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A construction of the polylogarithm motive

Clément Dupont and Javier Fresán

Abstract. Classical polylogarithms give rise to a variation of mixed Hodge–Tate structures on the
punctured projective line S = P

1
Z
\ {0,1,∞}, which is an extension of the symmetric power of the

Kummer variation by a trivial variation. By results of Beilinson–Deligne, Huber–Wildeshaus, and
Ayoub, this polylogarithm variation has a lift to the category of mixed Tate motives over S , whose
existence is proved by computing the corresponding space of extensions in both the motivic and
the Hodge settings. In this paper, we construct the polylogarithm motive as an explicit relative
cohomology motive, namely that of the complement of the hypersurface {1− zt1 · · · tn = 0} in affine
space A

n
S relative to the union of the hyperplanes {ti = 0} and {ti = 1}.
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1. Introduction

1.1. The polylogarithm variation of mixed Hodge–Tate structures

Let n ⩾ 1 be an integer. The nth polylogarithm Lin is the function defined on the complex unit disk |z| < 1
by

Lin(z) =
∞∑
k=1

zk

kn
.

That is, Li1(z) = − log(1 − z) and Lin(z) is, for n ⩾ 2, the primitive of Lin−1(z)/z that vanishes at z = 0.
Hence, the vector (1,Li1(z), . . . ,Lin(z)) is a solution of the system of linear differential equations dL = LΩn

on the punctured Riemann sphere P
1(C) \ {0,1,∞}, where Ωn is the matrix

(1.1) Ωn =



0 dz
1−z
0 dz

z 0

0
. . .
. . .

0 0 dz
z
0


.

A full basis of fundamental solutions is given by the rows of the matrix

(1.2) Λn(z) =



1 Li1(z) Li2(z) Li3(z) · · · Lin(z)

2πi 2πi log(z) 2πi log
2(z)
2 · · · 2πi log

n−1(z)
(n−1)!

(2πi)2 (2πi)2 log(z) · · · (2πi)2 log
n−2(z)

(n−2)!

. . .
...

0

(2πi)n



.

The entries of Λn(z) are multivalued functions on P
1(C) \ {0,1,∞}, and analytic continuation along a loop

around one of the punctures left-multiplies Λn(z) by a monodromy matrix. These monodromy matrices,
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first computed by Ramakrishnan [Ram82], are upper triangular with 1s along the diagonal and have rational
entries thanks to the normalization by powers of 2πi.

Deligne [Del84] realized that the matrix Λn(z) gives rise to a variation of mixed Hodge–Tate structures
on P

1(C) \ {0,1,∞}, the nth polylogarithm variation LHn , which is defined as follows:
• Its underlying holomorphic vector bundle is trivial of rank n+1 with basis e0, . . . , en, equipped with the flat

connection d+Ωn. Its weight and Hodge filtrations are such that W2k =W2k+1 is spanned by e0, . . . , ek ,
and Fk by ek , . . . , en, for all k.

• Its underlying Q-local system consists of those holomorphic functions

ϕ : U −→ Ce0 ⊕ · · · ⊕Cen
(
U ⊂ P

1(C) \ {0,1,∞}
)

such that Λn(z)ϕ(z) has locally constant rational entries. The weight filtration is such that W2k =W2k+1
consists of those ϕ for which Λn(z)ϕ(z) takes values in Ce0 ⊕ · · · ⊕Cek , which defines a sub-local system
by the special shape of the monodromy matrices.

Concretely, the fiber of LHn at z ∈ P1(C) \ {0,1,∞} can also be described as the Q-vector space of dimension
n+1 with basis e0, . . . , en, with weight and Hodge filtrations such that W2k =W2k+1 is spanned by e0, . . . , ek ,
and Fk is spanned by the kth through nth columns of Λn(z), for all k.

The block-triangular shape of (1.2) shows that LHn contains the trivial variation with fiber Q(0) as a
subobject, and that the quotient is a Tate twist (corresponding to the multiplicative factor 2πi) of the
(n− 1)-symmetric power of the Kummer variation KH, described by the same procedure as above starting
from the matrix (

1 log(z)
0 2πi

)
.

It is also apparent from the shape of (1.2) that LHn contains LHn−1 as a subobject, and hence we have an
inductive system LH of variations of mixed Hodge–Tate structures. The symmetric powers Symn(KH) also
make up an inductive system induced by the inclusion of Q(0) inside KH, and we get a short exact sequence
of ind-variations of mixed Hodge–Tate structures

(1.3) 0 −→Q(0) −→LH −→ Sym
(
KH

)
(−1) −→ 0.

Remark 1.1. What usually appears in the literature, see [Ram89, Hai94], is the dual variation (LHn )∨, which is
less natural from a cohomological viewpoint because it has non-positive weights. Its underlying holomorphic
vector bundle is trivial of rank n+1, with basis f0, . . . , fn, equipped with the flat connection d− tΩn, and with
weight and Hodge filtrations such that W−2k =W−2k+1 is spanned by fk , . . . , fn, and F−k by f0, . . . , fk , for all k.
Its underlying local system is the Q-span of the rows of Λn(z), with weight filtration such that W−2k =W−2k+1
is the Q-span of the kth through nth rows. Our descriptions of LHn and (LHn )∨ are related by the fact that
the rows of Λn(z) express the coordinates of the dual basis e∨0 , . . . , e

∨
n in the basis f0, . . . , fn.

1.2. The polylogarithm motive

In an attempt to find a motivic interpretation of Zagier’s conjecture, see [Zag91], expressing the special
values of the Dedekind zeta function of a number field in terms of polylogarithms, Beilinson and Deligne
[BD94] postulated the existence of a lift of the polylogarithm variation of mixed Hodge–Tate structures to
the then-conjectural abelian category of mixed Tate motives with rational coefficients over P1

Q
\ {0,1,∞}. The

formalism of motivic polylogarithms was generalized to multiple polylogarithms by Goncharov, leading to
progress on Zagier’s conjecture; see [Gon95]. We refer the reader to the survey article [Dup21] for more
details on the motivic aspects of Zagier’s conjecture.

We work over the base scheme S = P
1
Z
\ {0,1,∞}. By the work of Voevodsky [Voe00], we now have access

to a triangulated category DM(S) of mixed motives with rational coefficients over S . For this particular
choice of base S, one can extract from DM(S) an abelian category MT(S) of mixed Tate motives with
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A2

B2

Figure 1. The hypersurfaces A2 and B2 in the affine plane X2.

rational coefficients over S as in the case where the base is a number field, explained by Levine [Lev93].
Inspired by the constructions of Wildeshaus and Huber–Wildeshaus in the Hodge and the ℓ-adic settings
[Wil97, HW98], Ayoub [Ayo04] defined a polylogarithm motive as an ind-object of MT(S). The idea is to
compute the extension group

Ext1Ind(MT(S)) (Sym(K)(−1),QS(0))

and define the polylogarithm motive as a specific extension class (see Appendix C for more details on this
computation and a precise comparison with that of [Ayo04]). Note that the references [Wil97, HW98, Ayo04]
place themselves in a dual setting, consistently with Remark 1.1.

In this paper, we give an explicit construction of the polylogarithm motive as the relative cohomology
motive (see Definition A.1 for this notion) of a pair of varieties over S . Our starting point is the integral
representation

(1.4) Lin(z) =
∫
[0,1]n

zdt1 · · ·dtn
1− zt1 · · · tn

,

valid for z outside the half-line [1,∞), which suggests to work in the following geometric framework. Let z
denote the coordinate on S, and let Xn = A

n
S be the affine n-space over S with coordinates t1, . . . , tn.

Consider the closed S-subschemes of Xn defined by the equations

An = {1− zt1 · · · tn = 0} and Bn = {t1(1− t1) · · · tn(1− tn) = 0},

so that the integrand of (1.4) defines an algebraic differential n-form on Xn \An, the integration domain a
singular n-chain in Xn(C) with boundary in Bn(C), and the polylogarithm Lin(z) a period function of the
family of relative cohomology groups

(1.5) Hn(Xn \An,Bn \An ∩Bn).

Figure 1 illustrates the case n = 2.

Definition 1.2. The nth polylogarithm motive is the relative cohomology motive

Ln =M(Xn \An,Bn \An ∩Bn) [n].

A priori an object of DM(S), the nth polylogarithm motive is an iterated extension of the pure Tate
motives QS(−k) which turns out to lie in the abelian subcategory MT(S) of mixed Tate motives over S,
reflecting the fact that the cohomology groups of the pair (Xn\An,Bn\An∩Bn) are concentrated in degree n.
Besides, a partial boundary morphism (see Definition A.8) along the irreducible component {tn = 1} of Bn
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gives rise to a morphism of motives Ln−1→Ln that makes up an inductive system L in MT(S), in other
words, an object of the ind-category Ind(MT(S)).

Our main result is as follows (see Theorems 3.3, 3.4, 3.9 below).

Theorem 1.3. The ind-motive L fits into a short exact sequence

(1.6) 0 −→QS(0) −→L −→ Sym(K)(−1) −→ 0

in the category Ind(MT(S)). Its Hodge realization is the polylogarithm ind-variation LH.

It is easy to show that Ln fits into a short exact sequence

(1.7) 0 −→QS(0) −→Ln −→M(An,An ∩Bn)[n− 1](−1) −→ 0,

where M(An,An∩Bn) is again a relative cohomology motive, and the crux of the proof (Theorem 2.13 below)
consists in establishing an isomorphism

(1.8) M(An,An ∩Bn)[n− 1] ≃ Symn−1(K).

The main technical ingredient in the proof is a motivic lift of a spectral sequence originally due to Getzler
[Get99] in the Hodge setting, which computes motives of configuration spaces with coefficients and is a
special case of a general construction of [DJ24]. As the referee pointed out to us, the isomorphism (1.8) was
established using a different language and in a more abstract setting by Levine [Lev07, Proposition 9.3.3]
and Ayoub [Ayo07b, Theorem 3.6.44].

The short exact sequence (1.7) was already noticed by Deligne in a letter to Beilinson [Del01], where the
isomorphism (1.8) is conjectured:

[· · · ] while Hn−1 (
∏n

1 xi = z,relxi = 1) is the Symn−1 of the Kummer extension [· · · ]. At least I
am convinced it is, but here also I would like to understand why.

The letter was prompted by Ball and Rivoal’s theorem [Riv00, BR01] according to which the Riemann zeta
function takes irrational values at infinitely many odd integers. Their proof features integrals of the form

(1.9)
∫
[0,1]n

tu11 (1− t1)v1 · · · t
un
n (1− tn)vn

(1− zt1 · · · tn)r
dt1 · · ·dtn

for integer parameters ui ,vi , r . By elementary manipulations, these integrals can be written as linear
combinations with polynomial coefficients of 1 and the polylogarithms Li1(z), . . . ,Lin(z). As they are period
functions of the family of relative cohomology groups (1.5), the conceptual explanation is that these groups
are incarnations of the polylogarithm motives. Ball and Rivoal were eventually interested in the evaluations
of (1.9) at z = 1, for which a geometric interpretation was studied by the first-named author [Dup18]. The
present paper can therefore be thought of as a functional version of op. cit..

An advantage of identifying the polylogarithm motive with an explicit relative cohomology motive is that
one can then define it in the category of perverse Nori motives over S , see [IM24], where the computation of
extension groups is currently out of reach.

Remark 1.4. Huber and Kings [HK18] produced, for every smooth group scheme G over a base, a polylogarithm
extension class, which is (1.6) in the case of G = Gm over Spec(Z) (see Appendix C for a more precise
discussion). It is unclear to us how to adapt our methods to produce geometric constructions for those
extension classes beyond the case of Gm, even in the case of the elliptic polylogarithm of Beilinson–Levin
[BL94], corresponding to elliptic curves.
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1.3. Iterated integrals and the motivic fundamental group

Considering instead the more familiar representation of the polylogarithm as the iterated integral

(1.10) Lin(z) =
∫
0⩽x1⩽···⩽xn⩽1

zdx1
1− zx1

dx2
x2
· · · dxn

xn
,

which is related to (1.4) through the change of variables

(1.11) (x1, . . . ,xn) = (t1t2 · · · tn, t2 · · · tn, . . . , tn−1tn, tn),

one is led to work in a slightly different geometric framework. Namely, one considers the closed S-subschemes
of X ′n =A

n
S defined by

A′n = {(1− zx1)x2 · · ·xn = 0} and B′n = {x1(x2 − x1)(x3 − x2) · · · (xn − xn−1)(1− xn) = 0}.

However, the integral (1.10) is not a period of the relative cohomology group

Hn(X ′n \A′n,B′n \A′n ∩B′n)

since the integration simplex ∆n of (1.10) meets the subvariety A′n on {x1 = x2 = 0}. The trick to separate
them is to resort to a tower of blow-ups: Let πn : X̃ ′n→ X ′n be the composition of

• the blow-up of X ′n at the origin,

• the blow-up along the strict transform of the line {x1 = x2 = · · · = xn−1 = 0},
• the blow-up along the strict transform of the plane {x1 = x2 = · · · = xn−2 = 0},
...

• the blow-up along the strict transform of the codimension 2 subspace {x1 = x2 = 0},
and let Ã′n and B̃′n denote the strict transforms of A′n and B′n, respectively, and En the exceptional divisor
of πn. Then the boundary of the preimage by πn of the interior of ∆n lies on B̃′n∪En and does not meet Ã′n,
as shown in Figure 2 for n = 2.

A′2

B′2

Ã2
′

B̃2
′

E2

Figure 2. In A
2, the blow-up of the origin separates the boundary of the integration simplex

{0 ⩽ x1 ⩽ x2 ⩽ 1} from the pole divisor {(1 − zx1)x2 = 0}. By removing the strict transform of
{x2 = 0} one recovers the geometry of Figure 1.

Therefore, Lin(z) is a period function of the family of relative cohomology groups

(1.12) Hn
(
X̃ ′n \ Ã′n,

(
B̃′n ∪En

)
\ Ã′n ∩

(
B̃′n ∪En

))
.
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Notice that the change of variables (1.11) provides a local chart for the blow-up X̃ ′n. More precisely, it induces
an isomorphism

Xn −→ X̃ ′n \
(

˜{x2 = 0} ∪ · · · ∪ ˜{xn = 0}
)
, (t1, . . . , tn) 7−→ (x1, . . . ,xn)

that identifies the pairs (Xn \An,Bn \An ∩ Bn) and (X̃ ′n \ Ã′n, (B̃′n ∪ En) \ Ã′n ∩ (B̃′n ∪ En)). Therefore, the
cohomology groups (1.5) and (1.12) are isomorphic. Before this paper, the latter had only been computed
for n = 2 by Wang [Wan06], who gives a slightly different presentation in the spirit of Goncharov–Manin
[GM04] and proves that it is a motivic lift of the dilogarithm variation. Our definition here can thus be seen
as a way to circumvent the blow-up process.

Another approach to constructing the polylogarithm motive is via a quotient of the motivic fundamental
groupoid πmot

1 (P1
Z
\ {0,1,∞};0, z) with a tangential basepoint at 0 and a varying usual basepoint at z, of

which the iterated integrals (1.10) are naturally periods. At the moment of writing, this motivic fundamental
group has been constructed as a system of realizations by Deligne [Del89] and as mixed Tate motive
by Deligne–Goncharov [DG05], but only for a fixed algebraic value of the parameter z. Moreover, the
construction is not purely motivic, as it relies on the fact that the Hodge realization functor on mixed Tate
motives over a number field is fully faithful and its image is stable under subquotients.

1.4. Overview

The paper is organized as follows. Section 2 is devoted to the proof of the isomorphism (1.8), which is
achieved in Theorem 2.13. From this, we derive the structure of the motive Ln at the beginning of Section 3.
We then compute its Hodge realization and show that it agrees with the polylogarithm variation. The paper
is supplemented by Appendix A, in which we gather the main properties of relative cohomology motives,
Appendix B, which presents a computation of motives of configuration spaces that is used in the proof of
Proposition 2.8, and Appendix C, which gives details on certain extension groups and clarifies the relation
with previous approaches to polylogarithm motives.

1.5. Notation and conventions related to categories of motives

Voevodsky’s triangulated category of mixed motives with rational coefficients over a scheme S (also
known as motivic sheaves on S) will be denoted by DM(S). It is a symmetric monoidal category with unit
object QS(0). The assignment S{DM(S) supports a six-functor formalism; see [Ayo07a, Ayo07b, CD19].
Every pair of varieties (X,Z) over S gives rise to an object M(X,Z) of DM(S) that we call a relative
cohomology motive. We warn the reader that in the literature such notation is often used for relative homology
motives instead. Appendix A contains a compendium of results on these objects.

We let Gm,S denote the multiplicative group scheme over S and {1} ↪→Gm,S its unit section. We define
the Lefschetz motive as the relative cohomology motive

(1.13) QS(−1) = M
(
Gm,S , {1}

)
[1].

It is an invertible object of DM(S), and hence the tensor powers QS(−n) = QS(−1)⊗n are defined for
each n ∈Z. Given an object F of DM(S), we set F (−n) = F ⊗QS(−n).

Let DMT(S) denote the triangulated subcategory of DM(S) generated by the objects QS(−n) for all n ∈Z.
By a theorem of Levine [Lev93], if S satisfies the Beilinson–Soulé vanishing conjecture, then DMT(S) is
equipped with a canonical t-structure, whose heart MT(S) is called the category of mixed Tate motives
with rational coefficients over S . It is an abelian category, endowed with cohomology functors induced by
the t-structure Hn : DMT(S)→MT(S). Every object F of MT(S) is equipped with an increasing weight
filtration W indexed by even integers such that, for each n ∈Z, the graded piece

GrW2nF =W2nF /W2(n−1)F
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is a finite direct sum of copies of QS(−n). We call semisimplification of F the semisimple object

GrW F =
⊕
n∈Z

GrW2nF

of the abelian category MT(S). Moreover, the symmetric monoidal structure on DM(S) induces the structure
of a Q-linear neutral Tannakian category on MT(S).

By the work of Borel, Spec(Q) satisfies the Beilinson–Soulé vanishing conjecture. Since the map
Ki(Z)

Q
→ Ki(Q)

Q
is an injection for i = 1 and an isomorphism for i , 1, so does Spec(Z). Using the

homotopy invariance Ki(Z[z]) ≃ Ki(Z) and the localization long exact sequence as in [EL07, Corollary 6.6.2],
we see that S = P

1
Z
\ {0,1,∞} = A

1
Z
\ {0,1} also satisfies the Beilinson–Soulé vanishing conjecture, and

therefore we can work in the Tannakian category MT(S).

Acknowledgments

We would like to thank Tanguy Rivoal for bringing Deligne’s letter to Beilinson [Del01] to our attention,
and Simon Pepin Lehalleur for his many comments on a first version of this paper.

2. A geometric description of the logarithmic system

The main result of this section is Theorem 2.13, which identifies the symmetric powers of the Kummer mo-
tive with explicit relative cohomology motives. Throughout, we work over the base scheme S = P

1
Z
\ {0,1,∞}

with coordinate z, and we let Gm,S denote the multiplicative group scheme over S with coordinate t.

2.1. The Kummer motive and the logarithmic system

Let Z ⊂ Gm,S denote the union of the closed S-subschemes of Gm,S defined by the equations {t = 1}
and {tz = 1}.

Definition 2.1. The Kummer motive is the relative cohomology motive

K =M
(
Gm,S ,Z

)
[1] ∈DM(S).

The Kummer motive is usually defined over the base P
1
Z
\ {0,∞} =Gm,Z, and K is its restriction to S . As

the following classical proposition shows, it is an extension of QS(−1) by QS(0). The fiber at z of its étale
realization is the Kummer torsor of roots of z, whence its name; see [Del89, Sections 2.9 and 2.10].

Proposition 2.2. The Kummer motive K belongs to the subcategory MT(S) and fits into a short exact sequence

(2.1) 0 −→QS(0) −→K −→QS(−1) −→ 0.

Proof. Applied to the closed subschemes Z ′ = {t = 1} and Y = {tz = 1} of X =Gm,S , Proposition A.5 from
the appendix yields the distinguished triangle

M(Y ) −→K −→M(X,Z ′) [1]
+1−→

in the category DM(S). The rightmost term is QS(−1) by definition (1.13), and the leftmost term is isomorphic
to QS(0) since pY : Y → S is an isomorphism. As these two objects belong to the subcategory MT(S), the
result follows. □

Let n ⩾ 0 be an integer. We will be interested in the nth symmetric power of the Kummer motive. By
Proposition 2.2, its semisimplification is equal to

GrW Symn(K) ≃ Symn(GrW K) ≃ Symn(QS(0)⊕QS(−1)) ≃QS(0)⊕QS(−1)⊕ · · · ⊕QS(−n).
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The inclusion ι : QS(0) ↪→K appearing in the short exact sequence (2.1) induces, for each n ⩾ 1, transition
morphisms ιn : Sym

n−1(K) ↪→ Symn(K) given by the formula

(2.2) ιn =
1
n

n∑
i=1

id⊗(i−1)⊗ι⊗ id⊗(n−i),

which make up an inductive system Sym(K) in the category MT(S).

Definition 2.3. The inductive system Sym(K) is called the logarithmic system.

2.2. The inductive system T

For each integer n ⩾ 0, let An+1
S denote the (n + 1)-dimensional affine space over S with coordinates

(t1, . . . , tn+1), and let Tn ⊂ A
n+1
S be the closed S-subscheme defined by the equation {zt1 · · · tn+1 = 1}.

Let Zn ⊂ Tn be the union of the closed S-subschemes Z in = {ti = 1} for i = 1, . . . ,n+1. Under the identification
Tn ≃ G

n
m,S , with coordinates (t1, . . . , tn), the subscheme Z in corresponds to the subtorus given by {ti = 1}

for i = 1, . . . ,n and {zt1 · · · tn = 1} for i = n+1. We define an object

Tn =M(Tn,Zn) [n] ∈DM(S).

Since (T0,Z0) ≃ (S,∅) and (T1,Z1) ≃ (Gm,S , {t = 1} ∪ {tz = 1}), we have T0 ≃QS(0) and T1 ≃ K.
We let Z ′n ⊂ Tn denote the union of the subtori Z in for i = 1, . . . ,n, so that Zn = Z ′n∪Zn+1n . For each n ⩾ 1,

the pair (Zn+1n ,Zn+1n ∩Z ′n) is naturally identified with the pair (Tn−1,Zn−1), so we have a partial boundary
morphism (see Definition A.8) along Zn+1n that we denote by

τn : Tn−1 −→ Tn.

These morphisms give rise to an inductive system T .

Proposition 2.4. The object Tn belongs to the category MT(S), and the morphism τn fits into a short exact
sequence

0 −→ Tn−1
τn−→ Tn −→QS(−n) −→ 0.

Proof. By Proposition A.5, the morphism τn fits into a distinguished triangle

Tn−1
τn−→ Tn −→M(Tn,Z

′
n) [n]

+1−→

in the category DM(S). Since the pair (Tn,Z ′n) is the nth Cartesian power of the pair (T1,Z ′1), the Künneth
formula (see Proposition A.11) gives an isomorphism

M(Tn,Z
′
n)[n] ≃ (M(T1,Z

′
1)[1])

⊗n =QS(−n),

taking into account the equality M(T1,Z ′1)[1] = QS(−1), which is the definition of the right-hand side.
Starting with T0 ≃QS(0) ∈MT(S), the statement then follows by induction on n. □

We note that Proposition 2.4 and induction on n, starting with T0 ≃QS(0), imply that the semisimplifica-
tion of Tn is

GrW Tn ≃QS(0)⊕QS(−1)⊕ · · · ⊕QS(−n).
Therefore, Symn(K) and Tn have the same semisimplification. The aim of the next four subsections is to
prove that these two motives are actually isomorphic for each n ⩾ 0, in a way compatible with the inductive
systems: Sym(K) ≃ T (see Theorem 2.13 below). After introducing auxiliary inductive systems C and D in
Section 2.3, this is done in three steps (achieved in Sections 2.4, 2.5, 2.6)

Remark 2.5. The symmetric group Sn+1 acts on A
n+1
S by permuting the coordinates ti , and this action

preserves the subschemes Tn and Zn. By the functoriality of relative cohomology motives (see Proposition A.3),
Sn+1 thus acts on the object Tn of MT(S), and one can prove (by induction on n) that it does so via the
alternating character sgnn+1. We omit the proof of this fact, which will not be used in the rest of the article.
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2.3. The auxiliary inductive systems C and D

For the remainder of this section, we make a change of coordinates in Tn ≃G
n
m,S by setting

(x1,x2, . . . ,xn) = (t1, t1t2, . . . , t1t2 · · · tn),

so that Zn is the union of the subvarieties {x1 = 1}, {xn = 1/z}, and {xi = xi+1} for i = 1, . . . ,n−1. We define
closed S-subschemes Cn ⊂Dn ⊂ Tn by

Cn =
⋃

1⩽i⩽n

{xi = 1} ∪ {xi = 1/z}, ∆ =
⋃

1⩽i<j⩽n

{xi = xj}, and Dn = Cn ∪∆.

Note that Zn is contained in Dn, and the intersection Zn ∩Cn consists of {x1 = 1} ∪ {xn = 1/z}. We define
objects of DM(S):

Cn =M(Tn,Cn) [n] and Dn =M(Tn,Dn) [n].

By the functoriality of relative cohomology motives (see Proposition A.3), there is a morphism

ϕn : Dn −→ Cn.

The symmetric group Sn acts on Tn by permuting the coordinates xi , and this action preserves the closed
subschemes Cn and Dn. Again by the functoriality of relative cohomology motives, we thus have an action
of Sn on the objects Cn and Dn of DM(S), which is such that the morphism ϕn is Sn-equivariant. (Note
that this symmetric group action has nothing to do with the action of Sn+1 on Tn discussed in Remark 2.5.)
Since DM(S) is a pseudo-abelian category, we can speak about the alternating components Csgnn and Dsgn

n ,
which are direct summands of Cn and Dn, respectively, and we get an induced morphism ϕ

sgn
n : Dsgn

n →Csgnn .
(We will see in the next subsection that Cn and Dn actually live in the abelian subcategory MT(S) of DM(S).)

For i = 1, . . . ,n, consider

Y (i) = {xi = 1/z} and Z ′(i) = {xi = 1} ∪
⋃
j,i

(
{xj = 1} ∪ {xj = 1/z}

)
,

so that Cn = Z ′(i)∪Y (i). There is a natural identification of the pair (Y (i),Y (i)∩Z ′(i)) with (Tn−1,Cn−1),
and hence a partial boundary morphism (see Definition A.8) along Y (i) that we denote by γ in : Cn−1→Cn.
We consider the morphism γn : Cn−1→Cn defined by the formula

(2.3) γn =
1
n

n∑
i=1

(−1)n−iγ in.

The collection of the motives Cn, endowed with the transition morphisms γn, makes up an inductive system C
in DM(S). The next lemma shows that this passes to the alternating components and gives rise to a direct
summand Csgn of the inductive system C.

Lemma 2.6. The transition morphism γn induces a morphism γ
sgn
n : Csgnn−1→C

sgn
n .

Proof. We have the following identity in the group algebra Q[Sn]. Let πn =
1
n!

∑
σ∈Sn sgn(σ )σ denote the

projector onto the alternating component, and let us define

ξn =
1
n

n∑
i=1

(−1)n−i(i · · ·n).

Then we have πn = ξnπn−1, which follows immediately from the fact that a permutation σ ∈ Sn can be
uniquely written as a product (i · · ·n)σ ′ with i ∈ {1, . . . ,n} and σ ′ ∈ Sn−1. The functoriality of partial boundary
morphisms (see Proposition A.9) with respect to (i · · ·n) implies that we have γ in = (i · · ·n) ◦γnn , so that we
may write γn = ξn ◦γnn . Again by the functoriality of partial boundary morphisms, γnn is Sn−1-equivariant,
and we have

γn ◦πn−1 = ξn ◦γnn ◦πn−1 = (ξnπn−1) ◦γnn = πn ◦γnn ,
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and thus γn sends the image of πn−1 to the image of πn. The claim follows from this. □

In the same fashion, we have morphisms δin : Dn−1 → Dn, which are partial boundary morphisms
along {xi = 1/z}, and δn : Dn−1→Dn given by the formula

δn =
1
n

n∑
i=1

(−1)n−iδin,

which define an inductive system D. By the same argument as in the proof of Lemma 2.6, we see that the
alternating components Dsgn

n make up a direct summand inductive system Dsgn.
By the functoriality of partial boundary morphisms (see Proposition A.9), ϕn ◦γ in = δin ◦ϕn−1 holds for

all n and i, and we get morphisms of inductive systems ϕ : D→ C and ϕsgn : Dsgn→Csgn.

2.4. A first isomorphism: Sym(K) ≃ Csgn

Proposition 2.7. The object Cn lives in the category MT(S), and we have an Sn-equivariant isomorphism

K⊗n ≃−→ Cn ⊗ sgnn,

which induces an isomorphism of inductive systems

Sym(K) ≃−→ Csgn.

Proof. The pair (Tn,Cn) is the nth Cartesian power of the pair (T1,C1), and hence by the Künneth formula
(see Proposition A.11), there is an isomorphism K⊗n = (C1)⊗n

≃→Cn in DM(S). Because of the shift [1] in the
definition of K, this isomorphism is Sn-equivariant up to the alternating character sgnn (Koszul sign rule),
whence the first claim. We therefore get an isomorphism

Symn(K) =
(
K⊗n

)Sn ≃ (Cn ⊗ sgnn)
Sn ≃ Csgnn .

From the compatibility between partial boundary morphisms and the Künneth formula (see Proposition A.13),
we get the following commutative diagram for every i = 1, . . . ,n, where the sign comes from the Koszul
sign rule:

K⊗n ≃
// Cn

K⊗n−1 ≃
//

id⊗(i−1)⊗ι⊗id⊗(n−i)
OO

Cn−1.

(−1)n−iγ in

OO

This implies, by looking at formulas (2.2) and (2.3), that the isomorphisms Symn(K) ≃ Csgnn are compatible
with the inductive systems. □

2.5. A second isomorphism: Csgn ≃Dsgn

Proposition 2.8. The objects Dn live in the category MT(S). The morphism ϕ : D→ C induces an isomorphism
of inductive systems

ϕsgn : Dsgn ≃−→ Csgn.

Proof. Recall the notation ∆ =
⋃

1⩽i<j⩽n{xi = xj} for the fat diagonal in Tn. We define

F =
(
jTnTn\Cn

)
!
QTn\Cn(0)[n] ∈DM(Tn),

so that we have Cn =
(
pTn

)
∗
F . By using QTn\Dn(0) ≃

(
jTn\CnTn\Dn

)∗
QTn\Cn(0) and the base change isomorphism(

jTn\∆Tn\Dn

)
!

(
jTn\CnTn\Dn

)∗
≃

(
jTnTn\∆

)∗ (
jTnTn\Cn

)
!
, we get an isomorphism

Dn ≃
(
pTn

)
∗

(
jTnTn\∆

)
!

(
jTnTn\∆

)∗
F .
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We now use the notation and results of Appendix B. We apply Theorem B.3 to the motive F on Tn =G
n
m,S

and apply the functor
(
pTn

)
∗

to it. We obtain a Postnikov system in DM(S):

0 = Fn // · · ·

}}

· · · // F1 //

��

F0 =Dn,

yy

Gn−1
+1

cc

G1
+1

__

G0 = Cn
+1

cc

whose graded objects are

Gk =
⊕
π∈Πn
|π|=n−k

(
pTπ

)
∗

(
iTnTπ

)∗
F [−k] ⊗ A(π)∨,

where Tπ =G
π
m,S denotes the closed subscheme of Tn where xa = xb if a and b are in the same block of π.

We have a base change isomorphism(
pTπ

)
∗

(
iTnTπ

)∗
F [−k] ≃

(
pTπ

)
∗

(
j
Tπ
Tπ\Tπ∩Cn

)
!
QTπ\Tπ∩Cn(0)[n− k] ≃ Cπ,

where Cπ ≃ Cn−k is defined in the same way as Cn on the torus Tπ ≃ Tn−k . This way we can write

Gk ≃
⊕
π∈Πn
|π|=n−k

Cπ ⊗A(π)∨,

and by Proposition 2.7, the object Gk lives in the category MT(S) for all k. Thus, this is also the case for the
objects Fk and in particular for F0 =Dn, which proves the first claim. We thus get a descending filtration
Fk on Dn whose graded quotients are the objects Gk . We note that this filtration is Sn-equivariant by
Theorem B.3 and that the last quotient F0 =Dn↠ G0 ≃ Cn is nothing but the morphism ϕn by construction.

We now prove the equality (Gk)sgn = 0 for all k > 0. The symmetric group Sn permutes the summands
of Gk . The stabilizer of the summand indexed by a partition π is the subgroup S(π) =

∏
B∈πSB; it acts

trivially on Cπ (because it acts trivially on the torus Tπ), and its action on A(π)∨ =
⊗

B∈πA
∨
B is induced by

the action of SB on A∨B for each block B of π. We therefore have an inclusion

(Gk)sgn ↪−→
⊕
π∈Πn
|π|=n−k

Cπ ⊗⊗
B∈π

(A∨B)
sgn

 .
If k = n−|π| > 0, then there is a block B of π of cardinality at least 2, for which (A∨B)

sgn = 0, by Theorem B.2.
Therefore, (Gk)sgn = 0 for k > 0. This implies by backward induction the equality (Fk)sgn = 0 for k > 0, and
in particular (F1)sgn = 0. Now the short exact sequence

0 −→ F1 −→Dn
ϕn−→ Cn −→ 0

implies that ϕ
sgn
n is an isomorphism. □

Remark 2.9. In weight zero, the isomorphism of Proposition 2.8 is a combinatorial statement that can be
understood as follows in the Betti realization. Let us consider the fiber at a fixed z ∈ S(C) = C \ {0,1}, which
for simplicity we assume to be a real number satisfying 0 < z < 1. The transpose of the Betti realization
of ϕn is the natural map

(2.4) HB
n(Tn,Cn) −→HB

n(Tn,Dn)

which sends the class of a cycle on Tn with boundary along Cn to the class of the same cycle, viewed with
a boundary along Dn ⊃ Cn. Then the weight zero quotient of HB

n(Tn,Cn) is 1-dimensional with basis the
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class of the hypercube □n(z) = [1,1/z]n. The weight zero quotient of HB
n(Tn,Dn) has dimension n! and has

a basis consisting of the classes of the simplices

∆σn (z) =
{
(x1, . . . ,xn) ∈Rn | 1 ⩽ xσ−1(1) ⩽ · · · ⩽ xσ−1(n) ⩽ 1/z

}
for σ ∈ Sn. If we take the action of the symmetric group into account, then the weight zero quotient of the
map (2.4) is the natural inclusion

sgnn −→ sgnn ⊗Q[Sn]

sending the class of the hypercube □n(z) to the alternating sum of the classes of the simplices ∆σn (z), which
reflects the fact that □n(z) is paved by the ∆σn (z) for σ ∈ Sn (the signs are forced by the orientations). This
last map clearly induces an isomorphism on the alternating components.

2.6. A third isomorphism: Dsgn ≃ T

By the functoriality of relative cohomology motives, there is a natural morphism ψ̃n : Dn→Tn. We let

ψn : Dn −→ Tn
denote this morphism rescaled by the factor n!; i.e., ψn = n! ψ̃n. The next lemma shows that these morphisms
induce a morphism of inductive systems ψ : D→ T .

Lemma 2.10. We have ψn ◦ δn = τn ◦ψn−1.

Proof. By the functoriality of boundary morphisms (see Proposition A.9), we have ψ̃n ◦ δin = 0 for
all i = 1, . . . ,n− 1, and ψ̃n ◦ δnn = τn ◦ ψ̃n−1. The claim follows since n!× (1/n) = (n− 1)! . □

Proposition 2.11. The composite

(2.5) Dsgn ↪−→D
ψ
−→ T

is an isomorphism of inductive systems.

Proof. We show by induction on n ⩾ 0 that the composite Dsgn
n ↪→ Dn

ψ
−→ Tn is an isomorphism. The

case n = 0 is trivial since Dsgn
0 = D0 = T0 = QS(0). For the inductive step, we consider the following

commutative diagram in the category MT(S):

0

��

0

��

Dsgn
n−1

δ
sgn
n
��

� �
// Dn−1

δn
��

ψn−1
// Tn−1

τn
��

Dsgn
n

��

� �
// Dn ψn

// Tn

��

QS(−n)

��

QS(−n)

��

0 0.

The first column is exact because of Propositions 2.7 and 2.8. The third column is exact because of
Proposition 2.4. Using the induction hypothesis and the five lemma, it is enough to prove that the composite

QS(−n) ≃GrW2nD
sgn
n ↪−→GrW2nDn

GrW2nψn−−−−−−→GrW2nTn ≃QS(−n)
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is an isomorphism. It is enough to prove that the morphism GrW2nψn is an isomorphism. By the functoriality
of relative cohomology motives, we have a commutative diagram in MT(S), obtained by taking H0 of the
obvious morphisms in DM(S) (the subschemes Z ′n ⊂ Tn were defined in Section 2.2):

Dn
ψ̃n

//

��

Tn

��

Cn // Hn (M(Tn)) M(Tn,Z ′n) [n].oo

We now take GrW2n everywhere in this diagram and conclude that GrW2n ψ̃n is an isomorphism because the
other four arrows are. Indeed, the five objects appearing in the diagram are relative cohomology motives of
the form M(Tn,Y ), where Y is a strict closed subvariety of Tn, and therefore have their GrW2n isomorphic
to Q(−n). This concludes the proof of the inductive step, and hence of the proposition. □

Remark 2.12. Following up on Remark 2.9, let us consider the transpose of the Betti realization of the
composite (2.5):

(2.6) HB
n(Tn,Zn) −→HB

n(Tn,Dn) −↠HB
n(Tn,Dn)

sgn ≃←−HB
n(Tn,Cn)

sgn,

where the first map is the natural one multiplied by n!. Assume that z is a real number satisfying 0 < z < 1.
Then the weight zero quotient of HB

n(Tn,Zn) is 1-dimensional with basis the class of the simplex ∆id
n (z). Its

image by (2.6) is

n!
[
∆id
n (z)

]
=

∑
σ∈Sn

sgn(σ )[∆σn (z)] = [□n(z)].

This explains the factor n! in the definition of ψn.

2.7. A geometric description of the logarithmic system

Theorem 2.13. There is an isomorphism of inductive systems in MT(S)

Sym(K) ≃−→ T .

Proof. The isomorphism is obtained by composing the three isomorphisms given by Propositions 2.7, 2.8,
and 2.11. □

Remark 2.14. A theorem of Beilinson (see [Gon01, Theorem 4.1] and [DG05, Proposition 3.4]) identifies the
dual of the Betti realization TB with the Malcev completion of the π1(C×,1)-torsor of paths from 1 to 1/z
in C

×. (Note that multiplication by z and reversal of paths induce an isomorphism between that torsor and
the fundamental path torsor based at 1 and z.) More precisely, there is a tower of isomorphisms

(2.7) Q[π1(C
×,1,1/z)]/In+1 ≃−→HB

n(Tn,Zn),

where I is the image of the augmentation ideal of the group algebra Q[π1(C×,1)]. Beilinson’s isomor-
phism (2.7) sends the class of a continuous path γ from 1 to 1/z in C

× to the class of the n-simplex
∆n(γ) = γn ({0 ⩽ x1 ⩽ · · · ⩽ xn ⩽ 1}). (If z is a real number satisfying 0 < z < 1 and γ is the straight line
from 1 to 1/z, then ∆n(γ) = ∆id

n (z) in the notation of Remark 2.9.) It is now known [DG05] that the Malcev
completion of π1(C×,1,•) is (dual to) the Betti realization of an ind-object of MT(S), the affine ring of
the motivic fundamental group of Gm, which is isomorphic to Sym(K) in Deligne’s category of systems of
realizations; see [Del89, Proposition 14.2]. Thus, Theorem 2.13 can be viewed as a motivic lift of Beilinson’s
theorem for Gm. As the referee pointed out to us, it was also proved using a different language and in a
more abstract setting by Levine [Lev07, Proposition 9.3.3] and Ayoub [Ayo07b, Theorem 3.6.44].
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Remark 2.15. An alternative strategy for proving Theorem 2.13, which is the one adopted by [Ayo07b,
Theorem 3.6.44], would be as follows. Assuming that we can define by hand the structure of a commutative
algebra in MT(S) on T , the (iso)morphism K→ T1 induces for free a morphism of commutative algebras
in MT(S) from the free commutative algebra Sym(K) to T , and we are left with proving that it is an
isomorphism.

3. The polylogarithm motive

3.1. Definition

Let n ⩾ 0 be an integer. We denote by Xn =A
n
S the n-dimensional affine space over S , with coordinates

(t1, . . . , tn) and projection map pn : Xn→ S . We introduce the following closed S-subschemes of Xn:

An = {1− zt1 · · · tn = 0} and Bn = {t1(1− t1) · · · tn(1− tn) = 0}.

Definition 3.1. The nth polylogarithm motive is the relative cohomology motive

Ln =M(Xn \An,Bn \An ∩Bn) [n] ∈DM(S).

We will see in Theorem 3.3 below that Ln actually belongs to the abelian category MT(S). For now let us
check the n = 0 case: Since A0 = B0 = ∅ ⊂ X0 = S , we have L0 =QS(0) ∈MT(S).

We introduce closed S-subschemes B′n = {t1(1 − t1) · · · tn−1(1 − tn−1)tn = 0} and Yn = {tn = 1} of Xn,
so that Bn = B′n ∪ Yn. The pair (Yn \ Yn ∩ An,Yn ∩ B′n \ Yn ∩ B′n ∩ An) is naturally identified with the
pair (Xn−1 \An−1,Bn−1 \An−1 ∩Bn−1), and hence there is a partial boundary morphism (see Definition A.8)
along Yn denoted by

λn : Ln−1 −→Ln.
These morphisms give rise to an inductive system L.

Definition 3.2. The inductive system L is called the polylogarithmic system.

3.2. The structure of the polylogarithm motive

Theorem 3.3. The nth polylogarithm motive Ln is an object of the category MT(S) and fits into a short exact
sequence

(3.1) 0 −→QS(0) −→Ln −→ Symn−1(K)(−1) −→ 0.

Proof. We apply Proposition A.18 by noting that (Xn,An,Bn) is a triple which is locally of product type
because An ∪ Bn is a normal crossing divisor, and that An is a smooth divisor in Xn. We obtain a
distinguished triangle in DM(S):

(3.2) M(Xn,Bn) [n] −→Ln −→M(An,An ∩Bn) (−1)[n− 1]
+1−→ .

The leftmost term of (3.2) is easy to compute. The pair (Xn,Bn) is the nth Cartesian power of the pair (X1,B1),
so the Künneth formula (see Proposition A.11) gives an isomorphism in MT(S):

M(Xn,Bn) [n] ≃ (M(X1,B1)[1])
⊗n .

We compute M(X1,B1) = M(A1
S , {0,1}) thanks to the distinguished triangle (see Proposition A.5)

M({1}) −→M(A1
S , {0,1}) [1] −→M(A1

S , {0}) [1]
+1−→ .

The relative cohomology motive M(A1
S , {0}) vanishes because homotopy invariance implies that

M(A1
S )→M({0}) is an isomorphism. Therefore, we have an isomorphism M(X1,B1)[1] ≃M({1}) ≃QS(0),

which leads to an isomorphism M(Xn,Bn)[n] ≃QS(0). The rightmost term of (3.2) is, by definition, Tn−1(−1),
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and hence it is isomorphic to Symn−1(K)(−1) by Theorem 2.13. Since both QS(0) and Symn−1(K)(−1) are
objects of the category MT(S), the claim follows. □

Theorem 3.4. The short exact sequence (3.1) is compatible with the inductive systems in the sense that we have for
each n ⩾ 1 a commutative diagram in MT(S) with exact rows:

0 //
QS(0) // Ln−1 //

λn
��

Symn−2(K)(−1) //

ιn−1(−1)
��

0

0 //
QS(0) // Ln // Symn−1(K)(−1) // 0.

Proof. The first square commutes by the functoriality of partial boundary morphisms (see Proposition A.9).
The second square commutes by the compatibility between residue morphisms and partial boundary
morphisms (see Proposition A.22). □

From Theorem 3.4 we see that the transition morphisms λn fit in short exact sequences

(3.3) 0 // Ln−1
λn
// Ln

Res
//
Q(−n) // 0,

where Res is the composition of the residue morphism Ln→M(An,An ∩Bn)(−1)[n− 1] with

M(An,An ∩Bn)(−1)[n− 1] = Hn−1(M(An,An ∩Bn))(−1) −→Hn−1(M(An))(−1) ≃Q(−n).

3.3. de Rham realization

We explicitly compute the de Rham realization of Ln, which is an algebraic vector bundle with flat
connection on S

Q
= P

1
Q
\ {0,1,∞} that we denote by (Vn,∇). We will first see that Vn is the trivial

vector bundle of rank n + 1 by exhibiting an explicit basis, and compute the connection. For a smooth
variety Y over S

Q
, we denote by pY : Y → S

Q
the structure morphism and consider the complex of

sheaves Ω•(Y /S
Q
) = R0(pY )∗Ω•Y /S

Q

on S
Q

whose local sections are global algebraic forms on the fibers

of Y over S
Q

. Since Xn \An is affine over S
Q

, the vector bundle Vn is the nth cohomology sheaf of the total
complex of the double complex

(3.4) 0 −→Ω•
(
(Xn \An) /SQ

)
−→

⊕
i

Ω•
((
Bin \An ∩Bin

)
/S

Q

)
−→ ·· · ,

which involves global algebraic forms on Xn \An, on the irreducible components Bin \An∩Bin of Bn \An∩Bn,
and on their multiple intersections.

The following construction is inspired by [Dup18, Section 3]. Recall that the Eulerian polynomials Er(x)
are defined, for r ⩾ 0, by the relation

(3.5)
∑
j⩾0

(j +1)rxj =
Er(x)

(1− x)r+1
.

The first examples are given by E0(x) = E1(x) = 1, E2(x) = 1 + x, E3(x) = 1 + 4x + x2. They satisfy the
recurrence relation

(3.6) Er+1(x) = x(1− x)E′r(x) + (1 + rx)Er(x).

For n ⩾ 0, we define differential forms

ω
(0)
n = dt1 · · ·dtn

and, for each k = 1, . . . ,n,

ω
(k)
n =

zEn−k(zt1 · · · tn)
(1− zt1 · · · tn)n−k+1

dt1 · · ·dtn.
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They are global sections of the sheaf Ωn((Xn \An)/SQ). Since Xn \An has relative dimension n over S , they
automatically define global sections of the vector bundle Vn.

Proposition 3.5. The classes of ω
(0)
n , . . . ,ω

(n)
n form a basis of the algebraic vector bundle Vn, and the connection

∇ : Vn→Vn ⊗OS Ω
1
S
Q
/Q satisfies

∇
([
ω

(0)
n

])
= 0, ∇

([
ω

(1)
n

])
=

[
ω

(0)
n

]
⊗ dz
1− z

, ∇
([
ω

(k)
n

])
= [ω(k−1)

n ]⊗ dz
z

(k = 2, . . . ,n).

Proof. We proceed by induction on n. The statement is clear for n = 0. For the induction step, with n ⩾ 1,
we use the following short exact sequence of algebraic vector bundles with flat connections on S, which is
the de Rham realization of (3.3):

(3.7) 0 −→ (Vn−1,∇)
λn,dR−−−−→ (Vn,∇)

ResdR−−−−−→
(
Hn−1dR

(
An/SQ

)
,∇

)
≃ (OS

Q

,d) −→ 0.

The morphism λn,dR is induced by the inclusion inside (3.4) of the similar complex computing Vn−1.
Therefore, for each global section ω of Ωn−1((Xn−1 \An−1)/SQ), we have

λn,dR([ω]) = −[dη],

where η is any global section of Ωn((Xn \An)/SQ) such that η|{tn=1} = ω and η vanishes when restricted
to {tn = 0} and all the {ti = 0} and {ti = 1} for i = 1, . . . ,n− 1.

(1) For ω =ω(0)
n−1, we may choose η = tndt1 · · ·dtn−1, and we get

(3.8) λn,dR

([
ω

(0)
n−1

])
= (−1)n

[
ω

(0)
n

]
.

Since λn,dR commutes with the connections, the induction hypothesis implies that

(3.9) ∇
([
ω

(0)
n

])
= 0.

(2) For ω =ω(k)
n−1 with k = 1, . . . ,n− 1, we may choose

η =
ztnEn−k−1(zt1 · · · tn)
(1− zt1 · · · tn)n−k

dt1 · · ·dtn−1.

The recurrence relation (3.6) readily implies the equality dη = (−1)n−1ω(k)
n , and hence

(3.10) λn,dR

([
ω

(k)
n−1

])
= (−1)n

[
ω

(k)
n

]
(k = 1, . . . ,n− 1).

Since λn,dR commutes with the connections, the induction hypothesis implies that

(3.11) ∇
([
ω

(k)
n

])
=

[
ω

(k−1)
n

]
⊗ dz
z

(k = 2, . . . ,n− 1).

(3) The induction hypothesis also implies that

∇
([
ω

(1)
n

])
=

[
ω

(0)
n

]
⊗ dz
1− z

if n ⩾ 2, and we need to treat the case of [ω(1)
1 ] by hand. For this, we compute

∂
∂z
ω

(1)
1 −

1
1− z

ω
(0)
1 =

dt
(1− zt)2

− 1
1− z

dt = dν with ν = − z
1− z

t(1− t)
1− zt

.

Since ν vanishes at t = 0 and t = 1, this means that [dν] = 0 holds in relative cohomology, whence
the result:

(3.12) ∇
([
ω

(1)
1

])
=

[
ω

(0)
1

]
⊗ dz
1− z

.
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(4) The map ResdR appearing in (3.7) is induced by the residue map along the hypersurface
An = {zt1 · · · tn = 1}. Taking the equality

ω
(n)
n =

zdt1 · · ·dtn
1− zt1 · · · tn

= (−1)n−1dlog(1− zt1 · · · tn)∧dlog(t1)∧ · · · ∧dlog(tn−1)

into account, we see that

Res
([
ω

(n)
n

])
= (−1)n−1 [dlog(t1)∧ · · · ∧dlog(tn−1)] ,

which is a basis of Hn−1dR (An/SQ) ≃ OS
Q

. Along with (3.8) and (3.10), this implies that the classes

of ω
(0)
n , . . . ,ω

(n)
n form a basis of Vn. In view of (3.9), (3.11), (3.12), we are left with proving the formula

∇
([
ω

(n)
n

])
=

[
ω

(n−1)
n

]
⊗ dz
z
.

It follows from an easy computation:

∂
∂z
ω

(n)
n =

∂
∂z

zdt1 · · ·dtn
1− zt1 · · · tn

=
dt1 · · ·dtn

(1− zt1 · · · tn)2
=
1
z
ω

(n−1)
n .

This concludes the induction step and the proof. □

Remark 3.6. One could choose to define ω
(n)
0 by the same formula as the other ω

(n)
k . This would only result

in a base change (gauge transformation) in the connection matrix.

Remark 3.7. One can note that the recurrence relation (3.6) implies the identities

∂
∂z
ω

(0)
n = 0 and

∂
∂z
ω

(k)
n =

1
z
ω

(k−1)
n (k = 2, . . . ,n)

already at the level of differential forms. However, the relation

∇
([
ω

(1)
n

])
=

[
ω

(0)
n

]
⊗ dz
1− z

is only true at the level of relative cohomology classes.

3.4. Hodge realization

We first compute the weight and Hodge filtrations on the algebraic vector bundle Vn.

Proposition 3.8. The weight and Hodge filtrations on Vn are given, for all integers k, by

W2kVn = OS
Q

[
ω

(0)
n

]
⊕ · · · ⊕OS

Q

[
ω

(k)
n

]
and FkVn = OS

Q

[
ω

(k)
n

]
⊕ · · · ⊕OS

Q

[
ω

(n)
n

]
.

Proof. For the weight filtration, we first note that the morphism λn,dR in the short exact sequence (3.7) is
strictly compatible with the weight filtrations on Vn−1 and Vn, and that its cokernel (OS

Q

,d) is concentrated in
weight 2n. The statement therefore follows by induction on n using the identities (3.8) and (3.10). Regarding

the Hodge filtration, the same inductive reasoning gives the statement provided that we can prove that [ω(n)
n ]

belongs to FnVn. This is a consequence of the fact that ω
(n)
n is a logarithmic form on some compactification

of Xn \An over S
Q

, as in the proof of [Dup18, Proposition 3.12]. □

Theorem 3.9. The Hodge realization of Ln is the nth polylogarithmic variation of mixed Hodge structures
described in the introduction.

Proof. By Propositions 3.5 and 3.8, the analytic vector bundle with flat connection (V an,∇an)
on P

1(C) \ {0,1,∞} is the one described in the introduction. Therefore, we only need to prove
that the rational structure on the Betti realization Ln,B is the one induced by the period matrix (1.2). It is
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enough to prove it for the fiber of Ln,B at some point z ∈ P1(C) \ {0,1,∞}. We contemplate the following
short exact sequence of local systems on P

1(C) \ {0,1,∞}, induced by (3.1),

0 −→ Symn−1
(
K∨B

)
−→L∨n,B −→Hn

B(Xn,Bn) −→ 0,

where Hn
B(Xn,Bn) is a rank 1 constant local system. We fix some z ∈C\[1,+∞), so that the hypercube [0,1]n

does not intersect the hypersurface {zt1 · · · tn = 1} and hence defines a relative homology class in the fiber
of L∨n,B at z, which lifts the canonical basis of HB

n(Xn,Bn). A basis of L∨n,B at z is therefore obtained by
adjoining the class of [0,1]n to a basis of Symn−1(K∨B) at z. The following lemma shows that in such a basis,
the period matrix of Ln at z is (1.2), which concludes the proof. □

Lemma 3.10. Let z ∈C \ [1,+∞). We have the identities∫
[0,1]n

ω
(0)
n = 1 and

∫
[0,1]n

ω
(k)
n = Lik(z) (k = 1, . . . ,n).

Proof. The first identity is clear. For the second, we use (3.5) to compute∫
[0,1]n

ω
(k)
n =

∑
j⩾0

(j +1)n−kzj+1
∫
[0,1]n

(t1 · · · tn)jdt1 · · ·dtn =
∑
j⩾0

zj+1

(j +1)k
= Lik(z). □

A. Relative cohomology motives

In this appendix, we collect some useful facts on relative cohomology motives. All of these results are
well known to experts, but we were not able to find a reference where they are presented in a systematic
way. We fix a base scheme S which is assumed to be separated and of finite type over a Noetherian base
scheme, and we call variety a scheme X over S which is separated and of finite type, for which we denote
the structure morphism by pX : X→ S . We use the traditional notation iXZ : Z ↪→ X and jXU : U ↪→ X for
open and closed immersions, respectively.

A.1. Relative cohomology motives

We consider pairs (X,Z) consisting of a variety X and a closed subvariety Z of X. They form a category
in which a morphism from (X1,Z1) to (X2,Z2) is a morphism of varieties f : X1→ X2 such that f (Z1) ⊂ Z2.

Definition A.1. Let (X,Z) be a pair of varieties. The object

M(X,Z) = (pX)∗
(
jXX\Z

)
!
QX\Z(0) ∈ DM(S)

is called the relative cohomology motive of (X,Z). When Z is empty, we set

M(X) = M(X,∅) = (pX)∗QX(0) ∈ DM(S)

and simply call it the cohomology motive of X.

We warn the reader that in the literature such notation is often used for relative homology motives instead.
By a slight abuse, shifts of M(X,Z) will also be called relative cohomology motives.

Remark A.2. For S = Spec(C), the Betti realization of the relative cohomology motive M(X,Z) is a complex
that computes the relative singular cohomology groups H•(X,Z) = H•(X(C),Z(C);Q).

Proposition A.3. Relative cohomology motives yield a contravariant functor (X,Z) 7→M(X,Z) from the category
of pairs of varieties to DM(S).

In particular, we have morphisms M(X,Z2)→M(X,Z1) for closed subvarieties Z1 ⊂ Z2 ⊂ X. We will
first need to prove a general lemma.
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Lemma A.4. Let (Xi ,Zi) be pairs as above for i = 1,2,3.

(1) Let f : X1 → X2 be a morphism such that f (Z1) ⊂ Z2. Then we have a morphism of endofunctors of
DM(X2):

Φf :
(
jX2
X2\Z2

)
!

(
jX2
X2\Z2

)!
−→ f∗

(
jX1
X1\Z1

)
!

(
jX1
X1\Z1

)!
f ∗.

(2) Let g : X2→ X3 be another morphism such that g(Z2) ⊂ Z3. Then we have an equality of morphisms of
endofunctors of DM(X3):

Φg◦f =
(
g∗Φf g

∗
)
◦Φg .

Proof. (1) By the adjunction (f ∗, f∗), defining Φf is equivalent to defining a morphism

f ∗
(
jX2
X2\Z2

)
!

(
jX2
X2\Z2

)!
−→

(
jX1
X1\Z1

)
!

(
jX1
X1\Z1

)!
f ∗.

Let us set U1 = f −1(X2 \Z2). By using base change and j ! = j∗, we have an isomorphism

f ∗
(
jX2
X2\Z2

)
!

(
jX2
X2\Z2

)!
≃

(
jX1
U1

)
!

(
jX1
U1

)!
f ∗.

Since f (Z1) ⊂ Z2, we have U1 ⊂ X1 \Z1, and we derive a morphism of functors(
jX1
U1

)
!

(
jX1
U1

)!
≃

(
jX1
X1\Z1

)
!

(
jX1\Z1
U1

)
!

(
jX1\Z1
U1

)! (
jX1
X1\Z1

)!
→

(
jX1
X1\Z1

)
!

(
jX1
X1\Z1

)!
,

and combining all this gives the desired morphism.
(2) This is a tedious but instructive exercise in the six-functor formalism that we encourage the reader to

solve by themselves. □

Proof of Proposition A.3. We have by definition M(X,Z) = (pX)∗
(
jXX\Z

)
!

(
jXX\Z

)!
(pX)

∗
QS(0). For a morphism

of pairs f : (X1,Z1)→ (X2,Z2), we set M(f ) =
(
pX2

)
∗
Φf

(
pX2

)∗
QS(0), which is a morphism from M(X2,Z2)

to M(X1,Z1), where Φf was defined in part (1) of Lemma A.4. Part (2) of that lemma then implies the
equality M(g ◦ f ) = M(f ) ◦M(g). □

A.2. Partial boundary morphisms

Proposition A.5. Let X be a variety, let Y and Z ′ be closed subvarieties of X, and set Z = Z ′ ∪Y . There is a
distinguished triangle in DM(S):

(A.1) M(Y ,Y ∩Z ′)[−1] −→M(X,Z) −→M(X,Z ′)
+1−→ .

We first need to prove a general lemma.

Lemma A.6. Let X be a variety, and let Y , Z, and Z ′ be closed subvarieties of X with Z = Z ′ ∪Y . There is a
distinguished triangle of endofunctors of DM(X):(

iXY
)
∗

(
jYY \Y∩Z ′

)
!

(
jYY \Y∩Z ′

)! (
iXY

)∗
[−1] −→

(
jXX\Z

)
!

(
jXX\Z

)!
−→

(
jXX\Z ′

)
!

(
jXX\Z ′

)! +1−→ .

Proof. We consider the distinguished (localization) triangle i∗i
∗[−1] → j!j

! → 1
+1→ for i = iX\Z

′

Y \Y∩Z ′ and

j = jX\Z
′

X\Z . Composing it on the left by
(
jXX\Z ′

)
!
and on the right by

(
jXX\Z ′

)!
gives rise to a distinguished

triangle of endofunctors of DM(X):(
jX\ZX\Z ′

)
!

(
iX\Z

′

Y \Y∩Z ′
)
∗

(
iX\Z

′

Y \Y∩Z ′
)∗ (
jX\ZX\Z ′

)!
[−1] −→

(
jXX\Z

)
!

(
jXX\Z

)!
−→

(
jXX\Z ′

)
!

(
jXX\Z ′

)! +1−→ .

The result follows from the isomorphisms(
jX\ZX\Z ′

)
!

(
iX\Z

′

Y \Y∩Z ′
)
∗
≃

(
iXY

)
∗

(
jYY \Y∩Z ′

)
!

and
(
iX\Z

′

Y \Y∩Z ′
)∗ (
jX\ZX\Z ′

)!
≃

(
jYY \Y∩Z ′

)! (
iXY

)∗
. □
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Proof of Proposition A.5. This follows from the distinguished triangle of Lemma A.6 by evaluating the
endofunctors at QX(0) = (pX)

∗
QS(0) and applying (pX)∗. □

Remark A.7. If Z ′ is empty, then the triangle (A.1) simply reads

M(Z)[−1] −→M(X,Z) −→M(X)
+1−→ .

For S = Spec(C), its Betti realization gives rise to the long exact sequence in relative singular cohomology
for the pair (X,Z):

(A.2) · · · −→H•−1(Z) −→H•(X,Z) −→H•(X) −→ ·· ·

The morphism H•(X,Z) → H•−1(Z), which is dual to the morphism appearing in the long exact se-
quence (A.2), computes the boundary of a relative cycle. In general, the triangle (A.1) gives rise to a long
exact sequence

· · · −→H•−1(Y ,Y ∩Z ′) −→H•(X,Z) −→H•(X,Z ′) −→ ·· · ,
which can be derived from the long exact sequence in relative cohomology for Z ′ ⊂ Z ⊂ X along with the
excision isomorphism, see [Hat02, Proposition 2.22],

H•−1(Z,Z ′) = H•−1(Y ∪Z ′ ,Z ′) ≃ H̃•−1(Y ∪Z ′/Z ′) ≃ H̃•−1(Y /Y ∩Z ′) ≃H•−1(Y ,Y ∩Z ′).

The morphism H•(X,Z)→H•−1(Y ,Y ∩Z ′), dual to the morphism appearing in that long exact sequence,
computes “the Y -component of the boundary of a relative cycle.” This justifies the following terminology.

Definition A.8. The morphism

M(Y ,Y ∩Z ′)[−1] −→M(X,Z)

appearing in the triangle (A.1) is called a partial boundary morphism along Y .

We now prove that partial boundary morphisms are functorial.

Proposition A.9. For i = 1,2, let Xi ,Yi ,Zi ,Z ′i be as in Proposition A.5, and let f : X1→ X2 be a morphism
such that f (Y1) ⊂ Y2 and f (Z ′1) ⊂ Z

′
2. Then we have the following commutative diagram in DM(S), where the

horizontal arrows are partial boundary morphisms and the vertical arrows are induced by the functoriality of
relative cohomology motives:

M(Y1,Y1 ∩Z ′1)[−1] // M(X1,Z1)

M(Y2,Y2 ∩Z ′2)[−1]

OO

// M(X2,Z2).

OO

We first need to prove a general lemma.

Lemma A.10. In the setting of Proposition A.9, let us write ji = j
Xi
Xi\Zi and j

′
i = j

Xi
Xi\Z ′i

for i = 1,2. There is a
morphism

f∗
(
iX1
Y1

)
∗

(
jY1Y1\Y1∩Z ′1

)
!

(
jY1Y1\Y1∩Z ′1

)! (
iX1
Y1

)∗
f ∗[−1] // f∗ (j1)! (j1)

! f ∗ // f∗
(
j ′1
)
!

(
j ′1
)!
f ∗

+1
//

(
iX2
Y2

)
∗

(
jY2Y2\Y2∩Z ′2

)
!

(
jY2Y2\Y2∩Z ′2

)! (
iX2
Y2

)∗
[−1]

OO

// (j2)! (j2)
!

OO

//

(
j ′2
)
!

(
j ′2
)!

OO

+1
//

between the distinguished triangles from Lemma A.6, in which the vertical arrows are induced by the maps Φf
from part (1) of Lemma A.4.
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Proof. The above diagram is composed of three squares, the third one having horizontal arrows marked +1.
The second and third squares commute as special cases of Lemma A.4(2). By [BBDG18, Proposition 1.1.9],
this implies that the first square commutes since we have

Hom
((
jX2
X2\Z2

)
!

(
jX2
X2\Z2

)!
, f∗

(
iX1
Y1

)
∗

(
jY1Y1\Y1∩Z ′1

)
!

(
jY1Y1\Y1∩Z ′1

)! (
iX1
Y1

)∗
f ∗[−1]

)
= 0.

This vanishing comes from the adjunction
((
jX2
X2\Z2

)
!
,
(
jX2
X2\Z2

)!)
and the vanishing(

jX2
X2\Z2

)!
f∗

(
iX1
Y1

)
∗
=

(
jX2
X2\Z2

)! (
iX2
Y2

)
∗

(
f Y2Y1

)
∗
= 0. □

Proof of Proposition A.9. This follows from the first commutative square of Lemma A.10 by evaluating
at QX2

(0) =
(
pX2

)∗
QS(0) and applying

(
pX2

)
∗
. □

A.3. The Künneth formula

The category of pairs of varieties is endowed with the product

(X1,Z1)× (X2,Z2) = (X1 ×X2, (Z1 ×X2)∪ (X1 ×Z2)),

where all products are implicitly taken over the base scheme S . We will need a Künneth formula for
relative cohomology motives, which holds in great generality over a field but not over a general base (see
Remark A.12 below). We therefore state a very particular case that will be sufficient for our purposes.

Proposition A.11. Let (X1,D1) and (X2,D2) be two pairs consisting of a smooth variety and a strict normal
crossing divisor. There is a functorial isomorphism in DM(S):

M(X1,D1)⊗M(X2,D2)
∼−→M(X1 ×X2, (D1 ×X2)∪ (X1 ×D2)).

Proof. We denote by ⊠ : DM(X1)×DM(X2)→DM(X1 ×X2) the external tensor product defined as

F1 ⊠F2 = π∗1F1 ⊗π
∗
2F2,

with πi : X1 ×X2→ Xi the two projections. We can write

QX1×X2\(D1×X2∪X1×D2)(0) =QX1\D1×X2\D2
(0) ≃QX1\D1

(0)⊠QX2\D2
(0).

Now the base change isomorphism and the projection formula imply, as in [JY21, Lemma 2.2.3], that we have(
jX1×X2
X1\D1×X2\D2

)
!
QX1\D1×X2\D2

(0) ≃
(
jX1
X1\D1

)
!
QX1\D1

(0)⊠
(
jX2
X2\D2

)
!
QX2\D2

(0).

For objects Fi ∈DM(Xi), we have a natural morphism

(A.3)
(
pX1

)
∗
F1 ⊗

(
pX2

)
∗
F2→

(
pX1×X2

)
∗
(F1 ⊠F2);

see [JY21, Section 2.1.19]. It is an isomorphism if Fi =
(
iXiYi

)
∗
QYi (0) for Yi ⊂ Xi a closed subvariety that is

smooth over S, by [JY21, Lemma 2.1.8 and Proposition 2.1.20]. By a simple inclusion-exclusion argument
using the localization triangles, one sees that

(
jXiXi\Di

)
!
QXi\Di (0) is in the triangulated subcategory of DM(Xi)

generated by such Fi , with Yi an intersection of certain irreducible components of Di . Therefore, (A.3) is an
isomorphism for Fi =

(
jXiXi\Di

)
!
QXi\Di (0), and the claim follows. □

Remark A.12. Here is a counterexample to the general Künneth formula over a base. Let S = A
1 be

the affine line over some field, and consider X1 = A
1 \ {0} and X2 = {0} viewed as varieties over S with

structure morphisms j : A1 \ {0} ↪→ A
1 and i : {0} ↪→ A

1. The (fiber) product X1 × X2 is empty, and
therefore M(X1 ×X2) = 0, in contrast with the non-zero

M(X1)⊗M(X2) = j∗QA
1\{0}(0)⊗ i∗Q{0}(0) ≃ i∗i∗j∗QA

1\{0}(0).
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We have the following compatibility between the Künneth formula and partial boundary morphisms,
whose proof is left as an exercise to the reader.

Proposition A.13. Let (X1,D1) and (X2,D2) be two pairs consisting of a smooth variety and a strict normal
crossing divisor. Let us write D1 = C1 ∪D ′1, where C1 is an irreducible component of D1 and D

′
1 is the union

of the remaining irreducible components. Then we have a commutative diagram in DM(S) where the horizontal
arrows are the Künneth isomorphisms from Proposition A.11 and the vertical arrows are partial boundary morphisms
along C1 and C1 ×X2, respectively:

M(X1,D1)⊗M(X2,D2)
∼

// M(X1 ×X2,D1 ×X2 ∪X1 ×D2)

M(C1,C1 ∩D ′1) [1]⊗M(X2,D2)

OO

∼
// M(C1 ×X2, (C1 ∩D ′1)×X2 ∪C1 ×D2) [1].

OO

A.4. Relative cohomology motives associated to triples

We now consider triples (X,A,B) consisting of a variety X and two closed subvarieties A,B ⊂ X. In this
setting, the relative cohomology motive of the pair (X \A,B\A∩B) has a description that is more symmetric
in A and B.

Proposition A.14. For a triple (X,A,B), we have an isomorphism in DM(S):

M(X \A,B \A∩B) ≃ (pX)∗
(
jXX\A

)
∗

(
jXX\A

)∗ (
jXX\B

)
!

(
jXX\B

)!
QX(0).

Proof. This follows from the isomorphism
(
pX\A

)
∗
≃ (pX)∗

(
jXX\A

)
∗

and base change:(
jX\AX\A∪B

)
!
QX\A∪B(0) ≃

(
jX\AX\A∪B

)
!

(
jX\BX\A∪B

)∗ (
jXX\B

)!
QX(0) ≃

(
jXX\A

)∗ (
jXX\B

)
!

(
jXX\B

)!
QX(0). □

Even more symmetry is gained if we make an extra geometric assumption.

Definition A.15. We say that the triple (X,A,B) is locally of product type if, étale locally on X, it is isomorphic
to a triple (X1 ×X2,Z1 ×X2,X1 ×Z2) for pairs (X1,Z1) and (X2,Z2).

If A and B are unions of irreducible components of a normal crossing divisor D ⊂ X such that no
component of D is in both A and B, then (X,A,B) is locally of product type.

Proposition A.16. Let (X,A,B) be a triple that is locally of product type, with X smooth. Then we have an
isomorphism in DM(X):(

jXX\B
)
!

(
jX\BX\A∪B

)
∗
QX\A∪B(0)

≃−→
(
jXX\A

)
∗

(
jX\AX\A∪B

)
!
QX\A∪B(0),

and an isomorphism in DM(S):

M(X \A,B \A∩B) ≃ (pX)∗
(
jXX\B

)
!

(
jXX\B

)! (
jXX\A

)
∗

(
jXX\A

)∗
QX(0).

Proof. The second isomorphism follows from the first and base change as in the proof of Proposition A.14.
The first morphism corresponds by adjunction to the base change isomorphism(

jX\BX\A∪B

)
∗
−→

(
jX\BX\A∪B

)
∗

(
jX\AX\A∪B

)! (
jX\AX\A∪B

)
!
≃

(
jXX\B

)! (
jXX\A

)
∗

(
jX\AX\A∪B

)
!
.

If the triple (X,A,B) is of the type (X1 ×X2,Z1 ×X2,X1 × Z2) for pairs (X1,Z1) and (X2,Z2), with X1
and X2 smooth, then the first morphism is an isomorphism because both sides are isomorphic to the external
tensor product

(
jX1
X1\Z1

)
∗
QX1\Z1

(0)⊠
(
jX2
X2\Z2

)
!
QX2\Z2

(0), by the same kind of reasoning as in the proof of
Proposition A.11. The proposition follows by étale descent. □
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Remark A.17. Proposition A.16 implies, if X is smooth and proper of dimension n and (X,A,B) is a triple
that is locally of product type, that we have Poincaré–Verdier duality

(A.4) DSM(X \A,B \A∩B) ≃M(X \B,A \A∩B) (n) [2n]

whenever DS is well defined.

A.5. Residue morphisms

Proposition A.18. Let (X,A,B) be a triple that is locally of product type, with X smooth and A smooth of pure
codimension c in X. We have a distinguished triangle in DM(S):

(A.5) M(X,B) −→M(X \A,B \A∩B) −→M(A,A∩B) (−c) [−2c+1]
+1−→ .

Proof. By using the distinguished triangle 1→ j∗j
∗ → i!i

![1]
+1→ for i = iX\BA\A∩B and j = jX\BX\A∪B, applying

(pX)∗
(
jXX\B

)
!
, and using Proposition A.16, we get a distinguished triangle

M(X,B) −→M(X \A,B \A∩B) −→ (pX)∗
(
jXX\B

)
!

(
iX\BA\A∩B

)
!

(
iX\BA\A∩B

)!
QX\B(0)[1]

+1−→ .

By purity, we have an isomorphism(
iX\BA\A∩B

)!
QX\B(0) ≃QA\A∩B(−c) [−2c],

and the rightmost term of the above triangle is isomorphic to

(pX)∗
(
iXA

)
!

(
jAA\A∩B

)
!
QA\A∩B (−c) [−2c+1] ≃M(A,A∩B) (−c) [−2c+1].

The proposition follows. □

Definition A.19. For a triple (X,A,B) that is locally of product type, with X smooth and A smooth of pure
codimension c in X, the morphism

M(X \A,B \A∩B) −→M(A,A∩B) (−c) [−2c+1]

appearing in the triangle (A.5) is called a residue morphism along A.

Remark A.20. Under the duality (A.4), the residue morphism along A is exchanged with the boundary
morphism

M(A \A∩B)[−1] −→M(X \B,A \A∩B).
There are also partial residue morphisms, which we do not need.

Remark A.21. The name “residue morphism” comes from the codimension c = 1 case, in which (assuming,
for simplicity, that B is empty) the de Rham realization of the residue morphism H•(X \A)→H•−1(A) can
be computed by the standard residue of logarithmic 1-forms; see [GH94].

Proposition A.22. Let (X,A,Z) be a triple that is locally of product type, with X smooth and A smooth of pure
codimension c in X. Let us fix a decomposition Z = Z ′ ∪Y with Y smooth. Then we have a commutative diagram
in DM(S), where the horizontal arrows are residue morphisms and the vertical arrows are partial boundary
morphisms:

M(Y \A∩Y ,Y ∩Z ′ \A∩Y ∩Z ′)[−1]

��

// M(A∩Y ,A∩Y ∩Z ′)(−c)[−2c]

��

M(X \A,Z \A∩Z) // M(A,A∩Z)(−c)[−2c+1].

Proof. The assumptions imply that (Y ,A∩Y ,Y ∩Z ′) is locally of product type and that A∩Y is smooth
of codimension c in Y ; therefore, the upper residue morphism is well defined. The commutativity of the
diagram is left as an exercise to the reader. □
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B. Motives of configuration spaces with coefficients

In this appendix, we present a motivic lift of Getzler’s results on mixed Hodge modules on configuration
spaces, see [Get99], which is used in the proof of Proposition 2.8. This is a special case of the main theorem
of [DJ24].

B.1. The Arnol’d modules AN

Let N be a finite set of cardinality n ⩾ 1, and let EN denote the graded-commutative Q-algebra generated
by degree 1 elements ei,j , for distinct indices i, j ∈N , subject to the relations ei,j = ej,i and

ei,jei,k − ei,jej,k + ei,kej,k = 0

for pairwise distinct indices i, j,k ∈N . This algebra was introduced by Arnol’d, who proved in [Arn69] that
it is isomorphic to the rational cohomology algebra of the configuration space of distinct points indexed
by N in C. We will be interested in its top-degree component.

Definition B.1. The Arnol’d module AN is the component of degree n− 1 of EN .

The Q-vector space AN is functorial in N in the sense that a bijection N ≃N ′ induces an isomorphism
AN ≃ AN ′ ; in particular, AN is a representation of the symmetric group SN .

A classical interpretation of the Arnol’d modules, originally due to Cohen (see [Coh76, Theorem 12.3] and
[Coh95, Theorem 6.1 (2)]), is that there is an isomorphism of SN -representations

(B.1) A∨N ≃ sgnN ⊗Lie(N ),

where sgnN denotes the sign character and Lie(N ) is the space of Lie words on variables indexed by N that
are linear in each variable.

B.2. The Arnol’d modules as poset homology groups

We will use the following interpretation of the Arnol’d module AN in terms of poset topology; see
[OS80, Bar90, HW95]. Recall that a partition of N is a set π of disjoint subsets of N , called the blocks
of the partition, whose union is N . We denote by |π| the cardinality of a partition π, i.e., the number of
blocks. The set ΠN of all partitions of N is a poset, where π ⩽ π′ if and only if π′ is obtained from π by
merging blocks. The smallest element 0̂ of ΠN is the partition whose blocks are all singletons, and the
largest element 1̂ is the partition with only one block. Note that the symmetric group SN acts on ΠN .

By a special case of [OS80], the reduced homology of the poset ΠN \ {0̂, 1̂} is concentrated in top
degree n− 3, and the corresponding group is isomorphic to AN as a representation of SN :

(B.2) H̃n−3
(
ΠN \

{
0̂, 1̂

})
≃ AN .

For an elementary proof, see [Pet17, Example 3.14]. In [DJ24, Section 1], a more natural grading convention
is used, where the non-trivial homology group is in degree n − 1. With the notation of loc. cit., there is
a complex C•

ΠN
(1̂) that computes the (shifted) reduced cohomology of ΠN \ {0̂, 1̂} with coefficients in Q,

and (B.2) translates to an SN -equivariant quasi-isomorphism

(B.3) C•ΠN

(
1̂
)
≃ A∨N [−n+1].

We will need a generalization of this fact to lower intervals in the partition poset. For a partition π ∈ΠN ,
let us consider the complex C•(π) from [DJ24, Section 1] which computes the (shifted) reduced cohomology
of the open interval (0̂,π) in ΠN . The closed interval [0̂,π] is isomorphic to the product of the partition
posets ΠB, for B ∈ π, and we therefore get a quasi-isomorphism

C•(π) ≃
⊗
B∈π

C•ΠB

(
1̂
)
.
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Using (B.3), we get an SN -equivariant quasi-isomorphism

(B.4) C•(π) ≃
⊗
B∈π

A∨B[−(|B| − 1)] ≃ A(π)
∨[−n+ |π|],

where we have set
A(π) =

⊗
B∈π

AB.

B.3. The alternating part of Arnol’d modules

We will need the following crucial fact about the Arnol’d modules: they do not contain the sign
representation.

Theorem B.2. If n = |N | ⩾ 2, then (A∨N )
sgn = 0.

Proof. It is enough to prove the theorem after extending scalars to C. The structure of A∨N as a complex
representation of SN is given by the following classical result. Let Cn be a cyclic subgroup of SN generated
by an n-cycle, and let ξn be a primitive character of Cn. There is an SN -equivariant isomorphism

A∨N ≃ sgnN ⊗ Ind
SN
Cn

(ξn).

This fact, or more precisely the isomorphism Lie(N ) ≃ IndSNCn (ξn) (see (B.1)), was proved by Brandt [Bra44,
Theorem III] in the language of Schur functors and rediscovered many times, see, e.g., [Kly74, Proposition 1]
and [Joy86, Section 4.4], or for the homology of partition posets, [Han81, Sta82]. It follows that (A∨N )

sgn is

isomorphic to the space of fixed points of the SN -representation IndSNCn (ξn), which by Frobenius reciprocity
is isomorphic to the space of fixed points of the Cn-representation ξn. It is zero since ξn is a non-trivial
character. □

B.4. Motives of configuration spaces with coefficients

Let X be a scheme (separated and of finite type over a Noetherian base scheme), and let CN (X) denote
the configuration space of points of X indexed by N , i.e., the complement in XN of the union of the
diagonals xa = xb, for distinct a,b ∈N . This is the open stratum of a natural stratification of XN indexed
by partitions of N . Namely, to each π ∈ ΠN corresponds a stratum whose Zariski closure is the closed
subscheme Xπ ⊂ XN where xa = xb if a and b are in the same block of π.

We let j : CN (X) ↪→ XN denote the natural open immersion and let F ∈DM(XN ) be a motive. Recall
that a Postnikov system in a triangulated category is simply a sequence of distinguished triangles where
each triangle has a vertex in common with the next one. The following theorem is a motivic lift of Getzler’s
results on mixed Hodge modules on configuration spaces; see [Get99].

Theorem B.3. There is a Postnikov system in the triangulated category DM(XN ):

0 = Fn // · · ·

}}

· · · // F1 //

~~

F0 = j!j !F ,

zz

Gn−1
+1

cc

G1
+1

__

G0
+1

``

whose graded objects are given by

Gk =
⊕
π∈ΠN
|π|=n−k

(
iX

N

Xπ

)
∗

(
iX

N

Xπ

)∗
F [−k] ⊗ A(π)∨.

It is equivariant with respect to the action of SN .

Proof. This is a special case of the main theorem of [DJ24], taking the quasi-isomorphism (B.4) into
account. □
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C. Computations of extension groups, and comparison with previous work

The polylogarithm motive is an extension of Sym(K)(−1) by QS(0), but in the literature it is sometimes
described as an extension of Sym(K) by QS(0). In this appendix, we describe how those two types of objects
are related. For this, first note that the short exact sequence

0 −→QS(0) −→K −→QS(−1) −→ 0

induces a short exact sequence of ind-objects in MT(S):

(C.1) 0 −→QS(0) −→ Sym(K) −→ Sym(K)(−1) −→ 0.

Pullback by the morphism Sym(K) −→ Sym(K)(−1) yields a linear map

Ext1Ind(MT(S))(Sym(K)(−1),QS(0)) −→ Ext1Ind(MT(S))(Sym(K),QS(0)),

which is computed by the following proposition, proved in Section C.2 below.

Proposition C.1. The following diagram commutes, where the rows are short exact sequences and the vertical
arrows are canonical isomorphisms:

0 //
Q

// Ext1Ind(MT(S))(Sym(K)(−1),QS(0)) //

∼
��

Ext1Ind(MT(S))(Sym(K),QS(0)) //

∼
��

0

0 //
Q

k 7→(k,0)
//
Q⊕Q

(k0,k1)7→k1
//
Q

// 0.

Under the canonical isomorphism

Ext1Ind(MT(S))(Sym(K)(−1),QS(0)) ≃Q⊕Q,

the class of (C.1) corresponds to (1,0), and the class of L corresponds to (0,1).

In order to help the reader navigate between references, we now make a series of comments about the
relation between our setting and [Wil97, HW98, Ayo04, HK18].

(1) Those references do not consider extensions of Sym(K)(−1) by QS(0), but rather extensions of
Sym(K), without the Tate twist, by QS(0). One can go between one type of extension and the other
by using the fact that the short exact sequence in the top row of the diagram of Proposition C.1
canonically splits (because the short exact sequence in the bottom row does and the vertical arrows
are canonical).

(2) In fact, those references work in the dual setting (consistently with Remark 1.1) and consider extensions
of QS(0) by the pro-object Sym(K∨).

(3) As explained in Section 2, the Kummer motive K is the restriction to S of an object K′ of MT(Gm,Z).
What is denoted by K in most references is the dual of our K′ , and the pro-object consisting of its
symmetric powers is denoted by Log .

(4) In the work of Huber–Kings [HK18, Section 6.4], the extension corresponding to the polylogarithm
motive is denoted by pol. The more “primitive” extension denoted by pol there does not seem to
have an incarnation in the setting of this paper.
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C.1. Extensions via residues

We start by explaining how “residue” morphisms control certain extension groups. We introduce the
following commutative diagrams:

S �
� j

//

a
""

Gm,Z

b
��

{1},? _i
oo

Spec(Z)

S �
� j ′

//

a
""

A
1
Z

b′

��

{0,1}.? _
(i0,i1)
oo

zz

Spec(Z)

The first part of the next proposition is Ayoub’s argument; see [Ayo04].

Proposition C.2. LetM be an object of Ind(MT(S)).

(1) (a) Assume that there exists an object M′ of Ind(MT(Gm,Z)) such that M = j∗M′ . Then there is a
“residue” morphism

Res1 : Ext
1
Ind(MT(S))(M,QS(0)) −→HomInd(MT(Z))(i

∗M′ ,Q(−1)),

which is functorial inM′ .
(b) ForM = Sym(K), this residue induces an isomorphism

(C.2) Res1 : Ext
1
Ind(MT(S))(Sym(K),QS(0))

∼−→Q.

(2) (a) Assume that there exists an object M′ of Ind(MT(A1
Z
)) such that M = (j ′)∗M′ . Then there is a

“residue” morphism

(Res0,Res1) : Ext
1
Ind(MT(S))(M,QS(0))

−→HomInd(MT(Z))(i
∗
0M

′ ,Q(−1))⊕HomInd(MT(Z))(i
∗
1M

′ ,Q(−1)),

which is functorial inM′ . The map Res1 agrees with that of the previous point.
(b) ForM =QS(−1), this residue induces an isomorphism

(C.3) (Res0,Res1) : Ext
1
MT(S)(QS(−1),QS(0))

∼−→Q⊕Q.

Proof. (1)(a) Since S is smooth of relative dimension 1 over Spec(Z), from the purity isomorphism
a!Q(0) ≃QS(1)[2], we get QS(0) ≃ a!Q(−1)[−2]. By using the adjunction between a! and a!, we therefore
get an isomorphism

HomInd(DM(S))(M,QS(0)[1]) ≃HomInd(DM(Z))(a!M,Q(−1)[−1]).

Now writing a!M ≃ b!j!j !M′ (since j is an open immersion), the distinguished localization triangle

i∗i
∗[−1]→ j!j

!→ 1
+1→ gives rise to a distinguished triangle

i∗M′[−1] −→ a!M−→ b!M′
+1−→ .

By applying HomInd(MT(Z))(−,Q(−1)[−1]), we get the desired residue map

HomInd(DM(Z))(a!M,Q(−1)[−1]) −→HomInd(DM(Z))(i
∗M′ ,Q(−1)),

whose kernel and cokernel are, respectively, governed by the groups

HomInd(DM(Z))(b!M′ ,Q(−1)[−1]) and HomInd(DM(Z))(b!M′ ,Q(−1)).

(1)(b) As explained in Section 2, the Kummer motive K is the restriction to S of an object K′ of MT(Gm,Z)
which satisfies i∗K′ ≃Q(0)⊕Q(−1). We therefore have

i∗Sym(K′) ≃
⊕
n⩾0

Q(−n),
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and hence the target of the residue morphism Res1 is Q. Furthermore, Res1 is an isomorphism because

b!Sym(K′) ≃Q(0)[−1]

and because both HomDM(Z)(Q(0),Q(−1)) and HomDM(Z)(Q(0),Q(−1)[−1]) vanish.
(2)(a) This follows from the same kind of computation as in the previous point. The functoriality and the

compatibility with the map Res1 from the previous point are obvious. This time the kernel and cokernel of
the residue morphism (Res0,Res1) are, respectively, governed by the groups

HomInd(DM(Z))(b
′
!M
′ ,Q(−1)[−1]) and HomInd(DM(Z))(b

′
!M
′ ,Q(−1)).

(2)(b) We set M′ = Q
A

1
Z

(−1). The claim follows from the equality b′!QA
1
Z

(−1) ≃ Q(−2)[−2] and

the vanishing of the extension groups HomDM(Z)(Q(−1)[−1],Q(0)) ≃ Ext1MT(Z)(Q(−1),Q(0)) and

HomDM(Z)(Q(−1)[−2],Q(0)) ≃ Ext2MT(Z)(Q(−1),Q(0)). □

Remark C.3. An important point in the proof of (1)(b) of Proposition C.2 is the isomorphism
b!Sym(K′) ≃Q(0)[−1]. In Betti realization, this is a computation of the compactly supported coho-
mology of Sym(K′) on C

∗, which can be understood as follows. Recall that for a local system V on C
∗,

if T : V1→V1 denotes the monodromy automorphism, we have isomorphisms

H1
c (C

∗,V ) ≃ ker(T −1 − id) and H2
c (C

∗,V ) ≃ coker(T −1 − id).

For V = Symn(K′), we have a decomposition V1 =Qe0 ⊕ · · · ⊕Qen, and in that basis

T = exp



0 1
0 1 0

0
. . .
. . .

0 0 1
0


.

Therefore, we have

H1
c (C

∗,Symn(K′)) ≃Qe0 and H2
c (C

∗,Symn(K′)) ≃Qen,

and passing to the limit,

H1
c (C

∗,Sym(K′)) ≃Qe0 and H2
c (C

∗,Sym(K′)) = 0.

This is consistent with the isomorphism b!Sym(K′) ≃Q(0)[−1].

Remark C.4. The isomorphism (C.3) can be proved more easily using the relation to K-theory:

Ext1MT(S)(QS(−1),QS(0)) ≃ K1(S)Q ≃
(
Z[z,z−1, (1− z)−1]

)×
⊗
Z
Q ≃Q⊕Q.

Note that (C.3) sends the class of the Kummer extension K to (1,0). The other basis element can be obtained
by pulling back that class via the automorphism z 7→ 1− z.

C.2. Proof of Proposition C.1

We build a commutative diagram

0 //
Q

i
// Ext1Ind(MT(S))(Sym(K)(−1),QS(0)) //

R
��

Ext1Ind(MT(S))(Sym(K),QS(0)) //

Res1
��

0

0 //
Q

k 7→(k,0)
//
Q⊕Q

(k0,k1)7→k1
//
Q

// 0
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as follows. The first row results from applying the functor Hom(−,QS(0)) to the short exact sequence (C.1)
and using Hom(QS(0),QS(0)) =Q and the vanishing of Hom(QS(0),QS(0)[1]) and Hom(Sym(K),QS(0)).
Note that the morphism i sends 1 ∈Q to the class of the extension (C.1).

The inclusion QS(0) ↪→ Sym(K) induces a morphism

Ext1Ind(MT(S)(Sym(K)(−1),QS(0)) −→ Ext1MT(S)(QS(−1),QS(0)).

Composing with (C.3) gives rise to the middle vertical arrow R. Note that R sends the class of Sym(K)
to (1,0) and the class of L to (0,1) because L1 is the “Kummer motive around 1,” obtained by pulling
back K by z 7→ 1− z. This implies that the leftmost square commutes.

Finally, the rightmost square commutes because of the compatibility of the two maps Res1 (see Proposi-
tion C.1(2)(a)). The claim follows.
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