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Abstract. Let k be a perfect field. Assume that the characteristic of k satisfies certain tameness
assumptions. Let On := k⟦z1, . . . , zn⟧ and set Kn := Fract(On). Let G be an almost simple, simply
connected affine Chevalley group scheme with a maximal torus T and a Borel subgroup B. Given a
n-tuple f = (f1, . . . , fn) of concave functions on the root system of G as defined by Bruhat–Tits, we
define n-bounded subgroups Pf ⊂ G(Kn) as a direct generalization of Bruhat–Tits groups for the case
n = 1. We show that these groups are schematic; i.e. they are valued points of smooth quasi-affine
(resp. affine ) group schemes with connected fibres and adapted to the divisor with normal crossing
z1 · · ·zn = 0 in the sense that the restriction to the generic point of the divisor zi = 0 is given by
fi (resp. sums of concave functions given by points of the apartment). This provides a higher-
dimensional analogue of the Bruhat–Tits group schemes with natural specialization properties.
Under suitable assumptions on k, we extend all these results for an (n+1)-tuple f = (f0, . . . , fn) of
concave functions on the root system of G, replacing On by O⟦x1, . . . ,xn⟧, where O is a complete
discrete valuation ring with a perfect residue field k of characteristic p. In particular, if x0 is the
uniformizer of O, then the group scheme is adapted to the divisor x0 · · ·xn = 0. In the last part of
the paper, we give applications in characteristic zero to constructing certain natural group schemes
on wonderful embeddings of groups and also certain families of 2-parahoric group schemes on
minimal resolutions of surface singularities that arose in an earlier paper by the first-named author.
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1. Introduction

Let G be an almost simple, simply connected affine Chevalley group scheme. Let O be a complete discrete
valuation ring (DVR) with a perfect residue field k. Let On := k⟦z1, . . . , zn⟧ and let Kn := Fract On; more
generally, we consider O⟦x1, . . . ,xn⟧ when the residue characteristic p satisfies some tameness assumptions;
see Section 1.1. The object of this paper is to define and study an optimal class of subgroups P ⊂ G(Kn)
which we call n-bounded subgroups. These are natural generalizations of the classical bounded groups and
parahoric groups due to F. Bruhat and J. Tits, who dealt with the case n = 1 (cf. [BT84a, BT72]).

We show that these n-bounded groups are schematic in the sense of Bruhat and Tits; i.e. there exist
smooth, finite-type group schemes over Spec(On) with connected fibres, such that the group of sections
gives back the n-bounded groups. We will call these group schemes nBT-group schemes; see Definition 1.4.
The nBT-group schemes we construct are always quasi-affine, with a large, and perhaps most significant,
class being affine; see Theorem 1.3. This provides natural analogues of the Bruhat–Tits group schemes over
On with good specialization properties.

In [BT84a, Section 3.9.4] one finds general remarks on how one could possibly generalize [BT84a, Theorem
3.8.1] to a base of dimension 2. Somewhat later in the mid-nineties, there was an approach to Bruhat–Tits
buildings over higher-dimensional local fields made by A. Parshin [Par94] with possible motivation from
questions in arithmetic. Our approach has its origins in geometry stemming from the study of degenerations
of the stack BunG of G-bundles over smooth projective curves; see [Bal22]. Unlike Parshin, our aim is not
towards a generalization of the notion of a Bruhat–Tits building. Rather, we follow the general spirit of the
Bruhat–Tits approach, cf. [BT84a], namely, to define subgroups of G(Kn) characterizable by group schemes
over Spec(On).

Recall that a parabolic vector bundle in the sense of C. S. Seshadri is a vector bundle with additional data
defined on pairs (X,D), where X is a smooth quasi-projective scheme and D a simple normal crossing divisor
(see the appendix). Hitherto, these have been objects of study primarily occurring as points in certain moduli
spaces. In the present paper, the notion of a parabolic bundle helps us get a technical tool to address the
issue of extending affine group schemes across subsets of codimension bigger than 1. These connections
first came up in the paper [BS15], where under the assumptions of characteristic zero and for group schemes
which are generically split (see Definition 1.1), it was shown, cf. [BS15, Theorem 5.2.7], that any parahoric
Bruhat–Tits group scheme over a complete discrete valuation ring O can be realized through “invariant direct
images”, i.e. obtained by taking Galois invariants of Weil restriction of scalars of a reductive group scheme, on a
ramified cover of O (see Section A.2 ). It is easily checked (see Section 9 ) that this can be made to work under some



On Bruhat–Tits theory over a higher-dimensional base 5On Bruhat–Tits theory over a higher-dimensional base 5

mild tameness assumptions on residue field characteristics for arbitrary complete DVRs (see Section 1.1 ). This result
and its underlying philosophy form the cornerstone of some of the basic results of this paper.

Our first step is to define n-parahoric subgroups of G(Kn). Let T be a maximal torus contained in a
Borel B of G over k. Let X(T ) = Hom(T ,Gm) be the group of characters of T and Y (T ) = Hom(Gm,T )
be the group of all one–parameter subgroups of T . Let g denote the Lie algebra. We denote by Φ+,Φ− ⊂ Φ

the sets of positive and negative roots with respect to B. Let S = {α1, . . . ,αℓ} denote the set of simple roots of
G, where ℓ is the rank of G. Let α∨ denote the coroot corresponding to α ∈ S . We also choose an épinglage
or a pinning of G; i.e. in addition to S , we also choose for every r ∈ S , a k-isomorphism ur from the additive
group Ga to the unipotent group Ur of G associated to the root r . Let {ur}r∈Φ be their canonical extensions
satisfying the Chevalley relations.

Let S := S ∪{α0} denote the set of affine simple roots. Let AT denote the affine apartment corresponding
to T . It can be identified with the affine space E := Y (T )⊗

Z
R together with its origin 0.

For a point θ ∈ AT and a root r ∈ Φ , let r(θ) := (r,θ). Set

(1.1) mr(θ) := −⌊r(θ)⌋.

Let O be a complete discrete valuation ring with residue field k, with uniformizer z and field of fractions K .
Classically (see [BT72]), in terms of generators a parahoric subgroup Pθ of G(K) is defined as

(1.2) Pθ :=
〈
T (O),Ur

(
zmr (θ)O

)
, r ∈ Φ

〉
.

More generally, for an enclosed bounded subset Ω in the affine apartment AT (cf. [BT72, Section 2.4.6] or
[Cou11, Section 3]), set

(1.3) mr(Ω) := −
⌊
inf
θ∈Ω

r(θ)
⌋
=
⌈
sup
θ∈Ω
−r(θ)

⌉
.

Note that there is a notion of a closure of a bounded subset, and the function mr(Ω) does not change by
taking closures. So unless otherwise mentioned, in this article we always work with enclosed bounded subsets.
A bounded subgroup PΩ of G(K) associated to a bounded subset Ω of AT is defined as follows:

(1.4) PΩ :=
〈
T (O),Ur

(
zmr (Ω)O

)
, r ∈ Φ

〉
.

Following [BT72, BT84a], we define a larger class of bounded groups as follows.

Definition 1.1. A subgroup Q ⊂ G(K) will be called schematic if there exists a smooth O-group scheme G

with connected fibres and of finite type with GK ≃ G ×K such that Q =G(O).

Throughout this paper we work under the assumption that all of the n-Bruhat–Tits group schemes we study are
connected and the generic fibre GK is a product G×Spec(Z) Spec(K); we call this the “generically split case”. As
we have mentioned above, parahoric subgroups are all schematic. However, Bruhat and Tits study a larger
class of schematic subgroups of G(K) which are defined by concave functions (in fact, they work with the class
of quasi-concave functions).

Let Φ̃ := Φ ∪ {0}. Recall, see [BT72, Section 6.4.3, p. 133], that a function f : Φ̃→R is said to be concave
if whenever ri ∈ Φ̃ are such that

∑
i ri ∈ Φ̃ , then

(1.5) f

∑
i

ri

 ≤∑
i

f (ri).

In this paper we generalize the theory for all concave functions over higher-dimensional bases. We hasten
to add that Bruhat–Tits theory works for general connected reductive groups, while we make the rather
simplifying assumptions on G in the spirit of [BT84a, Section 3.2, p. 52] that it is almost simple, simply
connected and generically split. Even under these assumptions, the problem seems sufficiently complex.

A natural class of 2-parahoric group schemes (see Definition 1.4) came up naturally in the work of the
senior author while constructing flat degenerations of the stack of G-torsors on smooth projective curves,
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when we allow the curve to degenerate to stable curves (cf. [Bal22]). A special 2-parahoric group scheme
comes up in the paper [PZ13] (see Section 9.4 below and also [Lou23]). We note that BT-group schemes on
discrete valuations rings arising from general concave functions have appeared in the papers of J.-K. Yu
[Yu01, Yu15] and Reeder–Yu [RY14]. Further, a very special class has found applications in the papers of
Moy–Prasad (see [MP94, Section 2.6]) and Schneider–Stuhler [SS97].

Even in the most geometric contexts, i.e. without the complications of rationality questions, the larger class
of concave functions are needed to express [Bal22] or the present paper (see Theorem 11.1 and Remark 11.2).
Indeed, the description of the closed fibres of the n-parahoric group schemes (see Definition 1.4) over On,
at points of depth bigger than 1, needs perforce the Bruhat–Tits theory of bounded groups associated to
concave functions; see Theorem 1.5. The interesting feature is that the concave functions which appear in
this situation do not in general arise from bounded subsets of the apartment but are from the most general class
considered by Bruhat and Tits (see Examples 3.10, 3.12 and 3.11, Equation (3.50) and Remark 11.2).

In view of [BT84a, Section 3.2, p. 52, second paragraph and Section 3.2.15], we believe that Bruhat and
Tits may have already envisioned the theory over higher-dimensional bases (cf. [BT84a, Section 3.9.4]) as
well. We revisit this in Section 5.9

1.1. Assumptions on the residue field k

In this introduction we assume that k is algebraically closed. We however note that if we assume only
perfectness of k together with a few assumptions on the existence of roots of unity (see Section 2.2), the
results of the present paper continue to hold.

We will assume throughout that the characteristic p of k is coprime to the order of the centre of G and
the coefficients of the highest root.

• This assumption suffices when the concave function is of type I, with no further restrictions on the
type of the group G, except when G is of type An, where p does not divide n+1.
• For groups of type An,G2,F4,E6, this suffices for concave functions of type II as well.
• Let hG be the Coxeter number of G. Let m(G) be the dimension of the minimal faithful representation
of G. When the concave function is strictly of type III, we further need p to be greater than hG as
well as be coprime to m(G). The second condition more precisely means the following: p is coprime
to 7 for G2, coprime to 13 for F4, coprime to 3 for E6, coprime to 14 for E7, coprime to 31 for E8
and finally coprime to 2n+1 for other classical groups of rank n.
• For the schematization of n-Moy–Prasad groups, we refer to Section 8.1.

1.2. Higher dimensions and statement of main results

We begin with a few key definitions in terms of which the present paper is organized.

Types of Concave functions.

Definition 1.2.

(1) For j = 1, . . . ,n, let points θj in the apartment AT be given. Let fθ = {fθj }
n
j=1 be the set of concave

functions associated to them by the function r 7→mr(θ) (see (1.1)). These will be called n-concave
functions of type I.

(2) For j = 1, . . . ,n, let bounded subsets Ωj ⊂ AT be given. Let fΩ = {fΩj
}nj=1 be the set of concave

functions associated to them by r 7→mr(Ω) (see (1.3)). These will be called n-concave functions of
type II.

(3) Let f := (. . . , fj , . . .) : Φ→R
n be an n-concave function on Φ defined by concave functions {fj} (see

(1.5)). These will be called n-concave functions of type III.
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As mentioned earlier, there are examples of concave functions of type III which are not of type II
(this is stated in [BT72, Section 6.4.4]; however, see the claim in Example 3.10 below for explicit examples)
and similarly of type II not of type I.

Bounded groups in higher dimensions. We begin by stating our results in the equicharacteristic case.
Recall that On := k⟦z1, . . . , zn⟧, and let Kn := Fract(On). For each set of n rational points θ = (θ1, . . . ,θn) ∈
An, in terms of generators we define an n-parahoric subgroup of G(Kn) as

(1.6) Pθ :=
〈
T (On) ,Ur

 ∏
1≤i≤n

z
mr (θi )
i On

 , r ∈ Φ〉
.

More generally, for Ω = (Ω1, . . . ,Ωn), where the Ωi ⊂ E are enclosed bounded subsets (cf. [BT72,
Section 2.4.6]), we can analogously define n-bounded subgroups of G(Kn):

(1.7) PΩ :=
〈
T (On) ,Ur

 ∏
1≤i≤n

z
mr (Ωi )
i On

 , r ∈ Φ〉
.

Even more generally, let fi : Φ → R be concave functions, see (1.5), and let f := (. . . , fi , . . .) : Φ → R
n be

the n-concave function defined by them. To the n-concave function f we can associate an n-bounded
subgroup of G(Kn) as follows:

(1.8) Pf :=
〈
T (On) ,Ur

 ∏
1≤i≤n

z
fi (r)
i On

 , r ∈ Φ〉
.

Similarly, one may define the n-bounded Lie subalgebra Lie(Pf) of g(Kn).
As in Definition 1.1, we can call a subgroup Q ⊂ G(Kn) a schematic subgroup if there exists a connected,

smooth On-group scheme G of finite type with GKn ≃ G ×Spec(Z) Kn such that Q =G(On).
We remark that an important aspect of Bruhat–Tits group schemes over discrete valuation rings is

the structure of a big cell which extends the big cell of the generic fibre (cf. [BT84a, Section 3.1.3] and
Theorem 1.3(5) below). This aspect also generalizes to the n-Bruhat–Tits group schemes.

We now state our main theorems in the equicharacteristic case. This corresponds to the layout of the
paper.

Theorem 1.3. Let p satisfy the hypothesis of Section 1.1 (or more generally those of Section 2.2 ). For an n-concave
function f of each type in Definition 1.2, there exists a smooth group scheme Gf of finite type on A

n
k with connected

fibres, whose restriction to Spec(On) comes with an isomorphism hKn of the generic fibre GKn with GKn and such
that the following hold:

(1) The group scheme Gf is affine when f is of type I, and in general it is quasi-affine in types II
and III.

(2) The n-bounded subgroup Pf is schematic. More precisely, we have an identification Gf(On) = Pf.
(3) We have a natural isomorphism of Lie(Gf)(On) with Lie(Pf).
(4) Let us denote the canonical images under hKn of the maximal torus TKn and the root groups {Ur,Kn}r∈Φ in

the generic fibre GKn by the same notation.
There exist closed subgroup schemes {Ur,f ⊂ Gf}r∈Φ (resp. Tf ⊂ Gf) on Spec(On), with generic fibre

isomorphic to the root groups {Ur,Kn}r∈Φ (resp. TKn ).
(5) There exists a big cell BΦ of Gf such that for any choice of total ordering on Φ+ (resp. Φ−), the morphism

induced by multiplication

(1.9)

∏
r∈Φ+

Ur,f

×Tf ×
∏
r∈Φ−

Ur,f

 −→Gf
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is an open immersion with image BΦ . Moreover, BΦ restricts to the big cell BKn of the generic fibre GKn
over Spec(Kn).

(6) More generally, on a base which is a smooth quasi-projective variety with a divisor with simple normal
crossings, given a data of type I concave functions at the height 1 primes associated to the components of the
divisor, in Theorem 5.4, it is shown that there exist a smooth affine group scheme with connected fibres on X
together with a big cell structure which interpolates this datum on the divisors.

(7) Let f be a special n-concave function of type III such that each term fi is a sum of concave functions of
type I. Then the associated group scheme Gf is in fact affine; see Corollary 5.9.

The pair (Gf,hKn) is uniquely determined up to a unique isomorphism, by properties (4) and (5).

Definition 1.4. The group scheme Gf is called the nBT-group scheme associated to an n-concave function f.
An n-parahoric group scheme is an nBT-group scheme associated to an n-concave function of type I.

Theorem 1.5. The group scheme Gf associated to the n-concave function f has the following structure at points
of depth bigger than 1:

(a) Let I ⊂ {1, . . . ,n} be a non-empty subset. For a general point ξ ∈ ∩i∈IHi , where the Hi are the coordinate
hyperplanes in Spec(On), the fibre Gf,ξ is isomorphic to the closed fibre of the Bruhat–Tits group scheme
GfI

on Spec(O) associated to the 1-concave function fI : Φ→R given by r 7→
∑
i∈I fi .

(b) More precisely, let AI ⊂A
n be the “subdiagonal” obtained by setting the coordinates xi = t for i ∈ I. Let

Spec(AI) be the local ring at the generic point of the divisor t = 0 in AI. Then the restriction of Gf to
Spec(AI) is isomorphic to the Bruhat–Tits group scheme GfI

associated to the concave function fI.

Let O be a complete DVR in mixed characteristics. Extending the methods for group schemes over An
k to

the case A
n
O , in Section 9 we prove the following.

Theorem 1.6. For an (n+1)-concave function f = (f0, . . . , fn), where f0 is prescribed at the uniformizer of O,
the main theorems, Theorems 1.3 and 1.5, hold over AO =A

n
O under the tameness assumption of Section 1.1 (in fact

under the assumptions in Section 2.2 ).

1.3. An outline of the strategy of proof

We now outline briefly the strategy of the proof in this paper. The general strategy is an induction on the
order of complexity of concave functions on root systems. The simplest one is a function fθ , see (1.1), which
is a concave function of type I; the next in the order is the concave function fΩ (see (1.3)), associated to
a bounded subset Ω in the apartment, i.e. of type II. The third in the order of complexity is the general
concave function f of type III which need not arise as an fΩ.

In other words, we build the family of nBT-group schemes {Gf} on Spec(On) associated to an n-concave
function f : Φ→R

n in three tiers. This is carried out by a bootstrapping process. The first step, in Section 5,
is to build the n-parahoric group scheme (see Definition 1.4) associated to a collection of n points in the
affine apartment, i.e. an n-concave function f = {fθj } of type I. This case falls into a general method of
proof where the ideas arising from the notion of parabolic vector bundles play a key role. It has its origins in
the paper [BS15], and the end result is somewhat surprising in that, unlike what Bruhat–Tits expect, namely
only a quasi-affine group scheme (see [BT84a, Section 3.9.4] and Section 5.9 below), one in fact gets an affine
n-parahoric group scheme on Spec(On) along with its cell structure. The pair of the n-parahoric group
scheme and its cell structure become the base for the subsequent constructions. We then naturally move on
to the case when instead of points in the apartment, we are given a collection of n bounded subsets in the
affine apartment and so work with an n-tuple of concave functions arising from these bounded subsets. The
construction (in Section 6) of the corresponding nBT-group scheme on Spec(On) builds on the construction
of an n-parahoric group scheme. We assume in Section 6 that G is one of An,G2,F4 or E6, where results
from [BT84b] and [GY03, GY05] play the important role of reducing schematic constructions over DVRs
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for enclosed bounded subsets to their extremal vertices. The proof here is somewhat involved, especially in
extending the cell structure and the schematic group law across subsets of codimension 2. The end result
is that, much as expected, we get a quasi-affine nBT-group scheme associated to the n-concave functions
of type II. Finally, in Section 7 we turn our attention to the case of G with no constraints and also a
general n-concave function. This case is then reduced to the previous case, i.e. of n-concave functions of
type II. This reduction follows from the not so obvious observation, see Proposition 3.21, that an optimal
concave function on groups of type An always arises as one coming from a bounded subset of the apartment.
This remark together with the power of the main results of [BT84a] help us to realize the nBT-group scheme
associated to an n-tuple of concave functions; these group schemes are a fortiori quasi-affine as expected.
A surprise, and a possible opening, is offered by a special class of concave functions of type III, which
occur as sums of concave functions of type I. Here, our methods yield the affineness of the group scheme;
see Corollary 5.9. This leads us to a natural question, namely “Characterise n-tuples of optimal concave
functions for which the associated nBT-group schemes are affine.”

Recall that in the equicharacteristic case when the residue field characteristic satisfies mild tameness
assumptions, by [BS15, Theorem 5.2.7], all parahoric subgroup schemes are recovered by the invariant direct
image functor (i.e. obtained by taking Galois invariants of Weil restriction of scalars). Following [BS15]
closely, in Section 8 we show that Moy–Prasad group schemes over DVRs which generalize parahorics
can be obtained by the invariant direct image together with the simplest types of dilatations. Over higher
dimensions, this generalizes suitably using dilations results of [MRR20]. We use results of Bruhat–Tits
[BT84a] to show in Section 9 that the generalization of [BS15, Theorem 5.2.7] to mixed characteristics reduces
to a verification on the big cell which was done in Section 8, following [BS15] closely.

1.4. Other related results and proof strategies

In [Lan96] Bruhat–Tits group schemes are constructed by using extension of birational group laws and the
theorem of Artin–Weil; see [SGA3, Exposé XVIII]. The possibility of such an approach is briefly mentioned
in [BT84a, Section 3.1.7]. In the very recent paper [Lou23], smooth and separated group schemes over
arbitrary Noetherian bases has been constructed; see [Lou23, Theorem 3.2.5]. This last result assumes that
the schematic root datum extends to the base ring A. However, in general proving the key properties such as
quasi-affineness of the group schemes does not seem immediate by these approaches. In the present paper,
for k⟦z1, . . . , zn⟧ or O⟦z1, . . . , zn⟧, where O is a discrete valuation ring, in the course of our proofs for each
of the three types of concave functions, we actually show that the schematic root datum extends.

In the context of the present paper on higher-dimensional bases, the first construction goes back to
[BT84a, Section 3.9.4], where for A = k[x,y] or A = A1[[z]] for A1 a Dedekind ring, a 2BT-group scheme is
constructed by generalising [BT84a, Theorem 3.8.1].

In the special setting of a 2-concave function f = (0, f ) over A = A1[[z]], for A1 a Dedekind ring, we refer
to [PZ13] and Section 9.4 below. The very recent paper [Lou23] also gives a completely different proof of the
key affineness result of these group schemes over A = A1[[z]]; further, it goes on to construct and study affine
Grassmannians for these group schemes.

1.5. Other directions

In a slightly different direction, recall that Moy–Prasad groups (see [MP94, Section 2.6]) can be realized as
schematic subgroups arising from BT-group schemes arising from a small variant of the concave functions
in [BT72]. As a natural extension of our approach, in Section 8 we define n-Moy–Prasad groups and
the corresponding schematization. Their schematization over discrete valuation rings was derived as a
consequence of a general approach by Yu in [Yu15]. To adapt these groups to our theory, we need to realize
the Moy–Prasad groups as invariant direct images, see Notation 5.2, of certain group schemes from ramified
covers (see [BS15]); see Section 8. This involves generalising the notion of a unit group to one corresponding
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to the variant of concave function mentioned above. As a consequence, we show that n-Moy–Prasad group
schemes are affine just like the group scheme Gf when f is of type I.

As further applications of this approach, we construct higher BT group schemes on certain basic spaces.
More precisely, we construct and describe

• an ℓBT-group scheme on the De Concini–Procesi wonderful compactification X (see [DCP83]) of the
adjoint group Gad, where ℓ = rank(G);
• an (ℓ +1)BT-group scheme on the loop “wonderful embedding” Xaff of the adjoint affine Kac-Moody
group Gaff

ad , constructed by P. Solis; see [Sol17] – the novelty is that the base here is an ind-scheme;
• a family of 2BT-group schemes on the minimal resolution of singularities of normal surface singularities
in the context of [Bal22].

Frequently occurring notation and conventions

Throughout this paper we follow the classical notation and conventions as in the foundational papers
[BT84a, BT72] of Bruhat–Tits and as in the treatise Néron Models [BLR90] by S. Bosch, W. Lutkebohmert
and M. Raynaud.

Φ Root system relative to T

A The affine apartment of T

f = (f1, . . . , fn) n-concave-function on Φ ∪ {0}, see Definition 1.2

Ω = (Ω1, . . . ,Ωn) n-tuple of bounded subsets of A
Θ = (θ1, . . . ,θn) n-tuple of points in the affine apartment

A The affine space A
n
k up to Section 8 or An

O as in Section 9.2

A0 The complement of the coordinate hyperplanes in A
(X,D) Smooth scheme with a simple normal crossing divisor

X ′ ,U Open subschemes of X whose codimension is at least 2, also
called big open subsets

Pf (see (1.8)) n-bounded groups associated to an n-concave function f, see
Definition 1.2

PΩ (see (1.7)) n-bounded groups associated to an n-bounded subset Ω

P
diag
f (see Definition 3.5 and (3.11)) The specialization to the diagonal

Gf (resp. GΩ, Gθ ) n-Bruhat–Tits group scheme associated to an n-concave func-
tion f (resp. n-bounded subset Ω, n-points θ)

Γ Galois group of a Kawamata cover

pΓ∗ (see Notation 5.2) The invariant direct image, i.e. Weil restriction and Γ -invariants

R Lie algebra bundle

Acknowledgments

This paper had its origins in [BP21], which however had an inaccuracy in the description of the group
scheme at points of codimension higher than 1. This was pointed out to us by Jochen Heinloth. We thank
him for this. The content of the former manuscript is now subsumed in Section 10 of this paper. We also
thank Michel Brion and Patrick Polo for their numerous questions and comments on the paper. Finally, we
thank the anonymous referee for their comments and questions, which have led to a great improvement of
the manuscript.



On Bruhat–Tits theory over a higher-dimensional base 11On Bruhat–Tits theory over a higher-dimensional base 11

Part 1. The bounded groups

2. Towards the n-parahoric Lie algebra bundle

The first two subsections are in vigour throughout this article. The remaining ones recall a “loop”
approach to parahoric groups for application in Sections 4 and 10.

2.1. Lie data of G/k

In this subsection we assume the group-theoretical notions of G already introduced in the introduction
and give only those that we need further in this article. Let a0 be the unique Weyl alcove of G whose closure
contains 0 and which is contained in the dominant Weyl chamber corresponding to B. Under the natural
pairing between Y (T )⊗

Z
Q and X(T )⊗

Z
Q, the integral basis elements dual to S are called the fundamental

co-weights {ω∨α | α ∈ S}. Let cα be the coefficient of α in the highest root. The vertices of the Weyl alcove a0
are exactly 0 and

θα :=
ω∨α
cα
, α ∈ S.(2.1)

We will call the lattice generated by the θα the Tits lattice.
Let SL(m(G)) be the minimal faithful representation of G. We fix a maximal split torus TSL of SL(m(G)).

Let ATSL denote its apartment. We fix an alcove a in ATSL .

Definition 2.1. For any θ ∈ Y (T )⊗Q, let dθ be the least positive integer such that dθ ·θ lies in Y (T ). For
θ ∈ Y (TSL)⊗Q, let dθ be defined similarly.

Thus, if eα is the order of ω∨α in the quotient of the co-weight lattice by Y (T ), it follows that for θα , the
number dα := dθα is

(2.2) dα = eα · cα .

An affine simple root α ∈ S may be viewed as an affine functional on AT . Any non-empty subset I ⊂ S

defines the facet Σ
I
⊂ a0 where exactly the α not lying in the subset I vanish. So the set S corresponds

to the interior of the alcove, and the vertex θα of the alcove corresponds to α ∈ S. Conversely, any facet
Σ ⊂ a0 defines a non-empty subset IΣ ⊂ S. For ∅ , I ⊂ S, the barycenter of Σ

I
is given by

(2.3) θ
I
:=

1
|I|

∑
α∈I

θα .

2.2. Assumptions on the residue field k and points in the apartments compatible with k

The following assumptions will be in vigour throughout the article. We assume k is perfect to be able to
apply [BT84a]. Let p := char(k).
Characteristic Assumptions. These are needed for the existence of a Kawamata cover (see Section A.1).

We will assume that p is coprime to dα ; see Equation (2.2). Notice that since G is simply connected,
this assumption is implied by Section 1.1. Indeed, since Y (T ) equals the coroot lattice, ZG identifies with
the quotient of the co-weight lattice by Y (T ). Further, whenever we work with a finite set of rational
points {θ1, . . . ,θn} of AT or ATSL , we assume that for 1 ≤ i ≤ n, p is coprime to the integers dθi ; see
Definition 2.1. Let hG denote the Coxeter number of G. Let m(G) denote the dimension of the minimal
faithful representation of G. When the concave function is strictly of type III, we further need p > hG as well
as p to be coprime to m(G).
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Assumptions on the existence of primitive roots of unity. These are needed to make Section A.2 work. The
residue field k is such that for every facet Σ of a0 (see Section 2.1), there exists a rational point θ ∈ Σ such
that dθ (see Definition 2.1) is coprime to char(k) and k contains the primitive dthθ roots of unity.

• For a general G, this suffices when the concave function is of type I.
• For An,G2,F4,E6, this suffices for type II as well.
• When the concave function is strictly of type III, in addition to the condition for a0, we need to
assume the analogous condition for a (see Section 2.1).

Whenever we work with a finite set of rational points {θ1, . . . ,θn} of AT or ATSL , we assume that for
1 ≤ i ≤ n, k contains the primitive dthθi roots of unity.

We observe that any facet Σ ⊂ AT contains a rational one-parameter subgroup θ of T which is a
convex combination of the vertices of Σ in a way that for d ∈N coprime to p, the multiple dθ becomes
a one-parameter subgroup of T . We see this as follows. Since the alcove a0 is a fundamental domain for
the action of the affine Weyl group, we may suppose that Σ is a facet Σ

I
of a0. Say I = {θ0, . . . ,θj} are the

vertices of Σ
I
and θ0 = θα . Then since the dα defined in (2.2) are always strictly greater than 1, it follows

that we may take

(2.4) θ =
θ0 +

∑j
i=1

(
diα − di−1α

)
θi

d
j
α

.

We remark that if L denotes the LCM of the coefficients of the highest root and ℓ is the rank of T , then

for type I, it suffices that k has
(
|ZG|L

)ℓ
primitive roots of unity. For type III, k must further have primitive

(m(G)m(G))th roots of unity.

2.3. Loop groups and their parahoric subgroups

We have included this section, where we introduce the language of loop groups to describe parahoric groups. We
however add that this terminology is restricted to Sections 4 and 10 of this paper.

The loop group LG is the group functor which associates to a k-algebra R the group G(R((z))); this is
representable by an ind-scheme over k. Similarly, the loop Lie algebra functor Lg is given by Lg(R) = g(R((z))).
We can similarly define the positive loops (also called jet groups in the literature) L+(G) to be the subfunctor
of LG defined by L+(G)(R) := G(R⟦z⟧). The positive-loop construction extends more generally to any group
scheme G → Spec(A) and any vector bundle P→ Spec(A) whose sheaf of sections carries a Lie bracket.

Let L⋉G = Gm ⋉ LG, where the rotational torus Gm acts on LG by acting on the uniformizer via the
loop rotation action as follows: u ∈ Gm(R) acts on γ(z) ∈ LG(R) = G(R((t))) by uγ(z)u−1 = γ(uz). A
maximal torus of L⋉G is T ⋉ =Gm × T . An η ∈Hom(Gm,T ⋉)⊗

Z
Q over R(s) can be viewed as a rational

one-parameter subgroup (1-PS), i.e. a 1-PS Gm→ T ⋉ over R(w), where wn = s for some n ≥ 1. In this case,
for γ(z) ∈ L⋉G(R), we will view η(s)γ(z)η(s)−1 as an element in L⋉G(R(w)). Hence, by the condition

(2.5) lim
s→0

η(s)γ(z)η(s)−1 exists in L⋉G(R)

on γ(z) ∈ L⋉G(R), we mean that there exists an n ≥ 1 such that for wn = s, we have

(2.6) η(s)γ(z)η(s)−1 ∈ L⋉G(R⟦w⟧).

This is the underlying principle in [BS15] in a more global setting. Let η = (a,θ) for a a strictly positive
rational number and θ a rational 1-PS of T . Then, we have

(2.7) η(s)γ(z)η(s)−1 = θ(s)γ (saz)θ(s)−1.

We note further that for any 0 < d ∈N, setting η = ( ad ,
θ
d ) we have

(2.8) η(s)γ(z)η(s)−1 = θ
(
s
1
d

)
γ
(
s
a
d z
)
θ
(
s
1
d

)−1
.
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So for η = 1
d (1,θ), observe that the statement “lims→0η(s)γ(z)η(s)−1 exists” is a condition which is

equivalent to

(2.9) θ(s)γ(s)θ(s)−1 ∈ L⋉G(R⟦w⟧).

In other words, the condition of the existence of limits is independent of d, and we may further set z = s in
γ(z). More generally, if a > 0, the conditions for (a,θ) and (1, θa ) are equivalent. We may write this condition
on γ(z) ∈ L⋉G(R) or LG(R) as

(2.10) “ lim
s→0

θ(s)γ(s)θ(s)−1 exists in L⋉G(R) or LG(R) if γ(z) ∈ LG(R)”.

For r ∈ Φ , let ur : Ga → G denote the root subgroup. If for some b ∈ Z and t(z) ∈ R⟦z⟧, we take
γ(z) := ur(zbt(z)) ∈ Lur(R) and η := (1,θ), then

(2.11) η(s)ur(z
bt(z))η(s)−1 = θ(s)ur((sz)

bt(sz))θ(s)−1 = ur(s
r(θ)(sz)bt(sz)).

So for η = (1,θ), the condition that the limit exists is equivalent to

(2.12) r(θ) + b ≥ 0 ⇐⇒ ⌊r(θ) + b⌋ = ⌊r(θ)⌋+ b ≥ 0 ⇐⇒ b ≥ −⌊r(θ)⌋.

We note the independence of the above implications of the number d occurring in the equation η := 1
d (1,θ).

Let π1 : T ⋉ → Gm be the first projection. For any rational 1-PS η : Gm → T ⋉, we say η is positive if
π1 ◦ η > 0, negative if π1 ◦ η < 0 and non-zero if π1 ◦ η is either positive or negative. In this paper, we will
only need to work with η which are positive.

Any non-zero η = (a,θ) defines the following positive-loop functors from the category of k-algebras to
the category of groups and Lie algebras:

P
⋉

η (R) :=
{
γ ∈ L⋉G(R)

∣∣∣∣ lim
s→0

η(s)γ(z)η(s)−1 exists in L⋉G(R)
}
,(2.13)

P⋉

η (R) :=
{
h ∈ L⋉g(R)

∣∣∣∣ lim
s→0

Ad(η(s))(h(z)) exists in L⋉g(R)
}
,(2.14)

Pη(R) :=
{
γ ∈ LG(R)

∣∣∣∣ lim
s→0

η(s)γ(z)η(s)−1 exists in LG(R)
}
,(2.15)

Pη(R) =
{
h ∈ Lg(R)

∣∣∣∣ lim
s→0

Ad(η(s))(h(z)) exists in Lg(R)
}
,(2.16)

Thus, Pη := P
⋉

η ∩ (1×LG) and Pη := P⋉

η ∩ (0⊕ Lg).(2.17)

A parahoric subgroup of L⋉G (resp. LG) is a subgroup that is conjugate to P⋉η (resp. Pη ) for some η. In

this paper we will mostly be using only the case when η = 1
d (1,θ). In this case, letting Lg(R) = g(R((s))) as

in (2.10), we may reformulate (2.17) as

(2.18) Pη(R) =
{
h ∈ Lg(R)

∣∣∣∣ lim
s→0

Ad(θ(s))(h(s)) exists in Lg(R)
}
.

Let t denote the Cartan subalgebra associated to T , and let gr ⊂ g be the root subspace associated to Ur .
Then in terms of generators, the Lie algebra functor associated to the group functor Pθ (see (1.2)) is given by

(2.19) Lie(Pθ)(R) =
〈
t(R⟦z⟧),gr

(
zmr (θ)R⟦z⟧

)
, r ∈ Φ

〉
.

By the conditions (2.13) and (2.17), using (2.12), we may express Pη in terms of generators as in (1.2) and its Lie
algebra functor Lie(Pη) as in (2.19). Thus, for any η of the type (1,θ), we get the equality of Lie algebra
functors

(2.20) Lie(Pη) = Pη .

This can be seen by using (2.14) and (2.17) and then replacing the conjugation in (2.7) by Ad(η(s)).
For a rational 1-PS θ of T with η = (1,θ), we will have the notation

(2.21) Pθ := Pη .
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2.4. Pro-groups and pro-Lie algebras

Recall that to each facet Σ
I
⊂ a0, Bruhat–Tits theory associates a parahoric group scheme G

I
on Spec(O),

which is smooth and affine with connected fibres and whose generic fibre is G ×Spec(k) Spec(K). Let L+(GI
)

be the group functor

(2.22) L+(G
I
)(R) :=G

I
(R⟦z⟧).

This is represented by a pro-algebraic group over k which is a subgroup of the loop group LG. For η = (1,θ),
where θ is any rational 1-PS lying in Σ

I
, we therefore have the following identifications:

(2.23) L+(G
I
)(k) = Pη and Lie(L+(G

I
)(k)) = Pη .

2.5. n-parahoric loop groups in higher dimensions

In this subsection we give a loop-theoretic reformulation of the definitions in Section 2.3 to the higher-
dimensional base. As always, let On := k⟦z1, . . . , zn⟧ and let R denote an arbitrary k-algebra. We denote the
field of Laurent polynomials by Kn = k((z1, . . . , zn)) = k⟦z1, . . . , zn⟧[. . . , z

−1
i , . . .]. The n-loop group LnG on a

k-algebra R is given by LnG(R) := G
(
R((z1, . . . , zn))

)
. Similarly, the n-loop Lie algebra Lng is given by

Lng(R) := g
(
R((z1, . . . , zn))

)
.

Let L⋉nG :=G
n
m⋉LnG, where the rotational torus G

n
m acts on LnG by acting on the uniformizer via the loop

rotation action. This goes as follows: an element u := (. . . ,ui , . . .) ∈Gnm(R) acts on γ(z1, . . . , zn) ∈ LnG(R) =
G(R((z1, . . . , zn))) by

(2.24) uγ(z)u−1 := γ(. . . ,uizi , . . .).

A maximal torus of L⋉nG is T ⋉ = G
n
m × T . An η ∈ Hom(Gm,T ⋉)⊗

Z
Q over R(s) can be viewed as a

rational 1-PS. For example, if ηi =
(
(0, . . . , ai , . . . ,0),θi

)
for (0, . . . , ai , . . . ,0) ∈Qn and θi a rational 1-PS of

T , then as before, we have

(2.25) ηi(s)γ(z1, . . . , zn)ηi(s)
−1 = θi(s)γ(z1, . . . , s

aizi , . . . , zn)θi(s)
−1.

For η1, . . . ,ηn as before, we can make sense of the condition on γ(z) ∈ L⋉nG(R)
“limsi→0

∏
ηi(si)γ(z1, . . . , zn)

∏
ηi(si)−1 exists in L⋉nG(R)”.

Similarly, if θ = (θ1,θi , . . . ,θn) ∈ (Y (T )⊗Q)n denotes an n-tuple of rational 1-PSs of T and if mr(θ) =
−⌊r(θ)⌋ as in (1.1), then in terms of generators, we have an n-parahoric group Pθ(R) associated to θ as in
(1.6).

Defining ηi :=
(
(0, . . . ,1, . . . ,0),θi

)
as before, we can describe the n-parahoric groups as follows:

Pη1,...,ηn(R) :=
{
γ(z) ∈ L⋉nG(R)

∣∣∣∣ lim
si→0

∏
ηi(si).γ(z1, . . . , zn).

∏
ηi(si)

−1 exists

}
(2.26)

and in fact Pθ(R) = Pη1,...,ηn(R)∩ (1×LnG)(R).(2.27)

Thus facets correspond to n-tuple of usual facets. Further, let λ ∈ AT . Then

(2.28) λ(zi)Pθλ(zi)
−1 = P(θ1,...,θi+λ,...,θn).

So conjugacy classes of parahorics correspond to n-tuples of non-empty subsets of S.
We can similarly describe the n-parahoric Lie algebras. In particular,

P⋉

ηi (R) =
{
h ∈ Lng(R)

∣∣∣∣ lim
si→0

Ad
(∏

ηi(si)
)
(h(z)) exists in L⋉ng(R)

}
,(2.29)

Thus, Pθ(R) := P⋉

η (R)∩ (0⊕Lng)(R).(2.30)
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2.6. Standard parahoric subgroups

The standard parahoric subgroups of G(K) are parahoric subgroups of the distinguished hyperspecial
parahoric subgroup G(O). These are realized as inverse images under the evaluation map ev: G(O)→ G(k)
of standard parabolic subgroups of G. In particular, the standard Iwahori subgroup I is the group I = ev−1(B).

3. Examples and Remarks

The first example is illustrative of the fact that the operations of imposing regularity conditions and
setting variables to be equal do not commute.

Example 3.1. Let G = SL2, O = O2 and K := K2. Let Θ = (θ1,θ2) ∈Q2. Thensθ11 sθ22 0

0 s−θ11 s−θ22

X11(s1z1, s2z2) X12(s1z1, s2z2)
X21(s1z1, s2z2) X22(s1z1, s2z2)

s−θ22 s−θ11 0

0 sθ22 s
θ1
1

(3.1)

=

 X11(s1z1, s2z2) X12(s1z1, s2z2) s
2θ1
1 s2θ22

X21(s1z1, s2z2) s
−2θ1
1 s−2θ22 X22(s1z1, s2z2)

 ⊂ SL2(K(s1, s2)).(3.2)

If we put the regularity condition “limsi→0 exists”, we get

(3.3) PΘ =

 O Oz−⌊2θ1⌋1 z
−⌊2θ2⌋
2

Oz−⌊−2θ1⌋1 z
−⌊−2θ2⌋
2 O

 .
Now setting t := z1 = z2, B := k⟦t⟧ and Θ ∈ (0, 12 )

2, we get

P
diag
Θ =

 B B

t2B B

 .
On the other hand, setting t := z1 = z2 and s := s1 = s2 in (3.2), we get

(3.4)

 X11(st) X12(st) s2θ1+2θ2

X21(st) s−2θ1−2θ2 X22(st)

 .
Now putting the regularity condition “ lims→0 exists”, we get

 B Bt−⌊2θ1+2θ2⌋

Bt−⌊−2θ1−2θ2⌋ B

. Notice for

Θ ∈ (0, 12 )
2 that when 0 < θ1 +θ2 <

1
2 , we get

 B B

tB B

, while when 1
2 ≤ θ1 +θ2 < 1, we get

 B t−1B

t2B B

. In
either case, for Θ ∈ (0, 12 )

2, we see that the operations of imposing regularity conditions and setting variables
to be equal do not commute.

Example 3.2. This example shows that the multiplication law in higher-dimensional parahorics is more
involved than in the case of discrete valuation rings.

Let G := SL3, O := O2 and K := K2. In this example we study Θ := (
ω∨α1
3 ,

ω∨α2
3 ). The co-weights are given

by the points (23 ,
−1
3 ,
−1
3 ), (13 ,

1
3 ,
−2
3 ) ∈ AT ⊂R

3; i.e. ω∨α1
(t) = diag(t

2
3 , t

−1
3 , t

−1
3 ) and ω∨α2

(t) = diag(t
1
3 , t

1
3 , t

−2
3 ).

We have

(3.5) Θ(s1, s2) = diag
(
s
2
9
1 s

1
9
2 , s

−1
9
1 s

1
9
2 , s

−1
9
1 s

2
9
2

)
.
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Conjugating the 3× 3 matrix
(
Eij(s1z1, s2z2)

)
by Θ(s1, s2), we get

(3.6)


E11(s1z1, s2z2) E12(s1z1, s2z2)s

1
3
1 E13(s1z1, s2z2)s

1
3
1 s

1
3
2

E21(s1z1, s2z2)s
−1
3
1 E22(s1z1, s2z2) E23(s1z1, s2z2)s

1
3
2

E31(s1z1, s2z2)s
−1
3
1 s

−1
3
2 E32(s1z1, s2z2)s

−1
3
2 E33(s1z1, s2z2)

 .
Imposing regularity conditions forces E12, E13 and E23 to be regular and E21(z1, z2) (resp. E23(z1, z2)) to
have a zero of order at least 1 with respect to z1 (resp. z2) and E31(z1, z2) to have a zero of order at least 1
with respect to both z1 and z2. So we get

(3.7) PΘ =



F11(z1, z2) F12(z1, z2) F13(z1, z2)
z1F21(z1, z2) F22(z1, z2) F23(z1, z2)
z1z2F31(z1, z2) z2F32(z1, z2) F33(z1, z2)


∣∣∣∣∣∣ Fij(z1, z2) ∈ O2

 .
We notice that

z1z2F31 = z1z2(g31h11 + g32h21 + g33h31) but(3.8)

z1F21 = z1(g21h11 + g22h21 + g23h31z2).(3.9)

In other words, the multiplication law for the entry (3,1) is like that of SL3(O2), but that of (2,1) has an
extra z2. Similarly, the law for the entries (2,2) and (1,1) are unlike the 1-dimensional case.

3.1. Some remarks on specializations of n-parahoric groups and examples

The purpose of this subsection is to show that specialization of n-parahoric groups leads to a strictly
larger scope than that of parahoric groups.

Example 3.3. This example shows the simplest case of relating higher-dimensional parahorics to lower-
dimensional ones. We place ourselves in the context of the previous example. If we set s2, z2 := 1 or
s1, z1 := 1, we get the two standard maximal parabolics. If we set s1, z1, s2, z2 := t, all variables as t, then
conjugation is by diag(t

1
3 ,1, t

−1
3 ). This gives the standard Iwahori; see Section 2.6.

Proposition 3.4. Let θ ∈ AT and let mr(θ) := −⌊r(θ)⌋ as in (1.1). Then the function ”mfflθ : Φ̃ →R defined by
”mfflθ(r) :=mr(θ) is concave.
Proof. Let ri ∈ Φ̃ be such that

∑
i ri ∈ Φ̃ as well. We need to check that

(3.10) ”mfflθ
∑
i

ri

 =m∑
i ri (θ) ≤

∑
i

mri (θ).

This follows by setting ai := ri(θ) and observing ⌊a1 + · · ·+ an⌋ ≥ ⌊a1⌋+ ⌊a2⌋+ · · ·+ ⌊an⌋. □

Definition 3.5. For an n-concave function f := (f1, . . . , fn), by the specialization of Pf ⊂ G(k((z1, . . . , zn))) to
the diagonal

(3.11) P
diag
f ⊂ G(k((t))),

we mean the bounded subgroup obtained by setting z1 = z2 = · · · = zn := t.

In particular, we have the specializations P
diag
Ω (of PΩ) and P

diag
Θ (of PΘ ) associated to Ω = (Ω1, . . . ,Ωn)

and Θ := (θ1, . . . ,θn), respectively.
Since sums of concave functions are concave, in terms of the concave function Φ → Z given by

r 7→
∑
imr(θi), we get

(3.12) P
diag
Θ =

〈
T (k⟦t⟧),Ur

(
t
∑
imr (θi )k⟦t⟧

)
, r ∈ Φ

〉
.
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We set

(3.13) P
diag
Θ := Lie

(
P
diag
Θ

)
.

Remark 3.6. We now make some remarks comparing the bounded subgroup P
diag
Θ with the parahoric subgroup

P∑
i θi , both subgroups of G(K). Recall that mr(θ) = −⌊r(θ)⌋. So let us compare mr(

∑
i θi) with

∑
imr(θi).

For simplicity, we assume that all θi lie in the dominant Weyl chamber so that for all positive roots r, we
have r(θi) > 0.

Consider the case when for all r ∈ R+, we have mr(
∑
i θi) =

∑
imr(θi). This occurs for instance when all

θi lie in the alcove a0 and their sum lies in a0 \ far wall or when the θi lie in the lattice defined by the θαi ;
see (2.1). For alcove vertices θαi , an example of such a Θ = (θ1, . . . ,θℓ) is given by assigning

(3.14) θi :=
θαi

(ℓ +1)
.

In this case, for any r ∈ Φ+, although r(θi) > 0, we nonetheless have mr(
∑
i θi) = 0 and mr(θi) = 0 and,

further, m−r(θi) = 1 and m−r(
∑
i θi) = 1. Then the orders of poles that the group entries of P

diag
Θ and P∑

i θi

can allow at r are the same. However, the order of zeros of elements of P
diag
Θ at −r is the number Sr of

distinct simple roots α ∈ S occurring with strictly positive coefficient in the expression of r . Thus,

(3.15) P
diag
Θ =

〈
T (k⟦t⟧),Ur(R⟦t⟧),U−r

(
tSrk⟦t⟧

)
, r ∈ Φ+

〉
.

Further, the bounded subgroup P∑
i θi is not a G(K)-conjugate of a subgroup of P

diag
Θ in this case unless

|S | = 1.
Now consider the case wherein, for r ∈ R+, we have mr(

∑
i θi) <

∑
imr(θi). This occurs for instance when

G = SL2, n = 2 and r(θ1) = r(θ2) = a1 = a2 =
1
2 . In this case, mr(θi) = 0 but mr(

∑
i θi) = −1. Then the

orders of poles which the elements of P∑
i θi can allow are strictly greater than those of the elements of P

diag
Θ

at r . On the other hand, m−r(θi) = 1 and m−r(
∑
i θi) = 1 as well. So the order of zeros of P∑

i θi at −r is at
least 1 but that of P

diag
Θ at −r is at least 2. So reasoning on the orders of the poles and zeros, it follows that

P∑
i θi is not a G(K)-conjugate of a subgroup of P

diag
Θ .

3.2. Constructing concave functions of type III from type I

The purpose of this subsection is to illustrate the phenomenon that one may begin with a group scheme
datum of type I at the generic points of the divisors, but the type of the BT-group scheme at points of
depth bigger than 1 could strictly be even of type III. The computations should be seen in the setting of
Theorem 1.5.

To illustrate the issue, we work with (3.14), which are the simplest non-trivial cases; these also highlight
the role of the root system. We make explicit constructions for A2, B2 and G2 cases with Θ given by (3.14).
The contrast between the B2 and G2 cases highlights the critical role that the root system of the group plays
in the analysis.

Recall that for a simple root α, we denote by θα , see (2.1), the vertices of the alcove.

Example 3.7 (A2). The set of positive roots is Φ+ = {α1,α2,α1 +α2}. We work with θ1 := θα1
/3 = ω∨1 /3 and

θ2 := θα2
/3 = ω∨2 /3. Recall that mr(θ) := −⌊r(θ)⌋. We have

(3.16) r(θ1) =

1/3,0,1/3 if r ∈ Φ+,

−1/3,0,−1/3 if r ∈ Φ−,

(3.17) mr(θ1) =

0,0,0 if r ∈ Φ+,

1,0,1 if r ∈ Φ−,
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and similarly for θ2. We get

(3.18) r(θ1 +θ2) =

1/3,1/3,2/3 if r ∈ Φ+,

−1/3,−1/3,−2/3 if r ∈ Φ−,

(3.19) mr(θ1 +θ2) =

0,0,0 if r ∈ Φ+,

1,1,1 if r ∈ Φ−.

The function ”mffl : r 7→∑
mr(θj ) is given by

(3.20) ”mffl(r) =
0,0,0 if r ∈ Φ+,

1,1,2 if r ∈ Φ−;

it computes P
diag
Θ . Let Ω ⊂ AT be the bounded subset Ω = {b,b′}, where b = θ1 +θ2 and b′ = 2 ·θ1 +2 ·θ2.

Recall that mr(Ω) = −⌊Infθ∈Ω r(θ)⌋. For the subset Ω, define the concave function fΩ(r) :=mr(Ω); see (1.3).
We have

(3.21) r(b) =

1/3,1/3,2/3 if r ∈ Φ+,

−1/3,−1/3,−2/3 if r ∈ Φ−,

(3.22) r(b′) =

2/3,2/3,4/3 if r ∈ Φ+,

−2/3,−2/3,−4/3 if r ∈ Φ−,

(3.23) mr(Ω) =

0,0,0 if r ∈ Φ+,

1,1,2 if r ∈ Φ−.

Hence, ”mffl(r) = fΩ(r) for every r ∈ Φ ; i.e. it is of type II. In particular, the group scheme G”mffl associated to
the concave function on Spec(A) is realized by a bounded subset of the affine apartment.

Before we discuss the next set of examples, we prove a lemma regarding the concave function fΩ defined
above. Observe that

fΩ(r) = a ⇐⇒ a− 1 < − inf
θ∈Ω

r(θ) ≤ a ⇐⇒ 1− a > inf
θ∈Ω

r(θ) ≥ −a.(3.24)

The last statement can be interpreted as saying that

(1) for all θ ∈Ω, we have r(θ) ≥ −a;
(2) there exists a θ′ ∈Ω such that 1− a > r(θ′).

Lemma 3.8. Let Ω be a non-empty bounded region in the affine apartment. Suppose that there is a root r
such that fΩ(−r) = −fΩ(r). Set n := fΩ(r). Let Hr(n) be the hyperplane in the affine apartment defined by
Hr(n) := {θ | r(θ) = −n}. Then,

Ω ⊂Hr(n).(3.25)

Proof. This is immediate from property (1) above. □

Example 3.9 (B2, first example). The set of positive roots is Φ+ = {β,α,β + α,β + 2 · α}. We work with
θ1 := θβ/3 = ω∨1 /3 and θ2 := θα/3 = ω∨2 /6. We have

(3.26) r(θ1) =

1/3,0,1/3,1/3 if r ∈ Φ+,

−1/3,0,−1/3,−1/3 if r ∈ Φ−,
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(3.27) mr(θ1) =

0,0,0,0 if r ∈ Φ+,

1,0,1,1 if r ∈ Φ−,

(3.28) r(θ2) =

0,1/6,1/6,1/3 if r ∈ Φ+,

0,−1/6,−1/6,−1/3 if r ∈ Φ−,

(3.29) mr(θ2) =

0,0,0,0 if r ∈ Φ+,

0,1,1,1 if r ∈ Φ−.

We get

(3.30) r(θ1 +θ2) =

1/3,1/3,2/3,2/3 if r ∈ Φ+,

−1/3,−1/3,−2/3,−2/3 if r ∈ Φ−,

(3.31) mr(θ1 +θ2) =

0,0,0,0 if r ∈ Φ+,

1,1,1,1 if r ∈ Φ−.

The function ”mffl : r 7→∑
mr(θj ) is given by

(3.32) ”mffl(r) =
0,0,0,0 if r ∈ Φ+,

1,1,2,2 if r ∈ Φ−;

it computes P
diag
Θ . Let Ω ⊂ AT be the bounded subset Ω = {b,b′}, where b = θ1 +θ2 and b′ = (2− e) ·θ1 +

(2 + e′) · θ2 with 0 < e,e′ < 1. Recall that mr(Ω) = −⌊Infθ∈Ωr(θ)⌋. For the subset Ω, define the concave
function fΩ(r) :=mr(Ω). We have

(3.33) r(b) =

1/3,1/6,1/2,2/3 if r ∈ Φ+,

−1/3,−1/3,−1/2,−2/3 if r ∈ Φ−,

(3.34) r(b′) =

2/3− e/3,1/3+ e′/6,1+ (e′ − 2e)/6,4/3+ (e′ − e)/3 if r ∈ Φ+,

−2/3+ e/3,−1/3− e′/6,−1− (2e − e′)/6,−4/3− (e − e′)/3 if r ∈ Φ−,

(3.35) mr(Ω) =

0,0,0,0 if r ∈ Φ+,

1,1,2,2 if r ∈ Φ−.

Hence, ”mffl(r) = fΩ(r) for every r ∈ Φ ; i.e. it is again of type II.

Example 3.10 (B2, second example). The second example here has special significance for Section 11. This
time we work with θ1 := θα/2 = ω∨2 /4 and θ2 := θα =ω∨2 /2. Then we get

(3.36) mr(θ1) =

0,0,0,0 if r ∈ Φ+,

0,1,1,1 if r ∈ Φ−

and

(3.37) mr(θ2) =

0,0,0,−1 if r ∈ Φ+,

0,1,1,1 if r ∈ Φ−.
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The function ”mffl : r 7→∑
mr(θj ) is given by

(3.38) ”mffl(r) =
0,0,0,−1 if r ∈ Φ+,

0,2,2,2 if r ∈ Φ−.

Claim. The concave function ”mffl in (3.38) is not of type II; i.e. there does not exist any bounded region Ω ⊂ A
such that ”mffl = fΩ.

If the claim is not true, then there is an Ω such that fΩ(β) = −fΩ(−β) = 0 and hence Ω ⊂H(0). Again,
since fΩ(α) = 0, fΩ(−α) = 2, see (3.38), it follows that for all θ ∈Ω, by (1) before Lemma 3.8, we get the
condition

0 ≤ α(θ) ≤ 2 ∀θ ∈Ω.(3.39)

Similarly, fΩ(α + β) = 0, fΩ(−(α + β)) = 2, see (3.38), forces

0 ≤ (α + β)(θ) ≤ 2 ∀θ ∈Ω,(3.40)

and fΩ(2 ·α + β) = −1, fΩ(−(2 ·α + β)) = 2 forces

(2 ·α + β)(θ) ≤ 2 ∀θ ∈Ω.(3.41)

On the other hand, since fΩ(−α) = 2, property (2) says that there exists a θ′ ∈Ω such that

1 < α(θ′).(3.42)

Notice that since β(θ′) = 0, the two inequalities (3.41) and (3.42) are not compatible.

Example 3.11 (G2, first example). The set of positive roots is Φ+ = {α,β,α +β,2 ·α +β,3 ·α +β,3 ·α +2 ·β}.
We work with θ1 := θα/3 = ω∨1 /9 and θ2 := θβ/3 = ω∨2 /6. We have

(3.43) r(θ1) =

1/9,0,1/9,2/9,1/3,1/3 if r ∈ Φ+,

−1/9,0,−1/9,−2/9,−1/3,−1/3 if r ∈ Φ−,

(3.44) r(θ2) =

0,1/6,1/6,1/6,1/6,1/3 if r ∈ Φ+,

0,−1/6,−1/6,−1/6,−1/6,−1/3 if r ∈ Φ−,

(3.45) mr(θ1) =

0,0,0,0,0,0 if r ∈ Φ+,

1,0,1,1,1,1 if r ∈ Φ−.

(3.46) mr(θ2) =

0,0,0,0,0,0 if r ∈ Φ+,

0,1,1,1,1,1 if r ∈ Φ−,
We get

(3.47) r(θ1 +θ2) =

1/9,1/6,5/18,7/18,1/2,2/3 if r ∈ Φ+,

−1/9,−1/6,−5/18,−7/18,−1/2,−2/3 if r ∈ Φ−,

(3.48) mr(θ1 +θ2) =

0,0,0,0,0,0 if r ∈ Φ+,

1,1,1,1,1,1 if r ∈ Φ−.

The function ”mffl : r 7→∑
mr(θj ) is given by

(3.49) ”mffl(r) =
0,0,0,0,0,0 if r ∈ Φ+,

1,1,2,2,2,2 if r ∈ Φ−;

it computes P
diag
Θ .
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Claim. In contrast, the concave function ”mffl in (3.49) is not of type II; i.e. there does not exist any bounded
region Ω ⊂ A such that ”mffl = fΩ. This is explicit here, but see also [BT72, Section 6.4.4].

To prove this claim, let us suppose to the contrary that there exists such a bounded subset Ω ⊂ AT . Let
θ ∈Ω be given by

θ :=
(
xω∨1 , yω

∨
2

)
.

Then we have

(3.50) r(θ) =

x,y,x+ y,2x+ y,3x+ y,3x+2y if r ∈ Φ+,

−x,−y,−x − y,−2x − y,−3x − y,−3x − 2y if r ∈ Φ−.

For r ∈ Φ+, we have −⌊infθ∈Ω(r,θ)⌋ = 0, so infθ∈Ω(r,θ) ∈ [0,1). Thus for r = α and β, for all points θ
in Ω, we have

x,y ∈ [0,1).

Now let us assume that infθ∈Ω(r,θ) is realized at (x1, y1) for r = −(α+β) and at (x2, y2) for r = −(3α+2β).
In particular, x1,x2, y1, y2 ∈ [0,1).

We have −⌊−(x1 + y1)⌋ = 2. So −2 ≤ −x1 − y1 < −1. Thus

1 < x1 + y1 ≤ 2,(3.51)

x1 > 0.(3.52)

By the condition for −3α − 2β, we have −3x2 − 2y2 ≤ −3x1 − 2y1. Thus

(3.53) 3x1 +2y1 ≤ 3x2 +2y2.

By −⌊−3x2 − 2y2⌋ = 2, we have −1 > −3x2 − 2y2 ≤ −2. Thus

(3.54) 1 < 3x2 +2y2 ≤ 2.

We get the following contradiction:

2
(3.51)
< 2x1 +2y1

(3.52)
< 3x1 +2y1

(3.53)
≤ 3x2 +2y2

(3.54)
≤ 2.

This completes the proof of the claim.

Example 3.12 (G2, second example). The second example here has special significance for Section 11. We
now work with θ1 := θα =ω∨α /3 and θ2 := 2.θα = 2.ω∨α /3. Then we get

(3.55) mr(θ1) =

0,0,0,0,−1,−1 if r ∈ Φ+,

1,0,1,1,1,1 if r ∈ Φ−,

(3.56) mr(θ2) =

0,0,0,−1,−2,−2 if r ∈ Φ+,

1,0,1,2,2,2 if r ∈ Φ−.

The function ”mffl : r 7→∑
mr(θj ) is given by

(3.57) ”mffl(r) =
0,0,0,−1,−3,−3 if r ∈ Φ+,

2,0,2,3,3,3 if r ∈ Φ−.

Claim. The concave function ”mffl in (3.57) is not of type II.
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If the claim is not true, then there is an Ω such that fΩ(β) = −fΩ(−β) = 0, and hence by Lemma 3.8, we
have Ω ⊂Hβ(0). Thus

β(θ) = 0, ∀θ ∈Ω.(3.58)

Similarly, fΩ(3α +2β) = 3, fΩ(−(3α +2β)) = −3 (3.57) forces

(3α +2β)(θ) = 3 ∀θ ∈Ω,(3.59)

and (3.58) and (3.59) give us

α(θ) = 1 ∀θ ∈Ω.(3.60)

Now since fΩ(−α) = 2, by (2) before Lemma 3.8, we know that there exists a θ′ ∈Ω such that α(θ′) > 1,
which is incompatible with (3.60).

Example 3.13. (The case of a constant concave function). Let a ≥ 0 and f (r) = a for all r ∈ Φ . In this case,
when G is of type An, Bn or Cn, there exist regions Ω such that fΩ = f . For G2 when a ≥ 3, there does not
exist such a region.

3.3. Various cones of concave functions

We consider the question of how to construct general concave functions from points in the apartment. It
turns out that this can always be done in the case An (see Proposition 3.21 and the remarks before it). Let Φ
be an irreducible root system. Let

(3.61) ΦΣ :=
{
(α,β) ∈ Φ2 | α + β ∈ Φ

}
.

For (α,β) ∈ ΦΣ, we get functionals ψ(α,β) and ψα defined on {f : Φ→R} →R by f 7→ f (α)+f (β)−f (α+β)
and f 7→ f (α) + f (−α), respectively.

Let C denote the space of concave functions {f : Φ→R}. It can be expressed as

(3.62) C = ∩
{
ψ(α,β) ≥ 0

}
∩ {ψα ≥ 0} .

Being an intersection of half-spaces, it is a polyhedral cone, further since the intersection of the open
half-spaces is non-empty, we see that C is of dimension |Φ |.

Let CΩ denote the cone of concave functions defined by bounded regions Ω ⊂ AT .

Proposition 3.14. Let Φ be an irreducible root system. The dimension of CΩ equals |Φ |.

Proof. Recall that a bounded subset Ω ⊂ AT defines the concave function

(3.63) fΩ : Φ −→R, r 7−→ −
⌊
inf
θ∈Ω

r(θ)
⌋
.

For r ∈ Φ , let Hr be the hyperplane in AT where r vanishes. Consider the unit sphere S in AT . We fix an
isomorphism of T with a product of Gm. This gives a basis of Y (T ) and X(T ). Now we may identify AT
with its dual space so that for a root r ∈ Φ and θ ∈ AT , the evaluation r(θ) equals the inner product of θ
with the image of r . Thus, after this identification, every root r ∈ Φ defines a canonical unit vector normal to
Hr meeting S in pr . Since Φ is irreducible, Hr =Hs implies r = ±s. Further, −pr = p−r . So r 7→ pr defines a
bijection. To prove the proposition, we now consider the bounded subset

(3.64) Ω := {pr | r ∈ Φ} .

So |Ω| = |Φ |. For any r ∈ Φ , infθ∈Ω r(θ) is attained at p−r . We now let points vary in radial directions
determined by {pr}. In small open neighbourhoods of pr , if Ω

′ := {p′r} denotes a neighbouring set of points,
we again see that infθ∈Ω′ r(θ) is attained at p′−r . This completes the proof. □
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3.4. Recovering the bounded group PΩover a DVR in terms of n-parahoric groups

Let Ω ⊂ A be a bounded subset of the apartment. Without loss of generality, we may suppose that it is
compact.

We make a small modification in the notation just for this lemma. Let A1 = L[t] be a polynomial ring over
a field L that is not necessarily algebraically closed. Let K1 = Fract(A1). Similarly, let AN = L[z1, . . . , zN ]
and KN = Fract(AN ). Let

PΩ :=
〈
T (L[t]), Ur

(
tmr (Ω)L[t]

)
, r ∈ Φ

〉
(3.65)

and for Θ = (θ1, . . . ,θN ),

PΘ :=
〈
T (AN ]),Ur

 ∏
1≤j≤N

z
−⌊(r,θj )⌋
j AN

 , r ∈ Φ
〉
.(3.66)

The next lemma shows the natural relationship between n-bounded groups associated to bounded subsets
Ω in the affine apartment and N-parahoric groups. We give it here for its general interest.

Lemma 3.15. Let N = |Φ | and let the inclusion G(K1) ⊂ G(KN ) be obtained by mapping the uniformizer t
to

∏
r∈Φ zr . Given a bounded domain Ω, there exist an N -tuple Θ = (. . . ,θr , . . .)r∈Φ of points such that taking

intersection in G(KN ), we have the equality

(3.67) PΩ = G(K1)∩ PΘ .

Proof. For every root r ∈ Φ , we may choose a θr ∈Ω such that we have

(3.68) (r,θr ) ≤ (r,θ) ∀θ ∈Ω.

Set L[Φ] := L[zr , r ∈ Φ] and consider the N-parahoric given by

Θ = (. . . ,θj , . . .)j∈Φ .

Thus by definition, we have

(3.69) PΘ =
〈
T (L[Φ]), Ur

∏
j∈Φ

z
−⌊(r,θj )⌋
j L[Φ]

 , r ∈ Φ
〉
.

For r ∈ Φ , consider the group Ur
(∏

j∈Φ z
−⌊(r,θj )⌋
j L[Φ]

)
. By (3.68), we see that

(3.70) (r,θr ) ≤ (r,θj ) ∀j ∈ Φ .

Thus −⌊(r,θr )⌋ ≥ −⌊(r,θj )⌋ for all j ∈ Φ . In other words, we have

(3.71) −⌊(r,θr )⌋ = −
⌊
inf
θ∈Ω

(r,θ)
⌋
=mr(Ω).

Now K1 = L(t) and A1 = L[t], so letting t =
∏
r∈Φ zr , for every root r ∈ Φ , we get the desired order

of zeros and poles. Further, T (L[Φ])∩ T (K1) = T (A1). Since the group law is inherited from G(K1), the
intersection is the parahoric subgroup PΩ. □

For 1 ≤ i ≤ n, let fi : Φ→R be concave functions. Let F := (. . . , fi , . . .) : Φ→R
n. In (1.8), we have defined

the n-concave subgroup Pf of G(Kn) in terms of generators.

Lemma 3.16. Let G(K1) ⊂ G(Kn) by mapping the uniformizer t to
∏

1≤i≤n zi . Taking intersection in G(Kn), we
have the equality

(3.72) Psupifi = G(K1)∩ Pf,

Proof. The proof is almost identical to that of Lemma 3.15. □
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Let Cext
Ω

denote the cone defined by (1) taking sums of concave functions of the form
∑m
i=1 fΩi

, where we
let m ≥ 1 and the bounded regions Ωi ⊂ AT vary, (2) changing the uniformizers by the substitution t = zn

or tn = z and (3) taking supremums.
We have the obvious inclusions

(3.73) CΩ ⊂ CextΩ ⊂ C.

Example 3.17. The first inclusion is strict for the concave function (3.49) by the claim in Example 3.10.

For irreducible reduced root systems, the notions of quasi-concave and concave functions coincide. Let f
be any concave function defined more generally on Φ . Let E be the set of points in AT fixed by Gf . For a
root α ∈ Φ , let

(3.74) S(α) :=

(αi ,λi){1≤i≤r} ∈ ∪r≥1 (Φ ×Q∗+)r ∣∣∣∣ ∑
1≤i≤r

λiαi = α


denote all possible ways of writing α in the rational positive cone of some subset of roots in Φ . Let f ′ be
the function on Φ defined by

(3.75) f ′(α) := inf
S(α)


∑
1≤i≤r

λif (αi)

 .
By [Cou11, Proposition 3.3], we have f ′ = fE for some subset E of the apartment.

Example 3.18. For the case G = SL2, the three cones coincide because any concave function is of the form
fΩ (see Proposition 3.21). Indeed, by [Cou11, Proposition 3.3], for G = SL2, we have S(α) = {(α,1)} and
S(−α) = {(−α,1)}. Thus for G = SL2, the subset E determines f in return.

Proposition 3.19. We now return to the case G = G2. For the concave function ”mffl in (3.49), ”mffl′ equals ”mffl except
at −α1 −α2, where it is 1. The region is the dilation of the alcove a0 by a factor of 2, i.e. enclosed by the origin,
2θα1

and 2θα2
.

Proof. We give an indirect proof. Since ”mffl does not come from a region, we have the inequality ”mffl′ < ”mffl.
Now we can check that the concave function coming from the dilation of a0 by a factor of 2 is as stated
above. Since there cannot be any other concave function between them, this must be ”mffl′ . □

Remark 3.20. It would be interesting to understand the inclusion Cext
Ω
⊂ C better. Given bounded regions

{Ω1, . . . ,Ωn}, consider the concave function f taking r to
∑
mr(Ωi). It would be interesting to understand

the region corresponding to f ′ as a function of {Ωi}.

Recall from (1.8) that if f : Φ→R is a concave function, then we can associate to it the bounded subgroup
Pf := ⟨T (O),Ur(zf (r)O), r ∈ Φ⟩ of G(K). Note that Gf (O) = Pf .

Following [BT84a, Section 4.5.2] and [Cou11, Section 2, p. 540]) we say that a concave function f is optimal
if for any concave function f ′ : Φ → R such that f ′ > f , we have a strict inclusion Pf ′ ⊊ Pf . However, in
the context of the present paper, it is easy to see that if f is a concave function, then so is ⌈f ⌉, which is in
fact optimal. Moreover, the bounded groups Gf (O) coincides with G⌈f ⌉(O). So we may as well work with
optimal concave functions.

In [BT84b, Remarques 3.9.3] it is remarked that on root systems of type An, any optimal concave function
is of the form fΩ for an enclosed bounded subset Ω of the apartment (see [BT72, Section 2.4.6] for the
definition of “enclosed” subsets). For the sake of completeness, we give below a proof of this statement.

Proposition 3.21. Let G be of type An. Any optimal concave function f is of type II, i.e. of the form fΩ for a
enclosed bounded subset Ω of the apartment. Thus we have CΩ = C; see Remark 3.20.
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Proof. For the convenience of the reader, we recast the notions of [Cou11], which were developed for connected
reductive groups over local fields, into the setting of this paper. Recall that the residue fields of our local
rings are perfect (see Section 2.2). For a root α ∈ Φ , the c(α) and v(α) may be assumed to be 0 and 1,
respectively, and further an optimal concave function takes only integral values. By [Cou11, Proposition 2.3],
concavity is equivalent to pseudo-concavity since our group is split over K . A function is of the form fΩ if
and only if it is strongly concave according to [Cou11, Proposition 3.3 ].

For a root α ∈ Φ , let S ′(α) ⊂ S(α) (see (3.74)) be the restricted set such that

• the αi are linearly independent;
• for every i , j, we have (αi ,αj ) ≥ 0; we can assume that αi +αj is not a root;
• for every i, λi < 1.

In [Cou11, Lemma 5.1] F. Courtès gives an equivalent reformulation of strong concavity in terms of a
technical numerical inequality which should be checked for each element in S ′(α), where α varies in Φ .
We claim that when G = An, this numerical condition is vacuously true because S ′(α) = ∅. We see this as
follows.

Let α = ϵl −ϵm be a root of An. Since α =
∑r
i=1λiαi = ϵl −ϵm and 0 < λi < 1, we see that r ≥ 2 and there

exist at least two indices 1 ≤ i1 < i2 ≤ r such that αi1 = ϵl − ϵj1 and αi2 = ϵl − ϵj2 . We suppose firstly that
j1 is different from m. In this case, there must exist another index 1 ≤ i3 ≤ r such that αi3 = ϵj1 − ϵj2 . But
then either αi1 +αi3 = ϵl − ϵj2 is a root of An, or αi1 = −αi3 . Both these possibilities violate the conditions
for {(λi1 ,αi1), (λi2 ,αi2)} to be a subset of an element in S ′(α). Now suppose that j1 equals m. Then αi1
equals α. So we have

∑r
i=1λiαi −λi1αi1 = (1−λi1)α = (1−λi1)(ϵl −ϵm) , 0. Repeating the above argument,

we find that αi2 equals α as well. But then αi1 and αi2 are the same. This violates the conditions for
{(λi1 ,αi1), (λi2 ,αi2)} to be a subset of an element in S ′(α). □

Remark 3.22. Let f : Φ̃→Z be a concave function. We have f (r) = f (0+r) ≤ f (0)+f (r). Thus, 0 ≤ f (0). Let
us fix a value f (0) of 0 ∈ Φ̃ . For each simple root α ∈ S , by the condition f (0) = f (α +−α) ≤ f (α) + f (−α),
we have

(f (α), f (−α)) ∈
{
(x,y) ∈Z2 | x+ y ≥ f (0)

}
.

On the other hand, the condition f (r1) = f (r1 + r2 − r2) ≤ f (r1 + r2) + f (−r2) implies

f (r1)− f (r2) ≤ f (r1 + r2). ≤ f (r1) + f (r2).

Thus, for an integral concave function f , we have infinitely many choices for values on S± ∪ {0} but only
finitely many choices for non-simple roots.

Part 2. Schematization

4. The n-parahoric Lie algebra bundleR on an affine space

The aim of this section is to present an ab initio construction of the n-parahoric Lie algebra bundle on
the affine n-space together with a full description of the fibres at points of higher depth. This played the
initially important role for us to guess the definition of the n-parahoric group. The reader who is interested
only in the group scheme constructions may skip this section.

For 1 ≤ i ≤ n, let Hi ⊂A :=A
n
k denote the coordinate hyperplanes. Let A0 ⊂A be the open subscheme

which is the complement of the union of hyperplanes. Let Θ := (θ1, . . . ,θn) ∈ An be a point of the n-
apartment satisfying the conditions of Section 2.2. The aim of this section is to construct an n-parahoric Lie
algebra bundle R on A :=A

n
k such that its restrictions to the generic points of the hyperplane Hi are the

parahoric Lie algebra bundles associated to the weight θi and to describe it on the whole of A.
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4.1. Elementary remarks on reflexive sheaves

We begin with three elementary lemmas which should be well known.

Lemma 4.1. Let E be a locally free sheaf on an irreducible smooth scheme X. Let ξ ∈ X be the generic point,
and let W ⊂ Eξ be an Oξ -submodule. Then there exists a unique coherent subsheaf F ⊂ E such that Fξ =W and
Q := Coker(F ↪→ E) is torsion-free. Moreover, F is a reflexive sheaf.

Proof. Define a sheaf F̃ by the following condition: its sections on an affine open U ⊂ X are given by
F̃(U ) := E(U ) ∩W . Then it is easily seen that F̃ defines a coherent subsheaf F ⊂ E and that it is the
maximal coherent subsheaf of E whose fibre over ξ is W . To check that Q is torsion-free, let T be the
torsion submodule of Q. Let K := Ker(E→ Q/T ). Then since ξ < Supp(T ), Kξ =W , and hence, by the
maximality of F, we have K = F. Since E is locally free, we have F∨∨/F ↪→ E∨∨/F = E/F. But since F∨∨/F
is only torsion and E/F =Q is torsion-free, it follows that F is automatically a reflexive sheaf. □

Lemma 4.2. Let X be as above and i : U ↪→ X an open subset such that X \U has codimension at least 2 in X.
Let FU be a reflexive sheaf on U . Then i∗(FU ) is a reflexive sheaf on X which extends FU .

Proof. By [EGAI, Corollaire 9.4.8], there exists a coherent OX-module F1 such that F1|U ≃ FU . Set F := F∗∗1
to be the double dual. Then F is reflexive, and also since FU is reflexive, F|U ≃ FU . Hence, we have
i∗(FU ) = F; see [Har80, Proposition 1.6]. □

Lemma 4.3. Let X be integral and factorial. Then any reflexive sheaf of rank 1 is locally free.

Proof. (cf. [Har80, Proposition 1.9]) Let F be a reflexive sheaf of rank 1. Then since X is normal, there
is an open U ⊂ X such that codimX(U ) ≥ 2 and FU is locally free. Since X is locally factorial, we have
Pic(X)→ Pic(U ) is bijective. Hence, there is a locally free sheaf L of rank 1 on X such that LU = FU . It is
clear that L ≃ F on X. □

4.2. The construction ofR

Theorem 4.4. Associated to Θ, there exists a canonical Lie algebra bundle R on A which extends the trivial
bundle with fibre g on A0 ⊂A; furthermore, in a formal neighbourhood V := Spec(On) of the origin in the affine
n-space A, we have the identification of functors from the category of k-algebras to k-Lie algebras

(4.1) L+n(R |V ) = L+n(PΘ).

Proof. Let biα ∈Q be defined by the relations

(4.2) θi :=
∑
α∈S

biαω
∨
α for i ≤ n.

Let d ∈N be such that dbiα ∈Z for all 1 ≤ i ≤ n and α ∈ S .
Consider an inclusion of k-algebras B0 ⊂ B, where

(4.3) B := k
[
y±1i

]
1≤i≤n

, B0 := k
[
x±1i

]
1≤i≤n

and {ydi = xi}1≤i≤n. Let Y0 := Spec(B) and A0 = Spec(B0), and let p : Y0→ A0 be the natural morphism.
We define the “roots” map

r : Y0 −→A0 as(4.4)

r# ((xi)) := (yi) .(4.5)

Note that as a map between tori, r is an isomorphism. Let Tad = Spec(k[z±1α ]). We define the action map

a : Y0 −→ Tad as(4.6)

a# ((zα)) :=

 ∏
1≤i≤n

y
dbiα
i

 .(4.7)
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We consider the map

Ad◦a : Y0 × g −→ Y0 × g(4.8)

(t,x) 7−→
(
t,Ad

(
a(t)

)
(x)

)
.(4.9)

We define the embedding of modules

(4.10) j : g(B0) ↪−−→ g(B)
Γ (Ad◦a)
−−−−−−−→ g(B),

where the second map is the one induced by (4.8) on sections. The T -weight space decomposition of g
induces a T -weight space decomposition on g(B0) by viewing the latter as sections of the trivial bundle on
A0 with fibres g.

Let B+ = k[yi]1≤i≤n and B+0 := k[xi]1≤i≤n. Taking intersection as Lie submodules of g(B), we define the
following B+0 -submodule of g(B0):

(4.11) R (B+0 ) := j
−1 (j (g(B0))∩ g (B+)) .

In words, it is the set of elements in g(B0) which lie in g(B+) under j . Taking E as the bundle defined by
the free B+0 -module g(B+) and the submodule W := j(g(B0)) in Lemma 4.1, we observe that R is a reflexive
sheaf on the affine embedding A0 ↪→A := Spec(B+0 )(≃A

n). Further, this is a sheaf of Lie algebras with its
Lie bracket induced from g(B).

We now check that R is locally free on A. Observe that the intersection (4.11) also respects Tad-weight
space decomposition on the sections. More precisely, for any root r ∈ Φ , since by definition we have
R(B+0 )r = j−1

(
j(gr(B0))∩ gr(B+)

)
, we get the following equalities:

(4.12) j−1 (j (g (B0))∩ gr(B+)) = j−1 (j (gr (B0))∩ g(B+)) =R (B+0 )r .

Since R is reflexive, there is an open subset U ⊂A with complement of codimension at least 2 such that
the restriction R′ :=R|U is locally free. Clearly, U contains A0 and the generic points ζα of the divisors
Hα . This gives a decomposition on R′ obtained by restriction from R. The locally free sheaf R′ is a direct
sum of the trivial bundle Lie(Tad)×U (coming from the 0-weight space) and the invertible sheaves coming
from the root decomposition. Now since invertible sheaves extend as invertible sheaves across codimension
at least 2, see Lemma 4.3, the reflexivity of R implies that this direct sum decomposition of R′ extends to A.
Hence R is locally free.

We introduce some convenient notation to check the main assertion of the theorem. Recall that
λi : Gm→A0 is the ith axis of A0. For example, λi may be expressed in n coordinates as follows:

(4.13) λi(x) = (1, . . . ,x, . . .1)

with x at the coordinate corresponding to 1 ≤ i ≤ n. The map r : Y0→ A0 is abstractly an isomorphism
of tori, and we can therefore consider the 1-PS λi : Gm→ Y0 defined by λi := r−1 ◦λi . We observe the
following:

p ◦λi = λi ,(4.14)

a ◦ (λ1, . . . ,λn) = (θ1, . . . ,θn) =Θ.(4.15)

Recall that V = Spec(On) denotes a formal neighbourhood of the origin. Let us check the isomorphism
L+n(R|V ) ≃ L+n(PΘ) by first evaluating at k-valued points. Since d ·Θ is an n-tuple of 1-PSs of A0, we see
that Θ(. . . ,xi , . . .) =Θ(. . . ,ydi , . . .) = (dΘ)(. . . ,yi , . . .) has become integral in {yi}.

By (4.11), a section ¯s of R over V is first of all given by a local section ¯sK over the generic point Spec(Kn)
of Spec(On). More precisely, this is firstly an element in j(g(K)). Hence this element may be written as

¯sK = Ad

a ∏
1≤i≤n

λi(xi)

 (xK ) = Ad

 ∏
1≤i≤n

θi(xi)

 (xK ).
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Therefore, the membership of ¯s in g(B+), see (4.11), gets interpreted as follows:

(4.16) Ad

 ∏
1≤i≤n

θi(xi)

 (xK ) ∈ Lg(B+).
But this is exactly the Lie algebra version of the conditions “lims→0 exists” for η = (1,θ) in the observation

(2.9) and Section 2.5, for each individual xi . In our situation we have assumed R = k, and so by (4.15), the
above is equivalent to the membership

(4.17) ¯s ∈ PΘ .

This proves the assertion for k-valued points. The above proof goes through for all k-algebras because the
underlying module structure is already defined on k, and so is Lie bracket. This completes the proof of the
theorem. □

Corollary 4.5. Let the notation be as in Theorem 4.4. Then λ :=
∑
i≤nλi is a 1-PS of A0 defining the diagonal

curve D whose limit point is the origin. Let D be a formal neighbourhood of the origin in D . We get the
identification (see (3.13) for the notation)

(4.18) L+ (R |D) = L+
(
P
diag
Θ

)
of the specialized objects.
Let λ =

∑
kiλi , where ki ≥ 0 but not all are zero. Let D be the formal neighbourhood of the origin associated to

the curve defined by λ. Let f : Φ→Z be the concave function defined by the assignment r 7→
∑
kimr(θi). Then

for any k-algebra R, we have

(4.19) L+(R |D)(R) =
〈
t(R⟦t⟧),ur

(
tf (r)R⟦t⟧

)
, r ∈ Φ

〉
.

Proof. Note that restriction to D followed by taking global sections of R sets all variables zi to t in the
sections of R on U . Now the first assertion follows by the definition (3.13). The restriction of R to D in the
second case followed by taking global sections corresponds to setting zi := tki in the sections of R on U . □

Remark 4.6. In the setting of Theorem 4.4, we may view p : Spec(B+)→ Spec(B+0 ) as a ramified covering
space of affine toric varieties induced by an inclusion of lattices. The Galois group for this covering is
the dual of the quotient of lattices. The computation in Theorem 4.4 can be seen as a higher-dimensional
analogue of [BS15].

5. Schematization of n-parahoric groups

In this section and the next couple of sections, we will freely use the theorems from [SGA3], the paper of
Bruhat–Tits [BT84a] and M. Raynaud’s book [Ray70]. We begin by recalling a few essential facts about Weil
restrictions of scalars and related things.

5.1. Weil restrictions and Lie algebras

Let X be an arbitrary k-scheme. For an affine (or possibly ind-affine) group scheme H→ X, we denote by
Lie(H) the sheaf of Lie algebras on X whose sections on U → X are given by

(5.1) Lie(H)(U ) = ker(H(U × k[ϵ]) −→H(U )).

Lemma 5.1. Let p : X̃→ X be a finite flat map of Noetherian schemes. Let ResX̃/X denote the “Weil restriction
of scalars” functor. Let H→ X̃ be an affine group scheme. Then we have a natural isomorphism

(5.2) Lie
(
ResX̃/XH

)
≃ ResX̃/X Lie(H).



On Bruhat–Tits theory over a higher-dimensional base 29On Bruhat–Tits theory over a higher-dimensional base 29

When p is also Galois with Galois group Γ , under tameness assumptions (see Section 1.1 ), we have a natural
isomorphism

(5.3) Lie
(
(ResX̃/XH)Γ

)
≃
(
ResX̃/X Lie(H)

)Γ
.

Proof. See [CGP15, Section A.7, p. 533] and [Edi92, Proposition 3.1], respectively. □

Notation 5.2. Following [BLR90], we will denote the Weil restriction of scalars as p∗. The functor which
composes with taking group invariants will be denoted by pΓ∗ . This is often called the “invariant direct image”
functor following [BS15]. The conclusion of Lemma 5.1 can be expressed as

(5.4) Lie
(
pΓ∗ (H)

)
≃ pΓ∗ (Lie(H)).

5.2. Some constructions from SGA

We recall briefly some facts about vector group schemes from [SGA3]. For a coherent S-module F , we
recall, see [SGA3, Exposé I, Section 4.6.3 and Proposition 4.6.5] (see also [BT84a, Section 1.4.1]), the functor
from the category of S-schemes to Abelian groups given by

W : S ′ 7−→ Γ (S ′ ,F ⊗OS OS ′ ).(5.5)

When F is locally free, this is represented by a smooth group scheme W (F ) defined by the affine scheme
Sym(F ∨). Its Lie algebra is canonically isomorphic to F . In fact, there is a canonical isomorphism

W (F ) ≃W (Lie(W (F ))).(5.6)

Following [SGA3], we will call W (F ) a vector group scheme, noting that

F 7−→W (F )(5.7)

gives a functor from the category of locally free OS-modules of finite rank to the category of vector S-groups.
Observe that over a field, a vector group is simply G

n
a for some n. We now state a few important properties

satisfied by the functor W :

(a) If F ′ is a locally free S-submodule of F , then W (F ′) is a closed subgroup scheme of W (F ) if and
only if F ′ is a direct summand of F (see [DG70, Section 2.1, p. 148] and [BT84a, Section 1.4.1]).

(b) In particular, if S = Spec(Λ) with fractional field F, a projective OS-module L of rank 1 corresponds
to an S-group scheme W (L) whose generic fibre is isomorphic to the additive group Ga,F.

(c) It is easy to check that Weil restriction and taking invariants commute with the functor W .

5.3. Restriction ofR to formal neighbourhoods of generic points of coordinate
hyperplanes Hi

Let Ci be the coordinate curve defined by the vanishing of λj (see Section 4.2) for j , i. Let Ui be the
formal neighbourhood of the origin in Ci . For 1 ≤ i ≤ n, let θi be the point in the apartment corresponding
to the hyperplane Hi .

For each θi , let di ∈N be such that dθi ∈ Y (T ). We first suppose that θi lies in the fundamental domain
of Y (T ) in AT . Recall (see Section A.2) that by [BS15, Proposition 5.1.2], there exists a ramified cover
q : U ′i → Ui of ramification index di and Galois group Γ , together with a Γ -equivariant G-torsor Ei such
that the adjoint group scheme Hi = Ei(G) has simply connected fibres isomorphic to G and we have the
canonical identification of U -group schemes

qΓ∗ (Hi) ≃Gθi .(5.8)

For the general case, move the points θi into the fundamental domain for the action of Y (T ) on AT by
elements hi ∈ Y (T ). These hi ∈ Y (T ) are uniquely determined. By an abuse of notation, we may view them
as hi ∈ T (K) as well. We now consider the modified embedding of G in the generic fibre of Ghi .θi given by
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conjugation by hi . Then the schematic closure via this embedding in Ghi .θi gives the group scheme Gθi . Now
(5.8) generalises without any restriction on θi . Henceforth in this paper, we fix the identification of U -group
schemes thus obtained:

φ(hi) : q
Γ
∗ (Hi) ≃Gθi .(5.9)

We therefore get the following useful corollary to Theorem 4.4.

Corollary 5.3. As sheaves of Lie algebras, we have an isomorphism

(5.10) Lie
(
φ(hi)

)
: qΓ∗ (Ei(g)) ≃R|Ui .

Proof. This is an immediate consequence of Theorem 4.4 and Lemma 5.1. □

5.4. Group schemes on smooth varieties with normal crossing divisors

We now prove a result on constructing group schemes on varieties with normal crossing divisors under
some general hypotheses. This plays a role in this paper as a useful substitute for the Artin–Weil theorem on
the existence of group scheme structures stemming from birational group laws. Let Θ := (θ1, . . . ,θn) be an
n-tuple of rational points in the affine apartment AT satisfying the conditions of Section 2.2. Let k be a
perfect field with characteristic assumptions as in Section 2.2.

Theorem 5.4. Let X be a smooth quasi-projective scheme over k, and let D =
∑n
i=1Di be a reduced normal crossing

divisor. Let {ζi}ni=1 be the set of generic points of the components {Di}
n
i=1, and let Ai = OX,ζi , Xi := Spec(Âi) and

Xo := X −D . Let Gθi be the parahoric group scheme on Xi for each i associated to the point θi of the affine
apartment. Let R denote a Lie algebra bundle on X which is such that R|Xo ≃ g×Xo and R|Xi ≃ Lie(Gθi ) for
each i. Then there is a smooth, affine group scheme G on X with connected fibres, unique up to isomorphism, such
that

(1) G|Xo ≃ G ×Xo,
(2) G|Xi ≃Gθi for each i,
(3) Lie(G) ≃R.

Proof. Let Li := Fract(Ai) (resp. L̂i := Fract(Âi)) for each i. By (5.9), for each i, there exists a Γi-equivariant
G-torsor Ei on a ramified cover qi : X̃i → Xi such that the adjoint group scheme Hi = Ei(G) has simply
connected fibres isomorphic to G and we have the identification of Ai-group schemes

φ(hi) : q
Γ
i,∗(Hi) ≃Gθi .(5.11)

Furthermore, by Corollary 5.3, we also get the identifications

Lie
(
φ(hi)

)
: qΓi,∗(Ei(g)) ≃ Lie(Gθi ).(5.12)

Let Go := G ×Xo. Let X ′ ⊂ X be an open subset containing Xo whose complement in X has codimension
at least 2. We restrict the Lie algebra bundle R =RX further to X ′ . By assumption, over the open subset
Xo ⊂ X ′ , we have R≃ Xo ×g. Observe that Aut(g) = Aut(G) since G is simply connected. Further, since the
local parahoric group schemes Gθi are assumed to be generically split, it follows that for each i, the transition
functions of R give an isomorphism

τi : Go ×Xo L̂i ≃Gθi ×Xi L̂i .

We can now apply [BLR90, Section 6.2, Proposition D.4(b)] to each τi : Go×Xo Li ×Li L̂i ≃Gθi ×Xi L̂i to obtain
by “descent” an affine, finite-type group scheme G′θi over Spec(Ai) for each i, such that G′θi ×Ai Âi ≃Gθi
and G′θi ×Ai Li ≃Go ×Xo Li . By an abuse of notation, we will denote the group scheme G

′
θi
simply by Gθi .

Since the group schemes Gθi on Spec(Ai) are of finite type, they can be extended (by clearing denomina-
tors) to open subschemes Xfi of X. By a further shrinking of this neighbourhood Xfi of ζi , one can glue it to
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Go along the intersection. Since the group schemes are smooth and affine, we obtain the connected, smooth,
affine group scheme

(5.13) G′ −→ X ′ .

Transporting structures by Corollary 5.3 (see also the appendix), the Lie algebra bundle R gets canonical
parabolic structures at the generic points ζi of the components {Di}i . By Definition A.1, for a (generic)
parabolic vector bundle with prescribed rational weights such as R, we firstly get a global Kawamata cover
(see Section A.1) p : Z→ X ramified over D with ramification prescribed by the weights {di}, see (2.2), with
Galois group Γ which “realizes the local ramified covers qi at the points ζi”; i.e. the isotropy subgroup of Γ
at ζi is Γi .

We claim that we in fact get an Γ -equivariant vector bundle V on Z such that

(5.14) pΓ∗ (V ) ≃R.

Let Z ′ := p−1(X ′). As the first step, following the reasoning in the appendix, it follows by the dimension
1 strategy that there exists a Γ -equivariant vector bundle V ′ on Z ′ such that pΓ∗ (V

′) ≃R |X ′ .
Furthermore, in formal neighbourhoods over the generic points ζi of the components Di , we may identify

V ′ with Ei(g) and Γ with Γi . Also, over Zo := p−1(Xo) we can identify V ′ with g × Zo. The transition
functions of R|X ′ can be lifted to give transition functions for V ′ , and we get a canonical Γ -equivariant Lie
algebra bundle structure on V ′ over Z ′ (with fibre type g) such that pΓ∗ (V

′) ≃R |X ′ as Lie algebra bundles.
Since the weights θi are all chosen to lie in the same affine apartment AT , the local representations for the

stabilizers Γi ⊂ Γ in G take values in the maximal torus T . This determines a uniform Cartan decomposition
on the fibres of the Lie algebra bundle V ′ on Z ′ (compare with the proof of Theorem 4.4, where one has
similar arguments to check that R is locally free on A). This gives a decomposition of the underlying vector
bundle V ′ as a direct sum of line bundles.

Now since invertible sheaves extend as invertible sheaves across codimension at least 2, see Lemma 4.3,
and since codim(Z \ Z ′) ≥ 2, the reflexivity of the double dual V of V ′ implies that this direct sum
decomposition of V ′ extends term by term to Z . Hence the double dual V is locally free. The equivariant
structure on V ′ canonically gives an equivariant structure on V , and it is easy to check that (5.14) holds.
This completes the proof of the claim.

The structure of Lie algebra bundle on V ′ is such that the Killing form is non-degenerate everywhere
on Z ′ by virtue of our assumptions; see Section 2.2 (cf. [Jan98, Section 6.4, p. 199]). By a Hartogs-type
argument (see for example [EGAIV, Theorem 5.10.5] or [Har67, Theorem 3.8]), the Lie bracket [, ] on V ′

extends to a Lie bracket on the locally free sheaf V with the Killing form being non-degenerate on the whole
of Z . In other words, V is now a locally free sheaf of Lie algebras on the whole of Z with semisimple fibres; these
fibres are isomorphic to the Lie algebra g by the rigidity of semisimple Lie algebras. We denote this bundle of Lie
algebras by Vg.

By construction, V ′ has the structure of an equivariant Lie algebra bundle. The [, ] on Vg is a section of
Vg ⊗V ∗g ⊗V ∗g . For each g ∈ Γ , the sections g · [, ] and [, ] agree on Z ′ . Hence they agree everywhere on Z;
i.e. the underlying equivariant structure on Vg gives Vg the structure of an equivariant Lie algebra bundle.
The transition functions of this equivariant Lie algebra bundle lie in Aut(g) = Aut(G). Hence we obtain an
equivariant Aut(G)-torsor E on Z . Note that E is only étale locally trivial. Also observe that the associated
Lie algebra bundle E(g) := E ×Aut(G) g is isomorphic to Vg as a Lie algebra bundle.

Let H := E ×Aut(G)G denote the associated fibre space for the canonical action of Aut(G) on G. Since the
group Aut(G) acts on G as group automorphisms, it preserves the group structure, and hence H is a group
scheme. Further, since E is étale locally trivial, by étale descent, it follows that H is an affine smooth group
scheme on Z . Since E is an equivariant Aut(G)-torsor, the group scheme H is furthermore an equivariant
group scheme on Z for the action of the Galois group Γ , and so we define

GX := pΓ∗ (H).(5.15)
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By the properties of Weil restriction of scalars and taking invariants, it follows that GX is a smooth, affine
group scheme. Also, GX |X ′ =G′ .

Note that we have the identification Lie(H) ≃ Vg as Lie algebra bundles on Z . Since by Lemma 5.1, the
“invariant direct image” functor commutes with taking Lie algebras, we moreover get isomorphisms of locally
free sheaves of Lie algebras

(5.16) Lie(GX) ≃ Lie
(
pΓ∗ (H)

)
≃ pΓ∗ (Lie(H)) ≃ pΓ∗

(
Vg

)
≃R.

This proves the third claim in the theorem. □

5.5. The “big cell” structure on G

Recall that the choice of the set of positive roots Φ+ determines a big cell of G over k.
By (5.13), the group scheme GX is obtained by gluing the parahoric group schemes Gθi with G×Xo using

the identity map idG. Therefore, the parahoric group schemes Gθi come with a canonical big cell which glues
with the standard big cell of the split group scheme G ×Xo. This gives a big cell BX =U+

X ×TX ×U
−
X ⊂GX .

This also gives the decomposition

Lie(GX) = Lie
(
U+
X

)
⊕Lie(TX)⊕Lie

(
U−X

)
.(5.17)

In the next proposition, we show the existence of an open subscheme BΦ of G obtained in Theorem 5.4.
This open subscheme is analogous to the big cell in a split reductive group scheme; see [SGA3, Exposé XXII,
Section 4.1]. Following [BT84a], we will call this open subscheme a “big cell” of G. The big cell in particular
provides a neighbourhood of the identity section of the group scheme G.

Proposition 5.5. We work in the setting of Theorem 5.4 and choose the transition function for the gluing to be
idG ∈ Aut(G). Let Φ+ be a system of positive roots in Φ . Let BH denote the big cell of H. Let

BΦ := pΓ∗ (BH)

denote the invariant direct image of BH.
Then BΦ restricts to the standard big cell of G over the open subset Xo. In fact, there exist unipotent subgroup

schemes U± and a toral subgroup scheme T of G such that the morphism

(5.18) U− ×T ×U+ −→G

to G induced by multiplication is an open immersion with image BΦ .

Proof. The notation is as in the proof of Theorem 5.4. Since the Galois action of Γ is via the fixed maximal
torus T , we observe that the Cartan decomposition of the Lie algebra bundle is preserved under the functor
that takes Γ -invariants. Notice that the functor W of Section 5.2 commutes with Weil restriction and taking
invariants. Hence the root group schemes and the toral subgroup scheme of the reductive group scheme H
can be pushed down by pΓ∗ to give the corresponding root group schemes and toral group scheme below.
The group structure on H induces one on the product of the root groups for the positive and negative roots
(with a fixed and prescribed order) to give closed unipotent subgroup schemes on H. These again carry the
action of the Galois group Γ .

Hence these unipotent subgroup schemes get pushed down by pΓ∗ to give closed subgroup schemes U±

of G. Further, Weil restriction and taking invariants preserve the product structure, and this shows that the
big cell structure on the reductive group scheme H goes down by Weil restriction and invariants to give the
required big cell structure on G. □
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5.6. Bruhat–Tits group scheme associated to concave functions

Let Φ̃ := Φ ∪ {0}. Recall that a function f : Φ̃→R is a concave function such that f (0) = 0; see (1.5). We
recall a few salient features of the main results from [BT84a, Section 4.6.2] and [Yu15, Theorem 0.1] in our
special setting, where GK is a generically split, simple, simply connected group over K , i.e. GK ≃ G×Spec(K).
Bruhat–Tits [BT84a, Section 4.6.2]: Let Pf be the subgroup of G(K) generated by Ur,f (r) and the subgroup

T (A).
There exists a canonical affine smooth group scheme Gf on Spec(O) with generic fibre GK such that

(1) Gf (A) = Pf ,
(2) the multiplication morphism

(5.19)

∏
r∈Φ−

Ur,f (r)

×Tf ,O ×
∏
r∈Φ+

Ur,f (r)

 −→Gf

is an open immersion. The group scheme Tf ,O is the schematic closure of TK in Gf , and since TK is a split
torus, Tf ,O is a connected multiplicative group scheme; see [BLR90, Section 10.1, Example 5]. By computing
the tangent space at the identity section which lies in the image of the immersion, i.e., in the big cell Bf

of Gf , we see that

(5.20) Lie
(
Gf

)
=
⊕
r∈Φ

Lie
(
Ur,f (r)

)
⊕Lie

(
Tf ,O

)
.

5.7. On the Lie algebra bundleR in Theorem 5.4

We now prove a small but significant variant of Theorem 5.4. In the hypothesis in Theorem 5.4, we
have assumed the existence of an n-parahoric Lie algebra bundle R on X. We will give sufficient general
conditions for the existence of a Lie algebra bundle alone.

Proposition 5.6. Let the notation be as in Theorem 5.4. Let f = {fj}nj=1 be a collection of n-concave functions. Let
Âi be the completion of Ai at the maximal ideal. Suppose that we are given an assignment of BT-group schemes
Gfj on Xj := Spec(Âj ) for each j . Then there exists a Lie algebra bundle R on (X,D) such that R|Xo ≃ g×Xo,
the Cartan decomposition on g extends to R and R|Xj ≃ Lie(Gfj ) for each j .

Proof. The notation is as in Theorem 5.4 and its proof. But unlike in Theorem 5.4, we do not begin with a
Lie algebra bundle. So we are free to choose the initial gluing data according to our requirements. Since
the BT-group schemes for us are always connected, smooth and generically split, we can choose (as in
Proposition 5.5) idG as the map for gluing the product group scheme Go = G ×Xo with the Gfi .

Exactly as in the proof of Theorem 5.4, by a descent argument, we get smooth, affine group schemes Gfi ,
now on Spec(Ai) for each i, and hence we get a smooth, affine group scheme G′ on X ′ . We now define

R′ := Lie(G′) ,(5.21)

which is a Lie algebra bundle on X ′ ⊂ X.
Since the gluing functions are idG, exactly as in the proof of Proposition 5.5, we also have an extended big

cell structure on the group scheme G′ over the whole of X ′ . As in (5.17), we see that the Cartan decomposition
extends to give one for R′ . In particular, this gives a direct sum decomposition of R′ in terms of line
bundles.

Now define R to be the reflexive closure of R′ ; see Lemma 4.2. Since we are on an irreducible smooth
scheme X, by Lemma 4.3, reflexive closures of invertible sheaves remain invertible sheaves. Thus R is also a
locally free sheaf on X. The Lie bracket on R′ now extends by a Hartogs-type argument, and we get a Lie
algebra bundle structure on R with the desired properties. □
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5.8. Construction of the n-parahoric group scheme

The notation in this section is as in the previous one; namely, A ≃A
n and A0 ⊂A is the complement of

the coordinate hyperplanes. Recall that On = k⟦z1, . . . , zn⟧ and Kn = Fract(On).
Let {Hi} be the hyperplanes of A. For each i, let ζi denote the generic point of the divisor Hi . Let

(5.22) Ai = OA,ζi

be the DVR obtained by localizing at the height 1 primes given by ζi , and let Xi := Spec(Ai). Base changing
by the local morphism Xi → A, we have a Lie algebra bundle R|Xi for each i. Moreover, the Lie algebra
bundle R on A, see Theorem 4.4, gives canonical gluing data to glue R|Xi with the trivial bundle g×A0.

The following first case is the key to proving the main result, Theorem 1.3.

Theorem 5.7. The main theorem, Theorem 1.3, holds when the n-tuple of concave functions is of type I (see
Definition 1.2 ).

Proof. We begin by making constructions on A. The existence of the Lie algebra bundle R on A follows by
applying Proposition 5.6 to the n-concave function of type I defined by the point Θ = (θ1, . . . ,θn). Since
we are in the type I case, we could have obtained the Lie algebra bundle directly from Theorem 4.4 as well.
Again since we are in type I, the existence of the smooth affine group scheme GΘ with connected fibres
is a consequence of Theorem 5.4; its cell structure and properties (4) and (5) of Theorem 1.3 follow from
Proposition 5.5.

We now restrict the group scheme GΘ to Spec(On) ⊂ A and continue to denote the restricted group
scheme by GΘ . Since the base is smooth and the group scheme is also smooth, by a theorem of Weil, see
[BLR90, Section 4.4, Theorem 1], it follows that the global sections are determined on any open subset U
whose complement is of codimension at least 2. Let us call such an open subset a big open subset. Sections
over U are obtained by intersecting the sections of the parahoric groups defined at the height 1 primes in
G(Kn). It follows immediately that the sections over the big open subset U coincide with the n-parahoric
group PΘ , proving assertion (2) of Theorem 1.3.

We now discuss the uniqueness of the group scheme; we note that although we do this here in the setting
of type I, the arguments are identical and will imply the same for the most general type III case, once the
construction along with properties (4) and (5) of Theorem 1.3 is carried out in Section 7.

If H is a connected, affine smooth group scheme over On which is generically split and such that it has
closed toral and root subgroup schemes as in (4) and a big cell as in (5) of Theorem 1.3, then by [BT84a,
Sections 1.2.13 and 1.2.14], we get the desired isomorphism of GΘ and H, showing the uniqueness.

A subtler feature regarding the uniqueness can be extracted from these arguments. Once the smooth
connected group scheme GΘ is constructed abstractly, the big cell structure over the big open subset U
(which contains all points of height 1) can be obtained at each of the height 1 primes as in [BT84a]. So
the cell structure coincides with the big cell of the parahoric group schemes Gθj for each j, and hence by
the uniqueness of the group schemes over discrete valuation rings, see [BT84a, Section 3.8.3], we get the
identification of the group schemes GΘ and H over U . Now, we can appeal to the deeper results in [Ray70,
Corollaire IX.1.5] to extend the isomorphism of group schemes from U to Spec(On). □

Remark 5.8. In continuation of Proposition 5.6, the description of the diagonal restriction of GΘ can be
obtained directly from the facts that it is affine by Theorem 5.7 and the group GΘ(On) of On-valued points
is the n-parahoric group PΘ . Let the notation be as in Theorem 1.5. Let ∆ :=AI for I = {1, . . . ,n} be the
diagonal curve in the affine space and O be the ring of functions on ∆ at the origin. Hence the restriction
GΘ |∆ is such that the space of its sections GΘ |∆ (O) is identified with GΘ(On), in which we set all variables

as equal. Thus we get the subgroup P
diag
Θ ⊂ G(k((t))); see (3.11). By the étoffé property of BT-group schemes,

this forces that GΘ |∆ is the BT-group scheme given by the concave function ”mfflΘ , where ”mfflΘ(r) :=∑
imr(θi).



On Bruhat–Tits theory over a higher-dimensional base 35On Bruhat–Tits theory over a higher-dimensional base 35

We remark that the above discussion still holds if we work with subdiagonal curves AI as Theorem 1.5(b),
which are defined by any subcollection of the hyperplanes indexed by a non-empty I ⊂ {1, . . . ,n}.

Corollary 5.9. Consider an n-tuple f of concave functions, each of which is a sum of such functions of type I.
Then the group scheme Gf is affine.

Proof. Let f = (f1, . . . , fn), where fi =
∑
j fθij . Set Θ = (θij ). Then GΘ is affine by Theorem 5.7. Note that

this group scheme constructed out of N -parahoric group schemes is over an affine space of dimension N ,
for N ≫ 0, and obtained from the data of the {θij}.

Observe that the group scheme Gf can be seen as a restriction to a subdiagonal in the larger affine space
of GΘ . Now the assertion of affineness follows by Remark 5.8. □

5.9. Revisiting two «contre-exemples » in Bruhat–Tits [BT84a]

In this subsection we take a closer look at a couple of counter-examples in Bruhat–Tits [BT84a, Sec-
tion 3.2.15]. The examples highlight how the procedure developed in Section 3 of [BT84a] of taking schematic
closures in certain linear groups could give schemes which are neither flat nor group schemes. This phenome-
non happens when the base scheme is A2. By discarding certain bad components in the fibre over o ∈A2,
they extract a 2BT-group scheme whose affineness is left in doubt.

The base ring is O = k[ξ,η], the group is G = SL2, the concave function f is defined by f (a) = ξ · O and
f (−a) = η ·O, and the representation is ρ = id×Ad on the module K2×g. The O-moduleM is a free module

generated by the basis of K2 and the elements η · e−a,h,ξ · ea. We view them as

 0 0
−η 0

 ,1/2 0
0 −1/2

 and0 ξ

0 0

. Thus we have

(5.23) ρ

x y

z t

 =

x y

z t

 ,


t2 −η · zt ξη−1 · z2

−2η · yt xt + yz −2ξ · xz
η · ξ−1y2 −ξ · xy x2




The schematic closure of ρ(G) in GL(M) is G. The fibre over o ∈A2 is

Go =G1
o ∪G2

o ,(5.24)

where G1
o has dimension 4 and G2

o dimension 3. Hence G is not flat over O, while H :=G\G1
o is a flat group

scheme, albeit in the words of [BT84a, Section 3.2.15, p. 60] «mais probablement pas affine », i.e. but probably
not affine.

The fibre of H at o is obtained from [BT84a, Section 3.2.14, Equation (2)], which is obtained by a diagonal
restriction.

We now reinterpret this example as the simplest case of Theorem 5.7, for G = SL2. The surprising
picture which emerges from our approach is that we even get the affineness of their group scheme H as a
consequence.

In our setting of Section 3.2, we have Φ+ = {a}, and in terms of the alcove vertices (2.1), we have
θ1 := θa/2 = ω∨/2 and θ2 := −θa/2 = −ω∨/2. With mr(θ) := −⌊r(θ)⌋, we get

(5.25) a(θ1) =

1/2 if a ∈ Φ+,

−1/2 if a ∈ Φ−,

(5.26) ma(θ1) =

0 if a ∈ Φ+,

1 if a ∈ Φ−,
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and similarly for θ2. We get

(5.27) a(θ2) =

−1/2 if a ∈ Φ+,

1/2 if a ∈ Φ−,

(5.28) ma(θ2) =

1 if a ∈ Φ+,

0 if a ∈ Φ−.

By Theorem 5.7, if θ = (θ1,θ2), the group scheme Gθ is precisely H and also a smooth, affine group scheme
over O. Furthermore, the diagonal restriction is the affine group scheme G”mfflθ given by the concave function
”mfflθ : r 7→∑

mr(θj ) with

(5.29) ”mfflθ(a) = 1 ∀a ∈ Φ ,

which computes P
diag
θ and recovers the concave function considered in [BT84a, Section 3.2.14].

6. Schematization of n-bounded groups PΩ

The notation in this section is as in the previous one; namely, A ≃A
n and A0 ⊂A is the complement of

the coordinate hyperplanes. In this entire section, we work with G being one of An, G2, F4 or E6.
We begin by remarking that in the foundational paper [BT72], Bruhat and Tits study bounded groups

associated to concave functions on the Φ ∪ {0}. In the sequel [BT84a], the main result is to prove that these
groups are schematic.

A class of concave functions, which play a basic role even in the general study, are the ones which come
associated to bounded subsets Ω of the affine apartment. In this section, we extend the above theory
of n-parahoric groups (with their schematic properties) to the bounded groups associated to products of
bounded regions Ω := (Ω1, . . . ,Ωn) in the apartment.

In the following key remark, we recall a few basic facts from [BT84b].

Remark 6.1. Let G = SL(n) for some n. Let Ω be a non-empty enclosed bounded subset of the apartment
A. It is the convex hull of a finite subset {θ1, . . . ,θs} of points in A. In terms of the points θj , the BT-group
scheme GΩ on Spec(O) is precisely the schematic closure of the image of G in

∏
s

j=1Gθj under the diagonal
map. This is a consequence of the discussion in [BT84b, Remarques 3.9], together with [BT84b, Section 5.3],
where it is shown that the group scheme GΩ over Spec(O) can be realized as the closed image in

∏
s

j=1Gθj
of the diagonal morphism of G in the generic fibre Gs of

∏
s

j=1Gθj .
We further remark that the stated result for SL(n) also works by the results [GY03, Theorem 10.1] for G2

and [GY05, Theorem 9.1] for F4 and E6.

Remark 6.2. An important aspect of the remark made above which will be used in what follows is to view the
group scheme

∏
s

j=1Gθj as an invariant direct image from a suitable ramified cover (see Section A.2). Now
the group scheme Gθj arises from an invariant direct image if θj belongs to the alcove a0 (see Section 2.1)
by [BS15]. This generalizes to the case when θj belongs to the fundamental domain of Y (T ) by Remark 8.1
and Section 9.1. For the general case, we may have to move the points {θ1, . . . ,θs} in apartment A into the
fundamental domain for the action of Y (T ). Let hj ∈ T (K) be elements such that the point {h1 ·θ1, . . . ,hs ·θs}
now lies in the s-fold product of the fundamental domain of Y (T ). We now consider the modified diagonal
embedding of G in the generic fibre of

∏
s

j=1Ghj ·θj which is given by a simultaneous conjugation by the hj ,

i.e. g 7→ (h1 · g · h−11 , . . . ,hs · g · h−1s ). Then the schematic closure via this embedding in
∏

s

j=1Ghj ·θj gives the
group scheme GΩ up to an isomorphism. Moreover, the new ambient group scheme

∏
s

j=1Ghj ·θj comes as
an invariant direct image from a single cover.
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6.1. The schematic hull SΩ,Λ of an n-bounded set Ω and its big cell structure

For simplicity of notation, letΛ stand for the polynomial ring k[z1, . . . , zn] and F stand for Fract(Λ) throughout
this proof.

Let Ω = (Ω1, . . . ,Ωn), where we may assume that the Ωi are enclosed bounded subsets of the affine
apartment A. Let Ωi be the convex hull of points {θi1, . . . ,θis} of AT . Note that a priori the number s of
points also varies with i. By Remarks 6.1 and 6.2, we may suppose

(1) that these points lie in a single fundamental domain of Y (T ) in AT and
(2) that over a DVR Spec(O), we realize each GΩi

as the schematic closure of G in
∏

s

j=1Gθij .

By choosing s to be the maximal number of terms for varying i = 1, . . . ,n, and by repeating the θij when
the number is less than s, we may assume that all the group schemes GΩi

are schematic closures of products
of s parahoric group schemes on Spec(O).

Fix a j ∈ {1, . . . ,s}. For each hyperplane Hi (i = 1, . . . ,n), we attach the point θij. For this configuration
of points in the apartment, we have by Theorem 5.7 an n-parahoric group scheme Gθ1j,...,θnj on A. We set

SΩ,Λ :=
∏
1≤j≤s

Gθ1j,...,θnj(6.1)

to be the s-fold product of n-parahoric group schemes on A. Thus SΩ,Λ is a smooth, affine group scheme on
Spec(Λ) =A with generic fibre being the split group scheme Gs × Spec(F). Since each n-parahoric group
scheme Gθ1j,...,θnj is realized as a Weil restriction of scalars from a finite flat cover of A (see Theorem 5.7),
so is the group scheme SΩ,Λ.

Definition 6.3. We call the product group scheme SΩ,Λ, see (6.1), the schematic hull of the n-bounded
set Ω and will denote it simply as SΛ.

This group scheme SΛ will play a central role in all that follows.
Recall that each of the n-parahoric group schemes Gθ1j,...,θnj occurring in (6.1) is equipped with a big

cell by Theorem 5.7 (see Section 5.5). Taking their product, we define the big cell of the group scheme SΛ.
Let us write it as the image of the product morphism

B− ×T ×B+ −→ SΛ.(6.2)

Let Ur,j denote the root group of Gθ1j,...,θnj corresponding to r ∈ Φ . For r ∈ Φ , let us set

(6.3) Br :=
∏
1≤j≤s

Ur,j .

Then under the induced group law from SΛ, each Br is Abelian.

6.2. The diagonal embedding

Let U be an open subset of Spec(Λ) which contains all primes of height at most 1. At the completion of
the local rings at the height 1 prime ideal associated to the generic point of each Hi indexed by i = 1, . . . ,n,
we assign the Bruhat–Tits group scheme GΩi

. By definition, these group schemes are also generically split.
We let GΩ,F denote the image of the diagonal embedding of G×Spec(F) in Gs×Spec(F). As in Proposition 5.6

and in the proof of Theorem 5.4, by gluing (using the map idG) with the GΩj
, the group scheme GΩ,F

extends to each of the generic points of the coordinate hyperplanes. Let GΩ,U denote this smooth, affine
group scheme on U . We begin with the closed embedding GΩ,F ⊂ SF, where SF = SΛ|Spec(F) . Let

YΛ :=GΩ,F(6.4)

denote the schematic closure of GΩ,F in SΛ.

Lemma 6.4. The group scheme GΩ,U is in fact the schematic closure YU of GΩ,F in SU .
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Proof. Since U contains all primes of height at most 1, we see that the schematic closure YU of GΩ,F in SU

is in fact a flat group scheme on U , and since SU is affine, it is in fact affine as well.
Since GΩ,F is smooth and hence reduced, YΛ is in fact the closure of GΩ,F in SΛ with its reduced scheme

structure. Since the base is of dimension at least 2, this schematic closure, however, need not be a group
scheme (see [BT84a, Section 3.2.15]).

To prove the contention of the lemma, we need to verify that the restriction of YU to the completion of
the local rings of each height 1 prime associated to Hi is in fact isomorphic to the BT-group scheme GΩi

.
This follows from Remarks 6.1 and 6.2. □

6.3. n-bounded-groups and schematization

The schematization of the n-bounded analogue is now carried out in two steps. As in the construction of
the n-parahoric, we construct the Lie algebra bundle RΩ first (see Theorem 4.4). This will be eventually
turn out to be Lie(GΩ).

Proposition 6.5. Let the notation be as in Theorem 4.4 and Proposition 5.6. The trivial bundle with fibre g on
A0 extends to A, preserving the Cartan decomposition as a canonical Lie algebra bundle RΩ. Further, for each ζi ,
the restriction RΩ|Xi is isomorphic to RΩi

.

Proof. This is special case of Proposition 5.6. □

We will denote the Cartan decomposition of R as follows:

(6.5) RΩ = Lie(T )⊗OA ⊕r∈Φ Rr .

The group scheme construction on the higher-dimensional base has two obstructions. Firstly, schematic
closures need not be flat when the base is not a Dedekind domain (see Section 5.9), and secondly, there is no
immediate analogue of Theorem 5.4. This is because the bounded subsets Ωi need not be singletons, and so
the local BT-group schemes at the height 1 primes do not necessarily come from ramified covers.

Towards this end, we begin with a useful lemma.

Lemma 6.6 (cf. [BT84a, Section 1.2, pp. 17–18]). Let K be an infinite field and A ⊂ K be a subring such that
K is the quotient field of A. Let f : X → Y be a morphism of schemes over A, and let i : Z ↪→ Y be a closed
subscheme. Suppose that X is A-flat and that fK : XK → YK factorises through ZK . Then f factorises through Z .

Proof. By going to an affine cover of Y , we may assume that X and Y are A-affine with coordinate rings
O[X] and O[Y ]. Since X is A-flat, the map jX : O[X]→ K ⊗O O[X] is injective. Let a ∈ I(Z) be an element
in the ideal defining Z in Y . Then jX ◦ f ∗(a) = f ∗K ◦ jY (a) = 0 since fK has a factorization. By the injectivity
of jX , we get f ∗(a) = 0. □

6.4. Continuation of proof of Theorem 1.3

Theorem 6.7. The main theorem, Theorem 1.3, holds when the n-tuple of concave functions is of type II (see
Definition 1.2 ) and when G is of type An, G2, F4 or E6 (see Remark 6.1 ).

Proof. We will break up the rather long and technical proof into two parts. Part (I) constructs the candidate
for big cell in the type II case. Part (II) then constructs the group scheme by using this cell structure. In this
sense, the key issue is the extension of the schematic root datum.

Part (I) of the proof. We begin with the closed subgroup scheme GΩ,F of SF (obtained by the diagonal
embedding of G in Gs).

The closed subgroup scheme GΩ,F ↪→ SF over Spec(F) is such that each factor of the product U−Ω,F ×
TΩ,F ×U+

Ω,F embeds factor by factor in the corresponding term in the cell of SF. The full cell CΩ,F :=
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Im
(
U−Ω,F × TΩ,F ×U

+
Ω,F→GΩ,F

)
therefore sits as a flat closed subscheme of the open subscheme

Im(B−F ×TF ×B
+
F
−→ SF) .(6.6)

As before, let U be an open subset of Spec(Λ) which contains all primes of height at most 1. By
Proposition 6.5, we have a locally free Lie algebra bundle RΩ on Spec(Λ) =A. This gives an extension of
Lie(GΩ,F) as a Lie subalgebra bundle RΩ of Lie(SΛ). Under the Cartan decomposition, we get the following
refinement of subbundles:

(6.7) Rr,Ω ↪−−→ Lie(Br ) .

In the proof, as a preliminary step we will construct a big cell CΩ,Λ as a subscheme of the group scheme
SΛ. This is achieved in (6.14) below. This scheme CΩ,Λ will be such that when restricted to the open subset
U of Spec(Λ), we have an open immersion

CU ↪−−→GΩ,U .(6.8)

We recall that by (6.4) and the proof of Lemma 6.4, the scheme YΛ is in fact the schematic closure of GΩ,U

in SΛ. The main aim of this first part of the proof is not only to show the existence of a big cell CΩ,Λ in
(6.14), but to show in fact that Proposition 6.9 may be applied to it because it satisfies the following key
property.

Claim 6.8. There is an open immersion from the scheme CΩ,Λ into YΛ.

We begin with the big cell CΩ,F := Im
(
U+

Ω,F × TΩ,F ×U
−
Ω,F→GΩ,F

)
. This gives the decomposition

Lie
(
GΩ,F

)
= Lie

(
U+

Ω,F

)
⊕Lie

(
TΩ,F

)
⊕Lie

(
U−Ω,F

)
.

The goal now is to extend CΩ,F to a big cell CΩ,Λ, as an open subscheme of YΛ. We prove this in several
steps.

Step 1: Toral extension to Λ and closed embedding in YΛ. Since we work with the generically split case, the
maximal torus TΩ,F ⊂GΩ,F is split. We now work with a U which contains all primes of height at most 1.
The torus TΩ,F canonically extends to a smooth closed multiplicative subgroup scheme TΩ,U of GΩ,U over
U . This can be explicitly constructed as in [BT84a, Section 4.4.18 and 4.6.2] (or by using the identity
component of the Néron-lft model from [BLR90, Section 10.1, Proposition 6], as in [Lan96, Proposition 3.2]).

By [Ray70, Proposition IX.2.4], it follows that the inclusion TΩ,U ↪→ GΩ,U ↪→ SU extends uniquely to
a smooth group scheme TΩ,Λ together with a closed immersion TΩ,Λ ↪→ SΛ as a subtorus of the group
scheme SΛ. Since TΩ,Λ is flat and hence torsion-free, it follows that TΩ,Λ is the schematic closure of TΩ,U
in S. Again, since YΛ is the schematic closure of GΩ,U in S, we conclude that the embedding TΩ,Λ ↪→ SΛ

factors via a closed embedding TΩ,Λ ↪→ YΛ.

Step 2: Unipotent and big cell extension to U . Next, we need to extend the unipotent group schemes U±Ω,F,
firstly as closed subschemes of GΩ,U . This is easy since these are precisely the schematic closures of the root
groups U±r,F, for r ∈ Φ , and hence of U±Ω,F in GΩ,U ; we obviously rely on Bruhat–Tits theory over discrete
valuation rings. Call these extended group schemes U±Ω,U and observe that since we work over height 1
primes, these are flat over U .

Thus we have the big cell

CU := Im
(
U−Ω,U ×TΩ,U ×U

+
Ω,U ↪−−→GΩ,U

)
(6.9)

in GΩ,U which has the property that at each of the height 1 primes, it restricts to the big cell in the usual
Bruhat–Tits group schemes GΩj

.
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Step 3: Unipotent extension to Spec(Λ) as closed subschemes of YΛ. We next ensure that the group schemes
U±Ω,U extend as subschemes of the schematic closure YΛ to ensure that a big cell CΩ,Λ can be openly
embedded in YΛ.

We do this in three substeps.
Step 3.1. We first extend the unipotent group schemes abstractly from U to the whole of Spec(Λ). For

each r ∈ Φ , consider the fractional invertible ideal of Λ, i.e. a finitely generated projective sub Λ-module of F
given by

(6.10) f (r) := zmr (Ω1)
1 · · ·zmr (Ωn)

n Λ ⊂ F.

By [BT84a, Section 3.2.6], this ideal defines smooth Λ-group schemes Ur,Ω,Λ extending the root groups Ur,F
as well as the root groups Ur,Ω,U over U .

Step 3.2. We now prove that the group schemes Ur,Ω,Λ are closed subgroup schemes of the Abelian
subgroup schemes Br (see (6.3)) of SΛ and therefore closed subschemes of YΛ. We do so by showing in
fact that they are schematic closures of the root groups Ur,Ω,U in Br . Our method is to reduce verifications
by Section 5.2 to an inclusion of Lie algebra bundles on Λ. This check further reduces to U .
Step 3.2.1. By Section 5.2, the following group schemes arise from the W -construction of their Lie algebra

bundles:

(6.11) Ur,Ω,U ≃W
(
Lie

(
Ur,Ω,U

))
, Br ≃W (Lie(Br )) .

Note that the root groups Ur,Ω,U are closed subgroup schemes (over U ) of the restrictions Br,U to U .
Moreover, the Br are themselves closed Abelian subgroup schemes of SΛ (see (6.3)). Thus, by [SGA3, Exposé
I, Proposition 4.6.6] (recalled in Section 5.2), we conclude that the corresponding rank 1 Lie algebra bundle
Lie(Ur,Ω,U ) is a direct summand of the Lie algebra bundle Lie(Br |U ).

Step 3.2.2. We claim that Lie(Ur,Ω,U ) extends to Spec(Λ) as the line bundle Rr of (6.5). Indeed, since
each Rr restricts to Lie(Ur,Ω,U ) on U , it follows that by taking their reflexive closures inside RΩ (see
Proposition 6.5), each Lie(Ur,Ω,U ) extends to Spec(Λ) as the line bundle Rr . This extension Rr is a
summand of Lie(Br ) because its restriction to U has this property.

Moreover, these are extensions as Lie algebra subbundles of RΩ because by the Hartogs lemma, the Lie
bracket extends across codimension bigger than 2.

Step 3.2.3. By Step 3.1, the root group schemes Ur,Ω,U already have the extensions as unipotent group
schemes given by Ur,Ω,Λ. Again, since the Lie algebra bundles Rr and Lie(Ur,Ω,Λ) agree on U , we have an
isomorphism of Lie algebra bundles

Rr ≃ Lie
(
Ur,Ω,Λ

)
.(6.12)

This therefore identifies Lie(Ur,Ω,Λ) as a Lie subalgebra bundle of RΩ as well as a direct summand of
Lie(Br ).

Step 3.2.4. We observe that Ur,Ω,Λ arises from the functor W construction of Section 5.2. More precisely,
we have scheme-theoretic isomorphisms of vector group schemes

Ur,Ω,Λ =W
(
Lie

(
Ur,Ω,Λ

))
.(6.13)

Since the Lie(Ur,Ω,Λ) are direct summands of Lie(Br ), by Section 5.2 it follows that the Ur,Ω,Λ are closed
subgroup schemes of Br and therefore of SΛ. It follows in particular that the inclusions Ur,Ω,Λ ⊂ YΛ are
closed embeddings, as claimed.

Step 3.3. We have arrived at the setting of [BT84a, Section 2.2.2]. For r ∈ Φ±, we denote the scheme-
theoretic product of group schemes Ur,Ω,Λ as the Λ-scheme U±Ω,Λ. Since each Ur,Ω,Λ is the schematic
closure of Ur,Ω,U in SΛ, it follows that the U±Ω,Λ are the schematic closures of U±Ω,U in SΛ. The U±Ω,U are
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smooth unipotent subgroup schemes of SΛ over U , and since the U±Ω,Λ are flat, by [BT84a, Section 1.2.7],
it follows that the U±Ω,Λ are closed subgroup schemes of SΛ. Hence we get the smooth unipotent group
scheme structure on the U±Ω,Λ as well as realize them as closed subschemes of YΛ.

This completes the proofs of Steps 3.3, 3.2 and 3.1 and, as a consequence, of Step 3.

Step 4: Closed embedding of the big cell in YΛ. We finally need to ensure that the open immersion
jU : U−Ω,U ×TΩ,U ×U

+
Ω,U ↪→GΩ,U extends as an open immersion jΛ : U+

Ω,Λ ×TΩ,Λ ×U
−
Ω,Λ ↪→ YΛ.

More precisely, we show that the schematic closure of the image of the multiplication map of U−Ω,Λ ×
TΩ,Λ ×U+

Ω,Λ in SΛ is actually YΛ and then derive the open immersion property as a consequence.
By using the discussion preceding (6.6) and taking closures term by term, we see that U−Ω,Λ×TΩ,Λ×U

+
Ω,Λ

is a flat closed subscheme of B− × T ×B+, which is itself an open subscheme of SΛ. In other words, the
product defines an isomorphism of schemes of U−Ω,Λ ×TΩ,Λ ×U

+
Ω,Λ onto a flat closed subscheme

CΩ,Λ ⊂ Im(B− ×T ×B+)(6.14)

and, moreover, Im
(
B− ×T ×B+

)
is an open subscheme of SΛ.

Let C̄ be the schematic closure of CΩ,Λ in SΛ. We claim that C̄ = YΛ. By what we have checked above, it
is clear that C̄ is contained in YΛ.

Conversely, the big cell CΩ,F is an open dense subscheme of GΩ,F, hence C̄ ⊃ GΩ,F, implying that C̄
contains YΛ. Hence, by applying [BT84a, Section 1.2.6], we conclude that CΩ,Λ is an open dense subscheme of
its schematic closure which has been identified with YΛ.

This completes the proof of Claim 6.8 and hence of Part (I) of the argument.

Part (II) of the proof. We now state and give the proof of Bruhat and Tits [BT84a, Proposition 2.2.10],
minimally tweaked and tailored for our purposes. The result is referred to in a couple of places in their work
(see [BT84a, Section 3.9.4]), where they talk of the possibility of an extension of their theory to 2BT-group
schemes; but for us it is indispensable. In [BT84a, Proposition 2.2.10], the role of the group scheme GL(M)
is played by the group scheme SΩ,Λ (see Definition 6.3) in our situation. Hence we almost “reproduce” their
rather long and technical proof in its entirety, with suitable changes.

Proposition 6.9 (cf. [BT84a, Proposition 2.2.10]). Let H be the image of CΩ,Λ ×CΩ,Λ in SΛ by the product
morphism π of SΛ. Then H is open in YΛ and is a subgroup scheme of SΛ, with fibre GΩ,U over U , flat, of finite
type, containing U−Ω,Λ, TΩ,Λ and U

+
Ω,U as closed subgroup schemes and containing CΩ,Λ as an open subscheme (a

big cell). Furthermore, the group scheme H is a quasi-affine smooth group scheme over Λ.

Proof. For simplicity of notation, we will do away with all multiple Greek letters in subscripts.
As a preliminary step so as to follow the rest of the argument in [BT84a], we need to check that U−

Λ
×TΛ

and TΛ ×U+
Λ
are group schemes.

For this we consider the morphism

U−Λ ×TΛ −→ SΛ(6.15)

given by (u,t) 7→ t·u ·t−1. By [BT84a, Section 4.4.19], this gives an action of TU on U−U , and hence over U , the
image lands in U−U . Since U

−
Λ
is a closed subscheme of SΛ and since U contains all points of height at most 1,

it follows that the morphism given by conjugation has its image in U−
Λ
. In other words, U−

Λ
×TΛ = TΛ ×U−Λ

in SΛ; i.e. it is a subgroup scheme; see [DG70, Section 3.10, p. 166]. Similarly, TΛ×U+
Λ
is also a group scheme.

As C×C is flat and π(CU ×CU ) ⊂GU , by Lemma 6.6 (where Y plays the role of Z), we have the inclusion
H ⊂ Y.

By what we have seen in part (I) above, C is an open subset of Y. So the inverse image Γ of C by
π : C×C→ Y is therefore an open subset of C×C. Since U−

Λ
× TΛ and TΛ ×U+

Λ
are groups, we get the
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inclusion

Γ ⊃
((
U−Λ ×TΛ × {1}

)
×
(
U−Λ ×TΛ × {1}

))
∪
((
{1} × TΛ ×U+

Λ

)
×
(
{1} × TΛ ×U+

Λ

))
.(6.16)

Let p ∈ Spec(Λ) be a closed point, and let k be the residue field of the local ring Λp. The fibre Γp
of Γ is an open subset of Cp ×Cp, dense in Cp ×Cp: in fact, if u,u′ ∈ U−p and z,z′ ∈ Tp, the set V of

(v,v′) ∈U+
p ×U+

p such that
(
(u,z,v), (u′ , z′ ,v′)

)
∈ Γp is an open subset of U+

p ×U+
p and is non-empty since

(1,1) ∈ V by (6.16), therefore dense in U+
p ×U+

p since U+
p is connected.

Let Hp be the closure of Cp in Sp. As Cp is open in Yp, a fortiori, Cp is open in Hp. Moreover, Γp is
dense in Hp ×Hp, and π(Hp ×Hp) ⊂Hp since by definition π(Γp) ⊂ Yp. In other words, Hp is a subgroup
scheme of Sp. As Cp is open dense in Hp, we have Hp =Cp ×Cp, hence

Hp = H∩Sp.(6.17)

We also have Hp =C−1p ×Cp =U+
pTpU−p ×U−pTpU+

p =U+
pCp, and hence

Hp =
⋃

a∈U+
p (k)

a×Cp.(6.18)

We now show that H is open in Y and is flat. Firstly, H is a constructible subset of Y. To show that it is open,
(since Λ is Noetherian), it suffices to show that if x ∈ H and y ∈ Y are such that x ∈ {y}, then y ∈ H (see
[DG70, Corollaire 3.4, p. 76]).

Let p be the projection of x in Spec(Λ). Since the smooth group scheme SΛ is obtained by a Weil
restriction of scalars (see the paragraph just before Definition 6.3), it behaves well under base change. Let
j : Spec(Λp)→ Spec(Λ) be the induced morphism. As the local ring Λp is flat over Λ, the schematic
closures of GU and C×ΛΛp in j∗(SΛ) coincide with j∗(Y) (see [BLR90, Section 2.5, Proposition 2], [DG70,
Section 4.14, p. 56]). Hence we may reduce to the case when Λ is a local ring with maximal ideal p.

Let Bx be the local ring at x in SΛ, and let B̃ be the strict henselization of Bx. Let x
′ ∈ Spec(B̃) be the

closed point, and let α : Spec(B̃)→ Spec(Bx) be the canonical morphism: we have α(x′) = x. For us the
residue field at x is algebraically closed and hence by (6.18), there exists an a ∈U+

p (k) such that x ∈ a ·Cp.
Since U+

Λ
is smooth, by Hensel’s lemma, there exists a section â ∈U+

Λ
(B̃) of U+

Λ
above Spec(B̃) such that

â(x′) = a.
We now do a base change by Λ → B̃. Let X (resp. X) be a Λ-scheme (resp. a U -scheme, where U

has been base changed to the local ring at p), set X̃ := X ×Spec(Λ) Spec(B̃) (resp. X̃ := X ×U Ũ , with
Ũ = U ×Spec(Λ) Spec(B̃)). If f : X→ Z is a morphism of Λ-schemes, set f̃ = f × id : X̃→ Z̃. Finally, let
β : S̃→ SΛ be the first projection. As B̃ is flat over Bx and Bx is flat over Λ (as SΛ is flat), B̃ is flat over
Λ, and we see as above that Ỹ is the schematic closure of both C̃ and G̃U in S̃. On the other hand, the
left-translation by the section â is an automorphism of the scheme S̃, and the restriction âU of â to Ũ
belongs to U+

p (Ũ ) ⊂ G̃U (Ũ ); thus we have â · G̃U = âU · G̃U = G̃U and â · Ỹ = Ỹ. As C̃ is an open in Ỹ, it

follows that â · C̃ is open in Ỹ.
As B̃ is faithfully flat over Bx, the morphism α is surjective. We have x ∈ {y}, thus y ∈ Spec(Bx) and there

exists a y′ ∈ Spec(B̃) such that α(y′) = y. Moreover, x′ ∈ {y′} since the closed point of Spec(B̃) belongs to
the closure of any other point of Spec(Λ). Set x′′ := (α × id)(x′) = (x,x′) and y′′ := (α × id)(y′) = (y,y′);
then x′′ ∈ â · C̃, y′′ ∈ Ỹ and x′′ ∈ {y′′}. As â · C̃ is open in Ỹ, it follows that

y′′ ∈ â · C̃ = π̃ ◦ (â× id)
(
Spec

(
B̃×B̃ C̃

))
⊂ π̃

(
C̃×B̃ C̃

)
.(6.19)

We then deduce that

y = β (y′′) ∈ β ◦ π̃
(
C̃×B̃ C̃

)
= π ◦ (β × β)

(
C̃×B̃ C̃

)
⊂ π (C×C) = H(6.20)

and hence that H is open in Y.
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Moreover, â · C̃ is flat over Spec(B̃). As it is a neighbourhood of x in HB̃, it follows that the local ring at x
in HB̃ is flat over Spec(B̃), and by faithfully flat descent, the local ring of x in H is flat over Λ. Hence H is
flat.

It follows that H, being an open subscheme of Y, is a subscheme of SΛ (which is no reason for it to
be affine!). It is a subgroup scheme of SΛ. In fact, the restriction to H of the product π of SΛ sends
HU ×HU into GU , and hence, since H is flat, it factorises by a morphism H×H→ Y; see Lemma 6.6. But
set-theoretically, we have π(H×H) ⊂ H since the fibres of H are subgroups; see (6.18). Since H is an open
in Y, it implies that the morphism π : H×H→ Y factorises through H. A similar argument for the inverse
morphism shows that H is a subgroup scheme.

Now H is an open subscheme of Y which is closed in the schematic hull SΛ. Further, by (6.1), SΛ is
affine and hence H is quasi-affine. That it has the remaining stated properties is easy to check. □

Remark 6.10. The quasi-affineness can also be deduced as follows. Since the fibre of H over U is GU , which
is affine, and since H, being the image of C ×C, has connected fibres, by [Ray70, Corollary VII.2.2], we
conclude that H is quasi-affine.

Remark 6.11. When the characteristic of the residue field is zero, the group scheme H is flat and hence
smooth. Over residue fields of positive characteristics, the smoothness of H is ensured by the smoothness of
the torus TΩ,Λ since the unipotent groups U±Ω,Λ are smooth. By the argument in the paragraph following
(5.17), the torus on the big open subset extends as a torus TΩ,Λ and is therefore smooth even in the general
case.

To complete the proof of Theorem 6.7, we now set

GΩ := H.(6.21)

This group scheme clearly satisfies the properties in the statement of Theorem 1.3. Indeed, in general it is
quasi-affine, its sections can be computed by restriction to U , (4) and (5) follow from part (I) of the proof, and
the proof of the characterization and uniqueness of the group scheme follows exactly as in Theorem 5.7. □

6.5. Proof of Theorem 1.5

Proof. Since GΩ is quasi-affine by Theorem 6.7, as in Remark 5.8 we can identify the restriction of GΩ to a
subdiagonal (see Theorem 1.5(b)) with the group scheme Gf(i1 ,...,im)

, where fiℓ := fΩiℓ
. The description of the

closed fibre follows from [BT84a, Proposition 4.6.5 and Corollaire 4.6.12] applied to the concave function
f(i1,...,im) =

∑m
ℓ=1 fiℓ . □

7. Schematization of n-bounded groups Pf

The notation in this section is as in the previous one; namely, A ≃A
n and A0 ⊂ A is the complement

of the coordinate hyperplanes. In this section we return to the general case of an almost simple group G.
We complete the picture by proving Theorem 1.3 for n-concave functions of type III. More precisely, we
construct the group scheme over A, given the data of n-concave functions f = {fj} on the root system Φ of G,
along with an assignment of the BT-group schemes {Gfj }

n
j=1 at the generic points of each of the coordinate

hyperplanes Hj ⊂A.
Although the strategy of the proof is broadly a reduction to the proof in the SL(n)Ω case, in the present

case of (G,f), there are two crucial differences. First, unlike in the case of the concave function fΩ, we do
not have any way of assigning points in the affine apartment (see Example 3.11 for an example) to get a
product n-parahoric group scheme SΛ (see Section 6.1) for G which gave us an ambient group scheme to
carry out the strategy. And second, as it will become clearer by the discussion below, the condition on the
characteristic of the residue field needs to be weakened to p > hG.
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As a first step, we recall some of the main results of [BT84a]. These will play the key role in this section.
In the setting of [BT84a, Section 3], K is an infinite field containing a subring A having K as its field of
fractions. The aim of that section (see [BT84a, Section 3.1.3]) is to show that if G has a donnée radicielle
schématique D = (Z, (Ua)a∈Φ ) (see [BT84a, Définition 3.1.1]) or a schematic root datum, then there exists an
A-group scheme G extending G × Spec(K) with big cell given by D. This is done by showing that for any
faithful representation G ↪→GL(V ), there is an A-lattice M ⊂ VK such that the BT-group scheme G is the
schematic closure of GK in GL(M). In [BT84a, Section 4.5.4], when K is equipped with a valuation, it is
shown that given any concave function f on Φ , one can construct a schematic root datum for G. We apply
these results to our context as follows. Since G is almost simple, we may assume that we have a factorization
G ↪→ SL(V ). Hence, Gf is the schematic closure of GK in the schematic closure of SL(V )K in GL(M). By
choosing an O-basis for M, it is easy to see that we get a concave function h on the root system ΦV of
SL(V ) such that the schematic closure of SL(V )K in GL(M) is precisely the BT-group scheme SL(V )h.

By Proposition 3.21 and the remarks preceding it, we may assume that h is an optimal concave function on
ΦV , and hence it is of the form hΩ for a bounded subset Ω in the affine apartment of SL(V ).

Thus, we are reduced to the following situation: the BT-group scheme Gf is the schematic closure of GK
in SL(V )Ω. This can be carried out for each of the {fj}nj=1, and we get bounded subsets Ω = (Ω1, . . . ,Ωn) in
the affine apartment of SL(V ).

By Theorem 6.7, taking Ω = (Ω1, . . . ,Ωn) and the group SL(V ), we obtain an nBT-group scheme SLΩ

on A. Although only quasi-affine, this group scheme will play the role of the schematic hull SΛ (see (6.1)) of
Section 6. Further, on U whose complement in A has codimension at least 2, we have an inclusion of group
schemes

Gf,U ⊂ SLΩ,U .(7.1)

The proof strategy for proving Theorem 6.7 now almost applies. Let us explain the difference. In that
proof, it was shown in Step 3.2 that the root groups Ur,Ω,Λ are the schematic closures of Ur,Ω,U in SΛ

by the intermediary of vector subgroup Br of SΛ. This vector group exists because of the specific diagonal
embedding into the ambient group scheme SΛ. In the present setting, however, our chosen representation,
namely G ⊂ SL(V ), is arbitrary and cannot be expected to have the desirable property that for every root
r ∈ Φ , we have a vector subgroup scheme of SL(n)Ω whose restriction to U contains Ur,f,U . Consequently,
to replace the arguments of Step 3.2, we recover the group law of unipotent group schemes by the Baker–
Campbell–Hausdorff formula. We do this as follows. If {cα} denote the coefficients of the higher root, recall
that the Coxeter number hG of G is defined as 1+

∑
cα . Let N be a nilpotent Lie algebra bundle on A. By

[Ser96, Section 2.1] (see also [BDP17, Section 2.2] and other references there), when the characteristic satisfies
p > hG, the Baker–Campbell–Hausdorff group law equips the scheme W (N) with the structure of a smooth,
affine, unipotent group scheme with connected fibres together with an isomorphism exp: N→ Lie(W (N)) of
nilpotent Lie algebra bundles. Conversely, if U is an affine, smooth, unipotent group scheme with connected
fibres, we have a unique isomorphism of unipotent group schemes exp: W (Lie(U))→ U. Note that the
Baker–Campbell–Hausdorff formula realizes the possible non-Abelian unipotent group scheme structures
on U. In the absence of vector group schemes Br , this is the key substitute. Let us now go over arguments
that replace Step 3.2.

As in Step 3.2, we need to prove that the extended root group schemes Ur,f,A are closed subgroup schemes
of SLΩ on A. We begin by noting that over the open subset U ⊂ A, the root group schemes Ur,f,U are
closed subgroup schemes of the restriction to U of one of the big cells, say B+ of SLΩ. By Theorem 6.7, B+

of SLΩ is affine. We set N± := Lie(B±). This is a nilpotent Lie algebra bundle on A. When p > hG, we have
the natural isomorphism

exp: W
(
N±

)
≃B±(7.2)
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of affine, smooth, connected unipotent group schemes. Since Ur,f,U ⊂B+
U is a closed subgroup scheme, we

may view this inclusion in terms of the “W”-functor as follows:

W
(
Lie

(
Ur,f,U

))
⊂W

(
Lie

(
B+
U

))
.(7.3)

By this closed embedding of affine U -schemes, we get the Lie algebra subbundle Lie(Ur,f,U) ⊂ Lie(B+
U )

structure. This is in fact a direct summand of locally free sheaves on U . Now taking the reflexive closure
Lie(Ur,f,U) of the rank 1 Lie algebra bundle Lie(Ur,f,U), we see that Lie(Ur,f,U) is a locally free direct
summand of N+ over A.

As in Step 3.2, the reflexive closure Lie(Ur,f,U) gets identified with the Lie algebra line bundle Rr . It is
therefore a direct summand of N+ over A. This implies that as affine schemes, we have a closed embedding

W (Rr ) ⊂W (N+) ≃B+.(7.4)

Setting Ur,f,A :=W (Rr ), it follows that the scheme underlying Ur,f,A is a closed subscheme of B+. By the
Baker–Campbell–Hausdorff formula, this inclusion is in fact one of closed subgroup schemes over A and
hence of SLΩ on A. This completes the proof of the key difference we mentioned above. In particular, at
this stage the big cell BΦ can also easily be seen to exist with the standard properties exactly as in the proof
of Theorem 6.7.

With these changes in place, the second part of the proof of Theorem 6.7 may be applied. We get the
required nBT-group scheme Gf,A associated to f on A. It is open inside a closed subscheme, say Z, of SLΩ.
Recall that SLΩ is open inside a closed subscheme, say C, of SΛ. Let Z denote the closure of Z in C. The
intersection of Z with SLΩ in C is Z. It follows that Z is open in Z. Therefore, Gf,A is open inside Z. Now
Z is affine because SΛ is affine. We conclude that Gf,A is quasi-affine (this can also be checked using [Ray70,
Corollary VII.2.2]). In conclusion, when char(k) is at least hG and satisfies the hypothesis of Section 2.2, we
have constructed Gf,A as a smooth, quasi-affine group scheme with all the properties stated in Theorem 1.3
for n-concave functions of type III.

8. Schematization of n-Moy–Prasad groups

In this section we discuss Moy–Prasad groups over complete discrete valuation rings in the equal-
characteristic case. The aim is to recover these anew in the spirit of [BS15]. This then gives the generalization
to the higher-dimensional bases.

8.1. Tameness Assumptions

In this section the given data (Θ,e′) :=
(
(θ1, e′1), . . . , (θn, e

′
n)
)
will consist of an n-tuple of rational one-

parameter subgroups θi and positive rational numbers e′i . We suppose that there exists a positive number d
coprime to the characteristic of the residue field such that dθi is a one-parameter subgroups and the de′i are
positive numbers.

8.2. The unit group

Let O := k⟦z⟧ and K be its quotient field. Let B := k⟦ω⟧ and L be its quotient field, where ωd = z.
We view N := Spec(B) as a Galois cover over D := Spec(O) with Gal(N/D) = µd. Let p : N → D be the
quotient morphism. Let ρ : µd→ G be a representation. Consider the twisted µd-action on N ×G defined by

(8.1) γ(u,g) = (γu,ρ(γ)g) for u ∈N,γ ∈ µd.

This defines a (µd,G)-bundle on N . We will denote it by E.
Define the unit group of E as an automorphisms of the (µd,G)-torsor E:

(8.2) UE := Aut(µd,G)(E).
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Let e ≥ 0 be a non-negative integer. Consider the thickened fibre je : E|Spec(B/ωeB) ↪→ E. Define U
(e)
E to be

(8.3) U
(e)
E := ker

(
Aut(µd,G)(E) −→ Aut(µd,G) (j

∗
e(E))

)
,

i.e. the subgroup of (µd,G)-automorphisms of E over N inducing identity on the restriction of E to
Spec(B/ωeB). For e = 0, this is just the unit group UE of E.

Consider the adjoint group scheme of E

(8.4) GE ≃ G ×N,

which is the constant group scheme together with a Γ -action.
It is well known (cf. [Yu15, Section 2.4, p. 234]) that for each e ≥ 0, by a dilatation of GE , there exists a

smooth group scheme G
(e)
E such that

(8.5) G
(e)
E (B) = Γ (ωe,GE) ,

where Γ (ωe,GE) is the eth congruence subgroup defined by

Γ (ωe,GE) = ker(GE(B) −→GE (B/ω
eB)) .

8.3. The representation ρ : Γ → T and rational one-parameter subgroups θ of T

Following [BS15, Lemma 2.2.8], make the identification

(8.6) Hom(µd,T ) =
Y (T )
dY (T )

≃ 1
d
Y (T ) mod (Y (T )).

We will interpret this identification explicitly to suit our specific needs. Given a one-parameter subgroup

(8.7) ∆ : Gm −→ T ,

by projecting it onto Y (T )
dY (T ) and using (8.6), we obtain from this 1-PS ∆ a rational one-parameter subgroup

θ∆ ∈ 1
dY (T ) mod (Y (T )). By (8.6) again, this gives a homomorphism

(8.8) ρ∆ : µd −→ T .

In the reverse construction, given a homomorphism ρ ∈Hom(µd,T ), we choose a rational one-parameter
subgroup θρ determined by the class of ρ (we will need to make a choice here). Then θρ defines a
one-parameter subgroup

(8.9) ∆ = dθρ : Gm −→ T .

Remark 8.1. The point θρ determined above by the choice of ∆ firstly gives a point of the Weyl alcove a0 (see
Section 2.1). This point gives a precise weight as obtained by the process of invariant push-forward in [BS15].
More precisely, the point to be noted is that this construction ρ 7→ θρ gives a point of the fundamental
domain for the action of Y (T ) and not just the affine Weyl group. Further, the proofs in Section 8.5 and
that of Theorem 9.1 show that [BS15, Theorem 2.3.1 and Proposition 5.1.2] hold more generally for θρ in the
fundamental domain of Y (T ) and not just the affine Weyl group.

8.4. Brief background on Moy–Prasad groups

Moy–Prasad groups have been defined in [MP94, Section 2.6]. Using a Chevalley basis of G, below we give
an equivalent reformulation which is suitable for our setup. Let A = Hom(Gm,T )⊗R denote the apartment
corresponding to T . For a point θ ∈ A, recall that the parahoric group Pθ ⊂ G(K) is defined as

(8.10) Pθ =
〈
T (O), Ur

(
z−⌊r(θ)⌋O

)
, r ∈ Φ

〉
,

and for a non-negative integer e′ ≥ 0, the Moy–Prasad group is defined as

(8.11) Gθ,e′ :=
〈
T
(
1+ z⌈e

′⌉O
)
, Ur(z

−⌊r(θ)−e′⌋O), r ∈ Φ
〉
.
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While considering parahoric or Moy–Prasad groups, it suffices to assume that θ ∈ AT is a rational
point and e′ ∈Q≥0. This follows because for any (r,n) ∈ Φ ×Z, the functional AT ×R≥0→R defined by
(x,e′) 7→ r(x) +n− e′ is defined over rationals.

8.5. Invariant direct image of dilatations of reductive group schemes

The proof of the following theorem follows the proofs of [BS15, Theorem 2.3.1 and Proposition 5.1.2]
closely.

Theorem 8.2. Let Gθ,e′ be the Bruhat–Tits group scheme satisfying Gθ,e′ (O) = Gθ,e′ (see (8.11)). Then (see (8.5))
we have a natural isomorphism of group schemes

(8.12) p
µd
∗

(
G

(e)
E

)
≃Gθρ ,e′ .

Proof. Note that the O-valued points are enough to determine the group scheme since Gθ,e′ is étoffé in the
sense of [BT84a, Définition 1.7.1].

We begin with a few observations. Now an element φ0 ∈ UE corresponds to a µd-equivariant automorphism

of the (µd,G)-bundle, i.e. φ0 : N ×G→ N ×G together with the equivariance. In other words, φ0 ∈ U
(e)
E

corresponds to a regular morphism φ : N → G (i.e. φ ∈ G(B)), given by

(8.13) φ0(u,g) = (u,φ(u)g),

which satisfies the following conditions:

(1) µd-equivariance, i.e.

(8.14) φ(γu) = ρ(γ)φ(u)ρ(γ)−1, u ∈N,γ ∈ µd;

(2) when e ≥ 1, the map φ restricted to Spec(B/ωeB) is the identity, i.e.

(8.15) φ ∈ ker(G(B) −→ G(B/ωeB)) .

Thus, as in [BS15, Equation (2.3.1.5)], we can identify UE with φ satisfying (8.14); let U
(e)
E ⊂ UE be the subgroup

of UE given by the above two conditions.
From here onward, we follow closely the proof of [BS15, Theorem 2.3.1].
For each φ ∈ UE , define

(8.16) ψ(ω) = ∆−1 ·φ ·∆.

Then ψ(γ · u) = ψ(u) for all γ ∈ µd,u ∈ N . It therefore descends to a rational function ψ̃ : Spec(K)→ G
such that

(8.17) ψ̃(z) = ψ(ω).

Now for e ≥ 1, by (8.15), we have φ(o) = 1, which lies in G◦, where G◦ ⊂ G is the big cell in G. Since N is
a formal neighbourhood of the origin o, it follows that φ(N ) ⊂ G◦.

For e = 0, in the following we will assume that we work with a φ such that φ(N ) ⊂ G◦. The set of such φ
may be called the big cell of UE ; we will denote it by the symbol U.

The condition φ(N ) ⊂ G◦ allows us to describe φ : N → G◦ uniquely as a tuple of the following
morphisms:

{{φr : N −→Ur}r∈Φ , φt : N −→ T } ,
where Ur ⊂ G is the root subgroup corresponding to r ∈ Φ . Let us view φr and φt as elements of
G(B) ⊂ G(L).

We may write

(8.18) φr(ω) = ψr(ω)ω
r(∆) = ψ̃r(z)ω

r(∆).



48 V. Balaji and Y. Pandey48 V. Balaji and Y. Pandey

Since φr(ω) has a zero of order at least e in ω,

φr(ω)
ωe

= ψ̃r(z)ω
r(∆)−e,

and the right side defines a regular function in ω; i.e. it extends to a regular function on N . So ψ̃r(z) can
have a pole in ω of order at most r(∆)− e. Thus in z it can have a pole of order at most[

r(∆)− e
d

]
;

i.e. [r(∆d )−
e
d ]

(8.9)
= [r(θρ)− e′], where e′ = e

d . This forces the containment

(8.19) ψ̃r(z) ∈Ur
(
z−⌊r(θρ)−e

′⌋O
)
,

and hence ψ̃r belongs to Gθρ ,e′ . On the other hand, since φt(u) ∈ T for u ∈ N , it follows that φt(γ.u) =
ρ(γ)φt(u)ρ(γ)−1 = φt(u). Hence φt : N → T is µd-invariant. Also, by (8.16), it follows that φt = ψt . So it
descends to a regular function on D, and this function is ψ̃t : D→ T . Now φt(u)− 1 has a zero of order at
least e in ω. So by the definition of e′ , we see that ψ̃t − 1 has a zero in z of order at least⌈ e

d

⌉
=
⌈
e′
⌉
.

Hence ψ̃t also belongs to Gθρ ,e′ .
Since ψ and φ are related by a conjugation in G(L) by ∆(ω), ψ like φ can also be described by ψr and

ψt uniquely. So the same holds for ψ̃. Hence since ψ̃r and ψ̃t belong to Gθρ ,e′ , therefore so does ψ̃ ∈ Gθρ ,e′ .
For e ≥ 1,(1) we get the following isomorphism of groups in the spirit of [BS15, Theorem 2.3.1]:

(8.21) U
(e)
E ≃ Gθρ ,e′ .

Combining these with (8.14) and (8.15), we deduce that for e ≥ 1,

p
µd
∗

(
G

(e)
E

)
(A) =G

(e)
E (B)µd = U

(e)
E ≃ Gθρ ,e′ ≃Gθρ ,e′ (A). □

Remark 8.3. Note that the existence and defining properties for BT-group schemes which realize Moy–
Prasad groups were constructed in [Yu15]. They arise by enlarging the definition of concave functions and
constructing BT group schemes associated to them. We observe that the above realization of these group
schemes as invariant direct images can be interpreted as giving a different construction of these group
schemes, namely as invariant direct images of congruence subgroup schemes from ramified covers. We have
done this in the simple case field of characteristic zero, and this can be extended to “good” characteristics
for the group G.

8.6. The n-Moy–Prasad-group scheme

The proof of Theorem 5.7 does not quite apply as it is. Unlike the scenario of Theorem 5.7, on the
Kawamata cover we no longer have a constant group scheme with fibre G but have congruence subgroup
schemes.

Theorem 8.4. We have an n-Moy–Prasad-group scheme G(Θ,e′) which is smooth and affine on Spec(O) which
is given by the data of (Θ,e′) :=

(
(θ1, e′1), . . . , (θn, e

′
n)
)
. It satisfies the properties in Theorem 1.3.

(1)For e = 0, we get an isomorphism

(8.20) j : U −→B

of the big cell U of UE with that of Gθρ , which we will denote by B.
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Proof. For the given data (Θ,e′) :=
(
(θ1, e′1), . . . , (θn, e

′
n)
)
, under the assumptions of Section 8.1, setting

Θ = (θ1, . . . ,θn), we have a Kawamata cover q : Z→A which recovers the n-parahoric group scheme GΘ

on A as the invariant push-forward qΓ∗ (H), where H is a group scheme on Z with fibres G. Recall that q is
ramified with varying ramification indices di . In fact, by our tameness hypothesis, the ramification indices
di are such that ei := die′i are positive integers which are coprime to the residue characteristic. Without loss
of generality, we may suppose that the ei are increasing with i.

Set e0 = 0. Now for j going from 1 to n, we use the main result in [MRR20] to construct an iterated
dilatation of H along each component q∗(∪i≥jDi)red of the reduced divisor in Z thickened by ej − ej−1. We
get a new smooth, affine group scheme H̃ on Z . By the universal property of dilatation, it follows that qΓ∗ (H̃)
is the required n-Moy–Prasad-group scheme on A. It is smooth and affine since H̃ is so and because the
invariant direct image functor preserves these properties. □

9. Schematization in the mixed-characteristic case

Let (O,m) be a complete discrete valuation ring with residue field k of characteristic p and uniformizer z.
We want to extend all of the results of the previous sections to the mixed-characteristics case. This will be
possible under the assumptions of Section 2.2.

9.1. Extension of [BS15, Theorem 2.3.1 and Proposition 5.1.2]

Let θ ∈ AT be a rational point satisfying the assumptions of Section 2.2. As in Section 2.2, we assume
that d is coprime to char(k) such that dθ ∈ Y (T ). Consider the Eisenstein polynomial f (x) = xd − z ∈ A[x].
Let B := O[x]/f (x). Thus z is totally ramified in B, and the residue field kB has d distinct roots of unity. Let
ϖ be a uniformizer in B such that ϖd = z. Let ζ be a primitive dth root of unity in B.

Let K be its quotient field of O and L the quotient field of B. We view N := Spec(B) as a Galois cover
over D := Spec(O) with Gal(N/D) = µd. Let p : N → D be the quotient morphism. Let E be the trivial
principal G-bundle N ×G together with the twisted µd-action as in (8.1). This makes E into a (µd ,G)-bundle
on N . Let GE be its adjoint group scheme (see (8.4)). Let Gθρ be the Bruhat–Tits group scheme over O
associated to it as in Theorem 8.2. Analogously to (1.2), it will be convenient to write

(9.1) Pθ =
〈
T (O), Ur

(
zmr (θ)O

)
, r ∈ Φ

〉
in both the equal- and mixed-characteristic cases. This abuse of notation in the mixed-characteristic case
should not cause any confusion because of the structure theorem for complete discrete valuation rings.

Following the discussion in Section 8 under the tameness assumptions, let us prove the required generali-
zation of [BS15, Theorem 2.3.1], which is Theorem 8.2 for e′ = 0.

Theorem 9.1. We have an isomorphism of group schemes

(9.2) p
µd
∗
(
GE

)
≃Gθρ .

Proof. Let us state at the outset that by [BT84a, Section 1, p. 13], the references we will cite are valid for an
infinite field K containing a subring A such that K is its quotient field.

The O-group scheme Gθρ is connected and smooth because it is a parahoric group scheme. Weil
restriction of scalars followed by taking invariants preserves connectedness. Further, Weil restrictions of
smooth group schemes are smooth. Moreover, under the tameness assumptions, it is easily checked that the
fixed-point subscheme is also smooth. Thus, the O-group scheme p

µd
∗ (GE) is connected and smooth. As

in (8.14), the restriction of p
µd
∗ (GE) to Spec(K) consists of φ : Spec(L)→ G satisfying the µd-equivariance;

i.e.

(9.3) φ(γu) = ρ(γ)φ(u)ρ(γ)−1, u ∈ Spec(L),γ ∈ µd.
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Conjugate φ by ∆ (see (8.9)), as is also done in (8.16); the conjugate ∆−1φ∆ descends to a rational function
ψ̃ : Spec(K)→ G as in (8.17). This defines on Spec(K) a morphism

(9.4) jK : p
µd
∗
(
GE

)
|K −→Gθρ |K .

By evaluating on sections, it may be verified that jK is an isomorphism.
Recall that in the proof of Theorem 8.2, we defined the big cell U of the unit group UE (see (8.2)) to be

those φ : Spec(B)→ G whose image lies in the big cell G◦ of G. This defines the big cell of p
µd
∗ (GE). We

will denote it as U as well. Taking U to be the open neighbourhood of the identity of p
µd
∗ (GE), we exhibited

in (8.20) the isomorphism j : U→B onto the big cell B of Gθρ .
Now by [BT84a, Section 1.2.13], jK extends uniquely to an O-morphism

j : p
µd
∗
(
GE

)
−→Gθρ

of group schemes. Since j restrict to an isomorphism fromU toB between big cells, by [BT84a, Section 1.2.14],
it follows that j is an isomorphism of p

µd
∗ (GE) onto an open subgroup scheme of Gθρ . Thus j is an

isomorphism because Gθρ is connected. □

Theorem 9.1 has two consequences. Firstly, [BS15, Proposition 5.1.2], recalled in (5.9), generalizes following
[BS15, Sections 4 and 5]. Secondly, Theorem 8.2 extends without any extra conditions imposed by e′ . This is
so because in the proof of Theorem 8.2, we only need to have distinct roots of unity corresponding to the
point θ in the apartment.

Remark 9.2. We observe that for the results of Sections 5, 6 and 7, the assumption of algebraic closedness of
the residue field k is not essential. The existence of a Kawamata cover (see Section A.1) is needed only for
affine spaces, and this can be achieved by hand under the assumptions of Section 2.2. We however always
assume that k is perfect so as to be able to apply [BT84a]. One needs to have extensions kB as above with
the desired roots of unity for the above extensions of [BS15, Theorem 2.3.1 and Proposition 5.1.2]. This is
possible under the assumptions of Section 2.2.

9.2. The extension of Theorem 5.7

In this subsection, we denote the uniformizer z of O by x0. Let AO := A
n
O = Spec(O[x1, . . . ,xn]). For

0 ≤ i ≤ n, let Hi be the coordinate hyperplanes defined by the vanishing of xi , and let ζi be their generic
points.

(1) If we let (X,D) = (AO ,H), then the analogue of Proposition 5.6 holds without any change for an arbitrary
(n+1)-concave-function f. This statement holds for any characteristic of the residue field. In the following
we denote the Lie algebra bundle by R.

(2) Observe that since O is assumed to be complete, the formal power series ring O⟦x1, . . . ,xn⟧ is the
completion of O[x1, . . . ,xn] at m[x1, . . . ,xn]. We begin with a natural extension of the notion of an
(n+1)-bounded group associated to an (n+1)-concave function f on the root system Φ of G by
defining

(9.5) Pf :=
〈
T (O⟦x1, . . . ,xn⟧) , Ur

 ∏
0≤i≤n

x
fi (r)
i O⟦x1, . . . ,xn⟧

 , r ∈ Φ〉
.

(3) Suppose we are given an ordered (n + 1)-tuple (Σ0, . . . ,Σn) of facets of the apartment AT . Then by
Section 2.2, we may choose a point Θ := (θ0, . . . ,θn) in (Σ0, . . . ,Σn) such that if di is the minimal integer
such that diθi lies in Y (T ), then each di is coprime to char(k) and k contains primitive dthi roots of
unity. More generally, suppose we are given a point Θ := (θ0, . . . ,θn) ∈ AnT satisfying the assumptions
in Section 2.2. Let Õ be a complete discrete valuation ring containing O where x0 ramifies to order a
multiple of d0 and that contains the primitive dthi roots of unity for 0 ≤ i ≤ n.
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(4) Let X ′ ⊂AO denote the open subset of height 1 prime ideals as in the paragraph after (5.12). Taking f to
be the concave function determined by θ in item (1), let R′ denote the restriction of R to X ′ .

(5) We are now in the setting of Theorem 5.4 with the only difference that AO replaces An+1
k .

(6) Let BÕ := Spec(Õ[y1, . . . ,yn]), where y
di
i = xi . Let q : BÕ → AO be the natural projection map with

Galois group Γ . This plays the role of an explicit Kawamata covering. We set A0 :=AO\H , B0 := q−1(A0),
Z ′ := q−1(X ′) and X̃i := q−1(Xi). Let qi : X̃i → Xi be the restriction of q. Let Γi denote the Galois group
of qi . We are now in the setting of Section 5.3.

(7) By applying Section 9.1 to the uniformizer x0 and the generalization of [BS15, Proposition 5.1.2] for the
rest of the height 1 primes given by the variables xj , we get a smooth, affine group scheme H′ on Z ′

such that the Weil restrictions gives qΓ∗ (H′) =G′ on X ′ .
(8) Let V ′ = Lie(H′) be the Lie algebra bundle on Z ′ as in the discussion after (5.14). Then, V ′ is a

Lie algebra bundle with fibre type g. Furthermore, the Cartan decomposition on R′ lifts to give an
equivariant Cartan decomposition of the Lie algebra bundle V ′ on Z ′ . Hence its reflexive closure V also
gets an equivariant structure and is also locally free.

(9) As in the proof of Theorem 5.4, now that we have the Lie algebra bundle V with fibre g, we get a group
scheme H on BÕ and, by taking invariant direct images, the group scheme G := qΓ∗ (H) extending G′ to
the whole of AO . This proves the extension of Theorem 5.7 in the setting of mixed characteristics with
the tameness assumptions.

(10) We also note that as in Proposition 5.5, the big cell structure also descends to give one for G on the
whole of AO .

(11) Finally, we note that the arguments in Theorem 5.7 for the uniqueness of the group scheme carry over to
the mixed-characteristic situation as well.

9.3. The main theorem for concave functions

By Section 9.2(1), we see that there is a Lie algebra bundle on (AO ,H) associated to an (n+1)-concave
function on Φ . The results in Section 6 now work under the tameness assumptions, see Section 1.1, or more
generally under the assumptions on char(k) of Section 2.2. We therefore get the extension of Theorem 1.3 to
(AO ,H) (see Remark 6.11). Note that this is for the groups G = SL(n),G2,F4,E6.

For the rest of the groups, by the arguments in Section 7, we need a faithful representation G ↪→GL(V )
to start with, and so if we choose a faithful representation of minimal dimension m(G), then for these groups,
we need to choose p to be coprime to m(G) and bigger than the Coxeter number hG of G (see Section 7).
The numbers m(G) are known and can be obtained from the dimension formulae of the fundamental
representations. They are as follows: m(E6) = 27, m(E7) = 56 and for Bn, Cn and Dn, m(G) is 2n+1, 2n
and 2n, respectively. In summary, we have completed the proof of Theorem 1.6.

9.4. The example of a 2BT-group scheme in the work of Pappas and Zhu [PZ13]

As we mentioned in the introduction, an example of a 2BT-group scheme comes up in [PZ13, Theorem 4.1].
There are broadly two parts to [PZ13, Theorem 4.1], the first being the existence of the 2BT-group scheme

on A
1
O and second a proof that the resulting group scheme is affine. Although [PZ13, Theorem 4.1] states the

case of a parahoric group scheme along one axis, the proof considers the more general case of the 2-concave
function f = (0, f ), where f is a concave function on the root system Φ . The proof of the affineness follows
ideas from [Yu15]. We are unable to comprehend it when f is given by a non-hyperspecial point of the
apartment and G is split.

We first briefly describe the setting in [PZ13, Section 4] so as to place their result in our context. We will
then indicate how this result can be derived as a special case of our results. We note however that the setting
in [PZ13] is for the general case of a quasi-split group G, while we consider only the split case.
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In the notation of Section 9.2 above, the setting in [PZ13] is for the case n = 1, i.e. when x1 = u. The axes
we consider correspond to setting x0 and x1 as zero (here by x0 = 0 we mean going modulo the uniformizer),
but Pappas–Zhu consider the axes given by setting u as the uniformizer ϖ and by setting ϖ = 0. The result
[PZ13, Theorem 4.1] is stated for the case when the assignment along the x0-axis is the split group (see [PZ13,
Section 4.2.2(a)]), while the assignment in the diagonal (ϖ = u)-direction is given by a parahoric group
associated to a point θ of the affine apartment. Thus, in our setting this case corresponds to the 2-concave
function which is f = (0, f ), where f is a concave function fθ on the root system Φ along the u-direction
and the 0-concave function gives the split group scheme along the ϖ-direction. Observe that this gives the
concave function f = 0+ f in the (u =ϖ)-direction.

The key point is that only a single concave function f is involved. By [BT84a, Section 4.5.4], one obtains
a schematic root datum coming from f . We now work in the setting of [BT84a, Section 3.9.4]. Once a
faithful representation G ↪→GL(V ) is fixed, the schematic root datum arising out of the choice of f entails
the choice of a lattice M ⊂ VK . The arguments in [BT84a, Section 3.9.4] furnishes the group scheme Gθ0,f
(see [PZ13, p. 175, second paragraph]). Thus, the 2BT-group scheme over A1

O which comes up in [PZ13] is
obtained as a direct consequence of [BT84a, Section 3.9.4]. However, the method of construction of [BT84a,
Section 3.9.4 and Proposition 2.2.10] gives a priori only a quasi-affine group scheme. So the burden of [PZ13,
Section 4] lies in proving the affineness of the group scheme Gθ0,f . We emphasize that all this is for a single
concave function.

We now compare this with the results of the present paper. Firstly, [PZ13, Theorem 4.1] as stated is for the
2-concave function (0, fθ), and this is a special case of Theorem 5.7 as described in Section 9.2. Thus we
derive directly both the existence and affineness of the required group scheme and in the more general context
of an (n+1)-concave function f over An

O which comes by prescribing n+1 points in the affine apartment.
We note however that the methods in the present paper force certain mild tameness assumptions.

Part 3. Some applications in the char(k) = 0
equicharacteristic case

10. BT-group schemes on wonderful embeddings in char(k) = 0

10.1. The wonderful compactification X

Let X := Gad be the wonderful compactification of Gad. Let {Dα | α ∈ S} denote the irreducible smooth
divisors of X. Let D := ∪α∈SDα . Then X\Gad =D . The pair (X,D) is the primary example of a (Gad×Gad)-
homogenous pair; see [Bri07]. Let PI be the standard parabolic subgroup defined by subsets I ⊂ S, the
notation being such that the Levi subgroup LI,ad containing Tad has root system with basis S \ I . Recall that
the (Gad ×Gad)-orbits in X are indexed by subsets I ⊂ S and have the following description:

ZI = (Gad ×Gad)×PI×P −I LI,ad.

Then by [Bri98, Proposition A1], each ZI contains a unique base point zI such that (B×B−) · zI is dense
in ZI and there is a 1-PS λ of T satisfying PI = P (λ) and limt→0λ(t) = zI . The closures of these λ define
curves CI ⊂ X which meet the strata ZI transversally at zI . In particular, if I = {α} is a singleton, then the
divisor Dα is the orbit closure Z̄I and the 1-PS can be taken to be the fundamental co-weight ω∨α . The
closure of the 1-PS ω∨α : Gm→ Gad defines the curve Cα ⊂ X transversal to the divisor Dα at the point zα .
For a non-empty I ⊂ S , the λ defining CI can be taken to be

∑
α∈I ω

∨
α .
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10.2. The ℓBT-group scheme GϖX on X

Before stating the main result of this section, we make a few remarks which might help the reader. Let
Y0 ⊂ Y the affine toric varieties associated to the Weyl chamber and the fan of Weyl chambers. The basic
underlying principle in these constructions is that the combinatorial data encoded in the triple consisting of
the Weyl chamber, the fan of Weyl chambers and the Tits building is geometrically replicated by the inclusion
Y0 ⊂ Y ⊂ X. The “wonderful” Bruhat–Tits group scheme which arises on X has its local Weyl-chamber model
on the affine toric variety Y0. Indeed, in this case, the Kawamata cover is even explicit; see Remark 4.6. In
particular, the theorem below can be executed for Y0, but this will give the group scheme associated to the
data coming from the Weyl chamber alone.

We now state a consequence of our main theorem in the context of the wonderful compactification of Gad
which is a primary example of a smooth variety with normal crossing divisors.

Theorem 10.1. Let Θ = (θα | α ∈ S), where the θα ∈ A are arbitrary points in the apartment of T satisfying
conditions of Section 2.2. There exists an affine “wonderful” Bruhat–Tits group scheme GϖX on X satisfying the
following classifying properties:

(1) At the height 1 primes associated to the canonical boundary divisors associated to the maximal parabolic
subgroups Pα ⊂ G, α ∈ S , the group scheme GϖX is isomorphic to the parahoric group scheme Gθα .

(2) For ∅ , I ⊂ S , the restriction of GϖX to the formal neighbourhood UI of zI in the coordinate curves CI , see
Section 10.1, is isomorphic to the Bruhat–Tits group scheme associated to the concave function ”mfflΘI

: Φ→Z

given by r 7→
∑
α∈Imr(θα).

(3) Let Φθ := {r ∈ Φ |r(θ) ∈ Z}. The closed fibre of G”mfflΘI modulo its unipotent radical has root system
generated by the intersection of the Φθα for α ∈ I .

Proof. By Proposition 5.6, we have a Lie algebra bundle R on X prescribed by the first property. Thus by
Theorem 5.4, we get a group scheme GϖX on X which by construction satisfies the first property. The context
of the second property is that of formal neighbourhoods, which is also that of Section 5.8. As remarked
before the theorem, the group scheme constructed on X has a local Weyl-chamber model on the affine toric
variety Y0. Thus we may restrict to Y0. Hence the second property follows from Theorem 5.7. Recall, see
[BT84a, Corollaire 4.6.12], that the reductive quotient of the closed fibre of Gf has root system given by
{r ∈ Φ | ⌈f ⌉(−r) = −⌈f ⌉(r)}. For the case of the concave function mr(θ), this set is Φθ , and for ”mfflΘI

, it will
be the intersection of the Φθα for α ∈ I . □

Corollary 10.2. Let θα be the non-zero vertices of the Weyl alcove (2.1). Let L be the LCM of the coefficients
of the highest root and ℓ the semisimple rank of G. Then setting Θ as (θα | α ∈ S), (θα/(ℓ + 1) | α ∈ S) and
(Lθα | α ∈ S) gives a group scheme whose restriction to every coordinate curve CI has closed fibre with root system
generated by the highest root α0 and S \ I , or simply generated by S \ I , or equal to that of G, respectively.

Proof. The structure of the set {r ∈ Φ | ⌈f ⌉(−r) = −⌈f ⌉(r)} and the formula (2.1) show that the root system of
the reductive quotient of the closed fibre equals the set of roots whose simple root coefficients, coming from
the subset I of S , equal an integral multiple of the corresponding term of the highest root. In the first case,
this is the set of roots generated by the highest root α0 and S \ I . In the second case, it is the set of roots
generated by S \ I . In the third case, all roots in Φ satisfy this property. □

10.3. The wonderful embedding Xaff

We continue to use the notation as in previous sections. Let Gaff denote the Kac–Moody group associated
to the affine Dynkin diagram of G. Recall that Gaff is given by a central extension of L⋉G by Gm. Analogously
to the wonderful compactification of Gad, Solis in [Sol17] has constructed a wonderful embedding Xaff for
Gaff
ad := Gaff/Z(Gaff) =Gm ⋉LG /Z(G). It is an ind-scheme containing Gaff

ad as a dense open ind-scheme and
carrying an equivariant action of L⋉G ×L⋉G.
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Let Tad := T /Z(G) and T ⋉

ad := Gm × Tad ⊂ Gaff
ad , where Gm is the rotational torus. In Xaff, the closure

Yaff := T ⋉

ad gives a torus embedding. It is covered by the affine Weyl group W aff-translates of the affine torus

embedding Yaff
0 := T ⋉

ad,0 ≃A
ℓ+1 given by the negative Weyl alcove.

10.4. On the torus embedding Yaff
0

Recall that Z := Yaff
0 \T

⋉

ad is a union ∪α∈SHα of ℓ+1 standard coordinate hyperplanes meeting at normal
crossings. For α ∈ S, let ζα denote the generic point of the divisor Hα . Let

(10.1) Aα = OYaff
0 ,ζα

be the DVRs obtained by localizing at the height 1 primes given by the ζα . Let Kα be the quotient field of
Aα . Let Yα := Spec(Aα). Note that we can identify the open subset Spec(Kα) with T ⋉

ad ∩Yα . Let

(10.2) Y ′ := T ⋉

ad ∪α Yα .

The complement Yaff
0 \Y ′ can again be realized as a colimit of open subsets of Yaff

0 whose codimension is at
least 2 in Yaff

0 .

10.5. Construction of a finite-dimensional Lie algebra bundle J on Yaff
0 together with

parabolic structures

This construction is exactly analogous to the construction of R on Y in Section 4. For α ∈ S, let θα ∈ A
be arbitrary points in the apartment satisfying the conditions of Section 2.2. We let T ⋉

ad, Y
aff
0 , (1,ω∨α ) and S

play the roles of A0, A, λi and {1, . . . ,n}. More precisely, we set

(10.3) ηα := ((0, . . . ,1, . . . ,0),θα) , α ∈ S

with the unique 1 in the αth coordinate. Consider the loop rotation action given by (2.24) and (2.25). We
may prove the following theorem exactly like Theorem 4.4.

Theorem 10.3. Let Θ := (θα | α ∈ S), where the θα are arbitrary points in the apartment A of T satisfying
the conditions of Section 2.2. Let U be a formal neighbourhood of the origin in Yaff

0 . There exists a canonical Lie
algebra bundle J on Yaff

0 which extends the trivial bundle with fibre g on T ⋉

ad ⊂ Yaff
0 , and with notation as in

(2.30), we have the identification of functors from the category of k-algebras to k-Lie algebras

(10.4) L+ (PΘ) = L
+ (R |U ) .

We may prove the following corollary like Corollary 4.5.

Corollary 10.4. Let λ =
∑
α∈S kα(1,θα) be a non-zero dominant 1-PS of T

⋉

ad where not all kα are zero. Let D
be the formal neighbourhood of origin in Yaff

0 associated to the curve defined by λ. Let f : Φ→Z be the concave
function defined by the assignment r 7→

∑
α∈S kαmr(θα). Then for any k-algebra R, we have

(10.5) L+ (R |D) (R) =
〈
t(R⟦t⟧), ur

(
tf (r)R⟦t⟧

)
, r ∈ Φ

〉
.

Corollary 10.5. The Lie algebra bundle JYaff gets canonical parabolic structures (see the appendix ) at the generic
points ξα of the W

aff-translates of the divisors Hα ⊂ Yaff
0 , α ∈ S.

Proof. We prescribe a ramification index dα on the divisor Hα such that dαθα belongs to Y (T ). (Thus in
the case when the dα are the alcove vertices, see (2.1), the dα are given by (2.2)). Then the identification
(5.10) of the Lie algebra structures of JYaff and the parahoric Lie algebra structures on the localizations of the
generic points of Hα allows us to endow parabolic structures at the generic points of the divisors. □
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10.6. The parahoric group scheme on the torus embedding Yaff

Theorem 10.6. Let Θ = (θα | α ∈ S), where the θα ∈ A are arbitrary points in the apartment of T satisfying
conditions of Section 2.2. There exist an affine and smooth “wonderful” Bruhat–Tits group scheme GϖYaff on Y
together with a canonical isomorphism Lie(GϖYaff) ≃ J . It further satisfies the following classifying property:
For any point h ∈ Yaff \ T ⋉

ad , let I ⊂ S be a subset such that h ∈ ∩α∈IHα . Let CI
⊂ Yaff be a smooth curve

with generic point in T ⋉

ad and closed point h. Let Uh ⊂ CI
be a formal neighbourhood of h. Then, the restriction

GϖYaff |Uh is isomorphic to the Bruhat–Tits group scheme associated to the concave function ”mfflΘI
: Φ→Z given by

r 7→
∑
α∈Imr(θα).

Proof. Recall that Yaff is covered by affine spaces Yw ≃A
ℓ+1 parametrized by the affine Weyl group W aff.

Each Yw is a translate of Yaff
0 . The translates of the divisors Hα meet each Yw in the standard hyperplanes

on A
ℓ+1, and thus, we can prescribe the same ramification data at the hyperplanes on each of the Yw.

On the other hand, although we have simple normal crossing singularities, we do not have an analogue
of the Kawamata covering lemma for schemes such as Yaff. The lemma is known only in the setting of
quasi-projective schemes. So to construct the group scheme, we employ a different approach using the
naturality of the constructions for gluing.

We observe firstly that the formalism of Kawamata coverings applies in the setting of the affine spaces
Yw ⊂ Yaff. Let pw : Zw→ Yw be the associated Kawamata cover (see Section A.1) with Galois group Γw. In
Corollary 10.5 we observed that the Lie algebra bundle J has a canonical parabolic structure. Letting Yw
play the role of Y0 and using all arguments in the proof of Theorem 10.1, we obtain Hw → Zw, which is
a Γw-group scheme with fibres isomorphic to G whose invariant direct image is a group scheme Gw such
that Lie(Gw) = J |Yw . The induced parabolic structure on J |Yw is the restriction of the one on J . Indeed, by
Corollary 10.5, these parabolic structures are essentially given at the local rings at the generic points ξα of
the divisors Hα , and hence these parabolic structures on J agree on the intersections Yuv := Yu ∩Yv .

Let Zuv := p−1u (Yuv). Let Z̃uv be the normalization of a component of Zuv ×Yuv Zvu . Then Z̃uv serves as
Kawamata cover (see Section A.1) of Yuv (see [Vie95, Corollary 2.6]). We consider the morphisms Z̃uv → Zu
(resp. Z̃uv → Zv ) and let Hu,Z̃ (resp. Hv,Z̃ ) denote the pull-backs of Hu (resp. Hv ) to Z̃uv .

Let Γ denote the Galois group for Z̃uv → Yuv . Then by Lemma 5.1, the invariant direct images of the
equivariant Lie algebra bundles Lie(Hu,Z̃ ) and Lie(Hv,Z̃ ) coincide with the Lie algebra structure on J
restricted to the Yuv and also as isomorphic parabolic bundles. Therefore, we have a natural isomorphism of
equivariant Lie algebra bundles

(10.6) Lie
(
Hu,Z̃

)
≃ Lie

(
Hv,Z̃

)
.

As in the proof of Theorem 10.1, this gives a canonical identification of the equivariant group schemes
Hu,Z̃ and Hv,Z̃ on Z̃uv . Since the invariant direct image of both the group schemes Hu,Z̃ and Hv,Z̃ are the
restrictions Gu,Yuv and Gv,Yuv , it follows that on Yuv = Yu ∩ Yv we get a canonical identification of group
schemes

Gu,Yuv ≃Gv,Yuv .(10.7)

These identifications are canonically induced from the gluing data of the Lie algebra bundle J for the cover
Yw. Therefore, the cocycle conditions are clearly satisfied, and the identifications (10.7) glue to give the
group scheme GϖYaff on Yaff. The verification of the classifying property follows exactly as in the proof of
Theorem 10.1. □

10.7. The (ℓ +1)BT-group scheme on Xaff

Let Xaff be as in Section 10.3. The situation in this subsection is somewhat distinct from the previously
discussed cases. Unlike the scheme X, the space Xaff is an ind-scheme, and so we give the details of the
construction of the group scheme.
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We begin with a generality. Let X be an ind-scheme. By an open subscheme i : U ↪→X, we mean an
ind-scheme such that for any f : Spec(A)→X, the natural morphism U×

X
Spec(A)→ Spec(A) is an open

immersion. For a sheaf F on U, by i∗(F ) we mean the sheaf associated to the pre-sheaf on the “big site” of
X, whose sections on f : Spec(A)→X are given by F (U×

X
Spec(A)).

The ind-scheme Xaff has a certain open subset X0 whose precise definition is somewhat technical; see
[Sol17, Section 5.1, p. 705]. Let us mention the properties relevant for us.

Recall that Xaff = (Gaff
ad ×G

aff
ad) X0 and in fact Xaff = (Gaff

ad ×G
aff
ad) Y

aff. Further, the torus embedding
Yaff is covered by Yaff

w ≃A
ℓ+1, which are W aff-translates of Yaff

0 , where Yaff
0 = Yaff ∩X0. We remark that,

analogously to the case of Y0 ⊂ Y ⊂ X, just as the toric variety Y0 was associated to the negative Weyl
chamber, the toric variety Yaff

0 is associated to the negative Weyl alcove.
So let us also denote by 0 the neutral element of W aff. Let U± ⊂ B± be the unipotent subgroups. Let

U± := ev−1(U±), where ev: G(O)→ G(k) is the evaluation map. Further, by [Sol17, Proposition 5.3],

(10.8) X0 = U ×Yaff
0 ×U

−.

Let Xw := U ×Yaff
w ×U−. These cover U ×Yaff ×U−. For g ∈ Gaff

ad ×G
aff
ad , let

(10.9) Xg := gX0, Xg,w := gXw, Yaff
g,w := gYaff

w .

Note that we have the projection Xg,w→ Yaff
g,w, which is a (U ×U−)-bundle.

By [Sol17, Theorem 5.1], the ind-scheme Xaff has divisors Dα for α ∈ S such that the complement of their
union is Xaff \Gaff

ad . The next proposition shows the existence of a finite-dimensional Lie algebra bundle on
Xaff which is analogous to the bundle R over X.

Proposition 10.7. There is a finite-dimensional Lie algebra bundle R on Xaff which extends the trivial Lie algebra
bundle Gaff

ad × g on the open dense subset G
aff
ad ⊂ Xaff and whose restriction to Yaff is J .

Proof. Since the projection Xg,w→ Yaff
g,w is a (U ×U−)-bundle, the transition functions of J and its restrictions

to tubular neighbourhoods of its divisors may be used to construct a locally free sheaf J ′ on an open subset
X′ containing the union of Gaff and the height 1 prime ideals of Xaff using the transition functions of J . Let
R denote its push-forward to Xaff. To check that the push-forward is locally free, without loss of generality
we may consider its restriction to X0. But on X0 the push-forward of J ′ restricts to the pull-back of a Lie
algebra bundle J on Yaff constructed in Theorem 10.3, which completes the argument. The rest of the
properties follow immediately. □

Theorem 10.8. Let Θ = (θα | α ∈ S), where the θα ∈ A are arbitrary points in the apartment of T satisfying
the conditions of Section 2.2. There exist an affine and smooth “wonderful” Bruhat–Tits group scheme GϖXaff on

Xaff together with a canonical isomorphism Lie(GϖXaff) ≃ R. It further satisfies the following classifying property:
For any point h ∈ Xaff \Gaff

ad , let I ⊂ S be defined by the condition h ∈ ∩α∈IDα . Let CI
⊂ X be a smooth curve

with generic point in Gaff
ad with closed point h. Let Uh ⊂ CI

be a formal neighbourhood of h. Then, the restriction
GϖXaff |Uh is isomorphic to the Bruhat–Tits group scheme associated to the concave function ”mfflΘI

: Φ→Z given by
r 7→

∑
α∈Imr(θα).

Proof. We begin by observing that Xg,w and R→ Xaff play the roles of Yaff
g,w and J → Yaff in the proof of

Theorem 10.6. Therefore, the group scheme Gg,w glue together, and we obtain the global group scheme
GϖXaff . The verification of the classifying property follows exactly as in the proof of Theorem 10.1. □

11. 2BT-group schemes and degenerations of torsors

In this section we assume char(k) = 0. Our aim is to revisit certain smooth, affine group schemes on
the minimal resolution of normal surface singularities. We work with the complete local rings and in this
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discussion stick to the An-type singularities alone and satisfy ourselves with a few remarks on the other
types in a brief remark. The senior author used these constructions in [Bal22], where 2BT-group schemes
first occur. The purpose was to construct degenerations of the moduli spaces of principal G-bundles on
smooth projective curves when the curve is made to degenerate to an irreducible nodal curve.

The picture and notation we use are as in [Bal22]. The novel feature is that the constructions were made
using the geometric McKay correspondence of G. González-Sprinberg and J.-L. Verdier (see [GSV83]), the
role of which is intriguing.

Let Nd = Spec( k⟦t⟧⟦x,y⟧(x·y−td ) ). We recall that Nd is a normal surface with an isolated singularity of type Ad . By

the generality of Ad-type singularities, one can realize Nd as a quotient σ : D→Nd of D := Spec( k⟦t⟧⟦u,v⟧(u·v−t) )

by the cyclic group µd = ⟨γ⟩, where x = ud , y = vd , ζ is a primitive dth-root of unity and µd acts on D as
follows:

γ · (u,v) =
(
ζ ·u,ζd−1 · v

)
.(11.1)

We consider the following basic diagram for all d > 0 (see [GSV83]):

D(d) f
//

q

��

N(d)

pd
��

0 ∈D σ // Nd ∋ c,

(11.2)

where pd : N(d)→Nd is the minimal resolution of singularities of Nd obtained by successively blowing up the
singularity, with the exceptional divisor E(d) = p−1d (c) having d − 1 rational components, and

D(d) :=
(
D ×Nd N

(d)
)
red
.(11.3)

The closed fibre F(d) of the canonical morphism N(d)→ Spec(k⟦t⟧) looks like

F(d) = E(d) ∪E(1)∪E(2),(11.4)

where E(1) and E(2) are the inverse images of the branches corresponding to x = 0 and y = 0 in Nd .
Thus, F(d) ⊂ N(d) is a normal crossing divisor with d +1 components. By [GSV83, Proposition 2.4], the

morphism

f : D(d) −→ N(d)(11.5)

is finite and flat, the minimal platificateur in the sense of Grothendieck; see [GSV83, Corollary 7, p. 448]. Since
N(d) is smooth, this implies that f is ramified at the generic point of each of the d − 1 rational components
of the exceptional divisor E(d) = p−1d (c) ⊂ F(d).

Let

TD ≃D ×ρ G(11.6)

be the trivial (µd,G)-torsor on D (see (11.2)) with a µd-structure given by a homomorphism ρ : µd→ G. This
gives a homomorphism ρ : µd→ T into the maximal torus T of G. We fix once and for all an isomorphism
T ≃G

ℓ
m. Thus ρ determines an ordered pair of integers modulo d called the type τ = (a1, a2, . . . , aℓ). More

precisely, we have a µd-action on D ×G, given by

γ · (u,v,g) =
(
ζ ·u,ζ−1 · v,ρ(γ) · g

)
.(11.7)

Let z1 and z2 be the two points in D(d) above the origin 0 ∈ D where the normalization of the curve
u · v = 0 meets the fibre q−1(0). We observe that the action of µd is balanced at these two marked points;
i.e. the action of a generator ζ on the tangent spaces to each branch are inverses to each other. For the
corresponding dual action in the neighbourhood D ′0 (the component with local coordinate v), the action
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is by ζ−1. If we begin with a representation ρ : µd → G of local type τ at a point in a branch, then the
corresponding local type for the dual action at the point in the second branch is denoted by τ̄ .

Consider the adjoint group scheme TD(G) := TD×G,AdG on D , where G acts on itself by inner conjugation.
We define the equivariant group scheme

E(G,τ) := q∗ (TD(G))(11.8)

on D(d) of local type τ in the sense that it comes with a µd-action via a representation ρ : µd→ G. Since
the morphism f : D(d)→ N(d) is also finite and flat, we can take the Weil restriction of scalars

f∗ (E(G,τ)D(d)) := ResD(d)/N(d) (E(G,τ)D(d)),(11.9)

and since E(G,τ)D(d) →D(d) is a smooth (affine) group scheme, the basic properties of Weil restriction of
scalars (cf. [Edi92, Lemma 2.2]) show that f∗(E(G,τ)) is a smooth group scheme on N(d) together with a
µd-action. By taking invariants under the action of µd and noting that we are over characteristic zero, by
[Edi92, Proposition 3.4], we obtain the smooth (affine) group scheme on N(d) obtained by taking invariant
direct images:

HG
τ,N(d) = (f

µd
∗ )((E(G,τ)D(d)))(11.10)

(see [BS15, Definition 4.1.3]). The 2BT-group scheme of type τ with generic fibre G of singularity type Ad
associated to θτ is defined to be the affine group scheme HG

τ,N(d) from (11.10) on the regular surface N(d). This

process defines a distinguished collection of 2BT-group scheme
{
HG
τ,N(d)

}
τ
indexed by the type τ .

11.1. The McKay correspondence revisited

We recall the geometric interpretation of the McKay correspondence given by González-Sprinberg and
Verdier (see [GSV83]). Let Irro(µd) ⊂ Irr(µd) be the non-trivial irreducible representations of µd, and
let Irr(E(d)) denote the set of irreducible rational components of the exceptional divisor of the minimal
resolution pd : N(d)→Nd from (11.2). Let ψ be a non-trivial character of µd = ⟨γ⟩. Then ψ corresponds to
ζ 7→ ζs, where ζ is the primitive dth-root of unity chosen above and 1 ≤ s ≤ d −1. Let Lψ be the equivariant

line bundle on D where µd acts on D×k as γ ·(u,v,a) = (ζ ·u,ζd−1 ·v,ζs ·a), a ∈ k. A µd-invariant section ˛hffl
of this line bundle is given by the relation {γ · ˛hffl}(u,v) = ˛hffl(γ · (u,v)) = ζs ˛hffl(u,v), and hence the µd-invariant
sections are generated by us and vd−s. Let Lψ := f

µd
∗ (q∗(Lψ)) be the induced line bundle on N(d). This is a

line bundle since f is finite and flat.
Mckay correspondence following González-Sprinberg and Verdier. There is a bijection Irro(µd)→ Irr(E(d)),

ψ 7→ Eψ , such that for any Ej ∈ Irr(E(d)), we have

c1(Lψ) ·Ej =

0 if Ej , Eψ ,

1 if Ej = Eψ .
(11.11)

The above statement implies that the first Chern class c1(Lψ) can be represented by an effective divisor

δψ ⊂ N(d) which meets F(d) transversally at a unique point which lies in Eψ .

We interpret this on the side of the surface D(d). Consider the reduced fibre Ẽ := q−1(0)red. The group
µd-fixes the divisor q

−1(0) and hence its reduced subscheme Ẽ. There is a smooth curve δ′ψ ∈D
(d) which

meets the divisor q−1(0) ⊂D(d) at a unique component Ẽψ of Ẽ. Locally at this point of Ẽψ , the transversal

curve δ′ψ is given by the invariant section ˛hffl of q∗(Lψ). The action of µd on ˛hffl shows that the group µd acts

on the local uniformizer zψ of the component Ẽψ by γ · zψ 7→ ζszψ .
Let us explain how to a representation ρ : µd→ T of type τ , we associate a rational point θτ of AT in the

fundamental domain of Y (T ) as in [BS15], and not just in the alcove a0. Let ρ : µd→ T map the generator γ
of µd to (ζa1d , . . . ,ζ

aℓ
d ), where ζd is a primitive dth root of unity and the ai are integers uniquely determined
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modulo d. We say that ρ is of type τ = (a1, a2, . . . , aℓ). This determines a rational point in 1
dY (T ) mod Y (T )

and therefore a rational point θτ in the fundamental domain of Y (T ) in AT . Let F(d) = E(d) ∪E(1)∪E(2)
be as in (11.4), and let the two nodal end points be zi , i = 1,2, and the nodes where the rational components
meet be ys, s = 1, . . . ,d − 2 for d ≥ 3.

Consider the canonical morphism N(d) → Spec(k⟦t⟧). Let N(d)
t ⊂ N(d) be the open subset defined by

the non-vanishing of t. For s = 1, . . . ,d − 2, let Cs ⊂ N(d) be a smooth curve with generic point in N(d)
t and

containing ys as a closed point. Let Us be the formal neighbourhood of ys in Cs. Similarly, let Czi for

i = 1,2 denote smooth curves with generic point in N(d)
t and containing zi as a closed point. Let Uzi be the

formal neighbourhood of zi in Czi .

Theorem 11.1. The group scheme HG
τ,N(d) is affine. It has the following description at the generic points of the

rational curves, at Uzi and at Us:

(1) Let ψ denote the character which takes ζ to ζs. We read the tuple (s · a1, s · a2, . . . , s · aℓ) modulo d. Let
τs := (s · a1, s · a2, . . . , s · aℓ). At the generic point of the rational component Eψ , the local type of the
restriction of HG

τ,N(d) is given by the point θτs in the fundamental domain of Y (T ).

(2) The restrictions of HG
τ,N(d) to Uzi for i = 1,2 are isomorphic to the parahoric group schemes Gθτ and Gθτ̄

corresponding to τ and τ̄ , respectively.
(3) The restriction of HG

τ,N(d) to Us is isomorphic to the Bruhat–Tits group scheme Gfs , where fs : Φ→R is the
concave function given by

(11.12) fs(r) :=mr
(
θτs

)
+mr

(
θτs+1

)
.

Proof. This is an immediate consequence of Theorems 5.7 and 5.4. □

Remark 11.2. Let us assume that the residue field k contains primitive 8th (resp. 3rd) roots of unity. Let
{α,β} denote the short and long roots of B2 (resp. G2). Let us fix an isomorphism of T with G

2
m. Since the

coroot lattice equals Y (T ), let us take the coroot homomorphisms α∨,β∨ : Gm→ T as the first and second
coordinate maps. Let us take ρ of type τ1 such that θτ1 equals

θα
2 for G of type B2 (resp. θα for G of type

G2). Then τ2 gives θα (resp. 2θα). By Example 3.10 (resp. 3.12), we see that for s = 1, the function fs is of
type III. This shows that the limiting objects of [Bal22] could become torsors under BT-group schemes of the
most general type.

Appendix on parabolic and equivariant bundles

In this section we recall and summarize some results on parabolic bundles and equivariant bundles
on Kawamata covers. These play a central role in the constructions of the Bruhat–Tits group schemes
made above. Consider a pair (X,D), where X is a smooth quasi-projective variety and D =

∑ℓ
j=0Dj is

a reduced normal crossing divisor with non-singular components Dj intersecting each other transversely.
The basic examples we have in mind are discrete valuation rings with their closed points, the wonderful
compactification A with its boundary divisors or affine toric varieties.

Let E be a locally free sheaf on X. Let nj , j = 0 . . . , ℓ, be positive integers attached to the components Dj .
Let ξ be a generic point of D .

Let Eξ := E ⊗OX OX,ξ and Ēξ := Eξ /mξEξ , and let mξ be the maximal ideal of OX,ξ .

Definition A.1. A (generic) parabolic structure on E consists of the following data:

• a flag Ēξ = F1Ēξ ⊃ · · · ⊃ Frj Ēξ at the generic point ξ of each of the components Dj of D ;
• weights ds/nj , with 0 ≤ ds < nj , attached to FsĒξ such that d1 < · · · < drj .
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By saturating the flag datum on each of the divisors, we get for each component Dj a filtration

EDj = F
1
j ⊃ · · · ⊃ F

rj
j(A.1)

of subsheaves on Dj . Define the coherent subsheaf F sj , where 0 ≤ j ≤ ℓ and 1 ≤ s ≤ rj , of E by

0 −→ F sj −→ E −→ EDj /F
s
j −→ 0;(A.2)

the last map is by restriction to the divisors.
We wish to emphasize that this definition, where the quasi-parabolic structure is given only at the generic

points of the divisors, is somewhat different from what is done in [Bis97].
In [MS80], working over curves, two essential things are shown:

(1) Given a parabolic bundle E as above, there exist a ramified covering of p : (Y ,D̃)→ (X,D) with
suitable ramification data and Galois group Γ together with a Γ -equivariant vector bundle V on
Y such that the invariant direct image sheaf pΓ∗ (V ) equals E and furthermore V also recovers the
parabolic structure, namely the filtrations F sj and weights, on E.

(2) Conversely, if we begin with an equivariant bundle V on Y , then the invariant direct image pΓ∗ (V )
gives a vector bundle E on X with parabolic structures at the generic points of the height 1 prime
ideals.

In this appendix we work with the higher-dimensional and generic variant we have defined above and
establish analogous results under suitable conditions. This is the key fact that is used in the present paper.

For the sake of completeness, we give a self-contained ad hoc argument for this construction which is more
in the spirit of the present note. The data given in Definition A.1 is as in [MS80], which deals with points on
curves. Note that in our setting we have rational weights. Under these conditions, we have a natural functor

pΓ∗ : {Γ -equivariant bundles on Y } −→ {parabolic bundles on X}.(A.3)

Under suitable conditions relevant to this paper, this functor is in fact a surjection. See [Bis97] for other
conditions where we can obtain a surjection.

As the notation suggests, this is achieved by taking invariant direct images. Since p : Y → X is finite
and flat, if V is locally free on Y , then so is pΓ∗ (V ). An equivariant bundle V on Y is defined in a formal
neighbourhood of a generic point ζ of a component by a representation of the isotropy group Γζ and locally
(in the formal sense), the action of Γζ is the product action. This is called the local type in [Ses70] or
[MS80]. By appealing to the 1-dimensional case, we obtain a canonical (generic) parabolic structure on E,
i.e. parabolic structures at the generic points ξ of the components Dj in X.

Conversely, given a (generic) parabolic bundle E on (X,D), to get the Γ -equivariant bundle V on Y such
that pΓ∗ (V ) = E, we heuristically proceed as follows. If we know the existence of such a V , then we can
consider the inclusion p∗(E) ⊂ V . Taking its dual (and since V /p∗(E) is torsion, taking duals is an inclusion),
we get

V ∗ ↪−−→ (p∗(E))∗ = p∗ (E∗) .(A.4)

By the 1-dimensional case (obtained by restricting to the height 1 primes at the generic points), we see that
the quotient Tζ := p∗(E∗)ζ/V ∗ζ is a torsion OY ,ζ-module and Tζ is completely determined by the parabolic
structure on E.

The (generic) parabolic structure on E therefore determines canonical quotients

p∗ (E∗)ζ −→ Tζ(A.5)

for each generic point ζ of components in Y above the components Dj in X.
The discussion above suggest how one would construct such a V ; we begin with these quotients (A.5).

Then we observe that there is a maximal coherent subsheaf V ′ ⊂ p∗(E∗) such that

p∗ (E∗)ζ /V
′
ζ = Tζ .(A.6)
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Away from p−1(D) in Y , the inclusion V ′ ↪→ p∗(E∗) is an isomorphism. Dualizing again, we get an inclusion
p∗(E) ↪→ (V ′)∗ which is an isomorphism away from p−1(D). Set W = (V ′)∗. Since W is the dual of a
coherent sheaf, it is reflexive.

In situations as in Theorem 5.4, we find examples of vector bundles with Lie algebra structures which
satisfy the surjectivity of (A.3).

A.1. Kawamata coverings

Suppose we are given positive integers n0, . . . ,nℓ . Let X be a smooth quasi-projective variety over a
perfect field k whose characteristic char(k) is coprime to n0, . . . ,nℓ . Let D be a simple or reduced normal
crossing divisor with decomposition D =

∑ℓ
i=0Di into its smooth components intersecting transversally.

By a “Kawamata covering” of X, we mean the existence of a connected smooth quasi-projective variety Z
over k and a Galois covering morphism

κ : Z −→ X(A.7)

such that the reduced divisor κ∗D := (κ∗D)red is a normal crossing divisor on Z and, furthermore,
κ∗Di = ni .(κ∗Di)red. Let Γ denote the Galois group for κ.

The “covering lemma” of Y. Kawamata (see [Vie95, Lemma 2.5, p. 56]) says that there is such a covering
under the assumption of k being algebraically closed.

We however note that if the base is reasonably simple, such as an affine space A
n
k , then such a covering

will exist with just the assumption of k being perfect.
The isotropy group of any point z ∈ Z, for the action of Γ on Z, will be denoted by Γz. It is easy to see

that the stabilizers at generic points of the irreducible components of (κ∗Di)red are cyclic of order ni .

Remark A.2. (In positive characteristics) The Kawamata covering lemma is seen to hold under tameness
assumptions; i.e. if the characteristic p is coprime to the ni , then it holds; see [Vie95, Lemma 2.5, p. 56].

A.2. The group scheme situation

Let (X,D) be as above. Let ξ be the generic point of a component Dj of D, and let A := OX,ξ and K be
the quotient field of A. We always assume that these group schemes are generically split. Let us begin by stating
some results from [BS15] in the simplest situation. Then we will state the more general case.

Let GΘ be a Bruhat–Tits group scheme on Spec(A) associated to a vertex θα of the Weyl alcove a0 (see
Section 2.1). Let B = OY ,ζ , where ζ is the generic point of a component of Y above Dj , and let L be the
quotient field of B. We assume that the local ramification data for the Kawamata covering has numbers dα ;
see (2.2). Let Γζ be the stabilizer of Γ at ζ ∈ Y . The results of [BS15, Proposition 5.1.2 and Remark 2.3.3]
show that there exists an equivariant group scheme HB on Spec(B) with fibre isomorphic to the simply
connected group G and such that ResB/A(HB)Γζ ≃GΘ .

Although in [BS15] the above is stated for points in the alcove a0, the proofs reveal that actually they hold
more generally. Under assumptions on the residue field (see Sections 1.1 and 2.2), the proofs of these results
generalize in a straightforward way for an arbitrary complete DVR (see Section 9.1). We may further assume
(see Remark 8.1) that θ is a rational point of AT in the fundamental domain of Y (T ) and not just a point in
the alcove a0 (see Section 2.1).

Suppose that we have a group scheme GX ′ on an open X ′ ⊂ X which includes all the height 1 primes
coming from the divisors Dj , with the following properties:

• Away from the divisor D ⊂ X, G is the constant group scheme with fibre G.
• The restrictions G |Spec(A) at the generic points ξ are isomorphic to the Bruhat–Tits group scheme
Gθ for varying ξ and θ varying in the fundamental domain of Y (T ) in AT .

In other words, GX ′ is obtained by a gluing of the constant group schemes with group schemes Gθ along
Spec(K) by an automorphism of the constant group scheme GK .
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Now consider the inverse image of the constant group scheme p∗(GX−D ) ≃ G×p∗(X −D). Then using the
gluing on X ′ , we can glue the constant group scheme p∗(GX−D ) with the local group schemes HB for each
generic point ζ to obtain a group scheme HY ′ on Y ′ = p−1(X ′) such that

ResY ′/X ′ (HY ′ )Γ ≃GX ′ .(A.8)
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