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Witt groups of Severi–Brauer varieties
and of function fields of conics
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Abstract. The Witt group of skew-hermitian forms over a division algebra D with symplectic
involution is shown to be canonically isomorphic to the Witt group of symmetric bilinear forms
over the Severi–Brauer variety of D with values in a suitable invertible sheaf. In the special case
where D is a quaternion algebra, we extend previous work by Pfister and by Parimala on the Witt
group of conics to set up two five-terms exact sequences relating the Witt groups of hermitian
or skew-hermitian forms over D with the Witt groups of the center, of the function field of the
Severi–Brauer conic of D, and of the residue fields at each closed point of the conic.
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1. Introduction

This paper consists of two parts. In the first part, comprising Sections 2 and 3, we consider a central
division algebra D with a symplectic involution σ over an arbitrary field k of characteristic different from 2.
We make no restriction on the degree of D , which may be an arbitrary even power of 2. To the involution σ ,
we associate an invertible sheaf Lσ on the Severi–Brauer variety X of D, whose class generates Pic(X).
We relate skew-hermitian spaces over (D,σ ) and symmetric bilinear spaces over X with values in Lσ by a
canonical isomorphism of Witt groups

M : W −(D,σ ) ∼−→W (X,Lσ );

see Theorem 3.3. The map M is defined as the composition of the scalar extension map extX : W −(D,σ )→
W −(D,σ ) from D to the Azumaya algebra D = D ⊗k OX over X, and a Morita isomorphism
Mor : W −(D,σ ) → W (X,Lσ ). The injectivity of M is obtained as a consequence of a theorem of
Karpenko [Kar10], and the surjectivity is derived from Pumplün’s description of W (X,Lσ ) in [Pum99].

In the second part of the paper, we specialize our discussion to the case where D is a quaternion algebra.
The involution σ is then the canonical involution, and X is a smooth projective conic without rational
points. The Witt groups W (X) and W (X,Lσ ) satisfy the purity property (see [BW02, Definition 8.2 and
Corollary 10.3]): They embed in the Witt group W (F) of the function field of X, and their images are the
kernels of suitable residue maps. We thus have exact sequences involving the residue fields k(p) at closed
points p ∈ X(1):

(1.1) 0 −→W (X) −→W (F)
δ−→

⊕
p

W (k(p)) and 0 −→W (X,Lσ ) −→W (F)
δ′−→

⊕
p

W (k(p)).

We compute the cokernels of δ and δ′ in terms of the Witt groups W +(D,σ ) and W −(D,σ ) of hermitian
and skew-hermitian forms over (D,σ ):

cokerδ ≃W −(D,σ ) and cokerδ′ ≃ ker(W (k) −→W +(D,σ )) .

These isomorphisms can be interpreted in terms of Witt groups of triangulated categories. Indeed, by [Bal05,
Corollary 92] (see also [BW02, Section 8]), we have

cokerδ ≃W 1(X) and cokerδ′ ≃W 1(X,Lσ ).
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Hence, we get isomorphisms

W 1(X) ≃W −(D,σ ) and W 1(X,Lσ ) ≃ ker(W (k) −→W +(D,σ )) .

Since W 1(k) =W 2(k) = 0 and W −(D,σ ) =W 2(D,σ ), the first isomorphism also follows from Xie’s exact
sequence, see [Xie19, Theorem 1.2],

· · · −→W 1(k) −→W 1(X) −→W 2(D,σ ) −→W 2(k) −→ ·· · .

As W (X) can be described as the cokernel of an injective transfer map W +(D,σ )→W (k) (see Proposi-
tion 6.3), the description of cokerδ and cokerδ′ , together with the isomorphism M : W −(D,σ ) ≃W (X,Lσ ),
leads to two strikingly similar exact sequences

(1.2) 0 −→W +(D,σ ) −→W (k) −→W (F)
δ−→

⊕
p

W (k(p)) −→W −(D,σ ) −→ 0

and

(1.3) 0 −→W −(D,σ ) −→W (F)
δ′−→

⊕
p

W (k(p)) −→W (k) −→W +(D,σ ) −→ 0.

In substance, sequences (1.2) and (1.3) are due to Pfister [Pfi93, Section 7], although Pfister does not
consider forms over D : He substitutes for W +(D,σ ) and W −(D,σ ) in (1.2) and (1.3) groups that he defines
specifically for this purpose.

The exactness of (1.2) and (1.3) is proved in Section 6. (The exactness of (1.3) at the middle term has been
established by Parimala [Par88, Theorem 5.1], who also has an ad hoc description of the kernel of δ′ in
[Par88, Theorem 5.3].) A delicate part of the argument is to coherently choose uniformizers and transfer
maps k(p)→ k at each closed point p. This issue is addressed in Section 5. In Section 4, we set up an exact
octagon relating the Witt groups W +(D,σ ) and W −(D,σ ) to the Witt groups of quadratic or hermitian
forms over a maximal subfield of D . This exact octagon, due to Lewis [Lew82], is a key technical tool to
show that (1.2) is exact at the next-to-last term.

For a suitable identification of Lσ with an ideal sheaf, it turns out that the residue maps δ and δ′ only
differ in one point of degree 2, which we designate by ∞. As a result, quadratic forms over k that are
split by k(∞) map in W (F) to forms that lie in the kernel of δ′ ; hence these forms can be used to describe
skew-hermitian forms over D . This idea is a key ingredient in Becher’s proof of the Pfister factor conjecture;
see [Bec08]. It was also used in [QMT18, Proposition 3.4] to give examples of non-similar skew-hermitian
forms over a quaternion algebra that become similar over the function field of its Severi–Brauer variety.
Berhuy uses it in [Ber07] to define higher cohomological invariants of quaternionic skew-hermitian forms.
Note that Berhuy’s discussion at the top of p. 442 is flawed: The correspondence between skew-hermitian
forms after scalar extension to the function field and quadratic forms does depend on the choice of splitting.
However, Garrel [Gar18, Section 3.1.3] has shown how the exact sequences (1.2) and (1.3) can be used to
amend Berhuy’s arguments and expand his result, providing a general method that produces cohomological
invariants of skew-hermitian forms that depend only on their similarity class.

Notation

Throughout the paper, we let D denote a central division algebra of 2-power degree n = 2d ≥ 2 over an
arbitrary field k of characteristic different from 2. We assume D has exponent 2 and fix some symplectic
involution σ of D . Let X be the Severi–Brauer variety of n-dimensional left ideals in D . Write F = k(X) for
its function field and OX for its structure sheaf. For each point p on X, we write Op for the local ring at p
and k(p) for its residue field. We let D =D ⊗k OX denote the Azumaya algebra over X obtained by scalar
extension to OX . Its stalk and fiber at a point p are

Dp =D ⊗k Op and D(p) =D ⊗k k(p).



4 A. Quéguiner-Mathieu and J.-P. Tignol4 A. Quéguiner-Mathieu and J.-P. Tignol

From Section 4 onward, D is assumed to be a quaternion algebra. The involution σ is therefore the canonical
conjugation involution ; we often omit it from the notation and write simply W (D), W −(D) for W +(D,σ ),
W −(D,σ ).

Acknowledgments

The authors are grateful to A. Merkurjev for the proof of Proposition 2.1 and to the referee for suggestions
that allowed them to streamline the arguments in Section 3.

2. Locally free sheaves on Severi–Brauer varieties

In this section, we define on the Severi–Brauer variety X a locally free sheaf T of rank n, which is the
main tool for the Morita equivalence developed in the next section. We use it to associate to the symplectic
involution σ the generator Lσ of Pic(X) in which the symmetric bilinear spaces over X we consider take
their values.

Let T be the generic point of X, which is an n-dimensional left ideal in the split algebra DF obtained
from D by scalar extension to the function field F of X. The sheaf of OX-modules T is defined as the
intersection of D with T in DF (viewing T and DF as constant sheaves):

(2.1) T = T ∩D ⊂DF .

Since T is a left ideal in DF , it is clear that T is a sheaf of left D-modules. The main properties of the
sheaf T are given in the next proposition, using the following notation: For ℓ an arbitrary field extension
of k, let Xℓ = X × Spec(ℓ) be the ℓ-variety obtained from X by base change, and let p : Xℓ → X be the
projection map. For any OX-module M, we let Mℓ = p∗(M) be the inverse image of M; if ℓ is a finite
extension of k and N is an OXℓ

-module, we let trℓ/k(N ) = p∗(N ) be the direct image of N .

Proposition 2.1.

(a) The sheaf T is a locally free OX -module of rank n.
(b) If ℓ is a splitting field of D , every ℓ-algebra isomorphism Dℓ ≃ EndℓV with V an n-dimensional ℓ-vector

space induces an isomorphism of sheaves

(2.2) Tℓ ≃ V ⊗ℓ OXℓ
(−1) ≃ OXℓ

(−1)⊕n.

(c) The canonical homomorphism D → EndT arising from the left D-module structure on T yields an
identification D = EndT ; hence T is an indecomposable locally free sheaf.

(d) For every maximal subfield ℓ of D, there is an isomorphism of sheaves

T ≃ trℓ/k
(
OXℓ

(−1)
)
.

Proof. We first prove(1) (b), as (a) follows by base change. Let ℓ be a splitting field of D, and fix an ℓ-algebra
isomorphism to identify Dℓ = Endℓ(V ) = V ⊗ℓ V ∗ for some n-dimensional ℓ-vector space V . Then Xℓ

is identified with the projective space P(V ∗), viewing each line d ⊂ V ∗ as the n-dimensional left ideal
V ⊗ℓ d. Pick an ℓ-base v1, . . . , vn of V , so Xℓ = Proj(ℓ[v1, . . . , vn]), and let U ⊂ Xℓ be the open subscheme
defined by vn , 0, so U = Spec(ℓ[v1v−1n , . . . , vn−1v

−1
n ]). The field ℓ(Xℓ) = ℓ(U ) is the rational function field

ℓ(v1v−1n , . . . , vn−1v
−1
n ), and the module of sections of Dℓ over U is

Dℓ(U ) = V ⊗ℓ V ∗ ⊗ℓ OXℓ
(U ) = V ⊗ℓ V ∗ ⊗ℓ ℓ[v1v−1n , . . . , vn−1v

−1
n ] ⊂ V ⊗ℓ V ∗ ⊗ℓ ℓ(Xℓ) =Dℓ(Xℓ).

(1)We are indebted to A. Merkurjev for suggesting this proof to us.
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On the other hand, the ℓ(Xℓ)-rational point induced by base change from the generic point of X is the line
S = χ · ℓ(Xℓ) ⊂ V ∗ ⊗ℓ ℓ(Xℓ), where

χ =
n∑
i=1

v∗i ⊗ viv
−1
n ∈ V ∗ ⊗ℓ ℓ(Xℓ).

Viewed as a left ideal in Dℓ(Xℓ), this point is Tℓ = V ⊗ℓ S . Since S ∩ (V ∗ ⊗ℓ OXℓ
(U )) is the OXℓ

(U )-span of
χ, it follows that

(2.3) Tℓ(U ) = Tℓ ∩Dℓ(U ) = V ⊗ℓ χ · OXℓ
(U ).

Now, there is a canonical embedding OXℓ
(−1)→ V ∗ ⊗ℓ OXℓ

which on U maps v−1n to χ. Tensoring with V
yields an embedding V ⊗ℓ OXℓ

(−1)→ V ⊗ℓ V ∗⊗ℓ OXℓ
=Dℓ . The module of sections over U of the image of

this embedding is exactly Tℓ(U ). The same holds for every open subscheme in the standard affine cover
of Xℓ ; hence we may identify Tℓ = V ⊗ℓ OXℓ

(−1), proving (2.2).
(c) Continuing with the same notation, consider T ∨ℓ =H≀⇕(Tℓ,OXℓ

), the dual sheaf of Tℓ . From (2.2) it
follows that T ∨ℓ ≃ V ∗ ⊗ℓ OXℓ

(1), hence

E\⌈Tℓ = Tℓ ⊗T ∨ℓ ≃ Endℓ(V )⊗ℓ OXℓ
(0).

This shows that dimℓ(EndTℓ) = n2, hence dimk(EndT ) = n2. The canonical map D→ EndT is injective
since D is a division algebra; hence it is an isomorphism by dimension count.

(d) Now, let ℓ be a maximal subfield of D . Since D = EndT , the locally free OX-module T has an
ℓ-structure, and T ≃ trℓ/k(N ) for some irreducible locally free OXℓ

-module N by [AEJ92, Theorem 1.8].
Lemma 1.4 of [AEJ92] shows that the OXℓ

-module N is a direct summand of Tℓ . By (2.2) it follows that
N ≃OXℓ

(−1). □

Remark. For ℓ a Galois extension of k that splits D , it follows from Proposition 2.1 that T can be obtained by
Galois descent from V ⊗ℓ OXℓ

(−1) by using the cocycle with values in PGL(V ) that twists Endℓ(V ) into D .
Therefore, T can be identified with the sheaf J defined by Quillen [Qui73, Section 8.4] in his computation of
the K-theory of Severi–Brauer varieties.

In order to define the invertible OX-module Lσ attached to the involution σ , we start with some
observations on split central simple algebras, which will be applied to the scalar extension of D to the
residue fields at points of X.

Let A be a split central simple algebra of even degree n = 2m over an arbitrary field E, and let σA be a
symplectic involution on A. We let

Skew(σA) = {x ∈ A | σA(x) = −x}

and write Trd: A→ E for the reduced trace map. Recall that the bilinear form Trd(xy) is nonsingular;
hence for every nonzero x ∈ A, there exists a y ∈ A such that Trd(xy) = 1.

Lemma 2.2. Let I ⊂ A be an n-dimensional left ideal, let σA(I) = {σA(ξ) | ξ ∈ I} be its conjugate n-dimensional
right ideal, and denote by J the intersection J = I ∩σA(I). Then dimE J = 1 and J = I ∩ Skew(σA); moreover, for
λ ∈ J and µ ∈ A, we have

(2.4) σA(λ) = −λ, λ2 = 0, and λµλ = Trd(λµ)λ.

Multiplication in A defines an isomorphism of E-vector spaces

mult : σA(I)⊗A I −→ J, σA(ξ)⊗ η 7−→ σA(ξ)η.

Moreover, there is a canonical isomorphism of A-bimodules

can : I ⊗E σA(I) ∼−→ J ⊗E A
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defined as follows: Pick λ ∈ J and µ ∈ A such that Trd(λµ) = 1, and let

can(ξ ⊗ σA(η)) = λ⊗ ξµσA(η) for ξ, η ∈ I .

Proof. Fix some representation A = EndE V for some n-dimensional E-vector space V . The involution σA
is then adjoint to some alternating bilinear form b on V , and the ideal I is the set of linear operators
that vanish on some hyperplane H ; its conjugate σA(I) is the set of operators that map V into H⊥, the
orthogonal of H for the form b. Therefore, an operator lies in J if and only if its kernel contains H and its
image is in the 1-dimensional subspace H⊥. It follows that dim J = 1. Moreover, the image of each λ ∈ J
lies in H⊥, hence in H since b is alternating, and therefore λ2 = 0.

To complete the proof of (2.4), pick v ∈ V \H . Every vector x ∈ V has the form x = vα+u for some α ∈ E
and u ∈H . For λ ∈ J , we have λ(u) = 0 and λ(v) ∈H⊥; hence for x′ = vα′ +u′ with α′ ∈ E and u′ ∈H ,

b(λ(x),x′) = b(λ(v)α,vα′) and b(x,λ(x′)) = b(vα,λ(v)α′).

Since b is alternating, b(v,λ(v)) = −b(λ(v),v), and it follows that b(λ(x),x′) = −b(x,λ(x′)) for all x, x′ ∈ V ,
hence σA(λ) = −λ.

Now, take µ ∈ A. As µλ vanishes on H , it follows that µλ(v) = vTrd(µλ) + u for some u ∈ H , hence
λµλ(v) = λ(v)Trd(µλ). Moreover, λµλ(u) = λ(u) = 0 for all u ∈ H ; hence λµλ = Trd(λµ)λ since V is
spanned by v and H .

It follows from (2.4) that J ⊂ Skew(σA), hence J ⊂ I ∩ Skew(σA). For the reverse inclusion, it suffices to
observe that if λ ∈ I∩Skew(σA), then λ = −σA(λ) ∈ σA(I), hence λ ∈ I∩σA(I). Therefore, J = I∩Skew(σA).

Because I is a left ideal and σA(I) is a right ideal, we have σA(I) · I ⊂ I ∩ σA(I); hence multiplication
defines an E-linear map mult : σA(I)⊗A I → J . To show that this map is onto, note that for any nonzero
λ ∈ J , there exists a µ ∈ A such that Trd(λµ) = 1. By (2.4), it follows that

(2.5) λ = Trd(λµ)λ = λµλ.

Since λ ∈ I ∩σA(I), this equation shows that λ ∈ σA(I) · I ; hence mult is surjective. To see that it is injective,
pick λ ∈ J and µ ∈ A as above. Since λ is nonzero and lies in I , we have I = Aλ; hence every element in
σA(I)⊗A I can be written in the form ξ ⊗λ for some ξ ∈ σA(I). If ξλ = 0, then using (2.5), we get

ξ ⊗λ = ξ ⊗λµλ = ξλµ⊗λ = 0.

Therefore, mult is injective.
We next consider the map can, which is clearly a homomorphism of A-bimodules. We first show that it

is canonical, i.e., that it does not depend on the choice of λ and µ. Suppose λ, λ′ ∈ J and µ, µ′ ∈ A are
such that Trd(λµ) = Trd(λ′µ′) = 1. Because dim J = 1, there exists an α ∈ E× such that λ′ = αλ, hence
Trd(λµ′) = α−1, so (2.4) and (2.5) yield

(2.6) λµ′λ = α−1λ = α−1λµλ.

Since I = Aλ, for all ξ, η ∈ I , we may find ξ1, η1 ∈ A such that

ξ = ξ1λ and η = η1λ.

Then, by (2.5),
ξµ′ σA(η) = −ξ1λµ′λσA(η1) = −α−1ξ1λµλσA(η1) = α−1ξµσA(η).

Therefore,
λ′ ⊗ ξµ′ σA(η) = λ⊗ ξµσA(η).

It follows that can is canonical, and it remains to prove that it is bijective. Since A is a simple algebra, we
have AλA = A; hence to prove surjectivity, it suffices to show that λ⊗ ξλη lies in the image of can for all
ξ, η ∈ A. By (2.5), we have

λ⊗ ξλη = λ⊗ ξλµλη = can(ξλ⊗λη);
hence can is surjective. It is therefore also injective by dimension count. □



Witt groups of Severi–Brauer varieties 7Witt groups of Severi–Brauer varieties 7

Our first application of Lemma 2.2 is to A =DF , the split algebra obtained from D by scalar extension to
the function field of X. Taking for I the generic point T of X, we let

Lσ = T ∩ σ (T ) = T ∩ Skew(σ ).

Lemma 2.2 shows that Lσ is an F-vector space of dimension 1 and yields canonical isomorphisms

(2.7) mult : σ (T )⊗DF
T ∼−→ Lσ and can : T ⊗F σ (T ) ∼−→ Lσ ⊗F DF .

The sheaf of OX-modules Lσ is defined as the intersection of D with Lσ in DF , viewing Lσ and DF as
constant sheaves:

Lσ = Lσ ∩D ⊂DF .

Proposition 2.3. The sheaf Lσ is an invertible OX -module such that (Lσ )ℓ ≃ OXℓ
(−2) for every splitting field ℓ

of D; hence Lσ generates the Picard group Pic(X). Moreover, there exist isomorphisms of OX -modules

multX : σ (T )⊗D T ∼−→Lσ and canX : T ⊗OX
σ (T ) ∼−→Lσ ⊗OX

D

that restrict on the generic fiber to the isomorphisms of (2.7).

Proof. Let ℓ be a splitting field of D . As in the proof of Proposition 2.1, we identify Dℓ = EndℓV = V ⊗ℓ V ∗
for some n-dimensional ℓ-vector space V , hence also Xℓ = P(V ∗). Writing again σ for the scalar extension of
σ to Dℓ , we know from [KMR+98, Equation (4.2)] that σ is the adjoint involution of a nonsingular alternating
bilinear form b on V . Let m = n

2 and fix a symplectic base (ui , wi)
m
i=1 of V ; thus, for i, j = 1, . . . , m,

b(ui ,wi) = 1 = −b(wi ,ui), b(ui ,uj ) = b(wi ,wj ) = 0,

and

b(ui ,wj ) = 0 = b(wj ,ui) if i , j .

It follows that for i, j = 1, . . . , m,

σ (ui ⊗u∗j ) = wj ⊗w∗i , σ (ui ⊗w∗j ) = −uj ⊗w
∗
i ,

σ (wi ⊗u∗j ) = −wj ⊗u∗i , σ (wi ⊗w∗j ) = uj ⊗u∗i .
(2.8)

Let U ⊂ Xℓ be the open subscheme defined by wm , 0; hence

OXℓ
(U ) = ℓ

[
u1w

−1
m , . . . ,umw

−1
m , w1w

−1
m , . . . ,wm−1w

−1
m

]
.

As in the proof of Proposition 2.1, consider

χ =
m∑
i=1

(
u∗i ⊗uiw

−1
m +w∗i ⊗wiw

−1
m

)
∈ V ∗ ⊗ℓ OXℓ

(U ),

which has the property that χ · ℓ(Xℓ) is the ℓ(Xℓ)-rational point induced by base change from the generic
point of X. We saw in the proof of Proposition 2.1 (see (2.3)) that

Tℓ(U ) = V ⊗ℓ χ · OXℓ
(U ) ⊂ V ⊗ℓ V ∗ ⊗ℓ OXℓ

(U );

hence every element t ∈ Tℓ(U ) can be written in the form

t =
m∑
i=1

(ui ⊗χfi +wi ⊗χgi)

=
m∑

i,j=1

(
ui ⊗u∗j ⊗ujw

−1
m fi +ui ⊗w∗j ⊗wjw

−1
m fi

+wi ⊗u∗j ⊗ujw
−1
m gi +wi ⊗w∗j ⊗wjw

−1
m gi

)
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for some f1, . . . , fm, g1, . . . , gm ∈ OXℓ
(U ). A straightforward computation using (2.8) shows that σ (t) = −t

holds if and only if for all i, j = 1, . . . , m,

fi = wiw
−1
m fm and gi = −uiw−1m fm.

Therefore, (Lσ )ℓ(U ) = Tℓ(U )∩ Skew(σ ) is the OXℓ
(U )-span of the following element:

ζ =
m∑

i,j=1

(
ui ⊗u∗j ⊗ujwiw

−2
m +ui ⊗w∗j ⊗wiwjw

−2
m

−wi ⊗u∗j ⊗uiujw
−2
m −wi ⊗w∗j ⊗uiwjw

−2
m

)
∈ V ⊗ℓ V ∗ ⊗ℓ OXℓ

(U ).

Under the identification (V ⊗ℓ OXℓ
(U ))⊗OXℓ

(U ) (V ∗ ⊗ℓ OXℓ
(U )) = V ⊗ℓ V ∗ ⊗ℓ OXℓ

(U ), this element ζ is the

tensor product ζ = θ⊗χ, where θ =
∑m

i=1(ui ⊗wiw
−1
m −wi ⊗uiw−1m ) ∈ V ⊗ℓOXℓ

(U ) is the element such that
b(θ,ρ) = χ(ρ) for all ρ ∈ V ⊗ℓ OXℓ

(U ).
Now, there is a canonical embedding OXℓ

(−2) → V ⊗ℓ V ∗ ⊗ℓ OXℓ
that on U maps w−2m to ζ, and

the computation above shows that the module of sections over U of the image of this embedding is
exactly (Lσ )ℓ(U ). The same holds for every open subscheme in the standard affine cover of Xℓ ; hence
(Lσ )ℓ ≃ OXℓ

(−2). By base change, it follows that Lσ is an invertible OX-module.
We next define the morphism canX . Let U ⊂ X be an affine open subscheme on which Lσ (U ) is

a free OX(U )-module, and let λ ∈ Lσ (U ) be a base of Lσ (U ). For each point p of U , the germ λp is
an Op-base of the stalk (Lσ )p, and its image λp in D(p) is a k(p)-base of the fiber of Lσ at p. Since
the bilinear form Trd(xy) on D(p) is nonsingular, the linear form Trd(λp ) : D(p) → k(p) is surjective.
From Nakayama’s lemma, it follows that the linear form Trd(λp ) : Dp → Op is surjective. This holds
for every point p of U ; hence the linear form Trd(λ ) : D(U ) → OX(U ) is surjective. It follows that
there exists a µ ∈ D(U ) such that Trd(λµ) = 1. We may then define the OX(U )-module homomorphism
canU : T (U )⊗OX (U ) σ (T )(U )→Lσ (U )⊗OX (U )D(U ) by mapping t ⊗ σ (t′) to λ⊗ tµσ (t′) for t, t′ ∈ T (U ).

If λ′ ∈ Lσ (U ) is another OX(U )-base of Lσ (U ) and µ′ ∈ D(U ) is such that Trd(λ′µ′) = 1, then
λ′ = αλ for some α ∈ OX(U )×, and the same arguments as in the proof of Lemma 2.2 show that
λ⊗ tµσ (t′) = λ′ ⊗ tµ′σ (t′) for t, t′ ∈ T (U ). Therefore, the map canU does not depend on the choice of λ,
µ. Gluing the maps canU for the subschemes U in an open cover of X yields a morphism of OX-modules
canX : T ⊗OX

σ (T )→Lσ ⊗OX
D.

On the other hand, it is clear that for every affine open subscheme U ⊂ X, the multiplication in D(U )
yields a map σ (T )(U )⊗D(U ) T (U )→Lσ (U ) since Lσ =mult(σ (T )⊗DF

T ). Therefore, there is a morphism
of OX-modules multX : σ (T )⊗D T → Lσ .

The morphisms canX and multX are injective since their restrictions to the generic fiber are injective by
Lemma 2.2. Therefore, it only remains to prove that the maps induced by canX and multX are surjective
on the stalks at each point, or (by Nakayama’s lemma) on the fibers at each point. For each point p of X, the
fiber T (p) of T at p is a left ideal of dimension n in D(p) since T is a locally free OX-module of rank n, and
the fiber Lσ (p) of Lσ is T (p)∩ σ (T (p)). Lemma 2.2 with A =D(p) and I = T (p) shows that the maps mult
and can yield isomorphisms

σ (T (p))⊗D(p) T (p)
∼−→ Lσ (p) and T (p)⊗k(p) σ (T (p)) ∼−→ Lσ (p)⊗k(p)D(p).

The proof is thus complete. □

3. Symmetric spaces over Severi–Brauer varieties

We use the same notation as in the preceding section: X is the Severi–Brauer variety of the division
algebra D with symplectic involution σ , and Lσ = T ∩ σ (T ) is the invertible OX-module obtained by
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intersecting the sheaf T defined in (2.1) and its conjugate σ (T ). Throughout this section, unadorned tensor
products and H≀⇕ of OX-modules are over OX .

Our goal in this section is to define a canonical isomorphism between the Witt groups W −(D,σ ) and
W (X,Lσ ); see Theorem 3.3. The construction involves the Witt group W −(D,σ ), which is shown in
Proposition 3.2 to be canonically isomorphic to W (X,Lσ ).

The Witt groups W (X,Lσ ) and W −(D,σ ) are obtained by Knebusch’s construction (see [Bal05, Defini-
tion 27]) from categories with duality: Let ModX be the category of locally free OX-modules of finite rank
and ModD the category of locally free OX-modules with an action of D on the right, in other words, right
D-modules that are locally free of finite rank as OX-modules. Tensoring with T (resp. σ (T )) yields functors

Θ : ModD −→ModX , V 7−→ V ⊗D T ,
Ψ : ModX −→ModD, M 7−→M⊗ σ (T ).

Since T ⊗σ (T ) is an invertible D-bimodule and σ (T )⊗D T is an invertible OX-module (see Proposition 2.3),
Ψ ◦Θ and Θ ◦Ψ are naturally equivalent to the identity on ModD and ModX , respectively; hence Θ and Ψ

are equivalences of categories.
By definition, W (X,Lσ ) = W (ModX ,∗,ϖ), where (∗,ϖ) is the duality defined on ModX by M∗ =

H≀⇕(M,Lσ ) for every locally free OX-module of finite rank M, with ϖM : M ∼−→ M∗∗ the usual identi-
fication.

On the other hand, a duality (♯,π) is defined on ModD by

V ♯ =H≀⇕D(V ,D) for every object V in ModD

(where the left D-module structure on H≀⇕D(V ,D) is twisted by σ into a right D-module structure), and
πV : V ∼−→ V ♯♯ is the usual identification. By definition,

W (D,σ ) =W (ModD, ♯,π) and W −(D,σ ) =W (ModD, ♯,−π).

In order to obtain a canonical isomorphism W −(D,σ )→W (X,Lσ ), we first define a natural transforma-
tion θ : Θ ◦ ♯→ ∗◦ Θ and then deduce a morphism of categories with duality

(Θ,θ) : (ModD, ♯,−π) −→ (ModX ,∗,ϖ).

Lemma 3.1. For every object V in ModD, there is a canonical isomorphism of OX -modules

θV : V ♯ ⊗D T ∼−→ (V ⊗D T )∗.

It is determined on the stalks at any point p by〈
θVp

(
x♯ ⊗ t

)
, y ⊗ t′

〉
Lσ

=multp
(
σ (t)

〈
x♯, y

〉
D
⊗ t′

)
for x♯ ∈ V ♯p , y ∈ Vp, and t, t′ ∈ Tp,

where ⟨ , ⟩D : V
♯
p ×Vp→D and ⟨ , ⟩Lσ : (Vp ⊗D Tp)

∗ × (Vp ⊗D Tp)→Lσ are the canonical bilinear maps.

Proof. The switch map is an isomorphism V ♯ ⊗D T ∼−→ σ (T )⊗DH≀⇕D(V ,D). We first prove that the latter
tensor product is isomorphic to H≀⇕D (V ,σ (T )).

Let R be an arbitrary commutative k-algebra. Let DR =D ⊗k R, and let M be a right DR-module. Write
M0 for the right R-module obtained from M by forgetting the D-action. By [MT16, Proposition 2.1], M is
a direct summand of the right DR-module M0 ⊗k D . We recall the argument for the convenience of the
reader: The Goldman element g =

∑
ai ⊗ bi ∈ D ⊗k D is defined by the condition that

∑
aixbi = TrdD(x)

for all x ∈ D; see [KMR+98, Equation (3.5)]. It satisfies the property that (a⊗ b)g = g(b ⊗ a) for every a,
b ∈ D; see [KMR+98, Equation (3.6)]. If u ∈ D is such that TrdD(u) = 1, then

∑
aaiu ⊗ bi =

∑
aiu ⊗ bia

for all a ∈D, and the map M→M0 ⊗k D which carries m ∈M to
∑
(maiu)⊗ bi is an injective DR-module

homomorphism split by the multiplication map M0 ⊗k D→M .
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If M0 is a projective R-module, then M0 ⊗k D is a projective DR-module, so M also is a projective
DR-module. For every DR-module N , the canonical homomorphism

N ⊗DR
HomDR

(M,DR) −→HomDR
(M,N )

is then an isomorphism; see [Bou70, Section II.4.2, p. II.75]. This applies in particular with M and N the
modules of sections of V and σ (T ) over any affine open subscheme of X, or the stalks of V and σ (T ) at any
point of X, and yields an isomorphism

τV : V ♯ ⊗D T ∼−→H≀⇕D (V ,σ (T )) ,

which is given on the stalk at any point p by

τVp(x
♯ ⊗ t) : y 7−→ σ (t)⟨x♯, y⟩D for x♯ ∈ V ♯p , y ∈ Vp, and t ∈ Tp.

The isomorphism θV is obtained by composing τV with the isomorphisms

H≀⇕D (V ,σ (T ))
∼−→H≀⇕(V ⊗D T ,σ (T )⊗D T ) ∼−→H≀⇕(V ⊗D T ,Lσ )

that arise from the equivalence of categories Θ and the isomorphism multX of Proposition 2.3. □

The isomorphisms θV of Lemma 3.1 define a natural transformation θ : Θ ◦ ♯ ∼−→ ∗ ◦ Θ. We next show
that the pair (Θ,θ) is a morphism of categories with duality as in [Bal05, Definition 5] (a “duality-preserving
functor” in the terminology of [Knu91, Section II(2.6)]).

Proposition 3.2. The pair (Θ,θ) induces an isomorphism of Witt groups

Mor : W −(D,σ ) −→W (X,Lσ )

by mapping the Witt class of every skew-hermitian space (V ,ϕ) over (D,σ ) to the Witt class of the symmetric
bilinear space (V ⊗D T ,θV ◦ (ϕ ⊗ IdT )).

Proof. To see that (Θ,θ) is a morphism of categories with duality, it remains to prove that the following
diagram commutes for every object V in ModD:

V ⊗D T
−πV⊗IdT //

ϖV⊗DT
��

V ♯♯ ⊗D T

θV♯
��

(V ⊗D T )∗∗
θ∗V // (V ♯ ⊗D T )∗.

(3.1)

We compute on the stalks at any point p: For x ∈ Vp, y♯ ∈ V
♯
p , and t, t′ ∈ Tp,〈

θV ♯p
◦πV (x⊗ t), y♯ ⊗ t′

〉
Lσ

=multp
(
σ (t)

〈
πV (x), y

♯
〉
D
⊗ t′

)
=multp

(
σ (t)σ

(〈
y♯,x

〉
D

)
⊗ t′

)
.

On the other hand,〈
θ∗V ◦ϖV⊗DT (x⊗ t), y

♯ ⊗ t′
〉
Lσ

=
〈
ϖV⊗DT (x⊗ t),θV

(
y♯ ⊗ t′

)〉
Lσ

=
〈
θV

(
y♯ ⊗ t′

)
,x⊗ t

〉
Lσ

=multp
(
σ (t′)

〈
y♯,x

〉
D
⊗ t

)
.

Since Lσ ⊂ Skew(σ ), it follows that multp(σ (t1)⊗ t2) = −multp(σ (t2)⊗ t1) for all t1, t2 ∈ Tp; hence the
computation above yields

θ∗V ◦ϖV⊗DT (x⊗ t) = −θV ♯p ◦πV (x⊗ t) for all x ∈ Vp, t ∈ Tp.

Therefore, the diagram (3.1) commutes, and (Θ,θ) is a morphism of categories with duality. The induced
homomorphism of Witt groups Mor : W −(D,σ )→W (X,Lσ ) is an isomorphism because Θ is an equivalence
of categories. □
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The main theorem of this section follows.

Theorem 3.3. The composition of the scalar extension map extX : W −(D,σ ) → W −(D,σ ) with the map
Mor : W −(D,σ ) ∼−→W (X,Lσ ) is an isomorphism

M : W −(D,σ ) ∼−→W (X,Lσ ).

Proof. We first show that extX is injective. By a theorem of Karpenko [Kar10], the scalar extension map
extF : W −(D,σ )→W −(DF ,σ ) is injective. The injectivity of extX then follows from the commutativity of
the following diagram, where resF is the restriction to the generic fiber:

W −(D,σ )
extF //

extX &&

W −(DF ,σ )

W −(D,σ ).
resF

88

As Mor is bijective, to complete the proof, it suffices to show M is onto. For this, we use Pumplün’s results
in [Pum99] (keeping in mind that Pumplün chooses as a generator for Pic(X) an invertible OX-module
isomorphic to H≀⇕(Lσ ,OX) instead of Lσ ).

According to [Pum99, Theorem 4.3], W (X,Lσ ) is generated by the Witt classes of symmetric bilinear
spaces with underlying OX-module trℓ/k(N ), where ℓ is a maximal separable subfield of D and N is a self-
dual invertible OXℓ

-module. Since by Proposition 2.3, (Lσ )ℓ ≃ OXℓ
(−2), self-dual invertible OXℓ

-modules N
for the duality ∗ are isomorphic to OXℓ

(−1); hence trℓ/k(N ) ≃ T by Proposition 2.1. We can compare every
isomorphism ϕ : T → T ∗ to the canonical isomorphism θD ◦Θ(σ ) : T → T ∗, viewing σ as an isomorphism
D →D♯. Since EndT = D by Proposition 2.1, for every ϕ, there exists a d ∈ D× such that the following
diagram commutes:

T
ϕ

&&
d·
��
T

θD◦Θ(σ )
// T ∗.

On each stalk Tp, the canonical isomorphism θD◦Θ(σ ) maps t ∈ Tp to the linear map Tp→ (Lσ )p that carries
t′ to σ (t)t′ ; hence ϕ(t) maps t′ to σ (dt)t′ . The element d satisfies σ (d) = −d since ϕ is skew-hermitian;
hence the Witt class of (T ,ϕ) is the image under M of the Witt class of the skew-hermitian form ⟨−d⟩ over
(D,σ ). Therefore, the map M is onto. □

4. An octagon of Witt groups

Henceforth, we assume D is a quaternion division algebra; hence σ is the canonical conjugation
involution . We write simply W +(D) (resp. W −(D)) for the Witt group of hermitian (resp. skew-hermitian)
forms over D .

Let i, j ∈D be nonzero anticommuting quaternions, and let K = k(i) ⊂D . We have D = K ⊕ jK ; hence
for every ε-hermitian form h : V ×V → D (with ε = ±1) on a right D-vector space V , we may define an
ε-hermitian form f : V ×V → K (for the nontrivial automorphism on K ) and a (−ε)-symmetric bilinear
form g : V ×V → K by the equation

h(v,v′) = f (v,v′) + jg(v,v′) for v, v′ ∈ V .

We thus obtain Witt group homomorphisms

π1 : W
ε(D) −→W ε(K, ), h 7−→ f and π2 : W

ε(D) −→W −ε(K), h 7−→ g;
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see [Sch85, Lemma 10.3.1].(2) Computation yields an explicit description of π2 : W −(D)→W (K) (=W +(K)):
For h = ⟨q⟩, with q = iq0 + jq1, q0 ∈ k, and q1 ∈ K , we have

(4.1) π2(⟨q⟩) =

⟨q1⟩⟨1,−q2⟩ if q1 , 0,

0 if q1 = 0.

Indeed, for all λ ∈ K and µ ∈ K , we have g(λ+ jµ) = q1λ
2 − 2iq0λµ− bq̄1µ2. Hence this quadratic form

represents q1 and has discriminant q2.
We may also define maps in the opposite direction using scaled base change. More precisely, for every

ε-hermitian form f : U ×U → K on a K-vector space U , there is a unique (−ε)-hermitian form

h : (U ⊗K D)× (U ⊗K D) −→D

such that h(u,u′) = f (u,u′)i for u, u′ ∈ U . Similarly, for every ε-symmetric bilinear form g : U ×U → K
on a K-vector space U , there is a unique (−ε)-hermitian form

h′ : (U ⊗K D)× (U ⊗K D) −→D

such that h′(u,u′) = ijg(u,u′) for u, u′ ∈U . Thus, for ε = ±1, we obtain Witt group homomorphisms

σ1 : W
ε(K, ) −→W −ε(D), f 7−→ h and σ2 : W

ε(K) −→W −ε(D), g 7−→ h′ .

(Of course, W −(K) = 0.)

Theorem 4.1. The following octagon is exact:

W +(D)
π2 // W −(K)

σ2 // W +(D)

π1

��
W −(K, )

σ1

OO

W +(K, )

σ1
��

W −(D)

π1

OO

W +(K)
σ2oo W −(D).

π2oo

Proof. The exactness of the five-term sequence from W −(K) to W +(K) is proved in [Sch85, Theorem 10.3.2].
The same arguments can be used to prove the exactness of the other half; see also [Lew82, Proposition 2] or
[GBM05, Section 6]. □

From here on, we omit the superscripts +. To define the first map in (1.2) and the last map in (1.3), note
that every hermitian form on D has a diagonalization with coefficients in k; hence scalar extension yields a
surjective group homomorphism

extD : W (k) −→W (D).

On the other hand, for every hermitian form h on D , the map qh : v 7→ h(v,v) is a quadratic form on k, and
mapping h to qh yields a group homomorphism

sD : W (D) −→W (k).

The following result is proved in [Sch85, Theorem 10.1.7].

(2)There are several typos on p. 359 of [Sch85].
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Lemma 4.2. The following diagram, where nD denotes multiplication by the norm form of D , commutes and has
exact row and column:

W (k)

extD
��

nD

##
0 // W (D)

sD //

��

W (k)

0.

5. Residues and transfers

Recall that D is now assumed to be a quaternion division algebra; hence its Severi–Brauer variety X
is a smooth projective conic. The maps in the exact sequences (1.2) and (1.3) depend on the choice of
uniformizers πp and linear functionals sp at each closed point p ∈ X(1). In order to make suitable choices,
we first introduce coordinates, which will allow us to write an equation for X and to identify the invertible
OX-module Lσ with the ideal sheaf of a point ∞ ∈ X(1). Since there is a unique symplectic involution σ
on D, namely, the conjugation involution , we simplify the notation by writing L for Lσ .

5.1. Coordinatization

Let D0 be the 3-dimensional k-vector space of pure quaternions in D . We have d2 ∈ k for every d ∈D0;
hence the map q : D0→ k defined by q(d) = d2 is a quadratic form. Since every 2-dimensional left ideal
of D over a splitting field intersects D0 in a line (see Lemma 2.2), we may identify X with the conic in the
projective plane P(D0) given by the equation q = 0. Under this identification, every line in D0 corresponds
to the left ideal of D that it generates.

Let i, j ∈D be two nonzero anticommuting pure quaternions, and let i2 = a, j2 = b, so that

D = (a,b)k .

The elements aj, ij, bi form a k-base of D0. If ξ, η, ζ denotes the dual base, the conic X is given by the
equation

(ajξ + ijη + biζ)2 = 0, i.e., aξ2 − η2 + bζ2 = 0.

Let ∞ ∈ X(1) be the closed point given by the equation ζ = 0; the residue field k(∞) at ∞ is canonically
isomorphic to k(i) by a map that carries the value η

ξ (∞) of the function η
ξ at ∞ to i; see [EKM08,

Proposition 45.12]. Let also Xaf ⊂ X be the open subscheme defined by ζ , 0, which is an affine conic, and
let Oaf be the affine ring of Xaf; then, writing x = ξ

ζ and y = η
ζ , we have

Oaf = k[x,y] ⊂ k(x,y) = F with y2 = ax2 + b.

The point with coordinates (x,y) on the affine conic Xaf(F) is ajx + ijy + bi; under the identification of
the conic with the Severi–Brauer variety of D, it is the F-rational point obtained by base change from the
generic point T of X. Therefore, the generic fiber of the sheaf T defined in (2.1) is

T =DFe, where e = bi + axj + yij ∈DF .

Clearly, e ∈ T ∩ T since e = −e; hence the generic fiber T ∩ T of L is L = eF. We next describe the module
of affine sections and the stalk at ∞ of T and L, for which we use the notation Taf, T∞, Laf, L∞. We write
Daf =D ⊗Oaf for the module of sections of D over Xaf and D∞ =D ⊗O∞ for the stalk of D at ∞.

Proposition 5.1. We have T = eF + jeF = jeF + ijeF and

Taf =Daf e, T∞ =D∞ex−1, Laf = eOaf, L∞ = ex−1O∞.
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Proof. Because e2 = 0, we have

(5.1) bie+ axje+ yije = 0.

Multiplying on the left by i−1, we obtain

be+ xije+ yje = 0.

Since T =DFe = eF + ieF + jeF + ijeF, the first assertion follows from these equations.
By definition,

Taf = T ∩Daf = (DFe)∩Daf and Laf = L∩Daf = (eF)∩Daf.

Since e ∈ Daf, the inclusions Dafe ⊂ Taf and eOaf ⊂ Laf are clear. If λ ∈ F is such that eλ ∈ Daf, then
by looking at the coefficient of i in eλ, we see that λ ∈ Oaf. Therefore, Laf = eOaf. Now, the first part
of the proof shows that every element in T can be written as jeλ + ijeµ for some λ, µ ∈ F. If λ, µ are
such that jeλ+ ijeµ ∈ Daf, then inspection of the coefficients of j and ij shows that λ, µ ∈ Oaf. Therefore,
jeλ+ ijeµ ∈ Dafe, and it follows that Taf =Dafe.

Next, we consider the stalks at ∞. By definition,

T∞ = T ∩D∞ = (DFe)∩D∞ and L∞ = L∩D∞ = (eF)∩D∞.

Since ex−1 ∈ D∞, we have ex−1 ∈ T∞ and ex−1 ∈ L∞, so the inclusions D∞ex−1 ⊂ T∞ and ex−1O∞ ⊂ L∞
are clear. If λ ∈ F is such that eλ ∈ D∞, then the coefficient of j shows that xλ ∈ O∞, hence eλ ∈ ex−1O∞.
To complete the description of T∞, we use the equation T = eF + jeF proven above. If eλ + jeµ ∈ D∞
for some λ, µ ∈ F, then by looking at the coefficients of 1 and j, we see that xλ, xµ ∈ O∞. Therefore,
eλ+ jeµ ∈ D∞ex−1. So we get L∞ = ex−1O∞ and T∞ =D∞ex−1. □

From the descriptions of Laf and L∞ above, it follows that mapping e ∈ L to 1 ∈ F defines an isomorphism
of invertible OX-modules

(5.2) ε : L ∼−→ I (∞),

where I (∞) is the ideal sheaf of ∞, i.e., the subsheaf of OX whose module of affine sections is Oaf and
whose stalk at ∞ is the maximal ideal m∞ = x−1O∞ of O∞.

5.2. Coherent choices

For each point p ∈ X(1), let πp be a uniformizer of the local ring Op. Two residue maps

∂1p , ∂
2
p : W (F) −→W (k(p))

are defined as follows: Select in every symmetric bilinear space (W,b) over F an Op-lattice of the form
W1 ⊥W2, such that the restrictions b1 of b to W1 and b2 of ⟨π−1p ⟩b to W2 are nonsingular (as Op-bilinear
forms). Then ∂ip maps (W,b) to the Witt class of (Wi ⊗Op

k(p), (bi)k(p)). Thus, ∂1p does not depend on the

choice of πp, but ∂
2
p does. If the bilinear space (W,b) is the generic fiber of a symmetric bilinear space

(W ,b) over X with values in OX , then by definition(3)

∂1p (W,b) =
(
Wp ⊗Op

k(p),bk(p)
)

and ∂2p (W,b) = 0 for all p ∈ X(1).

In contrast, if (W,b) is the generic fiber of a symmetric bilinear space (W ,b) with values in I (∞), then

∂1p (W,b) =

(Wp ⊗Op
k(p),bk(p)) if p ,∞,

0 if p =∞,

(3)We abuse notation by not distinguishing between a space and its Witt class.
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and there exists an α ∈ k(∞)× depending on the choice of π∞ such that

∂2p (W,b) =

0 if p ,∞,

(W∞ ⊗O∞ k(∞),⟨α⟩bk(∞)) if p =∞.

It follows that the maps

δ = ⊕p∂2p : W (F) −→
⊕
p∈X(1)

W (k(p)) and δ′ =
(
⊕p,∞∂2p

)
⊕∂1∞ : W (F) −→

⊕
p∈X(1)

W (k(p))

vanish on the images of W (X) and W (X,I (∞)), respectively. These maps fit in the exact sequences (1.1).
To extend these exact sequences further, we use transfer maps W (k(p))→W (k). Since δ and δ′ depend

on the choice of πp, we need to make a coherent choice for these transfers. With this in mind, we consider
the Weil differential ω = dx

2y , which is uniquely determined up to a factor in k× by the condition that its

divisor is −∞ (see [Che51, Section II.5]). Thus, for p ∈ X(1), the p-component ωp is a linear map F→ k that
vanishes on Op if p ,∞ and on m∞ if p =∞. Abusing notation, we again write ωp for the following k-linear
maps induced by the local components of ω:

ωp : m
−1
p /Op −→ k for p ,∞, and ω∞ : O∞/m∞ = k(∞) −→ k.

For ω = dx
2y , the computation in [Che51, Section VI.3] shows that ω∞ is defined by

(5.3) ω∞(1) = 0 and ω∞

(y
x
(∞)

)
= −1,

where y
x (∞) is the image of x−1y ∈ O∞ in k(∞). In the following description of the maps ωp for p ,∞, we

write vq for the (normalized) q-adic valuation on F, for every q ∈ X(1).

Proposition 5.2. For p ,∞, every element in m−1p /Op can be represented in the form f +Op for some f ∈m−1p
such that vq(f ) ≥ 0 for all q , p. For such f ,

ωp(f ) = −ω∞ (f (∞)) .

Proof. As in [Che51, Section II.1], let(4)

L(−p) = {f ∈ F | vp(f ) ≥ −1 and vq(f ) ≥ 0 for q , p}.

Since F is an algebraic function field of genus zero, it follows from the Riemann–Roch theorem that L(−p) is
a k-vector space of dimension 1+degp; see [Che51, Corollary, p. 32]. Consider the k-linear map

ϕ : L(−p)→m−1p /Op given by ϕ(f ) = f +Op.

Its kernel consists of elements f ∈ F such that vq(f ) ≥ 0 for all q ∈ X(1), i.e., kerϕ = k. Since dim(m−1p /Op) =
degp, dimension count shows that ϕ is onto, which proves the first statement. For f ∈ L(−p), we have f ∈ Oq

for all q , p, hence ωq(f ) = 0 for all q , p, ∞. Since Weil differentials vanish on F, it follows that

ωp(f ) +ω∞(f ) = 0,

which completes the proof. □

If πp ∈ Op is a uniformizer at p, then m−1p = π−1p Op, and multiplication by πp defines an isomorphism of
k(p)-vector spaces

µπp
: m−1p /Op

∼−→Op/mp = k(p).

(4)We use Chevalley’s notation from [Che51]. Most references use the notation L(p) for Chevalley’s L(−p).
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Definition 5.3. A choice of uniformizer πp and of k-linear functional sp : k(p)→ k is said to be coherent at

p ∈ X(1)
af if the following diagram commutes:

m−1p /Op

ωp //

µπp ##

k

k(p).

sp

??

Proposition 5.4. Let πp, sp and π
′
p, s
′
p be coherent choices of uniformizer and linear functional at p ∈ X

(1)
af . The

corresponding residue maps ∂2p , ∂
′
p
2 : W (F)→W (k(p)) and transfer maps (sp)∗, (s′p)∗ : W (k(p))→W (k) make

the following diagram commute:

W (F)
∂2
p //

∂′p
2

��

W (k(p))

(sp)∗
��

W (k(p))
(s′p)∗ // W (k).

Proof. Let u = π′pπ
−1
p ∈ O×p , and let u(p) be the image of u in k(p)×. Then ∂2p (⟨f ⟩) = ⟨u(p)⟩∂′p

2(⟨f ⟩) for all
f ∈ F×. On the other hand, µπ′p = u(p)µπp

; hence sp(g) = s′p(u(p)g) for all g ∈ k(p) because sp ◦µπp
= s′p ◦µπ′p

as πp, sp and π′p, s
′
p are coherent choices. Therefore, the following diagrams commute:

W (F)
∂2
p //

∂′p
2

��

W (k(p))

W (k(p)),
⟨u(p)⟩

99
W (k(p))

⟨u(p)⟩

yy
(sp)∗
��

W (k(p))
(s′p)∗ // W (k).

The proposition follows. □

5.3. Transfer maps

Besides the transfer maps (sp)∗ : W (k(p))→ W (k), which fit in the exact sequence (1.3), we also need
transfer maps W (k(p)) → W −(D) to complete the sequence (1.2). For any nonzero linear functional
sp : k(p)→ k, the map sD(p) = IdD ⊗sp : D(p)→D is D-linear for the left and right D-vector space structures

on D(p), and commutes with quaternion conjugation. Moreover, if ξ ∈D(p) is such that sD(p)(ξη) = 0 for all
η ∈D(p), then writing ξ = 1⊗ ξ0 + i ⊗ ξ1 + j ⊗ ξ2 + ij ⊗ ξ3 with ξ0, . . . , ξ3 ∈ k(p), we get

sD(p)(ξ · 1⊗ ζ) = sp(ξ0ζ)− isp(ξ1ζ)− jsp(ξ2ζ)− ijsp(ξ3ζ) = 0 for all ζ ∈ k(p),

hence ξ0 = · · · = ξ3 = 0. It follows that sD(p) is an involution trace in the sense of [Knu91, Section I.7.2, p. 40].
It induces a homomorphism of Witt groups (see [Knu91, Section I.10.3, p. 62])

(sD(p))∗ : W
−(D(p)) −→W −(D).

On the other hand, restricting the canonical isomorphism Mor of Proposition 3.2 to the fiber at p, we obtain
an isomorphism

Morp : W
−(D(p)) ∼−→W (k(p),L(p)).

Next, consider the restriction of the isomorphism ε : L→ I (∞) of (5.2) to the fiber at p. If p ,∞, the fiber
of I (∞) at p is k(p); hence εp yields an isomorphism

(εp)∗ : W (k(p),L(p)) ∼−→W (k(p)).
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We let tp denote the composition (which depends on the choice of the linear functional sp)

tp = (sD(p))∗ ◦Mor−1p ◦ (εp)−1∗ : W (k(p)) −→W −(D) for p ∈ X(1)
af .

The fiber of I (∞) at ∞ is m∞/m
2
∞; hence the fiber of ε at ∞ yields an isomorphism

(ε∞)∗ : W (k(∞),L(∞)) ∼−→W
(
k(∞),m∞/m

2
∞
)
.

Choosing a uniformizer π∞ at ∞, we define a k(∞)-linear isomorphism

µπ∞ : m∞/m
2
∞
∼−→ k(∞) by µπ∞

(
f +m2

∞
)
=

f

π∞
(∞) for f ∈m∞,

hence an isomorphism (
µπ∞

)
∗
: W

(
k(∞),m∞/m

2
∞
) ∼−→W (k(∞)).

Choosing s∞ =ω∞ (defined in (5.3)), we mimic the definition of tp for p ∈ X
(1)
af and set

t∞ =
(
sD∞

)
∗
◦Mor−1∞ ◦ (ε∞)

−1
∗ ◦

(
µπ∞

)−1
∗

: W (k(∞)) −→W −(D).

Note that the map t∞ depends on the choice of uniformizer π∞ via µπ∞ .
We next give an explicit description of the transfer maps tp. Recall that for every p ∈ X(1), we write

D(p) =D ⊗k k(p) for the fiber of D at p. We also let T (p) = Tp ⊗Op
k(p) denote the fiber of T at p. If p ,∞,

we write ep for the image of e = bi +axj +yij in T (p); similarly, we let e∞ denote the image of ex−1 in T (∞).
Thus, from Proposition 5.1 it follows that

T (p) =D(p)ep, hence T (p) = epD(p) for all p ∈ X(1).

Proposition 5.5. Let p ∈ X(1) and f ∈ k(p)×. If p =∞, define t∞ by selecting x−1 as a uniformizer. For all
p ∈ X(1), the Witt class of tp(⟨f ⟩) is represented by the transfer along sD(p) of the skew-hermitian form

hf : T (p)× T (p) −→D(p) defined by hf (epξ,epη) = f ξepη for ξ,η ∈D(p).

Proof. First, suppose p ,∞. It suffices to show that the skew-hermitian form hf satisfies (εp)∗
(
Morp(hf )

)
=

⟨f ⟩. By definition,

Morp(hf ) :
(
T (p)⊗D(p) T (p)

)
×
(
T (p)⊗D(p) T (p)

)
−→ T (p) · T (p) = L(p)

carries (epξ1 ⊗ ξ2ep, epη1 ⊗ η2ep) to −f epξ2ξ1epη1η2ep for ξ1, ξ2, η1, η2 ∈ D(p). Note that T (p)⊗D(p) T (p)
is a k(p)-vector space of dimension 1, isomorphic to k(p) under the composition

T (p)⊗D(p) T (p)
mp

−→ L(p)
εp
−→ k(p),

which maps epξ1 ⊗ ξ2ep to Trd(ξ1ξ2ep) (see (5.2)). If ξ ∈ D(p) is such that Trd(ξep) = 1, then epξ ⊗ ep is a
k(p)-base of T (p)⊗D(p) T (p), and

εp
(
Morp

(
hf

)(
epξ ⊗ ep, epξ ⊗ ep

))
= −f Trd

(
ξepξep

)
.

Since epξep = ep(ξep − epξ) = epTrd(ξep) = ep, we have

−f Trd
(
ξepξep

)
= −f Trd

(
ξep

)
= f Trd

(
epξ

)
= f .

The proposition is thus proved for p ,∞.
For p =∞, the map ε∞ : L(∞)→m∞/m

2
∞ carries e∞ to x−1 +m2

∞; hence µx−1 ◦ ε∞ maps e∞ to 1. The
same arguments as in the case where p ,∞ yield the proof. □
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Proposition 5.6. For p ∈ X(1)
af , let πp, sp and π

′
p, s
′
p be coherent choices of uniformizer and linear functional, and

let ∂2p , ∂
′
p
2 : W (F)→W (k(p)) and tp, t

′
p : W (k(p))→W −(D) be the corresponding residue and transfer maps.

Similarly, let π∞, π
′
∞ be uniformizers at ∞, and let ∂2∞, ∂′∞

2 : W (F)→W (k(∞)) and t∞, t
′
∞ : W (k(∞))→

W −(D) be the corresponding residue and transfer maps. For every q ∈ X(1), the following diagram commutes:

W (F)
∂2
q //

∂′q
2

��

W (k(q))

tq
��

W (k(q))
t′q // W −(D).

Proof. For q ,∞, the same arguments as in the proof of Proposition 5.4 yield the proof. For q =∞, it is
readily verified that (µπ∞)

−1
∗ ◦∂2∞ = (µπ′∞)

−1
∗ ◦∂′∞

2. The proposition follows. □

6. Exactness of the sequences

In this section, we define the maps in the sequences (1.2) and (1.3), and prove their exactness. We start
with the sequence (1.3). The isomorphism ε : L ∼−→ I (∞) (see (5.2)) yields a Witt group isomorphism

ε∗ : W (X,L) ∼−→W (X,I (∞)).

Recall the isomorphismM : W −(D) ∼−→W (X,L) of Theorem 3.3. Let ρ : W −(D)→W (F) be the composition

W −(D)
M−→W (X,L)

ε∗−→W (X,I (∞))
resF−−−−→W (F).

Theorem 6.1. Let πp, sp be a coherent choice of uniformizer and linear functional at each point p ∈ X
(1)
af , and let

s∞ =ω∞. The following sequence is exact:

(6.1) 0 −→W −(D)
ρ
−→W (F)

δ′−→
⊕
p∈X(1)

W (k(p))
∑
(sp)∗
−−−−−→W (k)

extD−−−−→W (D) −→ 0.

Proof. By the definition of ρ, the following diagram commutes:

W −(D) M //

ρ $$

W (X,L)

resF ◦ε∗zz
W (F).

The exactness of the following sequence is the purity property of W (X,I (∞)) established in [BW02,
Corollary 10.3]:

0 −→W (X,I (∞))
resF−−−−→W (F)

δ′−→
⊕
p∈X(1)

W (k(p)).

Since M and ε∗ are isomorphisms, it follows that the sequence (6.1) is exact at W −(D) and W (F). The
exactness at

⊕
p∈X(1) W (k(p)) was proved by Parimala [Par88, Theorem 5.1]. (It is straightforward to check

that the particular choice of uniformizers and linear functionals in [Par88, Section 4] is coherent, and
Proposition 5.4 shows that the exactness of the sequence does not depend on this choice.) In [Pfi93,
Theorem 6a], Pfister shows that the image of

∑
(sp)∗ is the kernel of nD (multiplication by the norm form

of D). Therefore, the exactness at W (k) and W (D) follows from Lemma 4.2. □

For the rest of this section, we focus on the sequence (1.2). Our goal is to prove the following.
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Theorem 6.2. Let π∞ be a uniformizer at ∞, and let ∂2∞ and t∞ be the corresponding residue and transfer maps.
For all q ∈ X(1)

af , let πq, sq be a coherent choice of uniformizer and linear functional, and let ∂
2
q and tq be the

corresponding residue and transfer maps. The following sequence is exact:

(6.2) 0 −→W (D)
sD−→W (k)

extF−−−−→W (F)
δ−→

⊕
p∈X(1)

W (k(p))
∑
tp
−−−→W −(D) −→ 0.

We break the proof into several steps.

6.1. Exactness at the first three terms

The exactness of the sequence

(6.3) 0 −→W (X)
resF−−−−→W (F)

δ−→
⊕
p∈X(1)

W (k(p))

is the purity property of W (X). It follows from Knebusch’s general result [Kne70, Satz 13.3.6]. The first
terms of the exact sequence (6.2) are obtained by pasting this sequence with the following.

Proposition 6.3. The following sequence is exact:

0 −→W (D)
sD−→W (k)

extX−−−−→W (X) −→ 0.

Proof. The scalar extension map extX : W (k)→W (X) is known to be surjective; see [Pum98, Section 5].
(Pumplün’s general result holds for arbitrary Severi–Brauer varieties. The case of conics is simpler; see
[Pum98, Proposition 5.3] or [PSS01, Proposition 2.1].) Since restriction to the generic point is an injective map
W (X)→W (F) (see (6.3)), the kernel of extX is also the kernel of the scalar extension map W (k)→W (F).
The latter is the ideal generated by the norm form of D , see [Lam05, Corollary X.4.28], which by Lemma 4.2
can also be described as the image of the injective map sD . The proposition follows. □

Note that the exactness of (6.2) at W (k) and W (F) has already been observed by Pfister [Pfi93, Theorem 4].
The rest of this section deals with the last two terms of this sequence.

6.2. Choice of uniformizers

Proposition 5.6 shows that for Theorem 6.2 the coherent choice of uniformizers and linear functionals
is irrelevant. We make a specific choice as follows. At ∞, we choose x−1 as a uniformizer. To choose
uniformizers at the points p ,∞, recall from [Pfi93, Proposition 1] or [MT16, Lemma A.9] that the affine

ring Oaf is a principal ideal domain. Therefore, for each p ∈ X(1)
af , we may pick an irreducible element

πp ∈ Oaf generating the prime ideal Oaf ∩mp. The divisor of πp is thus p+ v∞(πp)∞; hence

(6.4) degp = −2v∞(πp)

because the degree of every principal divisor is 0. The element πp is a uniformizer at p, and the linear
functional sp : k(p)→ k such that πp, sp is coherent is uniquely determined. Moreover, the inclusion Oaf ⊂ Op

induces a canonical isomorphism Oaf/πpOaf = k(p).

6.3. Nullity

We next show that the sequence in Theorem 6.2 is a zero sequence. Since we already know that it is exact
at W (D), W (k), and W (F), it suffices to prove∑

p

tp
(
∂2p (⟨f ⟩)

)
= 0 for all f ∈ F×.
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We may assume f ∈ Oaf is square-free; hence f = cπ1 · · ·πn for some c ∈ k× and some pairwise distinct
irreducible elements π1, . . . , πn of Oaf selected in Section 6.2. Since tp and ∂2p are W (k)-linear, we may
moreover assume c = 1. Thus, for the rest of this subsection we fix

f = π1 · · ·πn ∈ Oaf.

We let p1, . . . , pn ∈ X
(1)
af be the closed points corresponding to π1, . . . , πn.

The primary decomposition of the Oaf-module f −1Oaf/Oaf is

(6.5) f −1Oaf/Oaf = (π−11 Oaf/Oaf)⊕ · · · ⊕ (π−1n Oaf/Oaf).

Multiplication by f defines an isomorphism f −1Oaf/Oaf ≃ Oaf/f Oaf; likewise, multiplication by πα defines
an isomorphism π−1α Oaf/Oaf ≃ Oaf/παOaf = k(pα) for α = 1, . . . , n. Hence we have an isomorphism of
Oaf-modules Φ which makes the following diagram commute:

f −1Oaf/Oaf
∼ //

f ·
��

(π−11 Oaf/Oaf)⊕ · · · ⊕ (π−1n Oaf/Oaf)

(π1·)⊕···⊕(πn·)
��

Oaf/f Oaf
Φ // k(p1)⊕ · · · ⊕ k(pn).

In contrast with the isomorphism provided by the Chinese remainder theorem, the map Φ is not a ring
homomorphism; it is readily verified that for f1, . . . , fn ∈ Oaf,

(6.6) Φ−1 (f1(p1), . . . , fn(pn)) = (f1π2 · · ·πn) + · · ·+ (π1 · · ·πn−1fn) + f Oaf.

Recall that v∞ denotes the (normalized) valuation at ∞ of F. We have v∞(g) ≤ 0 for all g ∈ Oaf.

Lemma 6.4. Every element in Oaf /f Oaf can be represented in the form g + f Oaf with g ∈ Oaf such that
v∞(g) ≥ v∞(f ). There is a well-defined k-linear map

S : Oaf /f Oaf −→ k

such that

S(g + f Oaf) = −ω∞
(
g

f
(∞)

)
for g ∈ Oaf with v∞(g) ≥ v∞(f ).

The following diagram, where sp1 , . . . , spn are the linear functionals coherently chosen with the uniformizers
π1, . . . , πn, commutes:

(6.7) Oaf /f Oaf
Φ //

S
##

k(p1)⊕ · · · ⊕ k(pn)

sp1+···+spn
xx

k.

Proof. Proposition 5.2 shows that every element in π−1α Oaf/Oaf can be represented in the form gα +Oaf
for some gα ∈ π−1α Oaf such that v∞(gα) ≥ 0. Therefore, by (6.5), every element in Oaf/f Oaf has the form
(
∑

α f gα)+f Oaf, where f gα ∈ Oaf and v∞(f gα) ≥ v∞(f ) for all α = 1, . . . , n. This proves the first statement.
Note that the representation as g + f Oaf with g ∈ Oaf such that v∞(g) ≥ v∞(f ) is not unique, but if

g1, g2 ∈ Oaf are such that v∞(g1), v∞(g2) ≥ v∞(f ) and g1 + f Oaf = g2 + f Oaf, then f −1g1 − f −1g2 ∈ Oaf
and v∞(f −1g1 − f −1g2) ≥ 0, so f −1g1 − f −1g2 ∈ k. Since ω∞ vanishes on k, it follows that ω∞(

g1
f (∞)) =

ω∞(
g2
f (∞)); hence the map S is well defined.
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Since the choice of the functionals sp1 , . . . , spn is coherent with the choice of uniformizers π1, . . . , πn,
commutativity of (6.7) amounts to the commutativity of the following diagram:

f −1Oaf /Oaf
∼ //

��

⊕n
α=1

(
π−1α Oaf /Oaf

)
∑

αωpα

��
Oaf /f Oaf

S // k.

This readily follows from the description of the maps ωpα
in Proposition 5.2. □

Tensoring Φ with the identity on the Oaf-module Taf, we obtain an isomorphism of right Daf-modules

ΦT : Taf /f Taf ∼−→ T (p1)⊕ · · · ⊕ T (pn).

On the other hand, tensoring S with the identity on D, we obtain a map

SD : Daf /fDaf −→D.

Recall from Proposition 5.1 that Taf = eDaf. Define a skew-hermitian form

H :
(
Taf /f Taf

)
×
(
Taf /f Taf

)
−→Daf /fDaf

by

H
(
eξ + f Taf, eη + f Taf

)
= ξeη + fDaf for ξ,η ∈ Daf.

Proposition 6.5. The map ΦT is an isometry of skew-hermitian D-modules

(SD )∗(H) ≃ tp1(⟨π2 · · ·πn(p1)⟩)⊥ ·· · ⊥ tpn(⟨π1 · · ·πn−1(pn)⟩).

Proof. This follows by a straightforward calculation, using (6.6) and Lemma 6.4. □

Next, we determine a base of Taf /f Taf as a right D-vector space.

Lemma 6.6. If v∞(f ) = −n, then (exα + f Taf)n−1α=0 is a D-base of Taf /f Taf.

Proof. For every p ∈ X(1), the fiber T (p) is a 2-dimensional right ideal of D(p); hence dimk(p)T (p) = 2, and

therefore dimk T (p) = 2degp. By (6.4) it follows that dimk T (p) = −4v∞(πp) for all p ∈ X
(1)
af . Since ΦT is an

isomorphism of k-vector spaces, we get

dimk

(
T af /f T af

)
= −4(v∞(π1) + · · ·+ v∞(πn)) = −4v∞(f ),

hence dimD(Taf /f Taf) = n. Therefore, to prove the lemma, it suffices to show that the sequence (exα +
f Taf)n−1α=0 spans Taf /f Taf.

From the description of Oaf as k[x,y] with y2 = ax2+b, we know that (xα ,xαy)∞α=0 is a k-base of Oaf. As
v∞(xα) = v∞(xα−1y) = −α, the elements g ∈ Oaf such that v∞(g) ≥ −n are linear combinations of (xα)nα=0
and (xβy)n−1β=0. Therefore, Lemma 6.4 shows that Oaf /f Oaf is k-spanned by the images of (xα)nα=0 and

(xβy)n−1β=0. It follows that Taf /f Taf is D-spanned by the images of (exα)nα=0 and (exβy)n−1β=0. By multiplying (5.1)

on the left by (ij)−1, we get je − xie+ ye = 0; hence after conjugation

(6.8) ey = ej − eix in Taf.

Therefore, the elements exβy for β = 0, . . . , n− 1 are in the D-span of (exα)nα=0. Thus, it only remains to
see that the image of exn in Taf /f Taf lies in the D-span of the image of (exα)n−1α=0.

For this, note that since v∞(f ) = −n, we have

f = c1x
n + c2x

n−1y + f0
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for some f0 ∈ Oaf such that v∞(f0) ≥ −n+1 and some c1, c2 ∈ k not both 0, hence

ec1x
n + ef0 ≡ −ec2xn−1y mod f Taf.

Comparing with (6.8), we obtain

ec1x
n + ef0 ≡ −ejc2xn−1 + eic2x

n mod f Taf,

hence

e(c1 − ic2)xn ≡ −ejc2xn−1 − ef0 mod f Taf.

Note that since v∞(f0) ≥ −n+ 1, the arguments above show that the image of ef0 in Taf /f Taf lies in the
D-span of (exα)n−1α=0. Since the quaternion c1 − ic2 is invertible in D, the proof is complete. □

We may now prove that the sequence in Theorem 6.2 is a zero sequence.

Proposition 6.7. For f as above,
∑

p∈X(1) tp
(
∂2p (⟨f ⟩)

)
= 0.

Proof. Let v∞(f ) = −n. For α, β = 0, . . . , n− 1, we have

H
(
exα + f Taf, exβ + f Taf

)
= exα+β + fDaf;

hence, as e = bi + axj + yij,

(SD )∗(H)
(
exα + f Taf, exβ + f Taf

)
= bS

(
xα+β + f Oaf

)
i + aS

(
xα+β+1 + f Oaf]

)
j + S

(
xα+βy + f Oaf

)
ij.

Now, for g ∈ Oaf such that v∞(g) > −n,

S(g + f Oaf) = −ω∞
(
g

f
(∞)

)
= 0;

hence exα + f Taf and exβ + f Taf are orthogonal for (SD )∗(H) when α + β +1 < n. In particular, the images
of exα for α < n−1

2 span a totally isotropic subspace of Taf /f Taf. If n is even, this totally isotropic subspace
has D-dimension n

2 = 1
2 dimD(Taf /f Taf), so (SD )∗(H) is hyperbolic. By Proposition 6.5, it follows that∑

p∈X(1)
af
tp

(
∂2p (⟨f ⟩)

)
= 0. Since ∂2∞(⟨f ⟩) = 0, the proposition follows.

Now suppose n = 2m + 1 for some integer m. Then the image of (exα)m−1α=0 spans a totally isotropic
subspace in the orthogonal complement of exm+ f Taf, so (SD )∗(H) is Witt-equivalent to its restriction to the
span of exm + f Taf. Computation shows

(SD )∗(H)
(
exm + f Taf, exm + f Taf

)
= −aω∞

(
xn

f
(∞)

)
j −ω∞

(
xn−1y

f
(∞)

)
ij;

hence by Proposition 6.5

(6.9)
∑
p∈X(1)

af

tp
(
∂2p (⟨f ⟩)

)
=

〈
−aω∞

(
xn

f
(∞)

)
j −ω∞

(
xn−1y

f
(∞)

)
ij

〉
in W −(D).

On the other hand, since n is odd, we have

⟨f ⟩ =
〈
x−n−1f

〉
=

〈
x−1

〉〈
f −1xn

〉
,

hence ∂2∞(⟨f ⟩) = ⟨x
n

f (∞)⟩ in W (k(∞)). By Proposition 5.5, the Witt class t∞
(
∂2∞(⟨f ⟩)

)
is represented by the

transfer along sD∞ of the skew-hermitian form hf on T (∞) such that

hf (e∞, e∞) =
xn

f
(∞)e∞.
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As observed in the proof of Lemma 6.6, T (∞) is a D-vector space of dimension 1. Taking e∞ as a base of
T (∞), we obtain

(6.10) t∞
(
∂2∞(⟨f ⟩)

)
=

〈
sD∞

(
xn

f
(∞)e∞

)〉
.

Recall that e∞ is the image in T (∞) of ex−1, so e∞ = aj + y
x (∞)ij . Therefore,

(6.11) sD∞

(
xn

f
(∞)e∞

)
= aω∞

(
xn

f
(∞)

)
j +ω∞

(
xn−1y

f
(∞)

)
ij.

The proof follows by comparing (6.9), (6.10), and (6.11). □

6.4. Exactness at
⊕

p
W (k(p))

We prove the exactness of the sequence in Theorem 6.2 by relating it to the following exact sequence due
to Pfister [Pfi93, Theorem 5]:

(6.12) W (F)
δ′′−→

⊕
p∈X(1)

af

W (k(p))
∑
(sp)∗
−−−−−→W (k)/J,

where J = {ϕ ∈W (k) | ⟨1,−a⟩ϕ = 0} is the subgroup annihilated by the norm form of k(∞) and δ′′ is the

map whose p-component is ∂2p for all p ∈ X(1)
af , for a coherent choice of uniformizer and linear functional

at each p. For this, we use the canonical isomorphism k(∞) ≃ k(i) ⊂D of [EKM08, Proposition 45.12]. Let
K = k(i), and let γ be the canonical isomorphism

γ : k(∞) ∼−→ K,
y

x
(∞) 7−→ i.

Theorem 4.1 yields an exact sequence

W −(D)
π2−→W (K)

σ2−→W −(D)
π1−→W −(K, ).

Lemma 6.8. Let Ψ : W (k(∞))→W (K) be the isomorphism that maps every quadratic form ⟨g⟩ to ⟨−γ(g)⟩, for
g ∈ k(∞)×. The following diagram commutes:

W (k(∞))

t∞ %%

Ψ // W (K)

σ2zz
W −(D).

Proof. For g ∈ k(∞)×, the definitions of σ2 and Ψ yield

σ2 (Ψ (⟨g⟩)) =
〈
−ijγ(g)

〉
= ⟨−γ(g)ij⟩,

whereas

t∞(⟨g⟩) = ⟨sD∞(ge∞)⟩ =
〈
aω∞(g)j +ω∞

(
g
y

x
(∞)

)
ij
〉

(see (6.10) and (6.11)). Computation yields

aω∞(g) +ω∞

(
g
y

x
(∞)

)
i = −γ(g)i,

hence

t∞(⟨g⟩) = ⟨−γ(g)ij⟩ = σ2 ◦Ψ (⟨g⟩). □



24 A. Quéguiner-Mathieu and J.-P. Tignol24 A. Quéguiner-Mathieu and J.-P. Tignol

Lemma 6.9. The map that carries every symmetric bilinear form ϕ : U ×U → k to the skew-hermitian form
⟨bi⟩ϕ(K, ) : (U ⊗k K)× (U ⊗k K)→ K such that for u, u′ ∈U and α, α′ ∈ K ,

⟨bi⟩ϕ(K, )(u ⊗α,u′ ⊗α′) = biαϕ(u,u′)α′

induces a group isomorphism

Θ : W (k)/J ∼−→W −(K, ).

This map makes the following diagram commute for every p ∈ X(1)
af :

W (k(p))
tp //

(sp)∗
��

W −(D)

π1

��
W (k)/J

Θ // W −(K, ).

Proof. Multiplication by bi defines an isomorphism W −(K, ) ≃W (K, ); hence for every symmetric bilinear
form ϕ : U ×U → k, the skew-hermitian form ⟨bi⟩ϕ(K, ) is hyperbolic if and only if the hermitian form
ϕ(K, ) is hyperbolic. This occurs if and only if the quadratic form sK (ϕ(K, )) : U ⊗k K → k defined by
sK (ϕ(K, ))(u ⊗α) = αϕ(u,u)α is hyperbolic; see [Sch85, Section 10.1, p. 348]. Since sK (ϕ(K, )) = ⟨1,−a⟩ϕ,
it follows that the map Θ is well defined and injective. It is also surjective because every skew-hermitian
form over (K, ) has a diagonalization ⟨α1i, . . . ,αni⟩ with α1, . . . , αn ∈ k×.

Now, let f ∈ k(p)×. We know from Proposition 5.5 that the Witt class of tp(⟨f ⟩) is represented by the
skew-hermitian form

h : T (p)× T (p) −→D defined by h(epξ,epη) = sD(p)

(
f ξepη

)
for ξ,η ∈D(p).

By multiplying (5.1) on the left by (ij)−1 and by j−1, we obtain

je − xie+ ye = 0 and − ije+ axe − yie = 0;

hence, after conjugation,

ej = ey + eix and eij = −eax − eiy in Taf.

Therefore, epj and epij are in the k(p)-span of ep and epi in T (p); hence (ep, epi) is a k(p)-base of T (p). Let

(cα)
degp
α=1 be a k-base of k(p). Then (epcα , epicα)

degp
α=1 is a k-base of T (p); hence (epcα)

degp
α=1 is a K-base of T (p).

Since ep = bi + ax(p)j + y(p)ij, we have

sD(p)

(
f cαepcβ

)
= sp

(
f cαcβ

)
bi + sp

(
f cαx(p)cβ

)
aj + sp

(
f cαy(p)cβ

)
ij;

hence the matrix of π1(h) in the base (epcα)
degp
α=1 is(
sp

(
f cαcβ

)
bi

)degp
α,β=1

.

The skew-hermitian form ⟨bi⟩(sp)∗ (⟨f ⟩)(K, ) has the same matrix. □

In the next lemma, we use the following notation: We write

ϖ :
⊕
p∈X(1)

W (k(p)) −→
⊕
p∈X(1)

af

W (k(p))

for the map that “forgets” the component at ∞.

Lemma 6.10. We have kerϖ∩ker(
∑
tp) ⊂ image(δ).
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Proof. Let (ϕp)p∈X(1) ∈ kerϖ∩ ker(
∑
tp). Thus, ϕp = 0 for all p ,∞ and t∞(ϕ∞) = 0. Lemma 6.8 yields

σ2 (Ψ (ϕ∞)) = 0; hence by Theorem 4.1, we may find an h ∈W −(D) such that π2(h) = Ψ (ϕ∞). From the
description of π2 in (4.1), it follows that ϕ∞ is a sum of Witt classes represented by quadratic forms of
the type ⟨u⟩⟨1,−aλ2 − bNk(∞)/k(u)⟩, for u ∈ K× and λ ∈ k. To complete the proof, it suffices to show that
every element in

⊕
p∈X(1) W (k(p)) whose p-components are 0 for all p ,∞ and whose ∞-component is

represented by a form of the type above is in the image of δ.
Fix λ ∈ k and u = u1 +u2

y
x (∞) ∈ K× (with u1, u2 ∈ k), and consider

f = λ+u1x+u2y ∈ Oaf.

Since u1 and u2 are not both zero, we have v∞(f ) = −1; hence f is irreducible in Oaf. Let q ∈ X
(1)
af be the

point such that f ∈mq ∩Oaf. Then

k(q) ≃ k

(√
aλ2 + bu2

1 − abu
2
2

)
;

hence (for any choice of uniformizer at q)

∂2q
(
⟨f ⟩⟨1,−aλ2 − bNk(∞)/k(u)⟩

)
= 0 in W (k(q)).

Moreover, for every p ∈ X(1)
af with p , q,

∂2p
(
⟨f ⟩⟨1,−aλ2 − bNk(∞)/k(u)⟩

)
= 0 in W (k(p))

because vp(f ) = 0. Furthermore, with x−1 as uniformizer at ∞,

∂2∞
(
⟨f ⟩⟨1,−aλ2 − bNk(∞)/k(u)⟩

)
= ⟨u⟩⟨1,−aλ2 − bNk(∞)/k(u)⟩ in W (k(∞)).

Thus, the element in
⊕

p∈X(1) W (k(p)) whose p-components are all 0 for p ,∞ and whose ∞-component is

represented by ⟨u⟩⟨1,−aλ2 − bNk(∞)/k(u)⟩ is the image of ⟨f ⟩⟨1,−aλ2 − bNk(∞)/k(u)⟩ under δ. □

Proposition 6.11. The sequence (6.2) is exact at
⊕

p
W (k(p)).

Proof. Consider the following diagram:

W (F) δ //
⊕

p∈X(1) W (k(p))

ϖ

��

∑
tp // W −(D)

Θ−1◦π1

��
W (F) δ′′ //

⊕
p∈X(1)

af
W (k(p))

∑
(sp)∗ // W (k)/J .

The left square commutes by the definition of the maps, and the right square commutes by Lemma 6.9. The
upper sequence is a zero sequence by Proposition 6.7, and the lower sequence is exact by Pfister’s theorem
[Pfi93, Theorem 5]. Therefore, a diagram chase yields for every u ∈ ker(

∑
tp) an element v ∈W (F) such

that δ′′(v) = ϖ(u). Then u − δ(v) ∈ kerϖ, and u − δ(v) ∈ ker(
∑
tp) because the upper sequence is a zero

sequence. Therefore, Lemma 6.10 shows that u − δ(v) ∈ image(δ), hence u ∈ image(δ). □

6.5. Exactness at W −(D)

To complete the proof of Theorem 6.2, we show that the map
∑
tp is onto. It suffices to prove that

1-dimensional skew-hermitian forms over D are in the image of
∑
tp.

Proposition 6.12. For every nonzero q ∈ D0, there exist a p ∈ X(1)
af of degree 2 and an f ∈ k(p)× such that

tp(⟨f ⟩) = ⟨q⟩.
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Proof. Let q = λ1i +λ2j +λ3ij with λ1, λ2, λ3 ∈ k. We may find α1, α2, α3 ∈ k with α2, α3 not both zero
such that

α1λ1 +α2λ2 +α3λ3 = 0.

Let p ∈ X(1) be the intersection of the conic with the line α1bZ +α2aX +α3Y = 0 in the projective plane
P(D0). The point p has degree 2, and p ,∞ since α2 and α3 are not both zero. In k(p), the following
equation holds:

α1b+α2ax(p) +α3y(p) = 0.

Therefore, there is a linear functional r : k(p)→ k such that

r(b) = λ1, r(ax(p)) = λ2, and r(y(p)) = λ3.

Every k-linear functional on k(p) has the form g 7→ sp(f g) for some f ∈ k(p); hence we may find an f ∈ k(p)×

such that r(g) = sp(f g) for all g ∈ k(p). The element ep = bi + ax(p)j + y(p)ij is a D-base of T (p), and
Proposition 5.5 shows that in this base

tp(⟨f ⟩) = ⟨sD(p)(f ep)⟩ = ⟨sp(f b)i + sp(f ax(p))j + sp(f y(p))ij⟩ = ⟨q⟩. □

The proof of Theorem 6.2 is thus complete.
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