Pτ is obtained as the
torification of the monoid N

Gτ/Rτ. During this process, the saturation step in particular can increase the
number of generators. In fact, we have the following.

Theorem 4.12. Let P be a toric monoid with rkP gp = 2. Then there exists a representable tropical type τ of map
to R+ with Pτ � P . Moreover, τ may be taken to be of the form (4.2).

Proof. Following [Ful93, Section 2.2], P is isomorphic to the monoid of lattice points σ∨ ∩M for a rational
polyhedral cone σ∨ ⊆M

R
of the form

σ∨
(k,m)

(1,0)

This cone is generated by the primitive lattice vectors

v1 = (1,0), v2 = (k,m),

where 0 < k ≤m and gcd(k,m) = 1. Choose a lattice vector v3 ∈ σ∨ ∩M such that

(4.3) Zv1 +Zv2 +Zv3 =Z
2.

For example, taking v3 = (1,1) is sufficient. Consider the monoid

Q :=Nv1 +Nv2 +Nv3 ⊆Z
2.

From Qgp =Z
2 and Q⊗Q⩾0 = σ∨ ∩Q2, we conclude Qsat = P . Now consider the surjection

Z
3 −→Z

2
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given by ei 7→ vi . The kernel gives a unique non-trivial Z-linear dependence between the vi . Since v3
belongs to the cone generated by v1 and v2, this relation must take the form

m1v1 +m2v2 =m3v3

for some mi ⩾ 0. This shows that

Q =N
3
v1v2v3/(m1v1 +m2v2 =m3v3).

Then the tropical type (4.2) gives rise to a monoid presentation (Gτ|Rτ) with

N
Gτ/Rτ =Q.

The monoid Q is integral, torsion-free and sharp. As such, torification is equivalent to saturation, giving

Pτ =
(
N

Gτ/Rτ

)sat
=Qsat = P

as required. □

Example 4.13. Recall the monoid P from Example 3.6. There we constructed a tropical type of map to R
5
+

whose tropical monoid was isomorphic to P . But Theorem 4.12 shows that in fact P can be obtained from a
tropical type of map to R+ of the form (4.2), in this case by taking m1 = 2,m2 = 1,m3 = 3. Note that the
saturation step in the construction of the tropical monoid is crucial.

4.3. Unparalleled monoid

We see from Theorem 4.12 that the minimal number of generators of Pτ is not bounded in terms of |E(Γ )|.
This is because saturation can increase the minimal number of generators. However, given a monoid

Q ⊆Z
r ,

saturating Q cannot increase the number of extremal rays of the cone Q⊗R+. This is the key insight which
leads to the proof of Theorem 4.17, and which we formalise in this section.

Fix a representable, monogenic, expansive tropical type τ, and let (Gτ|Rτ) be the associated monogenic
presentation of Definition 4.4.

Definition 4.14. The unparalleled presentation associated to τ is constructed from (Gτ|Rτ) as follows. For
every adjacent pair of vertices v1,v2 ∈ V (Γ ), define

mv1v2 := lcm { |me⃗ | : e ∈ E(Γ ) connecting v1 and v2} ∈N.

Introduce a new generator ℓv1v2 for each such pair, together with the new relations

mv1v2

|me⃗ |
ℓv1v2 = ℓe

for each e ∈ E(Γ ) connecting v1 and v2.

Definition 4.15. The unparalleled monoid P ∦

τ is the integralisation and torsion-free part of the monoid
associated to the unparalleled presentation.

Lemma 4.16. There are natural inclusions

P ♭
τ ↪−−→ P ∦

τ ↪−−→ Pτ

which induce isomorphisms on saturations. The unparalleled monoid admits a generating set of size at most

(4.4)

(
|V (Γ )|
2

)
.
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Proof. The natural morphism P ♭
τ ↪→ P ∦

τ is of finite index and identifies groupifications. Hence it also identifies
saturations, and by definition (P ♭

τ )
sat = Pτ.

The monogenic presentation has Gτ = E(Γ ). The unparalleled presentation then reduces this generating
set down to a single parameter for each pair of adjacent vertices, from which we conclude (4.4). Note that
since τ is representable and expansive, there are no loops. □

4.4. The 7-gon is inaccessible

We are finally in a position to prove the main result of this section.

Theorem 4.17 (Theorem D). Fix k ⩾ 7 and consider an arbitrary convex k-gon

S ⊆Z
2 ⊗R

whose vertices are lattice points. Let σ∨ ⊆Z
3 ⊗R be the cone over S × {1}, and let

P := σ∨ ∩Z3

be the associated monoid of lattice points. Then there does not exist any representable tropical type τ of map to R+
with Pτ = P .

Proof. Suppose towards a contradiction that such a tropical type τ exists. Since P contains no N factors, we
may assume by Proposition 4.8 that τ is monogenic and expansive. By Theorem 4.11 we have |V (Γ )| = 4.
From this and Lemma 4.16, we see that the unparalleled monoid is generated by at most six elements. On
the other hand, we have

P ∦

τ ↪−−→ P ,

which identifies saturations. Consequently, P ∦

τ must contain the primitive generators of the rays over the
vertices of the k-gon S . Since these are extremal rays, it follows that

P ∦

τ

requires at least k ⩾ 7 generating elements, contradicting Lemma 4.16. □

Corollary 4.18. With P as above, the toric singularity Speck[P ] does not appear in any moduli space Log(A) of
prestable logarithmic maps to the universal smooth pair.
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