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1. Introduction

1.1. Background and motivation

Slope stable rigid vector bundles on polarized K3 surfaces exist in abundance (the single necessary
condition on the Chern character is the one coming from the equality χ(S,F∨ ⊗F) = 2, valid for a simple
rigid vector bundle F on a K3 surface), and they are determined up to isomorphism by their Chern character.
Recently there has been substantial progress in understanding slope stable rigid vector bundles on polarized
hyperkähler (HK) varieties of type K3[n]; see [O’G22b, O’G23]. In the present paper, we deal with the
analogous problem for HK fourfolds of Kummer type. We prove the existence and uniqueness of slope
stable vector bundles F with r(F ) = 4, c1(F ) = h, ∆(F ) = c2(M) on a general polarized HK fourfold
(M,h) of Kummer type such that qM(h) ≡ −6 (mod 16) and div(h) = 2, or qM(h) ≡ −6 (mod 144) and
div(h) = 6, and moreover that such bundles are rigid. Here qM is the Beauville–Bogomolov–Fujiki (BBF for
short) quadratic form of M, and div(h) is the divisibility of h, i.e., the positive generator of the ideal in Z

given by qM(h,H2(X;Z))
The results are limited to rank 4, but one should be able to obtain analogous results for vector bundles

on HK fourfolds of Kummer type for all ranks of the form r20 /g , where g := gcd{r0,3}, and also for vector
bundles on HK varieties of Kummer type of arbitrary dimension. We believe that the rank 4 case is already
quite interesting; in particular, it might lead to an explicit description of a locally complete family of
polarized HK fourfolds of Kummer type.

The link between rigid vector bundles and locally complete families is provided by an analogy with
“Mukai models”of K3 surfaces. We recall that a general polarized K3 surface of degree at least 10 is not a
complete intersection in a projective space, but for certain degrees it is a (generalized) complete intersection
in a Grassmannian (see for example [Muk88]), and the latter fact provides an explicit description of locally
complete families of K3 surfaces. The conceptual reason underlying such a description is the existence of a
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rigid and unique (up to isomorphism) slope stable vector bundle on a general polarized K3 surface of the
relevant degree, realized explicitly as the pull-back of the tautological vector bundle of the Grassmannian.

In higher dimensions, explicit locally complete families of polarized HK varieties are known, for example
the varieties of lines on a smooth cubic hypersurface in P

5, see [BD85], double EPW sextics, see [O’G06],
Debarre–Voisin varieties, see [DV10], the LLSvS varieties attached to smooth cubic hypersurface in P

5,
see [LLS+17], the infinite family of moduli spaces of stable objects in the Kuznetsov category attached to
smooth cubic hypersurface in P

5, see [BLM+21]. All of the known locally complete polarized families of HK
varieties parametrize varieties of type K3[n].

The explicit families given by the varieties of lines on a smooth cubic hypersurface in P
5 and the

Debarre–Voisin varieties are very similar to the Mukai families. In fact, the restrictions of the tautological
quotient vector bundles are stable (for a general variety of that kind) rank 4 vector bundles which extend to
all deformations of the polarized (X,L). Actually the projectivization of those vector bundles extends to all
small deformations of the unpolarized X (this last property distinguishes the tautological quotient bundle
from the tautological subbundle); i.e., they are projectively hyperholomorphic.

We expect that a similar construction holds for polarized HK fourfolds (M,h) of Kummer type such
that qM(h) = 10 and div(h) = 2. In fact, one should get an explicit description of the general such M by
analyzing the rank 4 slope stable vector bundle whose existence is guaranteed by the main result of the
present paper. Our paper [O’G22c] contains other material that should be relevant if one wants to describe
such a family.

1.2. Main result

Before stating our main theorem, we recall a few results on 4-dimensional polarized HK varieties (M,h)
of Kummer type (the ample class h ∈ NS(M) is primitive). Let e := qM(h) (e is the square of h), and let
i := div(h). Then one of the following holds:

(1.1) i = 1, e ≡ 0 (mod 2);

(1.2) i = 2, e ≡ −6 (mod 8);

(1.3) i = 3, e ≡ −6 (mod 18);

(1.4) i = 6, e ≡ −6 (mod 72).

Conversely, if e is a positive integer, i ∈ {1,2,3,6} and one of (1.1), (1.2) (1.3) or (1.4) holds, then there exists
a 4-dimensional polarized HK variety (M,h) of Kummer type such that qM(h) = e and div(h) = i. Let
Kumi

e be the (quasi-projective) moduli space of 4-dimensional polarized HK varieties (M,h) of Kummer
type (note that Kumi

e is 4-dimensional). The number of irreducible components of Kumi
e has been computed

by Onorati in [Ono22]. In particular, Kum2
e (we assume that (1.2) holds) and Kum6

e (here we assume that (1.4)
holds) are irreducible.

Theorem 1.1. Let e be a positive integer such that e ≡ −6 (mod 16) or e ≡ −6 (mod 144). Let [(M,h)] be a
general point of Kum2

e if the former holds, and of Kum
6
e if the latter holds. Then there exists one and only one

slope stable vector bundle F on M (up to isomorphism) such that

(1.5) r(F ) = 4, c1(F ) = h, ∆(F ) := 8c2(F )− 3c1(F )2 = c2(M).

(Chern classes are in cohomology.) Lastly, H1(M,End0(F )) = 0.

Remark 1.2. Let (X,h) be a general polarized HK variety of type K3[n]. In [O’G22b, O’G23] we have proved
that, provided certain numerical hypotheses are satisfied, there exists a unique stable vector bundle F on X
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of rank rn0 with

(1.6) ∆(F ) =
r2n−20 (r20 − 1)

12
c2(X).

(Here ∆(F ) is the discriminant of F ; see (1.8).) The equation in (1.6) for n = 2 and r0 = 2 is the exact
analogue of the last equation in (1.5).

Remark 1.3. We recall that if M is a HK manifold, then Aut0(M) is the group of automorphisms of M
acting trivially on H2(M). If M is a 2n-dimensional HK manifold of Kummer type (n ≥ 2), then Aut0(M)
is not trivial; in fact, it is a semidirect product of Z/(n+ 1)4 and Z/(2); see Section 3.8. Let [(M,h)] be
as in Theorem 1.1. If F is the slope stable vector bundle F on M such that the equalities in (1.5) hold
and ϕ ∈ Aut0(M), then ϕ∗(F ) is an h slope stable vector bundle on M which has the same rank, c1 and
discriminant as F because ϕ∗(h) = h and ϕ∗(c2(M)) = c2(M). By Theorem 1.1, it follows that ϕ∗(F ) �F .

Remark 1.4. Let Uie ⊂ Kumi
e for i ∈ {2,6} be an open nonempty subset with the property that there exists

one and only one stable vector bundle F on [(M,h)] ∈ Uie such that the equations in (1.5) hold, and let
X →Uie be the tautological family of HK (polarized) varieties (here Kumi

e is to be interpreted as the moduli
stack). By Theorem 1.1 and [Muk87, Theorem A.5], there exists a quasi-tautological vector bundle F on
X , i.e., a vector bundle whose restriction to a fiber M of X →Uie is isomorphic to F⊕d for some d > 0,
where F is the vector bundle of Theorem 1.1. If [(M,h)] ∈Uie, then the generalized Franchetta conjecture,

see [FLV19], predicts that the restriction to CH2(M)
Q
of ch2(F) ∈ CH(X )

Q
is equal to −d r

2n−2
0 (r20−1)

12 c2(X).
In other words, it predicts that the third equality in (1.5) holds at the level of (rational) Chow groups. In
general, it is not easy to give a rationally defined algebraic cycle class on a nonempty open subset of the
moduli stack of polarized HK varieties. Theorem 1.1 produces such a cycle, and hence a good test for the
generalized Franchetta conjecture.

1.3. Outline of the proof

Our first task is to construct modular vector bundles on generalized Kummer fourfolds which are slope
stable. Recall that a torsion-free sheaf F on a HK manifold M of dimension 2n is modular if there exists a
d(F ) ∈Q such that for all α ∈H2(M)

(1.7)
∫
M
∆(F )α2n−2 = d(F )(2n− 3)!!qM(α)n−1,

where the double factorial (2n− 3)!!D (2n− 3)(2n− 5) · . . . · 3 · 1 is the product of natural numbers up to
2n− 3 and of the same parity as 2n− 3 and

(1.8) ∆(F ) := 2rc2(F )− (r − 1)c1(F )2

is the discriminant of F . Variation of stability for modular sheaves behaves as if the base were a surface,
see [O’G22b], and slope (semi)stability of a modular sheaf on a Lagrangian fibration is related to slope
(semi)stability of its restriction to a general Lagrangian fiber, provided the polarization is close to the
pull-back of an ample class on the base. In [O’G22b, O’G23] we constructed stable modular vector bundles
on S[n], where S is a K3 surface, by associating to a vector bundle E on S a vector bundle E [n]± on S[n].
The following two key facts hold:

(1) If E is spherical, then E [n]± is modular by the Bridgeland–King–Reid derived version of the McKay
correspondence.

(2) If S is elliptic and hence S[n] has a Lagrangian fibration, then the restriction of E [n]± to a general
Lagrangian fiber is slope stable.

In the present paper, we proceed as follows. Let f : B→ A be an isogeny of abelian surfaces, and let
ρ : Kn(B)d Kn(A) be the map between generalized Kummers which associates to [Z] ∈ Kn(B) the point
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[f (Z)] ∈ Kn(A) (as soon as degf ≥ 2 and n ≥ 2, the map ρ is not regular). Let ρ̃ : X→ Kn(A) be a resolution
of indeterminacies of ρ. If L is a line bundle on X, let E (L ) := ρ̃∗(L ). Then E (L ) is a torsion-free
sheaf on Kn(A) of rank (degf )n. Section 3 is devoted to the study of E (L ) for n = 2 and degf = 2. We
determine exactly under which hypotheses the rank 4 sheaf E (L ) is modular. In particular, we show that
if L is the pull-back of a line bundle on K2(B), then E (L ) is locally free and ∆(E (L )) = c2(K2(A)); in
particular, it is modular. These are the vector bundles which are studied in the remainder of this paper.

The referee realized that the vector bundle E (L ) corresponds to a semi-homogeneous S3-equivariant
vector bundle on the kernel NA(3) of the summation map A3→ A via the Bridgeland–King–Reid equivalence
between Db

S3
(NA(3)) and Db(K2(A). This gives as bonus the vanishing, under suitable hypotheses, of all

cohomology of the traceless endomorphism bundle E nd0E (L ). In fact, the referee has given a more general
construction of vector bundles on Kn(A), which can be proved to be modular without explicit computations
(of course one does not get a formula for the discriminant). These vector bundle deserve to be studied in
detail.

In order to prove Theorem 1.1, we consider A equipped with an elliptic fibration A→ E. Thus we have a
Lagrangian fibration πA : K2(A)→ |OE(3(0E))|.

The main technical results that we need are about the restrictions of E (L ) to the Lagrangian fibers of
πA. The first main result is that the restriction to a Lagrangian fiber is simple, except possibly for a finite
set of Lagrangian fibers. The second main result deals with slope stability of the restriction of E (L ) to a
Lagrangian fiber (assume that the restriction of detE (L ) is ample, and consider stability with respect to
the restriction). First the restriction is slope stable if the Lagrangian fiber is smooth; in fact, E (L ) has this
property by construction (thanks to results about semi-homogeneous vector bundles on abelian varieties).
This is already enough to prove the existence half of Theorem 1.1, but the uniqueness half needs more work.
We do not know whether the restriction of E (L ) to a general singular Lagrangian fiber is slope stable, but
we prove that the restriction to a general singular Lagrangian fiber is not slope destabilized by a subsheaf
with integer rank (the rank of sheaves on singular Lagrangian fibers is not necessarily an integer because
such fibers are nonreduced and not irreducible). This implies that the extension of E (L ) to a general
deformation of (K2(A),detE (L ),πA) restricts to a slope stable vector bundle on Lagrangian fibers (of the
fibration extending πA), except possibly for a finite set of Lagrangian fibers. With these results under the
belt, one can prove the unicity half of Theorem 1.1.

1.4. Organization of the paper

In Section 2, we collect preliminary results on modular sheaves and HK manifolds of Kummer type.
Section 3 contains mainly computations which allow us to determine for which choices of line bundle L

the rank 4 sheaf E (L ) is modular (and if this is the case, to compute its discriminant) and to show that it is
locally free in the cases that are examined in the remainder of the paper.

In Section 4, we compute the Euler characteristic of End(E (L ))0.
Section 5 contains the construction by the referee of many modular vector bundles on Kn(A) with

vanishing cohomology of the bundle of traceless endomorphismsm and the identification of E (L ) with one
of his vector bundles.

In Section 6, we assume that A is equipped with an elliptic fibration A → E, and hence we have
a Lagrangian fibration πA : K2(A) → |OE(3(0E))|. We prove that the restriction of E (L ) to a smooth
Lagrangian fiber is slope stable and that the restriction to Lagrangian fibers is simple, except possibly for a
finite set of them.

In Section 7, we prove the results explained above about subsheaves with integer rank of the restrictions
of E (L ) to general singular Lagrangian fibers.

The last section, i.e., Section 8, wraps everything up to give the proof of Theorem 1.1.
The two appendices contain technical results on semi-homogeneous vector bundles on abelian varieties.
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1.5. Conventions

• Algebraic variety is synonymous with complex quasi-projective scheme, and sheaf is synonymous with
coherent sheaf on an algebraic variety. Occasionally, we do not differentiate between divisor classes,
line bundles and invertible sheaves on a smooth variety.
• Chern classes of a sheaf on a smooth complex quasi-projective variety X are elements of the Betti
cohomology ring H(X;Z) unless we state the contrary. We let H(X) = H(X;C) be the complex
cohomology of X.
• Let F be a sheaf of positive rank on a smooth projective variety X. If L is an ample line bundle,
then µL(F ) is the slope of F with respect to L, and similarly µh(F ) is the slope of F with respect
to the numerical equivalence class of an ample divisor on X. Hopefully there will be no confusion
with Donaldson’s map µ discussed in Section 2.2.
• A polarized variety is a couple (X,h), where X is a projective scheme and h is the numerical equivalence
class of an ample divisor on X. If X is smooth of positive rank, slope (semi)stability of F refers to
the slope function defined by h.
• “Abelian variety” often means a variety isomorphic to a bona fide abelian variety A, in other words a
torsor over a bona fide abelian variety.

1.6. Ackowledgements

I heartily thank the referee for sharing with me their insights, and for letting me outline their results in
Section 5.

2. Preliminaries

2.1. Modular sheaves

We start by presenting an equivalent characterization of modular sheaves on a HK manifold M . Let V ⊂
H(M) be the image of the map SymH2(M)→H(M) defined by cup product, and let U := V ⊥ ⊂H(M) be
the orthogonal (with respect to the intersection form) of U . We let V d := V ∩Hd(M) and Ud :=U ∩Hd(M).
By Verbitsky [Ver96], we have a direct sum decomposition H(M) = V ⊕U ; in particular,

H4(M) = V 4 ⊕U4.

We claim that the projection of c2(M) onto V 4 is nonzero. For this, it suffices to show that
∫
M
c2(M)ω2n−2 , 0,

where dimM = 2n. Suppose the contrary: Since the tangent bundle ΘM is stable (by Yau’s theorem) and
c1(M) = 0, it follows that ΘM is flat; that gives a contradiction. Let us denote the projection of c2(M)
onto V 4 (following Markman) by c2(M). Then F is modular if and only if the projection of ∆(F ) onto
Sym2H2(M) is a multiple of c2(M).

2.2. Generalized Kummers

Let A be an abelian surface. The generalized Kummer Kn(A) is the fiber over 0 of the map A[n+1]→ A
given by the composition

A[n+1] h−→ A(n+1) σ−→ A,

where h[Z] :=
∑
a∈A ℓ(OZ,a)(a) and σ ((a1) + · · · + (an+1)) := a1 + · · · + an+1 is the summation map in the

group A. Here and in the rest of the paper, we denote by (a) the generator of the group of 0-cycles
on A that corresponds to the point a ∈ A. Hence if k1, . . . , kn+1 are integers and a1, . . . , an+1 ∈ A, then
k1(a1) + · · ·+ kn+1(an+1) is a 0-cycle while k1a1 + · · ·+ kn+1an+1 is an element of A.
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The cohomology group H2(Kn(A);Z) is described as follows. There is a homomorphism µn,A : H2(A)→
H2(Kn(A)) given by the composition

H2(A)
sn+1−−−→H2

(
A(n+1)

) (h|Kn(A))
∗

−−−−−−−→H2(Kn(A)),

where sn+1 is the natural symmetrization map. The map µn,A is injective but not surjective because h|Kn(A)
contracts the prime divisor (here we assume that n ≥ 2)

∆n(A) := {[Z] ∈ Kn(A) | Z is not reduced}.

The cohomology class of ∆n(A) is (uniquely) divisible by 2 in integral cohomology. We let δn(A) ∈
H2(A(n+1);Z) be the class such that

(2.1) 2δn(A) = cl(∆n(A)).

(Beware of the potential misunderstanding: δn(A) is not the class of ∆n(A).) One has

(2.2) H2(Kn(A);Z) = µn,A(H
2(A;Z))⊕Zδn(A),

where orthogonality is with respect to the BBF quadratic form. Moreover, the BBF quadratic form is given by

(2.3) q(µn,A(α) + xδn(A)) = (α,α)A − 2(n+1)x2.

(Here (α,α)A is the self-intersection of α ∈H2(A).) Let β1, . . . ,β2n ∈H2(Kn(A)). Then

(2.4)
∫

Kn(A)

β1 · . . . · β2n = (n+1) ·
∑̃

q
(
βi1 ,βi2

)
· . . . · q

(
βi2n−1 ,βi2n

)
,

where
∑̃

means that in the summation we avoid repeating addends which are formally equal (i.e., are equal
modulo reordering of the factors qX(·, ·) and switching the entries in qX(·, ·)). The last four results are
“folklore”. We am not aware of a printed proof. Proofs can be found in [O’G22a]. We also recall that if L is
a line bundle on a generalized Kummer X of dimension 2n, then

(2.5) χ(X;L ) = (n+1)
(1
2qX(c1(L )) +n

n

)
.

A proof of the above formula can be found in [BN01, Section 5.2]
From now on we deal only with 4-dimensional generalized Kummers K2(A). We replace µ2,A,∆2(A),δ2(A)

by µA,∆(A),δ(A), respectively.
Lastly let M be a HK fourfold of Kummer type, i.e., a deformation of K2(A). If ζ ∈H2(M), then (see for

example [HT13, Equation (6)])

(2.6)
∫
M

c2(M) · ζ2 = 54qM(ζ).

Moreover (see [HT13, Proof of Proposition 5.1]), we have

(2.7)
∫
M

c2(M)2 = 756.
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3. Modular basic sheaves on 4-dimensional generalized Kummers

3.1. Statement of the main result

Let f : B→ A be a homomorphism of (bona fide) abelian surfaces of degree 2. Then f defines a rational
map

(3.1) K2(B)
ρ
9999K K2(A)

[Z] 7−→ [f (Z)].

The map ρ is regular away from

(3.2) V (f ) := {[Z] ∈ K2(B) | ℓ(f (Z)) < ℓ(Z) = 2}.

The result below is proved in Section 3.3.

Proposition 3.1. Keep notation and hypotheses as above. Then V (f ) (see (3.2)) is irreducible of codimension 2
and smooth. Moreover, by blowing up V (f ), one resolves the indeterminacies of ρ.

Let ν : X→ K2(B) be the blow-up of V (f ), and let ρ̃ : X→ K2(A) be the regular map lifting the rational
map ρ. Thus we have the commutative diagram

(3.3) X
ν

||

ρ̃

""

K2(B)
ρ

// K2(A).

For a line bundle L on X, we let E (L ) := ρ̃∗(L ), and if there is no ambiguity regarding L , we denote it by
E . Since the map ρ̃ has degree 4 and L is torsion-free, E (L ) is a rank 4 torsion-free sheaf on K2(A). We
prove that for suitable choices of L , the sheaf E (L ) is modular. In order to state our result, we introduce
some notation. Let D ⊂ X be the exceptional divisor of the blow-up map ν (notice that D is irreducible by
Proposition 3.1). There exist a ωB ∈NS(B) and integers x,y such that

(3.4) c1(L ) = ν∗(µB(ωB) + xδ(B)) + y cl(D).

Below is the main result of the present section.

Theorem 3.2. The sheaf E (L ) is modular if and only if y = x or y = x+1. If this is the case, then

(3.5) ∆(E (L )) = c2(K2(A)).

Moreover, if y = x, then E (L ) is locally free.

Theorem 3.2 is proved in Sections 3.7, 3.9 and 3.10.

Remark 3.3. Let ξ be the square root of the line bundle OK2(A)(∆). Thus c1(ξ) = δ(A). For t ∈Z, we have

ρ̃∗(L ⊗ ρ̃∗ξ⊗t) = E (L )⊗ ξ⊗t ,(3.6)

c1(L ⊗ ρ̃∗ξ⊗t) = ν∗(µB(ωB) + (x+ t)δ(B)) + (y + t)cl(D).(3.7)

This explains why the hypotheses on (x,y) that ensure that E (L ) is modular are invariant under translation
by multiples of (1,1).
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3.2. From S[2] to S[3] according to Ellingrud and Strømme

Let S be a smooth surface. We let S[2,3] ⊂ S[2] × S[3] be the nested Hilbert scheme; see Jan Cheah’s Ph.D.
thesis (Chicago, 1994). As a set, we have

S[2,3] :=
{
[W ], [Z]) ∈ S[2] × S[3] |W ⊂ Z

}
.

Let α : S[2,3] → S[2] × S be the product of the projection S[2,3] → S[2] and the map ([W ], [Z]) 7→
supp(IW /IZ ). Let β : S[2,3]→ S[3] be the projection. We have a commutative diagram

S[2,3]

α

zz

β

""

S[2] × S
ξ

// S[3],

where ξ([W ],p) := [W ⊔ {p}] if p < suppW . Let Zn(S) ⊂ S[n] × S be the universal subscheme.

Proposition 3.4 (cf. Ellingrud-Strømme [ES98, Propositions 2.1 and 2.2]). The map α is the blow-up of Z2(S).
The Stein factorization of β is

S[2,3]
γ
−→Z3(S) −→ S[3],

where Z3(S) −→ S[3] is the projection.

The map γ is an isomorphism away from the subset {(V (m2
p),p) | p ∈ S}. Moreover,

γ−1
((
V

(
m2
p,p

)])
= β−1

([
V

(
m2
p

)])
=

{(
[W ],

[
V

(
m2
p

)])
|W ⊂ V

(
m2
p

)}
� P(Θp(S)).

3.3. The maps ρ and ρ̃

Proof of Proposition 3.1. Let ρ : B[3]d A[3] be defined as ρ, i.e., ρ([Z]) = [f (Z)], and let V [3](f ) ⊂ B[3] be
the set of [Z] such that ℓ(f (Z)) < ℓ(Z). It suffices to prove that V [3](f ) is irreducible of codimension 2 and
smooth and that blowing it up, we resolve the indeterminacies of ρ. Let ε ∈ B be the nonzero element of
kerf :

(3.8) kerf = {0, ε}.

A simple but useful observation is contained in the following equality:

(3.9) V [3](f ) =
{
[Z] ∈ B[3] | Z =W ⊔ {b}, [W ] ∈ B[2], (b+ ε) ∈ suppW

}
.

(Here ⊔ denotes disjoint union.) Let σ : B[2]×B→ B[2]×B be defined by σ ([W ],b) := ([W ],b+ε). Consider
the maps

B[2] ×B σ−→ B[2] ×B
ξ
9999K B[3]

ρ
9999K A[3].

Let [Z] ∈ V [3](f ). Then we have Z =W ⊔{b} as in (3.9). Since b < suppW , the map ξ is regular at ([W ],b)
and defines an isomorphism between a small neighborhood (in the analytic topology) Û of ([W ],b) and a
small neighborhood (in the analytic topology) U of [Z]. Moreover, σ maps isomorphically Û ∩Z2(B) to
U ∩ ξ−1(V [3](f )). Since Z2(B) is isomorphic to the blow-up of B×B along the diagonal, it is irreducible of
codimension 2 and smooth. It follows that the same holds for V [3](f ).

Moreover, σ identifies (locally around ([W ],b) and [Z]) the blow-ups of B[2] ×B with centers Z2(B) and
V [3](f ). Since ρ ◦ ξ ◦ σ = ρ ◦ ξ, the blow-up of V [3](f ) resolves the indeterminacies of ρ by Ellingsrud–
Strømme’s Proposition 3.4. □
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Given b ∈ B[3], let

(3.10) Rb :=
{
[{b} ⊔W ] |W ∈ B[2], suppW = {b+ ε}

}
⊂ K2(B).

Notice that Rb is isomorphic to P
1. We have an inclusion

(3.11) A[3]
ι
↪−→ K2(A)

a 7−→ V (m2
a).

In other words, ι(a) is the subscheme supported at a with structure sheaf OA/m
2
a .

Proposition 3.5. Let X
ρ̃2−→ X

ρ̃1−→ K2(A) be the Stein factorization of ρ̃.

(a) The map ρ̃1 is finite of degree 4.
(b) There exists an embedding F : B[3] ↪→ X with the following properties. Let b ∈ B[3], and let a := f (b) ∈

A[3]. There is a curve R̃b ⊂ X mapped isomorphically to Rb by ν and contracted by ρ̃2 to a point
F(b) ∈ ρ̃−11 (ι(a)). Moreover, R̃b = ρ̃

−1
2 (F(b)).

(c) Away from the union of the R̃b (for b ∈ B[3]), the map ρ̃2 is an isomorphism onto its image.
(d) X has rational singularities.

Proof. Items (a)–(c) follow easily from the proof of Proposition 3.1 together with Ellingsrud and Strømme’s
Proposition 3.4. Let us prove item (d). First X is smooth away from F(B[3]). On the other hand, we claim
that in a neighborhood of F(b) for b ∈ B[3], X is isomorphic to the fiber over 0 of the composition

Z3(A) −→ A[3] −→ A(3) −→ A,

where the last map is the summation map. In fact, our assertion follows from the proof of Proposition 3.1
and from Proposition 3.4. Since Z3(A) −→ A is a locally (in the classical or étale topology) trivial fibration,
X has a rational singularity at F(b) if Z3(A) has rational singularities. The last assertion holds by the main
result of [Son16]. □

3.4. Chern classes, I

We follow the notation introduced in Theorem 3.2. We will set E = E (L ).

Lemma 3.6. For E = E (L ), the following hold:

ch1(E ) = ρ̃∗

[
c1(L ) +

c1(X)
2

]
,

ch2(E ) = ρ̃∗

[
c1(L )2

2
+
c1(L ) · c1(X)

2
+
c1(X)2 + c2(X)

12

]
− c2(K2(A))

3
.

Proof. By Proposition 3.5, the higher direct images sheaves Ri ρ̃∗L (for i > 0) vanish over (K2(A) \A[3]).
Hence the Chern character of E over (K2(A)\A[3]) is computed by the Grothendieck–Riemann–Roch (GRR)
theorem. Since A[3] has codimension 4 in K2(A), it follows that the same formula gives chp(E ) on K2(A)
for p ≤ 3. Writing out the GRR theorem, we get the formulae of the corollary. □

Proposition 3.7. For E = E (L ) and α ∈H2(K2(A)), we have

(3.12)
∫

K2(A)

ch1(E )2 ·α2 = 6

2
∫
A

(f∗ωB)
2 − 3(2x+2y − 1)2

q(α) + 6q(2µA(f∗ωB) + (2x+2y − 1)δ(A),α)2.

Proof. Since X is the blow-up of K2(B) with center V (f ), we have

(3.13) c1(X) = −cl(D).
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Thus Lemma 3.6 gives

(3.14) ch1(E ) = ρ̃∗c1(L )− 1
2
ρ̃∗ cl(D).

We claim that

(3.15) ρ̃∗ν
∗µB(ωB) = 2µA(f∗ωB), ρ̃∗ν

∗∆(B) = 2∆(A), ρ̃∗D = ∆(A).

One gets the first equality by representing the Poincaré dual of ωB by a C∞ immersed submanifold Σ, and
the Poincaré dual of µB(ωB) by the immersed submanifold IΣ ⊂ K2(B) parametrizing the points [Z] ∈ K2(B)
such that Z meets Σ. It follows that the Poincaré dual of ρ̃∗ν

∗µB(ωB) is represented by the immersed
submanifold If (Σ) ⊂ K2(A) parametrizing the points [Z] ∈ K2(A) such that Z meets f (Σ) (the point being
that IΣ meets properly V (f ) for a generic choice of Σ), counted with multiplicity 2 because the map
IΣ→ If (Σ) has degree 2.

In order to prove the second equality in (3.15), notice that ∆(B) intersects properly V (f ), and hence
ρ̃∗ν
∗∆(B) is represented by the closure of ρ̃(∆(B) \V (f )), which is ∆(A), with multiplicity the degree of the

map (∆(B) \V (f ))→ ∆(A), which is 2.
The proof of Proposition 3.1 gives the third equality in (3.15).
Plugging into (3.14) the equations in (3.15), we get that

(3.16) ch1(E ) = 2µA(f∗ωB) + (2x+2y − 1)δ(A).

The proposition follows from (3.16) and the formula in (2.4).
□

3.5. Analysis of V (f )

In order to compute
∫
K2(A)

ch2(E ) · α2 for α ∈ H2(K2(A)), we must examine more closely V (f ). Let

h : K2(B)→ B(3) be the Hilbert–Chow map. The image of h is equal to

S := {(b1) + (b2) + (b3) | b1 + b2 + b3 = 0}.

Let Sϵ ⊂ S be the subset of (b1)+(b2)+(b3) such that bi−bj = ϵ for some i, j ∈ {1,2,3}. Then V (f ) = h−1(Sϵ),
and the restriction of h to V (f ) is a birational map hV (f ) : V (f )→ Sϵ. Let

(3.17) B
g
−→ Sϵ

b 7−→ (b) + (b+ ϵ) + (−2b+ ϵ).
Then g identifies Sϵ with B/ kerf = A.

Proposition 3.8. Identifying Sϵ with A via the map g , the map hV (f ) : V (f )→ Sϵ is identified with the blow-up
of A[3]. Let R1, . . . ,R81 be the exceptional divisors of hV (f ) (notice that they are equal to Rb1 , . . . ,Rb81 , where
bj ∈ B[3], with notation as in (3.10)). Then

(3.18) ∆(B)|V (f ) = 2
81∑
i=1

Ri .

Proof. By Proposition 3.1, we know that V (f ) is smooth. Moreover, hV (f ) is an isomorphism over (A \A[3]),
and it has fiber P1 over each point of A[3]. It follows that hV (f ) is the blow-up of A[3]. The remaining part
of the proposition is straightforward. □

Corollary 3.9. Let V (f ) ⊂ K2(B) be as in (3.2), and let ζ ∈H2(B). Then∫
V (f )

(µB(ζ) + tδ(B))
2 = 18


∫
B

ζ2

− 81t2.



12 K.G. O’Grady12 K.G. O’Grady

Proof. We have µB(ζ) = h∗(ζ(3)), where h : K2(B)→ B(3) is the Hilbert–Chow map and ζ(3) ∈H2(B(3)) is the
symmetrization of the class ζ. Since g∗(ζ(3)) = 6ζ and g is surjective of degree 2, we get that∫

V (f )

µB(ζ)
2 =

∫
W

ζ(3) · ζ(3) = 1
2

∫
B

(6ζ)2 = 18
∫
B

ζ2.

Next we notice that

(3.19)
∫
V (f )

µB(ζ) · δ(B) =
∫
W

ζ(3) · hV (f ),∗(δ(B)) = 0.

(The last equality holds because hV (f ),∗(∆(B)) = 0.)
Lastly, by (3.18), we have

□(3.20)
∫
V (f )

δ(B)2 = −81.

Lemma 3.10. The restriction of ρ̃ defines a map ν∗∆(B)→ ∆(A) of degree 2 and a birational map D→ ∆(A).
We have

(3.21) ρ̃∗δ(A) = ν∗δ(B) + cl(D).

Proof. The first sentence is immediate. We also see that ρ is unramified at the generic point of ∆(B), and
hence

(3.22) ρ̃∗∆(A) = ν∗∆(B) +mcl(D).

Since KX ≡D, we get m = 2 by the adjunction formula for the map ρ̃. Dividing by 2 the equality in (3.22),
we get (3.21). □

Proposition 3.11. We have

c1(NV (f )/K2(B)) =
81∑
i=1

cl(Ri) = δ(B)|V (f ),(3.23) ∫
V (f )

c2(NV (f )/K2(B)) = 34,(3.24)

∫
V (f )

c2(K2(B)) = 35.(3.25)

Proof. By Proposition 3.8, we have c1(V (f )) = −
∑81
i=1 cl(Ri), and hence (3.23) holds because c1(K2(B)) = 0

(remember Proposition 3.8).
In order to prove (3.24), we notice that

(3.26) 4 · 81 =
∫

K2(A)

δ(A)4 =
1
4

∫
X

(ν∗δ(B) + cl(D))4 =

=
1
4

∫
K2(B)

δ(B)4 +
∫
X

ν∗δ(B)3 · cl(D) +
3
2

∫
X

ν∗δ(B)2 · cl(D)2+

+
∫
X

ν∗δ(B) · cl(D)3 +
1
4

∫
X

cl(D)4 = 81+
3
2
· 81+81+

1
4

∫
X

cl(D)4.
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(To compute the third and fourth integrals into the second line, use Corollary 3.9 and (3.23).) It follows that

(3.27) 2 · 81 =
∫
X

cl(D)4 =
∫
V (f )

c2(NV (f )/K2(B))− c1(NV (f )/K2(B))
2.

By (3.23), we get that (3.24) holds.
Lastly, (3.25) follows from (3.23), (3.24) and the normal exact sequence for the restriction of ΘX to

V (f ). □

3.6. Chern classes, II

By definition, D is P(NV (f )/K2(B)), where NV (f )/K2(B) is the normal bundle of V (f ) in K2(B). Let
νD : D→ V (f ) be the structure map (i.e., the restriction of ν), and let

(3.28) 0 −→ λ −→ ν∗DNV (f )/K2(B) −→ ξ −→ 0

be the tautological exact sequence, where λ = OD(−1) is the normal bundle of D in X. Let i : D ↪→ X be
the inclusion map.

Lemma 3.12. We have

(3.29) c2(X) = ν
∗c2(K2(B)) + i∗[c1(ξ)].

Proof. The exact sequence

(3.30) 0 −→ΘX
dν−→ ν∗ΘK2(B) −→ i∗ξ −→ 0

gives

(3.31) c(X) = ν∗c(K2(B)) · c(i∗ξ)−1.

The Chern classes of i∗ξ are expressed via the GRR theorem. One gets that

(3.32) c1(i∗ξ) = cl(D), c2(i∗ξ) = i∗[c1(λ)− c1(ξ)].

Plugging this into (3.31), we get the lemma. □

Lemma 3.13. For E = E (L ), we have

(3.33) ch2(E ) =
1
2
ρ̃∗

{
ν∗(µB(ωB) + xδ(B))

2 + (2y − 1)ν∗(µB(ωB) + xδ(B)) · cl(D)
}
+

+
1
12
ρ̃∗

{
i∗
[
c1(ξ) + (6y2 − 6y +1)c1(λ)

]}
+

1
12
ρ̃∗ (ν

∗c2(K2(B)))−
1
3
c2(K2(A)).

Proof. Plug (3.13) and (3.29) in the second equation of Lemma 3.6. □

We are now ready to compute
∫
K2(A)

∆(E ) ·α2 for α ∈H2(K2(A)).

Proposition 3.14. For E = E (L ) and γ ∈H2(A), we have

(3.34)
∫

K2(A)

∆(E ) ·µA(γ)2 = 18
(
4(x − y)2 +4(x − y) + 3

)
q(µA(γ)).

Proof. First we notice that

(3.35)
∫
B

f ∗γ2 = 2
∫
A

γ2,

∫
A

(f∗ωB)
2 = 2

∫
B

ω2
B, ρ̃∗µA(γ) = ν

∗µB(f
∗γ).
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The first equality holds because degf = 2. The second equality holds by the following series of equalities:

(3.36)
∫
A

(f∗ωB)
2 =

∫
A

f∗(ωB · f ∗(f∗ωB)) =
∫
B

ωB · (ωB + T ∗ϵωB) = 2
∫
B

ω2
B.

(We let Tϵ : B→ B be the translation by ϵ.) The third equality in (3.35) is proved by representing the Poincaré
dual of µA(γ) and µB(f ∗γ) as in the proof of the first equality in (3.15).

By Proposition 3.7, we have

(3.37)
∫

K2(A)

ch1(E )2 ·α2 =

24
∫
B

ω2
B − 18(2x+2y − 1)2

 ·

∫
A

γ2

+24


∫
A

f∗ωB ·γ


2

.

On the other hand, Lemma 3.13 and the third equality in (3.35) give that

(3.38)
∫

K2(A)

ch2(E ) ·µA(γ)2 =
1
2

∫
K2(B)

(µB(ωB) + xδ(B))
2 ·µB(f ∗γ)2 −

1
2

(
y2 − y

) ∫
V (f )

µB(f
∗γ)2+

+
1
12

∫
K2(B)

c2(K2(B)) ·µB(f ∗γ)2 −
1
3

∫
K2(A)

c2(K2(A)) ·µA(γ)2.

Recalling the results of Section 2.2 and Corollary 3.9, we get that

(3.39)
∫

K2(A)

ch2(E ) ·µA(γ)2 = 3



∫
B

ω2
B

− 6x2 − 6y2 +6y − 3

 ·

∫
A

γ2

+3


∫
B

ωB · f ∗γ


2

.

Since E has rank 4, we have ∆(E ) = ch1(E )2 − 8ch2(E ). The proposition follows from (3.37) and (3.39)
(recall that µ : H2(A)→H2(K2(A)) is an isometry). □

Proposition 3.15. For E = E (L ) and γ ∈H2(A), we have

(3.40)
∫

K2(A)

∆(E ) ·µA(γ) · δ(A) = 0.

Proof. By Proposition 3.7, we have∫
K2(A)

ch21E ) ·µA(γ) · δ(A) = −72(2x+2y − 1)
∫
A

γ · f∗ωB.

Lemmas 3.13 and 3.10, Corollary 3.9 and (3.23) give that∫
K2(A)

ch2E ) ·µA(γ) · δ(A) =
1
2

∫
K2(B)

(µB(ωB) + xδ(B))
2 ·µB(f ∗γ) · δ(B) +

+
1
2
(2y − 1)ν∗(µB(ωB) + xδ(B)) ·µB(f ∗γ) · cl(D)2 =

= −9(2x+2y − 1)
∫
B

ωB · f ∗γ.

Since ∆(E ) = ch1(E )2 − 8ch2(E ), the proposition follows from the above equalities. □

Proposition 3.16. Keeping notation as above, we have

(3.41)
∫

K2(A)

∆(E (L )) · δ(A)2 = 54((x − y)2 + (x − y) + 1)q(δ(A)).
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Proof. Let E = E (L ). By Proposition 3.7, we have

(3.42)
∫

K2(A)

ch1(E )2 · δ(A)2 = 324(2x+2y − 1)2 − 72
∫
A

(f∗ωB)
2.

By Lemmas 3.13 and 3.10, we have

(3.43)
∫

K2(A)

ch2(E ) · δ(A)2 = −1
3

∫
K2(A)

c2(K2(A)) · δ(A)2+

+
1
2

∫
K2(B)

(µB(ωB) + xδ(B))
2 · δ(B)2 + 1

12

∫
D

[
c1(ξ) + (6y2 − 6y +1)c1(λ)

]
· δ(B)2+

+
1
12

∫
K2(B)

c2(K2(B)) · δ(B)2 + (2y − 1)
∫
X

ν∗((µB(ωB) + xδ(B)) · δ(B)) · cl(D)2+

+
1
6

∫
D

[
c1(ξ)∪ c1(λ) + (6y2 − 6y +1)c1(λ)

2
]
· δ(B) +

+
1
2

∫
X

ν∗(µB(ωB) + xδ(B))
2 · cl(D)2 +

1
2
(2y − 1)

∫
X

ν∗(µB(ωB) + xδ(B)) · cl(D)3+

+
1
12

∫
D

[
c1(ξ) · c1(λ)2 + (6y2 − 6y +1)c1(λ)

3
]
+

1
12

∫
X

ν∗c2(K2(B)) · cl(D)2.

We have proved all the results needed to compute each integral above. In particular, notice that (3.28) and
Proposition 3.11 give the following relations in the cohomology ring of D :

c1(ξ) =
81∑
i=1

cl(Ri)− c1(λ), c1(λ)
2 = ν∗D

 81∑
i=1

cl(Ri)

 · c1(λ)− 81ν∗D(ηV (f )),

where νD : D→ V (f ) is the natural map (the restriction of ν to D) and ηV (f ) is the fundamental class of
V (f ). It follows that

(3.44)
∫

K2(A)

ch2(E ) · δ(A)2 = =
81
2

(
5x2 +6xy +5y2 − 3x − 5y +2

)
− 18

∫
B
ω2
B.

The proposition follows from (3.42) and (3.44) because ∆(E ) = −8ch2(E ) + ch1(E )2. □

Notice that the right-hand sides of (3.34), (3.40) and (3.41) are polynomials in (x − y); this is explained by
Remark 3.3.

3.7. Modularity

By Propositions 3.14, 3.15 and 3.16, the sheaf E (L ) is modular if and only if

(3.45) 18(4(x − y)2 +4(x − y) + 3) = 18(3(x − y)2 +3(x − y) + 3).

The solutions are given by x − y = 0 and x − y = −1. For modular E (L ), one gets that

(3.46) d(E (L )) = 54

by plugging the values x− y = 0 and x− y = −1 into the polynomial on the right-hand side of (3.34) or (3.41)
(we recall that d(E (L )) is defined by the equation in (1.7)).
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3.8. Action of Aut0(K2(A)) on E (L )

We prove that Aut0(K2(A)) acts trivially on E (L ). First we describe generators of Aut0(K2(A)).
For τ ∈ A[3], let gτ : K2(A) → K2(A) be the automorphism mapping a subscheme Z to τ(Z). Then
gτ ∈ Aut0(K2(A)), and the set of such automorphism is a normal subgroup isomorphic to Z/(n + 1)4.
Let ι : K2(A) → K2(A) be the automorphism mapping a subscheme Z to −1(Z), where −1 : A → A is
multiplication by −1. Then ι belongs to Aut0(K2(A)), and moreover Aut0(K2(A)) is generated by the
collection of the gτ and ι; see [BNWS11, Corollary 5].

Proposition 3.17. Let L be a line bundle on X as in Section 3.1 (no further assumptions on L ). If ϕ ∈
Aut0(K2(A)), then

(3.47) ϕ∗(E (L )) � E (L ).

Proof. Let E := E (L ). We must prove that g∗τ (E ) � E for all τ ∈ A[3] and that ι∗(E ) � E . We start by
noting that the restriction of f to B[3] defines an isomorphism B[3]→ A[3]. Let λ ∈ B[3] be the element
such that f (λ) = τ . The corresponding automorphism gλ : K2(B)→ K2(B) maps V (f ) to itself and hence
lifts to an automorphism g̃λ : X→ X. Moreover, g̃∗λ(L ) �L because gλ acts trivially on H2(K2(B)). Since
ρ̃ ◦ g̃λ = gτ ◦ ρ̃, we get that g∗τ (E ) � E . The proof that ι∗(E ) � E is similar. □

3.9. The discriminant

We prove that the equality in (3.5) holds. We assume that E (L ) is modular; i.e., either y = x or y = x+1.
As mentioned in Section 2.1, this means that

(3.48) ∆(E (L )) ∈Qc2(K2(A))⊕ Sym2H2(M)⊥
Q
,

where c2(K2(A)) is the orthogonal projection of c2(K2(A)) in the image of the map Sym2H2(K2(A))→
H4(K2(A)). The right-hand side of (3.48) is studied in [HT13]. In Theorem 4.4 of op. cit., one finds
the definition of submanifolds Zτ ⊂ K2(A) for τ ∈ A[3] with the following properties: The cohomology
classes {cl(Zτ )}τ∈A[3] give a basis of the right-hand side of (3.48), and the action of A[3] on the Zτ is by
translation of the index. It follows that the subspace of invariants for this action has dimension 1, and since
c2(K2(A)) is a nonzero class, it generates the space of invariants (in fact, by [HT13, Proposition 5.1], we have
c2(K2(A)) =

1
3
∑
τ cl(Zτ )). Since (3.47) holds for all ϕ = gτ , where τ ∈ A[3], ∆(E (L )) is invariant and hence

it is a multiple of c2(K2(A)). By (3.46) and (2.6), it follows that ∆(E (L )) = c2(K2(A)).
For later use, we record here the following immediate consequence of the equality in (3.5):

(3.49) ch2(E (L )) =
1
8

(
c1(E (L ))2 − c2(K2(A))

)
.

3.10. Local structure of modular E

Proposition 3.18. Let L be a line bundle on X such that

c1(L ) = ν∗(µB(ωB) + xδ(B)) + xcl(D);

i.e., x = y in (3.4). Then Ri ρ̃∗L = 0 for i > 0, and E (L ) is locally free.

Proof. Let X
ρ̃2−→ X

ρ̃1−→ K2(A) be the Stein factorization of ρ̃; see Proposition 3.5. It suffices to prove that
ρ̃2,∗L is an invertible sheaf and that

(3.50) Ri ρ̃2,∗L = 0, i > 0.

By (3.6) and (3.7), we may assume that x = y = 0. Let F : B[3] ↪→ X be the embedding of item (b) of
Proposition 3.5. The map ρ̃2 is an isomorphism over (X \ F(B[3])). Hence away from F(B[3]) the sheaf
ρ̃2,∗L is invertible and (3.50) holds.
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Let b ∈ B[3]. The fiber R̃b = ρ̃
−1
2 (F(b)) is mapped isomorphically to Rb ⊂ K2(B), where Rb is defined

in (3.10). Since x = y = 0, the line bundle L is the pull-back of a line bundle on B(3) via the Hilbert–Chow
map K2(B)→ B(3). The curve Rb (a P

1) is contracted by the Hilbert–Chow map. It follows that L is
trivial on an open neighborhood U of R̃b. Shrinking U , we may assume that ρ̃2(U ) is open (because
R̃b = ρ̃

−1
2 (F(a)), where a = f (b), and ρ̃2 is projective), and hence ρ̃2,∗L is invertible in a neighborhood of

F(b).
By Proposition 3.5, we know that X has rational singularities. Hence (3.50) holds because in a neighbor-

hood of R̃b we have L � OX . □

4. Euler characteristic of the endomorphism bundle

4.1. The result

The notation introduced in Section 3 is in force throughout the present section. The main result is the
following.

Proposition 4.1. Assume that c1(L ) = ν∗(µB(ωB)), where ωB ∈NS(B). Then

(4.1) χ(K2(A),End(E (L )) = 3.

4.2. Preliminary computations

Recall that i : D ↪→ X is the inclusion of the exceptional divisor of the blow-up map ν : X→ K2(B). Let
λ and ξ be the line bundles on D appearing in (3.28).

Lemma 4.2. Keep notation as above. Then

(4.2) Td3(X) = −
1
24

cl(D) · ν∗(c2(K2(B)))−
1
24
i∗(c1(λ) · c1(ξ)).

Proof. We compute modulo H8(X;Q). By the equalities in (3.32), we have

Td(i∗(ξ)) ≡ 1+
1
2
cl(D) +

1
12

(
cl(D)2 + i∗(c1(λ)− c1(ξ))

)
+

1
24

cl(D) · i∗(c1(λ)− c1(ξ)).

By the exact sequence in (3.30) and multiplicativity of the Todd class, we get that

Td(X) = ν∗Td(K2(B)) ·Td(i∗(ξ))−1 ≡

≡ 1− 1
2
cl(D) +

1
12

(
ν∗c2(K2(B) + cl(D)2 + i∗(c1(λ) + c1(ξ))

)
−

− 1
24

cl(D) · ν∗c2(K2(B))−
1
24
i∗(c1(λ) · c1(ξ). □

Lemma 4.3. Let ρ̃ : X→ K2(A) be the lifting of ρ : K2(B)d K2(A). Then

(4.3) ρ̃∗(ch1(E (L )) = 4ν∗(µB(ωB))− ν∗δ(B)− cl(D).

Proof. By the equalities in (3.16) and in (3.21), we have

ρ̃∗(ch1(E (L )) = ρ̃∗(2µA(f∗ωB)− δ(A)) = 2ρ̃∗(µA(f∗ωB))− ν∗δ(B)− cl(D).

Arguing as in the proof of the first equality in (3.15), we get that ρ̃∗(µA(f∗ωB)) = 2ν∗(µB(ωB)), and the lemma
follows. □
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4.3. Chern numbers of E (L )

Proposition 4.4. Keep hypotheses as in Proposition 4.1, and set ωB ·ωB = 2a. Then the following equalities hold:

(4.4)
∫
K2(A)

ch1(E (L ))4 = 2304a2 − 1728a+324,

(4.5)
∫
K2(A)

ch1(E (L ))2 · ch2(E (L )) = 576a2 − 540a+81,

(4.6)
∫
K2(A)

ch1(E (L )) · ch3(E (L )) = 24a2 − 45a+ 27
2
,

(4.7)
∫
K2(A)

ch2(E (L ))2 = 36a2 − 54a+27

and

(4.8)
∫
K2(A)

ch4(E (L )) =
3
2
a2 − 9

2
a+

9
4
.

Proof. Let E = E (L ). Let

(4.9) ωA := f∗(ωB).

Notice that f ∗(ωA) = 2ωB because the covering involution of f : B→ A acts trivially on cohomology. It
follows that

(4.10)
∫
A
ω2
A = 4a.

By the equality in (3.16), we have ch1(E ) = 2µA(ωA)− δ(A), and hence∫
K2(A)

ch1(E )4 =
∫
K2(A)

(2µA(ωA)− δ(A))4 = 2304a2 − 1728a+324.

This proves the equality in (4.4).
By the equality in (3.49), we have∫
K2(A)

ch1(E )2 · ch2(E ) =
1
8

∫
K2(A)

(2µA(ωA)− δ(A))4−

− 1
8

∫
K2(A)

(2µA(ωA)− δ(A))2 · c2(K2(A)) = 576a2 − 540a+81.

This proves proves the equality in (4.5).
Let us prove the equality in (4.6). By Proposition 3.18 and the GRR theorem, we have

(4.11) ch(E ) ·Td(K2(A)) = ρ̃∗
(
ec1(L ) ·Td(X)

)
.

Multiplying both sides by ch1(E ) and integrating, we get that

(4.12)
∫
K2(A)

ch1(E ) · ch3(E ) = − 1
12

∫
K2(A)

c2(K2(A)) · ch1(E )2+

+
∫
X

(
Td3(X) +Td2(X) · c1(L ) +

1
2
Td1(X) · c1(L )2 +

1
6
c1(L )3

)
· ρ̃∗ ch1(E ).



Rigid stable rank 4 vector bundles on HK fourfolds of Kummer type 19Rigid stable rank 4 vector bundles on HK fourfolds of Kummer type 19

Lemmas 4.2 and 4.3, together with the results of Section 3, allow us to evaluate all the integrals appearing
on the right-hand side of (4.12). In fact, by the equality in (2.6), we have

(4.13) − 1
12

∫
K2(A)

c2(K2(A)) · ch1(E )2 = −72a+27.

By Lemmas 4.2 and 4.3, we have

(4.14)
∫
X
Td3(X) · ρ̃∗ ch1(E ) = −1

6

∫
X
cl(D) · ν∗(c2(K2(B)) ·µB(ωB)) +

+
1
24

∫
X
cl(D) · ν∗(c2(K2(B)) · δ(B)) +

1
24

∫
X
cl(D)2 · ν∗(c2(K2(B)) −

− 1
6

∫
X
i∗(c1(λ) · c1(ξ)) · ν∗(µB(ωB)) +

1
24

∫
X
i∗(c1(λ) · c1(ξ)) · ν∗(δ(B)) +

+
1
24

∫
X
i∗(c1(λ) · c1(ξ)) · cl(D).

The first two integrals in the right-hand side of the above equality vanish for dimension reasons. The equality
in (3.25) gives that

(4.15)
1
24

∫
X
cl(D)2 · ν∗(c2(K2(B)) = −

35

24
.

By the exact sequence in (3.28), we have c1(λ) · c1(ξ) = ν∗D(c2(NV (f )/K2(B))). It follows that the fourth and
fifth integrals in the right-hand side of (4.14) vanish, and by the equality in (3.24), we also get that

(4.16)
1
24

∫
X
i∗(c1(λ) · c1(ξ)) · cl(D) = −3

4

24
.

Summing up, one gets that

(4.17)
∫
X
Td3(X) · ρ̃∗ ch1(E ) = −27

2
.

Next we claim that

(4.18)
∫
X
Td2(X) · c1(L ) · ρ̃∗ ch1(E ) = 36a.

In fact, by the equalities in (3.13) and in (3.29), we have

(4.19) Td2(X) =
1
12

(ν∗c2(K2(B)) + i∗(c1(λ) + c1(ξ))) .

By the exact sequence in (3.28) and the equality in (3.23), we may rewrite (4.19) as

(4.20) Td2(X) =
1
12

(
ν∗c2(K2(B)) + i∗(ν

∗
Dδ(B))

)
.

As is easily checked (use the equality in (2.7)), we have

(4.21)
1
12

∫
X
ν∗c2(K2(B)) · c1(L ) · ρ̃∗ ch1(E ) = 36a.

On the other hand, we have

(4.22)
1
12

∫
X
i∗(ν

∗
Dδ(B)) · c1(L ) · ρ̃∗ ch1(E ) = 0.

(In order to get (4.22), one needs to know that
∫
V (f )µB(ωB) · δ(B) = 0, which follows from Corollary 3.9.)

The equality in (4.18) follows at once from the equalities in (4.21) and in (4.22). Lastly, one checks easily that

(4.23)
1
2

∫
X
Td1(X) · c1(L )2 · ρ̃∗ ch1(E ) = −9a
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and

(4.24)
1
6

∫
X
c1(L )3 · ρ̃∗ ch1(E ) = 24a2.

The equality in (4.6) follows at once from the equalities in (4.13), (4.17), (4.18), (4.23) and (4.24).
The equality in (4.7) is proved by invoking the equality in (3.49).
Lastly we prove the equality in (4.8). We have L � ν∗(L0), where L0 is the line bundle on K2(B) such

that c1(L0) = µB(ωB). By Proposition 3.18, we have

(4.25) χ(K2(A),E ) = χ(X,L ) = χ(K2(B),L0).

The Hirzebruch–Riemann–Roch (HRR) formula for HK manifolds of Kummer type reads

(4.26) χ(K2(B),L0) = 3 ·
(q(L0)

2 +2
2

)
= 3 ·

(
a+2
2

)
=
3
2
a2 +

9
2
a+3.

On the other hand, the HRR formula for E reads

(4.27) χ(K2(A),E ) = 12+
∫

ch2(E ) ·Td2(K2(A)) +
∫

ch4(E ).

(We denote by
∫
the integral over K2(A).) By the equality in (3.49), we have

(4.28) 96
∫

ch2(E (L )) ·Td2(K2(A)) =

= 12
∫ (

(2µA(ωA)− δ(A))2 − c2(K2(A))
)
·Td2(K2(A)) =

=
∫ (

(2µA(ωA)− δ(A))2 − c2(K2(A))
)
· c2(K2(A)) = 24(36a− 45).

(One must invoke the equalities in (2.6) and (2.7).) The above equality together with the equality in (4.27)
gives the equality in (4.8). □

4.4. Proof of Proposition 4.1

Let E = E (L ), and let η ∈H8(K2(A);Z) be the fundamental class of K2(A). By the HRR theorem, we
have

χ(K2(A),End(E ) =
∫

ch(E∨) · ch(E ) ·Td(K2(A)) =

= 48+
1
12

∫
(8ch2(E )− ch1(E )2) · c2(K2(A) +

∫
8ch4(E )− 2ch1(E ) · ch3(E ) + ch2(E )2.

By the equalities in (3.49) and (2.7), we have

(4.29)
1
12

∫
(8ch2(E )− ch1(E )2) · c2(K2(A) = −

1
12

∫
c2(K2(A) · c2(K2(A) = −63.

Using the equalities in (4.8), (4.6) and (3.49), one gets that

(4.30)
∫

8ch4(E )− 2ch1(E ) · ch3(E ) + ch2(E )2 = 18.

Adding up one gets the equality in (4.1)
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5. The vector bundle E (L ) via Bridgeland–King–Reid

5.1. Outline of the section

The contents of the present section are entirely due to the anonymous referee (if there are incorrect
statements, I am responsible for them). The notation introduced in Section 3 is in force throughout the
section. The first result is a conceptual proof that if the class ωB ∈NS(B) satisfies a suitable hypothesis, then
E (L ), for y = x or y = x +1, is modular, locally free, and moreover all cohomology groups of the vector
bundle of its traceless endomorphisms vanish. This is proved by showing that, via Krugs’ version of the
Bridgeland–King–Reid (BKR) equivalence, E (L ) corresponds to a simple semi-homogeneous S3-equivariant
vector bundle on NA(3) ⊂ A3, the kernel of the summation map A3→ A. Actually the construction gives
many other modular vector bundles on Kn(A), corresponding to isogenies f : B→ A with kernels of arbitrary
cardinality (satisfying a suitable hypothesis).

5.2. The main results

Let Xn+1(A) be the isospectral Hilbert scheme of n+ 1 points on A (see [Hai01, Definition 3.2.4]). We
have a commutative diagram

(5.1) Xn+1(A)

η̃
��

τ̃
// An+1

π̃
��

A[n+1] γ̃
// A(n+1),

where π̃ is the quotient map by the action of the symmetric group Sn+1 and γ̃ is the cycle (or Hilbert-
to-Chow) map. Note that Sn+1 acts on all the spaces in the above diagram (the action on the spaces
on the bottom row is trivial) and the maps in the diagram are Sn+1-equivariant. Note that Sn+1 maps
NA(n+1) (the kernel of the summation map An+1→ A) to itself. Let X0

n+1(A)D τ̃−1NA(n+1). We have
the commutative diagram

(5.2) X0
n+1(A)

η

��

τ
// NA(n+1)

π
��

Kn(A)
γ

// NA(n+1)/Sn+1.

Let Db
Sn+1

(NA(n+1)) be the bounded derived category of the (abelian) category of Sn+1-equivariant coherent
sheaves on NA(n+1). Krugs’ version (see [Kru18, Proposition 2.8]) of the BKR equivalence is given by the
functor

(5.3) ΦA(n+1)D ηSn+1
∗ ◦ τ∗ : Db

Sn+1
(NA(n+1)) −→Db(Kn(A)),

where ηSn+1
∗ is the derived functor of the functor Coh(X0

n+1(A))→ Coh(Kn(A)) mapping F to the Sn+1-
invariant subsheaf of η∗(F ).

Now let f : B→ A be an isogeny of abelian surfaces (of arbitrary degree). The homomorphism of abelian
varieties

(5.4) NB(n+1)
F−→ NA(n+1)

(b1) + · · ·+ (bn+1) 7−→ (f (b1)) + · · ·+ (f (bn+1))

is Sn+1-equivariant. Let L be a line bundle on B. Let L̃(n+1) be the line bundle on NB(n+1) defined by

(5.5) L̃(n+1)D
n+1⊗
i=1

pr∗i L|NB(n+1).
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The symmetric group Sn+1 acts on L̃(n + 1) by permutations; we call this action λ+. Twisting the
permutation action by the sign representation, we get another action, that we denote by λ−. Thus we get
two Sn+1-equivariant line bundles (̃L(n+1),λ+) and (̃L(n+1),λ−). Since the homomorphism F in (5.4) is
Sn+1-equivariant, we have the Sn+1-equivariant vector bundles F∗(̃L(n+1),λ±) on NA(n+1). Let

(5.6) E±(L)D ΦA(n+1)
(
F∗

(̃
L(n+1),λ±

))
.

Then E±(L) is a locally free sheaf. In fact, the map η in (5.2) is finite, and moreover it is flat because X0
n+1(A)

is CM by [Hai01, Theorem 3.1]. The rank of E±(L) is equal to the degree of F, i.e., |ker(f )|n. In order
to state the first main result, we let ϕL̃(n+1) : NB(n + 1)→ NB(n + 1)∨ be the homomorphism defined by

ϕL̃(n+1)(x)D [T ∗x L̃(n+1)⊗ L̃(n+1)−1], where Tx : NB(n+1)→NB(n+1) is translation by x.

Theorem 5.1. Let F be the homomorphism in (5.4), and suppose that

(5.7) ker(F)∩ker
(
ϕL̃(n+1)

)
= 0.

Then

(5.8) Hp
(
Kn(A),End

0 (E±(L))
)
= 0

for all p, where End0(E±(L)) is the sheaf of traceless endomorphisms of E±(L).

The proof of Theorem 5.1 is in Section 5.3.

Corollary 5.2. Keep hypotheses as in Theorem 5.1. Then the natural maps

Def(K2(A),E±(L)) −→Def(K2(A),detE±(L))

and

(5.9) Def(K2(A),P(E±(L))) −→Def(K2(A))

are smooth. Moreover, E±(L) is a modular vector bundle.

Proof. The first statement is an immediate consequence of the vanishing in (5.8) for p = 2 and results in
deformation theory; see [O’G23, Proposition 3.6]. By the surjectivity of the map in (5.9), the discriminant
∆(E±(L)) remains of type (2,2) for all small deformations of K2(A); see the proof of Corollary 3.7 in op. cit.
This implies that E±(L) is modular. □

Next we give the relation between the vector bundles E±(L) and E (L ). Thus we assume that the isogeny
f : B→ A has degree 2, with kernel generated by 0 , ϵ ∈ B[2].

Proposition 5.3. Let L be a line bundle on B, and let ωB = c1(L) ∈NS(B). Let L+, L− be the line bundles on
X (notation as in Section 3 ) that one gets by setting x = y = 0 and x = −1, y = 0, respectively, in (3.4). Then
E (L±) � E±(L).

The proof of Proposition 5.3 is sketched in Section 5.3. Let ϕL : B→ B∨ be the homomorphism defined
by ϕL(b)D [T ∗bL⊗L

−1].

Corollary 5.4. Keep notation and hypotheses as in Proposition 5.3. If ϵ < kerϕL, then

Hp
(
Kn(A),End

0(E (L±))
)
= 0

for all p, E (L±) is a modular vector bundle, and the natural map

Def(K2(A),E (L±)) −→Def(K2(A),detE (L±))

is smooth.
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Proof. By Proposition 5.3 and Corollary 5.2, it suffices to prove that the equality in (5.7) holds. Let
F : NB(3)→ NA(3) be as in (5.4). The nonzero elements of kerF are (ϵ,ϵ,0) and its permutations. By
symmetry, it suffices to prove that

(5.10) T ∗(ϵ,ϵ,0)L̃(3)⊗ L̃(3)
−1

� ONB(3).

Let L̂(3) be the line bundle on B3 given by L̂(3)D
⊗3

i=1pr
∗
i L. Thus L̃(3) = L̂(3)|NB(3), and it suffices to

prove that

(5.11) T ∗(ϵ,ϵ,0)̂L(3)⊗ L̂(3)
−1 < ker

(
Pic0(B3) −→ Pic0(NB(3))

)
.

(Abusing notation, we denote by T(ϵ,ϵ,0) both the translation of NB(3) and that of B3.) The kernel in the
right-hand side of (5.11) is equal to σ ∗3(Pic

0(B)), where σ3 : B3→ B is the summation map. One checks (5.11)
by restricting T ∗(ϵ,ϵ,0)̂L(3)⊗ L̂(3)

−1 to B× {(0,0)} and {(0,0)} ×B (both identified with B). The first restriction

is isomorphic to T ∗bL⊗ L
−1, which is nontrivial by hypothesis, while the second restriction is trivial. This

shows that the left-hand side of (5.11) does not belong to σ ∗3(Pic
0(B)). This proves that (5.10) holds. □

5.3. Proofs of the main results

Proof of Theorem 5.1. By the equality in (5.7), the vector bundle F∗(̃L(n+ 1)) is simple semi-homogeneous;
see [Muk78, Propositions 5.4 and 5.6]. By Proposition 5.9 in op. cit., it follows that for all p, we have an
isomorphism

(5.12) Hp(Tr) : Hp
(
An+1,End

(
F∗

(̃
L(n+1)

))) ∼−→Hp
(
An+1,OAn+1

)
.

Hence we get a series of isomorphisms

ExtpKn(A)(E+(L),E+(L)) � Extp
Db

Sn+1
(NA(n+1))

(
F∗

(̃
L(n+1),λ+

)
,F∗

(̃
L(n+1),λ+

))
�

� ExtpNA(n+1)
(
F∗

(̃
L(n+1)

)
,F∗

(̃
L(n+1)

))Sn+1
�

�Hp
(
NA(n+1),ONA(n+1)

)Sn+1
�

C if p ∈ {0,2,4, . . . ,2n},
0 otherwise.

In fact, the first isomorphism holds because of the BKR equivalence in (5.3), the second isomorphism holds
because λ+ is the permutation representation, the third isomorphism holds because of the isomorphism
in (5.12), and the last isomorphism holds because by the BKR equivalence in (5.3), the left-hand side (of the
isomorphism) is isomorphic to Hp(Kn(A),OKn(A)). This proves the equality in (5.8) for E+(L). To prove that
the equality also holds for E−(L), it suffices to show that

(5.13) Extp
Db

Sn+1
(NA(n+1))

(
F∗

(̃
L(n+1),λ+

)
,F∗

(̃
L(n+1),λ+

))
�

� Extp
Db

Sn+1
(NA(n+1))

(
F∗

(̃
L(n+1),λ−

)
,F∗

(̃
L(n+1),λ−

))
.

Recall that λ− is obtained by tensoring λ+ by the sign representation χ. The isomorphism in (5.13) holds
because tensorization by χ commutes with the Sn+1-equivariant morphism F∗, and moreover tensorization
by χ is an autoequivalence of Db

Sn+1
(NA(n+1)). □

Next we sketch how one proves Proposition 5.3. Let ΦB(n+1) be the equivalence of categories that one
gets upon replacing A by B in (5.3). We have the functor

(5.14) ΞD ΦA(3) ◦F∗ ◦ΦB(3)−1 : Db(K2(B)) −→Db(K2(A)).

The key result is the following.

Proposition 5.5. The kernel of Ξ is isomorphic to (ρ̃,ν)∗OX (notation as in (3.3)).
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We show how Proposition 5.3 follows from Proposition 5.5, and after that we indicate the key elements
that go into the proof of Proposition 5.5.

Proof of Proposition 5.3 granting Proposition 5.5. We have

ΦB(n+1)−1
(̃
L(n+1),λ+

)
= µB(ωB), ΦB(n+1)−1

(̃
L(n+1),λ−

)
= µB(ωB)− δ(B).

Hence E+(L) = Ξ(µB(ωB)) and E−(L) = Ξ(µB(ωB)− δ(B)). By Proposition 5.5, the former is isomorphic to
E (L+) and the latter is isomorphic to E (L−). □

Remark 5.6. In what follows, we identify K2(A) (and K2(B)) with the parameter space for S3-clusters in
NA(3) (respectively, clusters in NB(3)). If [Z] ∈ K2(A), we let Z ⊂ NA(3) be the corresponding (length 6)
S3-cluster, and similarly for [W ] ∈ K2(B).

Lemma 5.7. Let W be an S3-cluster in NB(3), and let λW be the S3-linearization of its structure sheaf. Let Z
be an S3-cluster in NA(3), let Y D F−1(Z), and let λY be the S3-linearization of its structure sheaf.

(1) If W is a subscheme of Y , then HomDb
S3

(NB(3)
((OY ,λY ), (OW ,λW )) �C.

(2) If W is not a subscheme of Y , then Extp
Db

S3
(NB(3)

((OY ,λY ), (OW ,λW )) = 0 for all p.

Proof. If W is a subscheme of Y , then HomDb
S3

(NB(3)
((OY ,λY ), (OW ,λW )) is nonzero. Suppose that

h ∈HomDb
S3

(NB(3)
((OY ,λY ), (OW ,λW )) is nonzero. Then h(1) , 0 because 1 generates the stalk of OY at

every point (as a module over ONB(3)). Since h(1) ∈H
0(W,OW )S3 , which is 1-dimensional and generated by

the constant function 1 (because W is an S3-cluster), we get that h(1) generates the stalk of OW at each
point in the support of W . It follows that h is surjective and that we may rescale h so that h(1) = 1. But then
h is a surjective homomorphism of sheaves of ONB(3)-algebrae, and hence W is a subscheme of Y . Since h is
determined by h(1), we also get that HomDb

S3
(NB(3)

((OY ,λY ), (OW ,λW )) � C. This proves item (1), and it

proves the case p = 0 of item (2). One proves the rest of item (2) by considering the BKR equivalence ΦB(3)
which associates to (OW ,λW ) and (OY ,λY ), respectively, O[W ], where [W ] ∈ K2(B), and T , where T is a
length 4 sheaf on K2(B). □

Before stating the next lemma, we note that the map (ν, ρ̃) : X→ K2(B)×K2(A) defines an isomorphism

(5.15) X ∼−→
{
([W ], [Z]) ∈ K2(B)×K2(A) |W ⊂ f −1(Z)

}
.

Lemma 5.8. Keeping in mind (5.15) and the identification in Remark 5.6, we have the equality

(5.16) X =
{
([W ], [Z]) ∈ K2(B)×K2(A) |W ⊂ F−1(Z)

}
.

Proof. Let Y be the right-hand side of (5.16). By Lemma 5.7 and the upper semicontinuity of cohomology, Y
is closed. Let us prove that X ⊂ Y . Since X is irreducible (it is a blow-up of K2(B)), it suffices to prove that if
([W ], [Z]) is a general point of X, then W ⊂ F−1(Z). This is clear because W , Z are reduced and hence W ,
Z are reduced S3-clusters.

Let us prove that Y ⊂ X. If V is a zero-dimensional scheme and x is a point of V , we let V(x) be the
connected component of V containing x. Let ([W ], [Z]) ∈ Y , i.e.,W ⊂ F−1(Z). Let b = (b1,b2,b3) ∈ suppW ,
and let F(b) = a = (a1, a2, a3). By hypothesis, W(b) ⊂ F−1(Z(a)), and since F is étale, it follows that
F(W(b)) ⊂ Z(a). Let p̃i : NB(3)→ B be the restriction of the ith projection B3 → B, and define similarly
pi : NA(3)→ A. Haiman proved that pi(Z) = Z as schemes (and of course p̃i(W ) =W ); see the discussion
preceding Proposition 3.2 in [Kru18]. Hence we get that

(5.17) f
(
W(b1)

)
= f

(
p̃1

(
W (b)

))
= p1

(
F
(
W (b)

)
⊂ p1

(
Z(a)

)
= Z(a1).

Since f is étale, it follows that W is a subscheme of f −1(Z), i.e., ([W ], [Z]) ∈ X. This proves that Y ⊂ X. □
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Sketch of proof of Proposition 5.5. The Fourier–Mukai kernel of the derived push-forward F∗ : D
b
Sn+1

(NB(3))→
Db

Sn+1
(NA(3)) is given by (OΓ (F),γ), where Γ (F) is the graph of F and γ is the obvious S3 linearization.

The Fourier–Mukai kernel of ΦA(3) is given by (OX0
3 (A)

,α), where α is the natural S3 linearization. The
Fourier–Mukai kernel of the composition ΦA(3) ◦F∗ is given by

(F × Id)∗
(
OX0

3 (A)
,α

)
∈Db

S3
(NB(3)×K2(A)).

The Fourier–Mukai kernel of ΦB(3)−1 is given by (OX0
3 (B)

,β)∨[4], where (OX0
3 (B)

,β)∨ is the derived dual

of (OX0
3 (B)

,β) ∈ Db
S3

(NB(3) × K2(B)), where the latter is the analogue of (OX0
3 (A)

,α). It follows that the

Fourier–Mukai kernel of Ξ has pth sheaf cohomology given by

(5.18) E xt
p+4
p1,3

(
p∗2,3

(
OX0

3 (B)
,β

)
,p∗1,2(F × Id)

∗
(
OX0

3 (A)
,α

))
� E xt

p+4
p1,3

(
p∗2,3OX0

3 (B)
,p∗1,2(F × Id)

∗OX0
3 (A)

)S3
,

where pi,j is the projection of K2(A)×NB ×K2(B) to the product of the ith and jth factors. If W and Y are

S3-equivariant sheaves on NB, then the dual of ExtqNB(3)(OW ,OY )
S3 is identified with Ext4−qNB(3)

(OY ,OW )S3 .
Using this, Lemma 5.7, and cohomology and base change, one proves that the sheaf in (5.18) vanishes for
p , 0 and is isomorphic to OX for p = 0 (see for example [Muk87, Proposition 2.26]). □

6. The case when K2(A) is a Lagrangian fibration

6.1. Set-up

Hypothesis-Definition 6.1.

(1) We assume that B is an abelian surface containing a (bona fide) elliptic curve CB ⊂ B. We denote by
γB the Poincarè dual of CB.

(2) Let ωB ∈NS(B) be a class such that the subgroup (ZωB +ZγB) <NS(B) is saturated. Let

(6.1) ωB ·ωB = 2a, ωB ·γB = d.

Assume that Hypothesis 6.1 holds, and choose a nonzero ϵ ∈ CB[2]. Let

(6.2) B
f
−→ A := B/⟨ϵ⟩

be the quotient map. Thus we are in the set-up of Section 3.1. Let

(6.3) B
ϕB−→ E := B/CB

be the quotient map. Then ϕB descends to a homomorphism

(6.4) A
ϕA−→ E

with kernel the quotient CA := CB/⟨ϵ⟩. The homomorphisms ϕB and ϕA induce Lagrangian fibrations

K2(B)
πB−→ |OE(3(0E))|

[Z] 7−→ ϕB(|Z |),
K2(A)

πA−→ |OE(3(0E))|
[Z] 7−→ ϕA(|Z |),
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where |Z | is the cycle associated to the scheme Z . The commutative diagram in (3.3) extends to the following
commutative diagram:

(6.5) X
ν

xx

ρ̃

&&

K2(B)
ρ

//

πB

%%

K2(A)

πAyy

|OE(3(0E))|.

We recall the following fact.

Proposition 6.2. Let D0 ∈ |OE(3(0E))|. Then π−1A (D0) is smooth if and only if D0 is reduced.

In other words, π−1A (D0) is a singular Lagrangian if and only if D0 is a point of the sextic curve
E∨ ⊂ |OE(3(0E))| parametrizing nonreduced divisors, i.e., the dual of the smooth cubic E ⊂ |OE(3(0E))|∨.

Let L be the line bundle on X such that

(6.6) c1(L ) = ν∗(µB(mωB)).

In other words, in (3.4), ωB =mωB and x = y = 0. We state a consequence of the results in Section 5.

Proposition 6.3. Assume that Hypothesis 6.1 and Equation (6.6) hold and that md is odd (d as in (6.1) and m
as in (6.6)). Then for all p, we have

Hp
(
K2(A),End

0(E (L ))
)
= 0.

The natural map
Def(K2(A),E (L )) −→Def(K2(A),detE (L ))

is smooth.

Proof. Since md is odd, the hypothesis of Corollary 5.4 is satisfied, and hence Proposition 6.3 follows from
Corollary 5.4. □

At the end of the present section, we give another (pedestrian) proof of Proposition 6.3.

6.2. Main results

In the present section, we are concerned with the restriction of E (L ) to Lagrangian fibers π−1A (D) where
D ∈ |OE(3(0E))|. The results that we prove will be needed in the proof of Theorem 1.1.

Let D0 ∈ |OE(3(0E))|. If the schematic fiber π−1A (D0) is smooth, then the image of the restriction map
H2(K2(A);Z)→H2(π−1A (D0);Z) has rank 1, it is contained in NS(π−1A (D0)) and its saturation is generated
by an ample class θ ∈NS(π−1A (D0)) with elementary divisors (1,3); see [Wie16]. If F is a sheaf on π−1A (D0),
then slope (semi)stability of F always refers to θ slope (semi)stability. Below is the first main result of the
present section.

Proposition 6.4. Assume that Hypothesis 6.1 and Equation (6.6) hold and that md is odd (d is as in (6.1) and m
is as in (6.6)). Then the restriction of E (L ) to a smooth fiber of the Lagrangian fibration πA is slope stable.

Proposition 6.4 is proved in Section 6.3. The second main result of the present section is the following.

Proposition 6.5. Assume that Hypothesis 6.1 and Equation (6.6) hold and that md is odd (d as in (6.1) and m
as in (6.6)). Also suppose that D0 ∈ E∨ is not an inflection divisor. Then the restriction of E (L ) to π−1A (D0) is a
simple sheaf.

Proposition 6.5 is proved in Section 6.7.
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6.3. Restriction of E (L ) to a smooth Lagrangian fiber

Before proving Proposition 6.4 we go through a series of preliminary results. Let γA ∈ NS(A) be the
Poincaré dual of CA. Since the restriction of f to CB defines the degree 2 quotient map CB→ CA, we have
the equalities

(6.7) f∗(γB) = 2γA, f ∗(γA) = γB.

Proposition 6.6. Suppose that Hypothesis 6.1 holds and that d is odd, where d is as in (6.1). Let ωA := f∗(ωB).
Then ZωA +ZγA is a saturated subgroup of NS(A), and

(6.8) ωA ·γA = d, ωA ·ωA = 4a.

Moreover, ωA has elementary divisors (1,2a).

Proof. Suppose that ZωA +ZγA is not a saturated subgroup of NS(A). By hypothesis, ZωB +ZγB is a
saturated subgroup of NS(B); since f ∗(ωA) = 2ωB and f ∗(γA) = γB, it follows that ZωA+ZγA is of index 2
in its saturation. This gives a contradiction because the discriminant of the intersection form on ZωA+ZγA
is equal to −d2, which is odd. The first equality in (6.8) follows from

2
∫
B
ωB ·γB =

∫
B
f ∗(ωA) · f ∗(γA) = 2

∫
A
ωA ·γA,

and the second one follows from a similar computation. Lastly, ωA has elementary divisors (1,2a) because
it is primitive and ωA ·ωA = 4a. □

In order to analyze the smooth fibers of πA (or πB), we introduce the following notation: If Y is a (bona
fide) elliptic curve, we let

(6.9) Zn(Y ) :=
{
(y1, . . . , yn+1) ∈ Y n+1 | y1 + · · ·+ yn+1 = 0

}
.

Let D0 ∈ |OE(3(0E))| be reduced, given by D0 = (x1) + (x2) + (x3). Let CB,i := ϕ
−1
B (xi), CA,i := ϕ

−1
A (xi),

where ϕB and ϕA are as in Hypothesis 6.1 and (6.4), respectively. For i ∈ {1,2}, choose b1,b2 ∈ B such that
Tbi (CB) = CB,i , where Tbi : B→ B is the translation by bi . Let ai := f (bi), so that Tai (CA) = CA,i . We have
isomorphisms

(6.10)
Z2(CB)

∼−→ π−1B ((x1) + (x2) + (x3))
(y1) + (y2) + (y3) 7−→ (y1 + b1) + (y2 + b2) + (y3 − b1 − b2)

and

(6.11)
Z2(CA)

∼−→ π−1A ((x1) + (x2) + (x3))
(y1) + (y2) + (y3) 7−→ (y1 + a1) + (y2 + a2) + (y3 − a1 − a2).

(Note: Since elements of π−1A ((x1) + (x2) + (x3)) are reduced subschemes, we identify them with the
corresponding 0-cycles.)

Proposition 6.7. Assume that Hypothesis 6.1 and Equation (6.6) hold and that md is odd (d as in (6.1) and m as
in (6.6)). Then the restriction of E (L ) to a smooth fiber of π is a simple semi-homogeneous vector bundle.

Proof. Let π−1A (D0) be a smooth fiber of πA. Then π
−1
A (D0) does not meet ∆(A), and hence the last equation

in (3.15) gives that ρ̃−1(π−1A (D0)) does not meet the exceptional divisor of ν : X→ K2(B). (Watch out: The
exceptional divisor D ⊂ X and the divisor D0 ∈ |OE(3(0E))| are denoted by similar letters although they are
unrelated.) It follows that ρ̃−1(π−1A (D0)) is equal to π

−1
B (D0). Moreover, the étale map

π−1B (D0) = ρ̃
−1

(
π−1A (D0)

)
−→ π−1A (D0)
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is identified, given the isomorphisms in (6.10) and (6.11), with the étale map

(6.12) Z2(CB)
ψ2

−→ Z2(CA)
(z1, . . . , z3) 7−→ (f (z1), . . . , f (z3)).

We claim that the thesis of the proposition follows from Proposition A.2; in fact, deg(ψ2) = 4 and the
degree d0 of Proposition A.2 is equal to md, which is odd by hypothesis, and hence deg(ψ2) is coprime to
3 · d0. □

Proof of Proposition 6.4. Let E := E (L ). Let S be a smooth fiber of πA; i.e., S = π−1(D0), where D0 ∈
|OE(3(0E))| is reduced. Let θ be the (1,3) polarization of S induced by πA; see the discussion at the
beginning of Section 6.2. We claim that E|S is θ slope stable because the hypotheses of Corollary B.2 are
satisfied by (S,θ) and E|S . In fact, by Proposition 6.7, the restriction E|S is a simple semi-homogeneous vector
bundle, and hence it is Gieseker stable with respect to an arbitrary polarization by [Muk78, Proposition 6.16].
In particular, E|S is θ slope semistable. Moreover, since E is a modular vector bundle, we have ∆(E|S ) = 0
by [O’G22b, Lemma 2.5]. Lastly, since r(E ) = 4, it remains to show that c1(E|S ) = 2b0θ with b0 odd.
By (3.16), we have c1(E|S ) = (2µA(mωA) − δA)|S . Since S does not intersect ∆(A) (see Proposition 6.2),
c1(E|S ) = 2µA(mωA)|S . We identify S with Z2(CA) via the isomorphism in (6.12), and we let pi : Z2(CA)→
CA be the ith projection for i ∈ {1,2,3}. By the first equation in (6.8), we get that

(6.13) c1(E|S ) = 2µA(mωA)|S = 2md
(
p∗1

(
ηCA

)
+ p∗2

(
ηCA

)
+ p∗3

(
ηCA

))
,

where ηCA ∈H
2(CA;Z) is the fundamental class. Since θ is a polarization of type (1,3), we get that

(6.14) c1
(
E|S

)
= 2mdθ.

Since md is odd, this finishes the proof that the hypotheses of Corollary B.2 are satisfied by (S,θ) and
E|S . □

6.4. The general singular Lagrangian fiber

Let E∨ ⊂ |OE(3(0E))| be the sextic curve parametrizing nonreduced divisors, i.e., the dual of the smooth
cubic E ⊂ |OE(3(0E))|∨. We have πA(∆(A)) = E∨, but there is another irreducible component of π−1A (E∨).

Definition 6.8. Let V (B) ⊂ K2(B) be the closure of the set parametrizing reduced subschemes Z such that
πB(Z) has length smaller than 3, and define similarly V (A) ⊂ K2(A) (by definition, V (B),V (A) are reduced
schemes). Let V(B) ⊂ K2(B) be the subscheme with locally principal ideal such that the associated cycle is
2V (B), and define similarly V(A) ⊂ K2(A).

Note that we have the equality of closed sets

(6.15) π−1A
(
E∨

)
red

= V (A)∪∆(A).

Proposition 6.9. Keep notation and assumptions as above. Then π−1A (E∨) =V(A)∪∆(A).

Proof. The proof is similar to the proof of [O’G22b, Proposition 6.8]. It suffices to prove that we have the
equality of Cartier divisors

(6.16) π∗A
(
E∨

)
= 2V (A) +∆(A).

By (6.15), there exist positive integers a,b such that π∗A(E
∨) = aV (A) + b∆(A). Let X3(A) be the isospectral

Hilbert scheme obtained by blowing up the big diagonal in A3. By [Hai01, Proposition 3.4.2], there exists a
regular finite map X3(A)→ A[3], invariant under the natural action of the permutation group S3, which
is the obvious map on the open dense subset of X3(A) parametrizing 3-tuples of distinct points. Let
X0
3 (A) ⊂ X3(A) be the preimage of K2(A) ⊂ A[3], and let α : X0

3 (A)→ K2(A) be the restriction of the map
X3(A)→ A[3]. Restricting to X0

3 (A) the natural map X3(A)→ A3, we get a map X0
3 (A)→ Z2(A), where
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Z2(A) ⊂ A3 is the kernel of the summation map A3→ A. Let λA : X
0
3 (A)→ Z2(E) be the composition of

X0
3 (A)→ Z2(A) and the map Z2(A)→ Z2(E) defined by ϕA : A→ E. Lastly, let β : Z2(E)→ |OE(3(0E))|

be the map sending (x1,x2,x3) to (x1) + (x2) + (x3). We have a commutative square

(6.17) X0
3 (A)

α
//

λA
��

K2(A)

πA
��

Z2(E)
β
// |OE(3(0E))|.

As is easily checked, we have λ∗A(β
∗E∨) = 2V (A)+2∆(A). On the other hand, since π∗A(E

∨) = aV (A)+b∆(A),
we have α∗(π∗AE

∨) = aV (A) + 2b∆(A). Since λ∗A ◦ β
∗ = α∗ ◦π∗A, we get that a = 2 and b = 1. □

Definition 6.10. If D0 ∈ E∨, we let V (B)D0
⊂ V (B) be the fiber over D0 of the map V (B)→ E∨ given

by the restriction of πB, and we define similarly V(B)D0
⊂ V(B), and likewise for V (A)D0

⊂ V (A) and
V(A)D0

⊂V(A). We let ∆(B)D0
⊂ ∆(B) be the fiber over D0 of the map ∆(B)→ E∨ given by the restriction

of πB, and we define similarly ∆(A)D0
⊂ ∆(A).

Let D0 ∈ E∨. By Proposition 6.9, we have

(6.18) π−1A (D0) =V(A)D0
∪∆(A)D0

.

In the present section, we are concerned with fibers of πA over a D0 ∈ E∨ which is not an inflection divisor,
i.e., such that

(6.19) D0 = 2(x0) + (y0), 2x0 + y0 = 0, x0 , y0 ∈ E.

Let ξ(A) be the line bundle on K2(A) such that

(6.20) c1(ξ(A)) = δ(A).

Proposition 6.11. If D0 ∈ E∨ is not an inflection divisor, then we have an exact sequence

(6.21) 0 −→ OV (A)D0
⊗
(
ξ(A)|V (A)D0

)
−→ OV(A)D0

−→ OV (A)D0
−→ 0,

with the right-hand map given by restriction.

Proof. We must prove that the ideal sheaf of V (A)D0
in V(A)D0

is isomorphic to the restriction of the
invertible sheaf ξ(A). By the equality in (6.16), we have −2V (A) +π∗A(O(6)) ≡ ∆(A) (the degree of E∨ is 6).
Since K2(A) is simply connected, we get that

(6.22) −V (A) +π∗A(O(3)) ≡ ξ(A).

Restricting to V(A)D0
, we get what we need. □

6.5. Geometry of V (B)D0
and V (A)D0

Assume that D0 = (2x0 + y0) ∈ E∨ is not an inflection divisor. Let CB,x0 := ϕ
−1
B (x0) and CB,y0 := ϕ

−1
B (y0),

where ϕB : B→ E is as in (6.3). Choose x̃0 ∈ CB,x0 , and let ỹ0 := −2x̃0. Notice that ỹ0 ∈ CB,y0 . We have an
isomorphism

(6.23) C
(2)
B

∼−→ V (B)D0

(z1) + (z2) 7−→ (z1 + x̃0) + (z2 + x̃0) + (−z1 − z2 + ỹ0).

A word about notation: A subscheme parametrized by a point of V (B)D0
is the disjoint union of a length 2

subscheme of CB,x̃0 and a reduced point, and for this reason, we identify it with the corresponding cycle.
In other words, if z1 = z2, then (z1) + (z2) is to be understood as the unique length 2 subscheme of CB,x̃0
supported at z1 = z2. Of course, we have an analogous identification between C

(2)
A and V (A)D0

.
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Recall that the degree 4 rational map ρ : K2(B)d K2(A) (see (3.1)) has indeterminacy locus V (f ) (see (3.2)).
The intersection of V (f ) and V (B)D0

is the reduced curve identified by the isomorphism in (6.23) with the
curve

{(z) + (z+ ϵ) | z ∈ CB}.
(Recall that ϵ ∈ B[2] is the generator of kerf .) Hence the inclusion V (B)D0

↪→ K2(B) lifts to an inclusion
V (B)D0

↪→ X (recall that ν : X → K2(B) is the blow-up of V (f )). With this understood, we have the
schematic equality

(6.24) ρ̃−1(V (A)D0
) = V (B)D0

.

Moreover, once we make the identification in (6.23) and the analogous identification between C
(2)
A and

V (A)D0
, the restriction of ρ̃ to V (B)D0

is identified with the degree 4 regular map

(6.25) V (B)D0
= C(2)

B

(f|CB)
(2)

−−−−−−−→ C
(2)
A = V (A)D0

(z1) + (z2) 7−→ (f (z1)) + (f (z2)).

Restricting the line bundle L to V (B)D0
and pulling it back to C

(2)
B via the isomorphism in (6.23), we get

a line bundle L on C
(2)
B . By the equality in (6.24), we have the isomorphism (we make the identification

in (6.23))

(6.26) E (L )|V (A)D0
�

(
f|CB

)(2)
∗

(L).

In order to analyze the vector bundle in the right-hand side in (6.26), we recall that we have P
1 fibrations

(6.27) P
1 // C

(2)
B = V (B)D0

gB
��

CB,

P
1 // C

(2)
A = V (A)D0

gA
��

CA,

where gB((z1) + (z2)) = z1 + z2 and gA is defined similarly. For use later on, we notice that if x ∈ CB, we have

(6.28) deg(L|g−1B (x)) =md.

The fibrations in (6.27) are the projectivizations of rank 2 vector bundles:

(6.29) V (B)D0
= C(2)

B = P(FB), V (A)D0
= C(2)

A = P(FA)

(of course, FB is determined only up to tensorization by the pull-back of a line bundle on CB, and similarly

for FA). Let O
C

(2)
B
(1) = OV (B)D0

(1) be the corresponding line bundle on C
(2)
B = V (B)D0

and similarly for

V (A)D0
= C(2)

A . (We follow the classical definition of projectivization of a vector bundle: The space of global
sections of O

C
(2)
B
(1) is H0(CB,F

∨
B ).) The result below is well known (see [Ati57, Section 3, p. 451]).

Proposition 6.12. Keeping notation as above, the rank 2 vector bundles FB and FA are stable (in particular,
they have odd degrees).

Definition 6.13. Let Γ ⊂ V (A)D0
be (the class of) a fiber of gA, and let

(6.30) Σ := V (A)D0
∩∆(A)D0

= V (A)D0
∩∆(A) = {2(p) | p ∈ CA}

(note that the intersection V (A)∩∆(A) is generically transverse, and hence Σ is reduced). (For the sake of
simplicity, we omit A and D0 in our notation for Γ and Σ.)

Note that {Γ ,Σ} is a basis of NS(V (A)D0
)
Q
. The following result is used later on; the proof is left to the

reader.

Proposition 6.14. The ample cone of V (A)D0
is the interior of the convex cone generated by Γ and Σ.
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6.6. Restriction of E (L ) to a general singular Lagrangian fiber

Proposition 6.15. Assume that Hypothesis 6.1 and Equation (6.6) hold and that md is odd (d as in (6.1) and m
as in (6.6)). If D0 ∈ E∨ is not an inflection divisor, then

(6.31) E (L )|V (A)D0
� g∗A(V )⊗OV (A)D0

((md − 1)/2),

where gA : V (A)D0
→ CA is the fibration in (6.27) and V is a stable rank 4 vector bundle on CA.

Proof. Throughout the proof we identify V (A)D0
with C

(2)
A . In order to simplify notation, we let ψ :=

(
f|CB

)(2)
.

Let

(6.32) L′ := L⊗ψ∗O
C

(2)
A
(−(md − 1)/2).

By the push-pull formula, it suffices to prove that there exists a stable rank 4 vector bundle V on CA such
that

(6.33) ψ∗ (L
′) � g∗A(V ).

We factor ψ as the composition of two maps. Let ϵ ∈ CB[2] be the generator of the kernel of f : B→ A.

Then ψ : C(2)
B → C

(2)
A is the quotient map for the action of Z/(2)2 on C

(2)
B defined by

(z1) + (z2) 7−→ (z1 + k1ϵ) + (z2 + k2ϵ),

where (k1, k2) ∈ Z/(2)2. Let i be the involution of C
(2)
B defined by i((z1) + (z2)) = (z1 + ϵ) + (z2 + ϵ), and

let Y := C(2)
B /⟨i⟩. We let p : C(2)

B → Y be the quotient map. Since i commutes with gB, the P
1 fibration gB

induces a P
1 fibration gY : Y → CB. The restriction of p to a fiber g−1B (x) is a map

(6.34) P
1 � g−1B (x)

p|g−1B (x)

−−−−−−→ g−1Y (x) � P
1

of degree 2.
Next, by mapping [(z1) + (z2)] to [(z1 + ϵ) + (z2)], we get a well-defined involution j : Y → Y such that

Y /⟨j⟩ is identified with C
(2)
A . Let q : Y → Y /⟨j⟩ � C(2)

A be the quotient map. Notice that the fibration
gY : Y → CB is identified with the pull-back of the fibration gA via the double cover CB→ CA. In other

words, we have an identification Y = CB ×CA C
(2)
A . Summing up, we have a factorization ψ = q ◦ p. Hence

the isomorphism in (6.33) holds if and only if

(6.35) q∗(p∗(L
′)) � g∗A(V )

for a stable rank 4 vector bundle V on CA. Let us prove that there exists a line bundle λ on CB such that

(6.36) p∗(L
′) � g∗Y

(
F∨
B ⊗λ

)
,

where FB is a vector bundle on CB such that the second equality in (6.29) holds. Since the map in (6.34)
(for x ∈ CB) has degree 2, and since gY : Y → CB is identified with the pull-back of gA via the double

cover CB → CA, we have ψ∗
(
O
C

(2)
A
(1)

)
� O

C
(2)
B
(2) ⊗ g∗B(ξ) for a suitable line bundle ξ on CB. By the

equality in (6.28), it follows that the restriction of L′ to any fiber g−1B (x) has degree 1. As is easily checked,
if α : P1 → P

1 is a degree 2 map, then α∗(OP
1(1)) is the trivial rank 2 vector bundle O2

P
1 . Note the

identification

(6.37) H0
(
P
1,O

P
1(1)

) ∼−→H0
(
P
1,α∗O

2
P

1(1)
)
=H0

(
P
1,O2

P
1

)
.

From this, we get that there exists a vector bundle W on CB such that p∗(L′) � g∗Y (W ), and moreover we
get an isomorphism gB,∗(OC

(2)
B
(1))⊗ λ � W for a suitable line λ on CB. Since gB,∗(OC

(2)
B
(1)) � F∨

B , this

proves (6.36).
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Let τ : CB→ CA be the double cover map. From the isomorphism in (6.36), we get that

(6.38) q∗ (p∗(L
′)) � g∗A

(
τ∗

(
F∨
B ⊗λ

))
.

This proves that (6.33) holds with V := τ∗(F
∨
B ⊗λ). It remains to prove that V is stable. The Grothendieck–

Riemann–Roch theorem and a straightforward computation give that deg(V ) = deg(F∨
B ⊗λ). Since F∨

B ⊗λ
has odd degree (see Proposition 6.12), the rank (i.e., 4) and the degree of V are coprime. Hence in order
to prove that V is stable, it suffices to show that V is semistable. The vector bundle F∨

B ⊗λ is stable by
Proposition 6.12; hence it is semi-homogeneous. Since the map Pic0(CA)→ Pic0(CB) defined by pull-back
is surjective, it follows that V is semi-homogeneous as well. By [Muk78, Proposition 6.13], it follows that V

is semistable, and we are done. □

Corollary 6.16. Suppose that Hypothesis 6.1 and Equation (6.6) both hold and that md is odd. If D0 ∈ E∨ is not
an inflection divisor, then the restriction of E (L ) to V (A)D0

is slope stable with respect to any polarization.

Proof. Let V be the rank 4 stable vector bundle on CA of Proposition 6.15. It suffices to prove that g∗A(V ) is
slope stable with respect to any polarization. First we notice that g∗A(V ) is slope stable with respect to a
polarization represented by a section of gA because the restriction of g∗A(V ) to a section is identified with V

and hence is slope stable. Because of this (existence of polarizations for which g∗A(V ) is slope stable), it
suffices to prove that there does not exist a polarization for which g∗A(V ) is strictly slope semistable, i.e.,
slope semistable but not semistable. Since ∆(g∗A(V )) = 0 and degV is coprime to r(V ) = 4 (by the stability
of V ), this follows from Lemma 6.17 below. □

Lemma 6.17. Let (S,h) be a polarized smooth irreducible projective surface. Let V be a vector bundle on S such
that ∆(V ) = 0 and the rank of V is coprime to the maximum integer dividing c1(V ). Then V is not properly slope
semistable.

Proof. Suppose that V is properly slope semistable. Then there exists an exact sequence of sheaves

(6.39) 0 −→U −→ V −→W −→ 0

such that U is locally free slope semistable of rank 0 < rU < rV (where rU is the rank of U , etc.), W is
torsion-free slope semistable and

(6.40) (rV c1(U )− rU c1(V )) · h = 0.

A Chern class computation gives the equality

(6.41) rV (rW∆(U ) + rU∆(W )) = rU · rW∆(V ) + (rV c1(U )− rU c1(V ))2.

By hypothesis, ∆(V ) = 0, and moreover ∆(U ) ≥ 0, ∆(W ) ≥ 0 by Bogomolov’s inequality. On the other hand,
(rV c1(U )− rU c1(V ))2 ≤ 0 by the equality in (6.40) and the Hodge index theorem. By the equality in (6.41),
we get that (rV c1(U )− rU c1(V ))2 = 0 and hence

rV c1(U ) = rU c1(V ).

This contradicts the hypothesis that rV is coprime to the maximum integer dividing c1(V ). □

Proposition 6.18. Assume that Hypothesis 6.1 and Equation (6.6) hold and that md is odd (d is as in (6.1) and
m as in (6.6)). If D0 ∈ E∨ is not an inflection divisor, then we have an exact sequence

(6.42) 0 −→ E (L )⊗ ξ(A)|V (A)D0

α−→ E (L )|V(A)D0

β
−→ E (L )|V (A)D0

−→ 0,

where β is given by restriction. Moreover, the restriction E (L )|V (A)D0
is slope stable for any polarization of

V (A)D0
.

Proof. This is a straightforward consequence of Proposition 6.11 and Corollary 6.16. □
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Next we analyze the restriction of E (L ) to ∆(A)D0
. We recall that ∆(A)D0

is isomorphic to CA ×P1.

Proposition 6.19. Assume that Hypothesis 6.1 and Equation (6.6) hold and that md is odd (d is as in (6.1) and
m as in (6.6)). If D0 ∈ E∨ is not an inflection divisor, then we have the Harder–Narasimhan filtration (with
respect to any polarization)

(6.43) 0 −→ OCA(P )⊠O
P

1(1) −→ E (L )|∆(A)D0 −→
3⊕
k=1

OCA(Pk)⊠O
P

1 −→ 0,

where Pk and P are divisors on CA of degree 3md.

Proof. In the proof of Lemma 3.10, we showed that

(6.44) ρ̃∗∆(A) = ν∗(∆(B)) + 2D.

Let
Ξ(A) := ρ̃(ν−1(∆(B))∩D) = {[Z] ∈ K2(A) | h(Z) = 3(p), p ∈ A[3]}

(recall that h : K2(A)→ A(3) is the Hilbert–Chow map), and let ∆(A)0 := ∆(A) \Ξ(A). It follows from the
equality in (6.44) that we have

(6.45) E (L )|∆(A)0 � µ1,∗
(
L|ν∗(∆(B))

)
|∆(A)0

⊕µ2,∗
(
L|2D

)
|∆(A)0

,

where µ1 and µ2 are the restrictions of ρ̃ to ν∗(∆(B)) and 2D, respectively. Since ∆(A)D0
⊂ ∆(A)0, we get

that

(6.46) E (L )|∆(A)D0 � µ1,∗
(
L|ν∗(∆(B))

)
|∆(A)D0

⊕µ2,∗
(
L|2D

)
|∆(A)D0

.

The direct summands in the right-hand side of (6.46) are described as follows. First, we have ρ̃−1(∆(A)D0
) =

ν−1(∆(B)D0
). Second, since ∆(B)D0

is disjoint from the center of the blow-up ν : X → K2(B), the map
ν−1(∆(B)D0

)→ ∆(B)D0
is an isomorphism; for this reason, we identify ν−1(∆(B)D0

) and ∆(B)D0
. Third,

the restriction of µ1 to ∆(B)D0
is the étale double cover CB ×P1→ CA ×P1 defined by the quotient map

τ : CB→ CA. It follows that, letting σB : CB ↪→ ∆(B)D0
= CB ×P1 be a section, we have

(6.47) µ1,∗
(
L|ν∗(∆(B))

)
|∆(A)D0

� τ∗
(
σ ∗B(L )

)
⊠O

P
1 .

A computation(1) gives that degσ ∗B(L ) = 6md. Hence there exists a divisor P1 on CA of degree 3md such
that τ∗OCA(P1) � σ

∗
B(L ). It follows that

(6.48) τ∗
(
σ ∗B(L )

)
� OCA(P1)⊕OCA(P2),

where degP2 = 3md. (In fact, P2 ≡ P1 + η, where η is the divisor class of order 2 determined by the double
cover τ : CB→ CA.)

Next we notice that the map D→ ∆(A) given by the restriction of ρ̃ is an isomorphism away from Ξ(A)
(see Section 3.5); hence we have an open inclusion ι : ∆(A)0 ↪→D that composed with ρ̃ gives the identity.
We have an exact sequence

0 −→ ι∗(L )⊗ ι∗(OD(−D)) −→ µ2,∗
(
L|2D

)
|∆(A)0

−→ ι∗(L ) −→ 0.

Restricting the above exact sequence to ∆(A)D0
, we get an exact sequence

(6.49) 0 −→ OCA(P
′)⊠O

P
1(1) −→ µ2,∗

(
L|2D

)
|∆(A)D0

−→ OCA(P
′)⊠O

P
1 −→ 0,

where P ′ is a divisor of degree 3md. Hence we get that E (L )|∆(A)D0 fits into an exact sequence as in (6.43),
where P3 = P = P ′ . It is clear that the exact sequence is the Harder–Narasimhan filtration. □

(1)This is the computation ⟨µA(ωA,Σ⟩ = 6d, which also holds with B replacing A, of course.
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6.7. Simplicity of the restriction of E (L ) to a general singular fiber

We prove Propositiopn 6.5. Let E = E (L ), and let ϕ : E → E be an endomorphism. Then ϕ maps
the kernel of α in (6.42) to itself (because, as subsheaf of E|V(A)D0

, it is the kernel of multiplication by the
ideal of V (A)D0

in V(A)D0
). Since E|V (A)D0

is slope stable, the restriction of ϕ to ker(α) is multiplication
by a certain λ ∈ C. Thus ϕ = λ IdE +ϕ, where ϕ annihilates ker(α). Let us prove that ϕ vanishes. The
restriction of ϕ to V(A)D0

equals the composition

(6.50) E|V(A)D0
−→ E|V (A)D0

ψ
−→ E ⊗ ξ(A)|V (A)D0

.

We start by proving that the determinant of ψ vanishes. In fact, by the factorization in (6.50), we get that the
restriction of ϕ to ∆(A)D0

is a homomorphism

E|∆(A)D0 −→ E|∆(A)D0 ⊗O|∆(A)D0 (−Σ),

where Σ = V (A)D0
∩∆(A)D0

; see Definition 6.13. By the exact sequence in (6.43), we get that the restriction
of ϕ to ∆(A)D0

has image contained in the sub-line bundle OCA(P )⊠O
P

1(1)⊗O|∆(A)D0 (−Σ). In particular,
the restriction to Σ of such a homomorphism has rank at most 1. It follows that detψ vanishes on Σ with
order at least 3. Since detψ is a section of ξ(A)⊗4|V (A)D0

� OV (A)D0
(2Σ), we get that the determinant of ψ is

identically zero.
By Proposition 6.15, the restriction of E to V (A)D0

is the tensor product of g∗A(V ) (notation as in
Proposition 6.15) and a line bundle. Thus ψ defines a map

(6.51) ψ′ : g∗A(V ) −→ g∗A(V )⊗ ξ(A)|V (A)D0

with (generic) rank at most 3.
We claim that ψ′ = 0 (i.e., ψ = 0). We have c1(Imψ′) = aΣ+bΓ with a,b rational numbers (see Section 6.5).

Let H be a polarization of V (A)D0
; thus c1(H) = sΣ + tΓ , where s, t are positive rational numbers (see

Definition 6.13).
Assume that the (generic) rank of ψ′ is 1. By Corollary 6.16, the vector bundle g∗A(V ) is H slope stable.

Hence the surjection g∗A(V )↠ Imψ′ gives the inequality

(6.52) sdegV = µH
(
g∗A(V )

)
< µH (Imψ′) = 4at +4bs,

and the injection Imψ′ ↪→ g∗A(V )⊗ ξ(A)|V (A)D0
gives the inequality

(6.53) 4at +4bs = µH (Imψ′) < µH
(
g∗A(V )⊗ ξ(A)|V (A)D0

)
= sdegV +2t.

By Proposition 6.14, the coefficient t may be arbitrarily small (and s is positive); it follows that degV ≤
4b ≤ degV . Hence degV = 4b. On the other hand, 2b is an integer because c1(ξ(A)|V (A)D0

) · c1(Imψ′) =
1
2Σ · (aΣ+ bΓ ) = 2b, and hence we get that V has even degree. This contradicts the stability of V .
Next we deal with the (hypothetical) cases in which the (generic) rank of ψ′ is r ∈ {2,3}. Then we have

inclusions of sheaves on V (A)D0

Im(ψ′) ⊂F ⊂ g∗A(V )⊗ ξ(A)|V (A)D0
,

where F is the saturation of Im(ψ′), i.e., a sheaf of rank r and with torsion-free cokernel. The key
observation is that, since the rank of Im(ψ) on the divisor Σ is at most 1 (this was proved above, when we
showed that ψ has vanishing determinant), we have c1(F ) = c1(Im(ψ′)) +mΣ+Eff, where m ≥ (r − 1) and
Eff is an effective divisor. By the stability of g∗A(V ), we get the inequality

sdegV = µH
(
g∗A(V )

)
< µH (Imψ′)

and the inequality

µH (Imψ′) +
4(r − 1)t

r
≤ µH (F ) < µH

(
g∗A(V )⊗ ξ(A)|V (A)D0

)
= sdegV +2t.
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Since r ∈ {2,3}, the second equality gives that µH (Imψ′) < sdegV , and this contradicts the first inequality.
This proves that ψ = 0, i.e., that the restriction of ϕ to V(A)D0

vanishes.
It follows that the restriction of ϕ to ∆(A)D0

is a homomorphism

E|∆(A)D0 −→ E|∆(A)D0 ⊗O|∆(A)D0 (−2Σ).

Since O|∆(A)D0 (−2Σ) � OCA ⊠O
P

1(−2), it follows from Proposition 6.19 that such a homomorphism vanishes.
This proves that the restriction of ϕ to ∆(A)D0

is zero, and hence ϕ = 0. □

6.8. Pedestrian proof of Proposition 6.3

By Proposition 6.4, the restriction of E (L ) to a general Lagrangian fiber is simple; consequently,
H0(K2(A),End

0(E (L )) = 0. By Serre duality, it follows that H4(K2(A),End
0(E (L )) = 0. Let us prove that

(6.54) H1
(
K2(A),End

0(E (L )
)
=H3

(
K2(A),End

0(E (L )
)
= 0.

By Serre duality, it suffices to prove that H1(K2(A),End
0(E (L )) = 0. The proof is analogous to the proof of

[O’G22b, Proposition 6.7]. Suppose that D0 ∈ |OC(3(0E))| is not a flex divisor, and let WD0
be the restriction

of End0E (L ) to π−1A (D0). By Propositions 6.4 and 6.5, there are no nonzero global sections of WD0
. Since

π−1A (D0) is a local complete intersection surface with trivial dualizing sheaf, it follows that H2(π−1A (D0),WD0
)

vanishes as well. On the other hand, χ(π−1A (D0),WD0
) = 0 because WD0

is a semi-homogeneous vector
bundle if D0 is reduced (see Proposition 6.7), and hence all the cohomology of WD0

vanishes. Since the set
of flex divisors has codimension 2 in |OC(3(0E))|, it follows that RqπA,∗End0E (L ) = 0 for q ∈ {0,1} (see
[Muk87, Proposition 2.26]). By the Leray spectral sequence for πA, we get that H

1(K2(A),End
0(E (L ))) = 0.

By Proposition 4.1, we have χ(K2(A),End
0(E (L )) = 0. It follows that

(6.55) H2
(
K2(A),End

0(E (L )
)
= 0.

This proves the vanishing statement of Proposition 6.3. The statement about the smoothness of the map
between deformation spaces is a consequence of the vanishing in (6.55). □

7. Restriction of E (L ) to a general singular Lagrangian fiber

7.1. Main result

We adopt the notation introduced in Section 6. Suppose that D0 ∈ E∨ is not an inflection divisor. We will
show that if md > 1 (d as in (6.1), m as in (6.6)), then the restriction of detE (L ) to π−1(D0) is ample; see
Proposition 7.2.

Proposition 7.1. Assume that Hypothesis 6.1 and Equation (6.6) hold and that md is an odd number greater than
8 (d as in (6.1) and m as in (6.6)). Let D0 ∈ E∨ and suppose that D0 is not an inflection divisor. Let F be a
subsheaf of E (L )|π−1(D0) such that its rank r(F ) (with respect to the restriction of detE (L ), see (7.12)) satisfies

(7.1) r(F ) ∈ {1,2,3}.

Then

(7.2) µ(F ) < µ
(
E (L )|π−1(D0)

)
.

(Note that, since π−1(D0) is reducible and nonreduced, the rank of a pure 2-dimensional sheaf on π−1(D0)
(with respect to the restriction of detE (L )) is a rational number, possibly not an integer.)

Proposition 7.1 is important because it implies the following result (i.e., Proposition 8.6): Let (Xt ,Lt ,πt) be
a general deformation of (K2(A),detE (L ),π), and let Et be the extension of E (L ) to Xt which exists by
Proposition 6.3. Then the restriction of Et to π

−1
t (x) is slope stable (with respect to the restriction of detEt )
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for x outside of a finite subset. In turn, Proposition 8.6 is a key element in the proof of the unicity statement
of Theorem 1.1.

7.2. Restriction of detE (L ) to a general singular Lagrangian fiber

Let E := E (L ). We have

(7.3) c1(E ) = 2mµA(ωA)− δ(A)

by (3.16). Let D0 ∈ E∨, and suppose that D0 is not an inflection divisor. In order to simplify notation, we let

(7.4) Y := π−1(D0), Y1 :=V(A)D0
, Y2 := ∆(A)D0

.

The fiber Y = π−1(D0) is the schematic union of Y1 and Y2. The schematic intersection

(7.5) Y12 := Y1 ∩Y2
is a Cartier divisor both on Y1 and on Y2, and it is supported on the curve Σ of Definition 6.13. Since

Σ is the branch divisor of the double cover map C2
A→ C

(2)
A = V (A)D0

and the ramification divisor is the
diagonal, which has trivial normal bundle, the normal bundle of Σ in V (A)D0

is trivial. It follows that we
have an exact sequence

(7.6) 0 −→ OΣ −→ OY12 −→ OΣ −→ 0.

Let Σ,Γ ∈NS(V (A)D0
) be as in Definition 6.13 (we recall that V (A)D0

is the reduced scheme associated to
V(A)D0

= X1). Then {Σ,Γ } is a basis of NS(V (A)D0
)
Q
, and

(7.7) (Σ ·Σ)V (A)D0
= (Γ · Γ )V (A)D0

= 0, (Σ · Γ )V (A)D0
= 4.

Straightforward computations give that

(7.8) µA(ωA)|V (A)D0
=
d
4
Σ+

3d
2
Γ , δ(A)|V (A)D0

=
1
2
Σ,

and hence (by (7.3)) we have

(7.9) c1(E )|V (A)D0
=
md − 1

2
Σ+3mdΓ .

Recall that ∆(A)D0
� CA×P1. Let Λ := {pt}×P1. Then {Σ,Λ} is a basis of NS(∆(A)D0

). By Proposition 6.19,
we have

(7.10) c1(E )|∆(A)D0 = Σ+12mdΛ.

Proposition 7.2. Keep notation and assumptions as in Proposition 7.1. (Here there is no need to assume that md
is odd, and moreover it suffices that md > 1.) Then the restriction of detE (L ) to Y = π−1(D0) is ample.

Proof. By the equality in (7.9), the restriction of detE (L ) to V (A)D0
is ample (recall Proposition 6.14). Since

the restriction of detE (L )⊗ ξ(A) to V (A)D0
is also ample (it equals (md/2)Σ+3mdΓ ), it follows that the

restriction of detE (L ) to V(A)D0
is ample (see Proposition 6.11). By (7.10), the restriction of detE (L ) to

∆(A)D0
is ample as well. The proposition follows. □

7.3. Simpson (semi)stability of sheaves on projective schemes

We recall the definition of Simpson (semi)stability of a coherent sheaf G of pure dimension d on a complex
projective scheme Z polarized by OZ(1) (see [Sim94]). Write the Hilbert polynomial of G as

(7.11) χ(Z,G (n)) =
d∑
i=0

αi(G )
ni

i!
.
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The rank of G (relative to OZ(1)) is

(7.12) r(G ) :=
αd(G )
αd(OZ )

.

If Z is integral, then r(G ) does not depend on the polarization and equals the classical rank, i.e., the
dimension (as vector space over the field of rational functions on Z) of the fiber of G at the generic point
of Z . The reduced Hilbert polynomial of G is given by

(7.13) PG :=
1
r(G )

d∑
i=0

αi(G )
ni

i!
∈Q[m].

The sheaf G is semistable if for every proper subsheaf 0 ,F ⊊ G we have PF (n) ≤ PG (n) for large n, and it
is stable if strict inequality holds (for large n). By definition, αd(F )/r(F ) = αd(G )/r(G ) = αd(OZ ); hence
the leading coefficients of PF and PG are equal. The sheaf G is slope semistable if

(7.14)
αd−1(F )
r(F )

≤ αd−1(G )
r(G )

for every nonzero subsheaf 0 , F ⊂ G , and it is slope stable if strict inequality holds whenever F has
strictly smaller rank. A slope (semi)stable sheaf is (semi)stable. If Z is a smooth integral variety, slope
(semi)stability coincides with the classical notion.

7.4. Pure sheaves on π−1(D0) for general D0 ∈ E∨

We describe pure sheaves of dimension 2 on Y = π−1(D0) for general D0 ∈ E∨ following [NS97, Ina02].
In what follows, Y1, Y2 and Y12 are as in (7.4) and (7.5). For i ∈ {1,2}, let Fi be a pure sheaf of dimension 2
on Yi (i.e., torsion-free), and let

(7.15) G : F1 −→ (F2)|Y12

be a morphism of sheaves. Let ρFi
i : Fi → (Fi)|Y12 be the restriction morphism. The sheaf F on Y fitting

into the exact sequence of sheaves

(7.16) 0 −→F −→F1 ⊕F2
G−ρF2

2−−−−−−→ (F2)|Y12 −→ 0

is pure of dimension 2. Conversely, every pure sheaf of dimension 2 on Y is isomorphic to one such F ;
see [NS97, Remark 2.5] and [Ina02, Proposition 1.5]. The description of E|Y according to the above procedure
is the following. Let Ei := E|Yi for i ∈ {1,2} (in general, Fi need not be F|Yi ), and let E12 := E|Y12 . Then we
have the exact sequence

(7.17) 0 −→ E|Y −→ E1 ⊕E2
ρ

E1
1 −ρ

E2
2−−−−−−−−→ E12 −→ 0.

Let F be a pure sheaf of dimension 2 on Y fitting into the exact sequence in (7.16). An injection of sheaves
F ↪→ (E|Y ) is described as follows. Let φi : Fi ↪→ Ei be injections of sheaves for i ∈ {1,2} such that

(7.18) (φ2|Y12) ◦G = ρE1
1 ◦φ1.

Then there is a well-defined injection φ : F ↪→ E|Y fitting into the morphism of complexes

(7.19) 0 // F //
� _

φ
��

F1 ⊕F2
G−ρF2

2
//

� _

(φ1,φ2)
��

(F2)|Y12
//

φ2|Y12
��

0

0 // E|Y // E1 ⊕E2
ρ

E1
1 −ρ

E2
2
// E12

// 0.
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Conversely, every injection φ : F ↪→ E|Y is described as above for suitable injections φi such that the
equality in (7.18) holds; see [NS97, Remark 2.10].

For (F1,F2,G) as above, let

(7.20) F ′
1 := F1|V (A)D0

, F ′′
1 := ker(F1→F ′

1)

and

(7.21) r ′1 := r(F
′
1), r ′′1 := r(F ′′

1 ), r2 := r(F2).

Remark 7.3. The sheaf F ′′
1 is annihilated by the ideal of V (A)D0

in V(A)D0
; hence it is the push-forward of

a sheaf on V (A)D0
. Suppose that F is a subsheaf of EY . Then the multiplication morphism

(7.22) IV (A)D0 /V(A)D0
⊗F ′

1 −→F ′′
1

is generically an injection, and hence r ′1 ≤ r
′′
1 .

Proposition 7.4. Keeping notation as above, suppose that md > 8 and that F is a subsheaf of E|Y . Then the
rank of F (with respect to the restriction of c1(E )) is an integer if and only if r ′1 + r

′′
1 = 2r2. If this is the case,

then r(F ) = r2.

Proof. Let n be an integer. We have the exact sequence of sheaves on Y1

(7.23) 0 −→F ′′
1 (n) −→F1(n) −→F ′

1(n) −→ 0,

and hence α2(F1) = α2(F ′
1) +α2(F

′′
1 ). Tensoring the exact sequence in (7.16) by OY (n), we get that

α2(F ) = α2(F
′
1) +α2(F

′′
1 ) +α2(F2) = (r ′1 + r

′′
1 )degV (A)D0

+ r2deg∆(A)D0
,

where degrees are with respect to c1(E ). Hence we have

(7.24) r(F ) =
(r ′1 + r

′′
1 )degV (A)D0

+ r2deg∆(A)D0

2degV (A)D0
+deg∆(A)D0

.

From this, the “if” direction follows at once (no need to suppose that md > 8 or that F is a subsheaf of E|Y ).
In order to prove the “only if” direction, we suppose that r ′1 + r

′′
1 , 2r2. By (7.9) and (7.10), we have

(7.25) degV (A)D0
= 12md(md − 1), deg∆(A)D0

= 24md,

and hence (7.24) gives that

(7.26) r(F ) =
r ′1 + r

′′
1

2
−
r ′1 + r

′′
1 − 2r2

2md
.

Now r ′1, r
′′
1 , r2 are at most equal to 4 because F is a subsheaf of E|Y . Since r ′1 + r

′′
1 , 2r2 and md > 8,

it follows that 0 < |(r ′1 + r
′′
1 − 2r2)/2md| < 1/2. This proves that the right-hand side in (7.26) is not an

integer. □

7.5. Slope of subsheaves of E (L )|π−1(D0) for general D0 ∈ E∨

Proposition 7.5. With notation as above, suppose that md > 8 and that F is a subsheaf of E|Y with integer
rank. Then

(7.27)
α1(F )
r(F )

=
α1(F ′

1)
r2

+
α1(F ′′

1 )
r2

+
α1(F2)
r2

− 2degΣ.

Proof. Tensoring the exact sequence of sheaves in (7.17) by OY (n) and recalling the exact sequences in (7.23),
we get that

(7.28) α1(F ) = α1(F
′
1) +α1(F

′′
1 ) +α1(F2)−α1((F2)|Y12).

The exact sequence in (7.6) and Riemann–Roch for Σ give that

(7.29) α1((F2)|Y12) = 2r2degΣ,
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where

(7.30) degΣ =
∫
Σ

c1(E ) = 12md.

By Proposition 7.4, we have r(F ) = r2 because F has integer rank. Dividing the equality in (7.28) by r(F ),
one gets the proposition. □

Corollary 7.6. With notation as above, suppose that md > 8 and that F is a subsheaf of E|Y with integer rank
r(F ) ∈ {1,2,3} such that µ(F ) ≥ µ(E|Y ). Then F2 is slope desemistabilizing for the sheaf E2 on Y2 (with respect
to the restriction of c1(E )).

Proof. Since E ′′1 � E ′1 ⊗ ξ(A) (see Proposition 6.18), we have

(7.31) α1(E
′′
1 ) = α1(E

′
1) + 2degΣ.

By Proposition 7.5, for F = E|Y , it follows that

(7.32)
α1(E|Y )

4
=
α1(E ′1)

2
+
α1(E2)

4
− 3
2
degΣ.

The morphism G : F1→ (F2)|Y12 (see (7.15)) maps F ′′
1 to (F ′′

2 )|Y12 . By the equality in (7.18), we get that
the restriction of φ1 to F ′′

1 drops rank along Σ at least by r ′′1 − r2. (Note that (r
′′
1 − r2) ≥ 0 by Remark 7.3

and Proposition 7.4 because the rank of F is integral). Thus there exist a subsheaf F ′′
1 ⊂ E ′′1 and an exact

sequence

(7.33) 0 −→F ′′
1 −→F ′′

1 −→Q −→ 0,

where Q is supported on Σ and

(7.34) α1(Q) ≥ (r ′′1 − r2)degΣ.

By Proposition 6.18, the vector bundle E ′′1 is slope stable, and hence 4α1(F ′′
1 ) < r

′′
1α1(E

′′
1 ). Thus

(7.35) α1(F
′′
1 ) = α1(F

′′
1 )− cdegΣ ≤ α1(F

′′
1 )− (r

′′
1 − r2)degΣ <

<
r ′′1
4
α1(E

′′
1 )− (r

′′
1 − r2)degΣ =

r ′′1
4
α1(E

′
1) +

2r2 − r ′′1
2

degΣ.

(The last equality follows from (7.31).) By Proposition 7.5 and the slope stability of E ′1, we get that

(7.36)
α1(F )
r(F )

<
α1(F ′

1)
r2

+
r ′′1
4r2

α1(E
′
1) +

α1(F2)
r2

− 3
2
degΣ−

r ′′1 − r2
2r2

degΣ =

=
α1(E ′1)

2
+
α1(F2)
r2

− 3
2
degΣ−

r ′′1 − r2
2r2

degΣ ≤

≤
α1(E ′1)

2
+
α1(F2)
r2

− 3
2
degΣ.

By (7.32), it follows that 4α1(F2) > r2α1(E2). □

7.6. Elementary modifications of E1

The main result of the present subsection is motivated by Corollary 7.6. Let H2 ⊂ E2 be a nonzero
subsheaf such that µ(H2) > µ(E2) (here the slope is as sheaves on Y2, with respect to the restriction of c1(E ))
and the quotient E2/H2 is torsion-free. By Proposition 6.19, the quotient E2/H2 is actually locally free. Let

(7.37) R(H2) := (E2/H2)|Y12 .
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Let R(H2)′ be the restriction of R(H2) to Σ = (Y12)red. By the exact sequence in (7.6), we have an exact
sequence

(7.38) 0 −→R′(H2) −→R(H2) −→R′(H2) −→ 0.

Let G1(H2) be the sheaf on Y1 fitting into the exact sequence

(7.39) 0 −→ G1(H2) −→ E1
γ
−→R(H2) −→ 0,

where γ is the composition of the restriction morphism E1→ (E1)|Y12 , the natural isomorphism (E1)|Y12
∼→

(E2)|Y12 and the quotient map (E2)|Y12 →R(H2).
Let G ′1(H2) be the restriction of G1(H2) to V (A)D0

= (Y1)red, and let G ′′1 (H2) be the kernel of the
restriction morphism G1(H2) → G ′1(H2). Thus we have a commutative diagram with exact rows and
columns

(7.40) 0

��

0

��

0

��

0 // G ′′1 (H2) //

��

G1(H2) //

��

G ′1(H2) //

��

0

0 // E ′′1
//

��

E1
//

��

E ′1
//

��

0

0 // R′(H2) //

��

R(H2) //

��

R′(H2) //

��

0

0 0 0.

For later use, we record the slopes of G ′1(H2) and G ′′1 (H2). By Proposition 6.19, we have α1(R′(H2)) =
(12− 3r2)md. By the left and right vertical exact sequences in (7.40), it follows that

(7.41) α1(G
′
1(H2)) = α1(E

′
1)− (4− r2)degΣ = α1(E

′
1)− 12(4− r2)md

and

(7.42) α1(G
′′
1 (H2)) = α1(E

′′
1 )− (4− r2)degΣ = α1(E

′
1)− 12(4− r2)md.

Proposition 7.7. Keep notation and hypotheses as above. Then the sheaves G ′1(H2) and G ′′1 (H2) are slope
semistable with respect to any ample line bundle.

Proof. We give the proof for G ′1(H2). (The proof for G ′′1 (H2) is similar.) Let h be the class of an ample line
bundle on V (A)D0

, and suppose that G ′1(H2) is not h slope semistable, i.e., there exists an exact sequence of
sheaves

(7.43) 0 −→U −→ G ′1(H2) −→W −→ 0

such that U is nonzero of rank rU < 4 and

(7.44) (4c1(U )− rU c1(G ′1(H2))) · h > 0.

We claim that

(7.45) (4c1(U )− rU c1(G ′1(H2))) · cl(Σ) ≤ 0.

In fact, the restriction of c1(G ′1(H2)) to Σ is (strictly) slope semistable because the exact sequence defining
G ′1(H2) (the right-hand side short exact column in (7.40)) gives that we have an exact sequence

(7.46) 0 −→R′(H2) −→ G ′1(H2)|Σ −→ (H2)|Σ −→ 0
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and µ(R′(H2)) = 3md = µ((H2)|Σ). Since cl(Σ) is on the boundary of the ample cone of V (A)D0
, we get

that there exists an ample class h1 in the convex cone spanned by h and cl(Σ) such that

(7.47) (4c1(U )− rU c1(G ′1(H2))) · h1 = 0.

Arguing as in the proof of the wall-and-chamber decomposition for slope stability of sheaves on (smooth
projective) surfaces, one gets that there exists an ample class h0 (in the convex cone spanned by h and cl(Σ))
such that G ′1(H2) is strictly h0 slope semistable, i.e., h0 slope semistable but not slope stable. We claim
that the hypotheses of Lemma 6.17 are satisfied by the vector bundle G ′1(H2), and hence by Lemma 6.17,
G ′1(H2) is not strictly h0 slope semistable, giving a contradiction. First a straightforward computation gives
that ∆(G ′1(H2)) = 0. It remains to show that c1(G ′1(H2)) is not divisible by 2. The exact sequence defining
G ′1(H2) gives the equality

c1(G
′
1(H2)) = c1(E

′
1)− (4− rr )cl(Σ) = (degV )Γ +2(md − 1)c1(O(1))− (4− rr )cl(Σ),

where V is the stable rank 4 vector bundle on CA of Proposition 6.15 and O(1) is the line bundle on V (A)D0

considered in Section 6.5. Choose p0 ∈ CA, and let Π ⊂ V (A)D0
� C

(2)
A be the section of the P

1 bundle

gA : C
(2)
A → CA given by

(7.48) Π := {(p) + (p0) | p ∈ CA}.

Then Π ·Σ = 2, and hence

(7.49)
∫
Π

c1(G
′
1(H2)) ≡ degV (mod 2).

Since V is a stable vector bundle of rank 4 on the elliptic curve CA, it has odd degree. This proves that
c1(G ′1(H2)) is not divisible by 2. □

7.7. Proof of Proposition 7.1

Suppose that µ(F ) ≥ µ(E|Y ). By Corollary 7.6, it follows that µ(F2) > µ(E2), where the slope is as sheaves
on Y2, with respect to the restriction of c1(E ). Hence there exists a chain of subsheaves F2 ⊂H2 ⊂ E2 such
that H2/F2 is torsion and E2/H2 is torsion-free. By the key relation in (7.18), the morphism φ1 defines a
morphism φ1 : F1→ G1(H2) and hence morphisms

(7.50) F ′
1
φ
′
1−−→ G ′1(H2), F ′′

1
φ
′′
1−−→ G ′′1 (H2).

By Proposition 7.7 and the equalities in (7.41) and (7.42), it follows that

α1(F
′
1) ≤

r ′1
4
α1(G

′
1(H2) =

r ′1
4
α1(E

′
1)− 3r

′
1(4− r2)md,(7.51)

α1(F
′′
1 ) ≤

r ′1
4
α1(G

′′
1 (H2) =

r ′′1
4
α1(E

′′
1 )− 3r

′′
1 (4− r2)md.(7.52)

We compare the expressions for α1(F )/r(F ) and α1(E )/4 which appear in Proposition 7.5 and (7.32). First
we have

(7.53)
α1(F2)
r2

≤ α1(H2)
r2

=
α1(E2)

4
+
12− 3r2
r2

md.

By the inequalities in (7.51) and (7.52) and the equality in (7.31), we get that

(7.54)
α1(F )
r(F )

≤
α1(E ′1)

2
+
α1(E2)

4
− 3
2
degΣ−

(
33− 6r2 −

12+6r ′′1
r2

)
md.

One checks easily that the right-hand side is strictly smaller than the right-hand side in (7.32). This gives a
contradiction. □
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8. Proof of Theorem 1.1

8.1. Ampleness of detE (L )

Below is the main result of the present subsection.

Proposition 8.1. Let a be a positive integer. If d≫ 0 (the lower bound depends on a), the following holds. Let A
be an abelian surface such that NS(A) =ZωA ⊕ZγA, where ωA is ample, γA is the Poincarè dual of a (bona
fide) elliptic curve CA and

(8.1) ωA ·ωA = 4a, ωA ·γA = d.

Then for any positive integer m, the class 2mµA(ωA)− δ(A) is ample on K2(A).

In order to prove Proposition 8.1, we make explicit the general results of [Yos16] and [KLCM19] in the case
of Kum2(A).

If M is a HK manifold, let C (M) ⊂ H1,1
R

(M) be the cone of x ∈ H1,1
R

(M) such that qM(x) > 0, and
let C +(M) the connected component of C (M) containing Kähler classes. We recall that the Kähler cone
K (M) ⊂ C +(M) is a connected component (open chamber) of the complement of the wall divisors, given
by w⊥ ∩C +(M) for certain classes w ∈NS(M) of negative square.

Proposition 8.2. Suppose that w ∈ NS(K2(A)) is primitive and w⊥ ∩ C +(K2(A)) is a wall divisor. Then
q(w) = −6 and div(w) ∈ {2,3,6}.

Proof. First we recall that the Mukai pairing ⟨,⟩ on H2∗(A;Z) is defined by

⟨(r,ℓ, s), (r ′ , ℓ′ , s′)⟩ := −rs′ − r ′s+
∫
S
ℓ∪ ℓ′ .

If v2 ≥ 6, then the cohomology of the Albanese fiber of a moduli space of stable sheaves on A with assigned
primitive Mukai vector v ∈ H2∗(A;Z)) is identified with the orthogonal v⊥ ⊂ H2∗(A;Z). In our case, i.e.,
K2(A), the Mukai vector is v := (1,0,−3).

According to [KLCM19, Theorem 2.9] a class w ∈ v⊥ defines a wall divisor (i.e., w⊥∩C +(K2(A)) is a wall
divisor) if and only if ⟨w,w⟩ is negative and the saturated sublattice of H2∗(A;Z) generated by v and w
contains an s ∈H2∗(A;Z) such that

(8.2) 0 ≤ ⟨s, s⟩ < ⟨s,v⟩ ≤ 1
2
(⟨v,v⟩+ ⟨s, s⟩) = 3+

1
2
⟨s, s⟩.

Note that we may assume that s is primitive. Clearly

(8.3) w =
1
n
(⟨s,v⟩v − 6s)

for a certain integer n which is a multiple of gcd(⟨v,s⟩,6). Thus we get that

(8.4) ⟨w,w⟩ = − 6
n2

(
⟨s,v⟩2 − 6⟨s, s⟩

)
,

6
n
divides div(w).

The inequalities in (8.2) give that ⟨s, s⟩ < 6, and hence ⟨s, s⟩ ∈ {0,2,4} because the Mukai pairing is even, and
also give that ⟨s,v⟩ belongs to a finite list. Explicitly, either ⟨s, s⟩ = 0 and ⟨s,v⟩ ∈ {1,2,3}, or ⟨s, s⟩ = 2 and
⟨s,v⟩ ∈ {3,4}, or ⟨s, s⟩ = 4 and ⟨s,v⟩ = 5. A case-by-case analysis gives that n = gcd(⟨v,s⟩,6) in all cases,
and the proposition follows (recall that div(x) is a divisor of 6 for every x ∈H2(K2(A);Z)). □

We will use the following elementary result.
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Lemma 8.3 (cf. [O’G22b, Lemma 4.3]). Let (Λ,q) be a nondegenerate rank 2 lattice which represents 0, and
hence disc(Λ) = −d20 , where d0 is a strictly positive integer. Let α ∈Λ be primitive isotropic, and complete it to a
basis {α,β} such that q(β) ≥ 0. If γ ∈Λ has strictly negative square (i.e., q(γ) < 0), then

(8.5) q(γ) ≤ − 2d0
1+ q(β)

.

Proof of Proposition 8.2. Recall that by (3.16), we have

c1(E (L )) = 2µA(mωA)− δ(A).

Since ωA is ample, the class µA(ωA) is in the closure of the ample cone. Suppose that 2mµA(ωA)− δ(A) is
not ample. By Proposition 8.2, there exist β ∈NS(A), x ∈Z such that

(8.6) q(β2 − xδ(A)) = −6 ≤ β2 − 6x2 < 0

and either

(8.7) q(µA(β)− xδ(A),µA(ωA)) = q(µA(β)− xδ(A),2mµA(ωA)− δ(A)) = 0

or

(8.8) q(µA(β)− xδ(A),µA(ωA)) > 0, q(µA(β)− xδ(A),2mµA(ωA)− δ(A)) ≤ 0.

In other words, either both 2mµA(ωA) and 2mµA(ωA)− δ(A) lie on a wall, or there exists a wall separating
2mµA(ωA) from 2mµA(ωA)− δ(A).

Assume that (8.7) holds. Then (β,ωA) = 0, and hence β2 ≤ 0 by the Hodge index theorem. The last
inequality is strict because if it were an equality, then we would have β = 0 and hence also x = 0. By (8.6),
we get that −6 ≤ β2 < 0. By Lemma 8.3, this is impossible if d > 12a+3.

Next assume that (8.8) holds. We rewrite (8.6) as

(8.9) β2 < 6x2 ≤ β2 +6.

By (8.8), we have

(8.10) 0 < m(β,ωA) ≤ 3x.

In particular, x is positive. Since by the Hodge index theorem, we have (ω2
A) · (β2) ≤ (β,ωA)2, it follows that

(8.11) m2 · 4aβ2 ≤m2 · (β,ωA)2 ≤ 9x2 ≤ 3
2
β2 +9.

It follows that β2 ≤ 18/5. Feeding this into the second inequality in (8.9), we get that x = 1. This together
with (8.10) gives that (β,ωA) ∈ {1,2,3}. (Notice that if m > 3, we are done.) The class (4aβ − (β,ωA)ωA) is
orthogonal to ωA; hence

(8.12) −12a ≤ (4aβ − (β,ωA)ωA)2 ≤ 0,

where the first inequality follows from 0 ≤ β2 (see (8.9)) and (β,ωA) ∈ {1,2,3}. By Lemma 8.3, if d > 24a2+6a,
this forces the square to vanish and hence β to be a multiple of ωA. This is absurd by (8.10). □

Remark 8.4. Arguing geometrically, one can give a lower bound on d in Proposition 8.1 which is much
stronger than the bound one gets by following the proof, at least if a , 2. In fact, one can show that if a = 1,
then d ≥ 2 suffices for ampleness of 2mµA(ωA) − δ(A), and that if a ≥ 3, then d ≥ 4 suffices. We sketch
the proof. Let L be a line bundle on A such that c1(L) = 2mωA. Then L is ample on A, and it is globally
generated. We claim that the map A→ |L|∨ � P

8am2−1 is an embedding and that the image is cut out by
quadrics. If a = 1, this follows from the results in [Bar87], and if a ≥ 3, the statement holds because L

satisfies property (N1) by the main result in [KL19] or [Ito18]. Thus we have A ⊂ |L|∨ � P
8am2−1. Since A is
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cut out by quadrics and it contains no lines, every length 3 subscheme of A spans a plane in P
8am2−1, and

hence we have a regular map

(8.13) A[3] ϕ
−→ Gr(3,C8am2

)
[Z] 7−→ ⟨Z⟩.

Next, one proves that ϕ has finite fibers, and hence the pull-back ϕ∗(P) of the Plücker (ample) line bundle
on Gr(3,C8am2

) is ample on A[3]. At this point, we are done because the restriction of ϕ∗(P) to K2(A) is
2µA(mωA)− δ(A).

8.2. Existence

If e ≡ −6 (mod 16), we write e = 16a− 6, and if e ≡ −6 (mod 144), we write e = 144a− 6 (note that in
both cases, a is a positive integer). Let B be an abelian surface such that Hypothesis 6.1 holds. We adopt the
notation introduced in Proposition 8.1. In particular, A = B/⟨ϵ⟩, and we have the ample class ωA on A with
ω2
A = 4a. We assume throughout that the positive integer d =ωA ·γA (see (6.1) and (6.8)) is odd and large

(the lower bound on d depends only on a). Now we choose the line bundle L on X:

(1) If e ≡ −6 (mod 16), we let c1(L ) = ν∗(µB(ωB)),
(2) if e ≡ −6 (mod 144), we let c1(L ) = ν∗(µB(3ωB)).

Set E0 := E (L ) and h0 := c1(E0). By (3.16), we have

(1) h0 = 2µA(ωA)− δ(A) if e ≡ −6 (mod 16) and
(2) h0 = 6µA(ωA)− δ(A) if e ≡ −6 (mod 144).

Hence q(h0) = e in both cases, and div(h0) = 2 in the first case, while div(h0) = 6 in the second case.
Moreover. h0 is ample by Proposition 8.1 (recall that d≫ 0; this is where we need d to be large). This proves
that h0 is a polarization of the type appearing in Theorem 1.1.

Let M → T be a (sufficiently small) representative of Def(K2(A),h0). By Proposition 6.3, the vector
bundle E0 has an extension to a vector bundle Et on Mt for every t ∈ T (the extension is unique by loc. cit.).

Proposition 8.5. Keeping notation as above, the vector bundle Et is ht slope stable for general t ∈ T , where ht is
the polarization (deformation of h0) on Mt .

Proof. Let Nd ⊂ T be the Noether–Lefschetz divisor parametrizing Mt such that µA(γA) remains of type
(1,1). If t ∈ Nd , then we have a Lagrangian fibration πt : Mt → P

2 extending the Lagrangian fibration
πA : K2(A)→ |OE(3(0))|. By Proposition 6.4 and the openness of stability, the restriction of Et to a general
fiber of πt is slope stable. Now assume in addition that t is very general in Nd , so that the Néron–Severi
group of Mt has rank 2 and hence is obtained via parallel transport from the subgroup of NS(K2(A))
generated by (2µA(ωA)−δ(A)),µA(γA) in case (1), respectively 6µA(ωA)−δ(A),µA(γA) in case (2). Applying
Lemma 8.3, we get that there is a single 72-chamber in NS(Mt), and hence ht is 72-suitable. It follows that,
with the notation introduced in [O’G22b, Definition 3.3], we have

(8.14) a(Et) :=
r(Et)2d(Et)

4cMt

= 72.

(Here cMt
is the normalized Fujiki constant of Mt , i.e., 3, and d(Et) = 54 by (3.46).) Hence Et is ht slope

stable by [O’G22b, Proposition 3.6]. □

Since Kum2
e and Kum6

e are irreducible, the existence of a slope stable vector bundle F on M such that
the equalities in (1.5) hold, for a general point [(M,h)] ∈ Kum2

e (respectively, [(M,h)] ∈ Kum6
e ), follows at

once from Proposition 8.5.
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8.3. Stability of the restriction of Et to Lagrangian fibers

Keep notation as in Section 8.2. In particular, Nd ⊂ T is the Noether–Lefschetz divisor appearing in the
proof of Proposition 8.5. Let t ∈ Nd be a general point, let (Mt ,ht) be the corresponding deformation of
(K2(A),h0), and let πt : Mt→ P

2 be the Lagrangian fibration which is a deformation of π0 = πA : K2(A)→
|OE(3(0))|. Lastly, let Et be the extension to Mt of the vector bundle E0 = E (L ) on K2(A). The main result
of the present subsection is the following.

Proposition 8.6. Keep notation as above, and suppose that md is odd and greater than 8. Let t ∈Nd be a general
point. There exists a finite subset Bd(t) ⊂ P

2 such that for x ∈ (P2 \Bd(t)), the restriction of Et to the Lagrangian
fiber π−1t (x) is slope stable with respect to the restriction of ht .

First we deal with smooth Lagrangian fibers and then with singular fibers.

Proposition 8.7. With notation and hypotheses as above, let t ∈Nd be a general point. The restriction of Et to a
smooth Lagrangian fiber π−1t (x) is slope stable with respect to the restriction of ht , except possibly for a finite set of
x ∈ P2.

Proof. By Proposition 6.4 and the openness of slope stability, the restriction of Et to a general smooth
Lagrangian fiber is slope stable with respect to the restriction of ht . By Propositions 6.4 and 6.5, the
restriction of E0 to a Lagrangian fiber π−10 (x) is simple, except possibly for a finite set of x ∈ P2. By the
openness of simpleness, it follows that the restriction of Et to a Lagrangian fiber π−1t (x) is simple except
possibly for a finite set of x ∈ P2. By the argument given in the proof of [O’G23, Proposition 5.14], it follows
that the restriction of Et to a smooth Lagrangian fiber is simple semi-homogeneous, except possibly for
a finite set of x ∈ P2. By [Muk78, Proposition 6.13], it follows that the restriction of Et to any smooth
Lagrangian fiber is slope semistable with respect to the restriction of ht , and hence it is slope stable by
Corollary B.2 (see the proof of Proposition 6.4). □

Proposition 8.8. With notation and hypotheses as above, let t ∈Nd be a general point. Then, except possibly for
a finite set of x ∈ P2, the Lagrangian fiber π−1t (x) is integral.

Proof. For t ∈Nd , let Disc(πt) ⊂ P
2 be the discriminant curve of πt : Mt→ P

2. If x ∈ (P2 \Disc(πt)), then
π−1t (x) is integral by the definition of a Lagrangian fibration. It remains to deal with π−1t (x) for x ∈Disc(πt).

If t ∈Nd is general, then Disc(πt) is irreducible. In fact, by [Wie18, Theorem 2], there is single deformation
class of Lagrangian fibrations of HK fourfolds of Kummer type, and among such Lagrangian fibrations,
there are the Beauville–Mukai systems. The discriminant curve of a general Beauville–Mukai system is the
Severi variety (a curve in the present case) parametrizing singular divisors in the complete linear system of a
(general) polarization with elementary divisors (1,3) on an abelian surface. Such a Severi variety is a plane
irreducible curve of degree 18 by [LS02, Proposition 5.3].

We also claim that π−1t (Disc(πt)) is irreducible. It suffices to prove the claim for very general t ∈ ND .
Hence we may assume that the Picard number ρ(Mt) equals 2. It follows that every irreducible component
of π−1t (Disc(πt)) has cohomology class a (rational) multiple of π∗tc1(OP

2(1)) and that every curve contained
in a Lagrangian fiber has zero intersection number with π∗tc1(OP

2(1)). Since every Lagrangian fiber is
connected (because a general Lagrangian fiber is integral), it follows that π−1t (Disc(πt)) is irreducible.

For general x ∈Disc(πt), let

(8.15) [π−1t (x)] =
ℓ∑
i=1

ciSi

be the cycle associated to the fiber π−1t (x). Since π−1t (Disc(πt)) is irreducible, we have ci = cj and
degSi = degSj for any i, j ∈ {1, . . . , ℓ}. Now let t→ 0, so that the Lagrangian HK variety Mt specializes
to M0 = K2(A) and πt specializes to π0 = πA. Then the cycle [π−1t (x)] specializes to 2V (A)D0

+∆(A)D0
,
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where D0 ∈ E∨ is any noninflectionary divisor; see Proposition 6.9. It follows that if π−1t (x) is not integral,
then either degV (A)D0

= deg∆(A)D0
= degSi or 2degV (A)D0

= deg∆(A)D0
= degSi . Neither of the two

equalities holds (the degrees of V (A)D0
, ∆(A)D0

are given in (7.25)), and hence π−1t (Disc(πt)) is integral. □

Corollary 8.9. With notation as above, suppose that md is odd and that md > 8. Let t ∈Nd be a general point.
Then for a general x ∈Disc(πt), the restriction of Et to π

−1
t (x) is slope stable with respect to the restriction of ht .

Proof. Suppose the contrary. By Proposition 8.8, π−1t (x) is integral, and hence there exists a slope
destabilizing subsheaf Ft ⊂ Et with r(Ft) ∈ {1,2,3}. Take the limit for t → 0, so that Mt specializes to
M0 = K2(A) and πt specializes to π0 = πA. Then we get that for all x ∈Disc(πA), the sheaf E0 = E (L ) has
a slope destabilizing subsheaf F0 ⊂ E0 with r(F0) ∈ {1,2,3}. This contradicts Proposition 7.1.

□

8.4. A monodromy computation

Keep notation as in Section 8.3.

Proposition 8.10. Let t ∈ Nd be a general point. Let x0 ∈ P2 be a regular value of πt , and let S := π−1t (x0).
Then 0 is the only element of S∨[2] invariant under the monodromy action of π1(P2 \Disc(πt),x0).

Proof. Let x0 = (y1) + (y2) + (y3) (we follow the notation in (6.11)). Then

(8.16) S∨[2] � Z2(CA)
∨[2] � C∨A[2]⊕C

∨
A[2].

The monodromy action is generated by the following two involutions:

(8.17) (a,b) 7−→ (b,a), (a,b) 7−→ (a,−a− b).

The proposition follows easily from this. □

Corollary 8.11. Let t ∈Nd be a general point. Let x0 ∈ P2 be a regular value of πt , and let S := π−1t (x0). Then
the only coset of the subgroup S∨[2] < S∨[4] invariant under the monodromy action of π1(P2 \Disc(πt),x0) is
S∨[2] itself.

Proof. The homomorphism S∨[4]→ S∨[2] defined by multiplication by 2 identifies the quotient S∨[4]/S∨[2]
with S∨[2]; hence the corollary follows from Proposition 8.10.

□

8.5. Unicity

We finish the proof of Theorem 1.1 by showing that if [(M,h)] ∈ Kum2
e or [(M,h)] ∈ Kum6

e are general,
then there exists a unique (up to isomorphism) slope stable vector bundle F on M such that the equalities
in (1.5) hold. The key steps of the proof are those of the proofs of the analogous results in [O’G22b, O’G23].

Let Z ie → P i
e (for i ∈ {2,6}) be a complete family of polarized HK fourfolds of Kummer type with

polarization of square e and divisibility i. Since Kum2
e and Kum6

e are irreducible, we may assume that P i
e is

irreducible. By results of Gieseker and Maruyama, there exists a relative moduli space

(8.18) ρie : M i
e −→P i

e

with fiber over a point corresponding to (M,h) isomorphic to the moduli space of slope stable vector
bundles F on M such that the equalities in (1.5) hold. Moreover, the morphism ρie is of finite type by
Maruyama [Mar81].

For d≫ 0, let Nd(P i
e)
0 be a Noether–Lefschetz divisor containing the divisor Nd defined in the proof

of Proposition 8.5 (we do not know whether the Noether–Lefschetz divisors defined by imposing that the
Néron–Severi lattice contains the rank 2 lattice in the proof of Proposition 8.5 are irreducible). Since the
union of the Nd(P i

e)
0 is Zariski dense in P i

e , it suffices to prove that if M is HK corresponding to a general
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point of Nd(P i
e)
0, then, up to isomorphism, there is a unique slope stable vector bundle F on M such

that the equalities in (1.5) hold. In turn, to prove the latter statement, it suffices to prove unicity for the HK
varieties corresponding to a very general t ∈Nd .

Let t ∈Nd be a general point. Let Et be the vector bundle on Mt obtained by deformation of E (L ) on
K2(A) as in Section 8.2, and let Ft be a slope stable vector bundle on Mt such that the equalities in (1.5)
hold. We must prove that Ft � Et .

Claim 8.12. The restrictions of Ft and Et to a general Lagrangian fiber are isomorphic.

Proof. As was noticed in the proof of Proposition 8.5, there is a single 72-chamber in NS(Mt), and hence
ht is 72-suitable. Since a(Et) = 72, it follows that the restriction of Ft to a generic Lagrangian fiber of πt
is slope semistable (with respect to the restriction of ht) by [O’G22b, Proposition 3.6]. By Proposition B.1,
it follows that the restriction of Ft to a generic Lagrangian fiber of πt is slope stable (see the equation
in (6.14)). Now let Sx = π

−1
t (x) be a general Lagrangian fiber of πt . The restrictions of Ft and Et to Sx are

slope stable vector bundles with the same rank and first Chern class. Moreover, we have

(8.19)
∫
Sx

∆
(
Ft|Sx

)
=

∫
Sx

∆
(
Et|Sx

)
=

∫
Mt

∆
(
Ft|Sx

)
·π∗t(c1(OP

2(1))2) = 54qMt
(c1(OP

2(1))2) = 0.

It follows that the restrictions of Ft and Et to Sx are (simple) semi-homogenous (see [O’G22b, Proposi-
tion A.2]). By [Muk78, Theorem 7.11, Corollary 7.12], (see the equation in (6.14)), we get that

Vx :=
{
[ξ] ∈ S∨x |Ft|Sx � (Et|Sx )⊗ ξ

}
is not empty, and it is a coset of S∨x [2] in S

∨
x [4]. By Corollary 8.11, we get that Vx = S∨x [2], and hence

Ft|Sx � Et|Sx . □

Let Cd(t) ⊂ P
2 be the union of the subset Bd(t) ⊂ P

2 of Proposition 8.6 and the set of x ∈ P2 such that
Sx := π

−1
t (x) is not integral. Then Cd(t) is finite by Propositions 8.6 and 8.8. Let x0 ∈ (P2 \Cd(t)), and let

Γ ⊂ (P2 \Cd(t)) be a general smooth curve containing x0. Then Y := π−1t (Γ ) is a projective threefold, and
the restriction of πt to Y defines a surjection Y → Γ whose fibers are integral.

Since Γ is general, the restrictions Ft|Sx and Et|Sx are isomorphic for general x ∈ Γ by Claim 8.12.
Moreover, Et|Sx is slope stable for all x ∈ Γ . By [O’G22b, Lemma 7.5], it follows that for all x ∈ Γ the
restrictions Ft|Sx and Et|Sx are isomorphic.(2) This shows that for all x0 ∈ (P2 \Cd(t)) the restrictions Ft|Sx0
and Et|Sx0 are isomorphic. Since Et|Sx is simple for all x ∈ (P2 \Cd(t)) and detF � detE , it follows that F

and E are isomorphic away from Cd(t). By Hartogs’ theorem, we get that F and E are isomorphic. □

A. Examples of semi-homogeneous vector bundles

A.1. Basics

In the present section, “abelian variety means abelian variety”, and similarly for “elliptic curve”. Let A be
an abelian variety. For a ∈ A, we let Ta : A→ A be the translation by a. If L is a line bundle on A, we let

(A.1) A
ϕL−→ A∨

a 7−→ [T ∗a (L )⊗L −1].

We recall that a vector bundle F on A is semi-homogeneous if, for every a ∈ A, there exists a line bundle La

such that T ∗aF �F ⊗La. We recall the following result of Oda ([Oda71, Theorem 1.2]) and Mukai ([Muk78,
Theorem 5.8]) .

(2)Among the hypotheses of [O’G22b, Lemma 7.5], there is the requirement that Y be smooth, but it is not necessary. In fact,
one replaces the cup product in item (i) of the statement of Lemma 7.5 by the degrees of the corresponding intersection products.
The latter products make sense because one is intersecting Cartier divisors and Chern classes of vector bundles.
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Theorem A.1 (Oda, Mukai). A vector bundle E on an abelian variety A is simple and semi-homogeneous if
and only if it is isomorphic to f∗L , where f : Ã→ A is an isogeny and L is a line bundle on Ã such that
ker(f )∩ker(ϕL ) = {0}.

A.2. Semi-homogeneous vector bundles on powers of elliptic curves

Let C be an elliptic curve, let C̃ be an elliptic curve, and let f : C̃→ C be an isogeny. For i ∈ {1, . . . ,n+1},
let Li be a line bundle on C̃ of degree d0 (independent of i). Let Zn(C) ⊂ Cn+1, Zn(C̃) ⊂ C̃n+1 be as in (6.9),
and for i ∈ {1, . . . ,n+1}, let p̃i : Zn(C̃)→ C̃ be the ith projection. Lastly, let

Zn(C̃)
ψn

−→ Zn(C)
(z1, . . . , zn+1) 7−→ (f (z1), . . . , f (zn+1)).

Proposition A.2. Keeping notation as above, suppose that degf is coprime to (n + 1) · d0. Then G :=
ψn∗

(⊗n+1
i=1 p̃

∗
iLi

)
is a simple semi-homogeneous vector bundle on Zn(C) of rank (degf )n.

Proof. The sheaf G is locally free of rank equal to deg(ψn) because ψn is finite. Since ker(ψn) � (kerf )n, it
follows that G has rank (degf )n. In order to simplify notation, we let

ξ :=
n+1⊗
i=1

p̃∗iLi .

Let us prove that

(A.2)
∫

Zn(C̃)

c1(ξ)
n = (n+1) · dn0 .

In fact, let {α,β} be a Z-basis of H1(C̃;Z), and for i ∈ {1, . . . ,n} (we stop at n), let

xi := p̃
∗
i (α)|Zn(C̃), yi := p̃

∗
i (β)|Zn(C̃).

Then {x1, . . . ,xn, y1, . . . , yn} is a basis of H1(Zn(C̃);Z), and we have

(A.3) c1(ξ) = d0 ·
n∑
i=1

xi ∧ (y1 + · · ·+ yi−1 +2yi + yi+1 + · · ·+ yn).

Equation (A.2) follows from the above formula and a straightforward computation. By (A.2), the order of
ker(ϕξ ) is equal to (n+ 1)2 · d2n0 and hence is coprime to (degf )n by our hypothesis. Since the order of
ker(ψn) is (degf )n, it follows that

(A.4) ker(ψn)∩ker(ϕξ ) = {0}.

(Here ϕξ is as in (A.1).) Hence G is simple semi-homogeneous by Theorem A.1. □

B. Properly semistable vector bundles with vanishing discriminant on
abelian surfaces

In the present section, we extend Proposition 4.4 and Corollary 4.5 of [O’G22b] to arbitrary polarized
abelian surfaces.

Proposition B.1. Let (A,θ) be a (1, e) polarized abelian surface. Let F be a slope semistable vector bundle on A
such that ∆(F ) = 0 and c1(F ) = aθ. Then there exist coprime integers r0,b0, with r0 positive, and a positive
integer m such that

(B.1) r(F ) =m
r20
g
, a =m

r0
g
b0,
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where g := gcd{r0, e}. If F is slope strictly semistable, i.e., slope semistable but not slope stable, then m ≥ 2.

Proof. First suppose that F is slope stable. Then F is semi-homogeneous because ∆(F ) = 0; see [O’G22b,
Proposition A.2]. Since it is also simple, the thesis holds by [O’G22b, Proposition A.3].

Now suppose that F is strictly slope semistable. Then there exist an integer m ≥ 2 and a (slope stability)
Jordan–Hölder filtration of F

(B.2) 0 = G0 ⊊ G1 ⊊ · · · ⊊ Gm = F

such that for each i ∈ {1, . . . ,m}, the sheaf Gi/Gi−1 is locally free, c1(Gi/Gi−1) = aiθ and ∆(Gi/Gi−1) = 0; see
the proof of Proposition 4.4 in [O’G22b]. Arguing as above we get that Gi/Gi−1 is a simple semi-homogeneous
vector bundle. Let i ∈ {1, . . . ,m}. By [O’G22b, Proposition A.3], there exist coprime integers ri ,bi , with ri
positive, such that

r(Gi/Gi−1) =
r2i
gi
, ai =

ri
gi
bi ,

where gi := gcd{ri , e}. Hence the slope of Gi/Gi−1 is equal to (bi/ri)θ2. Since the filtration in (B.2) is the
(slope stability) Jordan–Hölder filtration of F , it follows that (b1/r1) = · · · = (bm/rm). Since ri ,bi are coprime,
we get that r1 = · · · = rm and b1 = · · · = bm. Hence there exist coprime integers r0,b0, with r0 positive, such
that

r(Gi/Gi−1) =
r20
g0
, c1(Gi/Gi−1) =

r0
g0
b0,

where g0 := gcd{r0, e}. This proves the thesis because m ≥ 2. □

Corollary B.2. Let (A,θ) be a (1, e) polarized abelian surface. Let F be a slope semistable vector bundle on A
such that ∆(F ) = 0. Suppose that there exist coprime integers s0, c0, with s0 positive, such that gcd{s0, e} = 1 and

(B.3) r(F ) = s20, c1(F ) = s0c0θ.

Then F is slope stable.

Proof. By Proposition B.1, there exist coprime integers r0,b0, with r0 positive, and a positive integer m such
that

(B.4) s20 =m
r20
g
, s0c0 =m

r0
g
b0,

where g := gcd{r0, e}. It follows that r0c0 = s0b0. Since r0,b0 are coprime and s0, c0 also are, it follows that
r0 = s0 and b0 = c0. This gives that m = g . Since r0 = s0 and by hypothesis s0 is coprime to e, we have
g = 1, and thus m = 1. By Proposition B.1, it follows that F is slope stable. □
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