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1. Introduction

In recent work [Hau23b, Hau22] a certain infinitesimal fixed point scheme for the action of GL, on
Gr(k,n) - the Grassmannian of k-planes in C” - is used to model the Hitchin map on a particular minuscule
upward flow in the GL,,-Higgs moduli space. In turn, it was noticed that this fixed point scheme is isomorphic
to the spectrum of equivariant cohomology of Gr(k,#), and thus the Hitchin system on these minuscule
upward flows can be modelled as the spectrum of equivariant cohomology of Grassmannians. In this paper
we show that the appearance of the spectrum of equivariant cohomology as a fixed point scheme is not a
coincidence and holds in more general situations.

We start more generally with partial flag varieties. Let G be a connected complex reductive group and
P < G be a parabolic subgroup. The partial flag variety is the projective homogeneous space G/P of
parabolic subgroups of G conjugate to P. Equivalently, we can think of points in G/P as parabolic Lie
subalgebras conjugate to the parabolic Lie subalgebra p := Lie(P) — g. Using this point of view, we can
define the Grothendieck-Springer partial resolution as

(L1) pp: Gp:={(x,p) €egx G/P:xep’} — 1,

given by projection to the first coordinate. It is a proper dominant morphism. Over regular elements in g,
the morphism pp is finite; ¢f [Aky77b] and Lemma 2.46. Recall that x € g is regular when its centraliser
g* < G under the adjoint action has dimension equal to the rank of G. The regular elements of g form an
open dense subset in g. An equivalent definition of being regular is that the corresponding fiber of 7 is finite
for P = B a Borel subgroup. This implies that the Grothendieck-Springer partial resolution is generically
finite-to-one, i.e. an alteration.

One often studies the Grothendieck-Springer map as part of the commutative diagram

§p —2 t/Wy

N

Here p is the natural map

p:9—9/G=t)W,
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where t = Lie(T) is the Lie algebra of the maximal torus and W = N5(T)/T is the Weyl group of G. We
can define a map

Vp: ljp — [J//P = [//L = t//WL,

where L :=P/P,,, the quotient with the unipotent radical of P, is the Levi quotient of P, [ is its Lie algebra
and W is its Weyl group. If P’ is conjugate to P, with Levi quotient L', then for any x € p’ the map is given
by sending (x,p’) € gp to the image of x € p’ in p///P’ =~ ['//L’ and then canonically identifying ['//L" =~ [//L.
If P =~ B is Borel, then L =~ T is the maximal torus and this later is used to define the universal Cartan
subalgebra; see e.g. [CG97, Lemma 6.11].

Fix a principal sl-triple {e, f,h) =~ sl, < g, where e € g is regular nilpotent. Let

(1.2) Si=e+Cy(f) =y

be the Kostant section, where Cy(f) is the centraliser of f in g. We have a corresponding principal SL, — G
subgroup giving

(1.3) t:C*cSL, —G.
We define a C*-action on g by
(L4) A-x =272 Ady)(x).

As ad,(y(e) = AZe, we see that this C* -action leaves the Kostant section invariant.?)

Now write Sp := Hp ! (S). Then we have the commutative diagram@)

e

Sp — Gp —— t)/Wy
Hp J/‘Mp in
S—— g —t/W

~

such that p o is an isomorphism, as S is the Kostant section. On the other hand, vp o7 is finite as yp and 7t
are, when restricted to regular elements. Finally, the degree of the finite maps pp and 7t both equal the Euler
characteristic x(G/P). Thus it follows that vp o[ is a finite map to a normal variety t /W of degree 1, thus
an isomorphism.

We also note that the equivariant cohomology algebra

HE(G/P;C) = HE »(G;C) =~ Hy ~ Hff ~ C[t]"™

is naturally an H, := H*(BG;C) = C[t]"-algebra. From this algebra structure we have a canonical algebra
homomorphism ¢: HE — HE(G/P;C). We denote the induced map between the affine spectra by

f+ Spec (HE(G/P;C)) — Spec (HE),

which is C*-equivariant with respect to the actions induced by the gradings on both sides. As the odd
cohomology H°44(G/P;C) is trivial, the space G/P is equivariantly formal; see [GKM98]. In other words,

(IThis action is considered e.g. in [GGO2], where the associated grading is referred to as the Kazhdan grading.

(2)In the case P = B this diagram was communicated to us by Zhiwei Yun.
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the Hf;-module H}(G/P;C) is free. Then we have the following commutative diagram:

lle

Sp — §p — t/W, —= Spec (HZ(G/P;C))

(L5) l,lp l,lp ln I

S« g —5— t/W ——=—— Spec(H¢).

~

L

~

Thus we see that the partial Grothendieck-Springer resolution yp over the Kostant section S is precisely
the spectrum of the G-equivariant cohomology algebra of the partial flag variety G/P. In this paper our
motivation is to show that the appearance of the spectrum of equivariant cohomology in (1.5) is not a
coincidence. We will show that the same holds for H-regular actions of a principally paired group H on a
smooth projective variety X.

Definition 1.1.

(1) A complex linear algebraic group H is principally paired if it contains a pair {e,h} < I in its Lie
algebra such that [/, e] = 2e and e is a regular nilpotent, as well as an algebraic group homomorphism
B(SL,) — H from the Borel subgroup of SL, whose differential maps the regular unipotent to e and
the appropriate diagonal element to h.

(2) An action of a principally paired group H on a smooth projective variety X is regular when a regular
unipotent element u € H has finitely many fixed points.

In fact, a unipotent element always has a connected fixed point set, see [Hor69], so for a regular action
we have X" = {0} for some 0 € X. Examples of principally paired groups include parabolic subgroups
of reductive groups (see Lemma 2.21), such as Borel subgroups and reductive groups themselves. While
examples of H-regular varieties include for H = G the partial flag varieties G/P considered above (see
[Aky77b]), smooth Schubert varieties are regular when H = B < G is a Borel subgroup, and Bott-Samelson
resolutions will be examples for parabolic subgroups H = P — G of reductive groups.

We construct (see Section 2.2) a vector field Vj; on Iy X X such that for any p € I its restriction

(Vi)y € HY(X; Tx)

to {y} x X is the infinitesimal vector field on X generated by y. Recall the Kostant section from (1.2)
for a reductive group. For an arbitrary principally paired group, we proceed as follows. Choose a Levi
subgroup L in H, so that H = N x L, where N is the unipotent radical of H. The regular nilpotent e € H
then splits into e = e, + ¢; with e, € 11, ¢; € [. The latter can be completed to an sl,-triple (e, f;, h;)
in [, and we take S = e + C(f;). We prove in Theorem 2.37 that it is a section of the natural map
I — j/H = t//W = Spec(Hj}); in particular, S = Spec(Hj).

Denote by Vg := Vj|sxx the vector field Vj restricted to S x X. Let Zg = S x X be the zero scheme of
Vs, i.e. the subscheme defined by the sheaf of ideals generated by Vs(Osy.x) < Osx, where Vg acts on
Osyx as a derivation. The distinguished homomorphism B(SL,) — H restricted to the diagonal torus gives
amap 7: C* — H, and a C*-action defined as in (1.4) will preserve S. We also pull back the action of H
via T: C* — H on X to an action of C* on X. Then Zg will be preserved by the diagonal C*-action on
S x X. Our main theorem is the following.

Theorem 1.2. Suppose a principally paired group H acts regularly on a smooth projective complex variety X. Then
the zero scheme Zs — S x X of the vector field Vs is reduced and affine, and its coordinate ring, graded by the
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C* -action above, is isomorphic as a graded ring

C[Zs] — H}(X;C)

n*T T

C[S] ——— Hj

to the H-equivariant cohomology of X, so that the structure map Hi; — H(X;C) agrees with the pullback map
H}, = C[S] — C[Zs] of the natural projection 10: Zg — S. In particular, we have

Zs «—=— Spec(Hj(X;Q))

g l
S <——— Spec(Hf);

i.e. the spectrum of equivariant cohomology of X is C* -equivariantly isomorphic to the zero scheme Zs — S x X
over S = Spec(H).

We first study the case of solvable principally paired groups. Then the general case is reduced to the
Borel subgroup.

There is another version of our Theorem 1.2 where we do not restrict to the Kostant section S. Namely,
if a reductive group G acts regularly on X and we denote by Z; — g x X the zero scheme of V, then the
G-action on g x X leaves Z; invariant. We have the following.

Theorem 1.3. Suppose a complex reductive group G acts regularly on a smooth projective complex variety X. Then
the G-invariant part of the algebra of the global functions on the total zero scheme Z

CIZ]% —= HE(X%C)

1 [

Clg]® —— Hg

is graded isomorphic to the equivariant cohomology of X over C[g]® = HZ. The gradings on C[g]® and C[Z,]°
are induced by the weight —2 action of C* on g and the trivial action on X.

Note that for partial flag varieties X = G/P, the total zero scheme Z; =~ gp — g is just the Grothendieck-
Springer resolution as above.

However, here the total zero scheme is no longer affine. On the other hand, this version also holds for
GKM (Goresky-Kottwitz-MacPherson) spaces, including toric varieties. Recall from [GKM98] that a smooth
projective variety X with an action of a torus T is a GKM space if the number of both the zero- and the
1-dimensional orbits is finite. We can form the total zero scheme Z; c t x X as the zero scheme of the
vector field V; generated by the T-action, as before.

Theorem 1.4. Suppose that a torus T acts on a smooth projective complex variety X with finitely many zero- and
1 -dimensional orbits. Then the algebra of the global functions on the total zero scheme Z

C[2] —— Hi(X;C)
C[t] —— H;

is graded isomorphic to the equivariant cohomology of X over C[t] = HY. The gradings on C[t] and C[Z] are
induced by the weight —2 action on t.
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The proof is straightforward, using the explicit description of Hf(X;C) from [GKM98]. We expect this
version to hold for an even larger class of group actions, including spherical varieties. However, in this paper
we concentrate on a more restrictive class of regular group actions. In that case, as in Theorem 1.2, we can
find an affine zero scheme Zg — § x X which is precisely the spectrum of equivariant cohomology of X.

Our main Theorem 1.2 was proved for the case of regular actions of the Borel B(SL;) by Brion-Carrell;
see [BC04, Theorem 1 and Proposition 2]. The strategy of our proof of Theorem 1.2 - in the case of more
general Borel subgroups - is broadly following the approach of the proof in [BC04]. Using vector fields
with possibly degenerate isolated zeros to obtain topological information on a complex manifold from
infinitesimal information goes back to the pioneering works of Bott [Bot67, BB70]. For a comprehensive
survey; see [Car(02].

We should also mention that there are other papers in the literature which study the spectrum of
equivariant cohomology geometrically, see e.g. [GM10] and the references therein. A more recent example
is [Hik17], where the spectrum of equivariant cohomology of certain varieties also appears as a fixed point
scheme, albeit of another - 3D-mirror - variety.

We finally note that many of our examples in this paper will be equivariant cohomology rings of
partial flag varieties, and as such they model the Hitchin system on various Lagrangian upward flows; see
[Hau23b, Hau22]. The pictures arising e.g. in Section 4.4 could then be thought of as depicting the various
fixed point schemes, spectra of equivariant cohomology or the Hitchin systems on corresponding upward
flows.

The contents of the paper is as follows. In Section 2 we describe the basic properties of actions of
algebraic groups and vector fields associated with them. In particular, in Section 2.2 we introduce the total
vector field which underlies the constructions used throughout the paper. In Sections 2.4 and 2.5 we discuss
regular elements and principal integrable b(sl,)-pairs. In Section 2.6 we generalize the Kostant section
to arbitrary principally paired groups, and in Section 2.7 we discuss basic properties of regular actions.
Section 3 contains the proof of Theorem 3.5, which is the equivalent of Theorem 1.2 for the solvable group.
Based on that, in Section 4 we prove Theorem 1.2. In Section 5.1 we generalize the theorem to some singular
varieties. Finally, Sections 5.2 and 5.3 contain the proofs and examples for Theorems 1.3 and 1.4.
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2. Generalities

2.1. Notation

We consider all the algebraic varieties, including algebraic groups, to be defined over C. For an algebraic
variety X, by C[X] = Ox(X) we denote the algebra of regular functions on X. All the cohomology groups
will be understood to have complex coefficients. For a Lie algebra g and a subset V < g, we denote by
Cy(V), Ng(V) the centraliser and normaliser of V in g, respectively. If V' = {v}, then we also write C4(v),
Ny(v). We drop the lower index if the ambient Lie algebra is obvious. For any Z-graded C-algebra
R =®,_,R,, we denote by Py(t) its Poincaré series, i.e.

Pp(t) = > dimg(R,)t",
n=0
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Let diag(vy,vy,...,v,,) be the diagonal n x n matrix with diagonal entries vy, vy, ..., v,. We will denote
by I,, = diag(1,1,...,1) the n x n identity matrix. For any algebraic group G with Lie algebra g, by g,, we
denote the set (in general not a subalgebra) of nilpotent elements of g, as defined in [Bor91, Section 1.4.5].
For a commutative algebra A with a filtration F,, we denote by Grp(A) the associated graded algebra.

2.2. Vector fields

Recall that a vector field on a smooth algebraic variety X is a derivation on the sheaf of regular
functions on X. This means that for any Zariski-open subset U < X, we are given a C-linear derivation
Ox(U) — Ox(U), and it is natural with respect to U. Given a vector field V on X, if x € X is a closed
point in X, we can restrict the derivation defined by V' to the local ring Oy . By restricting to the maximal
ideal m, < Ox , and evaluating the derivations of functions at x, we get a map m, — C. In fact, by the
Leibniz rule it has to vanish on m2; hence we get a tangent vector V, € Homg(m,/m2,C) ~ T, x.

Whenever an algebraic group H acts on a variety X, it yields a Lie algebra homomorphism ¢: I —
Vect(X) from Iy = Lie(H) to vector fields on X; see [CD03]. We will want to define the total vector field on
i x X. As this is a local problem on X, we can restrict to an affine open set U. Then

2.0) C[h x U] = C[h] ®¢ C[U],

and we need to define a derivation on this C-algebra. We can view ¢|y as an element of h* ®¢ Vect(U).
As C[hi] = S*(ii*), we have a multiplication map b* ® C[li] — C[h]. Additionally, the elements of Vect(U)
are by definition the derivations on C[U], which gives a C-bilinear map Vect(U) ® C[U] — C[U]. Those
two maps together with (2.1) lead to a C-bilinear map

(h* ®Vect(U))®C[h x U] — C[hx x U].
Fixing ¢|y € (b* ® Vect(U)) gives a derivation C[li x U] — C[h x U].

Definition 2.1. The vector field defined by this derivation will be called the total vector field of H-action
on X.

Explicitly, let ¢ = > ¢; ® D; for ¢; € b*, D; € Vect(U). Then the defined derivation on f ® g €
C[h] ® C[U] takes value

(2:2) 2 (Wi )@Di(g) e Ch] @ C[U]
This gives the total vector field on i x X. One can note that the vector field is tangent to {y} x X for
any p € I; i.e. as a derivation it preserves the set of functions vanishing on {y} x X. Indeed, locally such
functions are sums of f ® g € C[i] ® C[U] such that f(y) = 0, and in such case the image of the derivation
(2.2) also vanishes at {y} x X. The vector field restricted to {y} x X is precisely ¢(y), and for any y € 1
with H acting on X, we will denote this vector field by V. Later we will consider restrictions of the total
zero schemes to bigger subsets of h.

One sees that for any y € i and x € X, the value V|, of the vector field V, at x can be recovered by
considering the derivative at 1y of the map H — X defined as g — g - x and evaluating it on .

Definition 2.2. Let V be a vector field on a smooth variety X. For each open set U — X, it gives a
derivation DJ : Ox(U) — Ox(U). Let us consider the ideal sheaf generated by the image Dy (Ox) < Ox.
This is the defining ideal of the zero scheme of V on X.

Remark 2.3. One can also view vector fields on smooth varieties as sections of the tangent bundle. As the
tangent bundle is a locally free sheaf, we can define the zero scheme of the vector field by considering it
locally as a tuple of regular functions (see Lemma 3.10). In other words, if the tangent bundle is free over an
open subset U < X, after the choice of a trivialisation, its section V' is defined by n-tuple of regular functions
fis f25- -+ fu- Then the zero scheme of V on U is the zero scheme of the ideal (fi, f>,..., f;) € Ox(U).
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2.3. Background results on algebraic groups and vector fields

We first recall (part of) the theorem of Borel on solvable groups (¢f. [Bor91, Theorem 10.6], see also [Mill7,
Theorem 16.33]) that we will often tacitly use throughout.

Theorem 2.4. Let H be a connected solvable group with Lie algebra bt and H,, its set of unipotent elements. Then:

(1) H, is a connected normal closed, unipotent subgroup of H containing [H, H].

(2) The maximal tori in H are all conjugate. If T is a maximal torus, then H = H,, x T. The Lie algebra of
H,, consists of all nilpotent elements of .

(3) If T is a maximal torus, then any semisimple element of H is conjugate to a unique element of T.

Remark 2.5. Let I, be the set of nilpotent elements of h. It follows from the above that Iy, is a Lie subalgebra
of 1. As it consists of nilpotent elements, hence acts nilpotently by the adjoint action, by Engel’s theorem it
is nilpotent itself. Moreover, it contains [, li]. In addition, from the second statement we get that i = 1, @t
for t = Lie(T).

Now assume we are given a group action H G X of an algebraic group. For any g € H(C) the action of
¢ is an isomorphism X — X. If we fix any closed point x € X, its derivative Dg|, at x is an isomorphism
Ty x — Tgx,x- We will simply write it as Dg if x can be inferred from the context.

Lemma 2.6. Let an algebraic group H act on a variety X. Then for any g € H, y € h = Lie(H) and x € X, we
have

Vad,(vlgx = Dg (Vyl)-

Proof- Let u: Hx H — H denote the multiplication map and p: H x X — X denote the action of H on X.
Consider the following commutative diagram:

HxHxHx X
id xid xp
%id \
HxHxX HxHxX
puxid id xp
Hx X Hx X

If we fix a point at the top, it yields an analogous commutative diagram of differential maps. Take
(g 1,g_1,gx) eHxHxHx X and (0,9,0,0) in its tangent space. Going through the left branch, it is
mapped to Vaq, (y)|gx, and going through the right one, it is mapped to Dg(V,|y). O

Lemma 2.7. Let A be a commutative C-algebra. Let Dy: A — A be a C-linear derivation and V a C-vector
space of C-derivations A — A normalised by Dy ; i.e. for any Dy €V we have [Dy,Dy| € V. Let m, be a

radical ideal in A that contains im Dy for all Dy, € V. Then for any f € 4 /(im Dy )p, ey we have Dy f € m,.

Proof. Let Z = (im Dy )p,, ey be the ideal generated by images of all the derivations from V. We first prove
by induction that (Dy)"(I) < m, for all # > 0. The case n = 0 follows from the assumption that 7 < m,.
Now assume that (Dy)"(I) < m, for some 1 > 0. Fix one particular derivation Dy € V; we will want to
prove that (Dy)"*!im Dy < my. We have Dy Dy, — Dy Dy = Dy € V; therefore,

Dy*'Dy — DiDwDy = DDy,
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hence
Di*'Dy = D¥(DwDy + Dy).
Now clearly im Dy Dy + Dy < Z; hence by the inductive assumption the image of the right-hand side is
always in m,. Therefore, im D;Z,HDW C m, as we wanted to prove.
Now assume that f € v/Z and let f* — Z. We then know that f¥ € m,, therefore f € m,. By the above we
also know that le, f* € m,. By the Leibniz rule Di‘, f* is the sum of terms of the form

k
[1(OVF)
i=1
for non-negative integers a1, @;..., @y such that @y + a, + --- + a; = k. Note that for all the terms except
for (Dyf)k, at least one of a1, ay, ..., ay is zero, and all those terms belong to my as f € m,. Therefore,
we get (Dy f)* € m,, hence Dy f € m,. O

As a geometric counterpart, we get the following lemma, which will prove very useful in our proofs.

Lemma 2.8. Let Y be a vector field on a smooth variety X. Assume thatV is a subspace of the C-vector space of
all global vector fields. If Y normalises V, i.e. [Y,V]| <V, then Y is tangent to the reduced zero scheme of V.

In particular, if a Lie group H acts on X and a subspace V < i has isolated (simultaneous) fixed points, then
they are fixed by the normaliser Ny (V) of V in I

Note that even the reduced zero scheme of )V might be singular. A vector from a tangent space to X is
considered tangent to a subscheme Z if it is in the image of the tangent space of Z; see the discussion in
Section 2.2. Equivalently, in a local affine neighbourhood, it annihilates all the functions that vanish on Z,
i.e. those from the defining ideal of Z.

Proof. As the statement is local, we can assume that X = SpecA is affine. Let x € X be a simultaneous
zero of V. Then x corresponds to a maximal ideal m, << A. The space V gives rise to a vector space of
C-derivations A — A, and Y to a single derivation Dy: A — A. By the assumption on x, for any Dy € V
we have im Dy < m,. Hence, by Lemma 2.7, the derivation Dy vanishes at the point x on the ideal of the
reduced zero scheme of V. Thus Y is tangent to that scheme. O

Remark 2.9. There is an alternate, analytic proof, which works under the assumption that )V is finite-
dimensional - which will always be the case for us. It is non-algebraic and hence also non-translatable to
other fields, but one could argue it is less technically demanding and moreover works in a smooth, not
necessarily algebraic setting, so we present it here as well. In fact, the assumption that V is finite-dimensional
can also be dropped if we use the fact that the functions we deal with are all analytic, hence they vanish
locally if all the derivatives in a point vanish - this approach mimics the algebraic proof.

Let ¢ =[Y, _]|V be the commutator map V — V induced by Y. Let x be fixed by V, and let us consider
a local one-parameter subgroup ‘¥, around x defined by the vector field Y. For any vector field W, we have

[Y, W]x = % ((Dx\yt)_l W‘I’,(x)) |t:0

and analogously

d

[Y, W]\I’t(x) =7, ((Dx\pu)ilw‘lhu(x)) ’u=0'

Composing this with the linear map (D, W;) ™!, we get, for W € V), the following:

_ d .
(Dx\Pt) 1¢(W)\Pt(x) = E ((Dx\yu> ! W‘I’,,(x)) ’u:t‘
Hence if we consider the map 7: (—¢,¢) — Hom(V, T, X) defined as

T(t)(Y) = (Dx\yu)il W\I’,(x)l
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we get
d "
() = ¢ (o),
We get a linear equation, and in particular, as 7(0) vanishes (because V vanishes at x), we get that 7
vanishes around 0 as well; hence T moves along fixed points of V.

The next lemma will be used to show that zeros of generalised Jordan matrices are zeros of the torus.

Lemma 2.10. Let a Lie algebra i acts on a smooth variety X. Let d,n € i commute, and assume that the Lie
subalgebra generated by [1n,1x] and n is nilpotent. Let x € X be an isolated zero of the vector field V; associated to
j =d+n. Then x is also a simultaneous zero of Cy(d). In particular, x is a zero of any abelian subalgebra of Iy
containing d.

Proof. Let k be the Lie subalgebra generated by [l1, 1] and 7. By Lemma 2.8 we first get that x is a zero of d
and 1, as they commute with j.

We will first prove that x is a zero of C'(d) = Cy;(d) N k. As k is nilpotent by assumption, its subalgebra
C’(d) is nilpotent as well.

By definition d is in the center of C(d); in particular, it commutes with C’(d). Hence from Lemma 2.8
we have that x is a zero of N¢/(4)(C - n). It is therefore an isolated simultaneous zero of d and Nc/(4)(C - n),
and we can apply the same argument repeatedly to get that for i = 1,2,... it is a zero of Né,(d)(([: -n).

The sequence (Né,(d)(([: -1));°_; has to stabilise at a Lie subalgebra of C’(d) which is its own normaliser
in C'(d). As C'(d) is nilpotent, it then has to be equal to the whole C’(d) (see [Bou89, Section 1.4.1,
Proposition 3]). Therefore, d and C’(d) vanish at x. But [Cy(d), Cy(d)] = Cy(d)n[h,b] < Cy(d)nk = C'(d);
hence C’(d) is normalised by the whole Cj;(d). Therefore, by Lemma 2.8 the whole C(d) vanishes at x. [J

From Remark 2.5 the assumptions about d and 1 hold whenever I is solvable, [d,n] = 0 and n € I, (as
1, is nilpotent and contains [, 1] as well as n).

2.4. Regular elements

Let H be an algebraic group and T < H be a maximal torus, of dimension r. We will call an element
v € i = Lie(H) regular if dim Cy(v) = r. This is stronger than the usual notion of a regular element in
the literature (see e.g. [Cheb5]) - an element whose centraliser has minimal possible dimension. All the
centralisers have dimension at least r, but it is possible that no regular element exists. For example for
H = C* x C - the product of the multiplicative and the additive group - all centralisers are 2-dimensional.

Example 2.11. For H= GL,(C) or H=SL,(C), a regular element of 1 is a matrix with all eigenspaces of
dimension 1. Among the regular elements, the regular semisimple ones are the diagonalisable matrices with
distinct eigenvalues, and a regular nilpotent matrix is conjugate to a single Jordan block.

Example 2.12. More generally, any reductive group G contains regular elements in its Lie algebra, in particular
a regular nilpotent element. Indeed, once we choose a maximal torus T © G and positive roots, we can take
e=x1+xy+ -+ xg, where x1, x5, ..., X, are the root vectors of g corresponding to the positive simple
roots (s = ¥ —dim Z(G)). Then e is a regular nilpotent in G (see [Kos63, Section 4.2, Theorem 4]).

The condition dim Cy(w) > r is a Zariski-closed condition on w as it means that [w, —| has sufficiently
small rank, which amounts to the vanishing of some minors of a matrix. Therefore, if H admits a regular
element in its Lie algebra, the subset of regular elements (i"*® — I is open and dense.

Note that if H is solvable, then by Theorem 2.4 we have [Ii, i] < Iy,. This means that for any v € i we
have [v,li] < I,. As the codimension of 1, is exactly r = dim T, the dimension of maximal torus, v being
regular is equivalent to [v,li] = Ir,,.
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Also note that if H' ¢ H is a subgroup which contains a maximal torus T of H, then any regular v € I
contained in Iy is also regular in It. Indeed, if r = dimT, then dim Cy (v) < dim Cy(v) = r, but at the
same time dim Cy/(v) cannot be less than the dimension of the maximal torus T of H'. This means in
particular that the centraliser Cy(v) is contained in Iy'.

2.5. sl,-triples and b(sl,)-pairs

The classical version of the Carrell-Liebermann theorem (¢f. [CL77, Main Theorem and Remark 2.7]) deals
with an arbitrary vector field V on a smooth projective variety X, which vanishes in a discrete, non-empty
set. They prove the following

Theorem 2.13. Let X be a smooth projective complex variety and V' a vector field with finitely many zeros, and
denote its zero scheme by Z. Then there exists an increasing filtration F, on C[Z] such that

H*(X) =~ Grp(C[Z]).

1t is an isomorphism of graded C-algebras, and with respect to the grading, the degree of an element is multiplied
by 2 when we switch from the right-hand side to the left-hand side. In particular, X only has even cohomology.

The theorem therefore gives some information on cohomology, but this depends on determining the
filtration F,. This can be hard in general. Only if V comes with a C*-action which satisfies t, (V) = tkV/
for some non-zero integer k, do we get H*(X) =~ C[Z(V)] (see [ACLS83], [AC87, Theorem L.1]). We will
consider those vector fields as coming from an action of a Lie group. Hence we have the following definition.

Definition 2.14. For any complex Lie algebra 1, by a b(sl,)-pair in I1, we mean a pair (e, ) of elements of
I1 that satisfy the condition [/, e] = 2e. By an sl,-triple in Iy, we mean a triple (e, f,h) of elements of I such
that [h,e] = 2e, [h, f] = —2f, [e,f] = h.

If G is a semisimple group, then by the Jacobson-Morozov theorem (see e.g. [CG97, Theorem 3.7.1]),
for any nilpotent element e € g, there exists an sl,-triple (e, f,h) in g such that f is nilpotent and  is
semisimple. The same is then true for any reductive Lie group G as a reductive Lie algebra is a direct sum
of its center and a semisimple ideal (cf. [Jac79, Theorem IL11]).

Let us consider the connected subgroup K © G whose Lie algebra k is the smallest one which contains e,
f, h (see [Bor9], Section IL7.1]). Then the Lie algebra of [K,K] is equal to [k, k] (see [Bor9l, Proposition 7.8]).
However, by [Bor91, Corollary 7.9] we have [k, k] = [span(e, f,h),span(e, f,h)] = span(e, f,h). Hence we
get an algebraic subgroup [K, K] (contained in K, hence equal to K) of G whose Lie algebra is span(e, f, h).
As its Lie algebra is semisimple, the group itself is semisimple. By [Mill7, Theorem 20.33], if it is non-trivial,
it has to be either SL,(C) or PSL,(C). In either case, there is a covering map

(2.3) ¢: SL,(C) — K.

As any automorphism of sl;(C) lifts to an automorphism of SL,(C), we can assume that the canonical basis

eo, fo, fo of sl, maps to e, f, h, respectively. Hence we get the following.

Proposition 2.15. For any nilpotent element e in the Lie algebra g of an algebraic reductive group, there exists
an sly-triple (e, f,h) within g with f nilpotent and h semisimple. If e # 0, the element h integrates to a map
C* — G with discrete kernel, whose differential is h.

Remark 2.16. As we saw in Example 2.12, if G is reductive, then there exists a principal nilpotent e € g. By
Proposition 2.15 this means that there is an sl,-triple (e, f,h) with e principal nilpotent, f nilpotent and h
semisimple. By the general theory of representations of sl,, the ranks of the operators [e, —] and [f,—] are
equal; hence f is also regular. This motivates the following definition.

Definition 2.17. An sl,-triple (e, f,h) will be called principal if e and f are regular nilpotents.
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Definition 2.18. For a linear algebraic group H, an integrable b(sl,)-pair in i = Lie(H) is an sl,-pair
(e,h) in Iy which consists of a nilpotent element e and a semisimple element i which is tangent to some
one-parameter subgroup H: C* — H; i.e. h = DH|;(1). This means that (e,/1) comes from an algebraic
group morphism B, = B(SL;) — H. We call an integrable b(sl,)-pair principal if e is a regular element
of In.

Remark 2.19. Note that, unlike an sl,-triple, a b(sl;)-pair does not have to be integrable. As an easy
counterexample, we may take

e 0 0 01 0
h=10 m-2 0 , e=10 0 O
0 0 2—-21 0 0 O

for H=SL3(C). Then [h,e] = 2e, but h is not tangent to a 1-dimensional torus (we can replace 7 with any
irrational number).

Definition 2.20. We call a connected linear algebraic group H principally paired if it contains a principal
integrable b(sl;)-pair.

For example, a reductive group is principally paired because of Proposition 2.15. More generally, we have
the following.

Lemma 2.21. Let G be a reductive group. Then any parabolic subgroup P — G is principally paired.

Proof. Because there is a Borel subgroup B — P, it is enough to prove the result for B = P. Note that if
B = B, is the Borel subgroup of SL,(C), then the image ¢(B,) of (2.3) is a solvable connected subgroup
of G; hence it is contained in a Borel subgroup of G. All Borel subgroups of G are conjugate (see [Bor9l,
Theorem 11.1]); hence they are all principally paired. ]

2.6. Kostant section and generalisations
The seminal work of Kostant shows the following theorem (¢f. [Kos63, Theorem 0.10]).

Theorem 2.22. Assume that G is a semisimple group and (e, f,h) is a principal sly-triple. Then every
regular element of g = Lie(G) is conjugate to exactly one element of S = e + Cy(f). Moreover, the restriction
C[g]® — C[S] is an isomorphism.

The affine plane S is called the Kostant section. We will provide in Theorems 2.35 and 2.37 a version that
works for arbitrary principally paired groups.

2.6.1. Solvable groups.— First assume that H is a solvable group. Let T be its maximal torus and f,
be the nilpotent part of i = Lie(H). Assume that e € Iy, i € t are such that (e, ) is a principal integrable
b(sly)-pair. Let {H'},ccx be the one-parameter subgroup in H to which & € [y integrates.

Lemma 2.23. All elements of e + t are regular and not conjugate to one another.
Proof. Assume that for some v € t the element e + v is not regular. This means that dim Cy(v) > r + 1. As
Adpi(e +v) = t?e + v, for any t € C* we have
dimCy (e +v/t?) =dim Cy (e +v) =dim Cy(e +v) > r + 1.
As the set of non-regular elements is closed in Iy, we get dim Cy(e) > r + 1. This contradicts the regularity
assumption.
For any x € i and M € H, we have Ady(x) — x € [, 1] < I, by [Bor9], Propositions 3.17 and 7.8].

Therefore, no two distinct elements from e +t can be conjugate to one another as they differ on the
t-component. U
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The following lemma is based on an argument provided by Anne Moreau.
Lemma 2.24. Every regular element of &1 is conjugate to a unique element of e + t.

Proof- We know that it = t @ I,,. Assume that x = v + n, where v € t and 7 € I, is regular. This means that
[x, ] = I, (see Section 2.4). Let us consider the map
(2.4) Ad_(x): H—§.

As in the proof of Lemma 2.23, we see that the image is actually contained in v + ly,,.

Note that the image of the derivative of (2.4) at 1 is [x, 1] = i, = To(v + I1,,). Therefore, by [Spr98,
Theorem 4.3.6] the morphism Ad_(x): H — v + I1,, is dominant. Analogously, as e + v is regular by
Lemma 2.23, the morphism Ad_(e +v): H— v + I1,, is dominant. Therefore, the images of Ad_(x) and
Ad_(e+v) are both dense in v + 1. By [Spr98, Theorem 1.9.5] they both contain open dense subsets of
v + 1, and hence they intersect, which means that x and e + v are conjugate.

The uniqueness follows from Lemma 2.23. n

Now we will also provide an equivalent of the classical Jordan form, for arbitrary solvable groups. Recall
that by Remark 2.5 every x € I is of the form x = w + n, where we t and n e y,,.

Theorem 2.25. For any x = w + n € i withw € t, n € y,,, there exists an M € H such that x = Ady;(w + n')
with [w,n'] =0 and n’ € ly,,.

Proof. We have the Jordan decomposition (see [Bor91, Theorem 4.4]) x = x; + x,,, where x, is semisimple, x,,
is nilpotent and [x,,x,,] = 0. Then by Theorem 2.4 the element x; is conjugate to an element of t. Hence
there exists an M € H such that Ady;-1(x;) € t. Note that

Ad -1 (x5) — x5 € [I,11]
as in the proof of Lemma 2.23. Moreover,
Xs—w=(x—x,)—(x—n)=n—x,€h,
As [, )] < Iy, by Theorem 2.4, we therefore get Ad;/[1 (x5) —w € l,. As both Adys-1(x;) and w lie in t, we
get that they are equal. Therefore, putting n’ = Ady;-1 x,, we get
x=x;+x, =Ady(w) + Ady(n') = Ady(w + 1),
and the conditions are satisfied. O

Note that if w € t™8 :=t N i"8 is a regular element in t, then the only nilpotent #’ commuting with w is 0.
Therefore, we get the following.

Corollary 2.26. For every w € t'*® and n € h,, the elements w and n + w are conjugate.

Example 2.27. Let us give two examples for H = B3, the Borel subgroup (of upper-triangular matrices) of
SL3(C). Let the principal nilpotent element e be of the form

01 0
e=10 0 1
0 0 O

(1) Let w € t be of the form w = diag(0,v,v;) — vlervz I3 with v{ # 0, v, # 0, v{ # v,. Then note that

the matrix e + w is diagonalisable in the basis defined by the matrix

1 L 1
4 Vz(Vzl—Vl)
M,=10 1 F— ;
0 O 1

ie e+w= MwwMu_,l.
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(2) Consider the matrix e + w, where w € t is of the form w = diag(0,vy,0) — 313 with vy # 0. If we

take
1 5 0
M,=10 1 1]
0 0 —u»n
then
0 1 0 0 0 1
0 vy 1|=M,|0 v, 0|M,"
0 0 0 0 0 O
0 1 0
Therefore, fore+w= [0 v; 1 —%113 we get
0 0 O
-1/3 0 1
(e+w)=M,| 0 2v/3 0 |M,'
0 0 —v1/3

The matrix M,, used here does not have determinant 1. We can however multiply it by any cubic
root of vfl to get a matrix from Bj.

In the case of H = B,,, one can apply the following intuition. If w is a regular element of t, then it
is a diagonal matrix with distinct eigenvalues. Then if we add any upper-triangular matrix, it is still
diagonalisable. Moreover, as all the entries are on or above the diagonal, we can diagonalise it by conjugating
with an upper-triangular matrix.

Remark 2.28. Even for H = B,,,, the Borel subgroup of SL,,, we cannot require w + n’ from Theorem 2.25 to
be of the classical Jordan form under no additional assumption on x. Even for w = 0, there is an infinite
number of nilpotent orbits of adjoint action of B,, on b,, for m > 6; see [DM80]. One can prove that if x is
a regular matrix, then we can actually find an n’ which is a nilpotent Jordan matrix.

2.6.2. Reductive groups.— Assume that G is a reductive group. Let T be its maximal torus, B a Borel
subgroup containing T, B~ the opposite Borel, U and U™ the respective unipotent subgroups. Let g, t, b, b,
u, 1~ be the corresponding Lie algebras. Let (e, f,h) be a principal sl,-triple in g such that eew, f eu™,
het. Let

S=e+Cy(f)

be the Kostant section.

Lemma 2.29. Under the assumptions above
Ad_(-): U xS —e+b"
is an isomorphism.

Proof. If G is semisimple, then the map
Ad_(—=): U xS —e+Db"

is an isomorphism (see [Kos78, Theorem 1.2]; see also another proof in [Gin00, Theorem 7.5]).

Now if G is an arbitrary reductive group, let G*9 be its adjoint group, and let 7: G — G24 be the quotient
map. From [Mill7, Proposition 17.20] we have that 7t(B) and 7t(U~) are Borel and maximal unipotent in
G294, respectively. Note that kerw = Z(G) and the connected component of Z(G) is a torus (¢f [Mill7,
Proposition 19.12]). As a torus contains no non-trivial unipotent elements, we have kermt n U™ = {1}.
Therefore, 7t|y- is an isomorphism U™ = 7t(U~). We then know from the above that

Ad_(—): (U™) X Sgaa —> €+ Doq
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is an isomorphism. From [Jac79, Theorem IL1l] we can identify g?d with an ideal inside g such that

g=2(g) @gad. Then we have
n(U™) x Sg = ((U™) x Sgaa) x Z(g)

and

bg =Dgaa X Z(g).
As the adjoint representation is trivial on the center of a Lie algebra, we have the following diagram, where
the middle column is the product of the left and right and the horizontal arrows are the projections:

(U7) x Sgat 4—— U™ xSg —» Z(g)
Ad_(-) Ad_(-) =

e+ Db

e+ b —» Z(9).

As the outer vertical arrows are isomorphisms, we get that for G the map
Ad (-): U xS —e+b"
is also an isomorphism. g

Let us now consider the preimage of e + t, and for any w € t denote by A(w) e U™, x(w) € S the elements
such that

(2.5) Adpw)(e+w) = x(w).

Note that we have two inclusions of affine spaces S < g and ¢ +t < g. The former induces the
isomorphism S = g//G, i.e. C[g]® = C[S] (by [Kos63, Section 4.7, Theorem 7]). The latter induces a map
C[g]® — C[e + t]. However, a regular element w € t is conjugate to w + e (see Corollary 2.26). Let us then
consider the composition C[g]® — C[e + t] — C[t], where the last map comes from translation by e. It is
equal to the map C[g]® — C[t] coming from the inclusion t — g - as the dual maps of schemes agree on a
dense subset of t.

Note that if we compose x*: C[S] — C[t] with the isomorphism C[g]® — C[S] described above, then
we get the composite map above C[g]® — C[t], which we now know is induced by the inclusion t — g.
By Chevalley’s restriction theorem (¢f [CG97, Theorem 3.1.38]), this map is an inclusion whose image is
C[t]W.®) Therefore, we get the following.

Proposition 2.30. The map x: t — S defined by the property (2.5) induces an isomorphism t /W — S.

2.6.3. Principally paired groups.— Now let H be any principally paired group. Let N be the unipotent
radical of H. Then N is a normal subgroup of H, and H/N is reductive. Let L  H be any Levi subgroup,
i.e. a section of H— H/N. By Mostow’s Levi decomposition (see [Mos56]), we can take for L any maximal
reductive subgroup of H. We have H = N x L and hence i = n @1, where I, n, [ are the Lie algebras of H,
N, L, respectively. Let r be the dimension of a maximal torus.

Assume that (e, ) is an integrable principal b(sl;)-pair within Ii, and let {H'} be the embedding of C*
to which & integrates. We can choose L such that & € [; hence we will assume this from now on. We then
have e = ¢, + ¢;, where e, € 11, ¢; € [. Let us consider, by the Jacobson-Morozov theorem (cf. Section 2.5),
the sl,-triple (e, f;, h;) within L.

(B)Chevalley’s theorem is originally formulated for semisimple groups. However, if we again consider gad as an ideal of g such
that g = g°d ®Z(g), we have
ad ad
Clol® = Cls™ @2 (@)1 = Cls*1”" @2(9) = Cltng* |V @ 2(0) = 1],

where the third equality follows from Chevalley’s original theorem for G4,
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Lemma 2.31. For H and (e, h) as above, ) is a regular element of 1.

Proof. We know that e is a regular element of 1. This means that [e, 1] is of codimension 7 in 1. But
note that [e,li] c n@®[e;, [] as n is an ideal. Therefore, [¢},1] is of codimension at most 7 in [. Therefore,
dim C;(e;) < r; hence actually dim C(e;) = r, and ¢; is regular in L. O

Now, let B; be a Borel subgroup of L whose Lie algebra contains e; and &, and inside it let T be a torus
whose Lie algebra contains /. In fact, B; is defined uniquely by those properties; see [CG97, Proposition
3.2.14]. Let B = N x B; - it is easy to see that B is then a Borel subgroup of H. Let U be its subgroup of
unipotent elements. Given B; and T, let B;” be the opposite Borel subgroup of L and Uj, U; the unipotent
subgroups of B; and B, . By b, by, t, b, , 1, 1, 1, , we denote the corresponding Lie algebras. Let W be the
Weyl group of H (equal to the Weyl group of L).

Lemma 2.32. All of the weights of the {H'}-action on 1 are positive even integers.

Proof. As e is regular in H, it has to be regular in B as well. Therefore, [e,b] = 1t (¢f Section 2.4).

We can choose a basis of b which consists of eigenvectors of [h, —]. We then choose from it a subset
{vi,v2,..., v} such that {[e, vi]}i-;l forms a basis of 1. Then [e, —] is an isomorphism span(vy,...,vx) — 1.
Let ¢ denote this restricted commutator operator [e, —]. For any v € b we have

[, [e,v]] = [[he],v] + [e, [h,v]] = 2[e,v] + [e, [, v]];
hence if [h,v] = Av, we get [h, [e,v]] = (A + 2)[e,v]. Therefore, for an h-weight vector v, ¢ satisfies the

condition
[hv]=Av < [how)] = (A+2)p(v).

Let us consider a weight vector w € u such that [h, w] = Aw and assume that A is not a positive even integer.
We now know that w = ¢(w;) for some wy € b with [h,w;] = (A —2)wy. As A —2 # 0, we have w; € 1t
(as t has only zero weights of H'-action). Then analogously w; = ¢(w,) for w, € b of weight A — 4. As
again A —4 # 0, we get w, = ¢(w3), and we continue this procedure to get an infinite sequence w = wy,
wi, Wy,... such that w; is a weight vector of weight w; — 2i. However, b is finite-dimensional, so we get a
contradiction. U

For our principally paired H, the role of the Kostant section will be played by
(2.6) S:=e+C(f;) ch.

Note that in case H is solvable, this is the same as what we consider in Section 2.6.1; i.e. S = e + t, where
t = L is the Lie algebra of a maximal torus.

Lemma 2.33. The conjugation map
Ad_(—): U xS —e+b/
is an isomorphism.
Proof. By Lemma 2.31 we know that the conjugation map
(2.7) Ad_(—): U x (e +C(f1)) — e +b/

is an isomorphism. But note that the weights of the T-action on 1, are exactly the negatives of the weights
on 1;. Hence by Lemma 2.32, evaluated on / they are all negative even integers. As n is an ideal in [, we
have
[, ,e,] cm

However, we know (again from Lemma 2.32) that the h-weight of e,, (equal to 2) is the lowest possible among
the weights in n. All the h-weights in [1;, e, ] would be lower. Therefore, in fact [1,,e,] = 0. Hence U,
commutes with e,,.

Then we get the conclusion simply by adding e, to both sides of (2.7). 0
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Now note that we are given two one-parameter subgroups: H' and Hlt, generated by h and h;, respectively.
We show that they actually only differ by a center of L.

Lemma 2.34. Let G be a reductive group and e a regular nilpotent element in g = Lie(G). Then the only
semisimple elements in its centraliser Cy(e) are the ones in the center Z(g).

Proof. Assume that v € g is a semisimple element such that [v,e] = 0. Choose a Borel subgroup B < G
whose Borel subalgebra b — g contains e and v, and let nn be the nilpotent part of b. We can choose a
maximal torus T within B whose Lie algebra contains v. Let r = dim T = dim Cy(e).

As e is regular in H, it is also regular in b and n = [b,e] (¢f Section 2.4). However, b = t@mn, so by
iterating we easily see that b is generated by e and t. Then as [v,e] = 0, this easily leads to [v,b] = 0. As b
was a Borel subalgebra and v is semisimple, from this [v,g] = 0 follows. O

From this lemma, as [h,e] = [h,e] = 2¢, we infer h — h; € Z(1). In the map Ad_(—) from Lemma 2.33,
let us consider the preimage of e + t, and for any w € t denote by A(w) € U™, x(w) € S the elements such
that

(2.8) Ad ) (e +w) = x(w).

We will now want to generalise Kostant’s Theorem 2.22. First, we find the contracting C*-action on §
from (2.6). Note that as e; is regular in L, f; is also regular in L (see Remark 2.16). Moreover, as all of the
weights of the H-action on 1; are positive integers, on 1; they are all negative integers. As the weight of
the action on f; is —2 (note that we use Lemma 2.34 to switch between the actions of h; and h), f; must lie
in 1, . In particular, f; € b, , and as b, contains the Lie algebra of the maximal torus of L, we have that f; is
regular in b, This means that Cy(f;) < b, (¢f Section 2.4). In particular, all of the weights of the H'-action
on Cy(f;) are non-positive integers. Therefore, for any x € Cy(f;) we have

Ady:(x +e) = Adpi (x) + t2e = 12 (Adp (x) /12 +¢)
and
tli_)rg)AdHf (x)/t* = 0.
Therefore, if we define the action of C* on H by
t-v=1t"2Adyv),
then it preserves S and for any v € S we have

limt-v=e.
t—00

Theorem 2.35. Every element of S is regular in hi. Moreover, every regular orbit of adjoint action of H on Iy
meets S.

Proof- For the first part, we proceed as in the proof of Lemma 2.23. Assuming that for some x € Cy(f])
the element x + e is not regular, we get that Ady:(x)/t> + e is not regular for any t, and from continuity
(t — o0) we get that e is not regular.

Now assume that some p € I is regular. It lies in a Borel subalgebra, and by [Hum?72, Section 16.4] all
Borel subalgebras are conjugate; hence we can assume y € b. As B contains a maximal torus of H, we have
that y is regular in b as well. Therefore, by Lemma 2.24 it is conjugate to an element of the form e + v for
v € t. It is then conjugate to x(v) € S. O

To finish the proof of C[ii] = C[S], we need to state the following lemma, already known for reductive
groups.

Lemma 2.36. We have C[h]" = C[1]* = C[t]V.
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Proof. The second equality is just Chevalley’s restriction theorem (¢f. [CG97, Theorem 3.1.38] and footnote (3)).
We need to prove that the restriction map C[i]! — C[[]" is an isomorphism.

Let us first prove that it is surjective. We have the projection map w: H — L, and then we can use it to
pull back any L-invariant function on L. If f is such function, its pullback is f o 7t,, and for any g € H and
v € [1, we have

(f o 704)(Adg (v)) = f(Ady(g) (114(v))) = f (70 (v)) = (f 0 70) (v);

hence f o, is H-invariant (and obviously restricts to f on [).

Now we prove the injectivity. As every element of H is contained in a Lie algebra of a Borel subgroup, and
they are all conjugate (¢f. [Bor91, Theorem 11.1]), a function from C[i1]" is fully determined by its values on b.
We know that b = t @1 and the weights of the {H'}-action on t are all 0, and on u they are all positive.

Therefore, any polynomial on b which is invariant under this action can only contain the t-variables.
Hence it is uniquely determined by its values on t. O

From the proof of Lemma 2.33 and from Proposition 2.30, the map x defines an isomorphism C[S] —
C[t]"W, and when composed with the restriction from C[ki]", it clearly gives the restriction C[h]" — C[t]W
(note that x and x(x) are always conjugate). Then from Lemma 2.36 we get the following.

Theorem 2.37. The restriction map C[i]" — C[S] is an isomorphism.

In particular, this means that no elements of S are conjugate to each other. Together with Theorem 2.35
this gives the following.

Corollary 2.38. Every regular orbit of adjoint action of H on Iy meets S exactly once.

2.7. Regular actions and fixed point sets

Definition 2.39. Assume we are given a principally paired H with (e, 1) the integrable principal b(sl,)-pair
in Ir. If H acts on a smooth projective variety X, we say that it acts regularly if e has a unique zero o € X.

Remark 2.40. The choice of integrable principal pair (e, 1) in ki is not unique. However, we will see below in
Lemma 2.46 that the property of the action being regular does not depend on the choice.

Note that as e is nilpotent, it generates an additive subgroup of H (by [Bor91, Proposition 1.10, Theorem 4.4
and Section I1.7.3]), and hence by [Hor69, Theorem 4.1] the zero scheme X¢ of V, is connected. It is therefore
enough to assume that the fixed points of e are isolated. We will in fact prove in Lemma 2.46 that all of the
regular elements of Iy have isolated fixed points on X.

Example 2.41. This example is from the PhD thesis of Ersan Akyildiz [Aky77a]; see also [Aky77b]. Consider
a complex reductive group G, with the choice of e as in Example 2.12. By the discussion in Section 2.5, there
exists an h € g which makes G principally paired. Let X = G/B be the full flag variety of G. Then for any
x = gB e X, by Lemma 2.6
Velx = Dg(Vaa,, o) l11))-

Therefore, V, vanishes at x if and only if Ady-;(e) vanishes at [1] = B. This means that Adg-;(e) €
b = Lie(B), or in other words, e € Lie(gBg™!). The subgroup gBg~! is of course a Borel subgroup of G.
By Section 2.5 the group B is the unique Borel subgroup of G whose Lie algebra contains e. Therefore,
e € Lie(gBg™!) only if gBg~! = B. By [Bor9l, Theorem 11.16] this is true only for g € B; i.e. x = [1].
Therefore, G acts regularly on the full flag variety G/B.

Hence G also acts regularly on all the partial flag varieties G/P. Indeed, assume that x € G/P is fixed
by e. If we denote by 7tp the projection 7tp: G/B — G/P, then 7_(;1 (x) is a closed subvariety of G/B, closed
under the action of G, generated by e. Hence by the Borel fixed point theorem (see [Mill7, Corollary 17.3]),
it contains a fixed point of G,, which is unique. Therefore, x is its image.
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Example 2.42 (see [BCO4, Section 6]). Let H = SL,(C), and consider the irreducible representation V' of
SL,(C) of dimension 7 + 1. In particular, the regular nilpotent

(5 o)

acts on V with matrix

01 00 0
0 01 0
0 0 01 0
00 00 1
00 00 0

If we consider X = IP(V), the action is clearly regular and the only fixed point of e corresponds to the vector
of highest weight in V.

2.7.1. Solvable groups.—

Lemma 2.43. Let H be a solvable group. Let T be its maximal torus and 11, be the nilpotent part of i = Lie(H).
Assume that e € Iy, h € t are such that (e, h) is an integrable b(sl,)-pair and that H acts regularly on a smooth
projective variety X. Then any element of e + t has isolated zeros on X.

Proof. We will denote by {H'},ccx the one-parameter subgroup to which & integrates. Define Z € t x X as
the zero scheme of the total vector field restricted to e +t = t. In other words, for any w € t that vector
field restricted to {w} x X equals V,, ,, (¢f. Definition 3.4). Also consider an action of C* on t x X which is
defined on t by multiplication by =2 and on X by the action of H’. By Lemma 2.6 this action preserves Z
as Adg(e) = t2e.

Consider the map 7w: Z — t defined as the projection onto the first factor of t x X. As it is a morphism
of schemes locally of finite type, by Chevalley’s semicontinuity theorem, ¢f. [GD66, Théoréme 13.1.3], the set

D ={(w,x) € Z:dimm, > 1}

is closed. Here
=1 H(w)c Z

denotes the fiber. Suppose D is non-empty. Hence we have some w € t such that dim{xe Z: (w +¢)|, =
0} > 1. Note that for any t € C* we have

tPwte=t>(w+t%e) = tzAdI;} (w+e).

Therefore, the zero set of t>w + ¢ is the same as the zero set of Adl_{}(w + e), which by Lemma 2.6 is
isomorphic - via the action of H' - to the zero set of w + e. Hence for each t # 0 we have (tw,0) € D,
where 0 € X is the unique fixed point of e. Because D is closed, we get (0,0) € D. Hence dim 7ty > 1, which
is impossible as 1ty = {(0,0)} by our regularity assumption. O

Theorem 2.44. Assume H and X are as in Lemma 2.43 and e is a principal nilpotent. Then any regular element
of i has isolated zeros on X.

Proof- This now follows directly from Lemmas 2.43 and 2.24. U
In particular, regular semisimple elements have isolated zeros on X. Therefore, we get the following.

Corollary 2.45. There are finitely many T-fixed points on X.
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2.7.2. General principally paired groups.— With the use of the results of Section 2.6.3, we can also
provide a version of Theorem 2.44 for arbitrary principally paired groups.

Lemma 2.46. Let a principally paired group H act regularly on a smooth projective variety X. Then all the
regular elements of It have isolated zeros on X.

Proof- We know from Lemma 2.35 that every regular element of ki is conjugate to an element of S from (2.6).
Therefore, it is enough to prove the statement for the elements of S. The argument is the same as in the
proof of Lemma 2.43, using the contracting action from Section 2.6.3. Note that if p € X is a zero of x + e,
then H'p is a zero of Ady:(x)/t? + e. Therefore, if (x + ¢, p) € D, we have (Ady:(x)/t> + ¢, H'p) € D for
any t € C* and then (e,lim;_,,, H'p) € D. O

3. Main theorem for solvable groups

We first consider a solvable group H acting on a variety X. We will prove that if the action is regular, then
for a maximal torus T < H, we can find Spec Hf (X) as a particular subscheme of t x X. This generalises the
result of [BCO04] for the Borel subgroup of SL,(C). The goal of this section is to find necessary assumptions
on H and construct the scheme Z = Spec Hf (X) inside t x X.

3.1. Principally paired solvable groups

Assume that H is a principally paired solvable group and (e, /) the principal integrable b(sl,)-pair
within H. By {H'},ccx we denote the one-parameter subgroup to which / integrates. Let T = H be the
maximal torus which contains it. From Theorem 2.4 we have H =T x H,,, where H,, < H is the subgroup of
unipotent elements. We denote by r the dimension of T (or t), equal to the rank of H. The torus T acts on
the Lie algebra 1 by the adjoint action Ad. It splits into two representations i = t @1, where Iy, = Lie(H,,).
The first one is trivial, and the weights of the other, a1, a»,..., ay € t*, will be called the roots of H. This
means that if v, vy, ..., vk are the root vectors, then for any map ¢: C* — T we have

Ad gy () = 15Oy,

We denote by t7® = t N 1"®8 the subset of t consisting of regular elements. As any element of t commutes
with the whole t, the condition of v € t being regular means Cy,(v) = t. This means that [v, —] does not
have zeros on I1,;; i.e. a1(v), ay(v), ..., ax(v) are all non-zero. Hence we see that the elements of t™8 are
those in t that are not annihilated by any root of H. As h € t is regular, all of the roots are non-zero on h -
by Lemma 2.32 they are even positive integers when evaluated on i - hence non-zero. Therefore, t™8 is a
non-empty open subset of t, and its complement is a union of hyperplanes.

In our applications H will mostly be the Borel subgroup of some principally paired algebraic group G.
Let us give an example below.

Example 3.1. A simple case of the above is H = B,,, := B(SL,,), the Borel subgroup of SL,, consisting of
upper-triangular matrices. Let b, be its Lie algebra. We have the torus T < B,,, consisting of the diagonal
matrices of determinant 1 and its Lie algebra t  b,,, consisting of the traceless diagonal matrices.

We can identify t with C"~! via the isomorphism

ViUt Uy
m

(Vl,VQ,...,Vm_l) —> dlag(O, leVZl"'fvm—l) — Im;
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ie. (vi,vp,...,v;_1) corresponds to the unique matrix A in t with a;; —ay;; =v;_; fori=1,2,...,m—1.
Then we can take e.g.

0 1 0 0
0 01 0 0
0 0 1 0
e= ) €g
0 0 00O 1
0 0 00O 0
and
m—1 0 0 0
0 m—3 0 0
h= 0 0 m—>5 0 ,
0 0 0 1—m

or equivalently h = (—2,—4,...,2 —2m) € C™~1, Then
H' = diag(¢™~ 1, ¢m=3,4m=5, . 37m lom),

The regular elements of t are the diagonal traceless matrices with pairwise distinct diagonal entries.

We can generalise this example by taking H to be a Borel subgroup of any reductive group G. This
choice defines the choice of positive roots (as those whose root vectors lie in 1). We can therefore take
e=x1+x,+ -+ xg, where x1, x5, ..., X, are the root vectors of g corresponding to the positive simple
roots (s = r —dim Z(G)). Then e is a regular nilpotent in G and H (see Example 2.12). From the discussion
in Section 2.5, we see that there exists an & that satisfies the conditions.

3.2. Uniform diagonalisations

We saw in Corollary 2.26 that e + w is always conjugate to w if w € t™5. In the first case in Example 2.27,
we have a closed formula for the conjugating matrix. We generalise this observation here.

Theorem 3.2. There exists a morphism M : t*°8 — H, denoted by w — M., that satisfies the equality
Ady, (w) =e+w
for any w € t7°8.

Proof. From Corollary 2.26 we know that for each w € t"*8 and #n € I, there exists an A € H such that
(3.1) Ady(w) =n+w.

We have to prove that for n = e we can choose such matrices in a way that varies regularly when w varies.

We know by Theorem 2.4 that there exists a V € T such that AV € H,. Any element of T clearly
centralises w. Therefore, AV also satisfies Adsy (w) = n + w. Hence we can assume that A € H,. We
first show that A € H, is unique with respect to (3.1). Indeed, assume to the contrary that A, A" are both
unipotent and Ads(w) = Ada/(w) = n+ w. Then

Adg-14(w) =Adp-1(n+w) =w.

Thus A~!A’ centralises w. Hence it centralises .A(w), the smallest closed subgroup of H whose Lie algebra
contains w. The group A(w) is contained in the torus T; therefore, by [Hum?75, Section 19.4] its centraliser
Ch(A(w)) is connected. But Lie(Cy(.A(w))) has to commute with Lie(A(w)), which contains w. By the
regularity assumption Cp,(w) = t; thus from the connectivity we get Cyj(A(w)) = T. Therefore, A"1A’ € T,
but as A~'A’ is unipotent, we get A"!A’ =1, hence A = A’
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Now consider the map
¢:H, xt' —h, ®t™8

P(Aw) =Ady(w).
We have just proved that ¢ is a bijection. Now by Grothendieck’s version of Zariski’s main theorem (cf.
[GD61, Théoréme 4.4.3]), it can be factored as ¢ = ¢ o1, where 1: H,, x t*8 — Y is an open embedding and
Y — ¢ is finite. By restricting Y to the closure of im, we can assume that im: is dense in Y. The map ¢ is
clearly dominant, and its source is irreducible; hence by [Har92, Proposition 7.16] it is birational. Therefore,
(.5 is birational as well, but it is finite and its target is normal; hence (]5 is an isomorphism. Therefore, ¢ is an
open embedding, which has to be an isomorphism as it is surjective.

Hence we get the desired map M: t*°8 — H,, by considering the first coordinate of ¢! | (e} xtree- O

3.3. Regular actions

From now on we will assume that our principally paired solvable group H acts regularly on a smooth
projective variety X (see Definition 2.39). By Lemma 2.10 the unique zero 0 € X of e is a zero of the whole I1.

Example 3.3. In Example 2.41 we see regular actions of a reductive group G on flag varieties. In Example 2.42
we constructed a regular action of SL, on IP”. In both cases, when we restrict to a Borel subgroup, we get a
solvable principally paired group (see Example 3.1) acting regularly on smooth projective varieties.

By Corollary 2.45 there are finitely many fixed points of the torus T acting on X. We will call them Cy = o,
Cy5 ..., Cs. Moreover, combining Lemma 2.43 with Lemma 2.8, we get that for any w € t™8 the only zeros of
V on X are Cg, Cq, ..., Cs.

Now, following the idea of [BC04], we define the scheme whose coordinate ring will turn out to be the
H-equivariant cohomology of X. As H is homotopically equivalent to its maximal torus T, this is the same
as the T-equivariant cohomology.

Definition 3.4. Let Z < t X X be defined as the zero scheme of the total vector field (see Definition 2.1)
restricted to e + t =~ t. We will denote that restricted vector field by V, ;. In other words, for any w € t the
vector field V,,; restricted to {w} x X equals V, .

We will also consider an action of C* on t x X which is defined on t by multiplication by t~2 and on X
by the action of H'. Clearly from Lemma 2.6 this action preserves Z as Adpy(e) = t?e. Our goal will be to
prove the following theorem.

Theorem 3.5. Let H be a principally paired solvable group acting regularly on a smooth complex projective
variety X. Then there is a homomorphism
p: Hr (X) — C[Z],

to be defined in (3.5), which is an isomorphism of graded C|t]-algebras. Moreover, the zero scheme Z is affine, so
that we have the following diagram with vertical isomorphisms:

%
2z -2 SpecHX(X;C)

o

t —— Spec Hf.

We will first study the structure of Z with connection to the torus-fixed points Cy, ..., C;. We will also
prove that Z is reduced. This will allow us to define a map p: H(X) — C[Z] by specifying p(c) by its
values. To show that p(c) is a regular function on Z, we will prove that Hf(X) is generated by Chern classes
of H-equivariant vector bundles.
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3.4. Equivariant cohomology and Bialynicki-Birula decomposition

We know that the T-equivariant cohomology Hf (pt) = C[t] of the point is the ring of polynomials on t. By
T we will denote the ideal of polynomials vanishing at 0, equivalently 7 = P, , H{ (pt). The multiplicative
group C* acts on X by the means of the morphism H: C* — H, t — H'. This action has finitely many
fixed points Cg, Cy, ..., C;. We may then consider its Bialynicki-Birula plus- and minus-decompositions (see

[BB73]), i.c.
Wﬁ:{xeX:IiHéHt-x:Ci}, Wi—:{xeX:tlimHt'XICi}'
P —00

All these sets are locally closed varieties, isomorphic to affine spaces.
When such decompositions exist, the odd cohomology of X vanishes; see [BB74]. Then by Goresky-
Kottwitz-MacPherson (¢f. [GKM98, Corollary 1.3.2]), the T-space X is equivariantly formal. In particular,

32) HE(X) = Hi (pt) @ H*(X)
as Hf (pt)-modules and H*(X) = H}(X)/ZTHf(X) as C-algebras.
Theorem 3.6. The Bialynicki-Birula plus-decomposition X = | J;_o W," is H-stable.

Proof. Assume that x € Wi+’ ie. lim,_,gH' -x = ;. Let M € H and x’' = Mx, and let Cj=lim; o H!-x'.
Then

(3.3) H'x' = H'Mx = (H'M(H")"")H'x.
Let M =D -U, where DeT and U € H,,. As H' € T, it commutes with D; therefore,
(3.4) H'MHY ! =DH'UH)L

Now as U € H,,, we have U = exp(u) for some u € l1,,. Here exp should be understood as the algebraic
exponential for unipotent groups (see [Mill7, Proposition 14.32]). We then have

H'UH") ! = H'exp(u)(H") ™! = exp(Ady: (u)).
By Lemma 2.32 the weights of the H'-action on I1,, are positive. Therefore, lim;_,g Adg:(u) = 0, hence
lim,_,o H'U(H")~! = 1. Combining (3.3) and (3.4) gives
H'x = DH'U(H") 'H'x.
Passing to limit t — O then yields
¢j =D,
As (; is fixed by T, we get i = j, hence x' € W™ as desired. O

3.5. Structure of Z

In order to prove H}(X) = C[Z], we study the structure of Z and construct a map H(X) — C[Z]. Let
(w,x) € Z. This means that e + w vanishes on x, and by Lemma 2.43 it is an isolated zero. By Theorem 2.25
there exists an M € H such that e+ w = Ady;(w+n’), where [w,n'] = 0 and #’ € [I1, li]. Then by Lemma 2.6
we have that M~!x is a zero of w + 1/, and by Lemma 2.10 it is a zero of t. Hence we get x = M{; for some
i€{0,1,...,s}. Moreover, (; is a zero not only of t but also of .

Example 3.7. We continue Example 2.27 and use the notation from Example 3.1 for the elements of t.

(1) Let w € t = C? be of the form w = (v1,v;) with v # 0, w # 0, v # w. We know that e + w =
MypwMy', and therefore any zero of e + w is of the form x = M,,(;, and conversely, for any i the
point M,,C; is fixed by w + e.
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(2) If w = (v1,0) with v; # 0, then we have a matrix M,, € B3 such that

—V1/3 0 1
(e+w)=M,| 0 2v/3 0 |M,L
0 0 —v1/3
Therefore, every zero of e + w is of the form x = M,,; for an i such that (; is also a zero of
0 01
Eis=10 0 0
0 0O

But conversely, if C; is additionally a zero of E;3, then M,,C; is a zero of e + w.

Remark 3.8. By Theorem 3.6, if x = M, then ; is in the same plus-cell as x. But (; itself is a torus-fixed
point; hence ¢; = lim,_,qg H' - x. In particular, this means that regardless of the potential choice of M we
might make, we always get the same torus-fixed point; i.e. if x = M (; = M»(;,, then i; = i,. The elements
M and n’ are however not unique.

Note that for i = 0,1,...,5 and w € t, there is at most one zero of e + w in the plus-cell of ;. Indeed,
assume that there are two such points. By the above, if we choose any M such that e + w = Ad ) (w + '),
then they are of the form x; = M(; , x, = M(;,. But as in the last paragraph, in fact we have i, =i} =1i.
Therefore, x; = x,.

The converse statement also holds for particular torus-fixed points. Assume that we are given w € t and
M, € H, n’ € I, such that e + w = Ady; (w + #’) and [w,n] = 0. In this case, if {; is a zero of 7/, then
M,,C; is a zero of e + w. However, for given w the corresponding vector field V,/ in general does not vanish
in all the torus-fixed points.

Example 3.9. Let us consider the standard action of B3 on IP?; i.e. we define

a b ¢
0 d e |- [vo:vi:vy]=[ug:up:up
0 0 f
for ug, uq, U, such that
a b c\ (v U
0 d el|lvi]|=1|u
0 0 f) \v Uy

We have three torus-fixed points (; =0=[1:0:0],(, =[0:1:0],C3=[0:0:1]. For w = (vy,v;) €
C? = t regular, there exists a matrix M, such that e +w = MwwMu_,l. Then M,,C; is a fixed point of e +w
fori=1,2,3.

However, if w = (v1,0) with v; # 0, then there exists a matrix M,, such that e + w = M, (w + e13) My .
The vector field V, , corresponding to e13 vanishes at C; and C, (but not at C3); therefore, the zeros of e +w
are exactly of the form M,,C; and M,,C5,.

Specializing even more, if we consider w = (0,0), then e + w = e is already a Jordan matrix (we can take

M,, = I3). Its only zero is {; = 0, so the only fixed point of e + w is 0.

We will define a map Hy (X) — C[Z] by constructing, for each element of Hf(X), a function in C[Z] by
its values. So that it is well defined, we first show that Z is reduced.

Remember that we defined a C*-action on X and t - see the comment below Definition 3.4. It turns out
(¢f [Car95, Proposition 1]) that if we consider the Bialynicki-Birula minus-decomposition on X, then the
minus-cell X, := W, corresponding to 0 is open. In other words, all of the weights of the action around o
are negative. Therefore, we can choose on X, coordinates x7, X5, ..., X,, that are weight vectors of T, and
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the values of weights on h are positive integers ay, a, ..., a,. Using these coordinates we model X, as a
vector space; thus we can identify the tangent spaces to its points with X, itself.

We also have the grading on C[t] defined by the action of C* on t (of weight —2). Therefore, choosing
coordinates vq,...,v, on t, we have

Clt x X,] = Clv1,v2, ..., Vp X1, X2, .+, X ]

with degv; =2 (for i = 1,2,...,r) and degx; = a; (for i = 1,2,...,n). The tangent bundle of X,, as an
affine space, is trivial, and the coordinates on X, define its trivialisation; hence we can speak of coordinates
of V, ¢ (¢f Remark 2.3). We now prove the following Lemma, which for H = B, was proved in [Car95,
Theorem 4].

Lemma 3.10. The scheme Z is complete intersection and reduced and contained in t x X,, hence affine. The ideal
of Z in C[t x X,| = C[vy,vy,...,V;,X1,X2,...,X,] is then generated by the vertical coordinates of the vector field
Vett:

(Vest)rr (Vert) s (Vert) -
The degree of each (V,¢); is equal to a; + 2, and together with vy, vy, ..., v,, they form a homogeneous regular
sequence in C[vy,vy,...,Vp, X1,X0,..., Xp].

Proof. First, let us show that Z is contained in t x X,. Let (w,x) € Z. We then know that x is a zero
of the vector field V,,,,. For any t € C*, by Lemma 2.6 we have that H' - x is a zero of Vady(e+w)- As
Adpy (e +w) = t?e + w, this means that H - x is a zero of e + ¢t ?w. When we take t — o0, this converges
to e. Therefore, lim,_,,, H - x = 0. This means that x € X,,.

Now we will prove that (V,,); is homogeneous of degree a; + 2. We have

(Ve+t)i |t~(x,w) = (Ve+w/t2|H'~x)i = (Hi (VAdHt_1 (e+w/t2)|x>)i = (Hi (Ve/t2+w/t2|x))i’

th coordinate of tangent space by multiplying it by t=%, so

(Hi (Ve/t2+w/t2‘x))i =t (Ve/t2+w/t2|x)i =2 (Ve+t)i ‘(x,w)-

Since vy, vy, ..., v, have degree 2, the sequence

and H! acts on i

(Vert)1» (Vert)greeor (Vert) o v, 02,01

consists of homogeneous functions on the (r + 1)-dimensional affine space t x X,,. There are r + n of
them, and they have only one common zero. Therefore (see [Ben93, Proposition 4.3.4]), they form a regular
sequence. In particular, Z is the zero scheme of a regular sequence (Vi ¢);, (Veit)gs -+ +» (Vest),; therefore,
it is complete intersection.

Now we have to prove that Z is reduced. Let 7t: Z — t be the first projection. By Theorem 3.2 we get an
isomorphism 777! (t78) = t8 x XT. The first factor, as an open subscheme of affine space, is reduced. The
fixed points of the torus are also reduced (¢f. [Mill7, Theorem 13.1]); therefore, 77! (t™8) is reduced.

Now note that 77~!(t"8) is an open dense subset in Z. It is open because ™8 is open in t. To prove
that it is dense, assume to the contrary that there exists an x € Z\7t—1(t'®8). Let Y be its irreducible
component in Z. As Z = 7t~ 1(t*8) U w1 (t\t™8) and both sets are closed, by irreducibility Y has to be
contained in one of them. As x is not contained in the former, Y has to be contained in the latter, so that
7t(Y) < t\t™8. As t\t"8 is a union of hyperplanes in t, the same argument shows that t(Y') lies within
one of them (of dimension r — 1). Considering 7t|y as mapping to m and reducing if needed, we get a
dominant map between integral schemes. Note that as Z is complete intersection, it is Cohen-Macaulay,
and thus equidimensional by [Mat06, Theorems 17.6 and 6.5]. As t x {0} is closed in Z and of dimension ,
the dimension of Z is at least r. Therefore, by the fiber dimension theorem (see[Har97, Exercise I1.3.22(b)]),
the fibers of 7t|y are at least 1-dimensional. But they are finite by Lemma 2.43, so we get a contradiction.
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Now as 77~ !(t™8) is an open dense subset in Z, it contains its generic points; hence Z is generically
reduced. Using that Z is Cohen-Macaulay, by [GW10, Proposition 14.124] we get that Z is reduced. g

3.6. The homomorphism p

Let c € Hf(X). In Section 3.5 we show that every element (w,x) of Z satisfies x = M,,(;. Here M,,
is some element of H depending on w, and (; is a uniquely determined fixed point of T-action. The

localisation c|¢, of ¢ to the torus-fixed point can be now seen as a polynomial in t because Hy (pt) = C[t].
We then define

(3-5) p(e)(w,x) = cf¢, (w).

This follows the idea of [BC04], where p is defined this way for B,. For any c € Hf(X) this defines a function
p(c) on the set of closed points Z. This clearly gives a C[t]-homomorphism between Hf (X) and the algebra
of all C-valued functions on Z. We have to prove that for any c € Hf(X) the image p(c) defines a regular
function, which is unique by Lemma 3.10. Thus we get a C[t]-homomorphism

p: Hi(X) — C[Z].

In general, assume that we are given an algebraic group H and an H-variety A. For any H-linearised bundle
€ on A, we may consider its equivariant Chern classes C,I;I(g) € Hék (A). Let p € A be a fixed point of H.
From the naturality of Chern classes, we get CkH E)lp = C]Ij(é'p), where &, is the fiber of £ over p. This
belongs to H{j(pt)  C[h], and for any y € 1 we get

(3.6) CkH(g)‘p@) = TrA"Ep (Akyp)'

Here y, is the infinitesimal action of y € i on £,, which is a representation of H.

Lemma 3.11. Let £ be an H-linearised vector bundle on X, and let k be a non-negative integer. Then for any
(w,x) € Z we have

0 (c,f(g)) (w, %) = Trpse, (Ak(e + w)x) .
In particular, p(c; (€)) € C[Z].
Proof. We have x = M,,; for some ; € X' and M,, € H. Moreover,
e+w=Ady (w+e)

for some ¢’ € I, that vanishes at {; and commutes with w. Note that, as £ is H-linearised,

TI'Akgx (Ak(e + W)x) = TI'AkgM_lx <Ak (AdM;l (6 + w)) _1x> = TrAkgC,‘ (Ak(w + el)Ci) .
From (3.5) and (3.6) we have

0 (cg(g)) (w,%) = ¢ ()¢, (w) = Trare, (A"wc,-) .

Thus we have to prove that

TrAkgl,' (Ak (w + el)ci> = TI'AkgCi (Akai) .

But by the assumptions that [w,e’] = 0, w is semisimple and ¢’ is nilpotent, we get that the sum w + ¢’ is
the Jordan decomposition of Ad-1(e + w) in the sense of [Bor91, Theorem 4.4]. Then by the naturality of
the Jordan decomposition, the derivative of the representation Staby;(C;) — GL(&,) preserves it. Therefore,
we,, seen as an element of gl(&;,), is the semisimple part of (w + €’),, seen as an element of gl(&, ).

But for the Jordan decomposition in the general linear group, the eigenvalues of the semisimple part are
the same as the eigenvalues of the decomposed element. Because traces of external powers are polynomials
in eigenvalues, this concludes the proof. 0
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The following lemma is based on [Car95, Proposition 3], which asserts it for B,.

Lemma 3.12. The cohomology ring H* (X)) is generated, as a C-algebra, by Chern classes of H-linearised vector
bundles on X.

Proof. We know that the fundamental classes of the plus-cells form a basis of H,(X); hence their Poincaré
duals form a basis of H*(X). Now we use Baum-Fulton-MacPherson’s Grothendieck-Riemann-Roch theorem
(see [Ful98, Theorem 18.3(5)]). We get that for any plus-cell W; € X, the homology class (ch(W;)td(X;))n[X]
is equal to the sum of [W;] and lower-degree terms. Therefore, ch(W;) is equal to the sum of the dual class
of [W;] and higher-degree terms. Therefore, Chern characters of the structure sheaves of plus-cells generate
H*(X).

As the plus-cells are H-stable by Theorem 3.6, we get that ch is surjective when restricted to the
Grothendieck group of H-equivariant coherent sheaves. By [Tho88, Corollary 5.8] it is generated by the
classes of H-equivariant vector bundles, and the conclusion follows. g

Remark 3.13. We did not use the regularity of the action in the proof. In fact, it was enough to know
that the fixed points of T are isolated. One could also argue the following in the general case. By [Bor9l,
Section 15.1, Example (2)] a linear solvable group over C is split. Then the restriction KI(—)I (X) — K% (X)
is an isomorphism, ¢f [Mer98, Corollary 2.16], and the restriction KTO (X) — K°%(X) is a surjection, cf.
[Mer98, Proposition 3.1]. The Chern character is an isomorphism from K°(X)® C to A*(X)®C, ¢f [Ful98,
Theorem 18.3], and the cycle class map A*(X) — H*(X,Z) is an isomorphism due to the paving given by
the Bialynicki-Birula decomposition, ¢f. [Ful98, Example 19.1.11]. Therefore, the (non-equivariant) Chern
character gives a surjection K{j(X) — H*(X,C).

Lemma 3.14. The equivariant cohomology Hy (X) is generated, as a C[t]-algebra, by T-equivariant Chern classes
of H-equivariant vector bundles on X.

Proof- Recall that 7 denotes the maximal ideal of C[t] cutting out the zero point. Since X is equivariantly

formal, we have an exact sequence
0 — IH{(X)— Hf(X) — H*(X) — 0.
By Lemma 3.12 we get that the C-algebra H*(X) is generated by Chern classes of H-linearised vector

bundles on X. Then by the graded Nakayama lemma (see Corollary A.2), the C[t]-algebra H}(X) is
generated by their equivariant Chern classes. O

This together with Lemma 3.11 gives the following.

Corollary 3.15. The map p is a homomorphism of C[t]-algebras Hf (X) — C[Z].

3.7. Proof of isomorphism

Proof of Theorem 3.5. Clearly, p preserves the grading. For the injectivity, note that for any c € Hf(X) we
can extract from p(c) the localisations c|¢, for all 7 - as on the regular locus the function p(c) is defined by
all those localisations. Recall that X is equivariantly formal; see (3.2). Therefore, we get the injectivity of p
from the injectivity of localisation on equivariantly formal spaces; ¢f [GKM98, Theorem 1.6.2].

Hence to prove that the map is an isomorphism, it suffices to check that the Poincaré series of the two
sides coincide. Since X is equivariantly formal, Hf (X) is a free C[t]-module and

H (X)/THE(X) = H*(X).
Therefore,

(3.7) Prys (x) (£) = Prz ) (£) (1 — )",
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On the other hand, from Lemma 3.10 we know that the generating set of Z is a regular sequence in C[Z];
hence

(3.8) Perzyzerz)(t) = Pegzy (1) (1 - £2)"

Now C[Z]/ZC[Z] is the zero scheme of the vector field given by e. In addition, the action of the torus
H' satisfies Ady:(e) = t?e. Therefore, by the Akyildiz-Carrell version of the Carrell-Liebermann theorem
(see [ACLS83], and [AC87, Theorem 1.1] for this particular case), we have C[Z]|/ZC[Z] =~ H*(X) and in
particular

Pepz)/zcz)(t) = Pax(x) (£)-
Therefore, from (3.7) and (3.8) we get
Pepz)(t) = P (x) (1). [

Remark 3.16. From Theorem 3.5 we get that C[Z] is a finitely generated free module over C[t]. Therefore,
the map 7t: Z — t is finite flat.

Remark 3.17. The theorem can in fact be proved for a slightly larger class of solvable groups. We need H to
be a connected linear algebraic solvable group and as before (e,/) to be an integrable b(sl,)-pair, but it
does not necessarily have to be principal. For the proof of Theorem 3.6, we need to assume a(h) > 0 for
any root @ of H. However, even this assumption can be made unnecessary as we can consider the subgroup
H’ generated by T and the additive group generated by e. By [Bor91, Theorem 7.6] it is algebraic, and its Lie
algebra is generated by t and e. As the Lie bracket of h-weight vectors adds the weights, we clearly see that
all the weights on H' are non-negative multiples of 2.

Even if we assume that H is generated by T and the additive group generated by e, it does not follow that
e is regular. Take for example

t/u2 %k *

H-= 0 tueC”
0 0 u
0 0 0 u/t?

where the asterisks are understood to stand for any complex numbers. We choose

30 0 O 01 0O

01 0 0 0010
h= =

00 -1 0 000 1

00 0 -3 0000

Because the maximal torus is 2-dimensional and the centraliser of e is 3-dimensional, e is not regular.
However, together with the diagonal matrices, it generates [y as a Lie algebra.

In all of our examples of regular action, we only consider principally paired groups, and this extension
seems to only include very tropical cases. Therefore, we formulate our results in terms of principally paired
groups.

3.8. Functoriality

We now prove that Theorem 3.5 is actually functorial, with respect to both the group and the variety. We
prove the latter first.

Proposition 3.18. Assume that X and Y are two H-regular varieties and ¢: X — Y is an H-equivariant
morphism between them. Let Zx = Spec H{(X) and Zy = Spec H{(Y) be the schemes constructed above for X
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and Y, respectively. The map (id, p): t x X — t x Y induces a morphism Zx — Zy, and the following diagram

commutes:

*

HA(Y) —2 HE(X)

Py Px
(id,p)*

ClzZy] — C[Zx].

In other words, p is a natural isomorphism between the functors HY and C[Z] on the category of H-regular
varieties.

Proof. Consider a class c € Hf (Y). We want to show that for any (w,x) € Zx the functions px(¢*(c)) and
(id, ¢)*(py(c)) take the same value on (w,x). We know from Section 3.5 that x = M,,C, where M, is some
element of H depending on w and C is one of the T-fixed points of X. Obviously, then ¢(C) is a T-fixed
point in Y and ¢(x) = M, ¢(C). We then have

(id, ¢)* (py (c)) (w, x) = py (c)(w, P (x)) = c[pc)(w).
On the other hand,
px(¢™(c))(w,x) = p*(c)[c (w).

Now the equality above follows from the functoriality of H;‘ and the commutativity of

) 2 (o)}

e Lp(o)

XL)Y.

Proposition 3.19. Assume that Hy, H, are solvable principally paired groups. Let T; = H; be the corresponding
maximal tori and e; € (I1;),, the corresponding nilpotent elements in their Lie algebras. Let ¢: Hy — H, be a
homomorphism of algebraic groups satisfying

P(Ty) =Ty Puler) =eo

Assume that Hy acts regularly on a smooth projective variety X. Then the map 1 together with the H,-action
induce an action of Hy on X, which is also regular. In turn, the map (., id) induces a morphism Zyy — Zyy,,
and the following diagram commutes:

lp*
Hr,(X) — Hp,(X)

sz le

(Pyid)*

Proof. As 1, (e) = e, the group H; clearly acts regularly on X. Obviously, if (w,x) € Zy,, then e; +w
vanishes at x, and therefore 1, (e; + w) = e, + 1(w) vanishes at x, hence (),,id) maps Zy to Zy,.
Now let c € H}‘Z (X) and (w, x) € Zy,. We want to prove that

(s id)* (pn, (¢)) (w, %) = pr, (P (c)) (w, x).
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We know that x = M,,C for some M, € H; depending on w and an isolated T;-fixed point C. Then by
Lemma 2.8 the point C is fixed by T,. Therefore (¢f Remark 3.8), we have

(s, id)* (pr, (€)) (w, %) = pn, (€) (P (w), x) = c|c (P (w))
and
pr, (P(c))(w, x) = P(c)|c (w).
Now the equality follows from the commutativity of

*

Hz, (pt) — Hf (pt)

1l
ll
O

3.9. Examples and comments

We illustrate Theorem 3.5 with a few examples.

6r ]

-1.0 -0.5 0.0 0.5 1.0

Figure 1. Spec H:, (P?).

Example 3.20. We continue Example 2.42, which already appears in [BC04]. The point 0 =[1:0:---: 0] is
the unique zero of e. If [zy : 21 : -+ : 2,,] are the homogeneous coordinates of IP”, then the scheme Z lies
completely in the affine chart X, of o, with affine coordinates x; = z;/zq for i = 1,2,...,n. We have

x, = (—2x1, —4x,,...,—2nx,)

and

Then

.....

If we consider the zero scheme Z of e + vh within t X X,, then the coordinates x,,...,x, are clearly
determined by x; and v, and we can identify Z with the subscheme of Spec C[v, x1] cut out by the equation

x1(x1 4+ 2v)(x1 +4v) -+ (x1 +2nv) = 0.
In other words, H: (IP") = C[v,x]/(x(x 4+ 2v)(x + 4v) --- (x + 2nv)) with degv = degx = 2. See Figure 1.
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Remark 3.21. Clearly, a product X x Y of two varieties with a regular H-action is also regular, and its
equivariant cohomology scheme can be represented as a fiber product; i.e. Hy (X,Y) = Hf(X) ®px Hr (Y).

In particular, the product P! x P! is regular under the action of SL,, hence also of B,. It embeds in
IP? via the Segre embedding. The action of SL, on IP? from Example 2.42 is also regular. However, the
Segre embedding cannot be SL,- or even B,-equivariant with respect to those two actions. In fact, using
Theorem 3.5 we can prove a more general statement.

Corollary 3.22. Let a principally paired solvable group H act regularly on a smooth projective variety X. Assume
that Z is its closed, smooth, H-invariant subvariety. Then the induced map on cohomology rings

f*: H*(X,C) — H*(Z,C)
is surjective.

Proof- Clearly, Z is also an H-regular variety. From Theorem 3.5 we have Hf(X) = C[Zx] and H{(Z) =
C[Zy], where Zx and Z, are the zero schemes constructed for X and Z according to Definition 3.4. But
clearly from the definition we see that Z is the (reduced) intersection Zx N Z, hence a closed subvariety
of Zx. This means that the induced map C[Zx]| — C[Z7] is surjective. By Proposition 3.18 this is the
same as the map induced on equivariant cohomology. By equivariant formality we get the non-equivariant
cohomology by tensoring with C over H;‘, and this operation is right-exact; hence it preserves surjectivity. [

In particular, as h?(IP! x IP!) = 2, the product P! x P! cannot be embedded B,-equivariantly in any of
the IP"* with regular action.

-0.5

Figure 2. Two different views of Spec HZ, (Gr(2,4)). Note that all of the components project
bijectively to the v axis.

Example 3.23. As we have defined an action of SL,(C) on any C", we can use this to define actions on
partial or full flag varieties. Let us consider the action of the upper Borel subgroup of SL, on C* and the
induced action on the Grassmannian Gr(2,4) of two-planes in C2. We can identify it with SL4(C)/P, where
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P is the parabolic group of matrices of the form

* * * *
* * * %k
0 0 = =
0 0 % =

The only fixed point of e is 0 = span(e;,e;), and in the representation above X, can be thought of as the
set of classes of matrices of the form

1 0 = =
0 1 = =
Xy Vp % %
Xp Yy k%

Then if we write down the coordinates x1, V1, X5, 7, in this order, one checks that

Velx, pmps = (X2 = X191, —X1 — V1 + V2, — X192, —X2 — ¥192)
and
Vilxy o, = (41,291, 6x2,495).
Therefore, the equations of Z in C[v,x1,y1,X,,V,] are

dvx; +x—x191 =0, 2091 —x1 =y +9,=0, 6vx;—x193=0, 4vyr—x;—19, = 0.
We can determine x, and y, from the first two equations, and plugging them into the other two, we get
x1(x; +24v% — 8vy; +97) =0, (p; —4v)(2x1 — 2vy; +97) = 0.
This gives six one-parameter families of solutions (one for each torus-fixed point):
(x1 =0,31 =0); (x1 = 0,31 = 2v); (x) = —8v%,y; = 4v);
(x1 =0,9; = 4v); (xq = —12v2,y1 = 6v); (xq = —241)2,3;1 = 8v);

see Figure 2.

Figure 3. Spec H; (IP?).
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Example 3.24. Let us now switch to groups of higher rank. As in Example 2.41, we can consider the regular

nilpotent
0100 0
0 010 0
0 0 01 0
e =
0 00 0 .. 1
0 00O 0

in SL,, ;1. We have the regular action of SL,,; on IP", which in particular restricts to a regular action
of its upper Borel subgroup. We continue using notation from Example 3.1 for the elements of t. As in
Example 3.20, we have

Ve|x1,...,x,1 = (X2 — X1X1,X3 — X1 X2, X4 — X1X3,..., Xy — X1 Xy 1, — X Xp).

v1+v2+---+vnl

For the element (vy,v,,...,v,) € C", which corresponds to diag(0,vq,vy,...,v,) — P

n+1» the
associated vector field at (x1,x,,...,%,,) is equal to (v{x1,v7%y,...,v,X,). Hence

Ver 1,090 \xl,...,xn = (X —x1 (%1 = 1), X3 = X2(X1 = V2),. 0, Xy — X1 (X1 — V1), =X (X1 — V)
Thus we can determine x5, x3, ..., X, from x; and vy, vy, ..., v,. The scheme Z can then be realised
within Spec C[vy,v,,...,v,,X;] and cut out by one equation

xp(x1 —vp)(x1 —v2) -+ (%1 —v,) = 0.

This scheme consists of 1+ 1 hyperplanes. Their intersections, when projected on the (vy,...,v,)-plane,
form the toric fan of IP". The functions on the scheme consist of 74 1 polynomials, one for each component,
that agree on the intersections. This agrees with the classical description of equivariant cohomology of a
toric variety as piecewise polynomials on the fan (see e.g. [Bri96, Section 2.2]). For n = 2 the scheme is
depicted in Figure 3.

Example 3.25. We can extend the previous example to full flag varieties. Take for example the variety
F3 =SL3 /B of full flags in C3. The only zero of e is the flag span(e;) < span(ej,e;), and in this case the
cell X, consists of the flags represented by matrices of the form

1 0 =
a 1 =% |eSL3(C).
b ¢ =

One finds that
Velape = (—a® +b,—ab,—b + ac — c*).

If, as before, we consider a pair w = (v},v,) € C? as an element of t, then we have

Va

abe = (V1a,v2b, (vy —v1)c).
Hence the equations for V,,,, = 0 are
—a’+b+va=0, —ab +v,b, —b+ac—c*+ (v, —vy)c.
Plugging b from the first one into the others yields two equations
ala—vy)(a—v,y) =0, —a® 4+ avy +ac—c? — cvy + cv, = 0.
By splitting the first equation into cases, we easily get the six families of solutions (one for each coordinate
flag):
(a=0,c=0); (a=v1,c=0); (a=vy,c=1v;);

(a=v,y,c=1v,); (a=0,c=—vy +vy); (a=1vy,c=—v1 +1v)).
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Example 3.26. Another natural family of examples are the Bott-Samelson resolutions of Schubert varieties
(see [BS58, Han73, Dem?74]). We first recall their construction here. Let G be a semisimple group of rank
r, with simple roots ay, ay, ..., a,. The reflections s;, sy, ..., s, in the simple roots generate the Weyl
group W of G. Let (e;, f;, h;) be an sl,-triple corresponding to ;. For any sequence w = (&, a;,,..., ;)
of simple roots, we can construct the Bott-Samelson variety as follows:

XQZ Pil XB Piz XB ' XB Pil/B’

where B is the Borel subgroup of G and P; is the minimal (non-Borel) parabolic subgroup corresponding to
the root «;. Here B acts on P; both on the left and on the right; hence we can define the mixed quotients
as above, and the last quotient is by the right B-action on P; . The variety admits the multiplication map
X, — G/B. If w is a reduced word representing an element w € W, then this map is a resolution of the

Schubert variety X, = BwB/B. The Borel subgroup B acts on the Bott-Samelson variety on the left.
Lemma 3.27. The Bott-Samelson resolutions are regular B-varieties.

Proof. Assume that an element x € X, represented by (g1,82,...,&) is fixed by the regular nilpotent e. As e
generates an additive subgroup exp(te) inside B, every zero of e is fixed by this subgroup, and in particular
by by = u = exp(e). This means that in the Bott-Samelson variety

(3.9) (01818283, 8)] = (81,82, 83,---,&1)]-

First, this means that by g; = g1 b, for some b, € B, hence b; € g; Bgl_l. As by is a regular unipotent element,
there is only one Borel subgroup, namely B, which contains b; (see the discussion in Example 2.41). As
NG (B) = B, we have g; € B. From b g; = g1 b, we have that b, is conjugate to by; hence it is also a regular
unipotent in B. From (3.9) we have

[(b282, 83, 81)] = [(82,83-+-, &1)]
in the Bott-Samelson variety corresponding to the sequence (a;,,...,a; ). Applying the same reasoning, we

get inductively that g1,,...,g € B, hence [(g1,82,83,---,8)] = [(1,1,...,1)] in X,,.Y O

This means that using the method above, we can determine Hy (X, ), where T is the maximal torus inside B.
The open Bialynicki-Birula cell X, consists of the classes

[(exp (xlfil )' exp (XZﬁz )r - €Xp (xlﬁ, )]xl,xz,...,x,eCf

and we would like to find the scheme Z inside X, x t. We need to determine the infinitesimal action of B
on that cell. We will proceed coordinate by coordinate. Note that for i € {1,2,...,r} the group P; contains
{exp(t- f;) : t € C} - B as a dense subset. Therefore, for any x € C there exists an open neighbourhood
U < B of 1g such that for all g€ U we have

g -exp(xf;) = exp(b(g)fi)h(g)

for some maps b: U — C and h: U — B with b(1) = x and h(1) = 1. The two sides of the equality are
functions of g. Let us differentiate them at ¢ = 1 in the direction of y € b. We get

y-exp(xf;) = exp(xf;) - (Dbl1(v)f; + Dh|1(v)),

where on the left-hand side, the dot denotes the right translation by exp(xf;) and on the right-hand side, it
analogously denotes the left translation. Therefore,

Dbh(}))fi + Dh|l(y) = Adexp(—xf,-)(}’)'

(e thank Jakub Lowit for this argument.



Spectrum of equivariant cohomology as a fixed point scheme 35

Now let v = e + w, where w € T. Then

Adexp(fxfi)(y) = Adexp(fxfl-)(e) + Adexp(fxf,-)(w) = (e + xh; — xzfi) + (w - ai(w)xfi)
= (—a;(w)x — x2)f; + (e + w + xh;).

Thus we get Db|;(y) = —a;(w)x — x> and Dh|;(y) = e + w + xh;. Hence the infinitesimal action on Xy
in the direction e + w yields the vector of the first coordinate —a; (w)x; — x% and induces an infinitesimal
action of e + w + x h; on the second coordinate. We can apply this procedure inductively and get that the
j coordinate is acted upon by
j—1
e+w+ Z xihi,
k=1

and the corresponding coordinate of the vector field V,, ,, is

j—1
- Z a,-],(hik)xkxj —aj, (w)x; — sz.
k=1

Therefore, if we define the numbers b = aij(hik)> we obtain the following presentation of the equivariant
cohomology ring:

Hf(X,) = C[t][x1,x,...,x1]/ x]2 =— Z bjxxixj — ozl-],(w)xj ,
k<j
where w denotes the t coordinate. Note that e.g. for ay,..., a, being the standard simple roots of SL,;, those
numbers vanish whenever [i; — | > 1.
The variety has 2! torus-fixed points, and hence the equivariant cohomology ring is a free module over
C[t] of rank 2!, An additive basis consists of all the square-free monomials in x1,x»,...,x;. We then recover
the results obtained e.g. in [BS58, Proposition 4.2] or [Wil04, Proposition 3.7].

4. Reductive and arbitrary principally paired algebraic groups

4.1. Reductive groups

In this section we will make a transition from solvable groups to reductive groups. We do that by
restricting to Borel subgroups and utilizing Theorem 3.5.

Let G be a complex reductive algebraic group of rank r. We assume that e € g = Lie(G) is a regular
nilpotent element. Let f,/ € g denote the remaining elements of an sl,-triple (e, f,h) (see the discussion in
Section 2.5). In fact, all of the regular nilpotents are conjugate (see [Kos63, Section 3, Theorem 1]). Hence, we
can actually assume e = x; +x, +--- + X, as in Example 3.1. In particular, & is semisimple and contained in
the unique Borel subalgebra b of g containing e. It integrates to a map H': C* — G with finite kernel. We
denote by S = e + C4(f) the corresponding Kostant section (¢f. [Kos63, Theorem 0.10]). Kostant’s theorem
also gives C[S] = C[g]® = C[t]" = HZ (pt). The goal will be to prove the following result.

Theorem 4.1. Let G be as above, and assume that G acts regularly on a connected smooth projective variety X.
Let ZG be the closed subscheme of S x X defined as the zero set of the total vector field (cf. Definition 2.7) restricted
to S x X. Then Zg is an affine, reduced scheme and Hf,(X) = C[Z] as graded C[S]-algebras, where the
grading on right-hand side is defined by the action of C* on S via tl—zAdHr and on X via H'. In other words,
Zg = SpecHE(X), S = Spec HE,, and the pullback of functions along the projection Zg — S yields the structure
map HY, — HE(X), so we have the following diagram:
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Zo — Spec H(X;C)
l !
S —=— Spec HE.
Moreover, the isomorphism HY,(X) = C[Z;] of graded C|S]-algebras is functorial in both X and G. The
admissible morphisms are those that map a G -regular variety X to G, -regular variety Y in a Gq-equivariant

way, where G; — G, is a homomorphism between two reductive algebraic groups which maps the fixed principal
sl, -triple to the other fixed principal sl, -triple.

26,(X) —— SpecH{ (X;C)

| |

Zg,(Y) — SpecH¢ (Y;C).

Note that HE(X) = H# (X)W, where T is the maximal torus and W = Ng(T)/T is the Weyl group of G
(see e.g. [Hsi75, Proposition IIL1]). Therefore, we will be able to make use of the result for solvable groups
(Theorem 3.5).

4.2. Motivating example: G = SL,(C)

For G = SL,(C) we can choose the canonical e, f, h:

0 (0 ()

Then we get S = {e+ vf : v € C}. Again, let us adapt the convention from Example 3.1 for the basis of t;
i.e. a number v € C will denote —vh/2. We know that H{(X) = C[Z3, ], where Zg, is defined as before for
solvable (Borel) subgroup B, of SL,(C) consisting of upper-triangular matrices. Let us now see how the
Weyl group (in this case ¥, = {1,€}) acts on Hf(X). We have the following commutative diagram:

Hi(X) —< HE(X)

* *

€ e

HE(eT;) —— H(T)).

Note that in the bottom row we have the (contravariant) action of W on Hf (pt) = C[t], which is defined by
the (covariant) adjoint action of W on t. In the case of SL,, the element € acts on t by v — —v.
Therefore, we get that for any c € Hf(X) and any T-fixed point C;, we have

(€%0)l¢, = (clec,) o€

where € is seen as a map t — t. This determines €*c completely as the restriction Hf(X) — @ HJ((;) is
injective. Hence when we apply the isomorphism p: H{(X) — C[Z3, ], we get

p(é‘*C) (w, chi) = p(C) (ew, Meweci)'

We get an algebra homomorphism C[Zg,] — C[Zg,], which has to come from a morphism Zp, — Z3,.
This morphism sends M,,C; to M, €C;.
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We will now look at the adjoint action of elements of the form

exp(sf) <1 (1)> €SL,.

We have
(4.1) Adexpef)(e+th) = e+t f,
(4.2) Adexp(th)(e +th) =e—th.

From (4.2) we infer (by Lemma 2.6) that the map
Ye: (v,x) — (—v,exp(—vf)x)

is an isomorphism of Zp, (note that in our choice of basis, the number v denotes —vh/2). We claim that it
is equal to the above (i.e. it is dual to poe* op~!). Clearly, the action on the first factor agrees. Now we have

expl-uni) - (1, 0) (5 1)

and we get

M=} exp(—vf) (M, ;) = <(1) 1{”) (_1v ?) <(1) 1{”) i = <_0v 16”) G = eC

Therefore,
Ye(MyCi) = exp(=vf)(MyC;) = M_€C;
and indeed
p(e*c)(v,x) = p(c)(Ye (v, x)).
Thus Spec H;LZ(C) (X) is the GIT quotient of Zp, over this action.

Now from (4.1) we get that the map ¢: (v,x) — (v,exp(—vf/2)x) is an isomorphism between Z, and
2" ={(v,x) € Cx X : (Veyy2/4f)|x = 0}. Therefore, we might as well look for the GIT quotient of Z’ by

Bopeod . We get

poveod™ (v,x) = o (v,exp(vf/2)x) = p(~v,exp(—vf/2)x) = (~v,x).
The GIT quotient of Z' = {(v,x) : (V442/47)|x = 0} by this action is clearly isomorphic to Zg = {(t,x) €
Cx X : (Vesrr)lx =0}

4.3. General case

We will want to mimic the proof for SL; in the general reductive case. Let Zp be the scheme from
Section 3, defined for the Borel subgroup B of G. We need the following:

e We need regular maps A: t — G and x: t — & that satisfy
Ad (e +w) = x(w),
so that (idy, A(w)) maps Zg to Z’, where
Z' = {(w,x) et x X : Vi) |x = 0}.

e Moreover, we want x to be W-invariant and induce an isomorphism t//W — S, so that we can
construct Zg as a quotient of Z’.

e We want to realise the Weyl group action on Zp by the action on the second factor; i.e. for each
17 € W we want to define a map B,;: t — G such that

(w, x) — (1(w), By (w) - x)
is the action of Weyl group.
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e If we conjugate above with the isomorphism Zy — Z’, we want to get a map that fixes the X-
coordinate. In other words,
A(nw)By (w)A™ (w) = 1;

ie. B, (w) = A(nw) 'A(w).
We will now formalise these ideas. First, let B be the unique Borel subgroup of G containing the regular
nilpotent e (¢f Section 2.5). We denote by U the corresponding maximal unipotent subgroup and by B~,
U™ the opposite Borel and unipotent subgroup. Let b, 1, b™, 1™ denote the corresponding Lie algebras.
As above, by Zp < t x X we denote the zero scheme defined by the action of B, which by Theorem 3.5 is
isomorphic to Spec Hfi(X). We start by finding the map A. We know from Lemma 2.29 that the map

Ad_(—=): U xS—e+Db"

is an isomorphism. Let us consider the preimage of e + t and denote by A(w) € U™, x(w) € S the elements
such that

(4.3) Adpw)(e+w) = x(w).
We then know from Proposition 2.30 and (4.3) that the map ¢ defined as
¢ (w,x) = (w, A(w)x)
is an isomorphism from
Zp = {(wrx) etxX: Ve+w‘x = 0}
to
Z' = {(w,x) €t x X : Vy(y)lx = 0}.
Moreover, let
B, (w) = A(nw) ' A(w)
for any 7 € W, w € T. Then the map 1), defined as
Yy = (P_l o(n,id)o ¢,
ie. P, (w,x) = (nw, B, (w)x), is an automorphism of Zp. Here 7 is seen as a map t — t.

Lemma 4.2. The map 1, defines the action of W on Zg. In other words, W acts on the right on Hf (X), and
the dual left action on Zy is defined by 1.

Proof. For any 1 € W we have the commutative diagram
n*
Hy (X) —— Hr(X)

*
LnCi LC,‘

11*
Hy(1Ci) —— Hy(Gh).
In the bottom row both entries are isomorphic to C[t], and the map is precomposition with 7: t — t.
Therefore, for any c € Hf(X) and any T-fixed point C;, we get
(7 e)le, = (clye,) o 1-
This determines 77*c completely as the restriction Hj (X) — @ H{({;) is injective. We want to determine

what this action of W induces on Zp. The action of W on Zg, which we will denote by 71 — #,, has to
satisfy the equality

p(e)(+(w, x)) = p (17" (c)) (w, x).
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From the proof of Lemma 3.10, we know that Zg N (t™8 x X) is dense in Zp. Therefore, to determine 7*, it
is enough to determine its values 77, (w, x) for w regular. In this case if (w,x) € Zp, then by Section 3.5 we
have that w = M,,(;, where M,, € B is such that Ady; (w) = e +w. Then p(c)(w,x) = c|¢,(w). Hence

p(1*(c))(w,x) = 1*(c)l¢,(w) = (clyg,) (w) = p(c) (1w, My, 1C;).-
Thus
N+ (w, My Cj) = (Ww’Mr]wWCi)'

We claim that 17, = ¢, i.e. B, (w)M,,C; = M,;,1C;. We have to prove that C,, ,, = M{u}Bq(w)Mw sends (;
to nC;.

Note that

AdCW (w) = AdM,,]}Bn(w)Mw (w) = AdM,,’,,}A,,]}Awa (w) = AdM{wlA,,]}Aw (e+w)

= AdM;wlA,;j (x(w)) = AdM,l’wlA;,,} (x(mw)) = AdM;wl (e +nw) =nw.

Therefore, for any representative 77 € Ng(T) of #, we have

ﬁ_lcn,w € CH(w)'
As w is regular, its centraliser within [ is just t. It is the Lie algebra of Cg(w), which is connected by [Ste75,

Corollary 3.11], hence equal to T. Therefore, 7 qu’w € T; hence C, ,, represents the class of 77 in Ng(T)/T.
Thus C,,,,, sends C; to 11C;, as we wanted to prove. O

Proof of Theorem 4.1. We saw above that the map ¢ defined as ¢(w,x) = (w,A(w)x) is an isomorphism
from Zp to Z" = {(w,x) € t x X : Vy()[x = 0}. Then we can conjugate the maps 1, with this isomorphism,
getting maps ¢ o P, 0 p~': Z' — Z'. We have

(44) Popyod™ (w,x) = oy, (w,A(w)™'x) = p(nw, B, (w)A(w) 'x)
= (nw, A(nw)B, (w)A(w)™'x) = (qw, x).
The last equality follows from the definition B, (w) = A(nw) ' A(w). By Lemma 4.2 the map ¢ o Py 0 ¢!
gives the action of W on 2’ = Zp >~ Spec H} (X).
We have HZ(X) = H#(X)"W and therefore Spec H% (X) = Spec H} (X) /W = Z’//W. But we know from

(4.4) that W acts only on the t-coordinate of Z’ and moreover from Proposition 2.30 that the map x induces
an isomorphism t//W — S. Therefore,

SpecHE(X) = Z'JW = {(w,x) e t x X : Vy(y)lx = 0} /W = {(v,x) e S x X : V, |, = 0} = Z.

The zero scheme Z; is reduced because Z’ =~ Zj is reduced by Lemma 3.10. The agreement of C[S]-algebra
structures follows from the commutativity of the diagram

Spec HX(X) = 2 —= 2" ™5 Spec HE(X) = 2
s TG
SpecHf =t ™ > SpecH(, = t//W

and the analogous statement for B in Theorem 3.5.

It remains to show that the grading agrees on the two sides. We know from Theorem 3.5 that the grading
in the solvable case is defined by the weights of the torus acting on t x X by (tlz,H t). We have to prove that
it descends to the action by (tlz AdHr,Ht). But we have

Adyw (e +w) = x(w)
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and thus
AdHtA(w)H—t (AdHt (6‘ + UJ)) = Ady: ()((U/)),
and dividing both sides by t? gives

w 1
AdH’A(w)H—’ <€+ t—z) = t—zAdHt()((w))

However,
I 1
H'A(w)H 'eU, ﬁAdHt(X(w))es.

The latter follows from t%AdHr(e) = ¢ and Adpy: preserving the centraliser of f, as Ady:(f) = Sf.

12
Therefore, by uniqueness we have

HA@H =A(5),  Ade (@) =x ().

The quotient map Zg — Zg sends (w,x) to (x(w), A(w)x). And by the above it sends ¢ (w,x) = (%,Htx)
to

w w 1 _ 1
(x <t_2> A (t—z) fo) - (t—zAdHt (x(w)), H'A(w)H fox> - (t—zAdHt ()((w)),HtA(w)x>,
which proves that the action of C* on Zg descends to the action by (t% AdHr,Ht) on Zg.
The functoriality follows immediately from the functoriality for B (¢f Propositions 3.18 and 3.19). ]

Remark 4.3. We know Cy(f) < b~ (see Section 2.5) and all the weights of the H' action on b~ are non-
positive (¢f. Lemma 2.32). Therefore, the argument as in Lemma 3.10 shows that Zg lies in § x X,,. This
means that for any computations we have to consider only an affine part X, of X.

Remark 4.4. In the spirit of Lemma 3.11, we can determine in the reductive case too what functions on
Z the particular Chern classes are mapped to. Assume that £ is a G-linearised vector bundle on X.
Let k be a non-negative integer, and consider CE (€) € HA(X) = H¥(X)W. If we first consider the map
p: Hf(X) — C[Z3] from Section 3.6, then from Lemma 3.11 we know for any (w,x) € Zj that

p(et (€)(w,x) = Trrg, (A*(e +w),).
The map ¢ defined as
¢ (w,x) = (w, A(w)x)
maps Zg isomorphically to Z’. Then Cg(é’) defines on Z’ the function p(cg (€)) o ¢! which satisfies
p(ce (€) o™ (w,y) = p(cp (E)(w, A(w)"'p) = Trpse,

As & is G-invariant, this is equal to

(AFe+w) aq)-1y).

(w)~ly

TrAkgy (Ak AdA(w) (6 + W)y) = TI'Akgy (Ak)((U))y)
This means that on the quotient Zg the function pG(ckG (€)) corresponding to ckG (€) satisfies
06 (< (€))(v,%) = Trpse, (Avy)
Let us also note that the G-equivariant Chern classes generate the equivariant cohomology ring.

Lemma 4.5. In the setting above, the G-equivariant cohomology HY,(X) is generated as a C[t]" -algebra by the
equivariant Chern classes of G-equivariant vector bundles.
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Proof. By the Nakayama lemma it is enough to prove (see the proof of Lemma 3.14) that the non-equivariant
cohomology H*(X) is generated by Chern classes of G-equivariant vector bundles.

We know from the proof of Lemma 3.12 that H*(X) is generated by Chern characters of T-equivariant
coherent sheaves. For any such sheaf 7, we can consider the “averaged” sheaf Fy = ‘Vl\/—‘ @UEW 1:W. As
the group G is connected, for any ¢ € G we have ch(g,F) = ch(F), hence ch(Fy) = ch(F). Therefore,
H*(X) is generated by Chern characters of Ng(T)-equivariant coherent sheaves. Then again by [Tho88,
Corollary 5.8] it is generated by Chern characters of Ng(T)-equivariant vector bundles. Every Ng(T)-
equivariant vector bundle is a W-invariant element of K1(X). However, we know by [HLS10, Corollary 6.7]
that K1(X)W = Kg(X); hence H*(X) is generated by Chern classes of G-equivariant vector bundles. [

4.4. Examples

We finish this section by providing examples for Theorem 4.1. These are extensions of the examples above
for Theorem 3.5.

Figure 4. SpecH

51,(C) (IP*) and Spec H;LZ(C) (IP>).

Example 4.6. We continue Example 3.20. There, we found the C*-equivariant cohomology of IP”. Now,
using the tools above, we can also find Spec Hgy ,(c)(IP"). We know that the map (v,x) — (v, (I +vf)x)
maps the zeros of V,,, isomorphically to the zeros of V, ,2¢. The former form the subscheme cut out by
x1(x1 +2v)(x; +4v)---(x; + 2nv) = 0 in the (v, x;)-plane. Note that

0 0 0 0 0
1-n 0 0 0 0
0 2-(n—1) 0 0 0
=1 : : : |
0 0 (n—1)-2 0 .. 0
0 0 0 n-l ... 0

hence the map [ +vf acts on the x;-coordinate by adding nv. This means that the zeros of V, 2 are
defined by

(x1 —nv)(xg —(n—=2)v)(xg —(n—4)v)---(x1 + (n—2)v)(x1 + nv) =0.
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Bringing the symmetric factors together, we get

(x? —n2v2)(x? — (n—2)%v2) - (x? —4v?)x; = 0 for n even,
(x? —n2v2)(x? — (n—2)%v2) - (x2 — 9v2)(x? —v2) =0 for 1 odd.

Therefore,

HE (P") = C[t,xl]/((x% - ”Zt)(x% —(n— 2)2t) ‘e (X% — 4t)x1) for n even,
i Clt, x|/ (3 — m21) (2 — (n— 2)%8) -+ (2 — 98)(x? — 1)) for n odd.

The scheme has ["F1] components, one for each orbit of the action of W = Z/2Z on (P")®". The

parabolas correspond to two-element orbits, and the line (for even 1) corresponds to the unique fixed point

of C* fixed by W. It is equal to [0:0:---:0:1:0:---:0:0]. Examples of the scheme for n = 4 and
n/2 n/2

n =5 are depicted in Figure 4.

2\

“~ | ;/5
\’ /
t 05 |/
1.0

Figure 5. Two different views of Spec H;LZ(C) (Gr(2,4)).

Example 4.7. We continue Example 3.23. The principal subgroup SL,(C) < SL4(C) acts on Gr(2,4). One
can check that

Vf |x1 Y1X Vs (—3}}1, 4,3x; — 3y, 33}1)'
Then
Ve+tf‘x1,y1,xZ,y2 = (X2 —X1Y1 — 3ty1, —X1 — ylz + v+ 4t, —X1Yp + 3tX1 — 3t}}2, —X; — V1Y + 31’}}1)

As before, from the first two equations of V,, ;s = 0, we can determine x, and y,, so Spec HSLZ(C) (Gr(2,4))
can be embedded in C[t,x1,y;]. Its equations are

12¢% + 4tx; —x2 —3ty? —x;97 =0, p;(4t —2x; —y?) = 0.
By considering two possibilities in the latter, one easily arrives at four possibilities:

(x; = —2t,9;=0), (x; =6y, =0), (x;=—6ty>=16t), (x; =097 =4t).
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As in the previous example, the components correspond to orbits of W acting on Gr(2,4)C". The former
two correspond to one-element orbits, i.e. {span(e,,e3)} and {span(ey,ey4)}, and the latter come from two
two-element orbits. The scheme embedded in (#,x;,y;)-space is presented in Figure 5.

Example 4.8. We consider an example for a group of higher rank, SL3(C), that we can still draw. Let it act
on IP? in the standard way. In Example 3.24 we calculated the equivariant cohomology of IP? with respect to
a (2-dimensional) torus. Now we will compute the SL3-equivariant cohomology. The Kostant section is

0 1 0
S = ¢ 0 1]:cpc3€C
C3 Cp 0

The coordinates ¢,,c3 € C[S] = H*(BSL3(C)) are (up to scalar multiples) the universal Chern classes of
principal SL3(C)-bundles, or equivalently, of rank 3 vector bundles with trivial determinant. We have
already computed that V|, , = (xo — x?,—x1x;). Then it is easy to see that for

0 1 0
M=|c, 0 1
C3 (Cp 0

we have Vil , = (x2 — X7+, =X X+ X1 +¢3). As before, we can eliminate x, by substituting from the
first equation, and we get the equation x% —2cyx1 —c3 = 0. The corresponding scheme Spec H§L3(C) (IP?) in
the coordinates ¢, c3, x; is illustrated in Figure 6. It is irreducible as all three torus-fixed points lie in one
orbit of the Weyl group. The projection to the (cj,c3)-plane is generically a 3 — 1 map. On the right-hand
side of Figure 6, the slice c; = 0 is marked in red. The elements of S that satisfy c3 = 0 form the Kostant
section of the principal SL, subgroup - which acts as in Example 4.6. Therefore, the red scheme is equal to
Spec HSLZ (IP?). Additionally, the functoriality of Theorem 4.1 implies that restriction to c3 = 0 yields the
base restriction map
Hg ,(P?) — Hg (P?).

Figure 6. Spec H;L3(C) (11)2). On the right the subscheme SpecH;LZ(C

)(11)2) is marked. Compare
with Figure 4.
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Example 4.9. As in Example 3.25 we now consider the action of SL3(C) on the variety F5 of full flags in
C3. We determined V, in Example 3.25. We can analogously determine the vector fields corresponding to
lower-triangular matrices. Then for

0 1 0
M=1|c, 0 1
C3 Cp 0

we easily get
Vitlape = (—a? + b+ ¢y, —ab +acy +c3,—b +ac — c* +cy).
Plugging in b from the first equation, we obtain

a3—262€t+c3 =0, a’—ac+c?= 2¢cy.
The first equation for a clearly coincides with the equation for x; from the previous example. One can easily
see that the equations mean that 2 and —c are two of the three roots of the polynomial x> — 2c,x + c3 = 0.
The map to the (cy,c3)-plane is generically 6 — 1. As all the torus-fixed points, i.e. coordinate flags, lie in
one orbit of the Weyl group, in the GIT quotient of Spec(HJ(F3)), they are joined together and the scheme
is irreducible.

4.5. Principally paired algebraic groups

In fact, we can prove the equivalent of Theorem 4.1 for a principally paired, but not necessarily reductive,
algebraic group. This version will yield a common generalisation to Theorems 4.1 and 3.5. Note that
H}, = C[t]V = C[S] - see the comment above Theorem 2.37. We will prove the following.

Theorem 4.10. Assume that H is a principally paired algebraic group which acts regularly on a smooth projective
variety X. Let Zyy be the closed subscheme of S x X, defined as the zero set of the total vector field (cf. Definition 2.7)
restricted to S x X.

Then Zyy is an affine reduced scheme, and H{;(X) = C[Z2y] as graded C[S]-algebras, where the grading
on the right-hand side is defined on S via t%AdHr and on X by the action of C* via H'. In other words,
Zy = Spec H{(X), S = SpecHyy, and the projection Zyy — S yields the structure map Hiy — H(X). This
isomorphism is functorial as in Theorem 4.1.

Zy — Spec H(X;C)

I !
S —=— Spec HE.
Remark 4.11. As N is contractible, the Levi subgroup L < H is a homotopy retract of H, and for any H-space

X we have H{j(X) = H{(X). In particular, if H is solvable, we have Hf}(X) = H}(X), where T is a maximal
torus within H. This explains how the theorem above generalises Theorem 3.5.

Proof of Theorem 4.70. We will proceed analogously to the proof in Section 4.3. We follow the notation from
Section 2.6.3. In particular, B is the Borel subgroup of H such that its Lie algebra b contains e. We first
consider the scheme Zg c t x X, defined as in Section 3, i.e. the zero scheme of the total vector field on
g x X, restricted to (t + ¢) x X. Then from Lemma 2.33 we get morphisms A: t > U™, x: t — S such that

Adp)(e+w) = x(w),
so that (id, A(w)) maps Zg to Z’, where
Z = {(w,x)etxX: V)((w)|x =0}.
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In fact, A and x are exactly the same as in Section 4.3 (see the proof of Lemma 2.33). In particular,
X induces the isomorphism t//W — S. For any regular w € t, we have the element M,, € B such that
Ady, (w) = e +w. Just like in Lemma 4.2, for any 17 € W we get that for any regular w the element
Chpw = M;(;)A(qw)_lA(w)Mw is in the class of 77 in N (T)/T. Note that here M, (,) € B;.

This then proves, as in Section 4.3, that the Weyl group action on Zg, when transported to Z’, is defined
by # — (1,id). And then as x : t/W — S is an isomorphism, we get that

Zy = Zg//W = SpecH{ (X) /W = Spec Hyj(X).

We have to prove that the grading on C[Zy] defined by the grading on H{j(X) agrees with the one
described in the theorem. We know that in the solvable case the grading is defined by the action of C* on
Zy via (t%,H t) (¢f Definition 3.4). Just like in the reductive case, we need to prove that under the quotient
by W, it descends to the action by (tl—z Ady:, H t). The argument for reductive groups does not translate
exactly, as a priori we do not know whether H' preserves the centraliser of f. However, we know that HJ,
the one-parameter subgroup generated by h;, does.

On the other hand, as [h,e] = [h,e] = 2e, from Lemma 2.34 we infer h — h; € Z(1). As in the proof of
Theorem 4.1, we have
w

%) = 5 Adi (x(w))

AdHtA(w)H*t (e +
and

1
H'A(w)H 'eU, t—zAdHt (x(w)) eSS,

where now the latter follows from tledHr(e) = ¢ and Ady: = Ady; preserving the centraliser of f as
Adpy (f)= t% f. Therefore, we have

_ w 1 w
HAWH" =4(35),  Adw(x@) =x(5),
and the same reasoning follows. This proves Theorem 4.10. il

Example 4.12. Basic examples of non-reductive, non-solvable linear groups are parabolic subgroups of
reductive groups. Let us consider such a group P < G, where G is reductive, and assume that Bc P is a
Borel subgroup of G contained in P. Then we can consider a principal b(sl;)-triple (e, f,h) in g such that
e,h e b. This makes P into a principally paired group, and we can make use of Theorem 4.10.

Suppose that X is a Schubert variety in some partial flag variety G/Q. Its stabiliser P in G contains B;
hence it is a parabolic subgroup. In general it is larger than B (see more in [SV94, Section 2]). Remember that
B acts regularly on G/Q (¢f Example 2.41). Therefore, if X is smooth, Theorem 4.10 gives the P-equivariant
cohomology of X.

Example 4.13. As in the previous example, assume that X is Schubert variety in G/Q fixed by P. One can
then construct a Bott-Samelson resolution of X, ¢f [SV94, Section 2, p. 446], which is P-equivariant. As
in Lemma 3.27 such a resolution will be a smooth regular P-variety. Hence we can use Theorem 4.10 to
compute its P-equivariant cohomology.

We also extend Lemma 4.5 to principally paired groups.

Lemma 4.14. Assume that a principally paired group H acts regularly on a smooth projective variety X. Then the
H-equivariant cohomology Hy(X) is generated as a C[t]W -algebra by equivariant Chern classes of H-equivariant
vector bundles.

Proof. As in the proof of Lemma 4.5, it is enough to prove that the non-equivariant cohomology H*(X) is
generated by Chern classes of H-equivariant vector bundles. By Lemma 4.5 we know that it is generated by
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Chern classes, and in fact by Chern characters of L-equivariant vector bundles for L being a Levi subgroup
of H. We have the following two maps:

K& (X) — KO(X) -2 H*(X).

The former is simply the restriction of H-equivariant bundles to L-equivariant bundles, and the latter is the
Chern character map. We know that the image of composition generates the whole H*(X). We prove that
the first map is, in fact, an isomorphism, which will prove the claim.

By [Tho88, Proposition 6.2] the restriction along X — H x* X induces an isomorphism

K (H " X) — KD (X).

Now H x* X maps H-equivariantly to X (simply by [(%,x)] — hx), and we will show that this map induces
an isomorphism on K}.*) Let N be the unipotent radical of H, so that H = N x L. Notice that we then have
the H-equivariant isomorphism

HxX ~NxX,

where H acts on N x X diagonally by conjugation and action.
Indeed, every element of H is uniquely decomposed as ! for u € N, [ € L. This means that H x" X ~
N x X. Now we need to see how H acts on this product. Note that in H x X we have

h-[(u,)] = [(hu, x)] = [(huh™", hx)],

and as huh~! € N, upon identification with N x X we have h - (u,x) = (huh~!, hx).

We want to prove that the map N x X — X induces an isomorphism on KIQI Note that it is not the
projection but the action of N on X. However, we can split it into the isomorphism N x X — N x X given
by (u,x) — (u,ux), and the projection. Note that this isomorphism is in fact H-invariant as

h-(u,ux) = (huh™', hux) = (huh™', huh~1hx).

Therefore, we have to show that the projection N x X — X yields an isomorphism on K.

Now by [Mill7, Proposition 14.32] the algebraic exponential map for the unipotent group exp: n — N
is an isomorphism of schemes. Thus in fact N x X ~ n x X has the structure of a (trivial) vector bundle
over X. Note that H acts on it linearly. Indeed, we have hexp(v)h~! = exp(hvh™!), and the adjoint
representation of H on n is linear. Then by [Tho88, Theorem 4.1] the projection N x X — X gives an
isomorphism on KI%. g

5. Extensions: Singular varieties and total zero schemes

In this section we discuss two directions to extend our results. First we discuss generalisations to singular
varieties.

5.1. Singular varieties

Our main Theorem 4.10 may be generalised to singular varieties, in the spirit of [BC04, Section 7].
A sufficient condition will be the existence of an embedding in a smooth regular variety such that the
corresponding map on ordinary cohomology is surjective (¢f. Corollary 3.22).

Proposition 5.1. Assume that H is a principally paired algebraic group, and let S be the Kostant section within
H, as defined in Section 4.5. Let B be a Borel subgroup of H. Assume that H acts regularly on a smooth projective
variety X, and let Zﬁ be the zero scheme defined in Theorem 4.70 for the H-action on X.

(\This argument is based on a suggestion by Andrzej Weber.
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Assume Y is a closed H-invariant subvariety whose cohomology is generated by Chern classes of B-linearised vector
bundles. Then analogously to Section 4.5, we can define an isomorphism of graded C[S]-algebras Hy(Y) — C[Z}],
where 2 is the reduced intersection 2}y = ZX (S x Y). The isomorphism makes the diagram

Hyy(X) —— HR(Y)

(5.1)

C[28] — C[Z]]

commutative. The assumption on the cohomology of Y holds in particular if the inclusion Y — X induces a
surjective map H*(X) — H*(Y') on ordinary cohomology.

Proof- The proof is essentially the same as in [BC04, Section 7]. We only sketch it here. First assume that
H is solvable. Every point of the variety Zlg is of the form (w, M,,C), where M,, € H depends on w and C
is a T-fixed point contained in Y. Therefore, for any c € H(Y) we can define py(c) (we only localise to
points in Y). The condition on the cohomology of Y allows us to use Lemma 3.11 to show that py actually
maps Hf(Y) to C[Zgl]. The injectivity follows again from the injectivity of localisation on equivariantly
formal spaces (¢f [GKM98, Theorem 1.2.2]). The diagram is obviously commutative, and the surjectivity
then follows from the surjectivity of the restriction C[ZX] — C[Z]]] to closed subvariety.

Now assume that H is arbitrary principally paired group. Let B be its Borel subgroup, and by Zg denote
the appropriate zero scheme defined for B acting on Y. As Y is H-invariant, the arguments from the proof
of Theorem 4.10 show that C[Z2}}] = C[Z}]W, and the conclusion follows. The last line of the proposition is
implied by Lemma 3.14. U

Example 5.2. Let H = B, the Borel subgroup of a reductive group G. Natural examples of singular regular
B-varieties are Schubert varieties in the flag variety G/B or any other subvarieties that are unions of Bruhat
cells; see [ACL86, Theorem 5 with remarks]. In general, Schubert varieties are stabilised by parabolic
subgroups (see [SV94, Section 2]). Those are therefore singular P-regular varieties for parabolic groups P.

Example 5.3. Assume that X = G/B is the flag variety of type A, hence G = SL,,,(C). Then if Y is any
Springer fiber within X, the restriction on cohomology H*(X) — H*(Y) is surjective (see [KP12]); hence
Proposition 5.1 also holds in that case.

However, there exist G-invariant subvarieties for which the restriction map on cohomology is not surjective.

Remark 5.4. The assumption on the surjectivity on the cohomology of Y is necessary in Proposition 5.1.
Consider the following. Let SL, act on IP3 as in Example 4.6. It comes from a representation Sym3 v,
where V is the fundamental representation of SL,. It has two extreme (highest and lowest) weights and
two “middle” weights. The point o of IP> which represents the highest-weight space is fixed by the Borel
subgroup of upper-triangular matrices, and hence one sees that its orbit is isomorphic to the full flag variety
SL, /B, =~ IP!. However, if we consider a point p € IP? representing a non-highest-weight space, its stabiliser
is a torus; i.e Stabgp,(p) = T. Hence its SL,-orbit is not closed. We denote its closure by Y := SL, -p.
We claim that Y is not smooth. We can see this directly, by noticing that it is the projectivised variety of
polynomials agx> + a;x%y + a,xy? + y> with at least two equal roots (vanishing lines), and writing down the
discriminant equation. We can also see this using our results. If Y were smooth, by Corollary 3.22 the map
H*(IP?) — H*(Y) would be surjective, but both varieties admit an action of T, with the same set of fixed
points; therefore, the map would have to be an isomorphism. This is impossible for dimensional reasons
(HS(Y) = 0).

Moreover, not only is Y singular, but in any case the map H*(IP?) — H*(Y) cannot be surjective. This
would mean that Proposition 5.1 applies. However, as all the T-fixed points are already in Y, one sees
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immediately that Z is already in Y. Then again, we would have H*(Y) = H*(IP3), which is impossible for
the same reason as above. Thus H*(IP3) — H*(Y) is not surjective, and moreover H* (IP?) is not generated
by Chern classes of B;-equivariant bundles. This shows that the assumption is necessary in Proposition 5.1.

Remark 5.5. Assume we are given an H-invariant subvariety Y of a regular smooth H-variety X. By
Proposition 5.1 and Corollary 3.22, the surjectivity of the restriction H*(X) — H*(Y) is necessary and
sufficient for the existence of an isomorphism H}i(Y) — C[Z}}] which makes (5.]) commutative. Carrell and
Kaveh prove in [CK08, Theorem 2], for the case of H = By, that this is equivalent to H (Y being generated
by Chern classes of B,-equivariant bundles.

5.2. Total zero scheme

Assume that G is a principally paired algebraic group, e.g. G reductive. We proved in Theorem 4.10 how
to see geometrically the spectrum of G-equivariant cohomology of X for G acting regularly on a projective
variety X. However, this needed a choice - of a concrete b(sl;)-pair (e,h) and the associated Kostant
section. A natural challenge would be to try to find equivariant cohomology as global functions on a scheme
that does not depend on choices.

Definition 5.6. Let an algebraic group G act on a smooth projective variety X. Consider the total vector
field on g x X (¢f. Definition 2.1). We call its reduced zero scheme

Ztot cgX X
the total zero scheme.
Now we are ready to show the following.

Theorem 5.7. Assume that G is principally paired. Let it act regularly on a smooth projective variety. Consider the
action of C* on the total zero scheme Zyo; by t-(v,x) = (tlzv, x) and the action of G by g-(v,x) = (Adg(v),g-x).
Then the ring C[ 20| of G-invariant functions on Zyy is a graded algebra over C[g]® =~ HE (pt) isomorphic
to HE (pt), where the grading comes from the weights of the C* -action on C[g]®:

C[2,]¢ —— HE(X;C)
Clg]® ——— H,

Following the notation from Theorem 4.10, we show that the restriction C[Z]® — C[Z;] is an
isomorphism, so that we get the following diagram:

C[Zo]® — C[2g] — HE(X,C)

C[g]® —— C[t]"Y —— HE(pt,C),

with all horizontal arrows being isomorphisms. The bottom row follows from Lemma 2.36. First we prove
that the restriction is an epimorphism.

Lemma 5.8. Under the assumptions of Theorem 5.7, the restriction C[Z,,]¢ — C[Zg] is surjective.

Proof By Lemma 4.14 we know that C[Z] is generated over C[t]W = C[g]® by functions pG(C]?(S )) for
positive integers k and G-equivariant vector bundles £. Those functions are defined by

PG (¢ (€))(v,x) = Trare (AFvy);
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see Remark 4.4. For each such function, we can consider the regular function fi ¢ defined on Z,y by its
values:

froe(v,x) = Trpre (AFvy).

It is clearly G-invariant and restricts to pG(CE(E )) on Zg. As C[Zg] is generated by such functions, the

conclusion follows. O

For the injectivity, let us start with an easy intermediate step. Let Z, be the open subscheme of Z;;
consisting of the part over g'®® — g (hence a closed subscheme of g'*® x X). Then we have the following.

Lemma 5.9. Let G be a principally paired algebraic group. Assume it acts on a connected smooth projective
variety, not necessarily regularly. The restriction (E[Zreg]c — C[Z] is injective, where Zq and Zg are defined
as above, as zero schemes over g*°% and S.

Proof. As Z,e, is reduced, a function is determined by its values on closed points. By Lemma 2.35 every
G-orbit in g8 intersects S; thus the G-orbit of any closed point in Z., intersects Zg. It is therefore enough
to specify a G-invariant function on Z; on closed points of Zg. The result follows. O

To finish the proof, we are only left with proving the injectivity of the restriction C[Z]¢ — C[Zreg]c.
We will utilise the following lemma to prove that the restriction C[Z] — C[Z;eg] is injective.

Lemma 5.10. Let Y be a reduced scheme over a field k. Assume Z is a closed subvariety and every closed point
p €Y is contained in a projective closed subvariety that intersects Z. Then the restriction map on regular functions
k[Y] — k[Z] is injective.

Proof. Let us assume that f € k[Y] vanishes on Z. Consider any closed point p € Y. Let A, be a projective
closed subvariety that contains p and intersects Z in a closed point q. Then f| A, isa regular function on a
projective variety over k; hence it is has constant value on all closed points of A,. As f(q) = 0, this means
that it takes the value 0. Therefore, f(p) = 0. Hence f vanishes on every closed point.

As Y is reduced and of finite type over a field, we know that regular functions are uniquely determined by
their values on closed points. Therefore, f = 0. U

To arrive at the lemma’s assumptions, we first prove slightly stronger versions of Lemmas 2.8 and 2.10,
under the condition that the action of the Lie algebra is integrable.

Lemma 5.11. Assume that a solvable algebraic group H acts on a smooth complex variety X. Let P — X be
a projective irreducible component of the reduced zero scheme of a linear subspace V < hi. Then P contains a
simultaneous zero of Ny (V).

Proof. By [Bor9l, Lemma 7.4] we have Ny (V) = Lie(Ny(V)). Let Ny(V)° be the connected component
of unity within Ny(V). We know from Lemma 2.6 that Ny()) preserves the zero set of V. Thus
Ny (V)° preserves its irreducible components, in particular P. By the Borel fixed point theorem, ¢f [Mill7,
Corollary 17.3], Ng(V)? must have a fixed point p € P. Then its Lie algebra Lie(Ny())°) = Lie(Ng(V)) =
Ny (V) vanishes on p. O

Lemma 5.12. Assume that an algebraic group H acts on a smooth variety X. Let d,n € Iy commute, and assume
that the Lie subalgebra generated by [, 1] and n is nilpotent. Let P be a projective irreducible component of the
reduced zero scheme of j = d + n. Then P contains a simultaneous zero of Cy(d), in particular, a zero of any
abelian subalgebra of 1 containing d.

Proof. By restricting to the connected component of the identity, we can assume that H is connected. As
[, ] is nilpotent, i must be solvable; hence H is solvable too.

Let k be the Lie subalgebra generated by [l i] and n. By Lemma 5.11 we get that inside P there is a zero
p of Ny(C- j), which in particular contains d and n. As P is irreducible, any irreducible component of the
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simultaneous zero set of d and n which contains p is completely contained in P. Let P; < P be one such
irreducible component. As it is closed inside P, it also has the structure of a projective scheme.

We will first show that P; contains a simultaneous zero of C'(d) = Cy(d) n k. As k is nilpotent, C'(d)
is as well. By Lemma 5.11, P, contains a simultaneous zero of Ny(spang(d,n)), hence in particular of
Nc¢r(4)(C - n). Note that by definition everything in C’(d) centralises d. As P; consists of zeros of d, it will
contain an irreducible component P, of the common fixed point set of d and N¢/(4)(C - 1). As a closed
subscheme of P, P, is also projective. By the same argument, P, contains a projective irreducible component
P5 of the common fixed point set of d and Nz,(d)((l: -1n). As in the proof of Lemma 2.10, there exists a

positive integer k such that Nk,(d)(C -n) = C'(d); hence we get a projective irreducible component P, of

the common fixed point set of d and C’(d). But again as in Lemma 2.10, C'(d), as well as d, is normalised

by Cy(d). Hence inside Py, there is a zero of Cy(d). O

Lemma 5.13. Let G be a principally paired algebraic group. Assume that it acts on a connected smooth projective
variety X, not necessarily regularly. The restriction C[Z,]¢ — C[2g] is injective, where Zieg and Zg are
defined as before, as zero schemes over g™ and S.

Proof. We have the sequence of restrictions C[Z]® — C[Zreg]G — C[Zg]. By Lemma 5.9 we only need to
prove that the first map is injective. Obviously, the restriction C[?eg] — C[Z,¢g] is injective (here we take
the closure of Zcg in Zi,). We will prove that C[Zy ] — C[?eg] is injective, and this will prove the lemma.

We employ Lemma 5.10 for this. We have to prove that every point of Z,; is contained in a projective
subvariety which intersects Zeg. Let (v,p) € Ziot € g X X. Then p is contained in the zero scheme of the
vector field V,,, hence in some irreducible component P thereof. It is a closed subscheme of X; hence it
is projective. Then we have {v} x P © Z; as a projective closed subvariety. Let v = d + n be the Jordan
decomposition of v (¢f [Bor91, Theorem 4.4]). As d and n commute, they are contained in a Lie algebra b
of some Borel subgroup B © G. Let T be a maximal torus within B such that d € t = Lie(T). Then from
Lemma 5.12 (take H = B) we get that P contains a simultaneous zero x of t. It is also a zero of v; hence we
have (t + C-v) x {x} < Z,,. Note that t contains a regular element, and as the regular elements within g
form an open subset, the regular elements of t + C- v form an open non-empty subset, so they are dense.
This means that (t + C-v) x {x} < ?eg, hence in particular (v,x) € Teg, and (v,x) € {v} x P, where
{v} x P is a projective subvariety of Zi.;; therefore, we are done. g
Proof of Theorem 5.7. The isomorphism follows from Lemmas 5.8 and 5.13.

For the grading we just have to show that the defined action of C* descends under the restriction

C[Z0t]¢ — C[Z¢] to the action defined in Theorem 4.10. Let f be a G-invariant function on Z. Then
for any t € C* the pullback t*f of f by t is defined by

1
t*f(V,X) = f <t—21/,x> .
As f is G-invariant, this means
1
t*fv,x)=f <t—2AdHt v,Htx> .

When we restrict to Zg, the group C* acts precisely by (t% AdHr,Ht) (cf: Theorem 4.10). Therefore, the
actions agree. g

Example 5.14. Assume that G is a reductive group acting on a partial flag variety X = G/P. Then the zero
scheme is

gpi={(xvp)egxG/P:xepl,
which agrees with the partial Grothendieck-Springer resolution. Thus as a C|g
invariant functions C[gp]© is equal to HE(G/P) =Hp = C[t]Wr.

16 =~ Hg-module, the ring of
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Figure 7. Affine parts of the total zero scheme for the action of B, on IP!. The left part misses a

line (over b = 0); the right part misses the blue component.

Example 5.15. There is one example that we are able to draw. It is the action of B, on IP! (see Example 3.20).
The total zero scheme is not affine, but we can cover it with two affine pieces, coming from affine covers
of P!, The first will be the part contained in by x {[1: x]: x € C}, and the other will be the part contained
in by x {[y:1]:y € C}. If we consider coordinates (a,b) on b, that correspond to matrices

a b
(0 —a) € by

then the surface has the equations 2ax + bx? = 0 in the (a, b, x)-plane (the first piece) and 2ay + b = 0 in
the (a,b,y)-plane (the second piece). The scheme has two irreducible components; the pieces are drawn in
Figure 7.

One sees that the B;-invariant functions on the blue part depend only on a; hence they form C[a].
Analogously, on the orange part the B;-invariant functions only depend on a = bx, as for a # 0 any two
points with the same a are conjugate, and for a = 0 we get b = 0 or x = 0. The former line is a projective
line on which an invariant function must attain the same value, and the latter lies in the blue part. This
leaves us with two functions from C[a]| with the same constant term. One easily sees that this ring is
isomorphic to e.g. Cla, x]/x(x + 2a).

5.3. Equivariant cohomology of GKM spaces via the total zero scheme

We suspect that the description of equivariant cohomology as the ring of regular functions on the total
zero scheme might still hold in a larger generality. For example, one could presume that a sufficiently regular
torus action might lead to such a description, even without embedding the torus in a larger solvable group
(as in Section 3). Here we prove this equality for GKM spaces (see [GKM98]), whose equivariant cohomology
we know.

Theorem 5.16. Let a torus T = (C*)" act on a smooth projective complex variety X with finitely many zero and
1-dimensional orbits. In other words, the T-action makes X a GKM space. Let Z = Zo; < t x X be the reduced
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total zero scheme of this action (cf. Definition 5.6). Then C[Z] = Hy (X) as algebras over C[t] ~ H:

C[z] —= Hi(X;0)

1

C[t] —— H

Let us denote the T-fixed points by Cy, (5, ..., C; and the 1-dimensional orbits by E;, E,, ..., E;. The
closure of any E; is an embedding of IP! and contains two fixed points Ci, and C;_, which for any x € E; are
equal to the limits lim; ,yfx and lim;_,, fx. The action of T on E; has kernel of codimension 1, which is
uniquely determined by its Lie algebra k;. We then have the following result (¢f [GKM98, Theorem 1.2.2]).

Theorem 5.17 (Goresky-Kottwitz-MacPherson, 1998). Assume that a torus T acts on a smooth GKM space X.
Then the restriction H:(X,C) — Hi(XT,C) = C[t]* is injective, and its image is

H={(fi,for-r ) €CLtF : fils, = fi I, for j=1,2,...,C}.

We will proceed by finding an injective map p: Hf(X) — C[Z] and an injective left inverse r: C[Z] —
H =~ H}(X). We will use Lemma 5.10 with Y = Z as defined above and Z =t x XT. Take any (v,p) € Z.
The point p lies in the zero scheme Z,, of the vector field on X corresponding to v. As T is a commutative
group and hence acts trivially on its Lie algebra, it preserves zeros of v € t. Therefore, {v} xT-pc Z
and {v} x T - p is a closed projective subvariety of Z. As T acts on it, by the Borel fixed point theorem, it
contains a fixed point of T, hence intersects Z non-trivially. Therefore, this choice of Y and Z satisfies the
conditions of Lemma 5.10.

We know that there are finitely many distinct types of orbits of the T-action on X. This can be seen
by embedding X equivariantly in a projective space with a linear action of T; see [Dol03, Theorem 7.3].
Therefore, there exists a one-parameter subgroup {H'},ccx = T that is not contained in any proper
centraliser. Then the fixed points of H' are automatically the fixed points of T. Consider the Bialynicki-
Birula minus-decomposition, consisting of cells

- . 1; t —
W ={xeX.}L%H cx =5}

for Cq, Cy, ..., C, the fixed points of T.

We first define the map p: Hy (X) — C[Z]. We will define it on closed points, using the reducedness
of Z. Let c € Hf(X). Assume that (v,x) € Z, i.e. the vector field v is zero at x. We know that x € W, for
some i € {1,2,...,s}. The restriction c|¢, is an element of H(pt) = C[t]. Then define

p(e)(v,x) = clg,(v).

We first have to prove that this defines a regular function for each c.
Lemma 5.18. Let £ be a T-equivariant bundle on X. Then

p(ck()) (v, %) = Trpre,) (A (v)).
In particular, p(cx(E)) is a regular function on Z.

Proof- Let ¢ = c;(€). Consider the curve C = H! - x. In particular, let ¢; = lim,_,,, H' - x € C. We then
define p(c)(v,x) = c|¢,(v). But we know that this is equal to
k
ck(E)lg;(v) = Trak(e, ) (Av).
However, as T is commutative, the action of any of its elements, in particular of H t on X is T-equivariant;
therefore,

Trake,) (A*) = Trae,, ) (A*)
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for any t € C*. Therefore, the equality also stays true in the limit; hence
TI'Ak(gx)(AkV) = TrAk(gCi)(AkU) =p(c)(v,x). O

Proof of Theorem 5.76. We have defined the map p; we just have to prove that it is an isomorphism. For
the injectivity, note that t x X" is contained in Z. By definition, if p(c) is zero on this subspace, then all
localisations to T-fixed points vanish. But by Theorem 5.17 the localisation is injective; hence ¢ = 0.

The set t x XT < Z is closed, and considering it as a reduced subvariety, by Lemma 5.10 we get that the
restriction map

r: C[Z] — C[t x XT] = C[t]*

is injective. We need to prove that the image lies in H and that r o p is the localisation map Hf(X) — H.
The latter comes directly from the definition as p(c)(v, ;) = c|¢, (v).

Now we need to prove that for any E; and v € k; and f € C[Z], we have f(v,(; ) = f(v,;_ ). Note that
as the infinitesimal action of k; is trivial on E;, we have k; x E; = Z. This means that over each v € k; there
is a closed subset {v} x E;  Z. As the reduced subscheme structure makes this is a projective variety (IP',
precisely), every global function on Z needs to be constant along this subvariety. As it contains (v,(; ) and

(v,Ci, ), we get f(v,C;) = f(v,C; ). O

Remark 519. Thus the ring of regular functions on the total scheme is isomorphic to the equivariant
cohomology for regular actions of principally paired group on smooth projective varieties, by Theorem 5.7,
as well as for GKM spaces by Theorem 5.16. We expect this to hold for a larger class of group actions on
smooth projective varieties, including spherical varieties.

In the above we used the fact that the torus-fixed points are isolated, but we also needed the GKM
cohomology result, i.e. Theorem 5.17. This way we know that any function on the zero scheme will be a
cohomology class, as it will determine an element that already lies in H. Note that for arbitrary torus
actions, every l-orbit defines a similar condition on the image of localisation, but the image of localisation
will in general be strictly smaller than similarly defined H.

We can see that it is not enough to assume for the torus to act with isolated fixed points. Indeed, let us
consider X = IP2, but we restrict the standard action of the 2-dimensional torus to 1-dimensional C*. Take
e.g. the action t-[x:p:z] = [x: t?p: t*z]. The only fixed points are [1:0:0] and [0:1:0] and [0:0: 1],
and hence if we consider any non-zero v € C = Lie(C*), the associated vector field only has those three
zeros. On the other hand, for v = 0 the zero scheme is the whole IP?. Therefore, Z;,; = C x X will consist
of a vertical IP? and three horizontal lines. The action of t € C* multiplies by t 2 on each of those lines.

Any global function on Z;,; determines polynomials f;, f>, f3 on those lines. Then C[Zo] = {(f1, f2, f3) €
C[x]?: f1(0) = £,(0) = f3(0)}. There is an injective map HZ, (IP?) — C[Z], but it is not surjective.
From Example 3.20 we have H, (IP?) = C[x,v]/(x(x + 2v)(x + 4v)). Geometrically, we see the map
Ziot — SpecHY, (IP?) which contracts P? to the point. We see that héx (P?) = 2, but C[Z]* =
{(ax,bx,cx):a,b,c e C} is 3-dimensional.

Work is ongoing to determine under what assumptions this result holds. For example for many affine
Bott-Samelson varieties, Jakub Lowit proved Hf (X, C) = C[Z,] (private communication), as well as a
version for equivariant K-theory. Other examples and applications can be found in [Hau23a, Section 4].

Appendix. Graded Nakayama lemma

For the sake of completeness, we provide here the proof of the version of the graded Nakayama lemma
that we need (see also [Eis95, Corollary 4.8 and Exercise 4.6]).

Let R be an Z-graded ring R = @, (R,, and I = @, _ (R, the ideal generated by elements of positive
degree.
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Lemma Al IfaZ--graded R-module M satisfies M = IM, then M = 0.

Proof. Suppose to the contrary that a € M is a non-zero homogeneous element of minimal degree d € Z
present in M. By the assumption M = IM, we have that

k
a= Z ria;
i=1

for some r; €I, a; € M. But as r; € I, the minimal degree present in 7; is at least 1. As a; € M, the minimal
degree present in a; is at least d. Therefore, the elements r;a; have zero parts in degrees less than d + 1. In
particular, we cannot get a as a sum of them, as it has non-zero part in degree d. 0

Corollary A.2. Let M be an Z-graded R-module M. Suppose that elements (a;);c; of M generate the
R/I-module M/IM. Then they generate M as an R-module.

Proof. Let us consider the map of R-modules ¢: R/ — M defined by the elements aj. We have the exact
sequence

R -2 M — coker ¢ — 0.

As tensor product is right-exact, by tensoring with R/I we get an exact sequence of R/I-modules:
(R/I)) — M /IM — (coker ¢) ®g R/I —> 0.

By assumption the first map is an epimorphism; hence (coker¢) ®g R/I = 0. In other words, coker ¢
satisfies the conditions of lemma. Therefore, coker ¢ = 0, so ¢ is surjective. [l
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