
Épijournal de Géométrie Algébrique
epiga.episciences.org

Special volume in honour of C. Voisin, Article No. 18 (2024)

Deformations of some local Calabi–Yau manifolds

Robert Friedman and Radu Laza

Abstract. We study deformations of certain crepant resolutions of isolated rational Goren-
stein singularities. After a general discussion of the deformation theory, we specialize to
dimension 3 and consider examples which are good (log) resolutions as well as the case of
small resolutions. We obtain some partial results on the classification of canonical threefold
singularities that admit good crepant resolutions. Finally, we study a noncrepant example,
the blowup of a small resolution whose exceptional set is a smooth curve.

Keywords. Deformation of singularities, canonical 3-fold singularities, Calabi–Yau varieties

2020 Mathematics Subject Classification. 14J32, 14B07, 32S30, 14E15, 32S45

Received by the Editors on February 2, 2023, and in final form on May 7, 2024.
Accepted on May 31, 2024.

Robert Friedman
Columbia University, Department of Mathematics, New York, NY 10027, USA
e-mail: rf@math.columbia.edu
Radu Laza
Stony Brook University, Department of Mathematics, Stony Brook, NY 11794, USA
e-mail: radu.laza@stonybrook.edu

Research of the second author is supported in part by NSF grant DMS-2101640

© by the author(s) This work is licensed under http://creativecommons.org/licenses/by-sa/4.0/

ar
X

iv
:2

20
3.

11
73

8v
6 

 [
m

at
h.

A
G

] 
 3

 N
ov

 2
02

4

https://epiga.episciences.org/
http://creativecommons.org/licenses/by-sa/4.0/


Contents

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Deformation theory in the good crepant case . . . . . . . . . . . . . . . . 6

3. The good crepant case: Some classes of examples . . . . . . . . . . . . . . . 10

4. The good crepant case: A partial classification . . . . . . . . . . . . . . . . 18

5. The case of a small resolution. . . . . . . . . . . . . . . . . . . . . . . 23

6. A noncrepant example . . . . . . . . . . . . . . . . . . . . . . . . . 29

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1. Introduction

This paper is part of a series [FL22, FL24, FL23] investigating the deformation theory of singular
Calabi–Yau varieties, i.e. compact analytic spaces Y with isolated Gorenstein canonical singularities
such that ωY � OY , building on and generalizing previously known results due to Kawamata,
Namikawa, Namikawa–Steenbrink, and others; see [Fri86, Kaw92, NS95, Nam94, Nam02]. The
deformation theory of Y as studied in [FL22] has both a local and a global aspect. Locally, if x ∈ Y is
a singular point, we can study the deformation functor Def(Y ,x) of the germ (Y ,x). In particular, the
tangent space to this functor, or equivalently the “first-order deformations,” i.e. the deformations over
the dual numbers SpecC[ε], are classified by a finite-dimensional vector space T 1

Y ,x, or equivalently
by the corresponding skyscraper sheaf supported at x. Globally, for a compact analytic space Y , there
is the deformation functor DefY , whose tangent space is a finite-dimensional vector space that we
denote by T

1
Y . There is a corresponding sheaf T 1

Y , which is supported on the singular locus of Y . In
case the singularities of Y are isolated, T1

Y is a skyscraper sheaf supported at the singular points and
the stalk of T1

Y at x is the vector space T 1
Y ,x. There is a natural morphism of deformation functors

DefY →
∏

x∈Ysing
Def(Y ,x). Note that DefY and Def(Y ,x) are pro-represented by germs of analytic

spaces and the morphism of functors corresponds to a morphism of germs of analytic spaces. On
Zariski tangent spaces, the differential of this morphism of functors or germs of spaces becomes a
homomorphism T

1
Y → H0(Y ;T 1

Y ) =
⊕

x∈Ysing
T 1
Y ,x. For dimY ≥ 3, this morphism is almost never

surjective. It is thus important to identify interesting tangent directions in
⊕

x∈Ysing
T 1
Y ,x and try to lift

these to T
1
Y . If the deformations of Y are unobstructed, such first-order deformations of Y will come

from actual deformations.
Taking a local point of view, let (X,x) be the germ of an isolated Gorenstein canonical singularity

(or equivalently an isolated rational Gorenstein singularity; see [KM98], [Kol97, Section 11.1]). We
will usually take X to be a good Stein representative for the germ (X,x), i.e. a contractible Stein
representative with a unique singular point x. Let π : X̂→ X be a good resolution or a log resolution,
i.e. π−1(x) = E is a divisor with simple normal crossings. The assumption of Gorenstein canonical
singularities means that KX̂ = π∗ωX ⊗OX̂(D) for some effective divisor D on X̂. If D = 0, we say
that π is a good crepant resolution of X. Typical examples of singularities that admit good crepant
resolutions are the O16 singularities, i.e. affine cones over a smooth cubic surface in P

3. More general
examples are singularities which are analytically isomorphic to cones over Fano manifolds embedded
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via the anticanonical line bundle, for example the cone over a smooth hypersurface of degree n in
P
n. A related case is that where there exists a small resolution π′ : X ′ → X, i.e. a resolution where

the fiber of π′ over x has dimension 1 (more generally, one could also consider the case where the
exceptional set has dimension less that dimX − 1). However, at least when X is a local complete
intersection and dimX ≥ 3, such resolutions can only exist for dimX = 3 (see Remark 5.1). Note that
small resolutions π′ : X ′ → X are automatically crepant, in the sense that KX ′ � OX ′ . Examples of
such singularities are A2k−1 singularities in dimension 3: these are locally defined by the equation
x2+y2+z2+w2k . A singularity X admitting a small resolution is terminal but not (locally) Q-factorial.
However, most canonical singularities do not admit good crepant or small resolutions. For instance,
terminal Q-factorial singularities, such as the A2k singularities in dimension 3 (i.e. those given by
x2 + y2 + z2 +w2k+1, k ≥ 1), do not have either a good crepant or a small resolution.

There is a natural subspace of H0(X;T 1
X ) defined as follows: Let U = X − {x} = X̂ −E, where as

above π : X̂→ X is a good resolution and E = π−1(x). In case dimX ≥ 3, a theorem of Schlessinger
implies that H0(X;T 1

X ) � H1(U ;TU ), where TU is the tangent bundle of U ; see [Sch71, Theorem 2].
By Wahl’s theory, see [Wah76], there is a morphism of functors DefX̂ →DefX where the induced map
on tangent spaces is the natural restriction map

H1
(
X̂;TX̂

)
−→H1 (U ;TU ) �H0

(
X;T 1

X

)
.

Informally, we can think of the image of DefX̂ as the simultaneous resolution locus, i.e. as the
deformations of X which lift to deformations of the resolution X̂. If π : X̂ → X is a good crepant
resolution, then DefX̂ is unobstructed by a theorem of Gross; cf. [Gro97, Proposition 3.4]. If
π′ : X ′ → X is a small resolution, then DefX ′ is unobstructed by [Fri86, Proposition 2.1]. If X is a
local complete intersection singularity, then DefX is always unobstructed (cf. [Loo84, Section 6]).

In trying to understand the image of the morphism DefX̂ →DefX , and more concretely the image
of H1(X̂;TX̂) in H0(X;T 1

X ), and their relevance in the Calabi–Yau case, there are two major obstacles:

(1) In the local setting, the image of H1(X̂;TX̂) in H0(X;T 1
X ) is not a birational invariant, i.e.

is not independent of the choice of a good resolution. The possible naturally occurring
birationally invariant subspaces of H0(X;T 1

X ) are rather the images of H1(X̂;Ωn−1
X̂

(logE))

or H1(X̂;Ωn−1
X̂

(logE)(−E)). These images are studied in [FL22, Theorem 2.1(iii)], where

we prove that the image of H1(X̂;Ωn−1
X̂

) is the same as that of H1(X̂;Ωn−1
X̂

(logE)(−E)), at
least in the local complete intersection case or if dimX = 3, and is thus independent of the
choice of resolution. However, this image does not seem to have an obvious deformation-
theoretic interpretation. One important case where such an interpretation exists is when
X̂ is a good crepant resolution of X: In this case Ωn−1

X̂
� TX̂ , and hence the image of

H1(X̂;Ωn−1
X̂

(logE)(−E)) agrees with that of H1(X̂;TX̂). A similar result holds in the case of a
small resolution (Proposition 5.13(i)).

(2) In the global setting, where Y is a Calabi–Yau variety, it seems difficult to lift deformations
arising in this manner to global deformations of Y . For example, in dimension 3 and for small
resolutions Y ′ , this issue is connected with Clemens’ conjecture about smooth rational curves
in Y ′ in the case where Y ′ is a quintic threefold, see [Cle87], which is still open and where
we have nothing new to add. For another example, the deformations of a quintic threefold Y
with an O16 singularity x ∈ Y are versal for the deformations of the isolated singularity at x;
i.e. the map T

1
Y →H0(Y ;T 1

Y ) is surjective. Hence, if Ŷ → Y is the natural crepant resolution
and X is a good Stein representative of the germ (Y ,x) with crepant resolution X̂, the image
of T1

Y →H0(Y ;T 1
Y ) contains the image of H1(X̂;TX̂). However, the analogous result fails for

hypersurfaces of degree n + 2 in P
n+1 containing an isolated singularity isomorphic to the

cone over a hypersurface of degree n in P
n for n ≥ 4, and in this case “most” of the image of
3



H1(X̂;TX̂) fails to lift to T
1
Y . Thus, the strategy of [FL22] is to work modulo the deformations

induced from a resolution, i.e. with K = Coker
(
H1(X̂;Ωn−1

X̂
(logE)(−E))→H0(X;T 1

X )
)
�

H2
E(X̂;Ωn−1

X̂
(logE)) (see [FL22, Theorem 2.1(v)]). This has the virtue of globalizing well in the

Calabi–Yau and Fano case; see [FL22, Sections 4 and 5].

Nonetheless, the study of DefX̂ and of H1(X̂;TX̂) involves a lot of interesting geometry, and the
goal of this paper is to investigate some of this geometry. For the reasons outlined above, we restrict
to the local case and (mostly) either to the good crepant case or to the case of a small resolution.
Finally, for most of our results, we restrict to dimension n = 3. For a general n ≥ 3, by a theorem of
Reid [Rei80, Theorem 2.6], a canonical Gorenstein singularity, not necessarily admitting a crepant
resolution, can be realized as the total space of a one-parameter deformation of a Gorenstein rational
or elliptic singularity of dimension n−1. In dimension 2, Gorenstein rational singularities are rational
double points, and this case does not arise if X̂ is a good crepant resolution. As for Gorenstein
elliptic (minimally elliptic) singularities, the most well-studied classes of such singularities are the
simple elliptic and cusp singularities, and their deformation theory has been studied extensively. In
particular, as discussed below, semistable models for deformations of cusp singularities are a plentiful
source of examples of good crepant resolutions and can be obtained systematically by the methods of
[FM83, Eng18, EF21].

The contents of this paper are as follows. Section 2 analyzes the deformation theory of good crepant
resolutions π : X̂ → X, where dimX ≥ 3. The main result is Theorem 2.6, which gives some very
general results about the first-order deformations of X̂ and their relation to first-order deformations
of E. In this case, the tangent space to the deformation functor DefE is the vector space T

1
E , and

there is a corresponding sheaf T 1
E . Then Theorem 2.6 relates the tangent space to DefX̂ and the

corresponding obstruction space to the cohomology of the exceptional divisor E and its components
Ei . Among other things, we show the following.

Theorem 1.1. Let π : X̂ → X be a good crepant resolution of the isolated rational singularity X, with
n = dimX ≥ 3, and let E =

⋃r
i=1Ei be the exceptional divisor of π. Then the maps T1

E → H0(E;T 1
E )

and H1(X̂;TX̂) → H0(E;T 1
E ) are surjective. In particular, all first-order smoothing directions for E

are realized via first-order deformations of X̂. The map H1(X̂;TX̂) → T
1
E is surjective if and only if

H2(X̂;TX̂(−E)) = 0. In this case, all first-order locally trivial deformations of E are realized by first-order
deformations of X̂ and the divisors E1, . . . ,Er .

More precise results require better control of the structure of E, which in turn leads to restricting to
the case dimX = 3, the running assumption starting with Section 3.

In dimension 2, Gorenstein canonical singularities are du Val singularities, also called rational
double point (RDP), simple, or ADE singularities. Their structure is well understood, as is their
deformation theory. The purpose of Sections 3 and 4 is to give a partial classification of the isolated
Gorenstein canonical threefold singularities (X,x) which admit good crepant resolutions, 3-dimensional
analogues of the ADE case, and to discuss their associated deformation theory. As noted above, there
is a close connection between isolated threefold canonical Gorenstein singularities and one-parameter
smoothings of minimally elliptic singularities. In the case of simple elliptic and cusp singularities, such
smoothings are in turn closely related to degenerations of K3 surfaces (cf. for example [FM83]). This
leads us to define divisors of Type II, Type III1, and Type III2 (Definition 3.6 and Figures 1, 2, 3). We then
obtain a partial classification of the threefold singularities admitting good crepant resolutions in the
special case of the total space of a one-parameter smoothing of a simple elliptic or cusp singularity, as
follows.
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Theorem 1.2 (= Theorems 4.1 and 4.6). Let (X,x) be an isolated Gorenstein canonical singularity of
dimension 3 with a good crepant resolution π : X̂ → X, and let E = π−1(x) be the reduced exceptional
divisor.

(i) If the general hypersurface section of X passing through x is a simple elliptic singularity, then E is of
Type II.

(ii) If the general hypersurface section of X passing through x is a cusp and ω−1E is nef and big, then E
is of Type III1 or Type III2.

(ii)′ If the general hypersurface section S of X passing through x is a cusp and the full inverse image
π−1(S) has normal crossings, then after a sequence of flops (elementary modifications of type 2 ),
ω−1E becomes nef and big, hence E is of Type III1 or Type III2.

Combining Theorem 1.2 with Theorem 2.6, we are able to obtain a deeper understanding of various
deformation-theoretic invariants, especially in the Type II and Type III1 cases. In particular, the
following is a somewhat less precise formulation of Proposition 3.12, Proposition 3.15, and Remark 3.16.

Theorem 1.3. If E is of Type II and irreducible or if E is of Type III1, then H2(X̂;TX̂(−E)) = 0 and
hence the map H1(X̂;TX̂)→ T

1
E is surjective. However, if E is of Type II and reducible, then the map

H1(X̂;TX̂)→ T
1
E is never surjective, and if E is of Type III2, then the map H

1(X̂;TX̂)→ T
1
E is not in

general surjective.

In Section 5, we switch our attention to the case of singularities which admit small resolutions
p : X ′→ X, technically a much simpler case. Here, we relate H1(X ′;TX ′ ) to the birational invariants
H1(X̂;Ω2

X̂
(logE)(−E)), H1(X̂;Ω2

X̂
), and H1(X̂;Ω2

X̂
(logE)) arising from a good resolution; these

invariants are controlled by the Du Bois invariants bp,q and link invariants ℓp,q introduced by
Steenbrink; see [Ste97]. In particular, we recover some results of Steenbrink regarding the dimension
of the versal deformation spaces for such singularities (Remark 5.16) and discuss some interesting
examples (Examples 5.17 and 5.18). After the first version of this paper was posted, Sz-Sheng Wang
sent us a preprint (now [Wan22]) which has substantial overlap with the material in Section 5.

In the final Section 6, we discuss a noncrepant example of a very special type, the blowup X̂ of a
smooth curve C which is the exceptional set of a small resolution π : X ′ → X. In this case, X is a
threefold A2n−1 singularity, i.e. defined locally by the equation x2 + y2 + z2 +w2n, where we assume
n ≥ 2. The question here is to relate the deformations of X̂ to those of X ′ and X. In particular, we
show the following (Theorem 6.7).

Theorem 1.4. For the above example, let (SX̂ ,0) and (SX ′ ,0) be the germs prorepresenting the functorsDefX̂
and DefX ′ , respectively. Then the induced morphism SX̂ → SX ′ is finite of degree n, and its differential at
the origin has a 1-dimensional kernel and cokernel.

This kind of example is also relevant to the study of deformations of Q-factorial terminal threefold
singularities such as the A2n singularities in dimension 3. While this example is very specific, it
helps to illustrate the difference between the image of H1(X̂;TX̂) and the birationally invariant
image of H1(X ′;TX ′ ). It is also interesting from the perspective of the minimal model program.
Generally speaking, the analysis of this paper shadows the steps of the minimal program. Namely,
Sections 2–4 roughly parallel the fact that a canonical threefold singularity has a partial crepant
(divisorial) resolution with terminal singularities (cf. [KM98, Theorem 6.23]). Similarly, Section 5 is the
deformation-theoretic counterpart of the statement that a terminal singularity admits a small partial
resolution to a terminal Q-factorial singularity (cf. [KM98, Theorem 6.25]), which cannot be further
improved. There is however an important difference between the deformation-theoretic point of view
and that of the minimal model program: In our arguments we need the partial resolutions to be
actual resolutions; i.e. we only consider crepant partial resolutions of a canonical singularity which are
smooth, not just terminal. Nonetheless, we believe that the discussion here captures some important
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general phenomena for these classes of singularities, which in turn will help to better understand the
geometry of the moduli spaces of Calabi–Yau varieties, especially in dimension 3.

Notation and conventions

Throughout the paper, we work with the notation and assumptions made above: (X,x) denotes the
germ of an isolated singularity, X is a good Stein representative for the germ (X,x), i.e. a contractible
Stein representative with a unique singular point x (cf. [Loo84, Section 2]), and π : X̂→ X is a good
resolution; i.e. π−1(x) = E is a divisor with simple normal crossings. Unless otherwise specified, all
singular cohomology (including local cohomology) is with C-coefficients.

Acknowledgement

We would like to thank the referee for a careful reading of our paper, and for extensive comments
which helped us to improve it. We would also like to thank Paul Hacking for pointing out an error in a
previous version of this paper.

2. Deformation theory in the good crepant case

We begin with a general definition.

Definition 2.1. Let π : X̂→ X be a resolution of X. Then π is equivariant if R0π∗TX̂ � T 0
X . By e.g.

[Fri86, Lemma 3.1], a small resolution is equivariant. Note that, for q > 0, Rqπ∗TX̂ is a torsion sheaf
supported on x.

The resolution π : X̂→ X is

(1) a good resolution (sometimes called a log resolution) if π−1(x) = E is a divisor with simple normal
crossings;

(2) a good equivariant resolution if π is good and equivariant (by resolution of singularities, good
equivariant resolutions always exist);

(3) crepant if KX̂ = π∗ωX and hence KX̂ � OX̂ , and is a good crepant resolution if π is also a
good resolution. Thus, with these definitions, a small resolution is crepant but not a good
crepant resolution. (Note: If the isolated normal singularity (X,x) admits a not necessarily
good resolution π : X̂→ X with KX̂ � OX̂ , then (X,x) is automatically a rational Gorenstein
singularity; cf. [Kol97, Corollary 11.9]).

Given a good resolution π : X̂ → X, let E = π−1(x) =
⋃r

i=1Ei , where the Ei are smooth divisors
in X̂.

Proposition 2.2. A crepant resolution is equivariant.

Proof. We begin by showing the following.

Lemma 2.3. Let π : X̂→ X be a crepant resolution, and let π′ : X ′→ X be an arbitrary resolution. Then
there exist a closed analytic subset V̂ of X̂ of codimension at least 2 and a proper analytic subset V ′ of X ′

such that the birational map X ′d X̂ restricts on X ′ −V ′ to a surjective morphism ν : X ′ −V ′→ X̂ − V̂ .

Proof. By Hironaka’s theorem, there is a blowup f : X̃ → X̂ which dominates X ′ . We can further
assume that all centers of blowups lie over the inverse image of the singular point x. Let V̂ be the
image in X̂ of the centers of the blowups; hence f is an isomorphism from X̃ − f −1(V̂ ) to X̂ −V .
Moreover, KX̃ = OX̃(G), where G =

∑
i niGi is a divisor with ni > 0 for all i such that f (G) ⊆ V̂ . Since

KX ′ � OX ′ (D) for an effective divisor D whose image in X is the point x, it follows easily that all of
the exceptional divisors for the morphism X̃→ X ′ are of the form Gi for some i. Thus, if V ′ is the
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closure of the union of the images of the Gi which are exceptional for the morphism X̃→ X ′ , there is
a surjective morphism X ′ −V ′→ X̂ − V̂ . □

Remark 2.4. The argument of Lemma 2.3 proves the standard fact that if in addition X ′ is also a
crepant resolution of X, then X ′ and X̂ are isomorphic outside a set of codimension 2.

Continuing with the proof of Proposition 2.2, we must show that the natural injective map
R0π∗TX̂ → T 0

X is surjective. Choose an equivariant resolution π′ : X ′→ X. If ξ is a local section of
T 0
X , then ξ lifts to a section of TX ′ over the inverse image of the open set and thus defines a section of

TX̂ over the complement of V in the notation of Lemma 2.3. By Hartogs, this section extends to a
section ξ̂ of TX̂ . The image of ξ̂ in T 0

X is then ξ . Thus R0π∗TX̂ → T 0
X is surjective and therefore an

isomorphism. □

Now suppose that X̂ is a good, not necessarily crepant resolution of X. There is an exact sequence

0 −→ TX̂(− logE) −→ TX̂ −→
⊕
i

NEi /X̂
−→ 0.

Here H1(X̂;TX̂(− logE)) is the tangent space to the functor of deformations of X̂ keeping the divisors
Ei . Let D• be the complex given by

TX̂ −→NE/X̂

(in degrees 0, 1, respectively). Then H
1(X̂;D•) is the tangent space to deformations of X̂ keeping the

divisor E (as an effective Cartier divisor). Also, let C• be the complex

TX̂ |E −→NE/X̂ .

Thus C• is the dual complex to the complex IE/I
2
E →Ω1

X̂
|E, which is quasi-isomorphic toΩ1

E , the sheaf

of Kähler differentials on E. It follows that Hi(C•) = T i
E , i = 0,1, and H

i(E;C•) = Exti(Ω1
E ,OE) = T

i
E .

There is a commutative diagram

0 0y y
TX̂(−E) TX̂(−E)y y

0 −−−−−→ TX̂(− logE) −−−−−→ TX̂ −−−−−→
⊕

iNEi /X̂
−−−−−→ 0y y y

0 −−−−−→ T 0
E −−−−−→ TX̂ |E −−−−−→ NE/X̂ −−−−−→ T 1

E −−−−−→ 0y y
0 0.

In particular, there is always an exact sequence

0 −→
⊕
i

NEi /X̂
−→NE/X̂ −→ T 1

E −→ 0.

Moreover, H0(D•) = TX̂(− logE) and H
1(D•) = H1(C•) = T 1

E . Also, from the hypercohomology
spectral sequences, there are exact sequences

H0
(
X̂;TX̂

)
−→H0

(
E;NE/X̂

)
−→H

1
(
X̂;D•

)
−→H1

(
X̂;TX̂

)
−→H1

(
E;NE/X̂

)
,

H1
(
X̂;TX̂ (− logE)

)
−→H

1
(
X̂;D•

)
−→H0

(
E;T 1

E

)
−→H2

(
X̂;TX̂ (− logE)

)
7



as well as the usual exact sequences

H0
(
E;TX̂ |E

)
−→H0

(
E;NE/X̂

)
−→ T

1
E −→H1

(
E;TX̂ |E

)
−→H1

(
E;NE/X̂

)
,

0 −→H1
(
E;T 0

E

)
−→ T

1
E −→H0

(
E;T 1

E

)
−→H2

(
E;T 0

E

)
−→ T

2
E −→H1

(
E;T 1

E

)
−→ 0.

Most of the homomorphisms in the above exact sequences have a geometric meaning.
Now suppose X̂ is a good crepant resolution of (X,x). Then TX̂(− logE) is isomorphic to

Ωn−1
X̂

(logE)(−E), so, by the vanishing theorem of Guillén, Navarro Aznar, Pascual Gainza, Puerta,
and Steenbrink (see e.g. [PS08, Proof of Proposition 7.30 (b′), p. 181]), for p ≥ 2,

Hp
(
X̂;TX̂(− logE)

)
=Hp

(
X̂;Ωn−1

X̂
(logE)(−E)

)
= 0.

Also, NEi /X̂
=ωEi

= KEi
and NE/X̂ =ωE . Moreover, as previously noted, DefX̂ is unobstructed.

Finally, we have the following result of Steenbrink; see [Ste83, Lemma 2.14].

Theorem 2.5 (Steenbrink). In the above notation, if X has an isolated rational singularity, then
H i(E;OE) = 0 for i > 0.

With these preliminaries, we turn now to the main result of this section.

Theorem 2.6. Let π : X̂ → X be a good crepant resolution of the isolated rational singularity X, with
n = dimX ≥ 3.

(i) We haveH1(X̂;D•) �H1(X̂;TX̂). In other words, the first-order deformations of X̂ are exactly the
first-order deformations keeping the effective divisor E.

(ii) We have H0(E;T 1
E ) �

⊕
iH

1(Ei ;NEi /X̂
) =

⊕
iH

1(Ei ;ωEi
). Thus H0(E;T 1

E ) = 0 if and only

if h0,n−2(Ei) = 0 for every i. (The condition H0(E;T 1
E ) = 0 is the condition that all first-

order deformations of X̂ induce locally trivial first-order deformations of E.) More generally,
dimH0(E;T 1

E ) =
∑

i h
0,n−2(Ei).

(iii) If dimX = 3, then H1(E;T 1
E ) has dimension r − 1, where r is the number of components of E, and

is more intrinsically dual to the cokernel of H0(E;OE)→
⊕

iH
0(Ei ;OEi

). If dimX > 3, then
dimH1(E;T 1

E ) =
∑

i dimHn−3(Ei ;OEi
).

(iv) We have H2(X̂;TX̂) �
⊕

iH
2(Ei ;NEi /X̂

), and if H3(X̂;TX̂(−E)) = 0 (which is always satisfied

if dimX = 3), then H2(E;T 0
E ) = 0, i.e. all locally trivial first-order deformations of E are

unobstructed. Thus, in this case,

dimT
2
E = dimH1

(
E;T 1

E

)
=

r − 1 if dimX = 3,∑
i dimHn−3(Ei ;OEi

) if dimX > 3.

(v) The maps T1
E → H0(E;T 1

E ) and H1(X̂;TX̂)→ H0(E;T 1
E ) are surjective. In particular, all first-

order smoothing directions for E are realized via first-order deformations of X̂.
(vi) The map H1(X̂;TX̂)→ T

1
E is surjective if and only if H

1(X̂;TX̂(− logE))→ H1(E;T 0
E ) is sur-

jective, which holds if and only if H2(X̂;TX̂(−E)) = 0. In this case, all first-order locally trivial
deformations of E are realized by first-order deformations of X̂ and the divisors E1, . . . ,Er .

Proof. (i) By adjunction and Serre duality, H0(E;NE/X̂) = H0(E;ωE) is dual to Hn−1(E;OE) = 0.
Likewise, H1(E;NE/X̂) =H1(E;ωE) is dual to Hn−2(E;OE) = 0. Hence H

1(X̂;D•) �H1(X̂;TX̂).

(ii) There is an exact sequence

H0
(
E;NE/X̂

)
−→H0

(
E;T 1

E

)
−→

⊕
i

H1
(
Ei ;NEi /X̂

)
−→H1

(
E;NE/X̂

)
.

As in (i), H0(E;NE/X̂) =H1(E;NE/X̂) = 0. Thus H0(E;T 1
E ) �

⊕
iH

1(Ei ;NEi /X̂
). But H1(Ei ;NEi /X̂

) =
H1(Ei ;ωEi

) is Serre dual to Hn−2(Ei ;OEi
) and therefore has dimension h0,n−2(Ei). In particular,

H0(E;T 1
E ) = 0 if and only if h0,n−2(Ei) = 0 for all i.
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(iii) Continuing with the above exact sequence, we have

0 =H1
(
E;NE/X̂

)
−→H1

(
E;T 1

E

)
−→

⊕
i

H2
(
Ei ;NEi /X̂

)
−→H2

(
E;NE/X̂

)
−→ 0.

If dimX = 3, then H1(E;T 1
E ) is dual to the cokernel of H0(E;OE)→

⊕
iH

0(Ei ;OEi
) and hence

has dimension r − 1. If dimX > 3, then H2(Ei ;NEi /X̂
) = H2(Ei ;ωEi

) is Serre dual to Hn−3(Ei ;OEi
)

and H2(E;NE/X̂) is Serre dual to Hn−3(E;OE) = 0. Thus dimH1(E;T 1
E ) =

∑
i dimHn−3(Ei ;OEi

) if
dimX > 3.

(iv) The statement about H2(X̂;TX̂) follows from the exact sequence

H2
(
X̂;TX̂(− logE)

)
= 0 −→H2

(
X̂;TX̂

)
−→

⊕
i

H2
(
Ei ;NEi /X̂

)
−→H3

(
X̂;TX̂(− logE)

)
= 0.

The long exact sequence associated to

0 −→ TX̂(−E) −→ TX̂(− logE) −→ T 0
E −→ 0

gives rise to an exact sequence

H2
(
X̂;TX̂(− logE)

)
−→H2

(
E;T 0

E

)
→H3

(
X̂;TX̂(−E)

)
.

As we have seen, H2(X̂;TX̂(− logE)) = 0, and H3(X̂;TX̂(−E)) = 0 if dimX = 3 for dimension reasons.
Thus H2(E;T 0

E ) = 0.

(v) There is a commutative diagram

0 −−−−−→ H1
(
X̂;TX̂(− logE)

)
−−−−−→ H1

(
X̂;TX̂

)
−−−−−→

⊕
iH

1
(
NEi /X̂

)
−−−−−→ 0y y y�

0 −−−−−→ H1
(
E;T 0

E

)
−−−−−→ T

1
E −−−−−→ H0

(
E;T 1

E

)
−−−−−→ H2

(
E;T 0

E

)
.

(Here, the top right arrow is surjective because H2(X̂;TX̂(− logE)) = 0.) Thus the induced map
H1(X̂;TX̂)→H0(E;T 1

E ) is surjective, and therefore the map T
1
E →H0(E;T 1

E ) is surjective as well.

(vi) From the diagram in (v), the map H1(X̂;TX̂) → T
1
E is surjective if and only if the map

H1(X̂;TX̂(− logE)) → H1(E;T 0
E ) is surjective. Since H2(X̂;TX̂(− logE)) = 0, the cokernel of

H1(X̂;TX̂(− logE))→H1(E;T 0
E ) is H

2(X̂;TX̂(−E)). Thus H
1(X̂;TX̂)→ T

1
E is surjective if and only if

H2(X̂;TX̂(−E)) = 0. □

Remark 2.7.

(i) In the situation of (v), it follows from [FL22, Theorem 2.1(iii)] that, for a crepant isolated rational
singularity,

H1
(
X̂;TX̂

)
�H1

(
X̂;Ωn−1

X̂

)
�H1

(
X̂;Ωn−1

X̂
(logE)(−E)

)
⊕H1

E

(
X̂;Ωn−1

X̂

)
.

Moreover, H1(X̂;Ωn−1
X̂

(logE)(−E)) �H1(X̂;TX̂(− logE)). The induced map

H1
E

(
X̂;Ωn−1

X̂

)
−→H1

(
X̂;Ωn−1

X̂

)
−→H1

(
E;Ωn−1

E /τn−1E

)
�
⊕
i

H1
(
Ei ;ωEi

)
,

is an isomorphism, and thus by (v) there is a splitting

H1
(
X̂;TX̂

)
�H1

(
X̂;TX̂(− logE)

)
⊕H0

(
E;T 1

E

)
.

Note that, while H1(X̂;TX̂(− logE)) and H1(X̂;TX̂) have the same image in H0(X;T 1
X ), this is just a

statement about the differential of the corresponding morphism of deformation functorsDefX̂ →DefX ,
and it is reasonable to ask if the actual morphism of deformation functors is finite (meaning that the
corresponding morphism of the analytic germs which prorepresent them is finite).
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(ii) If dimX = 3 and E is smooth, we will show in the next section that H1(X̂;TX̂) → T
1
E is

surjective. However, it is not in general an isomorphism, for example in case X is an O16 singularity,
the cone over a smooth cubic surface E. In this case, a calculation shows that dimH0(X;T 1

X ) = 16 and
that ℓ = 6, where ℓ = ℓ1,1 is the link invariant of [Ste97]. By [Wah76], H0(X;R1π∗TX̂) �H1(X̂;Ω2

X̂
) is

the nonnegative part of the deformations of O16 and is easily computed to have dimension 5. But
dimH1(E;TE) = 4, so that H0(X;R1π∗TX̂)→H1(E;TE) is not injective. Here, the weight zero piece
of H0(X;T 1

X ) has dimension 4 and corresponds to deformations of the cubic surface, hence gives all
of the first-order deformations of E. However, there is also a weight 1 piece of dimension 1. Starting
with the cone over the Fermat cubic surface E, for example, the general weight 1 deformation is
given by ft = x3 + y3 + z3 +w3 + txyzw, defining the singularity Xt . A calculation shows that, for
t , 0, dimH0(X;T 1

Xt
) = 15, and hence that the invariant a of [FL22, Theorem 2.1(iv)] is not 0 in this

case. In fact, a = 1, and the spectral sequence with E1 page E
p,q
1 =H

q
E(X̂t;Ω

p

X̂t
)⇒H

p+q
E (X̂t) does not

degenerate at E2 for t , 0.
Finally, if E is not smooth, then H1(X̂;TX̂)→ T

1
E typically fails to be surjective. We will give a

geometric explanation for this failure in the next section.

3. The good crepant case: Some classes of examples

In this section, π : X̂→ X denotes a good crepant resolution of the rational, Gorenstein, isolated
singularity X, with dimX = 3. Denote the exceptional divisor by E = π−1(x) =

⋃
i≥1Ei . We fix the

following notation: Dij = Ei ∩Ej , Di = Ei ∩
(⋃

j,i Ej

)
=
⋃

j,iDij , and D =
⋃

iDi = Esing. Our goal
is to describe in more detail the case where E looks like a K-trivial semistable degeneration of K3
surfaces with one component supporting a negative-definite anticanonical divisor removed, or more
generally a K-trivial semistable resolution of a one-parameter smoothing of a simple elliptic or cusp
singularity, minus the component containing the resolution of the germ of the singularity. Note that
by [FM83, Eng18, EF21], there is a procedure for generating all such examples. There is also an easy
criterion for determining the multiplicity and hence for deciding when such examples are good crepant
resolutions of complete intersection or even hypersurface singularities.

Before we begin our discussion, we record the following, which holds for an isolated rational
singularity X of dimension 3, not necessarily crepant.

Proposition 3.1. Let π : X̂ → X be a good resolution of the isolated rational singularity (X,x) of
dimension 3, with exceptional divisor E = π−1(x) =

⋃
i≥1Ei , Dij = Ei ∩Ej , and triple points tijk .

(i) For i > 0, H i(E;OE) = 0 and H i(|Γ |) = 0 for i > 0, where Γ is the dual complex of E.
(ii) The two homomorphisms

⊕
iH

1(Ei ;OEi
) →

⊕
i<jH

1(Dij ;ODij
) and

⊕
iH

0(Ei ;Ω
1
Ei
) →⊕

i<jH
0(Dij ;Ω

1
Dij

) are isomorphisms.

(iii) Let Ω1
E be the sheaf of Kähler differentials and τ1E the subsheaf of torsion differentials. Then

H0(E;Ω1
E/τ

1
E) = 0 and H1(E) = 0.

(iv) The map
⊕

iH
2(Ei) →

⊕
i<jH

2(Dij ) is surjective, and its kernel is H2(E). Hence b2(E) =∑r
i=1 b2(Ei)−#{double curves}.

(v) Let L be the link of the singularity (X,x), and let ℓ be the dimension of H2(L) or equivalently
H3(L). Then H2(L) is a pure Hodge structure and H2(L) =H1,1(L), so that ℓ = ℓ1,1, where ℓ1,1 is
the link invariant of [Ste97]. Finally,

ℓ = b2(E)− r =
∑
i

b2(Ei)− r −#{double curves} =
∑
i

(b2(Ei)− 1)−#{double curves}.

Proof. We shall just sketch the proof. By Theorem 2.5, H i(E;OE) = 0 for i > 0. The weight spectral
sequence for E degenerates at E2, and hence so does the Mayer–Vietoris spectral sequence for OE .
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This degeneration, along with the fact that H i(E;OE) = 0, i = 1,2, implies that H i(|Γ |) = 0 for
i > 0 and that

⊕
iH

1(Ei ;OEi
)→

⊕
i<jH

1(Dij ;ODij
) is an isomorphism. Then

⊕
iH

0(Ei ;Ω
1
Ei
)→⊕

i<jH
0(Dij ;Ω

1
Dij

) is an isomorphism as well, as follows by taking complex conjugation. This proves

(i) and (ii). There is an exact sequence

0 −→Ω1
E/τ

1
E −→

⊕
i

Ω1
Ei
−→

⊕
i<j

Ω1
Dij
−→ 0.

Thus, by (ii), H0(E;Ω1
E/τ

1
E) = 0. There is a spectral sequence converging to Hp+q(E) with E

p,q
1 =

Hq(E;Ωp
E/τ

p
E). As H

0(E;Ω1
E/τ

1
E) =H1(E;OE) = 0, H1(E) = 0, proving (iii). The semipurity theorem

(see e.g. [Ste83, Corollary 1.12]) implies that the mixed Hodge structure on Hk(E) is pure for k ≥ 3.
An examination of the weight spectral sequence shows that this forces the map

⊕
iH

2(Ei) →⊕
i<jH

2(Dij ) to be surjective and identifies H2(E) with its kernel. Thus b2(E) =
∑r

i=1 b2(Ei) −
#{double curves}, which is (iv). By the link exact sequence and semipurity (see [Ste83, Corollary 1.12]
again), there is an exact sequence of mixed Hodge structures

0 −→H2
E

(
X̂
)
−→H2(E) −→H2(L) −→ 0,

where as in the statement of (v), L is the link of the isolated singularity. By duality, dimH2
E(X̂) =

dimH4(E) =
∑

iH
4(Ei) = r . Thus

ℓ = dimH2(L) = b2(E)− r =
r∑

i=1

b2(Ei)−#{double curves} − r,

using (iv). The above exact sequence also shows that H2(L) is a pure Hodge structure and that
H2(L) =H1,1(L), hence ℓ = ℓ1,1. This establishes all of the statements of (v). □

Remark 3.2. Kawamata [Kaw88, Section 1, p. 97] introduced an invariant σ (Y ), the defect of Y , for
a normal projective variety measuring the failure of Q-factoriality for Y . For a rational singularity
(X,x) in dimension 3, there is a local analogue σ (x) = dimH2(X̂)/

∑
iC[Ei] defined by Namikawa–

Steenbrink; cf. [NS95, Equation (3.9)]. It is immediate to see that σ (x) = ℓ via the link exact
sequence

0 −−−−−→ H2
E(X̂) −−−−−→ H2(E) −−−−−→ H2(L) −−−−−→ 0y� y�⊕
iH4(Ei) −−−−−→ H2(X̂).

The relationship between the local and global invariants is as follows. If Y is a compact complex
threefold with isolated rational singularities, for each y ∈ Ysing, we have the link Ly and the local
invariant ℓy = dimH2(Ly) = dimH3(Ly). Let T be the kernel of the natural map

⊕
y∈Ysing

H3(Ly)→
H4(Y ), and let σ (Y ) be the dimension of the image of

⊕
y∈Ysing

H3(Ly)→H4(Y ). Thus clearly

dimT =
∑

y∈Ysing

ℓy − σ (Y ).

A straightforward argument with Mayer–Vietoris and semipurity shows that

σ (Y ) = b4(Y )− b2(Y ).

Thus the defect measures the extent to which Poincaré duality fails on Y .

For the remainder of this section, we return to the case where X has a crepant resolution π : X̂→ X.
Following Reid [Rei80, Definition 2.5], we make the following definition.
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Definition 3.3. Let (X,x) be the germ of an isolated singularity. We say that Property P holds for a
general t ∈mx, or for the general hypersurface section of X defined by t, if there exists a finite-dimensional
subspace V of mx, mapping surjectively onto mx/m

2
x, such that Property P holds for all t in a

nonempty Zariski open subset of V .

With that said, we have the following, due to Reid; see [Rei80, Theorem 2.6], [KM98, Lemma 5.30].

Theorem 3.4. Let (X,x) be an isolated rational Gorenstein singularity of dimension 3, and let S be a
hypersurface section of X passing through x defined by a general t ∈mx in the sense of Definition 3.3. Then
S has a du Val or a minimally elliptic singularity. □

Remark 3.5.

(i) Since an isolated compound du Val singularity is terminal, the du Val case is excluded if X has
a crepant resolution.

(ii) In an earlier version of this paper, we incorrectly stated that S has either a du Val, a simple
elliptic, or a cusp singularity. However, Paul Hacking communicated to us an example where the
general hypersurface section has a Dolgachev (triangle) singularity. This example has a partial
(singular) crepant resolution. It is possible that the existence of a good crepant resolution imposes
additional constraints on general hypersurface sections.

In the above situation, fix a general hypersurface section S of X, and define E0 to be the proper
transform of S on X̂. Thus E0 → S is birational, but the inverse image of the singular point is⋃

i≥1(E0∩Ei). If S is defined by the function t ∈mX,x, then as divisors (π∗t) = E0 +
∑

i≥1 aiEi , where
ai is an integer ≥ 1. Hence

OX̂

E0 +
∑
i≥1

aiEi

 � OX̂ .

By the crepant assumption, KEi
= OX̂(Ei)|Ei = OEi

(Ei), including the case i = 0 where we might have
to replace KE0

by ωE0
, and ωE = OX̂(E)|E = OE(E).

Motivated by the description of semistable smoothings of simple elliptic and cusp singularities (cf.
[FM83] and Remark 3.7 below), we make the following definition.

Definition 3.6. A compact analytic surface E =
⋃

i≥1Ei with simple normal crossings is of Type II
(Figure 1) if, after relabeling, E =

⋃r
i=1Ei , where the following hold:

(i) E1, . . . ,Er−1 are elliptic ruled (not necessarily minimally ruled), and Er is rational, with −KEr

nef and big. (Here a smooth surface S is a not necessarily minimally ruled surface over a base
curve D if there exists a morphism S→D whose generic fiber is P1, and it is elliptic ruled if
D is an elliptic curve.)

(ii) The dual complex is a line segment with adjacent vertices E1, . . . , Er , or a single point if r = 1.
(iii) With Di,i+1 = Ei ∩Ei+1, 1 ≤ i ≤ r − 1 as above, Di,i+1 is a smooth elliptic curve.
(iv) There exists a smooth elliptic curve D0 ⊆ E1, disjoint from D12, such that, in case r > 1,

KE1
= OE1

(−D0 −D12), KEi
= OEi

(−Di−1,i −Di,i+1) for 1 ≤ i ≤ r − 1, and KEr
= OEr

(−Dr−1,r ),
and KE1

= OE1
(−D0) in case r = 1.

(v) OE(E) = ωE = OE(−D0).

Note that (v) implies that ODi,i+1
(E) � ODi,i+1

, and thus T 1
E �

⊕
iOX̂(E)|Di,i+1 � OD , where D =⋃r−1

i=1Di,i+1 = Esing.

The compact analytic surface E =
⋃r

i=1Ei with simple normal crossings is of Type III 1 (Figure 2) if,
possibly after relabeling, the following hold:

(i) All of the Ei are smooth rational.
12



Er

. . .

E2

E1

Dr−1,r

D2,3

D1,2

D0

Figure 1. Exceptional divisor E of Type II

(ii) Ei ∩Ej = ∅ unless j = ±i. In particular, the dual complex of E is a point (if r = 1) or a line
segment (if r ≥ 2).

(iii) Assume that r ≥ 2. Let Di,i+1 = Ei ∩Ei+1. Then Di,i+1 is a smooth rational curve. For i = 1, r ,
there exist connected curves C1, Cr on E1, Er respectively, where C1 and Cr are chains of
smooth rational curves meeting transversally, with (C1 ·D12)E1

= (Cr ·Dr−1,r )Er
= 2, and we

have KE1
= OE1

(−C1 −D12) and KEr
= OE1

(−Cr −Dr−1,r ). For 2 ≤ i ≤ r − 1, there exist two
curves C′i and C′′i , both chains of smooth rational curves, supporting effective divisors of
self-intersection 0, and not containing Di−1,i or Di,i+1, with(

C′i ·Di−1,i
)
Ei
=
(
C′′i ·Di−1,i

)
Ei
=
(
C′i ·Di,i+1

)
Ei
=
(
C′′i ·Di,i+1

)
Ei
= 1,

such that

KEi
= OEi

(
−Di−1,i −C′i −Di,i+1 −C′′i

)
.

Moreover, C = C1+C′2+C
′′
2 +· · ·+C

′
r−1+C

′′
r−1+Cr is a Cartier divisor on E, where C′ =

∑r−1
i=2C

′
i

and C′′ =
∑r−1

i=2C
′′
i are connected.

(iv) In all cases, OE(E) = ωE = OE(−C), where if r = 1, C is a cycle of smooth rational curves or
an irreducible nodal curve.

. . .E1 E2 Er

D1,2 D2,3 Dr−1,r

C1 Cr

C ′2C ′2

C ′′2

C ′r−1

C ′′r−1

Er−1

Figure 2. Exceptional divisor E of Type III1

Note that (iv) implies that there exist points p′i ,p
′′
i in Di,i+1 for 1 ≤ i ≤ r − 1 which are smooth points

on D and such that T 1
E � OD(−

∑
i(p
′
i + p′′i )).

The compact analytic surface E =
⋃r

i=1Ei with simple normal crossings is of Type III 2 (Figure 3) if
r ≥ 2 and, possibly after relabeling, the following hold:

(i) All of the Ei are smooth rational.
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(ii) There are distinguished components E1, . . . ,Es such that Ei ∩ Ej = ∅ unless j = ±i mod s.
In particular, for s ≥ 3, the dual complex of E1, . . . ,Es is a circle (and similarly for r = 2,
where the dual complex has two vertices joined by two edges). Moreover, there exist chains
of smooth rational curves Ci on Ei , 1 ≤ i ≤ s, such that Ci and Di have no component in
common and Ci ∩ Ej , ∅ if and only if we have 1 ≤ j ≤ s and j = ±1 mod s. In this case,
(Ci ·D ′i,i+1)Ei

= 1 for every component D ′i,i+1 of Di,i+1 meeting E0, with the convention that
Ds,s+1 =D1,s. Moreover, C = C1+ · · ·+Cs is a Cartier divisor on E contained in

⋃s
1=1Ei ; more

precisely, Ci ∩Ei+1 = Ci+1 ∩Ei .
(iii) For 1 ≤ i ≤ s, Ci +Di is a cycle of smooth rational curves, and KEi

= OEi
(−Ci −Di). For i > s,

Di is a cycle of smooth rational curves, and KEi
= OEi

(−Di).
(iv) The dual complex of E is a semisimplicial triangulation of the 2-disk, and E1, . . . ,Er are the

boundary vertices.
(v) OE(E) = ωE = OE(−

∑s
i=1Ci).

E1

D1,2

D2,3

Dr,1

C1

Cr Cr−1

E2 E3

C2

C3

. . .
. . .

Er Er−1

Figure 3. Exceptional divisor E of Type III2

Note that (v) implies the following (keeping the convention that Ds,s+1 = D1,s): Suppose Di,i+1 is
irreducible. Then there exist points pi in Di,i+1 for 1 ≤ i ≤ s, not in Dsing, such that T 1

E � OD(−
∑

i pi).
An analogous statement holds if Di,i+1 is reducible, where such points exist in every component of
Di,i+1 meeting Ci .

Remark 3.7. The above terminology is modeled on the corresponding terminology for semistable
degenerations of K3 surfaces due to Persson, Kulikov, and others. More precisely, consider a smoothing
ρ : X→ (∆,0), where X = (X,x) is the germ of a simple elliptic or cusp singularity over the unit disk
(i.e. ρ is a flat morphism of germs, ρ−1(0) is a simple elliptic or cusp singularity, and ρ−1(t) is smooth
for t , 0). By [FM83, Theorem 2.5], possibly after a base change, there exists a semistable crepant
resolution π : X̂→ X. In other words, X̂ is smooth and induces a minimal resolution of ρ−1(0) with
exceptional divisor D0, KX̂ � OX̂ , and the induced morphism f = ρ◦π : X̂→ ∆ satisfies the following:
f −1(0) is a reduced divisor with simple normal crossings. Then the dual complex of f −1(0) is a line
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segment in the simple elliptic case (Type II) or a triangulation of S2 in the cusp case (Type III). Thus,
the dual complex of E = π−1(0) is again a line segment in the simple elliptic case, and hence is of
Type II in the sense of Definition 3.6, or it is obtained by deleting a vertex in a triangulation of S2 and
hence is either a line segment or a disk, i.e. is of Type III1 or Type III2 in the sense of Definition 3.6.
See also Theorem 4.6 for a partial converse to this picture.

Remark 3.8. As noted in greater generality in [Kaw88], the number r of divisors in the exceptional
set E of the crepant resolution π : X̂ → X is independent of the choice of crepant resolution. This
follows easily from the fact that any two crepant resolutions are isomorphic in codimension 1 (see e.g.
Remark 2.4). The invariant ℓ = dimH2(L) defined in Proposition 3.1(v) can also be computed directly
in this case, at least for a semistable smoothing.

Proposition 3.9.

(i) Suppose that X̂ is the semistable model for a smoothing of a simple elliptic singularity, of multiplicity
m = −D2

0 . Then
ℓ = 9−m.

(ii) Suppose that X̂ is the semistable model for a smoothing of a cusp singularity, of multiplicity m = −D2
0

and length s, the number of components of the cusp. Then

ℓ = 9−m+ s.

Proof. By Proposition 3.1(v), ℓ =
∑r

i=1 b2(Ei)−#{double curves} − r, where r is the number of compo-
nents of E. In the simple elliptic case, after standard birational operations (flops or Type II elementary
modifications), we can assume that E1, . . . ,Er−1 are minimal elliptic ruled surfaces and that Er is a
generalized del Pezzo surface of degree −(Dr−1,r )

2
Er−1

= (Dr−1,r )
2
Er

= K2
Er

= m. Thus there are r − 1
double curves, r − 1 elliptic ruled components Ei with b2(Ei) = 2r, and the remaining component Er

satisfies b2(Er ) = 10−m. Putting this together gives

ℓ = 2(r − 1) + 10−m− 2r +1 = 9−m.

In the cusp case, we shall just write down the proof for E of Type III2 (the proof in the Type III1 case
is similar but simpler). Let e be the number of double curves of E, and let t be the number of triple
points. By taking Euler characteristics,

r − e+ t = 1.

Each surface Ei satisfies −KEi
= OEi

(Di +Ci) or −KEi
= OEi

(Di), depending on whether Ei meets E0,
and in this case Ci is irreducible since by assumption X̂ is semistable. Set D̂i =Di if Ei does not meet
E0 (i.e. i > s), and set D̂i =Di +Ci if Ei meets E0 (i.e. 1 ≤ i ≤ s). If si is the number of components of
D̂i , then

∑
i si = 2e + s. Every triple point is contained in three edges, and every edge contains two

triple points except for the edges corresponding to the double curves Ei ∩Ei+1, 1 ≤ i ≤ s, which just
meet one triple point. Thus 2e = 3t + s.

The surfaces Ei , i > 0, are rational surfaces with an anticanonical cycle D̂i . Following [FM83,
Definition 3.1], define the charge Q(Ei , D̂i) by

Q
(
Ei , D̂i

)
= 12−

(
D̂i

)2
− si .

Note that this definition makes sense for E0 as well, where we set D̂0 =D0 =
∑r

i=1Ci and Q(E0, D̂0) =
12+m− s. For i > 0, by [Fri15, Lemma 1.2], b2(Ei) =Q(Ei , D̂i)− 2+ si . Then

ℓ =
∑
i≥1

b2(Ei)− e − r =
∑
i≥1

Q
(
Ei , D̂i

)
− 3r +

∑
i≥1

si − e

=
∑
i≥1

Q
(
Ei , D̂i

)
− 3(1+ e − t) + 2e+ s − e
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=
∑
i≥1

Q
(
Ei , D̂i

)
− 3+ (3t − 2e+ s) =

∑
i≥1

Q
(
Ei , D̂i

)
− 3.

The principle of “conservation of charge,” see [FM83, Proposition 3.7], implies that∑
i≥1

Q
(
Ei , D̂i

)
+Q

(
E0, D̂0

)
= 24.

Thus
∑

i≥1Q(Ei , D̂i) = 12−m+ s, and so finally

ℓ =
∑
i≥1

Q
(
Ei , D̂i

)
− 3 = 9−m+ s. □

Remark 3.10. Proposition 3.9 implies the well-known results that m ≤ 9 for a smoothable simple elliptic
singularity and m ≤ 9+ s for a smoothable cusp singularity.

In the Type II and Type III1 cases, T 1
E is uniquely specified as noted in the definition. For the Type

III2 case, T 1
E is also uniquely specified by condition (v).

Lemma 3.11. Suppose that E is of Type III2. For every i, 1 ≤ i ≤ s, and every component Γiα of Di,i+1
meeting Ci , choose points qiα ∈ Γiα , not in Ej for j , i. Then OD(−

∑
i,α qiα) � T 1

E .

Proof. Let D = D ′ ∪D ′′ , where D ′′ consists of the components of Di,i+1 meeting Ci , 1 ≤ i ≤ s, with
the usual conventions, and D ′ is the union of all of the other components. For simplicity, we just
consider the case where Di,i+1 � P

1 is irreducible for every i and write qi instead of qiα . Let L be
a line bundle on D such that L|D ′ � OD ′ and L|D ′′ � OD ′′ . We claim that L � OD . Applying this to
OD(−

∑
i qi)⊗ T 1

E � OD(pi −
∑

i qi) then proves the lemma.
More precisely, we shall show that PicD � PicD ′×PicD ′′ � PicD ′×Zs, and hence pa(D) = pa(D ′).

We have an exact sequence

0 −→O∗D −→O
∗
D ′ ×O

∗
D ′′ −→

s∏
i=1

C
∗
pi −→ 0,

where D ′ ∩D ′′ = {p1, . . . ,ps} and C
∗
pi is the skyscraper sheaf at pi with stalk C

∗. But H0(D ′′;O∗D ′′ ) �
(C∗)s, and the induced map

H0 (D ′′;O∗D ′′) −→H0

D;
s∏

i=1

C
∗
pi

 � (C∗)s

coming from the above exact sequence is an isomorphism. Thus

H1 (D;O∗D
)
= PicD �H1 (D ′;O∗D ′)×H1 (D ′′;O∗D ′′) = PicD ′ ×PicD ′′ ,

completing the proof. □

Next we describe the cokernel of H1(X̂;TX̂) in H1(E;T 0
E ). As we have seen in the proof of

Theorem 2.6(vi), this cokernel is H2(X̂;TX̂(−E)), and it measures the failure of a first-order locally
trivial deformation of E to be realized by a deformation of X̂ and the divisors E1, . . . ,Er .

Proposition 3.12. Suppose that E is of Type II. Then dimH2(X̂;TX̂(−E)) ≥ r − 1, where r is the number
of components of E, and H2(X̂;TX̂(−E)) = 0 if r = 1, i.e. E is irreducible.

Remark 3.13. The geometric interpretation of Proposition 3.12 is as follows. By Theorem 2.6,
H2(X̂;TX̂(−E)) is the obstruction to realizing all first-order locally trivial deformations of E by
deforming X̂. We have seen that, in the Type II case, where E ⊆ X̂, we have T 1

E � OD , where D = Esing.
For a general deformation of E, the line bundle T 1

E on D has degree 0 but is not necessarily the trivial
line bundle. Here, r − 1 is the number of conditions on the deformation required to keep T 1

E trivial.
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Proof of Proposition 3.12. By the formal functions theorem,

H2
(
X̂;TX̂(−E)

)
= lim←−−

n

H2
(
X̂;TX̂(−E)|nE

)
.

Since H3(X̂;TX̂(−2E)) = 0, H2(X̂;TX̂(−E))→H2(E;TX̂(−E)|E) is surjective. For n ≥ 1, we have the
exact sequence

0 −→ TX̂(−E)|E ⊗OE(−nE) −→ TX̂(−E)|(n+1)E −→ TX̂(−E)|nE −→ 0.

By duality (where we also allow the cases n = 0,−1), H2(E;TX̂ |E ⊗OE(−(n+1)E)) is dual to

H0
(
E;Ω1

X̂
|E ⊗OE((n+1)E)⊗ωE

)
=H0

(
E;Ω1

X̂
|E ⊗OE((n+2)E)

)
.

By Theorem 4.1(i), OE(E) = KE = OE(−D0) for an effective nonzero divisor D0 on E, disjoint from
the singular locus, and similarly OE(mE) = OE(−mD0). In particular, for m ≥ 0, there is an inclusion
OE(mE)→OE which only vanishes along the divisor D0 for m > 0. Now use the conormal sequence

0 −→ IE/I
2
E −→Ω1

X̂
|E −→Ω1

E −→ 0.

Since IE/I
2
E = OE(−E), we have IE/I

2
E ⊗OE((n + 2)E) = OE((n + 1)E). First assume r = 1, i.e. E is

smooth. From the conormal sequence, we get an exact sequence

H0 (E;OE((n+1)E)) −→H0
(
E;Ω1

X̂
|E ⊗OE((n+2)E)

)
−→H0

(
E;Ω1

E ⊗OE((n+2)E)
)
.

Since H0(E;OE((n+1)E)) = 0 for all n ≥ 0, there is a sequence of inclusions

H0
(
E;Ω1

X̂
|E ⊗OE((n+2)E)

)
−→H0

(
E;Ω1

E ⊗OE((n+2)E)
)
−→H0

(
E;Ω1

E

)
= 0.

Hence H0(E;Ω1
X̂
|E ⊗OE((n+2)E)) = 0 for all n ≥ 0, and therefore H2(X̂;TX̂(−E)) = 0.

Now assume r ≥ 2. With notation as in Definition 3.6, OE(mE)|Di,i+1 � ODi,i+1
, OE(mE)|Ei � OEi

if
i > 1, and OE(mE)|E1 � OE1

(−mD0). Using the exact sequence (from the normalization)

0 −→OE(mE) −→
⊕
i

OE(mE)|Ei −→
⊕
i

ODi,i+1
−→ 0,

we see that the map
⊕

iH
0(Ei ;OE(mE)|Ei)→

⊕
iH

0(Di,i+1;ODi,i+1
) is an isomorphism. Thus, as in

the case r = 1, H0(E;OE(mE)) = 0 for all m > 0.
As in the case r = 1, we want to analyze H0(E;Ω1

X̂
|E ⊗OE((n+2)E)). By the above,

H0
(
E;Ω1

X̂
|E ⊗OE((n+2)E)

)
⊆H0

(
E;Ω1

E ⊗OE((n+2)E)
)
.

Now we have the exact sequence

0 −→ τ1E −→Ω1
E −→Ω1

E/τ
1
E −→ 0.

Also, H0(E;Ω1
E/τ

1
E) = 0 by Proposition 3.1(iii). Since there is an inclusion

H0
(
E;

(
Ω1

E/τ
1
E

)
⊗OE((n+2)E)

)
⊆H0

(
E;Ω1

E/τ
1
E

)
,

we conclude that H0
(
E;

(
Ω1

E/τ
1
E

)
⊗OE((n+2)E)

)
= 0. The remaining term is

H0(E;τ1E ⊗OE((n+2)E)).

As D is smooth and the curve Di,i+1 appears twice in
∐

i Ei , by [Fri83, Proposition 1.10(2)], there is an
exact sequence

0 −→OX̂(−E)|D −→
⊕
i

(
OX̂(−E)|Di,i+1

)2
−→ τ1E −→ 0.
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Since D is a disjoint union of the smooth components Di and OX̂(−E)|D � OD , this says that

τ1E � OD =
⊕r−1

i=1ODi,i+1
. Hence

H0
(
E;τ1E ⊗OE((n+2)E)

)
�H0(D;OD ) = C

r−1.

In particular, taking n = 1, we get dimH2(E;TX̂(−E)|E) = r−1. Thus dimH2(X̂;TX̂(−E)) ≥ r−1. □

Remark 3.14. If we wanted to fully calculate dimH2(X̂;TX̂(−E)), we would have to understand the
coboundary

H1
(
nE;TX̂(−E)|nE

)
−→H2

(
E;TX̂(−E)|E ⊗OE(−nE)

)
,

where the last part of the proof shows that

dimH2
(
E;TX̂(−E)|E ⊗OE(−nE)

)
= r − 1

for all n ≥ 1. This seems difficult and most likely depends on the higher infinitesimal neighborhoods
of E in X̂.

In the Type III1 case (and also the Type III2 case if every component of D meets C), then in fact
H2(X̂;TX̂(−E)) = 0.

Proposition 3.15. In the Type III1 case, H
2(X̂;TX̂(−E)) = 0.

Proof. The proof is similar to the proof of Proposition 3.12, but in this case τ1E ⊗OE((n+2)E) is a line
bundle of negative degree on every component of D = Esing. Thus H

0(E;τ1E ⊗OE((n+2)E)) = 0. □

Remark 3.16. A similar (but also ultimately inconclusive) analysis along the lines of Proposition 3.12 is
possible in the Type III2 case: One can show that, in this case,

dimH0
(
E;τ1E ⊗OE((n+2)E)

)
≥ pa(D),

and in particular that dimH2(X̂;TX̂(−E)) ≥ pa(D). It is easy to see that pa(D) is not 0 in general.
More precisely, using [EF21, Lemma 2.25(iv)], one can check that pa(D) = r − s, which is typically
nonzero.

4. The good crepant case: A partial classification

Let (X,x) be an isolated singularity of dimension 3 with a good crepant resolution π : X̂→ X. It is
natural to ask if the (reduced) exceptional divisor E of π is of Type II, Type III1, or Type III2. We have
some partial results along these lines, inspired by the arguments of Shepherd-Barron [SB83a, SB83b].

Theorem 4.1. With notation and assumptions as above, let t be a general element of mX,x in the sense of
Definition 3.3, and assume that the divisor S = (t) defined by t has a simple elliptic or cusp singularity.

(i) With (π∗t) = E0 +
∑

i≥1 aiEi , we have ai = 1 for all i. Hence

OX̂

∑
i≥1

Ei

 � OX̂(−E0).

(ii) If the hypersurface section of X defined by t is simple elliptic, then E is of Type II. In particular, all
components of E are rational or elliptic ruled.

(iii) If the hypersurface section of X defined by t is a cusp, then all components of E are rational and
every component of a double curve Dij is a smooth rational curve. (The proof gives much more detailed
information about this case.)

Proof. We begin with two lemmas.
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Lemma 4.2. Let S be the germ of a simple elliptic singularity or a cusp singularity, with singular point x,
and let p : S̃→ S be a birational morphism such that S̃ is normal, p−1(x) is a curve, i.e. has dimension 1,
and KS̃ = OS̃(−D0), where D0 is an effective nonzero Weil divisor whose support is contained in p−1(x).

(i) If S is simple elliptic, then D0 is a (reduced) smooth elliptic curve, S is Gorenstein, and D0 is a
Cartier divisor with D2

0 < 0.
(ii) If S is a cusp, then D0 is a reduced cycle of smooth rational curves or an irreducible nodal curve.

Proof. First consider the simple elliptic case. There exists a resolution of singularities T → S which
dominates S̃, and hence T is the blowup of a minimal resolution of singularities of S, say T0 with
KT0 = OT0(−C). Thus T is obtained by successively blowing up points on T0. All blowups at points
not on the proper transform of C correspond to components of KT occurring with positive coefficients:
as Cartier divisors, KT = −C′ +

∑
i aiei , where the ei are proper transforms of exceptional curves

corresponding to blowups at points not on the proper transform of C and ai > 0. Let D ′0 be the
nonzero effective Cartier divisor on T which is the proper transform of D0. Then

KT = −C′ +
∑
i

aiei = −D ′0 + a sum of exceptional fibers of the morphism T → S̃.

The only way this is possible is if all of the ei are fibers of the morphism T → S̃ and C′ is not an
exceptional fiber of the morphism. It follows that S̃ is dominated by a surface T , a blowup of T0
where all blowups are at points on the proper transform of C and C itself is not blown down. Hence
S̃ has at worst An singularities, so is Gorenstein, and KS̃ =ωS̃ = OS̃(−D0), where D0 is the image of
the proper transform of C. Thus D0 is a (reduced) smooth elliptic curve and D2

0 < 0.
A similar argument in the cusp case shows that if T0 is the minimal resolution and KT0 =

OT0(−
∑

k Γk), where
∑

k Γk is a cycle of rational curves on T0, then S̃ is dominated by a surface T , a
blowup of T0 where all blowups are at points on the proper transform of

∑
k Γk and

∑
k Γk itself is not

entirely blown down. In particular, the image D0 of
∑

k Γk is a reduced cycle of smooth rational curves
or an irreducible nodal curve. □

Lemma 4.3. Let T be a smooth algebraic surface such that −KT =
∑

i aiDi , where the Di are irreducible
curves, ai > 0, and the sum is nonempty. Then either T is an elliptic ruled surface and −KT = σ ′ + σ ′′ ,
where σ ′ ,σ ′′ are disjoint smooth elliptic curves, or

⋃
iDi is connected.

Proof. First, if ρ : T → T is the blowdown of an exceptional curve, so that T is smooth, then it is easy
to check that −KT =

∑
i aiρ∗(Di) and that T is a blowup of T at a point of

⋃
i ρ∗(Di). Then

⋃
iDi is

connected if and only if
⋃

i ρ∗(Di) is connected. Thus, we may as well assume that T is minimal, and
hence is either P2, where the result is automatic, or the blowup of a ruled surface over a curve of
genus g . In this case, using [Har77] as a general reference, let e be the invariant of the ruled surface,
i.e. −e is the minimal self-intersection of a curve on T , and let σ0 be a curve of self-intersection −e. In
particular, σ0 is a section of the ruling, and

KT ≡ −2σ0 + (2g − 2− e)f ,

where f is the numerical equivalence class of a fiber. Also note that either e > 0 and σ0 is the
unique curve on T with negative self-intersection, or e ≤ 0 and every curve on T has nonnegative
self-intersection.

If −KT =D ′ +D ′′ , where D ′ and D ′′ are disjoint and nonempty effective divisors, then at most one
of D ′ , D ′′ can have negative self-intersection. Thus we can assume that (D ′′)2 ≥ 0. If (D ′′)2 > 0, then
(D ′)2 < 0 by the Hodge index theorem; hence σ0 is a component of D ′ . Then every component of
D ′′ is disjoint from σ0, hence is numerically equivalent to a positive multiple of σ0 + ef . It follows
that D ′′ is numerically equivalent to σ0 + ef and D ′ = σ0. Moreover, −KT = D ′ +D ′′ is a union of
two disjoint smooth sections. The argument also shows that if (D ′′)2 = 0, then (D ′)2 = 0 as well, and
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hence D ′ and D ′′ are numerically equivalent. In particular, since KT ≡ −2σ0 + (2g − 2− e)f , there
exist disjoint sections σ ′ ⊆ SuppD ′ and σ ′′ ⊆ SuppD ′′ , and all remaining components of D ′ , D ′′ are
fibers. Since D ′ and D ′′ are disjoint, we must have σ ′ =D ′ and σ ′′ =D ′′ . In all cases, if

⋃
iDi is not

connected, −KT = σ ′ + σ ′′ , where σ ′ ,σ ′′ are disjoint sections of T . Then

2g(σ ′)− 2 = 2g(σ ′′)− 2 = KS · σ ′ + (σ ′)2 = −(σ ′)2 + (σ ′)2 = 0.

Hence σ ′ ,σ ′′ are disjoint smooth elliptic curves, and T is elliptic ruled. □

Returning to the proof of Theorem 4.1, let S be a general hypersurface section through x.

The case where (S,x) is simple elliptic. Let E0 be the proper transform of S . First we claim
that E0 is normal. In any case, E0 is Gorenstein, and ωE0

= OE0
(−D0), where D0 =

∑
i≥1 ai(E0 ∩Ei).

Let ν : Ẽ0→ E0 be the normalization (necessarily Cohen–Macaulay), and suppose that ν is not an
isomorphism. Then ωẼ0

= ωẼ0/E0
⊗ ν∗ωE0

. Since E0 is Gorenstein, it must fail to be normal in
codimension 1. Then ωẼ0/E0

is an ideal sheaf (the conductor ideal sheaf) of OẼ0
; hence ωẼ0/E0

is a

rank 1 reflexive sheaf and ωẼ0/E0
� OẼ0

(−F) for some effective nonzero divisor F on Ẽ0. Since the
set of nonnormal points of E0 is contained in E0 ∩E, every component of F is also a component of
ν−1D0. In particular, some component of −KẼ0

is nonreduced. But this contradicts Lemma 4.2.
Thus, E0 is normal. By Lemma 4.2, E0 is Gorenstein and ωE0

= OE0
(−D0), where D0 is smooth

elliptic and (D0)
2
E0

< 0. In particular,

OE0
(E0) = OE0

(−D0) = OX̂

−∑
i≥1

aiEi

 |E0.

Then E0 meets
⋃

i≥1Ei for a unique i, say i = 1, and a1 = 1. Thus

KE1
= OE1

(E1) = OX̂

−E0 −
∑
i≥2

aiEi

 |E0.

Moreover, (D0)
2
E1

= −(D0)
2
E0

> 0. By Lemma 4.3, there are two possibilities:

(i) D0 +
∑

i≥2 ai(E1 ∩ Ei) is connected. Then E1 ∩ Ei = ∅ for i > 1, so that r = 1, E = E1, and
KE1

= OE1
(−D0).

(ii) E1 is elliptic ruled and KE1
= OE1

(−D0 − Γ ) for some smooth elliptic curve Γ disjoint from D0
with Γ 2 < 0 by the Hodge index theorem.

In the first case, E1 is rational since KE1
= (D0)

2
E1

> 0. In the second case, E1 meets
⋃

i≥2Ei for

a unique i, say i = 2, a2 = 1, and Γ = D12 with (D12)
2
E2

= −(D12)
2
E1

> 0. Then we can repeat this
analysis. Eventually, this process must terminate with a rational Er . Moreover, KEr

= OEr
(−Dr−1,r ),

with (D2
r−1,r )Er

> 0, so that KEr
is nef and big. Hence we have shown that E satisfies (i)–(iv) of the

Type II case of Definition 3.6. Condition (v) follows since
∑

i≥0Ei = (π∗t) is pulled back from X. Note
that i ≥ 1,

T 1
E |Di,i+1 =NDi,i+1/Ei

⊗NDi,i+1/Ei+1
= OX̂(Ei +Ei+1)|Di,i+1

= OX̂

∑
i≥0

Ei

 ∣∣∣∣Di,i+1 = ODi,i+1
,

as remarked after the definition of Type II.
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The case where (S,x) is a cusp. Let E0 be the proper transform of S . By the same arguments
as in the simple elliptic case, E0 is normal and Gorenstein, and ωE0

= OE0
(−

∑n
k=1 Γk), where either

each Γk is smooth rational and the dual graph of the Γk is a cycle, or n = 1 and C = Γ1 is irreducible.
Moreover, E0 is dominated by a smooth surface Ẽ0 which is a blowup of a minimal resolution of the
cusp, and we can further assume that no fibers of Ẽ0→ E0 are exceptional curves, i.e. that Ẽ0→ E0 is
a minimal resolution. Thus E0 is obtained from Ẽ0 by contracting chains of curves of self-intersection
−2. We have

OE0
(E0) = OE0

− n∑
k=1

Γk

 = OX̂

−∑
i≥1

aiEi

 ∣∣∣∣E0.

After reindexing, we can assume that the components Ei of E meeting E0 are E1, . . . ,Es, and the above
shows that ai = 1 for such i. Define Ei ∩E0 = Ci . Then Ei ∩E0 = Ci is a union of some of the Γk , and
either the connected components of Ci are chains of rational curves, or Ci is a cycle of rational curves
or an irreducible curve of arithmetic genus 1. By Lemma 4.3, the last two cases can only arise if r = 1
and E = E1 is irreducible, and necessarily a rational surface. If r ≥ 2, then Ci is a disjoint union of
chains of smooth rational curves, and each Ei with 1 ≤ i ≤ s meets at least one other component Ej

for which Ci ∩Cj , ∅. In fact, we can reorder the Ei so that, for 1 ≤ i ≤ s − 1, Ei meets Ei+1 with
Ei ∩Ei+1 ∩E0 , ∅. Note that, as Ci is reduced, no component of Ci is contained in Ej for j , i, and
thus Dij is not contained in Ci for j , i.

Taking for example i = 1, E1 meets E2 at a point of C1 ∩C2. Then there exists a component G2 of
D12 meeting the chain C1, necessarily at an end component of the chain. Now

−KE1
= C1 +D12 +

∑
j,1,2

ajD1j ,

and the support C1 ∪D12 ∪
⋃

j,1,2D1j is connected by Lemma 4.3. Hence

(KE1
+G2) ·G2 = −(C1 ·G2)−

∑
j,1,2

aj(D1j ·G2) < 0.

Thus (KE1
+G2) ·G2 = −2, and G2 is a smooth rational curve. Also, (C1 ·G2) is either 1 or 2. If it is 2,

then G2 = D12, C1 is connected, and E1 is a rational surface with (D1j ·D12) = 0 for j , 1,2. This
implies that E1 ∩Ej = ∅ for j , 1,2. Also, by the connectedness of C1, it follows that E2 ∩Ej = ∅ for
j , 1,2, and we are in the case s = 2. So we can assume that (C1 ·G) = 1, there is a unique k , 1,2,
say k = 3, such that (D13 ·G2) , 0, and (D13 ·G2) = 1 and a3 = 1.

Let G3 be the unique component of D13 meeting G2. Repeating this argument with G3, we see
that G3 is smooth rational and that (C1 +D12) ·G3 is either 1 or 2. If it is 2, then the only possibility
is that G3 meets C1 at the other end of the chain from G2. In this case, E1 ∩Ej = ∅ for j , 1,2,3.
Otherwise, we can continue this process with an Ej and with a smooth component Gj of D1j such
that Gj ·G3 , 0. Eventually the curves C1 and the Gj must close up (although it is possible for some
Ej to be equal to Eℓ at an intermediate stage). We can do this analysis for all Ei , 1 ≤ i ≤ s: Every
component of Dij is a smooth rational curve, and aj = 1 for every j such that Ei ∩Ej , ∅. Moreover,
the scheme-theoretic intersection of E0, Ei , and Ei±1 is a reduced point and hence is a smooth point
of E0. In particular, C =

⋃
iCi is a cycle of smooth rational curves, hence has arithmetic genus 1.

Now let Ek be a component of E with k > s such that Ek ∩E1 , ∅, say, and let G be a component
of D1k . Then ak = 1, and G is a smooth rational curve. Moreover, there exists an ℓ , i, j such that
G∩Eℓ , ∅ as well. Thus E1 ∩Ek ∩Eℓ , ∅, say, and

−KEk
=D1k +Dkℓ +

∑
t,1,k,ℓ

atDkt .

Let G′ be a component of Dkℓ meeting G. Arguments as above show that G is smooth rational and
that at = 1 for every t such that Et ∩G′ , ∅. Continuing in this way and using the connectedness
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of E, it follows that ai = 1 for every i and that every component of Dij is a smooth rational curve.
Moreover, for every i, there exists a curve in | −KEi

| whose components are rational curves. Hence Ei

is rational. Thus, E satisfies the conditions of the second statement in Theorem 4.1(iii). □

Remark 4.4. The proof shows that in case the hypersurface section S is a cusp and using the notation
of the proof, −KEi

is effective and is a cycle of smooth rational curves which contains Ci if Ei ∩E0 , ∅.

Remark 4.5.

(i) It seems quite possible that, in general, E might not be of Type III1 or Type III2, even after
making some flops. In particular, from the point of view of the classification of algebraic varieties, it
is reasonable to allow E to have more complicated singularities than normal crossings, namely dlt
singularities.

(ii) In the Type II case, dimH0(E;T 1
E ) = r − 1 is the number of elliptic ruled components. In the

Type III1 or Type III2 cases, H0(E;T 1
E ) = 0, so that all first-order deformations of E are locally trivial

in these cases. This follows more generally in case the general hypersurface section of X passing
through x is a cusp, by Theorem 4.1(iii) and Theorem 2.6(ii).

(iii) It is easy to see that if |Γ | is the dual complex of E, then H i(|Γ |) = 0 for i > 0, and indeed a
theorem of [dFKX17] says that |Γ | is contractible. In the Type II and Type III1 cases, |Γ | is a point or a
line segment, and in the Type III2 case |Γ | is a disk. However, in the general case, without making
flops, the topological type of the dual complex can be more complicated than a line segment or a disk.
For example, it can be a disk meeting a line segment at a point.

On the positive side, there is the following.

Theorem 4.6. Let (X,x) be an isolated singularity of dimension 3 with a good crepant resolution
π : X̂→ X, and let E = π−1(x) be the reduced exceptional divisor.

(i) If the general hypersurface section of X passing through x is a cusp and ω−1E is nef and big, then E
is of Type III1 or Type III2.

(ii) If the general hypersurface section S of X passing through x is a cusp and the full inverse image
π−1(S) has normal crossings, then after a sequence of flops (elementary modifications of type 2 ),
ω−1E becomes nef and big, hence E is of Type III1 or Type III2.

Proof. First assume that ω−1E is nef and big. In the notation of the proof of Theorem 4.1, C =
⋃s

i=1Ci =
E ∩ E0 is a cycle of rational curves, and OE0

(−C) = ωE0
= OE0

(−
∑

i Γi). Likewise, ωE = OE(−C) =
OE(E). Since (C)

2
E = −(C)2E0

> 0, the total degree of OC(C) =ω−1E |C is positive. Then general results

on line bundles on cycles of rational curves (cf. [Fri15, Lemma 1.7]) imply that either (C)2E ≥ 2 and
OC(C) has no base points, or (C)2E = 1 and OC(C) has a single base point at a smooth point of C.
From the exact sequence

0 −→OE −→OE(C) −→OC(C) −→ 0,

there exists a section of OE(C) vanishing at C∗, where C∗ =
⋃s

i=1C
∗
i and C∗i is smooth for all i.

Since OE(−E)|C is nef and has nonnegative degree on every component and positive total degree,
H1(E;OE(−NE)) = 0 for all N ≥ 0. By induction, it is then easy to see that H1(nE;OX̂(−NE)|nE) = 0
for all N ≥ 0 and all n > 0. Thus R1π∗OX̂(−NE) = 0 for all N ≥ 0 by the formal functions theorem.
In particular, R1π∗OX̂(−2E) = 0. By applying Riπ∗ to the exact sequence

0 −→OX̂(−2E) −→OX̂(−E) −→OE(C) −→ 0,

it follows that the natural map

R0π∗OX̂(−E) −→H0(E;OE(C))

is surjective. Hence, there exists an element t ∈ R0π∗OX̂(−E) ⊆mx which lifts to a function π∗t whose
restriction to E is C∗. Thus S∗ = {t = 0} defines a cusp singularity on X, the proper transform E∗0
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of S∗ is a resolution of singularities of S∗, and E ∪E∗0 has simple normal crossings. It follows from
the classification of Type III degenerations of K3 surfaces that E ∪ E∗0 is a Type III anticanonical
pair, i.e. which meets the description of [FM83, Lemma 2.14] or [EF21, Definition 2.1], except that
the Hirzebruch–Inoue component has been replaced by the local surface E∗0. The assumption that
ω−1E is nef and big is then equivalent to the assumption that (C′i )

2
Ei
≥ 0 for every component C′i of

C∗i = E∗0 ∩Ei .
On the other hand, under the assumptions of (ii), E ∪ E0 is again a Type III anticanonical pair

as above. Then every component C′i of Ci = E0 ∩Ei is a smooth rational curve, and (C′i )
2
E0

< 0 for

every i. By the triple point formula, (C′i )
2
Ei
≥ 0 unless (C′i )

2
E0

= (C′i )
2
Ei
= −1. In this case, the standard

flop (type 2 modification) eliminates C′i but does not alter the assumption that π−1(S) has normal
crossings. In this process, the total number i such that (C′i )

2
E0

= −1 decreases, so it must ultimately

terminate at a stage where (C′i )
2
E0
≤ −2 for every i. Thus we can assume in (i) and in (ii) that (C′i )

2
Ei
≥ 0

for every component C′i of Ci = E0 ∩Ei .
In this case, suppose that there exists a component E1 such that C1 = E0∩E1 is disconnected. Then

every component of C1 has nonnegative square on E1. By the Hodge index theorem, every component
of C1 has square 0 on E1, and E1 is a minimal rational ruled surface with the remaining double curves
sections of the ruling. If E2 is a component meeting E0 and E1, then the same analysis shows that
either every component of C2 has square 0 on E2 and E2 is a minimal rational ruled surface with
the remaining double curves sections of the ruling, or C2 is connected, hence an irreducible smooth
rational curve, and C1 has just two components. Continuing in this way, we see that E is of Type
III1. In the remaining case, E0 meets every component of E in an irreducible smooth rational curve.
It is easy to see in this case that the dual complex of E triangulates a 2-disk and thus that E is of
Type III2. □

5. The case of a small resolution

In this section, we consider the case of a small resolution π′ : X ′→ X; i.e. (X,x) is the germ of an
isolated Gorenstein singularity of dimension 3 with a good Stein representative X, and p : X ′→ X is
a small resolution with exceptional set C.

Remark 5.1. There is no real limitation to restricting to dimension 3, at least in case the singularity
(X,x) is a local complete intersection. Indeed, such resolutions can only exist for dimX = 3: By
the Grothendieck–Lefschetz theorem, the local ring OX,x of an isolated local complete intersection
singularity is a UFD for dimX ≥ 4. The proof of the “easy case” of Zariski’s Main Theorem shows
that in case OX,x is a UFD and π : X̂→ X is a resolution of singularities, there exists a divisor D on
X̂ such that codimπ(D) ≥ 2. Thus, if (X,x) is an isolated local complete intersection singularity, and
π′ : X ′→ X is a resolution such that the exceptional set (π′)−1(x) has dimension ≤ dimX − 2, then
dimX = 3.

Conversely, in dimension 3, suppose that (X,x) is the germ of an isolated singularity with a small
resolution π′ : X ′ → X. If X is Cohen–Macaulay, then it follows from results of Laufer, Reid, and
Pinkham (see for example [Pin83, Section 8]) that X is a compound du Val singularity, i.e. that the
general hyperplane section of X in the sense of Definition 3.3 is a rational double point. In particular,
X is a hypersurface singularity and (π′)−1(x) = C =

⋃r
i=1Ci , where the Ci are smooth rational curves

meeting (pairwise) transversally (but three Ci can meet at a point).

For the case of a small resolution, the functor DefX ′ has a more than purely formal meaning: By
[Lau80, Theorem 2], there is a deformation of a neighborhood of the exceptional curve C over the
smooth germ (H1(X ′;TX ′ ),0) for which the Kodaira–Spencer map is an isomorphism. As previously
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noted, X ′ is a crepant resolution of X, and hence KX ′ � OX ′ . Also, the resolution p : X ′ → X is
equivariant (cf. Definition 2.1).

We will use the following standard fact about local cohomology.

Lemma 5.2. If F is a locally free sheaf on X ′ , then H1
C(X

′;F ) = 0.

Proof. Using the Mayer–Vietoris sequence, see [Har77, Exercise III.2.4, p. 212], it suffices to show that
H1

Ci
(X ′;F ) = 0 for every irreducible component Ci of C and that H2

p (X
′;F ) = 0 for every point

p ∈ X ′ . By [Har67, Proposition 1.4], there is a spectral sequence with E1 term E
p,q
1 =Hp(X ′;Hq

Ci
(F ))

converging to H
p+q
Ci

(X ′;F ), where Hq
Ci
(F ) is the associated local cohomology sheaf. Since Ci is

smooth, it is a local complete intersection. Hence, by [Har67, Proposition 3.7 and Theorem 3.8],
Hq

Ci
(F ) = 0 for i = 0,1. Thus H1

Ci
(X ′;F ) = 0. The vanishing of H2

p (X
′;F ) is similar. □

Since the fibers of p have dimension 1, R2p∗TX ′ = 0 and hence H0
x (X;R2p∗TX ′ ) = 0. Applying the

Leray spectral in local cohomology to the morphism p and the sheaf TX ′ and using Lemma 5.2 to see
that H1

C(X
′;TX ′ ) = 0 gives the following.

Lemma 5.3. There is an exact sequence

0 −→H0
(
X;R1p∗TX ′

)
−→H0

(
X;T 1

X

)
−→H2

C (X ′;TX ′ ) −→ 0.

Note that H0
x (X;R1p∗TX ′ ) =H0(X;R1p∗TX ′ ) and that H2

x (X;T 0
X ) �H0(X;T 1

X ). Since KX ′ is trivial,
TX ′ �Ω2

X ′ and hence H2
C(X

′;TX ′ ) �H2
C(X

′;Ω2
X ′ ).

The (singular) local cohomology groups Hk
C(X

′) can be described via duality:

Hk
C(X

′) �H6−k(C) =


0 if k , 4,6,⊕

iH2(Ci) if k = 4,

C if k = 6.

Moreover, there is a spectral sequence

E
p,q
1 =H

q
C

(
X ′;Ωp

X ′

)
=⇒ H

p+q
C

(
X ′;Ω•X ′

)
=H

p+q
C (X ′).

Many of the terms in the E1 page of the spectral sequence are zero.

Lemma 5.4. If q = 0,1, then H
q
C(X

′;Ωp
X ′ ) = 0 for all p and H2

C(X
′;Ω3

X ′ ) =H2
C(X

′;OX ′ ) = 0.

Proof. The first statement follows from Lemma 5.2. The second follows by considering the Leray
spectral sequence with E

p,q
2 =H

p
x (X;Rqp∗OX ′ )⇒H

p+q
C (X ′;OX ′ ). Here, Rqp∗OX ′ = 0 for q > 0 since

(X,x) is a rational singularity and

H
p
x

(
X;R0p∗OX ′

)
=H

p
x (X;OX) = 0

for p < 3 because depth OX,x = 3. □

Thus we have the following picture for the E
p,q
1 page of the spectral sequence converging to

H
∗
C(X

′;Ω•X ′ ) =H
p+q
C (X ′):

H3
C (X ′;OX ′ ) H3

C

(
X ′;Ω1

X ′

)
H3

C

(
X ′;Ω2

X ′

)
H3

C

(
X ′;Ω3

X ′

)
H2

C

(
X ′;Ω1

X ′

)
H2

C

(
X ′;Ω2

X ′

)

Lemma 5.5. The differential d : H2
C(X

′;Ω1
X ′ )→H2

C(X
′;Ω2

X ′ ) is injective.

Proof. This is clear since the kernel of d : H2
C(X

′;Ω1
X ′ )→H2

C(X
′;Ω2

X ′ ) would inject into H3
C(X

′) = 0.
□
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By examining the above spectral sequence, we see that there is a homomorphism H2
C(X

′;Ω2
X ′ )→

H4
C(X

′).

Proposition 5.6. The map H2
C(X

′;Ω2
X ′ )→H4

C(X
′) is surjective and split by the fundamental class map.

Thus, if K ′x denotes the kernel of H
2
C(X

′;Ω2
X ′ )→H4

C(X
′), we have a direct sum decomposition

H2
C

(
X ′;Ω2

X ′

)
� K ′x ⊕H4

C(X
′) � K ′x ⊕

 r⊕
i=1

C[Ci]

 .
Proof. First note that the fundamental classes of the Ci are a basis for H4

C(X
′) � H2(C). On the

other hand, for every i one can construct a fundamental class [Ci] ∈H2
Ci
(X ′;Ω2

X ′ ) which maps to the

fundamental class [Ci] ∈H4
C(X

′). We also have the Mayer–Vietoris sequence

0 =
⊕
z∈Csing

H2
z

(
X ′;Ω2

X ′

)
−→

⊕
i

H2
Ci

(
X ′;Ω2

X ′

)
→H2

C

(
X ′;Ω2

X ′

)
,

and hence we can view the [Ci] as linearly independent elements of H2
C(X

′;Ω2
X ′ ). The image of

H2
C(X

′;Ω2
X ′ ) in H4

C(X
′) therefore contains the vector space spanned by the fundamental classes of

the components of C, and hence is equal to H4
C(X

′). Thus H2
C(X

′;Ω2
X ′ )→H4

C(X
′) is surjective, and

the subspace spanned by the fundamental classes of the components of C is a complement to the
kernel. □

Define Sx � C
r ⊆ H2

C(Ω
2
X ′ ) to be the image of the fundamental class map. Thus H2

C(X
′;Ω2

X ′ ) �
K ′x ⊕ Sx. By Proposition 5.6, we can identify Sx with H4

C(X
′). It can also be identified with H3(L),

where L = X − {x} = X ′ −C is the link of the singularity. This follows from the exact sequence

0 =H3(X ′) −→H3(U ) −→H4
C(X

′) −→H4(X ′) = 0.

In particular, the mixed Hodge structure on Sx �H3(L) is of pure weight 4 and of type (2,2).
To say more about K ′x, we have the following.

Lemma 5.7. Let Ax be the kernel of d : H
3
C(X

′;OX ′ )→H3
C(X

′;Ω1
X ′ ), and let a = dimAx. Then there is

an exact sequence
0 −→H2

C

(
X ′;Ω1

X ′

)
−→ K ′x −→ Ax −→ 0.

Thus dimK ′x = dimH2
C(X

′;Ω1
X ′ ) + a. If Ax = 0, then d : H2

C(X
′;Ω1

X ′ )→ K ′x is an isomorphism.

Proof. By examining the spectral sequence, we see that d2 : Ax → H2
C(X

′;Ω2
X ′ )/d(H

2
C(X

′;Ω1
X ′ )) is

injective and that its image is K ′x/d(H
2
C(X

′;Ω1
X ′ )). Hence Ax � K ′x/d(H

2
C(X

′;Ω1
X ′ )). The remaining

statements of the lemma are clear. □

Corollary 5.8. In the above notation, there is an exact sequence

0 −→ (K ′x)
∨/A∨x −→H0

(
X;T 1

X

)
−→ K ′x ⊕ Sx −→ 0.

Proof. By duality, arguing as in [Kar86],

H0
(
X;R1p∗TX ′

)
�H2

C

(
X ′;Ω1

X ′

)∨
� (K ′x)

∨/A∨x .

The proof then follows from Proposition 5.6 and Lemma 5.7. □

Corollary 5.9. Let b = dimK ′x. Then

(i) dimH2
C(X

′;Ω2
X ′ ) = b+ r;

(ii) dimH2
C(X

′;Ω1
X ′ ) = dimH0(X;R1p∗TX ′ ) = b − a;

(iii) dimH0(X;T 1
X ) = 2b − a+ r; thus b+ r ≤ dimH0(X;T 1

X ) ≤ 2b+ r .

Proof. These follow from Proposition 5.6, Lemma 5.7, and Corollary 5.8 (and its proof). □
25



Theorem 5.10. In the above situation, the following are equivalent:

(i) C is smooth, i.e. r = 1, and the normal bundle satisfies NC/X ′ � OP
1(−1)⊕O

P
1(−1). In other

words, (X,x) is the germ of an ordinary double point.
(ii) dimH2

C(X
′;Ω2

X ′ ) = r, i.e. K ′x = 0, or equivalently b = 0.
(iii) R1p∗TX ′ = 0, or equivalently b = a.

Proof. (i) ⇒ (ii) In this case, dimH0(X;T 1
X ) = 1 = 2b − a + 1. Since b ≥ 0 and b − a =

dimH2
C(X

′;Ω1
X ′ ) ≥ 0, we must have b = 0, and hence K ′x = 0.

(ii) ⇒ (iii) By Corollary 5.9(ii), dimH0(X;R1p∗TX ′ ) = b − a. If K ′x = 0, then b = dimK ′x = 0, hence
a = 0 and R1p∗TX ′ = 0.

(iii)⇒ (i) Following the discussion in [Fri86, Section 2, pp. 678–679], there exists a small deformation
of X ′ to X ′t where the exceptional curve C splits up into a union of δ disjoint copies of P1 with normal
bundle O

P
1(−1)⊕O

P
1(−1), and such a deformation blows down to a deformation of X to a union

of δ ordinary double points. But if R1p∗TX ′ = 0, then the only deformations of X ′ are locally trivial.
Hence the exceptional curve C on X ′ is already a single P

1 with normal bundle O
P

1(−1)⊕O
P

1(−1),
and (X,x) is the germ of an ordinary double point. □

Proposition 5.11. Suppose that there is a small deformation of X ′ to a space with exactly δ compact curves
and that all of these have normal bundle O

P
1(−1)⊕O

P
1(−1). Then dimH2

C(X
′;Ω2

X ′ ) = δ.

Proof. Let (S,s0) be the germ of a smooth analytic space prorepresenting DefX , and let (S ′ , s′0)
prorepresent DefX ′ . The morphism of functors DefX ′ →DefX then induces a morphism of germs
S ′→ S which is an immersion by [Fri86, Proposition 2.1]. By Lemma 5.3, H2

C(X
′;Ω2

X ′ ) is the normal
bundle to this immersion, so it will suffice to prove that the image of S ′ has codimension δ. As noted
in the proof of Theorem 5.10, there is an open dense subset of S ′ corresponding to a germ with exactly
δ singularities, all of which are ordinary double points. By the openness of versality, the image of S ′

in S then has codimension δ as claimed. □

Corollary 5.12 (cf. [Nam02, Lemma 1.9]). We have b + r = δ. Thus δ ≥ r, with equality if and only if
(X,x) is an ordinary double point. □

We now compare the above discussion with the case of a good resolution, as described in [FL22,
Theorem 2.1]. By successively blowing up the curves Ci in some order, we obtain a good resolution
π : X̂→ X which is an iterated blowup of X ′ . Let ρ : X̂→ X ′ be the blowup morphism and E =

⋃
i Ei

the exceptional divisor of ρ or of π. To distinguish groups on X ′ and on X̂, we denote the latter with
a “̂ .” Then we have the group K̂ ′x defined in [FL22, Theorem 2.1(vi)]:

K̂ ′x = Ker
{
H2

E

(
X̂;Ω2

X̂

)
−→H2

(
X̂;Ω2

X̂

)}
.

We also have Gr2FH
3(L) = H3(L) and Âx = Ker{d : H3(X̂;OX̂)→ H3

E(X̂;Ω1
X̂
)}. (In [FL22, Corollary

1.8], Âx is defined to be the kernel of d : H3(X̂;OX̂)→H3
E(X̂;Ω1

X̂
(logE))}, but it is easy to check that

in our case H3
E(X̂;Ω1

X̂
)→H3

E(X̂;Ω1
X̂
(logE)) is injective.) By [FL22, Theorem 2.1(v), (vi)], there is an

exact sequence

0 −→H1
(
X̂;Ω2

X̂
(logE)(−E)

)
−→H0

(
X;T 1

X

)
−→ K̂ ′x ⊕H3(L) −→ 0

with H1(X̂;Ω2
X̂
(logE)(−E))∨ �H2

E(X̂;Ω2
X̂
(logE)), and by [FL22, Corollary 1.8 and Theorem 2.1(iv)],

there is an exact sequence

0 −→H2
E

(
X̂;Ω2

X̂
(logE)

)
−→ K̂ ′x −→ Âx −→ 0.

Hence H1(X̂;Ω2
X̂
(logE)(−E)) � (K̂ ′x)

∨/Â∨x .
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Proposition 5.13. Let ρ : X̂→ X be a good resolution of X which is obtained by successively blowing up
the curves Ci in some order.

(i) There are isomorphisms H1(X̂;Ω2
X̂
) � H1(X ′;Ω2

X ′ ) � H1(X ′;TX ′ ), compatible with the natural

homomorphisms to H1(U ;TU ) �H0(X;T 1
X ).

(ii) Let K̂ ′x, H
3(L), and Âx be the groups described above. Then K̂x � K ′x, H

3(L) � Sx, and Âx � Ax,
so that the following diagram commutes:

0 −−−−−→
(
K̂ ′x

)∨
/Â∨x −−−−−→ H0

(
X;T 1

X

)
−−−−−→ K̂ ′x ⊕H3(L) −−−−−→ 0y ∥∥∥∥ y

0 −−−−−→ (K ′x)
∨/A∨x −−−−−→ H0

(
X;T 1

X

)
−−−−−→ K ′x ⊕ Sx −−−−−→ 0.

Proof. (i) By standard results, R0ρ∗Ω
k
X̂
=Ωk

X ′ , R
iρ∗OX ′ = 0 for i > 0, and Riρ∗Ω

k
X̂
= 0 for i ≥ 2. As

for R1ρ∗Ω
k
X̂
, first suppose that C is smooth. Then, by a standard argument (cf. [Gro85, IV(1.2.1)]),

R1ρ∗Ω
1
X̂
� OC and R1ρ∗Ω

2
X̂
� Ω1

C . In the general case, a successive application of the Leray

spectral sequence for the iterated blowup shows that R1ρ∗Ω
1
X̂

has a filtration whose successive

quotients are OCi
, 1 ≤ i ≤ r, and similarly R1ρ∗Ω

2
X̂

has a filtration whose successive quotients

are Ω1
Ci
, 1 ≤ i ≤ r . In particular, H0(X ′;R1ρ∗Ω

2
X̂
) = 0. Thus, by the Leray spectral sequence,

H1(X̂;Ω2
X̂
) �H1(X ′;R0ρ∗Ω

2
X ′ ) �H1(X ′;Ω2

X ′ ), and the remaining statements in (i) are clear.

(ii) By the proof of (i), H1
C(X

′;R1ρ∗Ω
1
X̂
) = H0

C(X
′;R1ρ∗Ω

2
X̂
) = 0, and dimH0

C(X
′;R1ρ∗Ω

1
X̂
) =

dimH1
C(X

′;R1ρ∗Ω
2
X̂
) = r . Similarly, R0ρ∗CX̂ = CX ′ , R

2ρ∗CX̂ is a successive extension of the CCi
,

and otherwise Riρ∗CX̂ = 0. In particular, H1
C(X

′;R1ρ∗Ω
2
X̂
) �H2

C(X
′;R2ρ∗CX̂).

The Leray spectral sequence in local cohomology gives a spectral sequence with

Ea,b
2 =Ha

C

(
X ′;Rbρ∗Ω

2
X̂

)
=⇒ Ha+b

E

(
X̂;Ω2

X̂

)
.

The only nonzero terms are H1
C(X

′;R1ρ∗Ω
2
X̂
) and H2

C(X
′;R0ρ∗Ω

2
X̂
) = H2

C(X
′;Ω2

X ′ ). It follows that

H1
E(X̂;Ω2

X̂
) = 0 and there is a commutative diagram

0 −−−−−→ H2
C

(
X ′;Ω2

X ′

)
−−−−−→ H2

E

(
X̂;Ω2

X̂

)
−−−−−→ H1

C

(
X ′;R1ρ∗Ω

2
X̂

)
−−−−−→ 0∥∥∥∥ ∥∥∥∥ y�

K ′x ⊕Cr −−−−−→ K̂ ′x ⊕H4
E

(
X̂
)
−−−−−→ C

r .

Here, we use the Leray spectral sequence to also conclude that there is an exact sequence

0 −−−−−→ H4
C(X

′) −−−−−→ H4
E

(
X̂
)
−−−−−→ H2

C

(
X ′;R2ρ∗CX̂

)
−−−−−→ 0∥∥∥∥ y�⊕

iC[Ci] H1
C

(
X ′;R1ρ∗Ω

2
X̂

)
.

Tracing through the identifications gives K̂ ′x � K ′x. By definition, H3(L) �
⊕

iC[Ci] = Sx. The

remaining identification of Âx with Ax is similar, using the Leray spectral sequence to conclude that
H3

E(X̂;OX̂) �H3
C(X

′;OX ′ ) and H3
E(X̂;Ω1

X̂
) �H3

C(X
′;Ω1

X ′ ), compatibly with d. □

Recall that a C
∗ action on the germ of an analytic space (X,x) is good if the weights of the induced

action on the Zariski tangent space of the fixed point x are all positive. Applying the case of a
good (divisorial) resolution, cf. [FL22, Theorem 2.1(iv)], and using the fact that X is a hypersurface
singularity, hence a local complete intersection singularity, we have the following corollary.
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Corollary 5.14. The germ (X,x) has a goodC∗ action if and only if Ax = 0, which holds if and only if a = 0,
which holds if and only if the spectral sequence with E

p,q
1 =H

q
C(X

′;Ωp
X ′ )⇒H

p+q
C (X ′;Ω•X ′ ) =H

p+q
C (X ′)

degenerates at E2.

The invariants b and a can also be described in terms of the Du Bois invariants bp,q(X,x) of the
singularity X, using [FL22, Theorem 2.1(iv), (vi)].

Corollary 5.15. We have b = b1,1(X,x) and b − a = b2,1(X,x).

Remark 5.16. In particular, by Corollary 5.9(iii) and the fact that ℓ = ℓ2,1 = r, we recover the result of
Steenbrink, cf. [Ste97, Theorem 4], that

dimH0
(
X;T 1

X

)
= b1,1(X,x) + b2,1(X,x) + ℓ2,1,

the inequalities due to Namikawa, cf. [Nam97, Theorem 1],

b1,1(X,x) + ℓ2,1 ≤ dimH0
(
X;T 1

X

)
≤ 2b1,1(X,x) + ℓ2,1,

as well as the statement that dimH0(X;T 1
X ) = 2b1,1(X,x) + ℓ2,1 if and only if (X,x) is weighted

homogeneous (since (X,x) is a local complete intersection). As shown in the papers of Steenbrink
and Namikawa cited above and [FL22, Theorem 2.1(iv)], these results hold more generally for isolated
rational Gorenstein singularities of dimension 3.

Example 5.17. Consider the A2n−1 singularity x2 + y2 + z2 +w2n (a compound A1 singularity). Here,
T 1
X �C[w]/(w2n−1) has dimension 2n− 1 and r = 1. A calculation shows that dimH0(X;R1p∗TX ′ ) =

n − 1. Hence dimH2
C(X

′;Ω2
X ′ ) = n by Lemma 5.3. Also note that we can deform X̂ so that the

exceptional curve C breaks up into a union of n curves with normal bundle O
P

1(−1)⊕O
P

1(−1). This
deformation then blows down to a deformation of X to the union of n ordinary double points; i.e.
δ = n in the notation of Proposition 5.11.

Example 5.18. Consider the compound An−1 singularity x
2+y2+f (z,w), where f (z,w) =

∏n
i=1(z+λiw)

defines a plane curve which is the union of n distinct lines meeting at the origin. An easily computable
example is f (z,w) = zn −wn. Thus

T 1
X �C[z,w]/

(
zn−1,wn−1

)
.

A calculation shows that dimT 1
X = (n− 1)2. Note that, for n ≥ 4, (X,0) has nontrivial equisingular

deformations (there are local moduli). This is also reflected in the fact that there are nontrivial weight
zero deformations for n ≥ 4 (and nontrivial positive weight deformations for n ≥ 5). By Corollary 5.9,
since a = 0 and r = n− 1, dimH0(X;R1p∗TX ′ ) = (n− 1)(n− 2)/2 and dimH1

C(X
′;Ω2

X ′ ) = n(n− 1)/2.
The surface X0 defined by w = 0 is an An−1 singularity, and the inverse image X ′0 in X ′ is a

resolution of singularities. Moreover, all of the components Ci in X ′ have normal bundle O
P

1(−1)⊕
O
P

1(−1). By general results (e.g. [Bri71], [Art74], or the paper by Pinkham [Pin80]), there is a morphism
of functors DefX ′0 → DefX0

with the following property: If T is the analytic germ prorepresenting

the functor DefX0
and T̃ is the germ prorepresenting DefX ′0 , then the induced morphism T̃ → T is a

Galois cover of smooth germs with Galois group the Weyl group of the corresponding root system,
in this case An−1. The inverse image in T̃ of the discriminant locus in T consists of δ hyperplanes,
corresponding to keeping one of the δ positive roots the class of an irreducible effective curve.

This is in agreement with Proposition 5.11 because in this case δ =
(n
2
)
(one can deform the union of

n concurrent lines to a union of n lines meeting transversally).
Specializing to the case n = 5, and hence r = 4, we have dimH0(X;T 1

X ) = 16. We can deform the
singularity x2 + y2 + z5 −w5 in the weight 1 direction to Xt which is defined by

x2 + y2 + z5 −w5 + tz3w3.
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A calculation shows that dimH0(Xt;T
1
Xt
) = 15 if t , 0. In particular, a , 0 in this case (in fact a = 1),

and the spectral sequence with E1 page H
q
C(X

′
t ;Ω

p
X ′t
)⇒H

p+q
C (X ′t) does not degenerate at E2 for t , 0.

6. A noncrepant example

In this final section, we consider a noncrepant example X̂, the blowup of a small resolution with
exceptional set a smooth curve C along the curve C. Following the discussion of the introduction,
there are homomorphisms H1(X̂;TX̂)→ H1(U,TU ) � H0(X;T 1

X ) and H1(X̂;Ω2
X̂
)→ H1(U,TU ) �

H0(X;T 1
X ). The image of H1(X̂;Ω2

X̂
) is a birational invariant, i.e. is independent of the choice of a

good resolution, and is identified with the image of H1(X ′;TX ′ ) by Proposition 5.13(i). On the other
hand, the image of H1(X̂;TX̂) also has geometric meaning (it is the tangent space to the “simultaneous
resolution locus” for the resolution π : X̂→ X), and the map H1(X̂;TX̂)→H0(X;T 1

X ) factors through
the natural map H1(X̂;TX̂)→H1(X̂;Ω2

X̂
). Our goal in this section is to explicitly compare the image

of H1(X̂;TX̂) in H0(X;T 1
X ) with that of H1(X̂;Ω2

X̂
) �H1(X ′;TX ′ ). More generally we compare DefX̂

and DefX ′ . While this example is somewhat special, similar techniques will handle other examples,
such as the natural good resolution of the A2 singularity defined by x2 + y2 + z2 +w3.

We begin with a general result.

Lemma 6.1. Let g : X̂→ X ′ be the blowup of a smooth threefold X ′ along a smooth compact curve C, with
exceptional divisor E. Then R1g∗TX̂ = R1g∗TX̂(−E) = 0, and there is an exact sequence

0 −→ R0g∗TX̂ −→ TX ′ −→NC/X ′ −→ 0.

Proof. For the first statement, we must show that (R1g∗TX̂)t = 0 for all t ∈ X ′ , and we may as well
assume that t ∈ C. By the formal functions theorem, it suffices to show that

lim←−−
n

H1
(
nf ;TX̂ |nf

)
= 0,

where f is a fiber of g : X̂→ X ′ over a point t ∈ C, If is the ideal sheaf defining the reduced scheme
f , and nf is the scheme defined by Inf . From the exact sequence

0 −→Nf /E −→Nf /X̂ −→NE/X̂ |f −→ 0

and the fact that Nf /E � Of and NE/X̂ |f � Of (−1), we see that

Nf /X̂ � Of ⊕Of (−1).

Because f is a local complete intersection, there is an exact sequence

0 −→ Symn
(
If /I

2
f

)
−→O(n+1)f −→Onf −→ 0,

where If /I
2
f is the conormal bundle. Hence

Symn
(
If /I

2
f

)
= Of ⊕Of (1)⊕ · · · ⊕Of (n).

Then from the normal bundle sequence

0 −→ Tf −→ TX̂ |f −→Nf /X̂ −→ 0

and the fact that Tf � Of (2), it follows easily that H1(nf ;TX̂ |nf ) = 0 for all n ≥ 1, hence that
R1g∗TX̂ = 0. The proof that R1g∗TX̂(−E) = 0 is similar, using OX̂(−E)|f = Of (1).

To see the statement about R0g∗TX̂ , there is an exact sequence

0 −→ TX̂ −→ g∗TX ′ −→ i∗TE/C(E) −→ 0,
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where i : E→ X̂ is the inclusion. Hence there is an exact sequence

(∗) 0 −→ g∗TX̂ −→ g∗g
∗TX ′ −→ g∗i∗TE/C(E) −→ R1g∗TX̂ = 0.

Then g∗g
∗TX ′ = TX ′ and g∗i∗TE/C(E) = r∗TE/C(E), where r : E→ C is the projection. Also, we have

the Euler exact sequence
0 −→OE −→ r∗NC/X ′ (1) −→ TE/C −→ 0.

Thus, using OE(E) = OE(−1), we get

0 −→OE(E) −→ r∗NC/X ′ −→ TE/C(E) −→ 0.

Taking r∗ and using R1r∗OE(E) = 0 gives r∗TE/C(E) =NC/X ′ . Thus (∗) becomes

0 −→ g∗TX̂ −→ TX ′ −→NC/X ′ −→ 0,

as claimed. □

Corollary 6.2. Suppose as above that g : X̂ → X ′ is the blowup of a smooth threefold along a smooth
compact curve C and that moreover p : X ′ → X is a resolution of an isolated singular point x, with
C ⊆ p−1(x). Suppose in addition either that p : X ′ → X is a small resolution of X or that it is a good
resolution with degNC/Ei

< 0 for every component Ei of E = p−1(x) containing C. Then there is an exact
sequence

0 −→H0 (C;NC/X ′ ) −→H1
(
X̂;TX̂

)
−→H1 (X ′;TX ′ ) −→H1 (C;NC/X ′ ) .

Hence, if p : X ′ → X is an equivariant resolution of X, for example if p is a small resolution, then so is
π = p ◦ g : X̂→ X.

Proof. By the Leray spectral sequence and Lemma 6.1, H i(X̂;TX̂) = H i(X ′;R0g∗TX̂) for all i. The
exact sequence of the statement then follows from the exact sequence for R0g∗TX̂ in Lemma 6.1,
except for the injectivity on the left. If H0(C;NC/X ′ )→ H1(X̂;TX̂) is not injective, then the map
H0(X ′;TX ′ )→H0(C;NC/X ′ ) is nonzero. Thus there exists a nonzero element of H0(C;NC/X ′ ) which
lifts to θ ∈H0(X ′;TX ′ ). Exponentiating the vector field θ, we see that C moves in a one-parameter
family in X ′ . However, given the contraction p : X ′ → X, every such family must be contained in
the exceptional set of p. This is clearly impossible if p is a small resolution or if C does not move
in a family in some component Ei of the exceptional set E. In particular, if degNC/Ei

< 0 for every
component Ei of E containing C, then C does not move inside any Ei .

To see the last statement, the above shows that the map H0(X̂;TX̂)→ H0(X ′;TX ′ ) is surjective.
Equivalently, R0π∗TX̂ → R0p∗TX ′ is surjective, and it is clearly injective, hence an isomorphism. Since
by assumption R0p∗TX ′ = T 0

X , this says that R
0π∗TX̂ = T 0

X , i.e. π is equivariant. □

For the rest of this section, (X,x) is a threefold A2n−1 singularity, p : X ′→ X is a small resolution
with exceptional curve C, and g : X̂→ X ′ is the blowup of the curve C, with exceptional divisor E.
Then π = p◦g : X̂→ X is a noncrepant resolution of X, and it is equivariant by Corollary 6.2. If n = 1,
then H i(X̂;TX̂) =H i(X ′;TX ′ ) = 0 for i = 1,2, and both DefX̂ and DefX ′ are (represented by) a single
point. Thus, we shall always assume that n ≥ 2, so that NC/X ′ � OC ⊕OC(−2) and E � F2. Note that
KX̂ = OX̂(E) and KE = KX̂ ⊗OX̂(E)|E = OX̂(2E)|E. As KE = OE(−2σ − 4f ), where σ is the negative
section on E and f is the class of a fiber, OX̂(E)|E = OE(−σ −2f ). In particular, N∨

E/X̂
= OX̂(−E)|E is

effective, nef, and big, and H i(E;NE/X̂) = 0 for all i since

H2
(
E;NE/X̂

)∨
=H0

(
E;KE ⊗OX̂(−E)|E

)
=H0(E;OE(−σ − 2f )) = 0.

Corollary 6.3. Under the above assumptions, the following hold:

(i) We have H2(X̂;TX̂) = H2(X̂;TX̂(−E)) = 0. In particular, DefX̂ is unobstructed of dimension
dimH1(X̂;TX̂).
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(ii) We have H1(X̂;TX̂(− logE)) �H1(X̂;TX̂), and the natural map

H1(X̂;TX̂(− logE)) −→H1(E;TE)

is surjective. Hence E is a stable submanifold of X̂, deformations of X̂ are versal for deformations of
E, and there exist small deformations of X̂ for which E deforms to F0.

(iii) For all i, H i(X̂;TX̂) =H i(X ′;R0g∗TX̂), and there is an exact sequence

0 −→ C =H0 (C;NC/X ′ ) −→H1
(
X̂;TX̂

)
−→H1 (X ′;TX ′ ) −→H1 (C;NC/X ′ ) −→ 0.

Thus dimH1(X̂;TX̂) = dimH1(X ′;TX ′ ) = n− 1.

Proof. (i) To see that H2(X̂;TX̂) = 0, it suffices to show that R2π∗TX̂ = 0. In the Leray spectral

sequence with Ea,b
2 = Rap∗R

bg∗TX̂ ⇒ Ra+bπ∗TX̂ , all possible terms contributing to R2π∗TX̂ are 0,
either for dimension reasons or because R1p∗R

1g∗TX̂ = 0 by Lemma 6.1. Thus R2π∗TX̂ = 0. The proof
for H2(X̂;TX̂(−E)) is similar.

(ii) From the exact sequence

0 −→ TX̂(− logE) −→ TX̂ −→NE/X̂ −→ 0

and the fact that H i(E;NE/X̂) = 0 for all i (apply Leray to the morphism r : E → C), we

have H i(X̂;TX̂(− logE)) � H i(X̂;TX̂) for all i. Thus in particular H2(X̂;TX̂(− logE)) = 0 and
H1(X̂;TX̂(− logE)) �H1(X̂;TX̂). Finally, from the exact sequence

0 −→ TX̂(−E) −→ TX̂(− logE) −→ TE −→ 0

and the vanishing of H2(X̂;TX̂(−E)), we see that H1(X̂;TX̂(− logE))→H1(E;TE) is surjective.

(iii) This follows from Corollary 6.2 and the fact that H2(X̂;TX̂) = 0. □

Remark 6.4.

(i) By (iii) above, the images of H1(X̂;TX̂) and H1(X̂;Ω2
X̂
) in H0(X;T 1

X ) are different since by

Proposition 5.13, the image of H1(X̂;Ω2
X̂
) is that of H1(X ′;Ω2

X ′ ) = H1(X ′;TX ′ ), and this image is

strictly larger than that of H1(X̂;TX̂).
(ii) The functors DefX̂ and DefX ′ are both smooth of dimension n − 1, but the differential of

the corresponding morphism of functors DefX̂ → DefX ′ , i.e. the induced map on Zariski tangent
spaces, is not an isomorphism at 0: It has a 1-dimensional kernel and cokernel. We will describe the
morphism DefX̂ →DefX ′ explicitly.

First, let DefX̂,E denote the functor of deformations of the pair (X,E): For a germ (S,s0), an

element of DefX̂,E(S,s0) consists of a deformation X̂ of X̂ over S , together with an effective Cartier

divisor E of X̂ , flat over S and restricting to E over s0. The functor DefX ′ ,C is defined similarly; the
objects over S are pairs (X ′ ,C), where C is flat over S and restricts to the reduced subscheme C of X ′ .
In particular, as we are only considering germs of spaces, C is smooth over S with all fibers irreducible.

Proposition 6.5. We have DefX̂ �DefX̂,E �DefX ′ ,C , and the morphism DefX̂ →DefX ′ is the same
under the above identification as the forgetful morphism DefX ′ ,C →DefX ′ .

Proof. It is a standard result that the tangent space to DefX̂,E is H1(X̂;TX̂(− logE)) (cf. Section 1)

and the obstruction space is H2(X̂;TX̂(− logE)) = 0. Thus, DefX̂,E is smooth by Corollary 6.3(ii),

and the first statement of the proposition is the isomorphism H1(X̂;TX̂(− logE)) � H1(X̂;TX̂). For
the second, given a pair (X̂ ,E) in DefX̂,E(S,s0), it is easy to check that the morphism r : E → C

extends to a morphism E → C � C × S (note that C � P
1 is rigid) and that E can be blown down to a

subspace C � C × S ⊆ X ′ . Conversely, given a pair (X ′ ,C) over S , let X̂ be the blowup of X ′ along C,
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and let E be the exceptional divisor. This gives two morphisms of functors DefX̂,E →DefX ′ ,C and
DefX ′ ,C →DefX̂,E which are clearly inverses. Hence DefX̂,E �DefX ′ ,C . □

To put the above in more manageable form, we give an explicit description of DefX ′ ,C . First, we
recall the basics about deformations of X and X ′ . Let Z be the germ of the standard ordinary double
point in dimension 2, given by x2 + y2 + z2 = 0, and let Z ′ be the resolution of singularities of Z,
with C ⊆ Z ′ the exceptional set. Then DefZ is represented by the germ (C,0), with coordinate t and
universal family Z → (C,0) given by x2 + y2 + z2 + t = 0. Likewise, DefZ ′ is represented by the germ
(C,0), with coordinate u and universal family Z′ → (C,0) given by a choice for a small resolution
of x2 + y2 + z2 + u2 = 0. The threefold X ′ is isomorphic in a neighborhood of C to f ∗Z′ , where
f : (C,0)→ (C,0) is given by u = f (w) = wn. A deformation X ′ of X ′ over a germ (S,s0) corresponds
to a morphism F : (C,0) × S → (C,0) with F(w,s0) = f (w) = wn, with X ′ = F∗Z′ . A polynomial F
restricting to wn is analytically equivalent to one of the form wn+bn−2(s)wn−1+· · ·+b0(s). In particular,
DefX ′ is represented by the germ of the affine space (Cn−1,0), with coordinates (bn−2, . . . , b0). Also
note that F−1(0)→ S is a finite cover of degree n.

Lemma 6.6. There is an isomorphism of functors from DefX ′ ,C to F, where, for (S,s0) the germ of an
analytic space, F(S) is the set of pairs (F,σ ), where as above F : (C,0)× S → (C,0) is a morphism such
that F(w,s0) = f (w) = wn and σ ⊆ F−1(0) is a section of the finite cover F−1(0)→ S, or equivalently a
morphism λ : S→ (C,0) such that F(λ(s), s) is identically 0. Moreover, via this isomorphism, the morphism
DefX ′ ,C →DefX ′ corresponds the forgetful map (F,σ ) ∈ F(S) 7→ F.

Proof. Given an object (F,σ ) of F(S), the morphism F defines X ′ in DefX ′ (S) corresponding to the
morphism F : (C,0)× S→ (C,0) as above, and a Cartesian diagram

X ′ −−−−−→ Z′y y
(C,0)× S F−−−−−→ (C,0).

Note that X ′ |F−1(0) = Z ′ ×F−1(0) ⊆ X ′ , and thus

C ×F−1(0) ⊆ X ′ |F−1(0) ⊆ X ′ ,

compatibly with the projection to S . Given the section σ ⊆ F−1(0), define

C = C × σ ⊆ C ×F−1(0) ⊆ X ′ .

Thus the pair (F,σ ) defines a deformation of (X ′ ,C) over S , and hence an element of DefX ′ ,C .
Conversely, suppose that we are given a pair (X ′ ,C) ∈DefX ′ ,C(S), and let F : (C,0)× S → (C,0)

be the morphism corresponding to X ′ in DefX ′ (S). Note that C does not deform in Z′ , even to
first order. Thus C � C × S ⊆ C ×F−1(0), compatibly with the projection to S, so that the projection
of C onto the second factor F−1(0) defines a section σ of the morphism F−1(0)→ S . Clearly, the
two constructions F(S)→DefX ′ ,C(S) and DefX ′ ,C(S)→ F(S) are mutual inverses and are functorial
under pullback. This defines the isomorphism of functors, and the final statement is clear from the
construction. □

Explicitly, with P (w;b) = wn +
∑n−2

i=0 biw
i , where b = (bn−2, . . . , b0), the universal deformation U ′ of

X ′ is given as a small resolution of x2 + y2 + z2 + (P (w;b))2 = 0. Consider

{(λ,bn−2, . . . , b0) : P (λ;b) = 0} ⊆ (C×Cn−1,0).

Note that if w −λ is a factor of P (w;b), then

P (w;b) = (w −λ)(wn−1 +λwn−2 + tn−3w
n−3 + · · ·+ t1w+ t0) = (w −λ)Q(w;λ,t),
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say, where Q(w;λ,t) = wn−1 +λwn−2 + tn−3w
n−3 + · · ·+ t1w+ t0. Solving explicitly for the coefficients

bi , we see

bn−2 = −λ2 + tn−3,

bi = −λti + ti−1, 1 ≤ i ≤ n− 3,
b0 = −λt0.

If λ,tn−3, . . . , t0 are coordinates on C
n−1, this defines a morphism Φ : Cn−1→C

n−1 by

Φ(λ,tn−3, . . . , t0) = (−λ2 + tn−3,−λtn−3 + tn−4, . . . ,−λt0) = (bn−2, . . . , b0).

Solving for ti in terms of λ and the bi gives

ti = λn−i−1 + bn−2λ
n−i−3 + · · ·+ bi+1, 1 ≤ i ≤ n− 3,

−b0 = λn + bn−2λ
n−2 + · · ·+λb1,

recovering the fact that λ is a root of P (w;b) (and there are exactly n such roots). Thus the morphism
π1 ×Φ : Cn−1→C×Cn−1 defined by

(λ,tn−3, . . . , t0) 7−→ (λ,Φ(λ,tn−3, . . . , t0))

is an isomorphism from C
n−1 to {(λ,bn−2, . . . , b0) : P (λ;b) = 0}. The germ (Cn−1,0), with coordinates

λ,tn−3, . . . , t0, together with the family which is a small resolution of Φ∗U ′ , represents DefX ′ ,C ,
and hence after blowing up represents DefX̂ . Moreover, Φ corresponds to the forgetful morphism
DefX ′ ,C →DefX ′ .

By the above, Φ is finite of degree n and surjective, and is ramified exactly where Q(λ;λ,t) = 0, i.e.
where P (w;b) has λ as a double root (or where the discriminant of P (w;b) vanishes). In fact,

det



∂bn−2
∂λ · · · ∂b0

∂λ
∂bn−2
∂tn−3

· · · ∂b0
∂tn−3

...
...

...
∂bn−2
∂t0

· · · ∂b0
∂t0


= ±Q(λ;λ,t).

Summarizing the above discussion, then, we have the following.

Theorem 6.7. Let (SX̂ ,0) and (SX ′ ,0) be the germs prorepresenting the functors DefX̂ and DefX ′
respectively. Then the induced morphism SX̂ → SX ′ is finite of degree n, and its differential at the origin
has a 1-dimensional kernel and cokernel.
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