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Line bundles on the first Drinfeld covering

James Taylor

Abstract. Let Ωd be the d-dimensional Drinfeld symmetric space for a finite extension F of Qp.
Let Σ1 be a geometrically connected component of the first Drinfeld covering of Ωd , and let F be
the residue field of the unique degree d +1 unramified extension of F. We show that the natural
homomorphism

̂(F ,+) −→ Pic(Σ1)[p]

determined by the second Drinfeld covering is injective. Here ̂(F ,+) is the group of characters of
(F ,+). In particular, Pic(Σ1)[p] , 0. We also show that all vector bundles on Ω1 are trivial, which
extends the classical result that Pic(Ω1) = 0.
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1. Introduction

Let p be a prime, F a finite extension of Qp, and L the completion of the maximal unramified extension
of F. The Drinfeld tower is a system of d-dimensional rigid analytic spaces over L,

M0←−M1←−M2←− ·· · ,

for which the spacesMn are equipped with compatible actions of D× ×GLd+1(F), where D is the division
algebra with invariant 1/(d +1) over F; see [Dri76, BC91, RZ96]. The spaceM0 is a fundamental example
of a Rapoport–Zink space, and as such is defined as the generic fibre of a p-adic formal scheme M̂0
which parametrises special formal OD-modules. The spacesMn overM0 are obtained by considering level
structure by the compact open subgroups 1 +ΠnOD of D×, and each Mn→M0 is a finite étale Galois
covering with Galois group O×D /(1 +ΠnOD ). These spaces play an important role in the representation
theory of both GLd+1(F) and D×: this tower has been shown to realise both the local Langlands and the
Jacquet–Langlands correspondences for GLd+1(F) in its étale cohomology, see [Car90, Har97, Boy99, HT01],
and when F = Qp and d = 1, encode part of the p-adic local Langlands correspondence for GL2(Qp);
see [CDN20, Theorem 0.2].

The base space M0 is non-canonically a disjoint union over Z of copies of Ωd , the d-dimensional
Drinfeld symmetric space. This is the admissible open subset of Pd,an defined by removing all F-rational
hyperplanes. The space M1 has been studied by many authors, see [Tei90, Wan14, Pan17, Jun22], and
recently Junger has shown that, after extending from L to L(ϖ), the preimage of each copy of Ωd inM1
is a disjoint union of q − 1 copies of Σ1, a particular geometrically connected Kummer-type cyclic Galois
covering of Ωd ; see [Jun22, Theorem 4.9]. Here ϖ is a (q−1)st root of −π, for π a uniformiser of F, and the
extension L(ϖ)/L is equal to the first Lubin–Tate extension of L. Little is known about the geometry of the
higher covering spaces (Mn)n≥2.

It is a classical result that Pic(Ω1) = 0, and recently this has been generalised to higher dimensions
and more general hyperplane arrangements by Junger; see [Jun23, Theorem A]. Understanding the Picard
groups of the covering spaces (Mn)n≥1 is much more difficult, and almost nothing is known in this context.
Previously, we showed that for d = 1, there is no p-torsion in the Picard group of any open subset of Σ1

which is the preimage of a vertex of the Bruhat–Tits tree; see [Tay23, Theorem 3.2].
In this paper we show that in any dimension Pic(Σ1)[p] , 0. More precisely, setting GB SLd+1(OF) and

writing F for the residue field of the unique degree d +1 unramified extension of F, we prove the following.
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Theorem (Theorem 4.6). Suppose that K contains L(ϖ) and a primitive pth root of 1. Then the natural
homomorphism

̂(F ,+)→ Pic(Σ1)[p]G

determined by the second Drinfeld covering is injective.

Here ̂(F ,+) is the group of characters of (F ,+). The assumption that K contains L(ϖ) is simply to ensure
that the space Σ1 is defined, and the assumption that K contains a primitive pth root of 1 is to ensure that
the homomorphism, which we now describe, is defined. For any Galois covering f : X → Y with abelian
Galois group H of exponent e over a field which contains a primitive eth root of 1, there is a decomposition

f∗OX =
⊕
χ∈Ĥ

Lχ, Lχ B eχ · f∗OX ,

where eχ is the central primitive idempotent corresponding to the character χ. Furthermore, Lχ ∈ Pic(Y )[e]
for any χ ∈ Ĥ , and the association

Ĥ −→ Pic(Y )[e], χ 7−→ Lχ
is a group homomorphism (cf. Proposition 2.3). For any n ≥ 1, σn : Mn+1→Mn is a Galois covering with
Galois group (1+ΠnOD )/(1+Πn+1OD ), which is canonically identified with (F ,+). The homomorphism of
Theorem 4.6 is then the homomorphism associated to the abelian Galois covering σ1 : Σ2→ Σ1, where Σ2

is the preimage of Σ1 inM2.
Now for the remainder of the introduction we focus on the case where d = 1 and set ΩBΩ1. Our main

interest in Theorem 4.6 is in the following. The work [DLB17] of Dospinescu and Le Bras describes how
certain D×-isotypical parts of the locally analytic representations O(Mn)′ of GL2(Qp) are related to the
p-adic Langlands correspondence and to the Jacquet–Langlands correspondence. We would like to better
understand the representations O(Mn)′ more generally for any F and d ≥ 1. For the representation O(M1)′

and questions regarding admissibility and topological irreducibility, becauseM1 is a disjoint union of copies
of Σ1, it is sufficient to understand the D(G)-module O(Σ1), where D(G) is the distribution algebra of G.

The extension σ0 : Σ1→Ω is an abelian Galois covering with Galois group Γ B (F ×q2)
q−1 ⊂ F

×
q2 . Applying

the above formalism to this extension and then taking the global sections, we can decompose the D(G)-
module O(Σ1) as

O(Σ1) = (σ0,∗OΣ1)(Ω) =
⊕
ψ∈̂Γ

Lψ(Ω).

The monumental recent work of Ardakov and Wadsley [AW23] shows, without any restriction on F, that
if ψ , 1, then Lψ(Ω) is a topologically irreducible coadmissible D(G)-module. This follows from [AW23,
Theorem A] together with the proof of [AW23, Corollary B] and the fact that Σ1 is geometrically connected.
The case where ψ = 1 is simply L1(Ω) = O(Ω), and the authors additionally show that this has length 2 as a
D(G)-module; see [AW23, Corollary 7.5.9]. We note that unlike Lψ for ψ , 1, the line bundle L1 = OΩ is the
restriction of some GL2(F)-equivariant vector bundle on P

1,an to Ω, and as such was already well understood
as a D(GL2(F))-module; see [Orl08]. The main idea of [AW23] is to understand the G-equivariant line
bundle with connection Lψ on Ω and then push this to P

1,an and use the G-equivariant Beilinson–Bernstein
correspondence, see [Ard21, Theorem C], to deduce properties of the corresponding D(G)-module Lψ(Ω).

We would like to use similar techniques to understand the global sections of the higher Drinfeld coverings
as D(G)-modules. For the second covering, we consider the extension σ1 : Σ2→ Σ1 and want to understand
the G-equivariant line bundles with connection Lχ = eχ ·σ1,∗OΣ2 for any χ , 1. In this context Theorem 4.6
says that the underlying line bundle of each Lχ is non-trivial. This is in contrast to what happens for
σ0 : Σ1 → Ω, because Pic(Ω) = 0. The analysis used in [AW23] of G-equivariant line bundles with
connection works under the assumption that the underlying line bundle is trivial, and Theorem 4.6 shows
that none of the line bundles Lχ fit into this formalism.
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In this paper we also show that all vector bundles on Ω are trivial (see Corollary 5.4), which extends and
uses the classical result that Pic(Ω) = 0. The key property we use is that O(Ω) is a Prüfer domain, which
is unknown to hold in higher dimensions. In the context of the above discussion, this suggests that rather
than first understanding Lχ = eχ · σ1,∗OΣ2 as a G-equivariant line bundle with connection on Σ1 and then
pushing to Ω, a potentially more feasible approach is to instead analyse σ0,∗Lχ directly as a G-equivariant
vector bundle with connection on Ω.

Notation

Throughout we shall use the following notation: F is a finite extension of Qp, with ring of integers OF ,
uniformiser π, and residue field Fq; K is a complete field extension of F, L is the completion of the maximal

unramified extension of F, and Cp is the completion of F. The integer d ≥ 1 will denote the dimension of
the spaces we consider. We set G = SLd+1(OF) and write D for the division algebra over F of invariant
1/(d +1).

Acknowledgments

The author would like to thank Konstantin Ardakov for many useful discussions and both Konstantin
Ardakov and Simon Wadsley for making available an early version of their preprint [AW23]. The author
would also like to thank the referee for their time and comments, all of which improved the paper.

2. Abelian Galois coverings

In this section we describe how the pushforward of the structure sheaf of an abelian Galois covering
decomposes into line bundles. The approach we take here is influenced by the work of Borevič for Kummer
extensions of rings; see [Bor76].

Let Γ be an abstract group. We write Γ for the corresponding constant rigid analytic group over K . Recall
that a (right) action of Γ on a rigid space X over K is a morphism a : X × Γ → X of rigid spaces over K such
that the diagrams

X × Γ × Γ X × Γ X × 1 X × Γ

X × Γ X, X

a×p2

pX×m

a

a
pX a

commute. If in addition f : X→ Y is a morphism of rigid spaces over K , then the action is called equivariant
with respect to the trivial action of Γ on Y if

X × Γ X

X Y

pX

a

f

f

commutes. As for schemes, an action of Γ on X which is equivariant with respect to the trivial action of Γ
on Y is equivalent to the data of a group homomorphism ρ : Γ op→ AutY (X), where AutY (X) is the group
of automorphisms of X which respect the morphism f : X→ Y . In this situation the sheaf of OY -modules
f∗OX has a (left) action of Γ ,

Γ −→ Autk (f∗OX) , g 7−→
(
ρ(g)♯f −1(U ) : f∗OX(U ) −→ f∗OX(U )

)
U⊂Y

,

which is well defined as ρ(g)♯ : OX → ρ(g)∗OX and

ρ(g)−1(f −1(U )) = f −1(U )
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for any open U ⊂ Y . Therefore, we can consider the sheaf of OY -modules (f∗OX)Γ defined by

(f∗OX)Γ (U ) = OX(f −1(U ))Γ

for any admissible open subset U of Y , which is a sheaf because (−)Γ preserves products and equalisers.

Definition 2.1. Suppose that Γ is a finite group, a : X × Γ → X is an action of Γ on X, and f : X→ Y is a
finite étale morphism of rigid spaces over K which is equivariant with respect to the trivial action of Γ on Y .
Then f : X→ Y is a Galois covering with Galois group Γ if the natural map OY → (f∗OX)Γ is an isomorphism
of OY -modules and

pX × a : X × Γ −→ X ×Y X
is an isomorphism of rigid spaces over K .

For the remainder of this section, we assume that Γ is a finite abelian group, f : X → Y is a Galois
covering with Galois group Γ , and K contains a primitive e(Γ )th root of 1, where e(Γ ) is the exponent of Γ .
For each χ ∈ Γ̂ , we write eχ for the corresponding central primitive idempotent

eχ =
1
|Γ |

∑
γ∈Γ

χ(γ−1)γ ∈ K[Γ ].

Definition 2.2. For any χ ∈ Γ̂ , we define the OY -module

Lχ B eχ · f∗OX .

Proposition 2.3. There is a direct sum decomposition of OY -modules

f∗OX =
⊕
χ∈̂Γ

Lχ,

and multiplication in f∗OX induces an isomorphism

Lχ ⊗OY Lψ
∼−→Lχψ .

In particular, each Lχ is an e(Γ )-torsion invertible OY -module, and the association

Γ̂ −→ Pic(Y )[e(Γ )], χ 7−→ Lχ
is a group homomorphism.

Proof. The sheaf f∗OX is an OY [Γ ]-module, and the direct sum decomposition of f∗OX follows from the fact
that the eχ are central orthogonal idempotents which sum to 1. Now suppose that U is an affinoid open
subset of Y , and let

V B f −1(U ) =U ×Y X ↪−−→ X.

Then Γ acts on V , f : V → U is equivariant with respect to the trivial action of Γ on U , and we have a
commutative diagram of isomorphisms

U ×Y (X × Γ ) U ×Y (X ×Y X)

V × Γ (U ×Y X)×U (U ×Y X).

Write AB O(U ) and BB O(V ). Since f : X→ Y is finite, V is affinoid, and because OY → (f∗OX)Γ is an
isomorphism, A→ B is injective and has image BΓ . Furthermore, because B is finitely generated over A, the
natural inclusion

B⊗A B −→ B⊗̂AB
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is an isomorphism; see [BGR84, Proposition 3.7.3/6]. Therefore, the composition of this inclusion with the
global sections of pX × a induces an isomorphism

B⊗A B
∼−→ B⊗K O(Γ ), x⊗ y 7−→

∑
γ∈Γ

x(γ · y)⊗ δγ .

Now B is a right O(Γ )-comodule algebra for the Hopf algebra O(Γ ) via

ρ : B −→ B⊗K O(Γ ), ρ : b 7−→
∑
γ∈Γ

γ(b)⊗ δγ ,

and the above isomorphism says exactly that A→ B is an O(Γ )-Galois extension in the sense of [Mon93,
Definition 8.1.1]. Because K contains a primitive e(Γ )th root of 1, the natural map K [̂Γ ] → O(Γ ) is an
isomorphism of Hopf algebras over K . Therefore, using this identification, we can view B as a K [̂Γ ]-
comodule algebra. We have that for b ∈ B,

(2.1) ρ(b) =
∑
γ∈Γ

γ(b)⊗ δγ =
∑
χ∈̂Γ

bχ ⊗χ

for some unique bχ ∈ B, and for each χ ∈ Γ̂ , we define

Bχ B {bχ | b ∈ B}.

Because A→ B is K [̂Γ ]-Galois, these Bχ make B a strongly graded Γ̂ -algebra by a result of Ulbrich, see
[Mon93, Theorem 8.1.7], meaning that

B =
⊕
χ∈̂Γ

Bχ and Bχ ·Bψ = Bχψ for all χ,ψ ∈ Γ̂ .

In fact, eχ ·B = Bχ. Indeed, by column orthogonality

δγ =
1
|Γ |

∑
χ∈̂Γ

χ(γ−1)χ,

and therefore substituting this into Equation (2.1) and comparing the coefficient of χ shows that

eχ · b = bχ.

There is a natural surjective morphism of A-modules

mχ,ψ : Bχ ⊗A Bψ −→ Bχ ·Bψ = Bχψ .

In order to show that this is injective, first note that each Bχ is direct summand of B and thus is finitely
generated projective as an A-module. From the decomposition of B as the direct sum of the Bχ,

(2.2)
∑
χ∈̂Γ

rankA(Bχ) = rankA(B) = |Γ |.

On the other hand, we have a surjection

Bχ ⊗A Bχ−1 −→ Bχ ·Bχ−1 = B1 = e1 ·B = A,

and therefore rankA(Bχ) rankA(Bχ−1) ≥ 1, hence rankA(Bχ) ≥ 1, and from Equation (2.2) above,
rankA(Bχ) = 1. As a consequence, mχ,ψ is a surjective homomorphism between finitely generated rank 1
A-modules, and as such it is injective.

Now, returning to the global situation, multiplication induces a morphism of OY -modules

(2.3) Lχ ⊗OY Lψ −→ f∗OY .
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Because f∗OY is coherent, then locally over an affinoid open subset U as above, this is identified with the
morphism of sheaves associated under the associated sheaf construction to the A-module homomorphism

eχ ·B⊗A eψ ·B −→ B.

We have shown above that this has image eχψ ·B, and therefore the morphism of OY -modules (2.3) above
induces an isomorphism

Lχ ⊗OY Lψ
∼−→Lχψ . □

Remark 2.4. In fact one can show that if Y is connected and Γ0 is the stabiliser of any connected component
X0 of X, then f : X0→ Y is a Galois extension with Galois group Γ0, and the homomorphism

Γ̂ −→ Pic(Y )[e(Γ )]

factors as the composition
Γ̂ −↠ Γ̂0 −→ Pic(Y )[e(Γ0)] ↪−−→ Pic(Y )[e(Γ )].

3. Drinfeld symmetric spaces

Let F be a finite extension of Qp, L the completion of the maximal unramified extension of F, and K a
complete field extension of F. Set GB SLd+1(OF), and let D be the division algebra over F of invariant
1/(d +1) with ring of integers OD . We let Π denote a uniformiser of OD and write Nrd: D×→ F× for the
reduced norm of D . Let Ωd be the Drinfeld symmetric space of dimension d over K , which is the admissible
open subset of Pd,an

K defined by removing all F-rational hyperplanes. This is stable under the natural action

of GLd+1(F) on P
d,an
K .

The Drinfeld tower is a system of rigid analytic spaces over L,

M0←−M1←−M2←− ·· · ,

and each space has an action of GLd+1(F)×D× for which the transition morphisms are equivariant. For
background material on these spaces, see [Dri76, BC91, RZ96], or [Jun22, Section 2] for an overview. The
connected components of the space M0 are canonically identified with Z, and under this identification
(g,δ) ∈ GLd+1(F) ×D× acts on this set of connected components by addition of ν(det(g)Nrd(δ−1)). In
particular, each connected component is stabilised by the subgroup

(GLd+1(F)×D×)
0 B ker

(
ν
(
det(−)Nrd

(
(−)−1

))
: GLd+1(F)×D× −→Z

)
.

There is a non-canonical GL0
d+1(F)×O

×
D-equivariant identification of each connected component with Ωd

L,
where

GL0
d+1(F)B {g ∈GLd+1(F) | ν(det(g)) = 0}

and O×D acts trivially on Ωd
L. Fixing one connected component (which we will from now on identify with Ωd

L
as above), we can consider the preimage of Ωd

L in each covering space (Mn)n≥1. In this way we obtain a
sub-tower of the full Drinfeld tower, which we denote by

Ωd
L←−M

0
1←−M

0
2←− ·· · .

Because Ωd
L is stable under the action of GL0

d+1(F)×O
×
D , for each n ≥ 1,M0

n ⊂Mn is GL0
d+1(F)×O

×
D-stable.

The subgroup 1 +ΠnOD ≤ O×D acts trivially onM0
n, and the morphismM0

n→Ωd
L is Galois with Galois

group O×D /(1 +ΠnOD ); see [Koh11, Theorem 2.2]. Each of the spaces (M0
n)n≥1 is connected over L, see

[Koh11, Theorem 2.5], but not geometrically connected. The following result is due to Boutot and Zink and
describes the connected components of (M0

n)n≥1 over Cp.
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Proposition 3.1. There is a family of GL0
d+1(F)×O

×
D -equivariant bijections

π0

(
M0

n,Cp

)
∼−→

O×F
1+π⌈

n
d+1 ⌉OF

for any n ≥ 1, compatible with the natural restriction maps on both sides. Here (g,x) ∈GL0
d+1(F)×O

×
D acts on

the right by multiplication by det(g)Nrd(x)−1 ∈ O×F .

Proof. This is [BZ95, Theorem 0.20], noting that Nrd(1+ΠnOD ) = 1+π⌈
n
d+1 ⌉OF ; see [Rie70, Lemma 5]. □

In this section we want to give a description of the G-invariant mod-p global units of Ωd which will use
in the next section. Recall that if R is a commutative ring, Pd(R) is the set of tuples (r0, . . . , rd) ∈ Rd+1 such
that R = Rr0 + · · ·+Rrd , up to the scaling action u · (r0, . . . , rd) = (ur0, . . . ,urd) of R×.

Definition 3.2. For each m ≥ 1, let Hm B P
d(OF/πmOF).

Lemma 3.3. For all m ≥ 1, the action of G on Hm is transitive.

Proof. For notational simplicity, set RB OF/πmOF . The natural map G→ SLd+1(R) is surjective because
OF and R are local rings, so both groups are generated by elementary matrices; see [HO89, Theorem 4.3.9].
The action of GLd+1(R) on Hm is transitive because any element r = (r0, . . . , rd) with [r] ∈ Hm can be
extended to a basis of Rd+1, which can be seen by reducing mod-π. Then the action of SLd+1(R) on Hm is
transitive as the stabiliser subgroup of the element x = [(1: 0 : · · · : 0)],

StabSLd+1(R)(x) ≤ StabGLd+1(R)(x),

is of index |R×|, the same as the index of SLd+1(R) in GLd+1(R). □

Definition 3.4. For an abelian group A and m ≥ 1, we write A[Hm] for the abelian group

A[Hm]B {f : Hm −→ A}

of all functions from Hm to A, and

A[Hm]0 B

f : Hm −→ A

∣∣∣∣∣∣∣∣
∑
x∈Hm

f (x) = 0

 ⊂ A[H].
For any m ≥ 1, there is a natural map

ρm : Hm+1 −→Hm,

which induces
ρm,∗ : A[Hm+1] −→ A[Hm],

defined by
ρm,∗(f )(x) =

∑
y∈ρ−1m (x)

f (y)

for all x ∈ Hm. This restricts to ρm,∗ : A[Hm+1]0→ A[Hm]0.

Definition 3.5. We set
A[[H]]0 B lim←−−

m≥1
A[Hm]0.

Because each A[Hm]0 is a Z[G]-module in a compatible way, so is A[[H]]0. Taking A =Z, we have the
following description of the global units of Ωd

K due to Junger.

Proposition 3.6 (cf. [Jun22, Theorem 4.5(2)]). There is an isomorphism of Z[G]-modules

O(Ωd
K )
×/K× ∼−→Z[[H]]0.
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For any m ≥ 1,
|Hm| = q(m−1)d(qd+1 − 1)/(q − 1),

and the restriction map
ρm : Hm+1 −→Hm,

is surjective with each fibre of size qd .
In the proof of the next lemma, we will make use of the following element.

Definition 3.7. For each m ≥ 1, let Θm ∈Z/pZ [Hm] be defined by

Θm(x) = 1

for all x ∈ Hm.

Lemma 3.8. We have (Z/pZ [[H]]0)G = 0.

Proof. For any m ≥ 1, we have projection maps

φm : (Z/pZ [[H]]0)G −→ (Z/pZ [Hm]0)G.

Suppose that we have some G-invariant function, f ∈ (Z/pZ [[H]]0)G. Then for any m ≥ 1, because Hm+1
is a finite set with a transitive action of G (by Lemma 3.3),

φm+1(f ) = λΘm+1

for some λ ∈Z/pZ. Now,
ρm : Hm+1 −→Hm

is surjective with each fibre of size qd ; hence φm(f ) = qdλΘm = 0 as p | q. Therefore, φm(f ) = 0 for all
m ≥ 1, and hence f = 0. □

We can now use Lemma 3.8 to prove the main technical result of this section.

Corollary 3.9. The inclusion K×→O(Ωd)× induces an isomorphism

K×/K×p ∼−→
(
O(Ωd)×/O(Ωd)×p

)G
.

Proof. We have a short exact sequence of Z[G]-modules,

0→ K× −→O(Ωd)×→Z[[H]]0→ 0,

and applying −⊗Z/pZ, we obtain an exact sequence of abelian groups

(3.1) Z[[H]]0[p] −→ K×/K×p −→O(Ωd)×/O(Ωd)×p −→ Z[[H]]0

pZ[[H]]0
−→ 0.

Because p-torsion commutes with taking the inverse limit,

Z[[H]]0[p] = lim←−−
m≥1

Z[Hm]0[p] = 0.

Furthermore, we have an exact sequence of inverse systems

0 −→ (Z[Hm]0)m≥1
×p
−−→ (Z[Hm]0)m≥1 −→ (Z/pZ [Hm]0)m≥1 −→ 0,

and
lim←−−
m≥1

1
Z[Hm]0 = 0

because each transition map is surjective; thus the natural map

Z[[H]]0

pZ[[H]]0
∼−→Z/pZ [[H]]0
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is an isomorphism. Therefore, taking the G-invariants of the exact sequence (3.1) above, we obtain

0 −→ K×/K×p −→
(
O(Ωd)×/O(Ωd)×p

)G
−→ (Z/pZ [[H]]0)G.

Then the conclusion follows by Lemma 3.8. □

4. Line bundles on the first Drinfeld covering

Recall that we write L for the completion of the maximal unramified extension of F and that K is a
complete field extension of F. Let ϖ ∈ F be a primitive (q − 1)st root of −π. In this section we assume that
K contains L(ϖ). The extension L(ϖ) is the first Lubin–Tate extension of L, and as such is independent of
the choice of π; see [LT65, Theorem 3].

We are interested in the spaceM1, which admits the following explicit description due to Junger.

Definition 4.1. If X is a rigid space over K , then for any n ≥ 1, the Kummer map

κ : O(X)× −→H1
ét(X,µn)

sends u ∈ O(X)× to

X
(
u

1
n

)
B Sp

X
(OX[z]/zn −u).

Let N B qd+1 − 1 and N ′ BN/(q − 1). In [Jun22, Theorem 4.9] it is shown that

M0
1 �Ωd

L

((
πuq−1

) 1
N

)
for some particular u ∈ O(Ωd)×. Note that because L contains all coprime to p roots of 1, L(ϖ) contains a
primitive (q − 1)st root τ of π. Therefore, over L(ϖ),

M0
1,L(ϖ) �Ωd

L(ϖ)

((
(τu)q−1

) 1
N

)
�

⊔
ζq−1=1

Σ1
ζ ,

where
Σ1
ζ BΩd

L(ϖ)

(
(ζτu)

1
N ′

)
.

Definition 4.2. We let Σ1 B Σ1
1,K and let Σ2 be the preimage of Σ1 inM0

2,K .

We recall that a rigid space X over a non-archimedean field k is called geometrically connected if for any
finite extension k′ of k, the base change X ×k k′ is connected.

Corollary 4.3. The rigid spaces Σ1 and Σ2 are geometrically connected.

Proof. Let Σ2
1 be the preimage of Σ1

1 inM0
2,L(ϖ), and let r ∈ {1,2}. The base change Σr1,Cp

is connected by

Proposition 3.1, noting that ⌈ r
d+1⌉ = 1 because d ≥ 1. In particular, for any finite extension k of L(ϖ), the

base change Σr1 ×L(ϖ) k is connected, and thus Σr1 is geometrically connected. Now Σr1 is quasi-Stein and
hence quasi-separated by [BGR84, Proposition 9.6.1(7)], and therefore by the discussion after the proof of
[Con99, Theorem 3.2.1], the base change Σr = Σr1 ×L(ϖ) K is also geometrically connected. □

Remark 4.4. The proof of Corollary 4.3 shows that the Σ1
ζ are the geometrically connected components of

M0
1,L(ϖ). We note that these components are all isomorphic, as

Nrd: O×D /(1 +ΠOD ) −→O×F /(1 +πOF)

is surjective, so the Galois group ofM0
1,L(ϖ)→Ωd

L(ϖ) acts transitively on these components.

The extension
M2,K −→M1,K
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is Galois with Galois group
H B (1 +ΠOD )/(1 +Π2OD ).

The extension Σ2 → Σ1 is the restriction of this Galois covering to the open subset Σ1 of M1,K and
therefore is also Galois with Galois group H . From Proposition 3.1, we note that GL0

d+1(F) acts through the
determinant on the geometrically connected components of the tower, and thus G stabilises both Σ1 and Σ2.
Furthermore, the action of G on both Σ1 and Σ2 commutes with the Galois action.

Proposition 4.5. The inclusion K×→O(Ωd)× induces an isomorphism

K×/K×p ∼−→
(
O(Σ1)×/O(Σ1)×p

)G
.

Proof. Let σ be a primitive N th root of π. Then by [Jun22, Theorem 5.1], there is a short exact sequence of
abelian groups

0 −→O
(
Ωd
K(σ )

)×
−→O

(
Σ1
K(σ )

)×
−→Z/(q+1)Z −→ 0.

Taking Gal(K(σ )/K(ϖ))-invariants and applying −⊗Z/pZ, we are left with an isomorphism

O
(
Ωd

)×
/O

(
Ωd

)×p ∼−→O
(
Σ1

)×
/O

(
Σ1

)×p
.

The result then follows from Corollary 3.9. □

We now want to show that the homomorphism

Ĥ −→ Pic(Σ1)[p]

associated to the Galois covering f : Σ2→ Σ1 is injective. In order to prove this, we will make use of the
following explicit description of the Kummer exact sequence.

Recall that if X is a rigid space over K , then for any n ≥ 1, the Kummer exact sequence is the short exact
sequence

0 −→O(X)×/O(X)×n −→H1
ét(X,µn) −→ Pic(X)[n] −→ 0

arising from the long exact sequence of the functor Γ (Xét,−) applied to the sequence

0 −→ µn −→Gm
×n−−→Gm −→ 0

of sheaves of Xét, which is exact because n is invertible in K ; see [dJvdP96, Section 3.2]. There is a more
explicit description of this sequence, which we now summarise. References in the case of schemes are [Sta23,
Tag 03PK] and [Mil80, Section III.4], from which the case for rigid spaces can be deduced mutatis mutandis.

Let {(L,α)}/ � be the set of pairs (L,α), where L ∈ Pic(X) and α : L⊗n ∼−→ OX is an OX-linear isomor-
phism, considered up to the natural notion of isomorphism. The set {(L,α)}/� forms an abelian group, and
there is an isomorphism of short exact sequences

0 O(X)×/O(X)×n {(L,α)}/� Pic(X)[n] 0

0 O(X)×/O(X)×n H1
ét(X,µn) Pic(X)[n] 0

= ∼ =

The homomorphism {(L,α)}/�→ Pic(X)[n] is simply [(L,α)] 7→ [L]. Given a pair [(L,α)], the associated
µn-torsor in H1

ét(X,µn) is Z B Sp(A), where A is the coherent sheaf of OX-algebras

A =
n−1⊕
i=0

L⊗i ,

with multiplication the natural maps

L⊗i ⊗L⊗j −→Li+j if i + j ≤ n− 1,
L⊗i ⊗L⊗j −→Li+j α−→Li+j−n if i + j ≥ n
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for 0 ≤ i, j ≤ n. In order to describe the structure of Z as a µn-torsor, we first consider this construction
locally.

Suppose that L = OX . In this case the isomorphism α has the form α : O⊗nX → OX , and we can use
the canonical isomorphism ψ : OX →O⊗nX to define aB α(ψ(1)) ∈ OX(X)×. Then under the construction
above,

Z = Sp(OX[z]/(zn − a)).
For any rigid space Y over X, Z(Y ) = {s ∈ OY (Y ) | sn = a}, which has the structure of a µn-torsor via

µn(Y )×Z(Y ) −→ Z(Y ), (ζ,s) 7−→ ζs.

Now for a general pair [(L,α)], the associated space Z is locally in the rigid topology of the above form,
and these structures patch to give Z the structure of a µn-torsor.

Now suppose that K contains a primitive nth root of 1. In this case the group scheme µn is naturally
identified with the constant group scheme µn(K), and under this identification there is a correspondence
between µn-torsors and Galois coverings Z→ X with Galois group µn(K) (to use the language of Section 2).

We are interested in the homomorphism H1
ét(X,µn)→ Pic(X)[n]. From the description of the µn-action

above, we see that if a Galois covering f : Z→ X corresponds to the pair [(L,α)], we can recover L as the
line bundle

L � eι · f∗OZ ,
where ι is the natural inclusion ι : µn(K)→ K×. More generally, if f : Z → X is a Galois covering with
Galois group Γ and χ : Γ ∼−→ µn(K) is an isomorphism, then in the induced exact sequence

0 −→O(X)×/O(X)×n −→H1
ét(X,Γ ) −→ Pic(X)[n] −→ 0,

the image of the Galois covering f : Z→ X in Pic(X)[n] is the line bundle eχ · f∗OZ .

Theorem 4.6. Suppose that K contains L(ϖ) and a primitive pth root of 1. Then the homomorphism

Ĥ −→ Pic(Σ1)[p]G, χ 7−→ Lχ = eχ · f∗OΣ2

is injective.

Remark 4.7. The assumption that K contains L(ϖ) is simply to ensure the space Σ1 is defined, and the
assumption that K contains a primitive pth root of 1 is similarly to ensure that the homomorphism is
defined. Furthermore, when F is unramified, the assumption that K contains a primitive pth root of 1 in the
statement of Theorem 4.6 is superfluous. Indeed, K contains L(ϖ), and the Lubin–Tate extensions Qp(ζp)
and Qp((−p)1/(p−1)) of Qp are equal.

Proof. Let χ : H → K× be non-trivial. We want to show that eχ · f∗OΣ2 ∈ Pic(Σ1) is non-trivial. Because H
has exponent p and χ is non-trivial, χ induces an isomorphism

χ′ : H/Hχ
∼−→ µp(K),

where Hχ is the kernel of χ. From Hχ we may form the quotient

f ′ : Σ2/Hχ −→ Σ1.

If U ⊂ Σ1 is an admissible open subset and V = f −1(U ) ⊂ Σ2, then above U the quotient Σ2/Hχ is
described by Sp(O(V )Hχ ). Because Hχ is normal, f ′ : Σ2/Hχ → Σ1 is Galois with Galois group H/Hχ,
which follows from [CHR69, Theorem 2.2] and the fact that each property in the definition of a Galois
extension checked affinoid locally.

We first note that we have an equality of OΣ1-modules

eχ · f∗OΣ2 = eχ′ · f ′∗ OΣ2/Hχ .
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Indeed, for any admissible open subset U of Σ1,

(eχ′ · f ′∗ OΣ2/Hχ )(U ) = eχ′ · OΣ2(f −1(U ))Hχ

and
(eχ · f∗OΣ2)(U ) = eχ · OΣ2(f −1(U )).

Setting BB OΣ2(f −1(U )), we have that

eχ ·B = {b ∈ B | h(b) = χ(h)b for all h ∈H},

eχ′ ·BHχ = {b ∈ BHχ | h(b) = χ(h)b for all h ∈H/Hχ},

and it is direct to check that these are equal. Therefore, we are reduced to showing that eχ′ · f ′∗ OΣ2/Hχ is
non-trivial.

Now because the action of G on Σ2 and Σ1 commutes with the action of H , G acts on Σ2/Hχ,
f ′ : Σ2/Hχ → Σ1 is G-equivariant, and the G-action commutes with the action of H/Hχ. Therefore, the
covering f ′ : Σ2/Hχ→ Σ1 defines an element of H1

ét(Σ
1,H/Hχ)G, see [Jun22, Section 4.1], the middle term

of the G-invariants of the Kummer exact sequence

(4.1) 0 −→
(
O(Σ1)×/O(Σ1)×p

)G
−→H1

ét(Σ
1,H/Hχ)

G −→ Pic(Σ1)[p]G.

Now suppose towards a contradiction that the line bundle eχ′ · f ′∗ OΣ2/Hχ is trivial. Then from the exact

sequence (4.1) above, the space Σ2/Hχ is given as κ(v) = Σ1(v1/p) for some

v ∈
(
O(Σ1)×/O(Σ1)×p

)G
.

By Proposition 4.5, we actually have v ∈ K×/K×p, and therefore the base change Σ2/Hχ ×K K(v1/p) is not
connected. Over K(v1/p), the intermediate extension

Σ2 ×K K(v1/p) −→ (Σ2/Hχ)×K K(v1/p)

is Galois and hence surjective, and thus Σ2 ×K K(v1/p) is also not connected. But this gives a contradiction
as Σ2 is geometrically connected by Corollary 4.3. □

Remark 4.8. If we do not assume that K contains a primitive pth root of 1, then the techniques used
in the proof of Theorem 4.6 can still be used to show that Pic(Σ1)[p]G , 0. Indeed, if we assume that
Pic(Σ1)[p]G = 0, then the same argument but with Hχ replaced by any index p subgroup H0 of H will still
result in a contradiction.

5. Vector bundles on the Drinfeld upper half plane

In this section we provide an elementary proof that all vector bundles on Ω1 are trivial, which extends and
uses the result that all line bundles on Ω1 are trivial; see [Jun23, Theorem A]. In the context of Theorem 4.6,
this says that whilst the line bundles Lχ on Σ1 are non-trivial whenever χ , 1, the pushforward to Ω1 will
be a trivial vector bundle (of constant rank q+1).

Before we state the theorem, we will need the following notions from commutative algebra.

Definition 5.1. An integral domain R is called a Prüfer domain if every finitely generated ideal of R is
invertible; it is called a Bézout domain if every finitely generated ideal of R is principal.

We provide a proof of the following result, for which we were unable to find a reference.

Lemma 5.2. Suppose that R is a Bézout domain. Then every finitely generated submodule of a free module is free.

Proof. Suppose that M is finitely generated over R, and M is contained in a free module P . By choosing
a basis for P , as M is finitely generated, we have that M ⊂ Rn for some n ≥ 1. Let π : Rn → R be the
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projection to the first factor, and let I B π(M) and K B ker(π : M→ R). Now I is the homomorphic image
of M and thus finitely generated; hence I is principal and thus free because R is a Bézout domain. Therefore,
the short exact sequence

0 −→ K −→M −→ I −→ 0

splits, and M � K ⊕ I . Finally, K is also finitely generated, being a homomorphic image of M , and K ⊂ Rn−1,
so the result follows by induction. □

We note that this property actually characterises Bézout domains among integral domains. Indeed, if I is
a finitely generated ideal of an integral domain R which satisfies the above property, then I is free, but also
I ⊂ R, so by passing to the fraction field of R, we see that I must have rank 1, and thus I is principal. This
property is analogous to the following property of PIDs (which are exactly the Noetherian Bézout domains):
a commutative ring R is a PID if and only if every submodule of a free module is free.

Theorem 5.3. Let X be a smooth connected 1-dimensional quasi-Stein rigid analytic space, with Pic(X) = 0.
Then any vector bundle on X is of the form On

X
for some n ≥ 0.

Proof. If X is as above, the ring RB OX(X) is an integral domain. The global sections functor defines an
equivalence of categories between vector bundles on X and finitely generated projective modules over R;
see [BSX20, Proposition 1.13]. In particular, Pic(R) = 0, and we are reduced to showing that any finitely
generated projective module over R is free. The ring R is a Prüfer domain, see [BSX20, Corollary 1.8], and
because Pic(R) = 0, the ring R is furthermore a Bézout domain. Then we can conclude, as for such rings
any finitely generated projective module is free, by Lemma 5.2. □

Corollary 5.4. Any vector bundle on Ω1 is of the form On
Ω1 for some n ≥ 0.
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