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1. Introduction

On a smooth quasi-projective variety X, Chow’s moving lemma, see [Cho56], allows one to move an
algebraic cycle modulo rational equivalence into good position with respect to a closed subset S ⊂ X.

The essential content of the Gersten conjecture for smooth varieties, proven for K-theory by Quillen, see
[Qui73], and for étale cohomology by Bloch–Ogus, see [BO74], and Gabber, see [Gab94, CTHK97], is an
effacement theorem, which is equivalent to a similar moving lemma for classes with support in the particular
case where X is affine and S is a finite set of points. For instance, in the case of étale cohomology, the
effacement theorem is equivalent to saying that for any smooth affine k-variety X, any finite set S ⊂ X,
and any class α ∈ H i

Z(X) whose support Z ⊂ X is nowhere dense, there is a class α′ ∈ H i
Z ′ (X) with

S ∩Z ′ = ∅ such that α and α′ have the same image in H i
W (X) for some closed W ⊂ X with Z,Z ′ ⊂W

and dimW = dimZ + 1. This is a fundamental result in algebraic geometry. We refer to the surveys
[CTHK97, Mo16] for more details, applications, references, and historical remarks.

The above analogy leads naturally to the question whether the effacement theorems of Quillen, Bloch–
Ogus, and Gabber are special instances of a more general moving lemma which allows one to move a class
with support Z ⊂ X to one with support Z ′ such that Z ′ is in good position with respect to an arbitrary given
closed subset S ⊂ X. This paper answers that question positively for a natural class of cohomology theories
on smooth quasi-projective varieties in characteristic zero (or more generally, with a smooth projective
compactification). In the classical case where X is affine and dimS = 0, this yields a new proof of the Gersten
conjecture for étale cohomology in characteristic zero. Our proof yields a stronger conclusion than what was
known before, as it is well behaved with respect to localization and hence gives rise to new Gersten-type
resolutions on finite levels. The general case where dimS > 0 is new and has several applications that go
beyond the original Gersten conjecture.

1.1. Main result

We fix a field k and a twisted cohomology theory with support (X,Z) 7→ H ∗Z(X,n) for smooth equi-
dimensional algebraic k-schemes X with Z ⊂ X closed. We assume that some natural axioms, as outlined
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in Section 3 below, are satisfied. Concrete examples include étale or pro-étale cohomology with suitable
coefficients; see Proposition 3.2.

To simplify notation, we write H ∗(X,n) :=H ∗X(X,n) and H
∗
Z(U,n) :=H

∗
Z∩U (U,n) for U ⊂ X open. Our

main result is the following.

Theorem 1.1 (Moving lemma). Let X be a smooth equi-dimensional k-scheme that admits a smooth projective
compactification. Let S,Z ⊂ X be closed subsets with dimZ < dimX. Then there are closed subsets Z ′ ⊂W ⊂ X
with Z ⊂W , dimZ ′ = dimZ, and dimW = dimZ +1 such that Z ′ and W \Z meet S properly and for any
α ∈H ∗Z(X,n), there is a class α

′ ∈H ∗Z ′ (X,n) such that α and α
′ have the same image in H ∗W (X,n).

In Theorem 5.1 below, we prove a stronger, but more technical, version of Theorem 1.1, where S ⊂ X is
replaced by a morphism f : S→ X and the behaviour under localization on X is discussed.

The main idea of our proof is to reduce the problem to a version of Chow’s moving lemma due to Levine.
More precisely, we construct an action of correspondences on the cohomology class in question and note
that the diagonal acts as the identity. Moving the diagonal via Chow’s moving lemma will then move our
class. This is particularly clear in the case where X is smooth projective, but technical difficulties appear in
the (important) case where X is only an open subset of a smooth projective scheme.

Even if X in Theorem 1.1 is affine, our proof is global and makes essential use of a smooth projective
compactification. We explain several applications in the following two subsections.

1.2. Effacement theorems and a finite-level version of the Gersten conjecture

By the long exact sequence of triples, the conclusion of Theorem 1.1 is equivalent to saying that the
natural map H ∗Z(X,n)→H ∗W (X \Z ′ ,n) is zero. If dimS +dimZ < dimX, then the condition that Z ′ meets
S properly simply means that X \Z ′ is a neighbourhood of S . We thus get the following.

Corollary 1.2 (Global effacement). Let X be a smooth equi-dimensional k-scheme that admits a smooth projective
compactification. Let S,Z ⊂ X be closed subsets with dimS +dimZ < dimX. Then there exist a neighbourhood
U ⊂ X of S and a closed subsetW ⊂ X with Z ⊂W and dimW = dimZ+1 such that the following composition
is zero:

H ∗Z(X,n) −→H ∗W (X,n) −→H ∗W (U,n).

The case dimS = 0 implies formally by specialization that the result holds for any finite set of (possibly
non-closed) points S ⊂ X and any nowhere dense closed subset Z ⊂ X. This is the aforementioned effacement
theorem of Bloch–Ogus and Gabber in our context; cf. [CTHK97, Theorems 2.2.1]. A similar effacement
theorem for K-theory had previously been proven by Quillen; see [Qui73, p. 125, Theorem 5.11].

Now let XS be the (Zariski) localization of X along S ⊂ X, i.e. the pro-scheme given by the system of all
open neighbourhoods U ⊂ X of S in X. One defines

H ∗Z(XS ,n) := lim
−→

S⊂U⊂X
H ∗Z(U,n) and H ∗(XS \Z,n) := lim

−→
S⊂U⊂X

H ∗(U \Z,n).

Corollary 1.3. Let X be a smooth equi-dimensional k-scheme that admits a smooth projective compactification.
Let S,Z ⊂ X be a closed subsets with dimS +dimZ < dimX. Then H ∗Z(XS ,n)→ H ∗(XS ,n) is zero, and the
long exact sequence of triples induces for all i a short exact sequence

0 −→H i(XS ,n) −→H i(XS \Z,n)
∂−→H i+1

Z (XS ,n) −→ 0.

An interesting special case is when S = Z with dimZ < 1
2 dimX, where we get an algebro-geometric

analogue of the following fact from differential topology: if N is a tubular neighbourhood of a submanifold
A of a real manifold M of real codimension c, then the natural map H i

A(N,Z)→H i(N,Z) identifies with
the map H i−c(A,Z)→H i(A,Z) given by cup product with the Euler class of the normal bundle of A in M .
Hence the map in question is zero if the Euler class is zero. Corollary 1.3 is an analogue of that result which
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also applies to singular subvarieties Z ⊂ X and to the (comparatively coarse) Zariski localization XS ; the
triviality of the Euler class is replaced by the condition dimZ < 1

2 dimX.
Contrary to Chow’s moving lemma, the subset Z ′ in Theorem 1.1 cannot be chosen to be well behaved

with respect to localization: if we shrink X, then Z ′ typically has to be enlarged; see Remark 5.2. Surprisingly,
the closed subset W in Theorem 1.1 is much better behaved. This yields the following.

Corollary 1.4 (Local effacement). Let X be a smooth equi-dimensional k-scheme which admits a smooth projective
compactification. Let Z ⊂ X be a nowhere dense closed subset. Let S ⊂ X be either closed with dimS < codimZ−1
or a finite set of points. Then there is a closed subset W ⊂ X with Z ⊂W and dimW = dimZ +1 such that the
natural map H ∗Z(XS ,n)→H ∗W (XS ,n) is zero.

Corollary 1.4 is new even in the classical case where S is a finite set of points. In this case, XS = Spec(OX,S )
is the spectrum of the semi-local ring OX,S , and it was known before that the above vanishing result holds if
one passes to the direct limit over all such closed subsets W ; see [BO74, Theorem 4.2.3]. The fact that a
single subscheme suffices is new (and may be somewhat surprising). In fact, Colliot-Thélène–Hoobler–Kahn
write in [CTHK97, Remark 2.2.8] the following concerning this issue:

“We would like to point out that (contrary to the definition of effaceability) the statement in Theorem 2.2.7 is
not local: the proof by no means implies that the map of Theorem 2.2.7 (2) remains 0 when U is replaced by a
smaller open set. [. . . ] This shows the subtlety of the situation and probably why Gersten’s conjecture is so difficult
for general regular local rings of dimension ≥ 2.”

As a consequence, we obtain the following finite-level version of the Gersten conjecture for the étale
cohomology of varieties over fields of characteristic zero.

Corollary 1.5 (The Gersten conjecture on finite levels). Let X be a smooth affine variety over a field k. Assume
X admits a smooth projective compactification (e.g. chark = 0). Let x ∈ X(c) with localization Xx = Spec(OX,x).
Let Zc = {x} ⊂ Zc−1 ⊂ · · · ⊂ Z1 ⊂ Z0 = Xx be a chain of closed subsets of Xx of increasing dimensions. Up to
replacing the given chain {Zj}j by one that is finer (i.e. by a chain {Z ′j} as above with Zj ⊂ Z

′
j for all j), the

following complex is exact for all i:

0 −→H i(Xx,n) −→H i
BM(Xx \Z1)

∂−→H i−1
BM (Z1 \Z2)

∂−→ ·· · ∂−→H1
BM(Zi−1 \Zi)

∂−→H0
BM(Zi \Zi+1) −→ 0,

where Zj = ∅ for j > c,

H
i−j
BM(Zj \Zj+1) := lim

−→
x∈U⊂X

H
i+j
Z̄j\Z̄j+1

(U \ Z̄j+1,n+ j),

and Z̄j ⊂ X denotes the closure of Zj in X. If moreover T ⊂ Xx is closed and each closed subset Zj ⊂ Xx of the
given chain {Zj} meets T \ {x} dimensionally transversely, then the above chosen refinement {Z ′j} still satisfies this
transversality condition with respect to T \ {x}.

If H ∗Z(X,n) = H
∗
Z(Xét,µ

⊗n
ℓr ) is étale cohomology with support and coefficients in µ⊗nℓr for some prime ℓ

invertible in k, then H
i−j
BM(Zj \Zj+1) as defined above coincides up to a shift with Borel–Moore homology of

Zj \Zj+1 (cf. [BO74, Section 1]), whence the notation. If moreover Zj \Zj+1 is regular and equi-dimensional,

then H
i−j
BM(Zj \Zj+1) =H i−j(Zj \Zj+1,µ

⊗n+j
ℓr ) agrees by Gabber’s purity theorem, see [Fuj02], with ordinary

étale cohomology of Zj \Zj+1. The latter holds in particular in the limit where we run over all chains {Zj}j
as above.

Corollary 1.5 says that we can compute the cohomology of the localization Xx = Spec(OX,x) in terms of
arbitrarily fine stratifications of Xx. The original Gersten conjecture for étale cohomology, proven in [BO74],
asserts this only in the limit: the above complex is exact if we pass to the direct limit over all chains {Zj}j .
The fact that exactness happens already on finite levels as well as the possibility of requiring transversality
conditions with respect to a closed subset T ⊂ Xx are new.
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1.3. Codimension j+1 purity and new motivic invariants

For a subset S ⊂ X, we denote by FSj X the pro-scheme given by the inverse system of all open

neighbourhoods U ⊂ X of S with codimX(X \ U ) > j . We further set FjX := F∅j X. As before, the

cohomology H ∗(FSj X,n) is defined as direct limit over H ∗(U,n), where U runs through the given inverse

system. Intuitively, one obtains FSj X by successively removing from X all closed subsets Z ⊂ X with
codimX Z ≥ j +1 that are disjoint from S . For instance, if X is irreducible, F0X ≃ Spec(k(X)), and if S is a
finite set, FS0X ≃ Spec(OX,S ).

Important consequences of [BO74], highlighted for instance in [CT95, Section 3.8], are the injectivity and
codimension 1 purity property for étale cohomology; see [CT95, Theorems 3.8.1 and 3.8.2]. Theorem 1.1
implies the following generalization.

Corollary 1.6 (Injectivity and codimension j+1 purity). Let X be a smooth equi-dimensional k-scheme that
admits a smooth projective compactification, and let S ⊂ X be closed.

(1) The restriction map H ∗(FSj X,n)→H ∗(FjX,n) is injective for j ≥ dimS .

(2) A class in H ∗(FjX,n) that lifts to Fj+1X also lifts to FSj+1X for j ≥ dimS − 1.

The dimS = 0 case of Corollary 1.6 implies by specialization that the results hold for j ≥ 0 and any finite
set of points S ⊂ X. Hence, the case j = dimS = 0 of Corollary 1.6 corresponds to the injectivity property
and codimension 1 purity theorem in étale cohomology; see [CT95, Theorems 3.8.1 and 3.8.2]. We note that
our purity result is new even for j = 0: we get that an unramified class on the generic point of X lifts to an
open neighbourhood of any given closed curve in X, while this was previously only known for points in X.

As pointed out by one of the referees: it is natural to wonder if Corollary 1.6 has an analogue for G-torsors,
i.e. for the functor H1

ét(−,G) for suitable group schemes G.
Following [Sch23], the refined unramified cohomology associated to the given twisted cohomology theory

is given by
H ∗j,nr(X,n) := im(H ∗(Fj+1X,n)→H ∗(FjX,n)).

In other words, an element [α] ∈H ∗j,nr(X,n) is represented by a class α ∈H ∗(U,n) on some open U ⊂ X
whose complement has codimension j + 2, and any two such representatives yield the same element in
H ∗j,nr(X,n) if they coincide on some open subset V ⊂ X whose complement has codimension j +1.

This is a common generalization of traditional unramified cohomology and Kato homology; see [Sch23,
Section 1.3]. The latter are known to be motivic as a consequence of the Gersten conjecture; see [BO74]. The
generalization of the Gersten conjecture proven in this paper implies that refined unramified cohomology
H i
j,nr(X,n) is motivic for all i and j .

Corollary 1.7. Let X and Y be smooth projective equi-dimensional schemes over a field k with dX = dimX. For
all c, i, j ≥ 0, there is a natural bi-additive pairing

CHc(X ×Y )×H i
j,nr(X,n) −→H i+2c−2dX

j+c−dX ,nr(Y ,n+ c − dX), ([Γ ], [α]) 7−→ [Γ ]∗([α])

which is functorial with respect to the composition of correspondences.

Corollary 1.7 establishes in particular the existence of functorial pullbacks f ∗ : H i
j,nr(Y ,n)→H i

j,nr(X,n)
along morphisms f : X → Y between smooth projective varieties; cf. Corollary 6.9. The existence of
pullbacks is non-trivial already in the case where Y = P

n and X is the blow-up in a smooth subvariety.
The main problem is that a class on some open subset U ⊂ Y can of course be pulled back to a class on
f −1(U ), but if f is not flat, then the complement of f −1(U ) in X may have the wrong codimension. The key
ingredient that allows one to overcome this issue is the codimension j purity property proven in Corollary
1.6, which allows one to represent unramified classes by classes on particular open subsets U where this
issue does not occur.
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Despite the simple definition, the refined unramified cohomology groups of a variety X are rather subtle
invariants that interpolate between cohomology and cycle theory of X; see [Sch23, Sch24]. For instance,
H i

0,nr(X,n) ≃H i
nr(X,n) is classical unramified cohomology, while

H i
j,nr(X,n) ≃H

i(X,n) for ⌈i/2⌉ ≤ j;

see Lemma 6.11 below or [Sch23, Corollary 5.10].
If ⌈i/2⌉ > j, then the refined unramified cohomology groups differ in general from ordinary coho-

mology. In this (interesting) range we show that refined unramified cohomology satisfies the following
basic properties that generalize the fact that traditional unramified cohomology is a stable birational
invariant by [CTO89]. To state our result, recall the decreasing filtration F∗ on H i

j,nr(X,n), given by

FmH i
j,nr(X,n) := im(H i(FmX,n)→H i(FjX,n)) for m ≥ j +1.

Corollary 1.8. Let X and Y be smooth projective equi-dimensional k-schemes, and let i, j,n,m ≥ 0. Then the
following properties hold true:

(1) There is a natural isomorphism

∑
l

fl :
min(j,n)⊕
l=0

H i−2l
j−l,nr(Y ,m− l)

≃−→H i
j,nr(Y ×P

n
k ,m),

where fl is the composition of the pullback along the projection Y ×Pn−lk → Y followed by the pushforward
along the inclusion Y ×Pn−lk → Y ×Pnk induced by some linear embedding P

n−l
k ⊂ P

n
k .

(2) If f : X ∼d Y is a birational map that is an isomorphism in codimension c, then f induces for any j ≤ c
an isomorphism f ∗ : H i

j,nr(Y ,n)
∼→H i

j,nr(X,n).
(3) The isomorphisms in (1) and (2) respect the decreasing filtration F∗ on both sides.

The formula stated in item (1) implies for instance

H i
j,nr(P

n
k ,m) ≃

min(j,n)⊕
l=0

H i−2l(Spec(k),m− l).

This is, thanks to Corollary 1.7, a consequence of the motivic decomposition of Pnk , while a direct computation
of H i

j,nr(P
n
k ,m) appears to be a rather difficult task because H i(FjP

n
k ,m) is typically a huge group.

Item (3) is new even for j = 0, where it shows that the unramified cohomology groups from [CTO89], that
are known to be stable birational invariants, carry a filtration that is still a stable birational invariant.

2. Preliminaries

2.1. Conventions

An algebraic scheme is a separated scheme of finite type over a field; it is smooth if it is smooth over the
ground field. A variety is an integral algebraic scheme. A closed subset of a scheme is implicitly identified
with the corresponding reduced closed subscheme. A morphism f : X → Y of Noetherian schemes is of
pure relative dimension d if for each x ∈ X, we have d = dimx(X)−dimf (x)(Y ).

If X is an algebraic scheme and Z ⊂ X is an irreducible subset, then the codimension codimX(Z) of Z
in X is the dimension of the local ring OX,ηZ , where ηZ ∈ Z denotes the generic point of Z . If Z is not
necessarily irreducible, then the local codimension codimX,z(Z) of Z in X at a point z ∈ Z is given by

codimX,z(Z) := inf
z∈Z ′⊂Z

dimOX,ηZ′
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where the infimum (which is in fact a minimum because X is of finite type over a field) ranges over all
irreducible components Z ′ of Z that contain the point z. The (global) codimension of Z in X is the minimum
of the local codimensions at points z ∈ Z :

codimX(Z) = inf
z∈Z

codimX,z(Z).

This agrees with the definition that can for instance be found in [GW10, Definition 5.28]. (We warn the
reader that there are places in the literature where different definitions are used; e.g. one could replace the
infimum by the supremum in the above definitions; see e.g. comments to [Sta24, Tag 02I0]. However, the
above definition is the one that works for our purposes.)

For an algebraic scheme X, we denote by X(j) the set of points of dimension j . If X is equi-dimensional,

then we will also write X(j) := X(dX−j), where dX = dimX. The free abelian group generated by the closures

of points X(j) is denoted by Zj(X). The Chow group CHj(X) := CHdX−j(X) is the quotient of Z
j(X) modulo

rational equivalence; see [Ful98]. In this paper we use the above convention only in the case where X is
pure-dimensional, so that points in X(j) have local codimension j in X in the above sense.

The support of a cycle Γ =
∑
aiZi ∈ Zj(X) is the reduced subscheme supp(Γ ) :=

⋃
Zi , where the union

runs through all i with ai , 0. If X is equi-dimensional, then we say that two cycles Γ1 ∈ Zj1(X) and
Γ2 ∈ Zj2(X) meet properly (or dimensionally transversely) if each point of supp(Γ1)∩ supp(Γ2) has local
codimension at least j1+j2 in X. In this case, either supp(Γ1)∩supp(Γ2) is empty, or it has pure codimension
j1 + j2.

If Γ =
∑
aiZi ∈ Zj(X) is a cycle and W ⊂ X is a closed subset with supp(Γ ) ⊂W , then we say that Γ is

rationally equivalent to zero on W if Γ , viewed as a class in CH∗(W ), is zero.

2.2. Chow’s moving lemma

We will need the following version of Chow’s moving lemma due to Levine; see [Lev98, Section I.II.3.5]
and [Lev05, Theorem 2.13]. The given references prove a moving lemma for Bloch’s cycle complex and hence
for higher Chow groups (see also [Blo94]); the version below concerns the special case of ordinary Chow
groups and is deduced from [Lev98, Section I.II.3.5] and [Lev05, Theorem 2.13] in a straightforward way.

Theorem 2.1. Let X be a smooth projective equi-dimensional scheme over a field k. Let S be a locally equi-
dimensional algebraic k-scheme with a morphism f : S→ X. Then the following hold:

(1) Any class [Γ ] ∈ CHc(X) can be represented by a cycle Γ such that each point of f −1(supp(Γ )) has local
codimension c on S (i.e. the expected codimension).

(2) Let Γ ∈ Zc(X) be such that f −1(supp(Γ )) has local codimension c at each point. If Γ ∼rat 0, then there is
a closed subscheme W ⊂ X of codimension c − 1 such that
• f −1(W ) has, locally at each point, codimension c − 1 on S;
• suppΓ ⊂W , and Γ , viewed as a cycle on W , is rationally equivalent to zero on W .

Occasionally, we will use Theorem 2.1 in conjunction with the following simple result.

Lemma 2.2. Let f : S→ X be a morphism between locally equi-dimensional algebraic k-schemes. Let Z ⊂ X be
closed such that f −1(Z) is locally on S of codimension at least dim(f (S)) + 1. Then f −1(Z) = ∅.

Proof. It suffices to prove the result for each irreducible component of S ; hence we may assume that S is
irreducible. Towards a contradiction, assume that f −1(Z) , ∅, or equivalently, f (S)∩Z , ∅. Let x ∈ f (S)∩Z
be a closed point. Since S is irreducible by the above reduction step, the theorem on the fibre dimensions of
morphisms between algebraic schemes shows that dimS ≤ dim(f (S)) + dimf −1(x). Since f −1(x) ⊂ f −1(Z),
it follows that f −1(Z) is, locally on S , of codimension at most dim(f (S)). This contradicts our assumptions,
which concludes the proof. □

https://stacks.math.columbia.edu/tag/02I0
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3. Twisted cohomology theory with an action by cycles

In this section we list several natural properties of a twisted cohomology theory with support which admits
an action by algebraic cycles. We will show that any theory that satisfies (some of) these properties satisfies
the moving lemma for classes with support as in Theorem 1.1.

We fix a field k. A pair (X,Z) of algebraic k-schemes is an algebraic k-scheme X and a closed
subset Z ⊂ X. A morphism of pairs f : (X,ZX) → (Y ,ZY ) is a morphism of schemes f : X → Y with
f −1(ZY ) ⊂ ZX .(1) The total space of a pair (X,Z) is the scheme X.

Let Vk be the category of pairs (X,Z) of algebraic k-schemes. We have

Vopk −→ {graded abelian groups}, (X,Z) 7−→H ∗Z(X,n)(3.1)

for n ∈Z. The degree i part of H ∗Z(X,n) is denoted by H i
Z(X,n). For any morphism f : (X,ZX)→ (Y ,ZY ),

contravariance yields functorial pullback maps f ∗ : H i
ZY
(Y ,n)→H i

ZX
(X,n) for all i.

For U ⊂ X open, we write H ∗Z(U,n) :=H
∗
Z∩U (U,n). (This is in line with the fact that H ∗Z(−,n) is a Zariski

presheaf on X.) Moreover, for Z = X, we write H ∗(X,n) :=H ∗X(X,n).
We will need the following natural properties:

C1 (Excision) Let f : U → X be an open immersion of smooth algebraic k-schemes, and let Z ⊂ X be
closed with Z ⊂U . Then the natural map f ∗ : H i

Z(X,n)→H i
Z(U,n) is an isomorphism.

C2 (Pushforwards) Let f : X→ Y be a proper morphism between smooth equi-dimensional algebraic
k-schemes. Let ZY ⊂ Y and ZX ⊂ X be closed subsets with f (ZX) ⊂ ZY . Then there are pushforward
maps

f∗ : H
i−2c
ZX

(X,n− c) −→H i
ZY
(Y ,n),

where c := dimY −dimX. These are functorial, i.e. satisfy f∗ ◦ g∗ = (f ◦ g)∗.
Consider the diagrams

X ′
g ′
//

f ′

��

X

f
��

Y ′
g
// Y ,

H i−2c
ZX′

(X ′ ,n− c)

f ′∗
��

H i−2c
ZX

(X,n− c)

f∗
��

(g ′)∗
oo

H i
ZY ′

(Y ′ ,n) H i
ZY
(Y ,n),

g∗
oo

where the diagram on the left is Cartesian, X ′ and Y ′ are smooth and equi-dimensional, f is proper,
ZX ⊂ X and ZY ⊂ Y are closed with f (ZX) ⊂ ZY , ZY ′ = g−1(ZY ), and ZX ′ = ZY ′ ×Y ZX ⊂ X ′ .
(a) If g is an open immersion, then the diagram on the right commutes.
(b) If f and g are smooth of pure relative dimensions and if ZY = Y and ZX = X, then the diagram

on the right commutes.
C3 (Long exact sequence of triples) Let Z ⊂ W ⊂ X be closed subsets. Then there is a long exact

sequence

· · · −→H i
Z(X,n)

ι∗−→H i
W (X,n)

restr−−−−→H i
W \Z(X \Z,n)

∂−→H i+1
Z (X,n) −→ ·· · ,

where ι∗ denotes the proper pushforward with respect to the identity on X and restr denotes the
canonical restriction map. This sequence is functorial for pullbacks: for any morphism f : X ′→ X
and closed subsets Z ′ ⊂W ′ ⊂ X ′ such that f −1(Z) ⊂ Z ′ and f −1(W ) ⊂W ′ , pullback along f induces
a commutative ladder between the long exact sequence of the triple (X ′ ,W ′ ,Z ′) and that of (X,W ,Z).

C4 (Action of cycles) For a cycle Γ ∈ Zc(X) on a smooth equi-dimensional algebraic k-scheme X and any
closed subset W ⊂ X with supp(Γ ) ⊂W , there is an additive action

clXW (Γ )∪ : H i
Z(X,n) −→H i+2c

W∩Z(X,n+ c), α 7−→ clXW (Γ )∪α

(1)This condition translates to the standard definition of a morphism of pairs in topology if one replaces (X,Z) by (X,X \Z).
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which is linear in Γ and such that the following hold:
(a) If Γ , viewed as a cycle on W , is rationally equivalent to zero on W , then the above action is zero,

i.e. clXW (Γ )∪α = 0 for all α.
(b) If Γ = [W ] is a prime cycle with smooth support W and inclusion f : W ↪→ X, then

clXW (Γ )∪α = f∗(f
∗α) ∈H i+2c

W∩Z(X,n+ c) for all α ∈H i
Z(X,n),

where f ∗ : H i
Z(X,n)→H i

W∩Z(W,n) and f∗ : H
i
W∩Z(W,n)→H i+2c

W∩Z(X,n+ c) denote the natural
pullback and pushforward maps, respectively.

(c) If Z ⊂ Z ′ ⊂ X and W ′ ⊂ X are closed with W ⊂W ′ , then the following diagram commutes:

H i
Z(X,n)

ι∗
//

clXW (Γ )∪
��

H i
Z ′ (X,n)

clXW ′ (Γ )∪
��

H i+2c
W∩Z(X,n+ c)

ι∗
// H i+2c

W ′∩Z ′ (X,n+ c),

where the ι∗ denote the respective pushforwards with respect to the identity on X.
(d) For any open subset U ⊂ X, the following diagram commutes:

H i
Z(X,n)

clXW (Γ )∪
//

restr
��

H i+2c
W∩Z(X,n+ c)

restr
��

H i
Z(U,n)

clUW∩U (Γ |U )∪
// H i+2c

W∩Z(U,n+ c),

where the vertical arrows are the canonical restriction maps and Γ |U ∈ Zc(U ) is the flat pullback
of Γ .

(e) If Γ ∈ Zc(X) and Γ ′ ∈ Zc′ (X) are such that W = suppΓ meets W ′ = suppΓ ′ properly, then

clXW (Γ )∪ (clXW ′ (Γ
′)∪α) = clXW∩W ′ (Γ · Γ

′)∪α for all α ∈H i
Z(X,n).

(f) Let f : X ′→ X be a morphism between smooth equi-dimensional algebraic k-schemes, and let
α ∈H i

Z(X,n).
• If f is flat, then f ∗(clXW (Γ )∪α) = clX

′

f −1(W )(f
∗Γ )∪ f ∗α.

• If f is smooth and proper, then the following projection formulas hold true:

f∗(cl
X ′
W ′ (Γ )∪ f

∗α) = clXf (W ′)(f∗Γ )∪α and f∗(cl
X ′

f −1(W )(f
∗Γ )∪α) = clXW (Γ )∪ f∗α.

C5 (Semi-purity) If X is smooth and equi-dimensional, then H i
Z(X,n) = 0 for i < 2codimZ(X).

Remark 3.1. Items C2(b), C4(d), C4(e), C4(f), and C5 are not needed to prove the moving lemma (see Theorems
1.1 and 5.1) and its immediate applications (see Corollaries 1.2, 1.4, 1.5, and 1.6). We list these properties
because we will need items C2(b) and C4(d) to get a natural action on refined unramified cohomology, cf.
Corollaries 1.7 and 6.8, while C4(e) and C4(f) are needed to guarantee that this action is functorial with
respect to the composition of correspondences. Finally, semi-purity (i.e. C5) is only needed to guarantee
some normalizations in Corollaries 1.5 and 1.8.

3.1. Examples

Proposition 3.2. Let k be a field, let ℓ be a prime invertible in k, and denote by πX : X→ Spec(k) the structure
map of a k-scheme X.

(1) Let F be an ℓ∞-torsion étale sheaf on Spec(k). The étale cohomology functor

(X,Z) 7−→H ∗Z(X,n) :=H
∗
Z(Xét,F (n))

satisfies all conditions C1–C5 above, where F (n) = colimr(π∗XF ⊗Z µ
⊗n
ℓr ).
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(2) Let F = (Fr )r be an inverse system of étale sheaves on Spec(k) such that Fr is ℓr -torsion and the transition
maps Fr+1→ Fr are surjective. The continuous étale cohomology functor

(X,Z) 7−→H ∗Z(X,n) :=H
∗
Z,cont(Xét,F (n))

satisfies all conditions C1–C5 above, where F (n) = (π∗XFr ⊗Z/ℓr µ
⊗n
ℓr )r .

(3) Let K ∈ Dcons((Spec(k))proét,Ẑℓ) be a constructible complex of Ẑℓ-modules on the pro-étale site
(Spec(k))proét. Then the pro-étale (hyper-)cohomology functor

(X,Z) 7−→H ∗Z(X,n) := R∗ ΓZ(Xproét,K(n))

satisfies all conditions C1–C4 above, where K(n) = (πX)∗compK ⊗Ẑℓ
Ẑℓ(n) is the nth Tate twist of the

completed pullback of K ; cf. Appendix A. If the complex K is concentrated in non-negative degrees, then
condition C5 holds true as well.

Proposition 3.2 is certainly well known to experts. For the convenience of the reader, we include a detailed
proof in the appendix of this paper. We limit ourselves here to sketching the argument briefly.

Using the compatibility of étale cohomology with direct limits in the coefficients from [Sta24, Tag 09YQ],
one reduces item (1) to the case where F is ℓr-torsion for some fixed r . Hence, [Jan88, Equation (3.1)] implies
that (2)⇒ (1). Moreover, the arguments in [BS15, Section 5.6] imply that (3)⇒ (2), and so Proposition 3.2(3)
implies the rest. Conversely, the way the six-functor formalism of Bhatt–Scholze from [BS15, Section 6.7]
works allows one to essentially reduce item (3) to the case of étale cohomology. The proof of Proposition 3.2
then goes roughly as follows: conditions C1 and C3 are straightforward, the pushforwards in condition C2 is
a consequence of Poincaré duality (cf. [SGA4.3, Theorem XVIII.3.2.5]) and the action in condition C4 is given
by cup products with a suitable cycle class (cf. [SGA412 , p. 129]). Finally, semi-purity reduces by topological
invariance to the case where k is perfect, and so the result may be deduced from Poincaré duality.

Remark 3.3. Proposition 3.2 has an analogue for singular cohomology that applies to algebraic schemes over
k =C. In fact, if k =C and A is an abelian group, then the sheaf cohomology functor

(X,Z) 7−→H ∗Z(X,n) :=H
∗
Z(Xan,AX)

satisfies all conditions C1–C5 above, where Xan denotes the analytic space that underlies X and AX denotes
the constant sheaf on Xan associated to A. The proof of this statement follows the same lines as that of
Proposition 3.2, and we leave it to the reader.

4. Action of cycles on open varieties

In this section we fix a field k and a twisted cohomology theory as in (3.1) which satisfies conditions C1–C4
from Section 3. Moreover, X and Y denote smooth projective equi-dimensional algebraic schemes over k,
and we set dX := dim(X). We will denote the natural projections by p : X × Y → X and q : X × Y → Y ,
respectively.

Since X and Y are assumed to be smooth projective and equi-dimensional, any algebraic cycle Γ ∈
Zc(X ×Y ) gives rise to an action

Γ∗ : H
i(X,n) −→H i+2c−2dX (Y ,n+ c − dX), α 7−→ q∗(cl

X×Y
X×Y (Γ )∪ p

∗α)

which by condition C4(a) depends only on the rational equivalence class of Γ . Roughly speaking, the
purpose of this section is to generalize this result to smooth quasi-projective varieties that are not necessarily
projective but which admit a smooth projective compactification. In other words, we aim to construct a
similar action between the cohomology of suitable open subsets U ⊂ X and U ′ ⊂ Y . Moreover, instead of
ordinary cohomology groups, we will consider the more general situation of cohomology with support. A
closely related discussion of the action of correspondences on Chow groups with support can be found in
[CR11, Section 1].

https://stacks.math.columbia.edu/tag/09YQ
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Lemma 4.1. Let Γ ∈ Zc(X ×Y ) be a cycle, and let W ⊂ X ×Y be a closed subset that contains the support of Γ :
supp(Γ ) ⊂W . Let R,Z ⊂ X be closed, and put WR :=W ∩ (R×Y ) and WZ :=W ∩ (Z ×Y ). Let R′ ,Z ′ ⊂ Y be
closed with q(WR) ⊂ R′ and q(WZ ) ⊂ Z ′ . Finally, let U := X \R and U ′ := Y \R′ be the complements of R and
R′ , respectively.(2)

Then the composition in (4.1) below defines an additive action

Γ (W )∗ : H
i
Z(U,n) −→H i+2c−2dX

Z ′ (U ′ ,n+ c − dX).

If Γ = Γ1 + Γ2 with supp(Γi) ⊂W for i = 1,2, then Γ (W )∗ = Γ1(W )∗ + Γ2(W )∗.

Proof. We denote the flat pullback of Γ to U ×Y by Γ |U×Y and define Γ (W )∗ by the following composition:

H i
Z(U,n)

p∗

��

H i
Z×Y (U ×Y ,n)

clU×YW \WR (Γ |U×Y )∪
��

H i+2c
WZ

(U ×Y ,n+ c)

exc≃
��

H i+2c
WZ

((X ×Y ) \WR,n+ c)

restr
��

H i+2c
WZ

(X ×U ′ ,n+ c)

q∗
��

H i+2c−2dX
Z ′ (U ′ ,n+ c − dX),

(4.1)

where p∗ denotes the pullback map with respect to the projection U ×Y →U , clU×YW \WR
(Γ |U×Y )∪ denotes the

action from condition C4, restr denotes the restriction map given by pullback, and q∗ denotes the proper
pushforward from condition C2. Moreover, exc is constructed as follows. The closed subset WZ ⊂ X ×Y
intersects the complement of U ×Y ⊂ X ×Y in WR (because R = X \U ), and so

WZ ∩ ((X ×Y ) \WR) =WZ ∩ (U ×Y ) and U ×Y ⊂ (X ×Y ) \WR.

It follows that the natural pullback map

H i+2c
WZ

((X ×Y ) \WR,n+ c) −→H i+2c
WZ

(U ×Y ,n+ c)

is an isomorphism by excision (see condition C1). The map

exc : H i+2c
WZ

(U ×Y ,n+ c) ≃−→H i+2c
WZ

((X ×Y ) \WR,n+ c)

is then the inverse of the above isomorphism.
The composition in (4.1) yields an additive action because each map is a group homomorphism. Additivity

in Γ follows from the fact that the action of Γ from condition C4 is additive in Γ . This concludes the
lemma. □

Lemma 4.2. Assume in the notation of Lemma 4.1 that Γ , viewed as a cycle on W , is rationally equivalent to zero
on W . Then the action Γ (W )∗ from Lemma 4.1 is zero.

(2)The closed subsets R ⊂ X and R′ ⊂ Y need not be of codimension 1, but play the role of a “divisor at ∞”, while the subsets
Z,Z′ will be the supports of the respective cohomology classes.
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Proof. The assumption implies that Γ |U×Y is rationally equivalent to zero on W ∩ (U ×Y ) =W \WR. The
result thus follows from condition C4(a), which implies that the second morphism in the composition (4.1) is
zero. □

Lemma 4.3. Let Γ ∈ Zc(X ×Y ) be a cycle, and let Wi ⊂ X ×Y for i = 1,2 be closed subsets with supp(Γ ) ⊂Wi

for i = 1,2. Let Z1 ⊂ Z2 ⊂ X and Z ′1 ⊂ Z
′
2 ⊂ X be closed with q(Wi ∩ (Zi × Y )) ⊂ Z ′i for i = 1,2. Let

R1 ⊂ R2 ⊂ X and R′1 ⊂ R
′
2 ⊂ Y be closed with q(Wi ∩ (Ri ×Y )) ⊂ R′i and with complements Ui := X \Ri and

U ′i := Y \R
′
i for i = 1,2.

Then the following diagram commutes:

H i
Z1
(U1,n)

Γ (W1)∗
��

restr // H i
Z1
(U2,n)

ι∗ //

Γ (W1)∗
��

H i
Z2
(U2,n)

Γ (W2)∗
��

H i+2c−2dX
Z ′1

(U ′1,n+ c − dX )
restr // H i+2c−2dX

Z ′1
(U ′2,n+ c − dX )

ι∗ // H i+2c−2dX
Z ′2

(U ′2,n+ c − dX ),

(4.2)

where the vertical arrows are the respective actions from Lemma 4.1.

Proof. We first assume that W1 ⊂W2. The action from Lemma 4.1 is defined via the diagram in (4.1). Since
W1 ⊂W2, the diagram in question may therefore be expanded to the big diagram

H i
Z1
(U1,n)

p∗

��

restr // H i
Z1
(U2,n)

p∗

��

ι∗ // H i
Z2
(U2,n)

p∗

��

H i
Z1×Y (U1 ×Y ,n)

cl
U1×Y
W1\W1R1

(Γ |U1×Y )∪
��

restr // H i
Z1×Y (U2 ×Y ,n)

cl
U2×Y
W1\W1R2

(Γ |U2×Y )∪
��

ι∗ // H i
Z2×Y (U2 ×Y ,n)

cl
U2×Y
W2\W2R2

(Γ |U2×Y )∪
��

H i+2c
W1Z1

(U1 ×Y ,n+ c)

exc≃
��

restr // H i+2c
W1Z1

(U2 ×Y ,n+ c)

exc≃
��

ι∗ // H i+2c
W2Z2

(U2 ×Y ,n+ c)

exc≃
��

H i+2c
W1Z1

((X ×Y ) \W1R1
,n+ c)

restr
��

restr // H i+2c
W1Z1

((X ×Y ) \W1R2
,n+ c)

restr
��

ξ
// H i+2c

W2Z2
((X ×Y ) \W2R2

,n+ c)

restr
��

H i+2c
W1Z1

(X ×U ′1,n+ c)

q∗
��

restr // H i+2c
W1Z1

(X ×U ′2,n+ c)

q∗
��

ι∗ // H i+2c
W2Z2

(X ×U ′2,n+ c)

q∗
��

H i+2c−2dX
Z ′1

(U ′1,n+ c − dX )
restr // H i+2c−2dX

Z ′1
(U ′2,n+ c − dX )

ι∗ // H i+2c−2dX
Z ′2

(U ′2,n+ c − dX ),

where ξ is given by the composition

H i+2c
W1Z1

((X ×Y ) \W1R2
,n+ c)

restr−−−−→H i+2c
W1Z1

((X ×Y ) \W2R2
,n+ c)

ι∗−→H i+2c
W2Z2

((X ×Y ) \W2R2
,n+ c).

We first show that each square on the left is commutative. This follows for the first, third, and fourth squares
from the functoriality of pullbacks. The second square on the left is commutative because of condition C4(d),
while the last square on the left column is commutative because of condition C2(a).

Next, we show that the right squares of the above diagram are commutative. This follows for the first square
from the compatibility of proper pushforwards and pullbacks via open immersions (see condition C2(a)), and
for the third and fourth squares by the same compatibility together with the functoriality of pullbacks. The
commutativity of the second square on the right follows from condition C4(c), while the commutativity of the
last square on the right follows from the functoriality of pushforwards; see condition C2. This concludes
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the proof in the case where W1 ⊂W2. The general case follows from this by replacing W2 by W1 ∪W2 and
noting that this does not require to change R′2 because R′1 ⊂ R

′
2 holds by assumption. □

Lemma 4.4. Assume in the notation of Lemma 4.1 that X = Y , c = dimX, and Γ = ∆X is the diagonal with
∆X ⊂W . Then U ′ ⊂U and Z ⊂ Z ′ , and the action

Γ (W )∗ : H
i
Z(U,n) −→H i

Z ′ (U
′ ,n)

from Lemma 4.1 identifies with the natural composition

H i
Z(U,n)

ι∗−→H i
Z ′ (U,n)

restr−−−−→H i
Z ′ (U

′ ,n).

Proof. First assume that W = supp∆X . Then the result is a straightforward consequence of condition C4(b)
together with the compatibility of pushforwards and restrictions to open subsets (see condition C2(a)) and
the functoriality of pushforwards (see condition C2). The general case follows from this and Lemma 4.3. □

Remark 4.5. Condition C3 together with the functoriality of pullbacks and pushforwards implies H i
∅(X,n) = 0

for any smooth equi-dimensional k-scheme X. Indeed, condition C3 applied to Z =W = ∅ shows that the
sequence

H i
∅(X,n)

ι∗−→H i
∅(X,n)

restr−−−−→H i
∅(X,n)

is exact, while both arrows are isomorphisms by the functoriality of pullbacks and pushforwards, respectively.

Lemma 4.6. Assume in the notation of Lemma 4.1 that (suppΓ )∩ (Z ×Y ) ⊂ X ×R′ . Then Γ (W )∗ from Lemma
4.1 is zero.

Proof. The assumption (suppΓ )∩(Z×Y ) ⊂ X×R′ implies by Lemma 4.3 that Γ (W )∗ from Lemma 4.1 factors

through the group H i+2c−2dX
∅ (U ′ ,n+ c − dX), which vanishes by Remark 4.5. This concludes the proof. □

The proof of the following functoriality property of the action from Lemma 4.1 is slightly tedious. The
result is only needed to see that the action of cycles on refined unramified cohomology that we construct
in this paper is functorial with respect to the composition of correspondences. In particular, the result is
not needed in the proof of the moving lemma for classes with support (see Theorem 1.1 and 5.1) and its
immediate consequences. Readers who are mainly interested in the latter may therefore skip the next result
and move directly to Section 5 below.

In the following, we let pi : X1 ×X2 ×X3 → Xi , pij : X1 ×X2 ×X3 → Xi ×Xj , p
ij
i : Xi ×Xj → Xi , and

p
ij
j : Xi ×Xj → Xj be the natural projections.

Proposition 4.7. Let Xi for i = 1,2,3 be smooth projective equi-dimensional algebraic k-schemes of dimensions
dXi = dimXi . Let Γ1 ∈ Zc1(X1 ×X2) and Γ2 ∈ Zc2(X2 ×X3) be cycles, and let Wi := suppΓi for i = 1,2. Let
W12 := (W1 ×X3)∩ (X1 ×W2), and assume that W12 has codimension at least c1 + c2. Let W3 := p13(W12) ⊂
X1 ×X3, which is of codimension at least c3 := c1 + c2 − dX2

. Consider the cycle

Γ3 := (p13)∗(p
∗
12Γ1 · p

∗
23Γ2) ∈ Z

c3(X1 ×X3)

with suppΓ3 ⊂W3. (This is well defined on the level of cycles because the intersection is dimensional transverse as
W12 has codimension at least c1 + c2.) Let U1 ⊂ X1 be an open subset with complement R1. Let

R2 := p
12
2 (W1 ∩ (R1 ×X2)) ⊂ X2, R3 := p3(W12 ∩ (R1 ×X2 ×X3)) ⊂ X3,(4.3)

and put Ui := Xi \Ri for i = 2,3. Then the following diagram commutes:

H i(U1,n)

Γ1(W1)∗
��

Γ3(W3)∗

++

H i+2c1−2dX1 (U2,n+ c1 − dX1
)

Γ2(W2)∗
// H i+2c3−2dX1 (U3,n+ c3 − dX1

).
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Before we turn to the proof of the proposition, we need the following result on R3 from (4.3).

Lemma 4.8. In the notation of Proposition 4.7, we have

R3 = p
13
3 (W3 ∩ (R1 ×X3)) = p

23
3 (W2 ∩ (R2 ×X3)).

Proof. We have

p133 (W3 ∩ (R1 ×X3)) = p
13
3 (p13(W12)∩ (R1 ×X3))

= p133 (p13(W12 ∩ (R1 ×X2 ×X3)))

= p3(W12 ∩ (R1 ×X2 ×X3)),

where the second equality follows from the projection formula. This proves the first equality claimed in the
lemma.

Since R2 = p2(W1 ∩ (R1 ×X2)), we have

R2 ×X3 = p2(W1 ∩ (R1 ×X2))×X3 = p23(p
−1
12 (W1)∩ (R1 ×X2 ×X3))

and hence
W2 ∩ (R2 ×X3) =W2 ∩ p23(p−112 (W1)∩ (R1 ×X2 ×X3)).

The projection formula with respect to p23 then gives

W2 ∩ (R2 ×X3) = p23(p
−1
23 (W2)∩ p−112 (W1)∩ (R1 ×X2 ×X3)).(4.4)

Since p−123 (W2) = X1 ×W2 and p−112 (W1) =W1 ×X3, we conclude

p233 (W2 ∩ (R2 ×X3)) = p3(W12 ∩ (R1 ×X2 ×X3)) = R3,

which proves the second equality in the lemma. This concludes the proof. □

Proof of Proposition 4.7. For α ∈H i(U1,n), by the construction in Lemma 4.1, we have

Γ3(W3)∗(α) = (p133 )∗
(
exc1

(
clU1×X3
W3\(W3)R1

((p13)∗(p
∗
12Γ1 · p

∗
23Γ2))∪ p

∗
1α

)
|X1×U3

)
,(4.5)

where
exc1 : H

∗
W3\(W3)R1

(U1 ×X3,−)
≃−→H ∗W3\(W3)R1

((X1 ×X3) \ (W3)R1
,−)

denotes the isomorphism given by excision and p133 : X1 ×U3→U3 denotes the projection. Here (W3)R1
=

W3 ∩ (R1 ×X3), and so p133 ((W3)R1
) = R3 by Lemma 4.8.

Since W3 = p13(W12), the projection formula in condition C4(f) yields

clU1×X3
W3\(W3)R1

((p13)∗(p
∗
12Γ1 · p

∗
23Γ2))∪ p

∗
1α = (p13)∗

(
clU1×X2×X3
W12\(W12)R1

(p∗12Γ1 · p
∗
23Γ2)∪ p

∗
13(p

∗
1α)

)
,(4.6)

where p∗1α denotes the pullback of α via the projection U1×X3→U1. Note that p
∗
12Γ1 ·p

∗
23Γ2 = p

∗
23Γ2 ·p

∗
12Γ1

by the commutativity of the intersection product of cycles. Since W12 = (W1 × X3) ∩ (X1 ×W2) has
codimension at least c1 + c2, the compatibility of the action of cycles with the intersection product (see
condition C4(e)) thus shows

clU1×X2×X3
W12\(W12)R1

(p∗12Γ1 · p
∗
23Γ2)∪ p

∗
13(p

∗
1α) = clU1×X2×X3

U1×W2
(p∗23Γ2)∪

(
clU1×X2×X3

(W1\(W1)R1 )×X3
(p∗12Γ1)∪ p

∗
13(p

∗
1α)

)
.

Note that p∗13(p
∗
1α) = p

∗
12p
′∗
1α, where p

′∗
1α denotes the pullback of α via the projection U1 ×X2 → U1.

Using the compatibility with pullbacks from condition C4(f), we thus get

clU1×X2×X3
W12\(W12)R1

(p∗12Γ1 · p
∗
23Γ2)∪ p

∗
13(p

∗
1α) = clU1×X2×X3

U1×W2
(p∗23Γ2)∪ p

∗
12

(
clU1×X2
W1\(W1)R1

(Γ1)∪ (p′
∗
1α)

)
.

Substituting this into (4.6) and plugging the result into (4.5), we get

Γ3(W3)∗(α) = (p133 )∗
(
exc1

(
(p13)∗

(
clU1×X2×X3
U1×W2

(p∗23Γ2)∪ p
∗
12

(
clU1×X2
W1\(W1)R1

(Γ1)∪ (p′
∗
1α)

)))
|X1×U3

)
.
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The compatibility of proper pushforward with pullbacks via open immersions (see condition C2(a)) and the
fact that exc1 is the inverse of a pullback via an open immersion show that

Γ3(W3)∗(α) = (p133 )∗
(
(p13)∗

(
exc2

(
clU1×X2×X3
U1×W2

(p∗23Γ2)∪ p
∗
12

(
clU1×X2
W1\(W1)R1

(Γ1)∪ (p′
∗
1α)

))
|X1×X2×U3

))
,

where

exc2 : H
∗
W12\(W12)R1

(U1 ×X2 ×X3,−)
≃−→H ∗W12\(W12)R1

((X1 ×X2 ×X3) \ (W12)R1
,−)

is the isomorphism given by excision. Here we use that (W12)R1
=W12∩ (R1×X2×X3) and W3 = p13(W12),

and so p3((W12)R1
) = p133 (W3 ∩R1 ×X3) = R3 = X3 \U3 by Lemma 4.8.

The functoriality of pushforwards then shows

Γ3(W3)∗(α) = (p233 )∗
(
(p23)∗

(
exc2

(
clU1×X2×X3
U1×W2

(p∗23Γ2)∪ p
∗
12

(
clU1×X2
W1\(W1)R1

(Γ1)∪ (p′
∗
1α)

))
|X1×X2×U3

))
.

Since the action of cycles is compatible with pullbacks along open immersions (hence with excision) by
condition C4(d), Γ3(W3)∗(α) is given by

(p233 )∗
(
(p23)∗

(
exc2

(
clX1×X2×X3
X1×W2

(p∗23Γ2)∪ p
∗
12 ◦ exc3

(
clU1×X2
W1\(W1)R1

(Γ1)∪ (p′
∗
1α)

)
|X1×U2

)
|X1×X2×U3

))
,

where

exc3 : H
∗
W1\(W1)R1

(U1 ×X2,−)
≃−→H ∗W1\(W1)R1

((X1 ×X2) \ (W1)R1
,−)

is the isomorphism given by excision, and where we use that R2 = p
12
2 ((W1)R1

); see (4.3).
The compatibility of proper pushforwards with pullbacks along open immersions (hence with excision)

from condition C2(a) then shows that Γ3(W3)∗(α) is given by

(p233 )∗
(
exc4

(
(p23)∗

(
clX1×X2×X3
X1×W2

(p∗23Γ2)∪ p
∗
12 ◦ exc3

(
clU1×X2
W1\(W1)R1

(Γ1)∪ (p′
∗
1α)

)
|X1×U2

))
|X2×U3

)
,

where

exc4 : H
∗
W2

(U2 ×X3,−)
≃−→H ∗W1\(W1)R1

((X2 ×X3) \ p23((W12)R1
),−)

is the isomorphism given by excision, where p23((W12)R1
) = p23(W12 ∩ (R1 × X2 × X3)) and so

p3(p23((W12)R1
)) = R3; see (4.3).

Applying the (last) projection formula from condition C4(f) to p23 then shows that Γ3(W3)∗(α) is given by

(p233 )∗
(
exc4

(
clX2×X3
W2

(Γ2)∪ (p23)∗ ◦ p∗12 ◦ exc3
(
clU1×X2
W1\(W1)R1

(Γ1)∪ (p′
∗
1α)

)
|X1×U2

)
|X2×U3

)
.

We then consider the natural pushforward map

ϵ : H ∗W1\(W1)R1
(X1 ×U2,−) −→H ∗(X1 ×U2,−)

and note that by the functoriality of pullbacks and proper pushforwards, the above class identifies with

(p233 )∗
(
exc4

(
clX2×X3
W2

(Γ2)∪ (p23)∗ ◦ p∗12 ◦ ϵ ◦ exc3
(
clU1×X2
W1\(W1)R1

(Γ1)∪ (p′
∗
1α)

)
|X1×U2

)
|X2×U3

)
.

By condition C2(b), we have (p23)∗ ◦ p∗12 ◦ ϵ = (p232 )∗ ◦ (p122 )∗ ◦ ϵ, and so Γ3(W3)∗(α) is given by

(p233 )∗
(
exc4

(
clX2×X3
W2

(Γ2)∪ (p232 )∗ ◦ (p122 )∗ ◦ ϵ ◦ exc3
(
clU1×X2
W1\(W1)R1

(Γ1)∪ (p′
∗
1α)

)
|X1×U2

)
|X2×U3

)
.

This shows that

Γ3(W3)∗(α) = (p233 )∗
(
exc4

(
clX2×X3
X1×W2

(Γ2)∪ (p232 )∗ (Γ1(W1)∗(α))
)
|X2×U3

)
= Γ2(W2)∗(Γ1(W1)∗(α)),

as we want. □
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5. The moving lemma

Theorem 1.1 stated in the introduction will be deduced from the following stronger (but more technical)
result.

Theorem 5.1. Let k be a field, and fix a twisted cohomology theory as in (3.1) which satisfies conditions C1–C4 from
Section 3. Let U be a smooth equi-dimensional algebraic k-scheme that admits a smooth projective compactification,
and let f : S→U be a morphism from an algebraic k-scheme S that is locally of pure dimension. Then for any
nowhere dense closed subset Z ⊂U , there are closed subsets Z ′ ⊂W ⊂U with Z ⊂W and dimW ≤ dimZ +1
such that the following conditions are satisfied:

(1) The subsets Z ′ and W \Z are in good position with respect to f in the following sense:
(a) The codimension of f −1(Z ′) in S is, locally at each point, at least codimU Z .
(b) The codimension of f −1(W \Z) in S is, locally at each point, at least codimU Z − 1.

(2) Classes with support on Z can be moved along W to classes with support on Z ′ in the following sense:

im(H ∗Z(U,n)→H ∗W (U,n)) ⊂ im(H ∗Z ′ (U,n)→H ∗W (U,n)).

(3) There is an open subset S◦ ⊂ S with the following properties:
• The complement S \S◦ locally has codimension at least codimU Z −1 in S . In particular, S◦ is dense
in S .
• If dimf (S) < codimU Z − 1, then S◦ = S .
• If we replace S by S◦, then W is well behaved under localization in the following sense: if we replace
U by an open subset V ⊂U and S by f −1(V )∩ S◦, then W can be replaced by W ∩V .

(4) Any component Z ′′ ⊂ Z ′ with dimZ ′′ > dimZ satisfies f −1(Z ′′) = ∅. If we only require items (1) and (2),
but not (3), then we may assume that no such component exists.

Remark 5.2. Even if dimS = 0, the subset Z ′ ⊂U in Theorem 5.1 can in general not be chosen to be well
behaved with respect to localization. This can already be observed in the case where U = P

2, Z ⊂ P
2 is

a line, S ⊂ Z is a closed point, k = k̄ is algebraically closed, and H ∗(−,n) denotes étale cohomology with
coefficients in µ⊗nℓr for some prime ℓ invertible in k. Indeed, if in this case Z ′ ⊂ P

2 is any closed subset
which meets S properly, then Z 1 Z ′ , and so we can pick two points {p,q} ⊂ Z \Z ′ . But then there is a class

α ∈H3
Z(P

2 \ {p,q},n) ≃H1(Z \ {p,q},n− 1) ≃Z/ℓr

with non-trivial residue ∂pα at p, and so the pushforward of α to H3(P2 \ {p,q},n) does not admit a lift to
H3
Z ′ (P

2 \ {p,q},n) because the latter agrees with H3
Z ′ (P

2,n) by excision and so the residue at p would need
to be trivial.

Proof of Theorem 5.1. Let X be a smooth projective compactification of U , and let Z̄ ⊂ X be the closure
of Z in X. Since U is equi-dimensional, so is X, and we let dX := dimX. Let R := Z̄ \Z . By excision
(see condition C1), the canonical restriction map H ∗Z(X \R,n)→ H ∗Z(U,n) is an isomorphism. Since the
pushforward maps from condition C2 are compatible with respect to pullbacks along open immersions (see
condition C2(a)), one easily concludes that it suffices to prove the theorem in the case where

U = X \R with R := Z̄ \Z.(5.1)

For convenience, we will use the following terminology: if ϕ : A→ B is a morphism of locally equi-
dimensional algebraic schemes with B equi-dimensional and Z is a closed codimension c subscheme of B or
a cycle on B whose support has codimension c in B, then we say that Z is in good position with respect to ϕ
if ϕ−1(Z) ⊂ A locally has codimension at least c (i.e. locally at each point, the codimension is at least c).

The idea of the proof is to apply the moving lemma for algebraic cycles to the diagonal ∆X ⊂ X ×X and
to exploit the action of cycles on open varieties from Section 4. The former yields the following precise
statements.
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Lemma 5.3. Let ϕ : A→ X ×X be a morphism from a locally equi-dimensional algebraic scheme A to X ×X.
(1) There is a cycle ∆′X ∈ Z

dX (X ×X), rationally equivalent to the diagonal ∆X , that is in good position with
respect to ϕ.

(2) Assume that ∆X is in good position with respect to ϕ, and let ∆
′
X be a cycle on X ×X that is rationally

equivalent to ∆X and that is in good position with respect to ϕ. Then there is a closed subscheme
WX×X ⊂ X ×X of codimension dX − 1 which is in good position with respect to ϕ and such that the
following hold:
• The supports of the cycles ∆X and ∆′X are contained in WX×X .
• The cycle Γ := ∆X −∆′X , viewed as a cycle on WX×X , is rationally equivalent to zero on WX×X .

Proof. We apply Theorem 2.1(1) to the class of the diagonal ∆X to get a cycle ∆′X that is rationally equivalent
to ∆X and that is in good position with respect to ϕ. This proves the first assertion. To prove the second
assertion, assume that ∆X is in good position with respect to ϕ. Then we consider the cycle Γ = ∆X −∆′X
that is rationally equivalent to zero on X ×X and in good position with respect to ϕ by assumption. We then
apply Theorem 2.1(2) to the cycle Γ = ∆X −∆′X and get a closed subscheme WX×X ⊂ X ×X of codimension
dX − 1 which is in good position with respect to ϕ and which contains the support of Γ such that Γ , viewed
as a cycle on WX×X , is rationally equivalent to zero on WX×X . The resulting cycle ∆′X and the subscheme
WX×X then have the properties we want in the lemma. □

Lemma 5.4. There exist a closed subscheme WX×X ⊂ X ×X of codimension dX −1 and a cycle ∆′X ∈ Z
dX (X ×X)

with supp(∆′X) ⊂WX×X and ∆X ⊂WX×X such that ∆X and ∆′X , viewed as cycles on WX×X , are rationally
equivalent to each other on WX×X . Moreover, the following transversality properties hold:

(1) WX×X and ∆
′
X are in good position with respect to the morphism

e := τZ̄ × id : Z̄ν ×X −→ X ×X,

where Z̄ν denotes the disjoint union of the components of Z̄ and τZ̄ : Z̄
ν → Z̄ denotes the natural map.

(2) WX×X and ∆
′
X are in good position with respect to the morphism

g := τR × f : Rν × S −→ X ×X,

where Rν denotes the disjoint union of the components of R and τR : Rν → X denotes the natural map.
That is, the preimage g−1(WX×X) (resp. g−1(supp(∆′X))) locally has codimension at least dX − 1 (resp. at
least dX) in Rν × S .

(3) Consider the morphism

h := τZ̄ × f : Z̄ν × S −→ X ×X.

Then the following hold:
(a) The cycle ∆′X is in good position with respect to h; i.e. the preimage h−1(supp(∆′X)) locally has

codimension at least dX in Z̄
ν × S .

(b) The preimage h−1(WX×X \∆X) locally has codimension at least dX − 1.

Proof. We will apply Lemma 5.3 to a suitable morphism from a locally equi-dimensional scheme to X ×X.
For convenience, we first explain how this implies items (1)–(3) individually. Afterwards, we will explain how
to arrange that all items hold simultaneously, as we want.

(1) The preimage of the diagonal ∆X via e : Z̄ν ×X→ X ×X identifies with the graph of τZ̄ and hence
has locally codimension dX . Item (1) therefore follows directly by applying Lemma 5.3 to the morphism e.

(2) Since imf ⊂ U , while R = X \U , we find that g−1(∆X) = ∅. Item (2) therefore follows by applying
Lemma 5.3 to the morphism g above.

(3.a) Item (3.a) follows from Lemma 5.3(1) applied to the morphism h.



18 S. Schreieder18 S. Schreieder

(3.b) We note that ∆X is not in good position with respect to h, and so Lemma 5.3(2) does not apply
directly. Instead, we consider the morphism

h′ : (Z̄ν × S) \ h−1(∆X) −→ X ×X

that is given by the restriction of h. Clearly, ∆X is in good position with respect to this morphism,
and so Lemma 5.3 applies. Since (h′)−1(WX×X) identifies naturally with h−1(WX×X \∆X), we find that
h−1(WX×X \∆X) locally has codimension dX − 1, as we want.

It remains to show that we can arrange that items (1)–(3) hold simultaneously. To this end, we introduce
the following notation: by the disjoint union of a collection of morphisms ϕi : Ai → X ×X, we mean the
natural morphism ⊔ϕi :

⊔
Ai → X ×X.

We consider the disjoint union of the morphisms e, g , and h above and apply Lemma 5.3(1) to this
morphism to get a cycle ∆′X . It follows from the above arguments that the resulting cycle ∆′X satisfies items
(1)–(3) in the lemma. We then apply Lemma 5.3(2) to the disjoint union of the morphisms e, g , and h′ to get
a closed subset WX×X ⊂ X ×X as in the lemma. As before it follows from the above arguments that WX×X
satisfies items (1)–(3) in the lemma, as we want. This concludes the proof of Lemma 5.4. □

From now on we fix ∆′X and WX×X as in Lemma 5.4. We then define

Z̄ ′ := q(WX×X ∩ (R×X))∪ q(supp(∆′X)∩ (Z̄ ×X)), Z ′ := Z̄ ′ ∩U,(5.2)

W̄ := q(WX×X ∩ (Z̄ ×X)), and W := W̄ ∩U.(5.3)

(Here and in the following, q : X ×X→ X denotes, as before, the projection onto the second factor.) Since
∆X ⊂WX×X , we have Z ⊂W . Since R ⊂ Z̄ (by the definition of R, cf. (5.1)) and supp(∆′X) ⊂WX×X , we
also find that Z ′ ⊂ W . Moreover, since WX×X ⊂ X ×X has codimension dX − 1, Lemma 5.4(1) implies
dimW ≤ dimZ +1, as we want.

It remains to prove that conditions (1)–(4) of Theorem 5.1 are satisfied.

Step 1. Proof that condition (2) is satisfied.
Let U ′ := U \Z ′ . By the long exact sequence of triples (see condition C3), it suffices to show that the

following composition is zero:

H ∗Z(U,n)
ι∗−→H ∗W (U,n)

restr−−−−→H ∗W (U ′ ,n).(5.4)

We view ∆X as a cycle on X×X. Its support is contained in WX×X . By (5.3), W = q(WX×X ∩ (Z̄ ×X))∩U .
Moreover, (5.2) implies that q(WX×X ∩ (R×X)) ⊂ X \U ′ . Lemma 4.1 thus yields an action

∆X(WX×X)∗ : H
∗
Z(U,n) −→H ∗W (U ′ ,n).

By Lemma 4.4, this action identifies with the composition in (5.4).
By Lemma 5.4, the cycle ∆X is rationally equivalent to ∆′X on WX×X . Lemma 4.2 and the additivity of

the action thus imply that

∆X(WX×X)∗ = ∆′X(WX×X)∗ : H
∗
Z(U,n) −→H ∗W (U ′ ,n).

By (5.2), we have q(supp(∆′X)∩ (Z̄ ×X)) ⊂ Z̄ ′ . Moreover, U ′ ∩ Z̄ ′ = ∅ because U ′ = U \Z ′ = X \ Z̄ ′ ,
where the last equality uses that Z̄ \Z = X \U by (5.1). Hence, Lemma 4.6 implies that

∆′X(WX×X)∗ : H
∗
Z(U,n) −→H ∗W (U ′ ,n)

is zero. This concludes the proof of Step 1.

Step 2. Proof of that condition (1) is satisfied.
Since imf ⊂U ⊂ X, the definition of Z ′ in (5.2) implies that

f −1(Z ′) = f −1(q(WX×X ∩ (R×X)))∪ f −1(q(supp(∆′X)∩ (Z̄ ×X))).
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This splits into a union of two closed subsets, and it suffices to bound the codimension of each of these two
subsets separately.

Consider the commutative diagram

Rν × S
id×f

//

pr2
��

Rν ×X
pr2
��

τR×id
// X ×X

q
��

S
f

// X
id

// X,

where each vertical arrow is the respective projection onto the second factor, the square on the left is
Cartesian, and the composition of the two horizontal arrows on the top coincides with the morphism g from
Lemma 5.4(2). It is elementary to check that we have an equality of sets

pr2((id×f )
−1(A)) = f −1(pr2(A))

for any subset A ⊂ Rν ×X. Applying this to A = (τR × id)−1(WX×X), we get

pr2(g
−1(WX×X)) = f

−1(pr2((τR × id)
−1(WX×X))).

The right-hand side agrees with f −1(q(WX×X ∩ (R×X))), and so

pr2(g
−1(WX×X)) = f

−1(q(WX×X ∩ (R×X))).

The codimension of pr2(g
−1(WX×X)) in S is bounded below by

codimRν×S(g
−1(WX×X))−dimRν .

By Lemma 5.4(2), the above number is bounded below by dX − 1−dimR, where we use dimR = dimRν .
Since R = Z̄ \Z is nowhere dense in Z̄, we finally conclude that the above number is bounded below by
dX −dimZ . Hence, f −1(q(WX×X ∩ (R×X))) has codimension at least codimX Z̄ = codimU Z in S, as we
want.

Similarly, consider the commutative diagram

Z̄ν × S
id×f

//

pr2
��

Z̄ν ×X
pr2
��

τZ̄×id
// X ×X

q
��

S
f

// X
id

// X,

(5.5)

where the composition of the morphisms in the top row is h. As before, one checks that there is an equality
of sets

pr2((id×f )
−1(A)) = f −1(pr2(A))(5.6)

for any subset A ⊂ Z̄ν ×X. Applying this to A = (τZ̄ × id)−1(supp∆′X), we conclude in a similar way as
above that the codimension of f −1(q(supp(∆′X)∩ (Z̄ ×X))) in S is bounded below by

codimZ̄ν×S
(
h−1

(
supp

(
∆′X

)))
−dim Z̄.

By Lemma 5.4(3.a), this number is bounded below by dX −dim Z̄ = codimX Z̄, as we want. This concludes
the proof that condition (1.a) is satisfied.

Next, we aim to prove that condition (1.b) is satisfied. Using (5.5) and applying (5.6) to (τZ̄ × id)−1(WX×X),
we find that

f −1(pr2((τZ̄ × id)
−1(WX×X))) = pr2(h

−1(WX×X)).

Note that pr2((τZ̄ × id)−1(WX×X)) = q(WX×X ∩ (Z̄ ×X)) = W̄ , where the first equality uses that Z̄ν is the
disjoint union of the irreducible components of Z̄ and the last equality uses (5.3). Hence,

f −1(W ) = f −1(W̄ ) = pr2(h
−1(WX×X)),
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where the first equality uses imf ⊂U . Similarly, f −1(Z) = pr2(h
−1(∆X)), and so

f −1(W \Z) ⊂ pr2(h
−1(WX×X \∆X)).

Hence, the codimension of f −1(W \Z) in S is bounded below by

codimZ̄ν×S(h
−1(WX×X \∆X))−dim Z̄.

By Lemma 5.4(3.b), the above number is bounded below by

dX − 1−dimZ = codimU Z − 1.

This proves that condition (1.b) of Theorem 5.1 is satisfied and hence concludes Step 2.

Step 3. Proof of that condition (3) is satisfied.
If codimU Z = 1, then we may take W = U , and so condition (3) clearly holds for S◦ := S . Since

Z ⊂ X is nowhere dense, it remains to consider the case codimU Z ≥ 2. To this end, we consider
h−1(WX×X \∆X) ⊂ Z̄ν × S and define

S◦ := S \ Scl with Scl := pr2(h−1(WX×X \∆X)) ⊂ S.

By (5.6),

Scl = f −1(A), where A := pr2((τ × id)
−1(WX×X \∆X)).

By Lemma 5.4(3), h−1(WX×X \ ∆X) locally has codimension at least dX − 1. Hence, Scl locally has
codimension at least dimU −dimZ −1 = codimU Z −1 in S . In particular, the open subset S◦ ⊂ S is dense
because codimU Z ≥ 2. Note further that imh = Z̄ × f (S). Therefore, if dimf (S) < codimU Z − 1, then
dim(imh) < dX − 1. The aforementioned observation that h−1(WX×X \∆X) locally has codimension at least
dX − 1 thus implies by Lemma 2.2 that S = S◦, as we want.

It remains to prove that up to replacing S by S◦, the closed subset W is well behaved under localization.
By the definition of S◦, this replacement has the effect that we may from now on assume that

h−1(WX×X \∆X) = ∅.(5.7)

Now let V ⊂U be an open subset, and let RV := X \V . By excision, we reduce to the case where RV ⊂ Z̄ .
Then R ⊂ RV ⊂ Z̄, and replacing U by V amounts to replacing R by RV and S by SV := f −1(V ). We aim
to show that under these replacements, W can be replaced by W ∩V . In view of the definition in (5.3), it
will be enough to show that WX×X from Lemma 5.4 does not need to be changed if we replace R by RV and
S by SV .

It is clear that the conclusion of Lemma 5.4 is not affected if we replace S by SV , and so we may from
now on assume that f (S) ⊂ V . It remains to analyse the effect of replacing R by the possibly larger subset
RV ⊂ Z̄ . Items (1) and (3) of Lemma 5.4 are not affected by this replacement. It thus suffices to show that
Lemma 5.4(2) remains true after replacing R by RV . To this end, we consider the map

gV := τRV × f : R
ν
V × S −→ X ×X

that we obtain by replacing R by RV in Lemma 5.4(2). Since RV ⊂ Z̄ (by the above reduction step),
h−1(WX×X \∆X) = ∅ (see (5.7)) implies g−1V (WX×X \∆X) = ∅. Since f (S) ⊂ V by the above reduction step,
we have RV ∩ f (S) = ∅ and so g−1V (∆X) = ∅. We thus conclude g−1V (WX×X) = ∅. Since supp(∆′X) ⊂WX×X ,
this also implies that g−1V (supp(∆′X)) = ∅. Hence, the conclusion in Lemma 5.4(2) remains true if we replace
R by RV , as claimed. This concludes the proof of that condition (3) of Theorem 5.1 is satisfied.

Step 4. Proof that condition (4) is satisfied.
We first note that Z ′ ⊂W . Since dimW ≤ dimZ +1, we thus get dimZ ′ ≤ dimZ +1. By condition (1.a),

f −1(Z ′) has, locally at each point, codimension at least codimU Z . But if Z ′′ ⊂ Z ′ is a component of
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dimension dimZ +1, then f −1(Z ′′), if non-empty, locally has codimension at most codimU Z − 1. Hence,
f −1(Z ′′) = ∅, as claimed.

Finally, we only ask that conditions (1) and (2) of Theorem 5.1 are satisfied (but not (3)), and we aim to
show that we can arrange to have dimZ ≥ dimZ ′ . To this end, we use the moving lemma for cycles in the
form of Lemma 5.3 to ask that in addition to the properties in Lemma 5.4, WX×X is in good position with
respect to the natural map

Rν ×X −→ X ×X.
(We can do this because the diagonal ∆X is clearly in good position with respect to the above morphism,
and so the above morphism can simply be added to the disjoint unions of morphisms used in the proof of
Lemma 5.4.) By the definition of Z ′ in (5.2), we have

Z̄ ′ = q(WX×X ∩ (R×X))∪ q(supp(∆′X)∩ (Z̄ ×X)), Z ′ := Z̄ ′ ∩U.

Since WX×X is in good position with respect to the above map Rν ×X→ X ×X, we find that

dim(q(WX×X ∩ (R×X))) ≤ dim(WX×X ∩ (R×X))
≤ dimR+1

≤ dim Z̄ = dimZ,

where the last inequality uses that R = Z̄ \Z is a closed nowhere dense subset of Z̄ and hence has strictly
smaller dimension than Z̄ .

By Lemma 5.4(1), the cycle ∆′X is in good position with respect to the natural map e : Z̄ν ×X→ X ×X,
which implies

dim(q(supp(∆′X)∩ (Z̄ ×X))) ≤ dim(supp(∆′X)∩ (Z̄ ×X))
≤ dim(Z̄) = dim(Z).

Altogether, we get dimZ ≥ dim Z̄ ′ ≥ dimZ ′ , as we want. (Here we emphasize that we cannot ensure any
longer that condition (3) of Theorem 5.1 holds true: unless every component of WX×X ∩ (Z̄ ×X) dominates a
component of Z̄ , we cannot ensure for varying R that the intersection of WX×X with R×X is dimensionally
transversely, hence we may lose the localization property from Step 3 above.)

This concludes the proof of Step 4, and hence the proof of the theorem. □

6. Applications: Proofs of Theorem 1.1 and Corollaries 1.2–1.8

6.1. Proof of Theorem 1.1

Proof of Theorem 1.1. Let X be a smooth equi-dimensional k-scheme that admits a smooth projective compact-
ification, and let S,Z ⊂ X be closed subsets. Let Sν be the disjoint union of the irreducible components of
S , and let f : Sν → X be the natural map. We apply Theorem 5.1 to U := X. We only ask that conditions (1)
and (2) hold true, but not (3). By condition (4), we may thus assume that dimZ ′ ≤ dimZ . By condition (2),

im(H ∗Z(X,n) −→H ∗W (X,n)) ⊂ im(H ∗Z ′ (X,n) −→H ∗W (X,n)).(6.1)

In other words, for any α ∈ H ∗Z(X,n), there is a class α′ ∈ H ∗Z ′ (X,n) such that α and α′ have the
same image in H ∗W (X,n). We further know that dimW ≤ dimZ + 1, and by condition (1), we have
codimX(S ∩Z ′) ≥ codimX S + codimX Z and codimX(S ∩ (W \Z)) ≥ codimX S + codimX Z − 1. So if we
know that the inequalities dimZ ′ ≤ dimZ and dimW ≤ dimZ +1 are in fact equalities, we will be done.
Note however that passing from inequalities to equalities is trivial: if some of the inequalities are strict, we
add to Z ′ (resp. W ) closed subsets of the desired dimensions, in general position with respect to S , in such a
way that Z ′ ⊂W remains true. (This uses the assumption that X admits a projective closure, and so we can
construct the subsets we add as suitable complete intersections.) Equation (6.1) then remains true by the
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functoriality of pushforwards (see condition C2); the conditions codimX(S ∩Z ′) ≥ codimX S + codimX Z
and codimX(S ∩ (W \Z)) ≥ codimX S + codimX Z − 1 remain true by the fact that we added subsets in
general position with respect to S . Since dimW = dimZ +1 and dimZ ′ = dimZ, it follows that Z ′ and
W \Z meet S dimensionally transversely. This concludes the proof of the theorem. □

6.2. Global and local effacement theorems

Corollary 1.2, stated in the introduction, results from the following more general statement.

Corollary 6.1. Let X be a smooth equi-dimensional k-scheme that admits a smooth projective compactification.
Let Z ⊂ X be a closed subset, and let f : S → X be a morphism from an algebraic k-scheme S that is locally of
pure dimension. Then there is a closed subsetW ⊂ X with Z ⊂W , and dimW = dimZ +1, and there is an open
subset U ⊂ X with codimX(X \U ) ≥ codimX(Z) such that f −1(X \U ) ⊂ S locally has codimension at least
codimX(Z) and such that the following composition is zero:

H ∗Z(X,n) −→H ∗W (X,n) −→H ∗W (U,n).

Moreover, if dimf (S) + dimZ < dimX, then U is an open neighbourhood of f (S) in X.

Proof. We apply Theorem 5.1 to X and ask that conditions (1), (2), and (4) are satisfied, but we do not
require the localization property from condition (3). We thus get closed subsets Z ′ ⊂ W ⊂ X with
Z ⊂W , dimZ ′ = dimZ and dimW = dimZ + 1 such that f −1(Z ′) ⊂ S locally has codimension at least
codimX(Z) (see condition (1.a)). We then define U := X \Z ′ . By the long exact sequence of triples (see
condition C3), Equation (6.1) implies that the composition H ∗Z(X,n)→ H ∗W (X,n)→ H ∗W (U,n) is zero, as
claimed. Moreover, if dimf (S) + dimZ < dimX, then Lemma 2.2 together with the fact that f −1(Z ′) ⊂ S
locally has codimension at least codimX(Z) implies f −1(X \U ) = f −1(Z ′) = ∅, and so U is an open
neighbourhood of f (S), as we want. This concludes the proof. □

The following result proves Corollary 1.3, stated in the introduction. Before we state it, we recall that for a
smooth equi-dimensional k-scheme X and a closed subset S ⊂ X, we denote by XS the pro-scheme that
consists of all open subsets U ⊂ X with S ⊂ U . The cohomology of XS with support in a closed subset
Z ⊂ X is then formally defined by the direct limit

H ∗Z(XS ,n) := lim
−→

S⊂U⊂X
H ∗Z(U,n),

where U runs through all open subsets of X that contain S .

Corollary 6.2. Let X be a smooth equi-dimensional k-scheme that admits a smooth projective compactification.
Let Z,S ⊂ X be closed subsets with dimS +dimZ < dimX. Then the natural map H ∗Z(XS ,n)→H ∗(XS ,n) is
zero, and there is a natural short exact sequence

0 −→H i(XS ,n) −→H i(XS \Z,n)
∂−→H i+1

Z (XS ,n) −→ 0.

Proof. Recall that the proper pushforwards from condition C2 are functorial and compatible with respect to
pullbacks along open immersions (see condition C2(a)). Using this, we see that Corollary 1.2 implies that the
natural map H ∗Z(XS ,n)→H ∗(XS ,n) is zero. The given short exact sequence is then a direct consequence of
the long exact sequence of triples in condition C3 which is functorial with respect to pullbacks and hence
with respect to restrictions to the open neighbourhoods of S in X that define the pro-scheme XS . This
concludes the proof. □

The following corollary implies Corollary 1.4, stated in the introduction.

Corollary 6.3. Let X be a smooth equi-dimensional k-scheme which admits a smooth projective compactification.
Let Z ⊂ X be a nowhere dense closed subset. Let S ⊂ X be either closed with dimS < codimZ − 1 or a finite
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set of points. Then there is a closed subset W ⊂ X with Z ⊂W and dimW = dimZ +1 such that the natural
map H ∗Z(XS ,n)→H ∗W (XS ,n) is zero. Moreover, if S is a finite set of points and T ⊂ XS is closed, then we may
assume that the restriction of W \Z to XS meets T dimensionally transversally.

Proof. Let Z ⊂ X be closed and nowhere dense. We first deal with the case where S ⊂ X is closed with
dimS + dimZ < dimX − 1. Let Sν be the disjoint union of the irreducible components of S, and let
f : Sν → X be the natural map. We apply Theorem 5.1 to U := X and f to get closed subsets Z ′ ,W ⊂ X
with Z,Z ′ ⊂W and dimW ≤ dimZ +1. In contrast to the proof of Theorem 1.1, we require that in addition
to conditions (1) and (2), condition (3) also holds true, and so our assumptions on S ensure that W is well
behaved with respect to localization. The disadvantage is that Z ′ may have components of dimension
dimZ + 1, but condition (4) ensures that any such component is disjoint from S . Hence, U = X \Z ′ is a
neighbourhood of S such that the composition H ∗Z(X,n)→H ∗W (X,n)→H ∗W (U,n) is zero. The fact that W
is well behaved under localization then implies that H ∗Z(XS ,n)→H ∗W (XS ,n) is zero, as claimed.

It remains to deal with the case where S ⊂ X is a finite set of possibly non-closed points. Let S̄ν be the
disjoint union of the closures in X of the points in S . (In particular, there S corresponds to the generic points
of the irreducible components of S̄ν .) We apply Theorem 5.1 to U = X and the natural map f : S̄ν → X. By
Theorem 5.1(3), there is a dense open subset S̄◦ ⊂ S̄ν such that the closed subset W in Theorem 5.1 with
respect to f |S̄◦ : S̄◦ → X is well behaved under localization. The result follows because the open subset
S̄◦ ⊂ S̄ν is dense and so S corresponds by the construction of S̄ν to the generic points of the components
of S̄◦.

If moreover T ⊂ XS is closed, we denote its closure in X by T̄ ⊂ X. Let further T̄ ν denote the disjoint
union of the irreducible components of T̄ . Then in the above argument we replace the morphism f by the
natural morphism f̃ : S̄ ⊔ T̄ ν → X. By Theorem 5.1(3), we get dense open subsets S̄◦ ⊂ S̄ and T̄ ◦ ⊂ T̄ ν such
that the closed subset W ⊂ X produced this way is well behaved under localization. We claim that locally
at any point of S, W \Z meets each component of T̄ dimensionally transversally. This will follow from
Theorem 5.1(1.b) if we can show that

S ∩ T̄ = S ∩ T̄ ◦(6.2)

as this implies that T̄ and T̄ ◦ have the same restriction to XS and so T̄ ◦|XS = T . To prove (6.2), we note
that by Theorem 5.1(3), S̄◦ ∪ T̄ ◦ is the preimage of some open subset via the natural map S̄ ∪ T̄ → X. Since
S ⊂ S̄◦, we get that S∩ T̄ ⊂ T̄ ◦ and so (6.2) holds, as we want. This concludes the proof of the corollary. □

6.3. Finite-level version of the Gersten conjecture

The following result implies Corollary 1.5, stated in the introduction.

Corollary 6.4. Assume that the given cohomology theory with support satisfies conditions C1–C5. Let X be a
smooth equi-dimensional algebraic k-scheme which admits a smooth projective compactification (e.g. chark = 0).
Let S ⊂ X(c) be a finite set of codimension c points, and let XS = Spec(OX,S ) be the localization of X at S . Let
T ⊂ XS be closed, and let Zc = S ⊂ Zc−1 ⊂ · · · ⊂ Z1 ⊂ Z0 = XS be a chain of closed reduced subschemes of XS of
increasing dimensions such that each Zj meets T \ S properly. Up to replacing the given chain {Zj}j by one that
is finer, i.e. by a chain {Z ′j} as above with Zj ⊂ Z

′
j for all j (in particular, each Z

′
j meets T \ S properly), the

following complex is exact:

0 −→H i(XS ,n) −→H i
BM(XS \Z1)

∂−→H i−1
BM (Z1 \Z2)

∂−→ ·· · ∂−→H1
BM(Zi−1 \Zi)

∂−→H0
BM(Zi \Zi+1) −→ 0,

where
H
i−j
BM(Zj \Zj+1) := lim

−→
S⊂U⊂X

H
i+j
Z̄j\Z̄j+1

(U \ Z̄j+1,n+ j),

Z̄j ⊂ X denotes the closure of Zj in X, and ∂ is induced by the respective residue maps from the long exact sequence
of triples in property C3.
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Proof. This follows from Corollary 6.3 by standard arguments (cf. [CTHK97, Section 1]). We give some
details for the reader’s convenience.

Up to replacing X by an affine neighbourhood of S , we can assume that X is affine. Taking the closure of
the given chain {Zj}j of closed subsets of the localization XS , we get a chain

Z̄c = S̄ ⊂ Z̄c−1 ⊂ · · · ⊂ Z̄1 ⊂ Z̄0 = X

of closed subsets of X with dim Z̄j = dim Z̄j+1 +1. We replace this chain inductively by a finer chain {Z̄ ′j}
of closed subsets of X, as follows. We let Z̄ ′c := Z̄c = S, and if Z̄ ′j+1 is defined, then we define Z̄ ′j to be the
closed subset from Corollary 6.3 which satisfies

• Z̄ ′j+1 ⊂ Z̄
′
j and dim Z̄ ′j = dim Z̄ ′j+1 +1;

• locally at any point of S, the closure T̄ ⊂ X of T in X meets the subset Z̄ ′j \ Z̄
′
j+1 dimensionally

transversely;
• the map

H i
Z̄ ′j+1

(XS ,n) −→H i
Z̄ ′j
(XS ,n)(6.3)

is zero.

Up to enlarging Z̄ ′j , we may in addition assume that Z̄j ⊂ Z̄ ′j , so that the inductively defined chain {Z̄ ′j}
is a refinement of {Z̄j}. Since Z̄j meets T̄ \ S̄ properly, T̄ meets Z̄ ′j \ Z̄

′
j+1 properly for all j ≥ c − 1. Since

Z̄ ′c = Z̄c = S̄ , it follows inductively that T̄ meets Z̄ ′j \ S̄ properly. This way we constructed a refinement {Z̄ ′j}
of {Z̄j}. We then let Z ′j ⊂ XS be the closed subset given by restriction of Z̄ ′j ⊂ X. This way we get a chain
{Z ′j} of closed subsets of XS such that each Z ′j meets T \S properly and (6.3) is zero. Hence, up to replacing

the chain {Zj} of closed subsets of XS by the refinement {Z ′j} induced by {Z̄ ′j}, we may assume that each Zj
meets T \ S properly and the natural map

H i
Z̄j+1

(XS ,n) −→H i
Z̄j
(XS ,n)(6.4)

is zero for all i, j .
For each open neighbourhood U ⊂ X of S , the long exact sequence of triples from condition C3 applied

to Z̄j+1 ⊂ Z̄j ⊂U yields

· · · −→H ∗−1
Z̄j

(U \ Z̄j+1,n)
∂−→H ∗Z̄j+1

(U,n)
ι∗−→H ∗Z̄j

(U,n)
r−→H ∗Z̄j

(U \ Z̄j+1,n)
∂−→H ∗+1

Z̄j+1
(U,n) −→ ·· · .

These sequences are compatible with respect to restrictions to finer open subsets U ′ ⊂U . This gives rise to

compatible exact couples D1(U )
ι∗→D1(U )

r→ E1(U )
∂→ with

D
p,q
1 (U ) :=Hp+q

Z̄p
(U,n) and E

p,q
1 (U ) :=Hp+q

Z̄p
(U \ Z̄p+1,n),

where ι∗, r, and ∂ are of bidegrees (−1,1), (0,0), and (0,1), respectively; see [CTHK97, Section 1.1].
Passing to the direct limit over all open neighbourhoods U ⊂ X of S in X, we arrive at an exact couple

D1
ι∗→D1

r→ E1
∂→, where

D
p,q
1 := lim

−→
S⊂U⊂X

H
p+q
Z̄p

(U,n) and E
p,q
1 := lim

−→
S⊂U⊂X

H
p+q
Z̄p

(U \ Z̄p+1,n).

The map ι∗ : D
p,q
1 →D

p−1,q+1
1 is zero by (6.4) for all p,q. It follows that the spectral sequence associated to

the couple D1
ι∗→D1

r→ E1
∂→ degenerates at E1. That is, we get a long exact exact sequence

· · · −→ E
p−1,q
1 −→ E

p,q
1 −→ E

p+1,q
1 −→ ·· · ,



A moving lemma for cohomology with support 25A moving lemma for cohomology with support 25

where the differential is given by r ◦ ∂. This is precisely the exact complex stated in the corollary. The
corollary follows because each Zj meets T \ S properly and semi-purity (see condition C5) implies that

H
i−j
BM(Zj \Zj+1) = lim

−→
S⊂U⊂X

H
i+j
Z̄j\Z̄j+1

(U \ Z̄j+1,n+ j)

vanishes for j > i; i.e. Borel–Moore cohomology vanishes in negative degrees. □

6.4. Injectivity and codimension j+1 purity theorems

Corollary 1.6 follows from the following more general statement.

Corollary 6.5. Let X be a smooth variety over k that admits a smooth projective compactification. Let f : S→ X
be a morphism from a locally equi-dimensional algebraic k-scheme S . Then the following holds for any twisted
cohomology theory as in (3.1) that satisfies conditions C1–C4:

(1) Any class in H ∗(X,n) that vanishes on the complement of a closed subset Z ⊂ X already vanishes on
the complement of another closed subset Z ′ ⊂ X with dimZ ′ = dimZ such that f −1(Z ′) locally has
codimension at least codimX Z on S . In particular, if dimf (S) < codimX Z, then f

−1(Z ′) = ∅.
(2) Let U ⊂ X be open with codim(X \U ) = j + 2. There are open subsets U ′ ⊂ X and V ⊂ U ∩U ′ with

codim(X \V ) = j +1 and codim(X \U ′) = j +2 such that f −1(X \U ′) locally has codimension at least
j +2 on S and

im(H ∗(U,n) −→H ∗(V ,n)) ⊂ im(H ∗(U ′ ,n) −→H ∗(V ,n)).

In particular, if dimf (S) < j +2, then f −1(X \U ′) = ∅ and so f (S) ⊂U ′ .

Proof. To prove item (1), we apply Corollary 6.1 to the closed subset Z ⊂ X and the morphism f : S → X.
We then get a closed subset W ⊂ X with codimX(W ) ≥ codimX(Z)− 1 and Z ⊂W , and an open subset
U ⊂ X with complement Z ′ := X \U such that codimX(Z ′) ≥ codimX(Z) and f −1(Z ′) ⊂ S locally has
codimension at least codimX(Z) and the composition

H ∗Z(X,n) −→H ∗W (X,n) −→H ∗W (U,n)

is zero. If dimf (S) < codimX(Z), then Lemma 2.2, together with the fact that f −1(Z ′) ⊂ S has codimension
at least codimX(Z), implies f −1(Z ′) = ∅, as claimed.

Now let α ∈ H ∗(X,n) be a class that vanishes on X \ Z . By the long exact sequence of triples from
condition C3, the class α lifts to a class α′ ∈H ∗Z(X,n). By the functoriality of the long exact sequence of
triples in condition C3, the fact that the image of α′ in H ∗W (U,n) vanishes implies that the image of α in
H ∗(U,n) vanishes. The claim in item (1) of the corollary thus follows from the fact that f −1(Z ′) ⊂ S locally
has codimension at least codimX(Z).

To prove item (2), we apply Corollary 6.1 to the closed subset Z := X \U and to the morphism f : S→ X,
as follows. Any class α ∈H ∗(U,n) gives by the long exact sequence of triples rise to a residue

∂α ∈H ∗+1Z (X,n).

By Corollary 6.1, there is a closed subset W ⊂ X with Z ⊂W and codimXW ≥ j +1 such that the following
holds: there is an open subset U ′ ⊂ X with codim(X \U ′) ≥ j + 2 such that f −1(X \U ′) locally has
codimension at least j +2 and the image of ∂α in H ∗W (U ′ ,n) vanishes. We define V := (X \W )∩U ′ . Since
Z ⊂W , we have V ⊂U = X \Z . By the functoriality of the long exact sequence of triples in condition C3,
we have a commutative diagram with exact rows

H ∗(X,n)

��

// H ∗(U,n)

��

∂
// H ∗+1Z (X,n)

��

H ∗(U ′ ,n) // H ∗(V ,n) ∂
// H ∗+1W (U ′ ,n).
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Since the image of ∂α in H ∗+1W (U ′ ,n) vanishes, we conclude that the restriction of α to V admits a lift to
H ∗(U ′ ,n). Finally, we note that U ′ and W in the above argument do not depend on the class α. This proves
item (2). □

6.5. Refined unramified cohomology is motivic

Definition 6.6. Let X be a smooth equi-dimensional algebraic k-scheme. For j ∈ Z, let FjX be the

pro-scheme given by all open subsets U ⊂ X with X(j) ⊂U . Let further

H ∗(FjX,n) := lim
−→
U⊂X

H ∗(U,n),

where U runs through all open subsets of X with X(j) ⊂U , i.e. with codimX(X \U ) > j .

Note that FjX = ∅ for j < 0, and so H ∗(FjX,n) = 0 for j < 0 by Remark 4.5.

Definition 6.7. Let X be a smooth equi-dimensional algebraic k-scheme. The jth refined unramified
cohomology of X with respect to the cohomology theory (3.1) is defined by

H ∗j,nr(X,n) := im(H ∗(Fj+1X,n) −→H ∗(FjX,n)).

Note that H ∗j,nr(X,n) =H
∗(X,n) for j ≥ dimX (because FjX = X in this case); see Lemma 6.11 below for

a more general statement. Moreover, H ∗0,nr(X,n) =H
∗
nr(X,n) agrees with traditional unramified cohomology

(cf. [CTO89, CT95, Sch21]); see [CT95, Theorem 4.1.1(a)] and [Sch23, Lemma 5.8].
For j ′ ≤ j, a class on FjX may be restricted to Fj ′X. This implies in particular that for j ′ ≤ j, there are

canonical restriction maps
H ∗j,nr(X,n) −→H ∗j ′ ,nr(X,n).

The main result of this section is the following application of the moving lemma (Theorem 5.1), which
shows that refined unramified cohomology is a motivic invariant naturally attached to any smooth projective
variety and to any cohomology functor satisfying conditions C1–C4.

Corollary 6.8. Assume that the functor from (3.1) satisfies conditions C1–C4, and let X and Y be smooth projective
equi-dimensional k-schemes. Then for any c, i, j ≥ 0, there is a bi-additive pairing

CHc(X ×Y )×H i
j,nr(X,n) −→H i+2c−2dX

j+c−dX ,nr(Y ,n+ c − dX), ([Γ ], [α]) 7−→ [Γ ]∗[α]

with the following properties:

(1) Let Γ ∈ Zc(X ×Y ) be a representative of [Γ ] ∈ CHc(X ×Y ), and let α ∈H i(U,n) be a representative of
[α] ∈H i

j,nr(X,n) for some open U ⊂ X whose complement R = X \U has codimension at least j +2. Let
W := suppΓ , R′ := q(W ∩ (R×Y )), and U ′ := Y \R′ .
If W ∩ (R×Y ) has codimension at least j + c+2 in X ×Y , then

[Γ ]∗[α] = [Γ (W )∗(α)] ∈H
i+2c−2dX
j+c−dX ,nr(Y ,n+ c − dX)

is represented by Γ (W )∗(α) ∈H i+2c−2dX (U ′ ,n+ c − dX) constructed in Lemma 4.1.
(2) If j ′ ≤ j, then the following diagram commutes:

CHc(X ×Y )×H i
j,nr(X,n)

//

��

H i+2c−2dX
j+c−dX ,nr(Y ,n+ c − dX)

��

CHc(X ×Y )×H i
j ′ ,nr(X,n)

// H i+2c−2dX
j ′+c−dX ,nr(Y ,n+ c − dX),

where the horizontal maps are the given pairings and the vertical maps are induced by the canonical
restriction maps.
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(3) Let Z be a smooth projective equi-dimensional k-scheme, and let [Γ ′] ∈ CHc′ (Y × Z). Then for all
[α] ∈H i

j,nr(X,n),

[Γ ′]∗([Γ ]∗[α]) = ([Γ ′] ◦ [Γ ])∗[α] ∈H
i+2c+2c′−2dX−2dY
j+c+c′−dX−dY ,nr (Z,n+ c+ c′ − dX − dY ),

where [Γ ′] ◦ [Γ ] is the composition of correspondences and dY = dimY .
(4) If Γ ∈ Zc(X×Y ) is such that q(suppΓ ) ⊂ Y has codimension at least j+c−dX +1, where q : X×Y → Y

denotes the second projection, then [Γ ]∗[α] = 0 for all [α] ∈H i
j,nr(X,n).

Proof. We first construct an action as required. For this let [α] ∈ H i
j,nr(X,n), and let Γ ∈ Zc(X × Y ). Let

W ⊂ X ×Y be a closed subset with suppΓ ⊂W , and let S :=W ν be the disjoint union of the irreducible

components of W together with the natural map f : S→ X given by the composition S→W → X ×Y
p
→ X.

Applying Corollary 6.5(2), we find that [α] can be represented by a class α ∈H i(U,n) such that R = X \U
satisfies codimX(R) = j +2 and f −1(R) ⊂ S locally has codimension at least j +2. Since S :=W ν , we have
dim(f −1(R)) = dim(W ∩ (R×Y )). Hence,

dimW −dim(W ∩ (R×Y )) ≥ j +2.

If we set c′ := codimX×Y (W ) = dim(X ×Y )−dimW , then we get

codimX×Y (W ∩ (R×Y )) ≥ j +2+ c′ .

Hence, R′ := q(W ∩ (R×Y )) ⊂ Y satisfies

codimY (R
′) ≥ j + c′ − dX +2.

We get a class
Γ (W )∗(α) ∈H i+2c−2dX (U ′ ,n+ c − dX),

constructed in Lemma 4.1, where U ′ := Y \R′ .
From now on we assume that c′ ∈ {c,c − 1}. Then Fj+c−dXX ⊂U

′ , and we get a class

(6.5) Γ (W )∗(α) ∈H i+2c−2dX (Fj+c−dXX,n+ c − dX).

It follows from the commutativity of the first square in (4.2) in Lemma 4.3 that (6.5) does not depend on
the chosen representative α of [α] ∈ H i

j,nr(X,n); that is, (6.5) does not change if we replace α by another

representative α̃ ∈ H i(Ũ ,n) such that R̃ = X \ R̃ satisfies codimX(R̃) = j + 2 and f −1(R̃) ⊂ S locally has
codimension at least j +2. Using this, we can apply the above construction to the union of two given closed
subsets to deduce from the commutativity of the second square in (4.2) that (6.5) does not depend on the
chosen closed subset W ⊂ X × Y with suppΓ ⊂ W and codimX×X(W ) ∈ {c,c − 1}. Applying this to the
particular case where W = suppΓ has codimension c, we see that the closed subset R′ ⊂ Y has codimension
at least j + c − dX +2 and so we find that (6.5) is unramified:

Γ (W )∗(α) ∈H
i+2c−2dX
j+c−dX ,nr(X,n+ c − dX).

Moreover, the additivity in Lemma 4.1 implies that the above class depends additively on Γ . Finally, if Γ is
rationally equivalent to zero, then by the definition of rational equivalence there is a closed subset W of
codimension c−1 such that Γ is rationally equivalent to zero on W . Applying the above construction to any
such W , Lemma 4.2 implies Γ (W )∗(α) = 0. Since we already know the additivity of the above construction
in Γ , we conclude that (6.5) depends not on Γ but only on the rational equivalence class of Γ . Altogether, we
conclude that

[Γ ]∗[α] := [Γ (W )∗(α)] ∈H
i+2c−2dX
j+c−dX ,nr(Y ,n+ c − dX)

for some W ⊂ X × Y of codimension c or c − 1 and with suppΓ ⊂W yields a well-defined pairing as we
want.

Item (1) in the corollary is now a direct consequence of the construction.
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Item (2) follows from the well-definedness of the construction together with commutativity of the first
square of (4.2).

To prove item (3), let [Γ ′] ∈ CHc′ (Y ×Z). Let further α ∈H i(U,n) be a representative of [α] ∈H i
j,nr(X,n)

for some open subset U ⊂ X with complement R1 ⊂ X of codimension at least j + 2. By the moving
lemma for algebraic cycles (see Theorem 2.1), we may choose a representative Γ of [Γ ] ∈ CHc(X ×Y ) such
that W1 = suppΓ meets R1 ×Y dimensionally transversely. Hence, U2 := Y \ p122 (W1 ∩ (R1 ×Y )) contains
Fc−dX+j+1Y . Applying Theorem 2.1 once again, we may choose a representative Γ ′ of [Γ ′] with support
W2 = suppΓ ′ such that

R3 = p3((W1 ×Z)∩ (X ×W2)∩ (R1 ×Y ×Z)) ⊂ Z
has codimension at least c+c′−dX−dY +j+2. Hence, the open subset U3 := Z\R3 contains Fj+c+c′−dX−dY+1Z ,
and by Proposition 4.7, we have

(Γ ◦ Γ ′)(W12)(α) = Γ ′(W2)∗(Γ (W1)∗(α))

The compatibility stated in item (3) therefore follows from the construction (cf. item (1) proven above),
together with Proposition 4.7.

Finally, item (4) follows from item (1) and Lemmas 4.3 and 4.6.
This concludes the proof of the corollary. □

Corollary 6.8 implies the existence of pullback maps along morphisms between smooth projective
equi-dimensional k-schemes. This can be generalized to open varieties as follows.

Corollary 6.9. Let f → X → Y be a morphism between smooth quasi-projective equi-dimensional k-schemes
that admit a smooth projective compactification. Then there are functorial pullback maps f ∗→ H i

j,nr(Y ,n)→
H i
j,nr(X,n) with the following property: if [α] ∈ H

i
j,nr(Y ,n) is represented by a class α ∈ H

i(U,n) with

Fj+1Y ⊂U such that Fj+1X ⊂ f −1(U ), then f ∗[α] is represented by f ∗(α) ∈H i(f −1(U ),n).

Proof. By Corollary 6.5(2) applied to the morphism f : X → Y , we find that any class [α] ∈ H i
j,nr(Y ,n)

is represented by a class α ∈ H i(U,n) with Fj+1Y ⊂ U such that Fj+1X ⊂ f −1(U ). We may use such a
representative to define f ∗[α] := [f ∗(α)], where f ∗(α) ∈H i(f −1(U ),n). We claim that this construction is
well defined; i.e. it does not depend on the choice of U or on the choice of the representative α of [α].
Independence of the choice of U : If V ⊂ Y is another open subsets with Fj+1Y ⊂ V and Fj+1X ⊂ f −1(V ),

then the resulting pullbacks coincide on f −1(U ∩ V ) by functoriality, and hence the respective class in
H i(FjY ,n) is well defined.
Independence of the choice of α: Let [α] = [β]. By the independence of U , proven above, we can assume

that α,β ∈H i(U,n) for some open subset U ⊂ Y with Fj+1Y ⊂U and Fj+1X ⊂ f −1(U ). We replace α by
α − β and are reduced to showing the following: assume that α ∈H i(U,n) vanishes when restricted to FjY ;
then f ∗α vanishes when restricted to FjX. By Corollary 6.5(1), there is an open subset V ⊂U with FjY ⊂ V
and FjX ⊂ f −1(V ) such that α|V = 0. The functoriality of pullbacks thus shows that

f ∗α = 0 ∈H i(FjX,n),

as we want. This concludes the proof of the well-definedness of the above pullback map.
The functoriality of the pullback on refined unramified cohomology follows from well-definedness together

with the functoriality of pullbacks for the functor in Section 3. This concludes the proof. □

Remark 6.10. If f : X→ Y is any morphism between smooth equi-dimensional algebraic k-schemes with
c = dimY −dimX, then the image f (x) of a codimension j point x ∈ X(j) has codimension at least j + c,
and so the pushforward maps from condition C2 induce pushforward maps

f∗ : H
i(FjX,n) −→H i+2c(Fj+cX,n+ c) and f∗ : H

i
j,nr(X,n) −→H i+2c

j+c,nr(X,n+ c)
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that are compatible with the pullbacks from Corollary 6.9. We note that the existence of pushforwards does
not rely on the moving lemma; see also [Sch24, Lemma 2.5].

6.6. Behaviour under products with projective space and birational properties of refined
unramified cohomology

The following lemma is an analogue of [Sch23, Corollary 5.10].

Lemma 6.11. Assume that the functor from (3.1) satisfies conditions C3 and C5. Then for any smooth equi-
dimensional quasi-projective k-scheme, the natural map H i(X,m) ≃→H i

j,nr(X,m) is an isomorphism for j ≥ ⌈i/2⌉.

Proof. It suffices to prove that the natural map H i(X,m)→H i(FjX,m) is an isomorphism for j ≥ ⌈i/2⌉. To
this end, let U ⊂ X be open with complement Z = X \U of codimension at least j +1. Then condition C3
yields a long exact sequence

· · · −→H i
Z(X,m) −→H i(X,m) −→H i(U,m) −→H i+1

Z (X,m) −→ ·· · .

By condition C5, we have H i+1
Z (X,m) = 0 for i + 1 < 2codimX(Z). Since codimX(Z) ≥ j + 1, we get

H i+1
Z (X,m) = 0 for j +1 > (i +1)/2. The latter condition is equivalent to any of the following conditions:

j > (i −1)/2, j ≥ i/2, or j ≥ ⌈i/2⌉. The same argument shows that H i
Z(X,m) = 0 for j +1 > i/2, which holds

if j ≥ ⌈i/2⌉. The above sequence thus proves the lemma. □

Corollary 6.12 (Projective bundle formula). For any twisted cohomology theory as in Section 3 which satisfies
conditions C1–C5 and any smooth projective equi-dimensional k-scheme Y , there is a canonical isomorphism∑

fl :
min(j,n)⊕
l=0

H i−2l
j−l,nr(Y ,m− l)

≃−→H i
j,nr(Y ×P

n
k ,m),

where fl : H
i−2l
j−l,nr(Y ,m − l) → H i

j,nr(Y × P
n
k ,m) is given by the natural pullback map along the projection

Y ×Pn−lk → Y followed by the pushforward along the inclusion Y ×Pn−lk → Y ×Pnk induced by some linear
embedding Pn−lk ⊂ P

n
k .

Proof. We first note that
min(j,n)⊕
l=0

H i−2l
j−l,nr(Y ,m− l) =

n⊕
l=0

H i−2l
j−l,nr(Y ,m− l)

because H i−2l
j−l,nr(Y ,m− l) vanishes for l > j by Remark 4.5 since FjX = ∅ for j < 0.

We have the map
fl :H

i−2l
j−l,nr(Y ,m− l) −→H i

j,nr(Y ×P
n
k ,m)

from the statement of the corollary, which is given by the pullback along the projection Y ×Pn−lk → Y

followed by the pushforward along the inclusion Y ×Pn−lk → Y ×Pnk . In addition, we consider the map

gl :H
i
j,nr(Y ×P

n
k ,m) −→H i−2l

j−l,nr(Y ,m− l)

given by the pullback along a linear embedding Y ×Plk→ Y ×Pnk followed by the pushforward along the
projection Y ×Plk→ Y .

Taking sums, we get maps∑
l

fl :
⊕
l

H i−2l
j−l,nr(Y ,m− l) −→H i

j,nr(Y ×P
n
k ,m)

and ∑
l

gl :H
i
j,nr(Y ×P

n
k ,m) −→

⊕
l

H i−2l
j−l,nr(Y ,m− l);
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here and in what follows, the indices will always run from 0 to n if not mentioned otherwise. We claim that
these maps are inverses to each other. To see this, it suffices to show that the compositions∑

l′

gl′ ◦
∑
l

fl =
∑
l,l′

gl′ ◦ fl :
⊕
l

H i−2l
j−l,nr(Y ,m− l) −→H i

j,nr(Y ×P
n
k ,m) −→

⊕
l

H i−2l
j−l,nr(Y ,m− l)(6.6)

and ∑
l

fl ◦
∑
l′

gl′ =
∑
l

fl ◦ gl :H i
j,nr(Y ×P

n
k ,m) −→

⊕
l

H i−2l
j−l,nr(Y ,m− l) −→H i

j,nr(Y ×P
n
k ,m)(6.7)

both agree with the respective identities. (Note that there is a certain asymmetry in the computation of the
two compositions above, due to the fact that

∑
fl maps from a direct sum while

∑
gl maps to a direct sum.)

To show this, note that fl agrees with the action [Γl]∗ of the correspondence

Γl := ∆Y ×Pn−l ∈ ZdY+l(Y ×Y ×Pn),

while gl agrees with the action [Ωl]∗ of the correspondence

Ωl := ∆Y ×Pl ∈ ZdY+n−l(Y ×Pn ×Y ),

where dY := dimY .
A simple computation shows that

[Ωl′ ] ◦ [Γl] = δl,l′ [∆Y ] ∈ CHdY (Y ×Y ),

where δl,l′ denotes the Kronecker delta, which is 1 for l = l′ and zero otherwise. It thus follows from the
additivity and functoriality of the action of correspondences in Corollary 6.8 that (6.6) agrees with the
identity map, as we want.

To prove the same for the other composition, we will use that

∆
P
n =

n∑
i=0

hi × hn−i ∈ CHn(Pn ×Pn),

where h ∈ CH1(Pn) denotes the class of a linear section. With this at hand, one easily gets

n∑
l=0

[Γl] ◦ [Ωl] = [∆Y×Pn] ∈ CHdY+n(Y ×Pn ×Y ×Pn).

Hence, (6.7) agrees with the respective identity map, as we want. This concludes the proof. □

Remark 6.13. Kok and Zhou give an alternative proof of a version of Corollary 6.12 in [KZ23].

The groups H i
j,nr(X,n) carry a natural descending filtration F∗ with Fj+1H i

j,nr(X,n) =H
i
j,nr(X,n), which

for m ≥ j +1 is given by (see [Sch23, Definition 5.3])

FmH i
j,nr(X,n) := im(H i(FmX,n) −→H i(FjX,n)).

Corollary 6.14. Let X and Y be smooth projective equi-dimensional k-schemes, and let f : Xd Y be a birational
map which is an isomorphism in codimension c; i.e. there are closed subsets ZX ⊂ X and ZY ⊂ Y of codimensions
greater than c such that f : X \ZX → Y \ZY is an isomorphism. Then for all j ≤ c, there is a natural isomorphism

f ∗ : H i
j,nr(Y ,n)

∼−→H i
j,nr(X,n),

given by the action [Γf −1]∗ of the closure of the graph of f −1. Moreover, f ∗ respects the filtration F∗.
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Proof. Since f is birational, d := dimX = dimY . Let Γ := Γf ∈ Zd(X ×Y ) and Γ ′ := Γf −1 ∈ Zd(Y ×X) be the
closures of the graphs of f and f −1, respectively. Since f is an isomorphism in codimension c, we get

[Γ ] ◦ [Γ ′] = [∆Y ] + [ΩY ] ∈ CHd(Y ×Y ) and [Γ ′] ◦ [Γ ] = [∆X] + [ΩX] ∈ CHd(X ×X)

for some cycles ΩY ,ΩX with the property that the respective images via the second projection
pr2(supp(ΩY )) ⊂ Y and pr2(supp(ΩX)) ⊂ X have codimension at least c + 1. Hence, Corollary 6.8(4)
implies that

[ΩX]∗ : H
i
j,nr(X,n) −→H i

j,nr(X,n) and [ΩY ]∗ : H
i
j,nr(Y ,n) −→H i

j,nr(Y ,n)

are zero for j ≤ c. The above decompositions together with Corollary 6.8(3) thus implies that

[Γ ]∗ : H
i
j,nr(X,n) −→H i

j,nr(Y ,n) and [Γ ′]∗ : H
i
j,nr(Y ,n) −→H i

j,nr(X,n)

are inverse to each other for j ≤ c. Moreover, Corollary 6.8(2) implies that the above isomorphisms respect
the filtrations F∗ on both sides. This concludes the proof of the corollary. □

Proof of Corollary 1.8. Corollary 1.8 follows from Corollaries 6.12 and 6.14. □

A. Twisted pro-étale cohomology satisfies the properties from Section 3

The purpose of this appendix is to prove Proposition 3.2 from Section 3.1. We will see that item (3) of
Proposition 3.2 implies items (1) and (2), and so it suffices to treat pro-étale cohomology. Most results and
arguments are certainly well known to experts; we include them here for the reader’s convenience.

A.1. Pro-étale and continuous étale cohomology

The pro-étale site Xproét of a scheme X is formed by weakly étale maps of schemes U → X; see [BS15,
Definition 4.1.1 and Remark 4.1.2]. Since any étale map is also weakly étale, there is a natural map of topoi
ν : Shv(Xproét)→ Shv(Xét); see [BS15, Section 5]. In particular, we get functors ν∗ : Ab(Xét)→ Ab(Xproét)
and ν∗ : Ab(Xproét)→ Ab(Xét) on the corresponding categories of sheaves of abelian groups. Here, ν∗ is
exact and right adjoint to the left exact functor ν∗; see [Sta24, Tag 00X9]. Since ν∗ is (left) exact, ν∗ maps
injective objects to injective objects.

For a closed subset Z ⊂ X, we have the functor ΓZ : Ab(Xproét)→ Ab, given by taking global sections
with support on Z . For a bounded complex K of sheaves of abelian groups on Xproét, we let

H i
Z(Xproét,K) := Ri ΓZ(Xproét,K).(A.1)

In the special case where K is a sheaf F concentrated in degree zero, we also write H i
Z(Xproét,F) :=

Ri ΓZ(Xproét,F). (Note that by slight abuse of notation, we do not distinguish between the hypercohomology
of a complex as in (A.1) and the cohomology of a sheaf.)

Lemma A.1 (cf. [BS15]). Let X be a scheme, and let (Fr ) be an inductive system of sheaves on the small étale site
Xét and with surjective transition maps. Let Z ⊂ X be a closed subset. Then there is a canonical identification

H i
Z,cont(Xét, (Fr )) ≃H i

Z(Xproét, lim←−
r

ν∗Fr ),

where the left-hand side denotes Jannsen’s continuous étale cohomology groups with support; see [Jan88].

Proof. This follows by the same argument as in [BS15, Proposition 5.6.2]; we give the details for the reader’s
convenience. By definition, H i

Z,cont(Xét, (Fr )), resp. H
i
Z(Xproét, limν∗Fr ), is the ith cohomology of the

complex

RΓZ(Xét,Rlim(Fr )) ∈D(Ab), resp. RΓZ(Xproét, limν∗Fr ) ∈D(Ab).

https://stacks.math.columbia.edu/tag/00X9
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We claim that ΓZ(Xproét,−) : Ab(Xproét)→ Ab takes injectives to injectives. To prove this, note that
ΓZ(Xproét,−) is right adjoint to the exact functor A 7→ ι∗AZ , where ι : Z ↪→ X denotes the inclusion and
AZ denotes the locally constant sheaf with values A on Z . The adjointness property thus implies that
for any injective sheaf I ∈ Ab(Xproét), the functor Hom(−,ΓZ(Xproét,I )) : Ab → Ab is exact. Hence,
ΓZ(Xproét,I ) ∈ Ab is an injective object, as we want.

Similarly, for any abelian category B, the functor lim: BN→B maps injectives to injectives, see [Jan88,
Remark 1.17(a)], where BN denotes the category of inverse systems of objects in B.

Since lim and ΓZ commute, we conclude from Grothendieck’s theorem on composed functors that

Rlim◦RΓZ = R(lim◦ΓZ ) = RΓZ ◦Rlim

as functors Ab(Xproét)N→ Ab. The same argument shows that the above identity holds when the objects
are viewed as functors Ab(Xét)N→ Ab. Hence,

RΓZ(Xét,Rlim(Fr )) ≃ Rlim◦RΓZ(Xét,Fr ) ≃ Rlim◦RΓZ(Xproét,ν
∗Fr )(A.2)

≃ RΓZ(Xproét,Rlim(ν∗Fr )),

where the second isomorphism uses the fact that ν∗ : Ab(Xproét)→ Ab(Xét) maps injectives to injectives
and id→ Rν∗ν∗ is an equivalence on bounded below complexes (see [BS15, Proposition 5.2.6(2)]), while the
last equality uses RΓZ ◦Rlim ≃ Rlim◦RΓZ . By [BS15, Propositions 3.2.3 and 4.2.8], the topos Shv(Xproét)
is replete, and so [BS15, Proposition 3.1.10] implies

Rlim(ν∗Fr ) ≃ lim(ν∗Fr ),(A.3)

where we use that the transition maps in (Fr ) are surjective. Hence, the above isomorphism simplifies to
RΓZ(Xét,Rlim(Fr )) ≃ RΓZ(Xproét, lim(ν∗Fr )), which proves the proposition. □

A.2. Constructible complexes and six-functor formalism

For simplicity, we recall the six-functor formalism in the pro-étale topology that we need from [BS15] only
in the special case of algebraic schemes, which suffices for the purpose of this paper.

Let k be a field, and let ℓ be a prime that is invertible in k. Let X be an algebraic scheme over k (i.e. a
separated scheme of finite type over k). For any integer n, we consider the sheaf

Ẑℓ(n) := lim
←−
r

µ⊗nℓr ∈ Ab(Xproét)

and write Ẑℓ := Ẑℓ(0), which is a sheaf of rings. Let D(Xproét,Ẑℓ) denote the derived category of the

abelian category of Ẑℓ-modules on Xproét.

A complex K ∈D(Xproét,Ẑℓ) is constructible if it is ℓ-adically complete, i.e. the canonical map

K −→ Rlim(K ⊗L
Ẑℓ

Z/ℓr )

is a quasi-isomorphism (see [BS15, Definition 3.5.2]) and if for each r, we have K ⊗L
Ẑℓ

Z/ℓr ≃ ν∗Kr for some

constructible complex Kr ∈D(Xét,Z/ℓ
r ) of sheaves of Z/ℓr-modules on Xét; see [BS15, Definition 6.5.1]. The

full triangulated subcategory spanned by constructible complexes is denoted by

Dcons(Xproét,Ẑℓ) ⊂D(Xproét,Ẑℓ).

By [BS15, Lemma 6.5.3], each K ∈ Dcons(Xproét,Ẑℓ) is bounded. Since µ⊗nℓr+1 → µ⊗nℓr is surjective in the

étale topology, (A.3) implies that Ẑℓ(n) is ℓ-adically complete, and so for any integer m, the complex
Ẑℓ(n)[m] ∈D(Xproét,Ẑℓ) is constructible.

For a morphism f : X→ Y between algebraic schemes over k, there are functors

Rf∗,Rf! : Dcons(Xproét,Ẑℓ) −→Dcons(Yproét,Ẑℓ), f ∗comp, f
! : Dcons(Yproét,Ẑℓ) −→Dcons(Xproét,Ẑℓ),
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where f ∗comp is defined as the usual pullback followed by derived completion; see [BS15, Section 6.7].
We aim to recall the construction of f !. To this end, first note that

ν∗ : Dcons(Xét,Z/ℓ
r ) ≃−→Dcons(Xproét,Z/ℓ

r )(A.4)

is an equivalence for all r ≥ 1, see [BS15, paragraph after Definition 6.5.1]; we will freely use this in the
following to identify complexes in the two categories with each other. For K ∈ Dcons(Yproét,Ẑℓ), we set
Kr := K ⊗L

Ẑℓ
Z/ℓr . Note that any constructible complex of sheaves of Z/ℓr-modules on Xproét is also

constructible when viewed as a complex of Ẑℓ-modules. Using the equivalence in (A.4), we may therefore
view f !r Kr as an object in Dcons(Xproét,Ẑℓ), where f !r : Dcons(Yét,Z/ℓr ) → Dcons(Xét,Z/ℓ

r ) denotes the
exceptional pullback along f in the étale site; cf. [SGA4.3, Exposé XVIII]. By [BS15, Lemma 6.7.18], the
f !r Kr ∈Dcons(Xproét,Ẑℓ) form a projective system. Bhatt–Scholze then define

f !K := Rlimf !r Kr ∈Dcons(Xproét,Ẑℓ);(A.5)

see [BS15, Lemma 6.7.19].
Using the above construction of f !, it follows from [SGA4.3, Proposition XVIII.3.1.8] that for any closed

immersion i : Z→ X,

RΓZ(Xproét,−) ≃ RΓ (Zproét, i
!(−)).(A.6)

By adjunction (see [BS15, Lemmas 6.7.2 and 6.7.19]), there are morphisms of functors Trf : Rf!f !→ id and

θf : id→ Rf∗f ∗comp. In particular, for any K ∈ D(Yproét,Ẑℓ), the morphism θf yields functorial pullback
maps

f ∗ : RΓ i(Yproét,K) −→ RΓ i(Xproét, f
∗
compK).(A.7)

If f is proper, then Rf∗ = Rf! (see [BS15, Definition 6.7.6]), and so Trf yields a functorial pushforward map

f∗ : RΓ i(Xproét, f
!K) −→ RΓ i(Yproét,K).(A.8)

A.3. Notation

We aim to prove Proposition 3.2. To this end, we fix a constructible complex

K ∈Dcons((Spec(k))proét,Ẑℓ)

of Ẑℓ-modules on (Spec(k))proét. We then use the following notation:

H ∗Z(X,n) :=H
∗
Z(Xproét,π

∗
compK ⊗Ẑℓ

Ẑℓ(n)).

We emphasize that the above group of course depends on the complex K , even though we decided to drop it
from the notation in what follows. The existence of functorial pullback maps follows from (A.7) together with
the fact that the tensor product of two constructible complexes is constructible; see [BS15, Lemma 6.5.5].

A.4. Poincaré duality

Lemma A.2. Let f : X → Y and g : Y → Z be morphisms of algebraic schemes. Then there is a canonical
isomorphism of functors f !g ! ≃→ (g ◦ f )! on Dcons(Zproét,Ẑℓ).

Proof. This follows from (A.5) together with the analogous result on the étale site; see e.g. [Sch23, Lemma
6.1(3)] for more details. □

Lemma A.3 (Poincaré duality). Let f : X→ Y be a smooth morphism of algebraic k-schemes of pure dimension d.
Then there is a canonical isomorphism f ∗comp(d)[2d]

≃→ f ! of functors on Dcons(Yproét,Ẑℓ), where f ∗comp(d) :=

f ∗comp(−⊗Ẑℓ
Ẑℓ(d)).
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Proof. This follows from Poincaré duality on the étale site; see [SGA4.3, Théorème XVIII.3.2.5], by applying
Rlim; the details are given in [Sch23, Lemma 6.1(4)]. □

For open immersions j : U → X we have a canonical isomorphism j∗comp ≃ j !; see e.g. [Sch23, Lemma
6.1(2)].

Lemma A.4. In the notation of Lemma A.3, the following holds. For any open immersion j : U ↪→ X and
f |U := f ◦ j, the diagram

(f |U )∗comp(d)[2d]
≃

// f |!U

j∗compf
∗
comp(d)[2d]

≃
//

OO

j∗compf
! ≃ j !f !

OO

commutes, where the horizontal isomorphisms are given by Lemma A.3 and the vertical maps are the canonical
maps, given by the functoriality of f ∗comp and f

!, respectively.

Proof. This is [Sch23, Lemma 6.1(5)]. □

Lemma A.5 (Purity). Let i : Z ↪→ X be a closed immersion between smooth equi-dimensional algebraic schemes
over k. Assume that Z has codimension c in X. Then there is a canonical isomorphism of functors

i∗comp(−c)[−2c]
≃−→ i!.

Proof. Let πX and πZ denote the structure morphisms of X and Z, respectively. There is a canonical
isomorphism π!

X i
! ≃→ π!

Z (see Lemma A.2). Since X and Z are smooth and equi-dimensional, π!
X and π!

Z
are expressed by Lemma A.3, and we get a canonical isomorphism i∗comp(−c)[−2c]

≃→ i!. This proves the
lemma. □

A.5. Pullbacks and proper pushforwards

Lemma A.6. Let f : X→ Y be a morphism between algebraic schemes, and let ZY ⊂ Y and ZX ⊂ X be closed
subsets.

(1) If f −1(ZY ) ⊂ ZX , then there are functorial pullback maps

f ∗ : H i
ZY
(Y ,n) −→H i

ZX
(X,n).(A.9)

(2) Assume that X and Y are smooth and equi-dimensional. If f is proper of relative codimension c and
f (ZX) ⊂ ZY , then there are functorial pushforward maps

f∗ : H
i−2c
ZX

(X,n− c) −→H i
ZY
(Y ,n).(A.10)

Proof. The pullback maps are induced by the natural map of functors ΓZY (Yproét,−)→ ΓZX (Xproét, f
∗
comp(−))

on Mod(Yproét,Ẑℓ). The functoriality is clear from this description. This proves item (1).
Let πX : X→ Spec(k) and πY : Y → Spec(k) denote the structure morphisms, and let i : ZY → Y and

i′ : ZX → X denote the respective closed immersions. Let further dX := dimX and dY := dimY , so that
c = dY − dX . Applying Lemmas A.2 and A.3, we get canonical isomorphisms of functors

(i′)!(πX)
∗
comp(n) ≃ (i′)!π!

X(n− dX)[−2dX] ≃ (f |ZX )
!i!π!

Y (n− dX)[−2dX] ≃ (f |ZX )
!i!(πY )

∗
comp(n+ c)[2c],

(A.11)

where f |ZX : ZX → ZY is the restriction of f . The trace map in (A.8) thus induces by (A.6) pushforward
maps as claimed in item (2). The functoriality in f follows from the functoriality of the trace map. This
concludes the proof of the lemma. □
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Remark A.7. Let X be a smooth equi-dimensional algebraic scheme, and let ιZ ′ : Z ′ ↪→ X and ιZ : Z→ Z ′

be closed subschemes. By (A.6), we have H i
Z ′ (Xproét,−) =H i(Z ′proét, ι

!
Z ′−) and

H i
Z(Xproét,−) =H i(Zproét, ι

!
Z ι

!
Z ′−) =H

i(Z ′proét,R ιZ ∗ι
!
Z ι

!
Z ′−).

Hence, TrιZ induces a pushforward map

(ιZ )∗ : H
i
Z(X,n) −→H i

Z ′ (X,n),

which agrees with the respective pushforward map along the identity in (A.10). By the construction of the
adjunction map TrιZ : R ιZ ∗ιZ

!→ id, we find that (ιZ )∗ agrees with the map induced by the natural map
RΓZ(Xproét,−)→ RΓZ ′ (Xproét,−) of functors, induced by the inclusion ΓZ(Xproét,−) ↪→ ΓZ ′ (Xproét,−).

Lemma A.8 (Topological invariance). Let f : X ′→ X be a morphism of algebraic k-schemes that is a universal
homeomorphism (e.g. X ′ = Xred or X ′ = X ×k k′ for a purely inseparable base extension k′/k). Let Z ↪→ X be a
closed immersion with base change Z ′ ↪→ X ′ . Then f ∗ : H i

Z(X,n)→H i
Z ′ (X

′ ,n) is an isomorphism.

Proof. The claim follows from [BS15, Lemma 5.4.2]. □

A.6. Comparison to étale cohomology and excision

Since K ∈ Dcons((Spec(k))proét,Ẑℓ) is constructible, K ⊗
Ẑℓ

Z/ℓr = ν∗Kr for a constructible complex
Kr ∈ Dcons((Spec(k))ét,Z/ℓr ); see [BS15, Definition 6.5.1]. Moreover, K ≃ Rlimν∗Kr by completeness. We
then have the following; cf. [Jan88, Proposition 1.6].

Lemma A.9. Let πX : X → Spec(k) be an algebraic k-scheme with a closed subset Z ⊂ X. Then there is a
canonical short exact sequence

0 −→ R1 limH i−1
Z

(
Xét,π

∗
XKr ⊗Z/ℓr µ

⊗n
ℓr

)
−→H i

Z(X,n) −→ limH i
Z

(
Xét,π

∗
XKr ⊗Z/ℓr µ

⊗n
ℓr

)
−→ 0,(A.12)

where lim denotes the inverse limit functor along r . Moreover, this sequence is compatible with respect to pullbacks
(A.9) and pushforwards (A.10) on the individual pieces.

Proof. Recall that Rlim and RΓZ commute with each other; see the proof of Lemma A.1. Since K ≃
Rlimν∗Kr , H

i
Z(X,n) is the i

th cohomology of the complex

RlimRΓZ

(
Xproét,π

∗
Xν
∗Kr ⊗µ⊗nℓr

)
≃ RlimRΓZ

(
Xproét,ν

∗π∗XKr ⊗µ
⊗n
ℓr

)
,

where we use that ν∗ and π∗X commute. Since ν∗ : Ab(Xproét)→ Ab(Xét) maps injectives to injectives and
id→ Rν∗ν∗ is an equivalence on bounded below complexes (see [BS15, Proposition 5.2.6(2)]), the above
complex identifies with

RlimRΓZ

(
Xét,π

∗
XKr ⊗µ

⊗n
ℓr

)
.

The lemma then follows from the composed functor spectral sequence, where we note that Rlim has
cohomological dimension at most 1 on Ab. The compatibility with respect to pullbacks is obvious; the
compatibility with respect to pushforwards follows from [Sch23, Lemma 6.2]. □

Lemma A.10 (Excision). Let f : X ′ → X be an étale morphism between algebraic schemes. Let Z ⊂ X and
Z ′ ⊂ X ′ be closed subschemes with f (Z ′) = Z such that f |Z ′ : Z ′→ Z is an isomorphism and f (X ′ \Z ′) ⊂ X \Z .
Then

f ∗ : H i
Z(X,n)

≃−→H i
Z ′ (X

′ ,n).

Proof. Since K is bounded (see [BS15, Lemma 6.5.3]), induction on its length together with the local-to-global
spectral sequence reduces us to the case where K is a single sheaf. In this case, the statement is proven
for étale cohomology in [Mil80, Proposition III.1.27]; the case of pro-étale cohomology follows from this by
Lemma A.9. □
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Lemma A.11. Let X and Y be smooth algebraic k-schemes. Let f : X→ Y be a finite étale morphism of constant
degree d. Then the composition

H i(Y ,n)
f ∗

−−→H i(X,n)
f∗−−→H i(Y ,n)

is given by multiplication with d.

Proof. By Lemma A.9, it suffices to prove the statement for étale cohomology with coefficients in constructible
complexes ofZ/ℓr-modules. By the canonical truncation functor and the exact triangle τ≤jK → K → τ≥j+1K ,
induction on the length of the complex K reduces us to the case where K is a sheaf concentrated in a single
degree. (Here we may lose the condition that K is constructible; the statement still makes sense because
on the étale site f ! and hence Trf exist on the derived category of bounded Z/ℓr-modules; see [SGA4.3,
Théorème XVIII.3.1.4].) In this case, the result follows from [SGA4.3, Théorème XVIII.2.9, (Var 4)]. □

A.7. Compatibility of pushforwards and pullbacks

Lemma A.12. Consider the diagrams

X ′
g ′
//

f ′

��

X

f
��

Y ′
g
// Y ,

H i−2c
ZX′

(X ′ ,n− c)

f ′∗
��

H i−2c
ZX

(X,n− c)

f∗
��

(g ′)∗
oo

H i
ZY ′

(Y ′ ,n) H i
ZY
(Y ,n),

g∗
oo

where the diagram on the left is a Cartesian diagram of smooth equi-dimensional algebraic k-schemes, f is proper of
pure relative codimension c = dimY −dimX, ZX ⊂ X and ZY ⊂ Y are closed with f (ZX) ⊂ ZY , ZY ′ = g−1(ZY ),
and ZX ′ = ZY ′ ×Y ZX ⊂ X ′ .

(1) If g is an open immersion, then the diagram on the right commutes.
(2) If f is smooth of pure relative dimension and if ZX = X and ZY = Y , then the diagram on the right

commutes.

Proof. By Lemma A.9, it suffices to prove the compatibilities in question for étale cohomology with values in
constructible complexes of Z/ℓr-modules.

The case where g is an open immersion holds because the isomorphism in (A.11) which is used to define the
pushforward map is compatible with open immersions (cf. Lemma A.4) and the trace map is compatible with
base change (see [SGA4.3, Théorème XVIII.2.9, (Var 2)] and [BS15, Lemma 6.7.19]) and hence in particular
with respect to Zariski localization. This proves item (1). (In fact, by the arguments in [BO74, Axiom (1.2.2),
Property (1.3.5), and Section 1, p. 186], the result holds true more generally in the case where g is étale, but
we will not need this.)

Next we deal with item (2), so that f is smooth of pure relative dimension d = dimX −dimY . By Lemma
A.3, there are natural isomorphisms of functors

f ! ≃ f ∗(d)[2d], (f ′)! ≃ (f ′)∗(d)[2d].(A.13)

By [Ver67, Proposition 4.5(2)], the natural map of functors (g ′)∗f ! ≃→ (f ′)!g∗ is an isomorphism. Combining
this with Rf∗Rg ′∗ = Rg∗Rf ′∗ , we get an isomorphism α : Rf∗Rg ′∗(g

′)∗f ! ≃→ Rg∗Rf ′∗ (f
′)!g∗ which fits into a

diagram

Rf∗f !
θg′
//

Trf
��

Rf∗Rg ′∗(g
′)∗f ! ≃

α
// Rg∗Rf ′∗ (f

′)!g∗

Trf ′
��

id
θg

// Rg∗g∗

(A.14)
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of functors on Dcons(Yét,Z/ℓr ). We claim that (A.14) is commutative. Recall that any complex K ∈
Dcons(Yét,Z/ℓr ) is bounded. If K has length n > 1, then the canonical truncation functors yield an exact
triangle τ≤jK → K → τ≥j+1K such that for suitable j, τ≤jK and τ≥j+1K have length less than n. As in the
proof of Lemma A.11, by induction on the length, it thus suffices to prove that (A.14) is commutative when
applied to sheaves concentrated in degree zero: K = F[0] for some F ∈Mod(Yét,Z/ℓr ). To simplify notation,
we will identify K = F[0] with F. We further use the identifications in (A.13). It follows that Rf∗f ∗F(d)[2d]
is a complex concentrated in non-positive degrees, while Rg∗g∗F is concentrated in non-negative degrees.
This implies that any map Rf∗f ∗F(d)[2d]→ Rg∗g∗F in the derived category is uniquely determined by the
induced map

R2d f∗f
∗F(d) −→ g∗g

∗F

on the 0th cohomology sheaf, where d = dimX − dimY = −c. (To see this, use the canonical truncation
triangle τ≤j → id→ τ≥j+1 for j = 0 and for j = −1.) Hence, in order to check that the diagram in question

is commutative, it suffices to note that the trace map Trf : R
2d f∗f

∗F(d)→ F is compatible with base change;
see [SGA4.3, Théorème XVIII.2.9, (Var 2)]. This concludes the proof of the claim that (A.14) is commutative.

The commutative diagram of cohomology groups claimed in the lemma now follows by precomposing
the functors in (A.14) with RΓ (Yét,−), using (A.13), and applying this to the complex π!

YKr ⊗Z/ℓr µ
⊗n
ℓr . This

concludes the proof of the lemma. □

A.8. Long exact sequence of triples and semi-purity

Lemma A.13 (Long exact sequence of triples). Let X be an algebraic scheme, and let Z ⊂W ⊂ X be closed
subsets. Then there is a canonical long exact sequence

· · · −→H i
Z(X,n)

ι∗−→H i
W (X,n)

restr−−−−→H i
W \Z(X \Z,n)

∂−→H i+1
Z (X,n) −→ ·· ·

such that for any morphism f : X ′ → X of algebraic schemes, with closed subsets Z ′ ⊂W ′ ⊂ X ′ , the following
hold:

(1) If f −1(Z) ⊂ Z ′ and f −1(W ) ⊂W ′ , then pullback along f (as in (A.9)) induces a commutative ladder
between the long exact sequence of the triple (X ′ ,W ′ ,Z ′) and that of (X,W ,Z).

(2) If X ′ and X are smooth, f is proper of pure relative codimension c, and f (Z ′) = Z and f (W ′) =W , then
pushforward along f (as in (A.10)) induces a commutative ladder between the long exact sequence of the
triple (X ′ ,W ′ ,Z ′) and that of (X,W ,Z), suitably shifted.

Proof. If j is an open immersion, then j∗comp = j∗ (see [BS15, Remark 6.5.10]), and so we will suppress the
subscript “comp” for pullbacks along open immersions in what follows.

Let iWZ : Z→W , iW : W → X, jW \Z : W \Z→W , and jX\Z : X \Z→ X denote the natural inclusions.
By [BS15, Lemma 6.1.16], there is an exact triangle

R(iWZ )∗(i
W
Z )! −→ id −→ R(jW \Z )∗(jW \Z )

∗.

Precomposing with R(iW )∗ and postcomposing with (iW )!, we get the exact triangle

R(iW )∗R(i
W
Z )∗(i

W
Z )!(iW )! −→ R(iW )∗(iW )! −→ R(iW )∗R(jW \Z )∗(jW \Z )

∗(iW )!.

We apply RΓ (Xproét,−) and use (iWZ )!(iW )! ≃ i!Z and (A.6) to arrive at the triangle

RΓZ(Xproét,−) −→ RΓW (Xproét,−) −→ RΓ ((W \Z)proét, (jW \Z )∗(iW )!(−)).

If j is an open immersion, then j∗ = j ! (see e.g. [Sch23, Lemma 6.1(2)]), and so

(jW \Z )
∗(iW )! ≃ (jW \Z )

!(iW )! ≃ (jX\Z ◦ iW \Z )! ≃ (iW \Z )
!(jX\Z )

! ≃ (iW \Z )
!(jX\Z )

∗,

where iW \Z : W \Z → X \Z denotes the restriction of iW . This implies that the last term in the above
triangle identifies with RΓW \Z((X \ Z)proét, j∗X\Z(−)). The long exact sequence for the triple (X,W ,Z)
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follows immediately from this. By Lemma A.9, the compatibility properties with respect to pullbacks and
pushforwards reduce to the analogous results for étale cohomology, which are well known; see e.g. [CTHK97,
Definition 5.1.1 and Section 7.3(1)]. □

Lemma A.14 (Semi-purity). Let X be a smooth equi-dimensional algebraic k-scheme, and let i : Z ↪→ X be a
closed subset. Assume that the complex K ∈ Dcons((Spec(k))proét,Ẑℓ) is concentrated in non-negative degrees.
Then

H i
Z(X,n) = 0 for all i < 2codimX Z .

Proof. By (A.6), we have
H i
Z(X,n) ≃H

i(Zproét, i
!(π∗compK ⊗Ẑℓ

Ẑℓ(n))),

where π : X→ Spec(k) is the structure morphism.
First assume that Z is smooth. By étale excision (see Lemma A.10), we may assume that Z is equi-

dimensional of pure codimension c in X. By Lemma A.5, we have i∗comp(−c)[−2c]
≃→ i!, and so

H i
Z(X,n) ≃H

i−2c(Zproét, (π ◦ i)∗compK ⊗Ẑℓ
Ẑℓ(n− c)).

Since K is concentrated in non-negative degrees, the above hyper-cohomology group vanishes for i − 2c < 0.
This concludes the case where Z is smooth.

For the general case, note that by topological invariance (see Lemma A.8), we may assume that k is
perfect. Hence, Z contains an open subset that is smooth over k. Using this and the fact that we know the
result for Z smooth, we can prove the claim with the help of Lemma A.13 by induction on dimZ . This
concludes the proof. □

Lemma A.15. Let X be a smooth algebraic scheme, and let i : Z ↪→ X be a closed subset. Let further W ⊂ X be a
closed subset with complement U = X \W such that Z ∩W has codimension at least j in X. If the complex K is
concentrated in non-negative degrees, then the restriction map H i

Z(X,n)→H i
Z∩U (U,n) is an isomorphism for all

i < 2j − 1.

Proof. Excision (see Lemma A.10) reduces us to the case where W ⊂ Z . By semi-purity (see Lemma A.14),
H i
W (X,n) = 0 for all i < 2j, and so the result follows from the long exact sequence in Lemma A.13. □

A.9. Cup products

The pro-étale topos Shv(Xproét) of a scheme X is locally weakly contractible (see [BS15, Definition 3.2.1
and Proposition 4.2.8]), which means in particular that it is locally coherent. From now on we assume that X
is an algebraic scheme, and so local coherence implies that X is coherent. By [SGA4.2, Proposition VI.9.0], it
follows that Shv(Xproét) has enough points. Hence, any F ∈Mod(Xproét,Ẑℓ) admits a Godement resolution.

More generally, for any bounded below complex K ∈D+(Xproét,Ẑℓ), there is a natural quasi-isomorphism
K →G•(K), given by the simple complex of the Godement double complex associated to K . The sheaves in
the complex G•(K) are ΓZ-acyclic, and so RΓZ(Xproét,K) = ΓZ(Xproét,G•(K)).

For any F,G ∈Mod(Xproét,Ẑℓ) and closed subschemes Z,W ⊂ X, we have a canonical map

ΓZ(X,F)⊗Zℓ
ΓW (X,G) −→ ΓZ∩W (X,F ⊗

Ẑℓ
G),(A.15)

given by the tensor product of sections. This induces a map

RΓZ(Xproét,M)⊗L
Zℓ

RΓW (Xproét,L) −→ RΓZ∩W (Xproét,M ⊗L
Ẑℓ
L)(A.16)

in the derived category for any constructible complexesM,L ∈Dcons(Xproét,Ẑℓ). Using the above-mentioned
Godement resolutions, (A.16) may be described as follows. Recall that constructible complexes are bounded
(see [BS15, Lemma 6.5.3]) and that there are enough Ẑℓ-flat objects in Mod(Xproét,Ẑℓ) (the latter is a general
fact that holds for any ringed site; see [Sta24, Tag 05NI]). We may therefore choose a quasi-isomorphism

https://stacks.math.columbia.edu/tag/05NI


A moving lemma for cohomology with support 39A moving lemma for cohomology with support 39

F •(M)→M, where F •(M) is a complex of Ẑℓ-flat sheaves; see [Sta24, Tag 05T7]. Then the Godement
resolution F •(M) → G•(F •(M)) is still a complex of flat Ẑℓ-modules. Hence, G•(F •(M)) ⊗

Ẑℓ
G•(L)

represents the derived tensor product M ⊗L
Ẑℓ
L. Applying the Godement resolution once again, we get a

quasi-isomorphism

G•(F •(M))⊗
Ẑℓ
G•(L) −→ G•(G•(F •(M))⊗

Ẑℓ
G•(L)).

The cup product (A.16) may then explicitly be described by the natural map

ΓZ(Xproét,G•(F •(M)))⊗
Zℓ

ΓW (Xproét,G•(L)) −→ ΓZ∩W (Xproét,G•(G•(F •(M))⊗
Ẑℓ
G•(L))).

In the following arguments, the above explicit description of (A.16) will be used throughout.
We denote from now on by

H i
Z(X,Zℓ(n)) := Ri ΓZ(Xproét,π

∗
XẐℓ(n)) ≃H i

Z,cont(Xét, (µ
⊗n
ℓr )r )(A.17)

twisted ℓ-adic pro-étale cohomology with support, which coincides with continuous ℓ-adic étale cohomology
with support by Lemma A.1. As before we write H i

Z(X,n) :=H
i
Z(Xproét,π

∗
compK ⊗Ẑℓ

Ẑℓ(n)).

Lemma A.16 (Cup products). Let X be an algebraic k-scheme, and let Z,W ⊂ X be closed subsets. Then there
are cup product maps

H i
Z(X,Zℓ(n))⊗Zℓ

H
j
W (X,m) −→H

i+j
Z∩W (X,n+m), α ⊗ β 7−→ α ∪ β

which are functorial with respect to pullbacks.

Proof. We apply (A.16) to M = Ẑℓ(m) and L = K ⊗
Ẑℓ

Ẑℓ(n). The lemma thus follows by taking cohomology
because

Ẑℓ(n)⊗L
Ẑℓ

(π∗compK ⊗Ẑℓ
Ẑℓ(m)) ≃ π∗compK ⊗Ẑℓ

Ẑℓ(n+m)

since Ẑℓ(n) is a locally free Zℓ-module (of rank 1). □

Lemma A.17. Let X be an algebraic k-scheme, and let Z,Z ′ ,W ,W ′ ⊂ X be closed with Z ⊂ Z ′ and W ⊂W ′ .
Then the cup product maps from Lemma A.16 fit into a commutative diagram

H i
Z(X,Zℓ(n))⊗Zℓ

H
j
W (X,m)

∪
//

��

H
i+j
Z∩W (X,n+m)

��

H i
Z ′ (X,Zℓ(n))⊗Zℓ

H
j
W ′ (X,m)

∪
// H

i+j
Z ′∩W ′ (X,n+m),

where the horizontal maps are the natural maps given by the pushforward along the identity on X.

Proof. Recall that the pushforward with respect to the identity corresponds to the map induced by the
natural inclusion ΓZ(X,−) ↪→ ΓZ ′ (X,−); see Remark A.7. Clearly, the product map (A.15) fits into a
similar commutative diagram. Passing to the derived category, for bounded below complexes of sheaves
M,L ∈D(Xproét,Ẑℓ), we get a commutative diagram

RΓZ(Xproét,M)⊗L
Zℓ

RΓW (Xproét,L) //

��

RΓZ∩W (Xproét,M ⊗L
Ẑℓ
L)

��

RΓZ ′ (Xproét,M)⊗L
Zℓ

RΓW ′ (Xproét,L) // RΓZ ′∩W ′ (Xproét,M ⊗L
Ẑℓ
L).

Applying this to M = Ẑℓ(m) and L = K ⊗
Ẑℓ

Ẑℓ(n), we obtain the lemma by taking cohomology. □

https://stacks.math.columbia.edu/tag/05T7
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Lemma A.18. Let f : X→ Y be a proper morphism between smooth equi-dimensional algebraic k-schemes. Assume
that f is either a closed immersion or a smooth map. LetM,L ∈Dcons(Yproét,Ẑℓ). Then the following diagram is
commutative:

(Rf∗f !M)⊗L
Ẑℓ
L

ψ

≃
//

Trf ⊗ id
��

Rf∗f !(M ⊗L
Ẑℓ
L)

Trf
��

M ⊗L
Ẑℓ
L

=
// M ⊗L

Ẑℓ
L,

(A.18)

where ψ is a natural isomorphism (described in the proof ).

Proof. Recall that the derived tensor product of ℓ-adically complete complexes is again ℓ-adically complete;
see [BS15, Lemma 6.5.5]. Since f is proper, the projection formula in [BS15, Lemma 6.7.14] implies that the
canonical map

Rf∗f
!M ⊗L

Ẑℓ
L ≃−→ Rf∗(f

!M ⊗L
Ẑℓ
f ∗compL)(A.19)

is an isomorphism; see also [SGA4.3, Proposition XVII.5.2.9]. By Lemmas A.3 and A.5, our assumptions
imply that there is a natural isomorphism f ! ≃ f ∗(d)[2d], where d := dimX −dimY . Using this, we find
that the above isomorphism induces a natural isomorphism

ψ : Rf∗f
!M ⊗L

Ẑℓ
L ≃−→ Rf∗f

!(M ⊗L
Ẑℓ
L),

where we used that f ∗ commutes with tensor products. It remains to see that (A.18) is commutative.
First assume that f is a closed immersion. In this case, Rf∗f ! is the derived functor associated to the

functor F 7→ H0
X(Y ,F ) that maps a sheaf F ∈ Mod(Xproét,Ẑℓ) to the subsheaf of local sections with

support contained in X. Moreover, on the non-derived level, the trace map corresponds to the natural
inclusion H0

X(Y ,F )→F . Using this, we find that (A.18) arises by deriving the diagram

H0
X(Y ,F )⊗

Ẑℓ
G //

��

H0
X(Y ,F ⊗Ẑℓ

G)

��

F ⊗
Ẑℓ
G =

// F ⊗
Ẑℓ
G,

where the upper horizontal arrow is given by noting that if s is a local section of F whose support is
contained in X and t is a local section of G, then the local section s⊗ t of F ⊗

Ẑℓ
G has support contained

in X. The above diagram is clearly commutative, and so is the derived version in (A.18).
Now assume that f is smooth. Here it is convenient to apply further reduction steps first. In fact, one can

easily formally reduce the problem to the case where M = Ẑℓ (by applying the result to various choices for L
and comparing the results). Applying the canonical truncation triangle τ≤jL→ L→ τ≥j+1L, by induction

on the length of L, we further reduce to the case where L = G[0] is a sheaf G ∈Mod(Xproét,Ẑℓ) placed in
degree zero. The complexes

(Rf∗f
!M)⊗L

Ẑℓ
L = (Rf∗f

!
Ẑℓ)⊗L

Ẑℓ
G

and

Rf∗f
!(M ⊗L

Ẑℓ
L) = Rf∗f

!G

are then concentrated in non-positive degrees, while M ⊗L
Ẑℓ
L = G is concentrated in degree zero. It follows

that the vertical arrows in (A.18) factor through the respective 0th cohomology sheaves, and so it suffices to
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prove the commutativity of the following diagram:

R2d f∗Ẑℓ(d)⊗Ẑℓ
G //

Trf ⊗ id
��

R2d f∗G(d)

Trf
��

Ẑℓ ⊗Ẑℓ
G =

// G.

(A.20)

This follows directly from the construction of the trace map; see e.g. [Sch23, Equation (6.10)] and [Ver67,
Step (2) in the proof of Proposition 3.1]. This concludes the proof of the lemma. □

Lemma A.19 (Projection formula). Let f : X → Y be a proper morphism between smooth equi-dimensional
k-schemes of relative codimension c = dimY − dimX. Let ZY ,WY ⊂ Y be closed, and let ZX = f −1(ZY ) and
WX = f −1(WY ). Assume that f is either a closed immersion or a smooth map. Then the following hold:

(1) For any α ∈H j
WX

(X,Zℓ(m)) and β ∈H i
ZY
(Y ,n), we have

f∗(α ∪ f ∗β) = f∗α ∪ β ∈H
i+j+2c
ZY∩WY

(Y ,n+m+ c),

where f∗α ∈H
j+2c
WY

(Y ,Zℓ(m+ c)) and f ∗β ∈H i
ZX

(X,n).

(2) For any α ∈H i
ZY
(Y ,Zℓ(n)) and β ∈H

j
WX

(X,m), we have

f∗(f
∗α ∪ β) = α ∪ f∗β ∈H

i+j+2c
ZY∩WY

(Y ,n+m+ c),

where f ∗α ∈H i
ZX

(X,Zℓ(n)) and f∗β ∈H
j+2c
WY

(Y ,m+ c).

Proof. Let M,L ∈ Dcons((Spec(k))proét,Ẑℓ) be constructible complexes of Ẑℓ-modules on the pro-étale
site (Spec(k))proét, and let πX : X → Spec(k) and πY : Y → Spec(k) be the structure morphisms. Since
ZX = f −1(ZY ),

RΓZX (X, (πX)
∗
compM(−c)[−2c]) = RΓZY (Y ,Rf∗(πX)

∗
compM(−c)[−2c]).

Since X and Y are smooth, Lemmas A.2 and A.3 imply (πX)∗compM(−c)[−2c] ≃ f !(πY )∗compM and so

RΓZX (X, (πX)
∗
compM(−c)[−2c]) = RΓZY (Y ,Rf∗f

!(πY )
∗
compM).(A.21)

We then consider the diagram

RΓZY (Y ,Rf∗f
!(πY )∗compM)⊗L

Zℓ
RΓWY

(Y , (πY )∗compL)
∪
//

Trf ⊗ id
��

RΓZY∩WY
(Y ,Rf∗f !(πY )∗compM ⊗L

Ẑℓ
(πY )∗compL)

Trf ⊗ id
��

RΓZY (Y , (πY )
∗
compM)⊗L

Zℓ
RΓWY

(Y , (πY )∗compL)
∪

// RΓZY∩WY
(Y , (πY )∗compM ⊗L

Ẑℓ
(πY )∗compL),

(A.22)

which is clearly commutative.
By Lemma A.18, there is a commutative diagram

Rf∗f !(πY )∗compM ⊗L
Ẑℓ

(πY )∗compL ψ

≃
//

Trf ⊗ id
��

Rf∗f !(πY )∗comp(M ⊗L
Ẑℓ
L)

Trf
��

(πY )∗compM ⊗L
Ẑℓ

(πY )∗compL
≃

// (πY )∗comp(M ⊗L
Ẑℓ
L).
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Applying RΓZY∩WY
(Y ,−) to this and combining the resulting commutative square with (A.22), we get a

commutative diagram of the form

RΓZY (Y ,Rf∗f
!(πY )∗compM)⊗L

Zℓ
RΓWY

(Y , (πY )∗compL)
∪
//

Trf ⊗ id
��

RΓZY∩WY
(Y ,Rf∗f !(πY )∗comp(M ⊗L

Ẑℓ
L))

Trf
��

RΓZY (Y , (πY )
∗
compM)⊗L

Zℓ
RΓWY

(Y , (πY )∗compL)
∪

// RΓZY∩WY
(Y , (πY )∗comp(M ⊗L

Ẑℓ
L)).

By (A.21) (applied to the complex M ⊗L
Ẑℓ
L and the closed subset ZX ∩WX ⊂ X), the term in the right upper

corner of the above diagram is given by

RΓZY∩WY
(Y ,Rf∗f

!(πY )
∗
comp(M ⊗L

Ẑℓ
L)) = RΓZX∩WX

(X, (πX)
∗
comp(M ⊗L

Ẑℓ
L)(−c)[−2c]).

Item (1) in the lemma therefore follows by applying the above argument to M = Ẑℓ(m) and L = K ⊗
Ẑℓ

Ẑℓ(n)
and taking cohomology of the above commutative square. Item (2) follows similarly by applying the above
argument to L = Ẑℓ(m) and M = K ⊗

Ẑℓ
Ẑℓ(n) and using the anti-commutativity of cup products. This

concludes the proof of the lemma. □

A.10. Cycle class

Lemma A.20 (Cycle class). Let X be an equi-dimensional smooth algebraic k-scheme, and let Γ ∈ Zc(X) be a
cycle of codimension c. Let Z ⊂ X be any closed subscheme that contains the support of Γ . Then there is a cycle class

clXZ (Γ ) ∈H
2c
Z (X,Zℓ(c))

with the following properties:

(1) If W ⊂ X is closed with Z ⊂W , then clXW (Γ ) is the image of clXZ (Γ ) via the natural mapH
2c
Z (X,Zℓ(c))→

H2c
W (X,Zℓ(c)).

(2) If Γ = Γ1 + Γ2 for cycles Γi ∈ Zc(X) with supp(Γi) ⊂ Z, then clXZ (Γ ) = clXZ (Γ1) + clXZ (Γ2).

Proof. Recall from Lemma A.1 that H2c
Z (X,Zℓ(c)) =H

2c
Z,cont(Xét,Zℓ(c)) agrees with continuous étale coho-

mology with values in the inverse system (µ⊗cℓr )r . By the additivity of continuous étale cohomology, it suffices
to deal with the case where X is integral, hence a variety. If Γ =

∑
aiΓi with suppΓi ⊂ Z, we define

clXZ (Γ ) :=
∑
i

ai · clXZ (Γi)

and hence reduce the problem to the case where Γ is a prime cycle, i.e. a subvariety of codimension 1. Let
us first assume that Z = suppΓ . By (A.17) and [Jan88, Theorem 3.23], there is a canonical isomorphism

H2c
Z (X,Zℓ(c)) ≃ lim

←−
r

H2c
Z (X,µ⊗cℓr ),(A.23)

and the class clXZ (Γ ) is defined as limit of the cycle classes of Γ in H2c
Z (X,µ⊗cℓr ) from [SGA412 , Section 2.2.10,

p. 143], where one uses the compatibility for different values of r; cf. [Jan88, Proof of Theorem 3.23, p.
221]. In general, if Z is any closed subset with |Γ | := suppΓ ⊂ Z, then we define clXZ (Γ ) as the image of
clX|Γ |(Γ ) via the natural pushforward map H2c

|Γ | (X,Zℓ(c))→ H2c
Z (X,Zℓ(c)). Item (1) then follows from the

functoriality of pushforwards, while item (2) follows directly from the construction together with the linearity
of pushforwards. This proves the lemma. □

Lemma A.21. Let f : X→ Y be a morphism between smooth equi-dimensional algebraic k-schemes.

(1) Let Γ ∈ Z i(Y ) be a cycle on Y with support ZY := supp(Γ ). Assume that ZX := f −1(ZY ) ⊂ X has pure
codimension i. Then f ∗ clYZY (Γ ) = clXZX (f

∗Γ ).
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(2) Let Γ ∈ Z i(X) with support ZX := supp(Γ ). Assume that f is proper of pure relative codimension c. Set
ZY := f (ZX) with the reduced scheme structure. Then f∗ cl

X
ZX

(Γ ) = clYZY (f∗Γ ).

Proof. To prove item (1), we note that by the construction of the cycle class via the isomorphism (A.23), it
suffices to prove the compatibility result for étale cohomology with coefficients in µ⊗iℓr with r ≥ 1. Hence,
item (1) follows from [SGA412 , Théorème 2.3.8.(ii)].

We prove item (2) next. Lemma A.8 reduces us to the case where the ground field k is perfect. By Lemma
A.15, we may then assume that ZY and ZX are smooth and pure-dimensional of pure codimensions i and
i+c in Y and X, respectively (this uses that any reduced scheme is generically regular, hence smooth because
k is perfect). Lemma A.5 yields canonical isomorphisms

H2i
ZX

(X,Zℓ(i)) ≃H0(ZX ,Zℓ(0)) and H2i+2c
ZY

(Y ,Zℓ(i + c)) ≃H0(ZY ,Zℓ(0)).

It follows from the construction of the pushforward f∗ that via the above isomorphism, it is compatible with
the pushforward (

f |ZX
)
∗
: H0(ZX ,Zℓ(0)) −→H0(ZY ,Zℓ(0)).

Since ZX and ZY are smooth, the above groups decompose according to the irreducible components of
ZX and ZY , respectively. Using this, we reduce to the case where ZX and ZY are integral, and we need to
show that (f |ZX )∗ is given by multiplication with deg(f |ZX ). Up to shrinking ZY further, we may assume
that f |ZX : ZX → ZY is étale (this uses that k is perfect), and so the claim follows from Lemma A.11. This
proves item (2) and concludes the proof of the lemma. □

Lemma A.22. Let X be a smooth equi-dimensional algebraic scheme, and for i = 1,2, let Γi ∈ Zci (X) be a cycle of
codimension ci on X. We put Zi := suppΓi , which is closed of pure codimension ci in X. Assume that Z1 and Z2
meet dimensionally transversely, so that Z := Z1 ∩Z2 either is empty or has codimension c = c1 + c2 in X. Then

clXZ (Γ1 · Γ2) = clXZ1
(Γ1)∪ clXZ2

(Γ2) ∈H2c
Z (X,Zℓ(c)).

Proof. Since the cycle class in Jannsen’s continuous étale cohomology from Lemma A.20 is constructed
via the isomorphism (A.23), and because the cup product constructed in Lemma A.16 is compatible with
reduction modulo ℓr , it suffices to prove the lemma modulo ℓr , i.e. for étale cohomology with coefficients
in µ⊗cℓr . In this case, the result in question follows from [SGA412 , Théorème 2.3.8(iii) and Remarque 2.3.9]
together with the fact that the multiplicities of the intersection product Γ1 · Γ2 may be computed by Serre’s
Tor formula; see [Ful98, Section 20.4 and Example 7.1.2]. This concludes the proof of the lemma. □

Lemma A.23. Let X be a smooth equi-dimensional algebraic scheme over a perfect field k. Let Γ ∈ Zc(X) be a
cycle with support Z := supp(Γ ). Assume that there is a closed subset W ⊂ X of codimension c − 1 with Z ⊂W
such that Γ , viewed as a cycle on W , is rationally equivalent to zero on W . Then there is a class

ϕ ∈H2c−1
W \Z (X \Z,Zℓ(c)) with ∂ϕ = clXZ (Γ ) ∈H

c
Z(X,Zℓ(c)).

Proof. We endow W with the canonical reduced scheme structure and consider the normalization τ : W ′→
W . The assumptions imply that there is a rational function ϕ′ on W ′ such that Γ = τ∗div(ϕ′).

By Lemma A.15, the groups in question do not change when we remove from X a closed subset of
codimension at least c +1. Since W ′ is regular in codimension 1, we may thus without loss of generality
assume that W ′ is regular, hence smooth. For the same reason, we may assume that Z as well as the
preimage Z ′ = τ−1(Z) are smooth. We thus have a pushforward map

τ∗ : H
1(W ′ \Z ′ ,Zℓ(1)) −→H2c−1

W (X \Z,Zℓ(c)),

given by (A.10). Via Jannsen’s Kummer sequence [Jan88, Equation (3.27)], the rational function ϕ′ yields a
class (ϕ′) ∈H1(W ′ \Z ′ ,Zℓ(1)), and we let

ϕ := τ∗(1/ϕ
′) ∈H2c−1

W \Z (X \Z,Zℓ(c)).
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The image of (ϕ′) via the residue map H1(W ′ \Z ′ ,Zℓ(1))→ H2
Z ′ (W

′ ,Zℓ(1)) ≃ H0(Z ′ ,Zℓ(0)) coincides
with the cycle given by −div(ϕ′) (indeed, it suffices to prove this modulo ℓr , hence for étale cohomology
with coefficients in µℓr , where it follows from [SGA412 , Lemme 2.3.6] and the anti-commutativity of the
diagram in [SGA412 , Section 2.1.3]). Since by Lemma A.13, the pushforwards from (A.10) induce commutative
ladders between the respective long exact sequences of triples, we find that

∂(ϕ) = ∂(τ∗(1/ϕ
′)) = τ∗(∂(1/ϕ

′)) = −τ∗(∂(ϕ′)) = clXZ (τ∗div(ϕ
′)) = clXZ (Γ ).

This concludes the proof. □

Lemma A.24. In the notation of Lemma A.23, we have clXW (Γ ) = 0 ∈H2c
W (X,Zℓ(c)).

Proof. By Lemma A.21, clXW (Γ ) is the image of clXZ (Γ ) via the natural map H2c
Z (X,Zℓ(c))→H2c

W (X,Zℓ(c)).
The assertion in the lemma thus follows from the long exact sequence of triples (see Lemma A.13) together
with the fact that ∂ϕ = clXZ (Γ ) ∈H2c

Z (X,Zℓ(c)). □

A.11. Proof of Proposition 3.2

Proof of Proposition 3.2. By Lemma A.1, item (2) follows from item (3) applied to the complex K given by the
pro-étale sheaf limν∗Fr placed in degree zero. We further claim that item (1) follows from item (2). To see
this, note that étale cohomology commutes with direct limits in the coefficients; see [Sta24, Tag 09YQ]. It
thus suffices to prove item (1) in the case where there is some integer r so that F = π∗XF is an ℓr-torsion
étale sheaf on Xét. By [Jan88, Equation (3.1)], the result then follows from item (2) applied to the constant
inverse system (F )r .

Altogether we have thus seen that it suffices to prove item (3). To this end, we use the notation
H i
Z(X,n) := H

∗
Z(Xproét, (πX)∗compK ⊗Ẑℓ

Ẑℓ(n)) from above. The pullback maps from Lemma A.6 make

(X,Z) 7→ H i
Z(X,n) into a functor as we want. If the complex K is concentrated in non-negative degrees,

then semi-purity (i.e. condition C5) follows from Lemma A.14.
Condition C1 follows from Lemma A.10, condition C2 follows from Lemmas A.6 and A.12, and condi-

tion C3 follows from Lemma A.13. It thus remains to prove condition C4. The action of cycles is given by cup
product and the cycle class map; see Lemmas A.16 and A.20. Condition C4(a) then follows from Lemma A.24.

To prove condition C4(b), let ι : W ↪→ X be a closed embedding with W smooth and irreducible of
codimension c, and let Γ = [W ] ∈ Zc(X). Let α ∈H i

Z(X,n), and note that clXX(X) ∈H0(X,Zℓ(0)) satisfies
clXX(X)∪α = α. The projection formula in Lemma A.19 thus yields

ι∗ι
∗α = ι∗(ι

∗ clXX(X)∪ ι
∗α) = (ι∗ι

∗ clXX(X))∪α.

By Lemma A.21, we have ι∗ι
∗ clXX(X) = ι∗ cl

W
W (W ) = clXW (Γ ), and so the above equation reads

ι∗ι
∗α = clXW (Γ )∪α, as we want.
Condition C4(c) follows from Lemma A.17. Condition C4(d) follows from the functoriality of the cup

product in Lemma A.16 with respect to pullbacks (hence with respect to restrictions), together with the
compatibility of the cycle class map with flat pullback from Lemma A.21.

The formula clXW (Γ )∪ (clXW ′ (Γ ′)∪α) = clXW∩W ′ (Γ · Γ ′)∪α in condition C4(e) follows from the associativity
of cup products in (A.16) together with the formula clXW (Γ )∪ clXW ′ (Γ ′) = clXW∩W ′ (Γ · Γ ′) from Lemma A.22,
where we use that W = suppΓ meets W ′ = suppΓ ′ properly by assumption.

It remains to prove condition C4(f). If f : X ′ → X is flat, then the formula f ∗(clXW (Γ ) ∪ α) =
clXf −1(W )(f

∗Γ )∪ f ∗α follows from the compatibility of cup products with pullbacks (see Lemma A.16) together

with the fact that f ∗ clXW (Γ ) = clXf −1(W )(f
∗Γ ) by Lemma A.21. Finally, if f : X ′→ X is smooth and proper, the

formula f∗(cl
X ′
W ′ (Γ )∪ f ∗α) = clXf (W ′)(f∗Γ )∪α follows from Lemma A.19(1) together with Lemma A.21, while

f∗(cl
X
W (f ∗Γ )∪α) = clXW (Γ )∪ f∗α follows from Lemma A.19(2) because clXW (f ∗Γ ) = f ∗ clXW (Γ ) by Lemma A.21.

This concludes the proof of the proposition. □

https://stacks.math.columbia.edu/tag/09YQ
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B. Comparison with action on algebraic cycles

B.1. Comparison to the action on Chow groups

Let X be a smooth projective equi-dimensional scheme over a perfect field k, and let ℓ be a prime that is
invertible in k. For Z ⊂ X closed, we let as before

H i
Z(X,Zℓ(n)) := Ri ΓZ(Xproét,Ẑℓ(n)) and H i(X,Zℓ(n)) :=H

i
X(X,Zℓ(n)).

The theory of refined unramified cohomology developed in [Sch23] relies on an ℓ-adic Borel–Moore
cohomology theory H i

BM(Z,Zℓ(n)) for each algebraic k-scheme Z ; see [Sch23, Section 4 and Proposition 6.6].
If X is a equi-dimensional smooth algebraic k-scheme and Z ⊂ X is closed of codimension c (not necessarily
of pure dimension), then by (A.6) and Lemmas A.2 and A.3, the Borel–Moore cohomology of Z is given by

H i
BM(Z,Zℓ(n)) =H

i+2c
Z (X,Zℓ(n+ c)).

In particular, H i
BM(X,Zℓ(n) =H i(X,Zℓ(n)) for X smooth and equi-dimensional.

We let CHi(X)
Zℓ

:= CHi(X)⊗
Z
Zℓ . The coniveau filtration N ∗ on CHi(X)

Zℓ
is the decreasing filtration

given by the condition that a class [z] ∈ CHi(X)
Zℓ

lies in N jCHi(X)
Zℓ

if and only if [z] can be represented
by a cycle z that is homologically trivial on a closed subset W ⊂ X of codimension j; i.e. suppz ⊂ W
with clXW (z) = 0 ∈H2i

W (X,Zℓ(i)); see [Blo85, Jan00] or [Sch23, Definition 7.3]. For instance, N0CHi(X)
Zℓ

is
the space of ℓ-adic cycles with trivial cycle class in H2i(X,Zℓ(i)). Moreover, N i−1CHi(X)

Zℓ
is zero if k

is finitely generated (or an inseparable extension thereof), and it is the space of algebraically trivial ℓ-adic
cycles of codimension i if k is algebraically closed; see [Sch23, Proposition 6.6 and Lemma 7.5] or [Jan00,
Lemmas 5.7 and 5.8] for the corresponding rational statements.

We define

Ai(X)
Zℓ

:= CHi(X)
Zℓ
/N i−1CHi(X)

Zℓ
.

By what we have said above, this is the ℓ-adic Chow group of algebraic cycles modulo rational equivalence if
k is finitely generated (or the perfect closure of such a field), while it is the group of ℓ-adic cycles modulo
algebraic equivalence if k is algebraically closed. We further let Ai0(X)Zℓ

⊂ Ai(X)
Zℓ

be the subspace of
cycles with trivial cycle class on X, i.e.

Ai0(X)Zℓ
=N0CHi(X)

Zℓ
/N i−1CHi(X)

Zℓ
.(B.1)

By [Sch23, Lemma 7.4 and Proposition 7.11], there is a canonical isomorphism

H2i−1
i−2,nr(X,Zℓ(i))

H2i−1(X,Zℓ(i))
≃−→ Ai0(X)Zℓ

.(B.2)

By Corollary 6.8(2), the action of correspondences on refined unramified cohomology descends to an
action on the left-hand side of (B.2), where we use H2i−1

m,nr (X,Zℓ(i)) =H2i−1(X,Zℓ(i)) for m ≥ dimX. There
is also a natural action on the right-hand side of (B.2). The main result of this appendix shows that both
actions agree with each other.

Proposition B.1. Let X and Y be smooth projective equi-dimensional schemes over a perfect field k, let dX :=
dim(X), and let ℓ be a prime that is invertible in k. Then the bilinear pairing

CHc(X ×Y )×
H2i−1
i−2,nr(X,Zℓ(i))

H2i−1(X,Zℓ(i))
−→

H
2(i+c−dX )−1
i+c−dX−2,nr (Y ,Zℓ(i + c − dX))

H2(i+c−dX )−1(Y ,Zℓ(i + c − dX))

induced by the pairing on refined unramified cohomology in Corollary 6.8 agrees via the isomorphism in (B.2) with
the natural action on Ai0(X)Zℓ

=N0CHi(X)
Zℓ
/N i−1CHi(X)

Zℓ
.
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Proposition B.1 relies on the results recalled in Appendix A, together with the following result (we will
only need the special case where W =U = X, but we state and prove the more general version below).

Lemma B.2 (Compatibility of cup products with residue maps). Let X be an algebraic k-scheme. Let
Z ⊂W ⊂ X and Y ⊂ X be closed subsets. Let U ⊂ X be an open subset with W ∩Y ⊂U .
Then for any β ∈H j

Y (U,Zℓ(m)), the following diagram is commutative:

H i
W (U \Z,n) ∂

//

∪β|U\Z
��

H i+1
Z (U,n)

∪β
��

H
i+j
W∩Y (U \Z,n+m) H

i+j+1
Z∩Y (U,n+m)

H
i+j
W∩Y (X \ (Z ∩Y ),n+m)

≃

OO

∂
// H

i+j+1
Z∩Y (X,n+m),

≃

OO

where the cohomology groups in question are those from Proposition 3.2 (3) (and the notation H i
Z(U,n) :=

H i
Z∩U (U,n) etc. is used ), the horizontal maps are parts of the long exact sequence in Lemma A.13, the upper

vertical maps are the cup product maps from Lemma A.16, and the lower vertical maps are the isomorphisms given
by pullback and excision (where we use W ∩Y ⊂U and Z ∩Y ⊂U ).

Proof. We write ZY := Z ∩ Y and WY := W ∩ Y . For U ⊂ X open, we will further use the notation
RΓZ(U,−) := RΓZ∩U (U,−) and so on. Then let M,L ∈Dcons(Xproét,Ẑℓ), and consider the exact triangle

RΓZ(U,M) −→ RΓW (U,M) −→ RΓW \Z(U \Z,M)

in D(Mod
Zℓ
) from the proof of Lemma A.13, where by slight abuse of notation we do not distinguish

between M and the pullback to the respective open subsets above.
We may take the derived tensor product of the above triangle with the complex RΓY (U,L). This gives rise

to an exact triangle

RΓZ(U,M)⊗L
Zℓ

RΓY (U,L) −→ RΓW (U,M)⊗L
Zℓ

RΓY (U,L) −→ RΓW \Z(U \Z,M)⊗L
Zℓ

RΓY (U,L).

The maps in (A.16) yield a map from this triangle to the sequence

RΓZY (U,M ⊗
L

Ẑℓ
L) −→ RΓWY

(U,M ⊗L
Ẑℓ
L) −→ RΓWY \ZY (U \Z,M ⊗

L

Ẑℓ
L)(B.3)

such that the corresponding diagram commutes (as it commutes before taking derived functors). Note that
the sequence in (B.3) is a priori not an exact triangle. However, the natural restriction maps yield a map
from the exact triangle

RΓZY (X,M ⊗
L

Ẑℓ
L) −→ RΓWY

(X,M ⊗L
Ẑℓ
L) −→ RΓWY \ZY (X \ZY ,M ⊗

L

Ẑℓ
L)

to the sequence in (B.3) such that the corresponding diagram commutes. The lemma follows from this
by setting M := Ẑℓ(m) and L := (πX)∗compK ⊗Ẑℓ

Ẑℓ(n) and taking cohomology, where we note that the
restriction map from the above triangle to (B.3) yields isomorphisms in cohomology by Lemma A.10 because
WY ⊂WU and ZY ⊂ ZU . (This shows in fact that (B.3) is isomorphic to an exact triangle, hence is an exact
triangle itself.) □

Proof of Proposition B.1. Let [α] ∈H2i−1
i−2,nr(X,Zℓ(i)), and let [Γ ] ∈ CHc(X ×Y ). Applying either Theorem 2.1

to Γ or Corollary 6.5(2) to [α] (cf. the proof of Corollary 6.8), we can assume that there is a representative
α ∈ H2i−1(U,Zℓ(i)) for some open subset U ⊂ X whose complement R = X \U is pure-dimensional of
codimension i and such that R× Y meets W := suppΓ properly. Let S := q((R× Y )∩W ) and V = Y \ S .
Then the class

Γ (W )∗(α) ∈H2(i+c−dX )−1(V ,Zℓ(i + c − dX))
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from Lemma 4.1 represents [Γ ]∗[α] ∈H
2(i+c−dX )−1
i+c−dX−2,nr (Y ,Zℓ(i + c − dX)). This yields via (B.2) an (ℓ-adic) cycle

on Y , and we aim to show that this cycle is [Γ ]∗[z], where [z] ∈ Ai0(X)Zℓ
is the class represented by [α] via

(B.2).
To begin with, we aim to describe the cycle z on X explicitly. To this end, let

∂α ∈H2i
R (X,Zℓ(i)),

where ∂ denotes the residue map from Lemma A.13. Since k is perfect, R is generically smooth, and so its
singular locus Rsing has codimension at least i +1 in X. Hence, Lemma A.15 implies that the natural map

H2i
R (X,Zℓ(i))

≃−→H2i
Rsm(X \Rsing,Zℓ(i))

is an isomorphism, where Rsm = R \Rsing. By purity (see Lemma A.5), there is a natural isomorphism

H2i
Rsm(X \Rsing,Zℓ(i)) ≃H0(Rsm,Zℓ(0)).

Combining the above isomorphisms, we see that the natural map

H2i
R (X,Zℓ(i)) −→

⊕
x∈R(0)

H0(x,Zℓ) =
⊕
x∈R(0)

[x]Zℓ(B.4)

given by pullback to X \Rsing and purity is an isomorphism. The image of ∂α via (B.4) is a cycle z ∈ Z i(X)
Zℓ

with coefficients in Zℓ whose support is given by some components of R. In fact, we get

clXR (z) = ∂α ∈H
2i
R (X,Zℓ(i)),(B.5)

which defines z uniquely because (B.4) is an isomorphism. It follows directly from the construction of the
map in (B.2) (see [Sch23, Proposition 7.11]) that via (B.2), the class [z] ∈ Ai0(X)Zℓ

is represented by

[α] ∈H2i−1
i−2,nr(X,Zℓ(i))/H

2i−1X,Zℓ(i)).

Similarly, the unramified class [Γ ]∗[α] ∈H
2(i+c−dX )−1
i+c−dX−2,nr (Y ,Zℓ(i + c − dX)) corresponds to the cycle z′ with

suppz′ ⊂ S on Y , which is uniquely determined by

clYS (z
′) = ∂(Γ (W )∗(α)) ∈H

2(i+c−dX )
S (Y ,Zℓ(i + c − dX)).(B.6)

By the construction of Γ (W )∗(α), we have

Γ (W )∗(α) = q∗(exc(cl
X×Y
W (Γ )∪ p∗α)),

where exc : H2i−1+2c
W (U × Y ,Zℓ(i + c))

≃→ H2i−1+2c
W ((X × Y ) \WR,Zℓ(i + c)) with WR :=W ∩R × Y is the

isomorphism given by excision. By Lemma A.13(2), we find

∂(Γ (W )∗(α)) = q∗
(
∂
(
exc

(
clX×YW (Γ )∪ p∗α

)))
.

Since clX×YW (Γ ) ∈H2c
W (X ×Y ,Zℓ(c)), Lemma B.2 implies that

∂(exc(clX×YW (Γ )∪ p∗α)) = clX×YW (Γ )∪∂(p∗α) ∈H2(i+c)
WR

(X ×Y ,Zℓ(i + c)),

where WR =W ∩ (R×Y ). By Lemma A.13(1),

∂(p∗α) = p∗(∂α) = p∗ clXR (z) ∈H
2i
R×Y (X ×Y ,Zℓ(i)),

where clXR (z) = ∂α is from (B.5). By Lemma A.21, p∗ clXR (z) = clX×YR×Y (p
∗z) and so

∂(clX×YW (Γ )∪ p∗α) = clX×YW (Γ )∪ clX×YR×Y (p
∗ z) ∈H2(i+c)

WR
(X ×Y ,Zℓ(i + c)).

By Lemma A.22,

clX×YW (Γ )∪ clXR×Y (p
∗z) = clX×YWR

(Γ · p∗z) ∈H2(i+c)
WR

(X ×Y ,Zℓ(i + c)).
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Since W and R× Y meet properly by assumption, WR has codimension c + i, and the natural restriction
map together with purity (see Lemma A.5) yield a map

H
2(i+c)
WR

(X ×Y ,Zℓ(i + c)) −→
⊕
x∈W (0)

R

H0(x,Zℓ) =
⊕
x∈W (0)

R

[x] ·Zℓ

which, by Lemma A.15, is an isomorphism as before. The image of clX×YWR
(Γ · p∗ z) via this map is given by

the cycle Γ · p∗z, where multiplicities are computed via Serre’s Tor formula; see [Ful98, Section 20.4]. The
cycle

z′ ∈
⊕

x∈S(dY +dX−i−c)

[x] ·Zℓ

from (B.6) is thus given by the pushforward of Γ ·p∗z via q : z′ = q∗(Γ ·p∗z), which proves the proposition. □

B.2. Transcendental Abel–Jacobi maps are motivic

Let X be a smooth equi-dimensional scheme over a perfect field k, and let ℓ be a prime invertible in k.
We let H i(X,Qℓ(n)) := H i(Xproét,Ẑℓ(n))⊗Zℓ

Qℓ and H
i(X,Qℓ/Zℓ(n)) = colimrH

i(Xproét,ν
∗µ⊗nℓr ), where

we note that H i(Xproét,ν
∗µ⊗nℓr ) ≃H

i(Xét,µ
⊗n
ℓr ); cf. Lemma A.1.

Recall the ℓ-adic cycle group Ai0(X)Zℓ
from (B.1). We denote by Ai0(X)[ℓ

∞] the torsion subgroup of
Ai0(X)Zℓ

. By [Sch23, Section 7.5], there is a transcendental Abel–Jacobi map on torsion cycles

(B.7) λitr : A
i
0(X)[ℓ

∞] −→H2i−1(X,Qℓ/Zℓ(i))/N
i−1H2i−1(X,Qℓ(i)),

where N ∗ denotes Grothendieck’s coniveau filtration on cohomology; i.e. α ∈ H2i−1(X,Qℓ(i)) lies in
N jH2i−1(X,Qℓ(i)) if α vanishes on the complement of a closed codimension j set of X. Correspondences
between smooth projective equi-dimensional k-schemes act on both sides of (B.7), and the main result in this
section is that these actions are compatible with the map λitr .

Corollary B.3. Let X and Y be smooth projective equi-dimensional schemes over a perfect field k, let dX := dim(X),
and let ℓ be a prime that is invertible in k. Let [Γ ] ∈ CHc(X×Y ) be a correspondence. Then the following diagram
is commutative:

Ai0(X)[ℓ
∞]

λitr
//

[Γ ]∗
��

H2i−1(X,Qℓ/Zℓ(i))
N i−1H2i−1(X,Qℓ(i))

[Γ ]∗
��

Ai+c−dX0 (Y )[ℓ∞]
λ
i+c−dX
tr

// H2i+2c−2dX−1(Y ,Qℓ/Zℓ(i+c−dX ))
N i+c−dX−1H2i+2c−2dX−1(Y ,Qℓ(i+c−dX ))

.

Proof. By [Sch23, Lemma 7.15], the map λitr can be described as follows. Let [z] ∈ Ai0(X)[ℓ∞], and let
[α] ∈H2i−1

i−2,nr(X,Zℓ(i)) be a class that represents [z] via the isomorphism in (B.2). This means that whenever

[α] can be represented by a class α ∈ H i(U,Zℓ(i)) on some open subset U ⊂ X whose complement
R = X \U has codimension 2i, the residue

∂α ∈H2i
R (X,Zℓ(i)) ≃

⊕
x∈R(dX−i)

Zℓ[x]

is a cycle z that represents the class [z]. Since [z] is torsion, there is some r ≥ 1 such that ℓr [z] = 0 ∈
Ai(X)

Zℓ
. This implies that ℓr [α] lifts to a class [β] ∈H2i−1(X,Zℓ(i)). Then, [β/ℓr ] gives rise to a class in

H2i−1(X,Qℓ(i)) and hence in H2i−1(X,Qℓ/Zℓ(i)), and we have

λitr([z]) = [β/ℓr ] ∈H2i−1(X,Qℓ/Zℓ(i))/N
i−1H2i−1(X,Qℓ(i)).
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By Proposition B.1, the cycle [Γ ]∗[z] corresponds via (B.2) to the class

[Γ ]∗[α] ∈H
2i+2c+2dX−1
i+c−dX−2,nr (X,Zℓ(i + c+ dX)).

Applying the moving lemma (Theorem 2.1) to Γ or Corollary 6.5(2) to [α], we can assume that there is a
representative α ∈H i(U,Zℓ(i)) of [α] as above such that R×Y meets W := suppΓ in codimension at least
i + c. We then let S = q(W ∩ (R×Y )) and V = Y \ S and find by Corollary 6.8(1) that [Γ ]∗[α] is represented
by

Γ (W )∗(α) ∈H2i+2c−2dX−1(V ,Zℓ(i + c − dX))

from Lemma 4.1. By Corollary 6.8(2), we find that ℓr · Γ (W )∗(α) = Γ (W )∗(ℓr · α) extends to the class
Γ (W )∗(β) ∈H2i+2c−2dX−1(Y ,Zℓ(i + c − dX)). Hence, by the description of λitr given above, we find that

λitr([Γ ]∗[z]) = [Γ (W )∗β/ℓ
r ] ∈ H2i+2c−2dX−1(Y ,Qℓ/Zℓ(i + c − dX))

N i+c−dX−1H2i+2c−2dX−1(X,Qℓ(i + c − dX))
.

The class Γ (W )∗(β/ℓr ) ∈H2i+2c−2dX−1(Y ,Qℓ/Zℓ(i + c − dX)) from Lemma 4.1 agrees by construction with
[Γ ]∗(β/ℓr ), i.e. with the image of β/ℓr via the action of the correspondence Γ . This shows that the diagram
in question is commutative, which concludes the proof of the corollary. □
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