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The EKOR stratification on the Siegel modular variety with
parahoric level structure
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Abstract. We study the arithmetic geometry of the reduction modulo p of the Siegel modular
variety with parahoric level structure. We realize the EKOR stratification on this variety as the
fibers of a smooth morphism into an algebraic stack parametrizing homogeneously polarized chains
of certain truncated displays.
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1. Introduction

Fix a rational prime p, a positive integer g , an auxiliary integer N ≥ 3 that is not divisible by p and a
non-empty subset J ⊆ Z with J + 2gZ = J and −J = J . Then we are interested in studying the Siegel modular
variety with parahoric level structure

Ag,J,N
over Zp. This is a quasi-projective scheme that parametrizes certain polarized chains of type J of
g-dimensional Abelian varieties with full level N structure; its moduli description was first given by
De Jong [dJo93] and then in full generality by Rapoport and Zink [RZ96]. The scheme Ag,J,N is the prime
example of an integral model of a Shimura variety at a place of parahoric bad reduction. While the generic
fiber of Ag,J,N is smooth, its special fiber typically is singular. This is related to the fact that the p-torsion of
an Abelian variety in characteristic p is not étale.

Now fix an algebraic closure Fp of Fp, let Z̆p BW (Fp) be the ring of p-typical Witt vectors of Fp, and
write Q̆p B Z̆p[1/p] for its fraction field. Denote by σ the Frobenius on Q̆p. Also fix a symplectic Qp-vector
space V of dimension 2g and a self-dual lattice chain (Λi)i∈J in V . Then there exists a natural map, called
the central leaves map,

Υ : Ag,J,N
(
Fp

)
−→ K̆σ\GSp(V )(Q̆p);

here K̆ ⊆ GSp(V )(Q̆p) is the stabilizer of the lattice chain (Λi)i , and modding out by K̆σ is notation for
taking the quotient by the σ -conjugation action g : x 7→ gxσ (g)−1. It is roughly given by sending a polarized
chain of Abelian varieties to the twisted conjugacy class corresponding to the Frobenius Φ of the associated
rational Dieudonné module; see the work of Oort [Oor04] and also He and Rapoport [HR16]. The image of
this map is given by K̆σ\X, where

X =
⋃

w∈Admg,J

K̆wK̆ ⊆GSp(V )
(
Q̆p

)
is a finite union of double cosets that is indexed over the so-called admissible set Admg,J .

The fibers of the composition

λ : Ag,J,N
(
Fp

) Υ−→ K̆σ\X −→ K̆\X/K̆ � Admg,J

define a decomposition of (Ag,J,N )Fp into smooth locally closed subschemes, the so-called Kottwitz–Rapoport

(KR ) stratification. In fact Rapoport and Zink construct the following data:

• a flat projective scheme Mloc over Zp with an action of the parahoric Zp-group scheme G for GSp(V )
given by the lattice chain (Λi)i ,
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• a smooth morphism

Ag,J,N −→
[
G\Mloc

]
that parametrizes the Hodge filtration in the de Rham cohomology of a polarized chain of Abelian
varieties.

The scheme M
loc is called the local model; it parametrizes isotropic chains of g-dimensional subspaces

Ci ⊆Λi and satisfies Mloc(Fp) = K̆\X. One recovers the map λ by evaluating the smooth morphism above

on Fp-points; see [HR16, Section 7(ii)].
He and Rapoport also consider the composition

υ : Ag,J,N
(
Fp

)
−→ K̆σ\X −→ K̆σ\(K̆\X),

where K̆1 ⊆ K̆ is the pro-unipotent radical. They observe that the codomain of υ is a finite set and call its
fibers Ekedahl–Kottwitz–Oort–Rapoport (EKOR ) strata.

In the hyperspecial case J = 2gZ, the EKOR stratification is also just called the Ekedahl–Oort (EO )
stratification and was first considered by Oort [Oor01]. Two points in Ag,2gZ,N (Fp) given by two (principally
polarized) Abelian varieties lie in the same EO stratum if and only if their p-torsion group schemes are
isomorphic. Viehmann and Wedhorn [VW13] realize the EO stratification as the fibers of a smooth morphism
from (Ag,2gZ,N )Fp into an algebraic stack that parametrizes F-zips in the sense of Moonen and Wedhorn
[MW04] with symplectic structure.

Question. Is it possible for general J to realize the map υ, or maybe even Υ , as a smooth morphism from
Ag,J,N into some naturally defined algebraic stack?

The existence of such a smooth morphism would in particular give a new proof of the smoothness of the
EKOR strata and the closure relations between them. More importantly, it also provides a tool that may be
applied to further study the geometry of Ag,J,N .

Let us give an overview of results that have been obtained so far (and that we are aware of), also
considering more general Shimura varieties than the Siegel modular variety:

• Moonen and Wedhorn [MW04] introduce the notion of an F-zip that is a characteristic p analogue of
the notion of a Hodge structure. Given an Abelian variety A over some Fp-algebra R, the de Rham
cohomology H1

dR(A/R) naturally carries the structure of an F-zip. If R is perfect, then the datum of
this F-zip is equivalent to the datum of the Dieudonné module of the p-torsion A[p]. Pink, Wedhorn
and Ziegler [PWZ15] define a group-theoretic version of the notion of an F-zip.

Viehmann and Wedhorn [VW13] define a moduli stack of F-zips with polarization and endo-
morphism structure in a PEL-type situation with hyperspecial level structure. They construct a
morphism from the special fiber of the associated Shimura variety to this stack, parametrizing the
EO stratification. They then show that this morphism is flat and use this to show that the EO strata
are non-empty and quasi-affine and to compute their dimension. The smoothness of the EO strata
was already shown by Vasiu [Vas08].

Zhang [Zha18] constructs a morphism from the special fiber of the Kisin integral model, see
[Kis10], of a Hodge-type Shimura variety to a stack of group-theoretic zips. They then show that this
morphism is smooth and thus gives an EO stratification with the desired properties. Shen and Zhang
[SZ22] later generalize this to Shimura varieties of Abelian type.

Shen, Yu and Zhang [SYZ21] further generalize this to Shimura varieties of Abelian type at
parahoric level, where the construction of integral models is due to Kisin and Pappas; see [KP18].
However, they only construct a morphism from each KR stratum of the special fiber of the Shimura
variety into a certain stack of group-theoretic zips, parametrizing the EKOR strata contained in this
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KR stratum. Still, they show that this morphism is smooth, thus establishing the smoothness of the
EKOR strata.

Hesse [Hes20] considers an explicit moduli stack of polarized chains of F-zips and constructs a
morphism from the Siegel modular variety into this stack. However, it appears that such a morphism
is not well behaved in the general parahoric situation; see Remark 3.17.
• Xiao and Zhu [XZ17] consider a perfect moduli stack of mixed characteristic local shtukas as well as
restricted versions in a hyperspecial situation. For a Shimura variety of Hodge type, they construct
a morphism from the perfection of its special fiber into the stack of local shtukas and show that
it realizes the central leaves map. They state that the induced morphism to the moduli stack of
restricted local shtukas is perfectly smooth, see [XZ17, Proposition 7.2.4], but the proof appears to be
incomplete because the diagram used there is not commutative as required.

Shen, Yu and Zhang [SYZ21] again generalize this to the parahoric situation. Similarly to Xiao and
Zhu, they construct a morphism from the perfected special fiber of the Shimura variety to their stack
of local shtukas and state that the induced morphism to the moduli stack of restricted local shtukas is
perfectly smooth, but their proof, see [SYZ21, Theorem 4.4.3], employs a similar non-commutative
diagram. This issue is addressed in the errata [SYZ24], where Shen, Yu and Zhang state that their
proof works with slight modifications; it is not clear to the author why the argument offered in the
errata is sufficient to complete the proof.
• Zink [Zin02] introduces the notion of a display that is a non-perfect version of the notion of
a Dieudonné module. Bültel and Pappas [BP18] define a group-theoretic version; this gives a
deperfection of the notion of a local shtuka from [XZ17] in the hyperspecial situation. In a parahoric
Hodge-type situation, Pappas [Pap23] also gives a definition of group-theoretic displays, however only
over p-torsion-free p-adic rings. Pappas also constructs a group-theoretic display on the p-completion
of a Kisin–Pappas integral model.

1.1. Overview

Let us explain the content of the present work. The letter R denotes a p-nilpotent ring.
We start by recalling the definition of a (3n-)display in the sense of [Zin02].

Definition 1.1 (cf. Definition 2.9). Let 0 ≤ d ≤ h be integers. Then a display of type (h,d) over R is a tuple
(M,M1,Ψ ) that is given as follows:

• M is a finite projective W (R)-module of rank h.
• M1 ⊆ M is a W (R)-submodule containing IRM and such that M1/IRM ⊆ M/IRM is a direct
summand of rank d.
• Ψ : M̃1→M is an isomorphism of W (R)-modules that we call the divided Frobenius.

Here W (R) denotes the ring of Witt vectors of R, IR denotes the kernel of the projection W (R)→ R, and
the object M̃1 is a certain finite projective W (R)-module attached to (M,M1); see Definition 2.7 for more
details. If R is a perfect ring of characteristic p, then M̃1 agrees with the Frobenius twist Mσ

1 .
The category of displays carries a natural duality and an action of the symmetric monoidal category of

tuples (I, ι) consisting of an invertible W (R)-module I and an isomorphism ι : Iσ → I .

For positive integers m and n with m ≥ n+ 1, we define the notion of an (m,n)-truncated display that is
inspired by the restricted local shtukas from [XZ17, Definition 5.3.1]. The word “truncated” refers to the use
of truncated Witt vectors; the numbers m and n roughly measure how truncated the module M and the
divided Frobenius Ψ are. One should note that this notion of an (m,n)-truncated display is different from
the notion of an n-truncated display as defined by Lau and Zink in [LZ18]; see Remark 2.14 for a comparison.
For us it will be crucial to work with the (m,n)-truncated objects; see Remark 3.17.

The following theorem gives a relation between displays and p-divisible groups.
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Theorem 1.2 (cf. [Lau13, Theorem 5.1], Theorem 2.24). There is a natural functor

D : {p-divisible groups of height h and dimension d over R}op −→ {displays of type (h,d) over R}.

that restricts to an equivalence between formal p-divisible groups and F-nilpotent displays.

As we are interested in studying the moduli space Ag,J,N of polarized chains of Abelian varieties, it makes
sense to make the following definition.

Definition 1.3 (cf. Definition 3.9). A homogeneously polarized chain of displays of type (g, J) over R is a tuple(
(Mi)i ,

(
ρi,j

)
i,j
, (θi)i , (Mi,1)i , (Ψi)i , I , ι, (λi)i

)
that is given as follows:

• ((Mi ,Mi,1,Ψi)i , (ρi,j )i,j ) is a diagram of shape J in the category of displays of type (2g, J) such that
the homomorphism of R-modules ρi,j : R⊗W (R)Mi → R⊗W (R)Mj is of constant rank 2g − (j − i) for
all i ≤ j ≤ i + 2g .
• θi : (Mi ,Mi,1,Ψi)→ (Mi+2g ,Mi+2g,1,Ψi+2g ) is an isomorphism such that we have the compatibilities
θj ◦ ρi,j = ρi+2g,j+2g ◦θi and ρi,i+2g = pθi .
• (I, ι) is as in Definition 1.1.
• λi : (Mi ,Mi,1,Ψi)→ (I, ι)⊗ (M−i ,M−i,1,Ψ−i)∨ is an antisymmetric isomorphism such that we have
λj ◦ ρi,j = (id(I,ι) ⊗ ρ∨−j,−i) ◦λi .

We again also give an (m,n)-truncated version of this definition. If R is of characteristic p, then we allow
n to take the additional value 1-rdt that can be thought of as being slightly smaller than 1; “rdt” refers to
the term “reductive quotient”. Roughly, the case n = 1-rdt corresponds to only having a divided Frobenius
on the graded pieces of the 1-truncated chain of modules; see Definition 3.1.

We then show that the stack HPolChDisp(m,n)
g,J of (m,n)-truncated homogeneously polarized chains of

displays over Spf(Zp) admits a quotient stack description.

Proposition 1.4 (cf. Proposition 3.21). There exists an equivalence

HPolChDisp(m,n)
g,J −→

[(
L(m)G

)
∆
\Mloc,(n)

]
,

where we use the following notation:

• L(m)G denotes the m-truncated Witt vector positive loop group of G; see Section 2.1.
• Mloc is the p-completion of the local model Mloc, and Mloc,(n) →Mloc is a certain L(m)G-equivariant
L(n)G-torsor; see Definition 3.20.
• The subscript ∆ indicates that we take the quotient by the diagonal action.

Thus our definition of HPolChDisp(m,n)
g,J gives (up to a slight difference in normalization) a deperfection of

the stack of parahoric restricted local shtukas from [SYZ21, Section 4]; see Remark 3.22. In particular, we
obtain bijections

HPolChDispg,J
(
Fp

)
−→ K̆σ\X and HPolChDisp(m,1-rdt)

g,J

(
Fp

)
−→ K̆σ\

(
K̆1\X

)
.

Applying Theorem 1.2 to the moduli description of Ag,J,N , we thus obtain a natural morphism

Υ : A∧g,J,N −→ HPolChDispg,J

that realizes the central leaves map; see Definition 4.3. Here A∧g,J,N denotes the p-completion of Ag,J,N . For
any m ≥ 2 the composition(

Ag,J,N
)
Fp

Υ−→ HPolChDispg,J,Fp −→ HPolChDisp(m,1-rdt)
g,J

then realizes the map υ parametrizing the EKOR stratification. Our main result is now the following.
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Theorem 1.5 (cf. Theorem 4.10). For every tuple of integers (m,n) with n , 1-rdt, the natural mor-

phism A∧g,J,N → HPolChDisp(m,n)
g,J is smooth. Similarly, for every m ≥ 2 the morphism (Ag,J,N )Fp →

HPolChDisp(m,1-rdt)
g,J is smooth as well.

Strategy of proof. By the Serre–Tate theorem, the smoothness of the morphism at a point of |A∧g,J,N | cor-
responding to a polarized chain of Abelian varieties only depends on the associated polarized chain of
p-divisible groups. Using Theorem 1.2 we then show that the morphism is smooth along the formal locus,
i.e. the locus of chains of Abelian varieties with formal p-divisible groups. To obtain the smoothness in
general, we then finally show that there are enough points in |A∧g,J,N | that specialize into the formal locus;
see Corollary 4.8 for a precise statement. □

As a natural next step, it would be interesting to generalize our results to the case of a more general
Shimura variety at parahoric level instead of the Siegel modular variety. It could be expected that there
exists a stack of (G,µ)-displays for every datum (G,µ) consisting of a parahoric Zp-group scheme G and a
minuscule geometric conjugacy class µ of cocharacters of the generic fiber of G, as well as truncated versions
that recover the definition from [BP18] in the hyperspecial case and give back our definition when the generic
fiber of G is either a general linear group or a group of symplectic similitudes. In a situation where the
local group datum (G,µ) comes from a Shimura datum, there then should be a natural smooth morphism
from the p-completion of the corresponding Shimura variety into the stack of truncated (G,µ)-displays. As
already mentioned above, partial results in this direction have been achieved by Pappas in [Pap23].

1.2. Acknowledgements

I am very grateful to Ulrich Görtz for introducing me to the subject of Shimura varieties and their special
fibers and for all the support I received from him throughout this project. Furthermore, I would like to
thank Jochen Heinloth, Ludvig Modin, Herman Rohrbach, Pol van Hoften and Torsten Wedhorn for helpful
conversations. Finally I also want to thank the anonymous referee for their valuable feedback, suggesting
significant improvements to an earlier version of the manuscript.

2. Pairs and displays

In this section we recall some of the theory of (not necessarily nilpotent) displays from [Zin02]. We also
develop an analogous theory of (m,n)-truncated displays that is inspired by the definition of (m,n)-restricted
local shtukas given in [XZ17].

The letter R denotes a p-nilpotent ring, and (m,n) denotes a tuple of positive integers with m ≥ n+ 1.

2.1. Witt vectors

We use the following notation concerning Witt vectors:

• We write W (R) for the ring of (p-typical ) Witt vectors of R and IR ⊆W (R) for its augmentation ideal,
i.e. the kernel of the projection W (R)→ R.

Similarly, we write Wn(R) for the ring of n-truncated Witt vectors of R and In,R ⊆Wn(R) for its
augmentation ideal.
• We denote the Witt vector Frobenius on W (R) by σ : W (R)→W (R). Given a W (R)-module M, we
write Mσ BW (R)⊗σ,W (R)M for its Frobenius twist.

Note that σ induces a ring homomorphism σ : Wm(R)→Wn(R) on truncated Witt vectors (here it
is crucial that m ≥ n+ 1, at least when R is not of characteristic p).

When R is of characteristic p, we also write σ : R→ R for the p-power Frobenius on R.
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• We write

W (R)σ=id B {x ∈W (R) | σ (x) = x} ⊆W (R)

for the subring of σ -invariant elements. Note that we have a natural isomorphism

Zp(R)B Cont
(
|Spec(R)|,Zp

)
−→W (R)σ=id;

when R is of characteristic p, this follows from the chain of identifications

Zp(R) �W
(
Fp(R)

)
�W

(
Rσ=id

)
�W (R)σ=id,

and the general case follows because the reduction morphism Zp(R)→ Zp(R/pR) is an isomorphism
and the σ -stable ideal ker(W (R)→W (R/pR)) ⊆W (R) is killed by a power of σ , so every σ -invariant
element x ∈W (R/pR) lifts uniquely to a σ -invariant element x̃ ∈W (R).

Similarly, we write

Wm(R)σ=id B {x ∈Wm(R) | σ (x) = x ∈Wn(R)} ⊆Wm(R).

Note that this is slightly ambiguous as the chosen n does not appear in the notation; however, it
should always be clear from the context what n is used.
• Recall that the inverse of the Verschiebung is a σ -linear map IR→W (R). We denote its linearization
by σdiv : IσR → W (R) and call it the divided Frobenius. For x ∈ IR we have p · σdiv(1 ⊗ x) = σ (x),
justifying the name.

We also have a truncated variant of the divided Frobenius σdiv : Wn(R)⊗σ,Wm(R) Im,R→Wn(R).
• Let M, N be finite projective W (R)-modules, and let f : M→ IRN ⊆N be a W (R)-linear map. We
write f σ,div for the composition

f σ,div : Mσ f σ

−−→ IσR ⊗W (R)N
σ σdiv⊗id−−−−−−→Nσ .

Then we have p ·f σ,div = f σ , and given homomorphisms of finite projectiveW (R)-modules g : L→M
and h : N → P , we have (f ◦ g)σ,div = f σ,div ◦ gσ and (h ◦ f )σ,div = hσ ◦ f σ,div.

Similarly, given finite projective Wm(R)-modules M and N and a homomorphism of Wm(R)-
modules f : M→ Im,RN ⊆N , we write f σ,div for the composition

f σ,div : Wn(R)⊗σ,Wm(R)M
f σ

−−→
(
Wn(R)⊗σ,Wm(R) Im,R

)
⊗Wn(R)

(
Wn(R)⊗σ,Wm(R)N

)
σdiv⊗id−−−−−−→Wn(R)⊗σ,Wm(R)N.

This construction has similar properties to the non-truncated version.
• Given a smooth affine Zp-group scheme G, we write L+G for the (Witt vector) positive loop group of G,
i.e. the flat affine Zp-group scheme given by (L+G)(R) = G(W (R)) (see also [BH20, Section 2.2]).

We also write L(n)G for the n-truncated positive loop group of G, i.e. the smooth affine Zp-group
scheme given by (L(n)G)(R) = G(Wn(R)).

We also record the following technical lemma that will be used multiple times throughout the article.

Lemma 2.1. Suppose that we are given an admissible linearly topologized ring A (see [Sta18, Tag 07E8]) such
that p is topologically nilpotent in A. Let M, M ′ be finite projective A-modules of rank h, and let f : M→M ′

and g : M ′→M be morphisms of A-modules such that g ◦ f = p · idM and f ◦ g = p · idM ′ . Suppose furthermore
that there exist integers ℓ and ℓ′ with ℓ + ℓ′ = h such that for every continuous ring homomorphism A→ k with k
an algebraically closed field, the induced homomorphisms of k-vector spaces

f : k ⊗AM −→ k ⊗AM ′ and g : k ⊗AM ′ −→ k ⊗AM

are of ranks ℓ and ℓ′ .
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Then the induced homomorphisms of A/pA-modules

f : M/pM −→M ′/pM ′ and g : M ′/pM ′ −→M/pM

are of constant ranks ℓ and ℓ′ , in the sense that their respective images are direct summands (hence finite projective)
of the indicated rank.

Proof. Let a ⊆ A be an ideal of definition that contains p. Note that the condition that f and g are of
constant ranks ℓ and ℓ′ , is representable by a finitely presented locally closed subscheme Z ⊆ Spec(A/a).
By assumption we have |Z | = |Spec(A/a)|, so Z is the vanishing locus of a nilpotent ideal b ⊆ A/a. After
replacing a by the preimage of b under A → A/a, we thus may assume that the homomorphisms of
A/a-modules

f : M/aM −→M ′/aM ′ and g : M ′/aM ′ −→M/aM

are of constant ranks ℓ and ℓ′ .
Modulo a the morphisms f and g now compose to 0 in both directions and are of complementary

constant ranks. Thus there exist direct sum decompositions

M/aM = P ⊕ P ′ and M ′/aM ′ = P ⊕ P ′

with respect to which we have f =
(

idP 0
0 0

)
and g =

(
0 0
0 idP ′

)
. Lift these decompositions to

M =Q⊕Q′ and M ′ =Q⊕Q′ .

After possibly modifying the lifts, we may then assume that

f =

idQ 0

0 ∗

 and g =

∗ ∗
∗ idQ′

 .
The assumptions g ◦ f = p · idM and f ◦ g = p · idM ′ then imply that we in fact have

f =

idQ 0

0 p · idQ′

 and g =

p · idQ 0

0 idQ′

 ,
so the claim follows. □

2.2. Pairs and displays

Let h and d denote integers with 0 ≤ d ≤ h.

Definition 2.2. A pair (of type (h,d)) over R is a tuple (M,M1) consisting of a finite projective W (R)-module
M (of rank h) and a W (R)-submodule M1 ⊆M with IRM ⊆M1 and such that M1/IRM ⊆M/IRM is a
direct summand (of rank d).

An m-truncated pair over R is a tuple (M,M1) consisting of a finite projective Wm(R)-module M and a
Wm(R)-submodule M1 ⊆M with Im,RM ⊆M1 and such that M1/Im,RM ⊆M/Im,RM is a direct summand.

Definition 2.3. Let (M,M1) and (M ′ ,M ′1) be two pairs over R. Then a morphism f : (M,M1)→ (M ′ ,M ′1)
is a morphism of W (R)-modules f : M→M ′ such that f (M1) ⊆M ′1.

In the same way, we also define morphisms of m-truncated pairs.

Remark 2.4. Let (M,M1) be a pair over R, and let R→ R′ be a morphism of p-complete rings. Then we
can form the base change (M ′ ,M ′1) = (M,M1)R′ that is a pair over R′ . It is characterized by

M ′ =W (R′)⊗W (R)M and M ′1/IR′M
′ = R′ ⊗R (M1/IRM) .

Similarly, we can also base change m-truncated pairs.
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From the descent result [Zin02, Corollary 34], it follows that the assignment R 7→ {pairs over R} defines a
stack of W (OSpf(Zp))-linear categories for the fpqc topology; here W (OSpf(Zp)) denotes the sheaf of rings
that is given by R 7→W (R).

Similarly, using [Lau13, Lemma 3.12], we see that the assignment R 7→ {m-truncated pairs over R} defines
a stack of Wm(OSpf(Zp))-linear categories.

Remark 2.5. There are natural truncation functors

{pairs over R} −→ {m-truncated pairs over R}

and {
m′-truncated pairs over R

}
−→ {m-truncated pairs over R}

for m ≤m′ .

Lemma 2.6. Let (M,M1) be a pair over R. Then (M,M1) has a normal decomposition (L,T ), i.e. a direct sum
decomposition M = L⊕ T such that M1 = L⊕ IRT . Given a second pair (M ′ ,M ′1) with normal decomposition
(L′ ,T ′), every morphism of pairs f : (M,M1)→ (M ′ ,M ′1) can be written in matrix form f =

(
a b
c d

)
with

a : L −→ L′ , b : T −→ L′ , c : L −→ IRT
′ , d : T −→ T ′ .

The same is true for m-truncated pairs.

Proof. Set L′ BM1/IRM ⊆M/IRM . By definition it is a direct summand, so we can choose a complement
T ′ ⊆M/IRM . As W (R) is Henselian along IR, we can now lift the decomposition M/IRM = L′ ⊕ T ′ to a
decompositionM = L⊕T as desired. The claim about writing morphisms as matrices with respect to chosen
normal decompositions is immediate. □

Definition 2.7. We define a natural σ -linear functor

{pairs (of type (h,d)) over R} −→
{
finite projective W (R)-modules

(of rank h)

}
,

(M,M1) 7−→ M̃1

as follows:

• Given a pair (M,M1) over R with normal decomposition (L,T ), we set M̃1 B Lσ ⊕ T σ .
• Given two pairs (M,M1) and (M ′ ,M ′1) with normal decompositions (L,T ) and (L′ ,T ′) and a

morphism f =
(
a b
c d

)
: (M,M1)→ (M ′ ,M ′1), we define

f̃ B

 aσ p · bσ

cσ,div dσ

 : M̃1 −→ M̃ ′1.

In the same way we also define a natural functor

{m-truncated pairs over R} −→ {finite projective Wn(R)-modules},

(M,M1) 7−→ M̃1.

Remark 2.8. We make the following remarks.

• Checking that the functor (M,M1) 7→ M̃1 from Definition 2.7 is well defined amounts to checking
that the definition of f̃ is compatible with identities and composition. This can be easily verified
using the properties of (-)σ,div; see Section 2.1.

The definition f̃ B
(
aσ p·bσ
cσ,div dσ

)
imitates the expression

(
1 0
0 p

)−1(a b
c d

)σ (1 0
0 p

)
; the latter a priori only

makes sense after base changing to W (R)[1/p], but then the two terms agree.
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• Let (M,M1) be a pair over R. Then we can informally think of M̃1 as the “correct version” of the
Frobenius twist Mσ

1 that usually fails to be a finite projective W (R)-module.
We have a natural surjective W (R)-linear map

Mσ
1 � L

σ ⊕
(
IσR ⊗W (R) T

σ
) (id,σdiv⊗id)
−−−−−−−−−−→ Lσ ⊕ T σ � M̃1,

and this map actually is an isomorphism when R is a perfect ring of characteristic p.
We also have natural W (R)-linear maps

M̃1 � L
σ ⊕ T σ

(
1 0
0 p

)
−−−−−→ Lσ ⊕ T σ �Mσ and Mσ � Lσ ⊕ T σ

(
p 0
0 1

)
−−−−−→ Lσ ⊕ T σ � M̃1

that we can informally think of as the “inclusion” and the “multiplication-by-p map”, respectively.
Similar maps also exist in the truncated situation.
• The theory of higher displays as developed in [Lau21] and [Dan21] gives a way to conceptualize
Definition 2.7.

Let W (R)⊕ be the Z-graded ring underlying the Witt frame (see [Dan21, Definition 2.2]), and recall
that it is equipped with two ring homomorphisms τ,σ : W (R)⊕→W (R). Now giving a pair (M,M1)
over R is equivalent to giving a finite projective graded W (R)⊕-module whose type is concentrated in
[0,1], and the functors (M,M1) 7→M and (M,M1) 7→ M̃1 correspond to base changing along τ and
σ , respectively.

Definition 2.9. A display over R is a tuple (M,M1,Ψ ), where (M,M1) is a pair over R and Ψ : M̃1→M is
an isomorphism of W (R)-modules. We call Ψ the divided Frobenius of the display.

Similarly, an (m,n)-truncated display over R is a tuple (M,M1,Ψ ), where (M,M1) is an m-truncated pair
over R and Ψ : M̃1→Wn(R)⊗Wm(R)M is an isomorphism of Wn(R)-modules.

Remark 2.10. Similarly to what was explained for pairs in Remarks 2.4 and 2.5, one can also base change
and truncate displays.

The assignment R 7→ {displays over R} defines an fpqc-stack of Zp-linear categories; here Zp denotes the

sheaf that is given by R 7→ Zp(R).
Similarly, the assignment R 7→ {(m,n)-truncated displays over R} defines a stack of Wm(OSpf(Zp))σ=id-

linear categories.

Definition 2.11. Let (M,M1,Ψ ) be a display over R. We define the Frobenius of (M,M1,Ψ ) as the
composition

FM : Mσ −→ M̃1
Ψ−→M,

where the first arrow is the “multiplication-by-p map” introduced in Remark 2.8. Furthermore, we say that
(M,M1,Ψ ) is F-nilpotent if there exists some N ∈ Z≥0 such that the R/pR-module homomorphism

R/pR⊗
(
FM ◦ · · · ◦Fσ

N−1

M

)
: R/pR⊗W (R)M

σN −→ R/pR⊗W (R)M

vanishes.
Now let (M,M1,Ψ ) be an (m,n)-truncated display over R. Then we again define the Frobenius of

(M,M1,Ψ ) as the composition

FM : Wn(R)⊗σ,Wm(R)M −→ M̃1
Ψ−→Wn(R)⊗Wm(R)M

and say that (M,M1,ψ) is F-nilpotent if there exists some N ∈ Z≥0 such that the R/pR-module homomor-
phism (

R/pR⊗Wn(R) FM
)
◦ · · · ◦

(
R/pR⊗Wn(R) FM

)(pN−1)
:
(
R/pR⊗Wm(R)M

)(pN )
−→ R/pR⊗Wm(R)M

vanishes.
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Remark 2.12. It follows immediately from the definition that an ((m,n)-truncated) display over R is F-nilpotent
if and only if its (2,1)-truncated base change to R/pR is F-nilpotent.

Remark 2.13 (Relation with Dieudonné modules). Suppose that R is perfect of characteristic p. Then there is
the classical notion of a Dieudonné module over R.

Such a Dieudonné module over R is a tuple (M,FM ) consisting of a finite projective W (R)-module M
and an isomorphism FM : Mσ [1/p]→M[1/p] that satisfies pM ⊆ FM(Mσ ) ⊆M .

We have a natural equivalence of categories

{displays over R} −→ {Dieudonné modules over R}

that sends a display (M,M1,Ψ ) to (M,FM ), where FM is the Frobenius from Definition 2.11. The inverse of
this equivalence is given by sending (M,FM ) to (M,M1,Ψ ), where

M1 B p ·F−1
M (M)σ

−1
⊆M and Ψ : M̃1 � p ·F−1

M (M)
p−1·FM−−−−−−→M.

Moreover, the display corresponding to a Dieudonné module (M,FM ) over R is of type (h,d) if and only if
M is a finite projective W (R)-module of rank h and M/FM(Mσ ) is a finite projective R-module of rank d.

Remark 2.14 (Relation with truncated displays in the sense of Lau and Zink). Let us recall the notions of
truncated pairs and displays from [LZ18]; see also [Lau13].

Consider the ring
Wn(R)BWn+1(R)/(0, . . . ,0,R[p]),

where R[p] ⊆ R denotes the p-torsion in R. We have (0, . . . ,0,R[p])·In+1,R = 0, so In+1,R is naturally aWn(R)-
module, and we have a Frobenius σ : Wn(R)→Wn(R) as well as a divided Frobenius σdiv : Wn(R)⊗σ,Wn(R)
In+1,R→Wn(R).

We now have the Wn(R)-linear category of n-truncated Lau–Zink-pairs that has the following description.
Every n-truncated Lau–Zink-pair (that we informally denote by (M,M1)) has a normal decomposition (L,T ),
where L and T are finite projective Wn(R)-modules, and given two such objects (M,M1) and (M ′ ,M ′1)
with normal decompositions (L,T ) and (L′ ,T ′), morphisms f : (M,M1)→ (M ′ ,M ′1) are given by matrices

f =
(
a b
c d

)
with

a : L −→ L′ , b : T −→ L′ , c : L −→ In+1,R ⊗Wn(R) T
′ , d : T −→ T ′ .

There again is a σ -linear functor

{n-truncated Lau–Zink-pairs over R} −→ {finite projective Wn(R)-modules}, (M,M1) 7−→ M̃1

that sends an n-truncated Lau–Zink-pair (M,M1) with normal decomposition (L,T ) to

M̃1 B
(
Wn(R)⊗σ,Wn(R) L

)
⊕
(
Wn(R)⊗σ,Wn(R) T

)
and a morphism f =

(
a b
c d

)
as above to f̃ B

(
aσ p·bσ
cσ,div dσ

)
analogously to Definition 2.7. An n-truncated

Lau–Zink-display is then defined to be a tuple (M,M1,Ψ ), where (M,M1) is an n-truncated Lau–Zink-pair
and Ψ : M̃1→Wn(R)⊗Wn(R)M is an isomorphism.

From this description it is clear that there exist natural truncation functors{
(m′ ,n′)-truncated displays over R

}
−→ {n-truncated Lau–Zink-displays over R}

for n ≤ n′ and{
n′-truncated Lau–Zink-displays over R

}
−→ {(m,n)-truncated displays over R}

for m ≤ n′ .
Let us remark that for R of characteristic p, we have an equivalence

{1-truncated Lau–Zink-displays over R} −→ {F-zips over R},
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where the right-hand side denotes the category of F-Zips from [MW04, Definition 1.5] with type concentrated
in [0,1]; see [Lau21, Example 3.6.4].

2.3. Duals and twists

Definition 2.15. Let (M,M1) be a pair over R. Then we define its dual

(M,M1)∨ B
(
M∨,M∗1

)
as follows:

• M∨ = HomW (R)(M,W (R)) is the dual of the finite projective W (R)-module M .
• M∗1 ⊆M is the W (R)-submodule of all ω : M→W (R) such that ω(M1) ⊆ IR. Equivalently, it is the
preimage under

M∨ −→M∨/IRM
∨ � (M/IRM)∨

of the orthogonal complement (M1/IRM)⊥ ⊆ (M/IRM)∨.

This endows the category of pairs over R with a W (R)-linear duality in the sense of Definition A.3 and
Remark A.6.

We similarly define duals of m-truncated pairs.

Remark 2.16. Note that if (M,M1) is an (m-truncated) pair of type (h,d) over R, then its dual (M,M1)∨ is
of type (h,h− d).

Lemma 2.17. The functor

{pairs over R} −→ {finite projective W (R)-modules }, (M,M1) 7−→ M̃1

is naturally compatible with dualities.
The same is true for the functor

{m-truncated pairs over R} −→ {finite projective Wn(R)-modules }, (M,M1) 7−→ M̃1.

Proof. Given a pair (M,M1) over R, we need to define a natural isomorphism M̃∗1→ M̃1
∨
. Let (L,T ) be

a normal decomposition of (M,M1). Then (T ∨,L∨) is a normal decomposition of (M,M1)∨, and we can
define the desired isomorphism as 0 idLσ,∨

idT σ,∨ 0

 : M̃∗1 � T
∨,σ ⊕L∨,σ −→ (Lσ ⊕ T σ )∨ � M̃1

∨
. □

Definition 2.18. Let (M,M1,Ψ ) be a display over R. Then we define its dual

(M,M1,Ψ )∨ B
(
M∨,M∗1,Ψ

∨,−1
)
,

where we implicitly use Lemma 2.17 to make sense of Ψ ∨,−1 as an isomorphism M̃∗1→M∨. This endows
the category of displays over R with a Zp(R)-linear duality.

We similarly define duals of (m,n)-truncated displays.

Definition 2.19. Let (M,M1) be a pair over R, and let I be an finite projective W (R)-module. Then we
define the twist

I ⊗ (M,M1)B
(
I ⊗W (R)M,I ⊗W (R)M1

)
.

This defines an action of the symmetric monoidal category of finite projectiveW (R)-modules on the category
of pairs over R in the sense of Definition A.2.

We similarly define twists of m-truncated pairs over R by finite projective Wm(R)-modules.
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Remark 2.20. In fact the symmetric monoidal category of finite projective W (R)-modules is rigid and
W (R)-linear, and the action defined above is naturally compatible with dualities and the W (R)-linear
structure; see Remarks A.4 to A.6.

In the same way, the action in the truncated setting also is naturally compatible with dualities and the
Wm(R)-linear structure.

Lemma 2.21. The functor

{pairs over R} −→ {finite projective W (R)-modules }, (M,M1) 7−→ M̃1

is naturally equivariant with respect to the symmetric monoidal functor

{finite projective W (R)-modules } −→ {finite projective W (R)-modules }, I 7−→ Iσ

in the sense of Definition A.2 and Remark A.4.
Similarly, the functor

{m-truncated pairs over R} −→ {finite projective Wn(R)-modules }, (M,M1) 7−→ M̃1

is naturally equivariant with respect to the symmetric monoidal functor

{finite projective Wm(R)-modules } −→ {finite projective Wn(R)-modules }, I 7−→Wn(R)⊗σ,Wm(R) I.

Proof. Given a pair (M,M1) over R and a finite projective W (R)-module I , we need to define a natural
isomorphism (I ⊗W (R) M1)∼ → Iσ ⊗W (R) M̃1. Let (L,T ) be a normal decomposition of (M,M1). Then
(I ⊗W (R) L,I ⊗W (R) T ) is a normal decomposition of I ⊗ (M,M1), and we can define the desired isomorphism
as (

I ⊗W (R)M1

)∼
�

(
I ⊗W (R) L

)σ
⊕
(
I ⊗W (R) T

)σ
−→ Iσ ⊗W (R) (Lσ ⊕ T σ ) � Iσ ⊗W (R) M̃1. □

Definition 2.22. Let (M,M1,Ψ ) be a display over R, and let (I, ι) be a tuple consisting of a finite projective
W (R)-module I and an isomorphism ι : Iσ → I . Then we define the twist

(I, ι)⊗ (M,M1,Ψ )B
(
I ⊗W (R)M,I ⊗W (R)M1, ι⊗Ψ

)
,

where we implicitly use Lemma 2.21 to make sense of ι⊗Ψ as an isomorphism (I ⊗W (R)M1)∼→M . This
defines an action of the symmetric monoidal category of tuples (I, ι) as above on the category of displays
over R, and in fact this action is naturally compatible with dualities and the Zp(R)-linear structure.

We similarly define twists of (m,n)-truncated displays over R by tuples (I, ι) consisting of a finite projective
Wm(R)-module I and an isomorphism ι : Wn(R)⊗σ,Wm(R) I →Wn(R)⊗Wm(R) I .

Remark 2.23. We can conceptually understand duals and twists of pairs and displays in terms of higher
displays.

Given a pair (M,M1) there is a corresponding finite projective graded module over W (R)⊕ with type
concentrated in [0,1] (see Remark 2.8). The dual pair (M,M1)∨ then corresponds to taking the dual of that
module and shifting it by 1, and the twist I ⊗ (M,M1) corresponds to viewing I as a finite projective graded
W (R)⊕-module with type concentrated in 0 and forming the tensor product over W (R)⊕. The various
categorical properties of taking duals and twists then all follow from the fact that finite projective graded
modules over a graded ring form a rigid symmetric monoidal category.

2.4. The display of a p-divisible group

We have the following result of Lau, relating p-divisible groups and displays.

Theorem 2.24 (cf. [Lau13]). There is a natural Zp(R)-linear exact functor

D : {p-divisible groups over R}op −→ {displays over R}

that is compatible with dualities and satisfies the following properties:
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• For a p-divisible group X over R of height h and dimension d, the display D(X) is of type (h,d).
• Suppose that R is a perfect ring of characteristic p. Then D coincides with classical (contravariant )
Dieudonné theory.
• D restricts to an equivalence

D : { formal p-divisible groups over R}op −→ {F-nilpotent displays over R}.

• Let X, X ′ be p-divisible groups over R of height h, and let f : X ′ → X be an isogeny of height r ∈ Z≥0.
Assume that there exists an isogeny g : X→ X ′ such that g ◦ f = p · idX ′ and f ◦ g = p · idX (note that
this forces r ≤ h). Then the homomorphism of W (R)/pW (R)-modules

D(f ) : D(X)/pD(X) −→D(X ′)/pD(X ′)

is of constant rank h− r .

Proof. See [Lau13, Proposition 4.1 and Theorem 5.1]. For the last claim we can use Lemma 2.1 to reduce
to the situation where R = k is an algebraically closed field of characteristic p, where the statement is a
standard result from classical Dieudonné theory. □

3. (Polarized) chains of pairs and displays

As in Section 2, R denotes a p-nilpotent ring and (m,n) denotes a tuple of positive integers with m ≥ n+1.
When R is of characteristic p, we allow n to take the additional value 1-rdt (where “rdt” refers to the term
“reductive quotient”) that we think of as being slightly smaller than 1. In the case n = 1-rdt, we require
m ≥ 2.

3.1. Chains of pairs and displays

Fix a positive integer h, a second integer 0 ≤ d ≤ h and a non-empty subset J ⊆ Z such that J + hZ = J .
Let E be the set of “edges of J”, i.e. the set of tuples (i, j) consisting of consecutive elements in J . For
e = (i, j) ∈ E we write |e|B j − i for the “length of e”.

Definition 3.1. A chain (of type (h,J)) over R is a tuple(
(Mi)i∈J ,

(
ρi,j

)
i,j∈J,i≤j

, (θi)i∈J
)

that is given as follows:

• ((Mi)i , (ρi,j )i,j ) is a diagram of finite projective W (R)-modules of rank h of shape J such that the
homomorphism of R/pR-modules

ρi,j : R/pR⊗W (R)Mi −→ R/pR⊗W (R)Mj

is of constant rank h− (j − i) for all i ≤ j ≤ i + h.
• The θi : Mi →Mi+h are isomorphisms such that we have θj ◦ ρi,j = ρi+h,j+h ◦θi and ρi,i+h = p ·θi .

For n , 1-rdt similarly define the notion of an n-truncated chain over R by replacing W (R) with Wn(R) in
the above.

Now suppose that R is of characteristic p. Then a (1-rdt)-truncated chain over R is a tuple ((Ne)e∈E , (θe)e∈E )
that is given as follows:

• Ne is a finite projective R-module of rank |e|.
• θe : Ne→Ne+h is an isomorphism.

Remark 3.2. There are obvious natural truncation functors

{chains over R} −→ {n-truncated chains over R}



EKOR stratification on the Siegel modular variety 15EKOR stratification on the Siegel modular variety 15

and {
n′-truncated chains over R

}
−→ {n-truncated chains over R}

for n ≤ n′ .
When R is of characteristic p, we also define a truncation functor

{1-truncated chains over R} −→ {(1-rdt)-truncated chains over R}

by sending a 1-truncated chain ((Mi)i , (ρi,j )i,j , (θi)i) to the (1-rdt)-truncated chain ((Ne)e, (θe)e) that is
given as follows (where we write e = (i, j)):

• Ne B ker(ρi,j ) ⊆Mi .
• θe : Ne→Ne+h is the isomorphism induced by θi .

Note that for e = (i, j) as above we have an exact sequence

Mi

ρi,j
−−→Mj

ρj,i+h
−−−−→Mi+h

ρi+h,j+h
−−−−−−→Mj+h,

so we obtain an isomorphism ker(ρi+h,j+h) � coker(ρi,j ). Composing this with θe yields an isomorphism
Ne � coker(ρi,j ).

Remark 3.3. Let ((Mi)i , (ρi,j )i,j , (θi)i) be a chain over R. Then actually already the morphism of
W (R)/pW (R)-modules

ρi,j : Mi/pMi −→Mj /pMj

is of constant rank h− (j − i) for all i ≤ j ≤ i + h; this follows from Lemma 2.1 applied to A =W (R), ρ = ρi,j
and ρ′ = θ−1

i ◦ ρj,i+h.
The same is true for n-truncated chains.

Definition 3.4. A chain of pairs (of type (h,J,d)) over R is a tuple(
(Mi)i ,

(
ρi,j

)
i,j
, (θi)i , (Mi,1)i

)
that is given as follows:

• ((Mi)i , (ρi,j )i,j , (θi)i) is a chain over R.
• Mi,1 ⊆Mi is a W (R)-submodule such that (Mi ,Mi,1) is a pair of type (h,d) over R and such that we
have ρi,j(Mi,1) ⊆Mj,1 and θi(Mi,1) =Mi+h,1.

We similarly define the notion of an m-truncated chain of pairs over R.

Proposition 3.5. Let ((Mi)i , (ρi,j )i,j , (θi)i , (Mi,1)i) be a chain of pairs over R. Then the tuple((�Mi,1

)
i
,
(
ρ̃i,j

)
i,j
,
(
θ̃i

)
i

)
is a chain over R.
The same is true for m-truncated chains of pairs (where the construction yields an n-truncated chain).

Proof. We only need to check that the morphism of R/pR-modules

ρ̃i,j : R/pR⊗W (R) �Mi,1 −→ R/pR⊗W (R) �Mj,1

is of constant rank h− (j − i) for all i ≤ j ≤ i + h. Lemma 2.1 allows us to reduce to the case where R = k is
an algebraically closed field of characteristic p. The morphism ρi,j then gives rise to a commutative diagram

Mi,1 Mj,1

Mi Mj

ρi,j

ρi,j
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of free W (k)-modules of rank h where all the morphisms are injective. Moreover, the cokernels of the vertical
morphisms have length h− d, and the cokernel of the lower horizontal morphism has length j − i. Thus
the cokernel of the upper horizontal morphism also has length j − i. As the image of Mi,1→Mj,1 contains
pMj,1, we can conclude that the morphism of k-vector spaces ρi,j : Mi,1/pMi,1 →Mj,1/pMj,1 is of rank
h− (j − i). Twisting by σ then gives the result (see Remark 2.8).

The result for m-truncated chains of pairs now follows because every such m-truncated chain of pairs
over R can be lifted to a (non-truncated) chain of pairs over R. □

Definition 3.6. A chain of displays over R is a tuple(
(Mi)i ,

(
ρi,j

)
i,j
, (θi)i , (Mi,1)i , (Ψi)i

)
that is given as follows:

• ((Mi)i , (ρi,j )i,j , (θi)i , (Mi,1)i) is a chain of pairs over R.
•

(Ψi)i :
((�Mi,1

)
i
,
(
ρ̃i,j

)
i,j
,
(
θ̃i

)
i

)
−→

(
(Mi)i ,

(
ρi,j

)
i,j
, (θi)i

)
is an isomorphism of chains over R.

We similarly define the notion of an (m,n)-truncated chain of displays over R.
We write

ChDisph,J,d and ChDisp(m,n)
h,J,d

for the stacks over Spf(Zp) of chains of displays and (m,n)-truncated chains of displays (the stacks

ChDisp(m,1-rdt)
h,J,d are in fact defined over Spec(Fp)).

Remark 3.7. Let ((Mi)i , (ρi,j )i,j , (θi)i , (Mi,1)i , (Ψi)i) be a chain of displays over R. Then (Mi ,Mi,1,Ψi) is a
display of type (h,d) over R, and we have morphisms of displays

ρi,j :
(
Mi ,Mi,1,Ψi

)
−→

(
Mj ,Mj,1,Ψj

)
and θi :

(
Mi ,Mi,1,Ψi

)
−→

(
Mi+h,Mi+h,1,Ψi+h

)
.

Conversely, suppose we are given displays (Mi ,Mi,1,Ψi) of type (h,d) over R and morphisms of dis-
plays ρi,j and θi as above, and assume that ((Mi)i , (ρi,j )i,j , (θi)i) is a chain over R. Then the tuple
((Mi)i , (ρi,j )i,j , (θi)i , (Mi,1)i , (Ψi)i) is a chain of displays over R.

The same is true for (m,n)-truncated chains of displays.

3.2. Polarized chains

Let us now specialize to the situation where h = 2g is even, d = g and −J = J . Given e = (i, j) ∈ E we write
−eB (−j,−i) ∈ E .

Remark 3.8. Recall that the categories of pairs and displays (over R) and their truncated variants carry a
natural duality and a compatible action of a suitable rigid symmetric monoidal category; see Section 2.3.

Consequently, we obtain a similar structure on the categories of chains, chains of pairs, chains of displays
and their truncated variants. The various base change, forgetful and truncation functors are naturally
compatible with this extra structure. The situation is summarized by the following table:
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Category with duality Symmetric monoidal category Coefficients

chains (over R) invertible W (R)-modules W (R)

chains of pairs invertible W (R)-modules W (R)

chains of displays
tuples (I, ι); I an invertible W (R)-module

and ι : Iσ → I an isomorphism
Zp(R)

n-truncated chains (n , 1-rdt) invertible Wn(R)-modules Wn(R)

1-rdt-truncated chains invertible R-modules R

m-truncated chains of pairs invertible Wm(R)-modules Wm(R)

(m,n)-truncated chains of displays
(n , 1-rdt)

tuples (I, ι); I an invertible Wm(R)-module
and ι : Wn(R)⊗σ,Wm(R) I →Wn(R)⊗Wm(R) I

an isomorphism
Wm(R)σ=id

(m,1-rdt)-truncated chains of displays
tuples (I, ι); I an invertible Wm(R)-module

and ι : R⊗σ,Wm(R) I → R⊗Wm(R) I
an isomorphism

Wm(R)σ=id

For example, the dual of a chain ((Mi)i , (ρi,j )i,j , (θi)i) over R is(
(Mi)i ,

(
ρi,j

)
i,j
, (θi)i

)∨
=

((
M∨−i

)
i
,
(
ρ∨−j,−i

)
i,j
,
(
θ∨−i−h

)
i

)
,

and its twist by an invertible W (R)-module I is

I ⊗
(
(Mi)i ,

(
ρi,j

)
i,j
, (θi)i

)
=

((
I ⊗W (R)Mi

)
i
,
(
idI ⊗ ρi,j

)
i,j
, (idI ⊗θi)i

)
.

Let us also spell out the duality coherence datum for the truncation functor

{1-truncated chains over R} −→ {(1-rdt)-truncated chains over R}

for R of characteristic p. Let ((Mi)i , (ρi,j )i,j , (θi)i) be a 1-truncated chain over R, let ((Ne)e, (θe)e) be its
(1-rdt)-truncation, and let ((N ′e)e, (θ

′
e)e) be the (1-rdt)-truncation of its dual. Then we specify the natural

isomorphism
((N ′e)e , (θ

′
e)e) −→ ((Ne)e , (θe)e)

∨ =
((
N∨−e

)
e
,
(
θ∨−e−h

)
e

)
to be given by

N ′e � ker
(
ρ∨−j,−i

)
−→ coker

(
ρ−j,−i

)∨
�N∨−e.

Definition 3.9. A polarized chain (of type (g, J)) over R is a polarized object in the category of chains (of type
(2g, J,g)) over R, i.e. a tuple (

(Mi)i ,
(
ρi,j

)
i,j
, (θi)i , (λi)i

)
that is given as follows:

• ((Mi)i , (ρi,j )i,j , (θi)i) is a chain over R.
• (λi)i : ((Mi)i , (ρi,j )i,j , (θi)i)→ ((Mi)i , (ρi,j )i,j , (θi)i)∨ is an antisymmetric isomorphism.

A homogeneously polarized chain over R is a homogeneously polarized object in the category of chains over
R, i.e. a tuple (

(Mi)i ,
(
ρi,j

)
i,j
, (θi)i , I , (λi)i

)
that is given as follows:
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• ((Mi)i , (ρi,j )i,j , (θi)i) is a chain over R.
• I is an invertible W (R)-module.
• (λi)i : ((Mi)i , (ρi,j )i,j , (θi)i)→ I ⊗ ((Mi)i , (ρi,j )i,j , (θi)i)∨ is an antisymmetric isomorphism.

In the same way we define the notions of (homogeneously) polarized chains of pairs and displays as well as
their truncated variants.

We write

PolChDispg,J , HPolChDispg,J , PolChDisp(m,n)
g,J , HPolChDisp(m,n)

g,J

for the stacks over Spf(Zp) of polarized chains of displays, homogeneously polarized chains of displays and
their truncated variants.

Remark 3.10. The functor

{chains of pairs over R} −→ {chains over R}(
(Mi)i ,

(
ρi,j

)
i,j
, (θi)i , (Mi,1)i

)
7−→

((�Mi,1

)
i
,
(
ρ̃i,j

)
i,j
,
(
θ̃i

)
i

)
(see Proposition 3.5) is naturally compatible with dualities and equivariant with respect to the symmetric
monoidal functor

{invertible W (R)-modules} −→ {invertible W (R)-modules}, I 7−→ Iσ ;

it thus induces functors

{(homogeneously) polarized chains of pairs over R} −→ {(homogeneously) polarized chains over R}.

A polarized chain of displays over R can now be equivalently described as consisting of a polarized chain of
pairs ((Mi)i , (ρi,j )i,j , (θi)i , (Mi,1)i , (λi)i) over R together with an isomorphism

(Ψi)i :
((�Mi,1

)
i
,
(
ρ̃i,j

)
i,j
,
(
θ̃i

)
i
,
(
λ̃i

)
i

)
−→

(
(Mi)i ,

(
ρi,j

)
i,j
, (θi)i , (λi)i

)
,

and a homogeneously polarized chain of displays over R can be equivalently described as consisting of
a homogeneously polarized chain of pairs ((Mi)i , (ρi,j )i,j , (θi)i , (Mi,1)i , I , (λi)i) over R together with an
isomorphism

((Ψi)i , ι) :
((�Mi,1

)
i
,
(
ρ̃i,j

)
i,j
,
(
θ̃i

)
i
, Iσ , (λ̃i)i

)
−→

(
(Mi)i , (ρi,j )i,j , (θi)i , I , (λi)i

)
.

The same is true for (m,n)-truncated (homogeneously) polarized chains of displays over R.

Lemma 3.11. The morphism of stacks

PolChDispg,J −→ HPolChDispg,J

is a torsor under the flat affine Zp-group scheme Z×p .

Similarly, the morphism of stacks

PolChDisp(m,n)
g,J −→ HPolChDisp(m,n)

g,J

is a torsor under the smooth affine Zp-group scheme (L(m)Gm)σ=id that is given by R 7→Wm(R)×,σ=id.

Proof. This follows from Lemma A.8 and the fact that every tuple (I, ι) consisting of an invertible W (R)-
module I together with an isomorphism ι : Iσ → I can be trivialized after base changing along a faithfully
flat ring homomorphism R→ R′ . □
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3.3. Quotient stack descriptions

We are now interested in finding quotient stack descriptions of the stack of chains of displays ChDisph,J,d
and its truncated and (homogeneously) polarized variants.

Let us first return to the situation of Section 3.1, where h, J and d are arbitrary. Fix a Qp-vector space V
of dimension h and a tuple (Λi)i∈J of Zp-lattices Λi ⊆ V such that the following conditions are satisfied:

• For i ≤ j we have Λi ⊆Λj , and the Zp-module Λj /Λi is of length j − i.
• Λi+h = p−1Λi .

For i ≤ j we write ρi,j : Λi →Λj for the inclusion, and we also write θi : Λi →Λi+h for the isomorphism
given by multiplication with p−1.

We then have the associated parahoric Zp-group scheme

GL((Λi)i)B Aut
(
(Λi)i ,

(
ρi,j

)
i,j
, (θi)i

)
with generic fiber GL((Λi)i)Qp

= GL(V ) and the local model

M
loc,GL : R 7−→

(Ci)i

∣∣∣∣∣∣ Ci ⊆Λi,R a direct summand of rank d

such that ρi,j(Ci) ⊆ Cj and θi(Ci) = Ci+h


that is a projective Zp-scheme with a natural GL((Λi)i)-action whose generic fiber is the Grassmannian of
d-dimensional subspaces of V ; see [RZ96, Theorem 3.11 and Definition 3.27].

In fact, by [Gör01, Theorem 4.25], Mloc,GL is flat over Zp, its special fiber is reduced, and the irreducible
components of its special fiber are normal with rational singularities. We write Mloc,GL for the p-completion
of Mloc,GL.

Also note that the reductive quotient GL((Λi)i)
rdt
Fp

of the special fiber of GL((Λi)i) identifies with

GL((Λe)e)B Aut((Λe)e, (θe)e) �
∏
e∈E/hZ

GL(Λe),

where
Λe B ker

(
ρi,j : Λi/pΛi −→Λj /pΛj

)
and θe : Λe→Λe+h is the isomorphism induced by θi (for e = (i, j) ∈ E).

Lemma 3.12. We have natural equivalences of groupoids

{chains over R} −→
{
L+ GL((Λi)i)-torsors over R

}
,

{n-truncated chains over R} −→
{
L(n) GL((Λi)i)-torsors over R

}
for n , 1-rdt. When R is of characteristic p, we also have a natural equivalence of groupoids

{(1-rdt)-truncated chains over R} −→ {GL((Λe)e)-torsors over R}.

Proof. This follows from [RZ96, Theorem 3.11] and [BH20, Lemma 2.12]. □

Lemma 3.13. We have natural equivalences of groupoids

{chains of pairs over R} −→
[
L+ GL((Λi)i)\Mloc,GL

]
(R),

{m-truncated chains of pairs over R} −→
[
L(m) GL((Λi)i)\Mloc,GL

]
(R).

Proof. An object in [L+ GL((Λi)i)\Mloc,GL](R) is given by a GL((Λi)i)-torsor P over W (R) together
with a GL((Λi)i)-equivariant morphism q : PR → Mloc,GL. By Lemma 3.12, P corresponds to a chain
((Mi)i , (ρi,j )i,j , (θi)i) over R, and from the definition of Mloc,GL, we see that q corresponds to a tuple
(Ci)i of direct summands Ci ⊆ Mi/IRMi of rank d that are compatible under ρi,j and θi . Giving such
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a tuple (Ci)i is evidently equivalent to giving a tuple (Mi,1)i of W (R)-submodules Mi,1 ⊆Mi such that
((Mi)i , (ρi,j )i,j , (θi)i , (Mi,1)i) is a chain of pairs over R. □

Definition 3.14. Let

Mloc,GL,+ −→Mloc,GL

be the L+ GL((Λi)i)-equivariant L+ GL((Λi)i)-torsor that corresponds to the functor from Proposition 3.5
under the equivalences from Lemmas 3.12 and 3.13.

Explicitly, a point in Mloc,GL,+(R) is given by a chain of pairs ((Mi)i , (ρi,j )i,j , (θi)i , (Mi,1)i,1) over R
together with trivializing isomorphisms((�Mi,1

)
i
,
(
ρ̃i,j

)
i,j
,
(
θ̃i

)
i

)
−→

((
Λi,W (R)

)
i
,
(
ρi,j

)
i,j
, (θi)i

)
and (

(Mi)i ,
(
ρi,j

)
i,j
, (θi)i

)
−→

((
Λi,W (R)

)
i
,
(
ρi,j

)
i,j
, (θi)i

)
.

The group L+ GL((Λi)i)×L+ GL((Λi)i) acts on Mloc,GL,+ by changing the two trivializations; the projection
Mloc,GL,+→Mloc is then a torsor with respect to the action of the first copy of L+ GL((Λi)i) and equivariant
with respect to the action of the second copy of L+ GL((Λi)i).

For n , 1-rdt we write

Mloc,GL,(n) −→Mloc

for the reduction of Mloc,GL,+ to an L(n) GL((Λi)i)-torsor. By Proposition 3.5 the action of the second copy
of L+ GL((Λi)i) on Mloc,GL,(n) factors through L(m) GL((Λi)i).

Finally we also write

Mloc,GL,(1-rdt) −→Mloc
Fp

for the reduction of Mloc,GL,+
Fp

to a GL((Λe)e)-torsor.

Proposition 3.15. We have equivalences of stacks over Spf(Zp)

ChDisph,J,d −→
[
(L+ GL((Λi)i))∆\M

loc,GL,+
]
and ChDisp(m,n)

h,J,d −→
[(
L(m) GL((Λi)i)

)
∆
\Mloc,GL,(n)

]
,

where the subscript ∆ indicates that we take the quotient by the diagonal action.

In particular, ChDisp(m,n)
h,J,d is a p-adic formal algebraic stack of finite presentation over Spf(Zp) (an al-

gebraic stack of finite presentation over Spec(Fp) when n = 1-rdt), and for (m,n) ≤ (m′ ,n′) the morphism

ChDisp(m′ ,n′)
h,J,d → ChDisp(m,n)

h,J,d is smooth.

Proof. By reformulating the definition of Mloc,GL,+, we arrive at a natural identification

Mloc,GL,+(R) �

((Mi,1)i , (Ψi)i
) ∣∣∣∣∣∣

(
(Λi,W (R))i ,

(
ρi,j

)
i,j
, (θi)i , (Mi,1)i , (Ψi)i

)
is a chain of displays over R

 ,
and under this identification the action of L+ GL((Λi)i)×L+ GL((Λi)i) is given by

(k1, k2).
(
(Mi,1)i , (Ψi)i

)
=

(
k2 · (Mi,1)i , k1 · (Ψi)i · k̃2

−1
)
,

where we view k2 as an isomorphism of chains of pairs

k2 :
((
Λi,W (R)

)
i
,
(
ρi,j

)
i,j
, (θi)i , (Mi,1)i

)
−→

((
Λi,W (R)

)
i
,
(
ρi,j

)
i,j
, (θi)i , k2 · (Mi,1)i

)
in order to make sense of k̃2. From this the claim now readily follows. □
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Remark 3.16 (Relation with local shtukas). Let us recall the notions of (restricted) local shtukas in mixed
characteristic from [XZ17]; see also [SYZ21, Section 4]. We warn the reader that our normalizations are slightly
different from the ones in the references.

Fix a connected reductive group G over Qp and a parahoric Zp-group scheme G with generic fiber G. We
write L

+G for the perfection of the special fiber of L+G and use similar notation for the truncated positive
loop groups. We also define the (Witt vector) loop group LG as the functor

LG : {perfect rings of characteristic p} −→ {groups}, R 7−→ G(W (R)[1/p]).

We then have the affine flag variety

F ℓG B L
+G\LG,

that is an ind-projective ind-perfect scheme over Fp by [BS17, Corollary 9.6]. We equip LG with the action

(L+G ×L+G)×LG −→ LG, ((k1, k2), g) 7−→ k1gσ (k2)−1

and F ℓG with the corresponding action

L
+G ×F ℓG −→ F ℓG, (k,L+G · g) 7−→ L

+G · gσ (k)−1.

This makes the projection LG→F ℓG into an L
+G-equivariant L+G-torsor.

Let us also fix a minuscule conjugacy class µ of cocharacters of GQp
(where Qp is a fixed algebraic closure

of Qp) and assume for simplicity that it is defined over Qp. Associated to µ we then have the admissible locus
AG,µ ⊆ F ℓG that is the descent to Fp of the closed perfect subscheme⋃

w∈Adm(µ)G

F ℓG,w ⊆ F ℓG,Fp ,

where Adm(µ)G denotes the µ-admissible set for G, see [HR16, Section 2], and F ℓG,w ⊆ F ℓG,Fp is the

L
+G-orbit corresponding to w. Write

A+
G,µ ⊆ LG

for the preimage of AG,µ under the projection LG→F ℓG, and write

A(n)
G,µ −→AG,µ

for the reduction of A+
G,µ to an L

(n)G-torsor, where we formally set L(1-rdt)G to be the perfection of the

reductive quotient Grdt
Fp

. By [AGLR22, proof of Theorem 3.16] the action of L+G on AG,µ factors through

Gpf
Fp
, and the argument in [SYZ21, proof of Lemma 4.4.2] then shows that the L

+G-equivariant structure on

A(n)
G,µ→AG,µ factors through L

(m)G.
The stack of local shtukas for (G,µ) is then defined to be

Shtloc
G,µ B

[
(L+G)∆\A

+
G,µ

]
,

and the stack of (m,n)-restricted local shtukas for (G,µ) is defined similarly as

Shtloc,(m,n)
G,µ B

[(
L

(m)G
)
∆
\A(n)
G,µ

]
.

Now let us specialize to the situation where G = GL((Λi)i) and µ = µd is the conjugacy class of those
cocharacters of GL(V )Qp

that induce a weight decomposition VQp
= V1 ⊕V0 with V1 of dimension d. Then

we have the explicit description

A+
GL((Λi )i ),µd

(R) =

g ∈GL(V )(W (R)[1/p])

∣∣∣∣∣∣ pΛi,W (R) ⊆ gΛi,W (R) ⊆Λi,W (R) and Λi,W (R)/gΛi,W (R)

is a finite projective R-module of rank d for all i ∈ J

 ;
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this follows from the equality between the µ-admissible and the µ-permissible set [KR00, Theorem 3.5]; see
also [Gör01, Section 4.3]. Using the description of Mloc,GL,+ from the proof of Proposition 3.15 and applying
Remark 2.13, we obtain an (L+ GL((Λi)i)×L+ GL((Λi)i))-equivariant isomorphism(

Mloc,GL,+
)pf

Fp
−→A+

GL((Λi )i ),µd
,

(
(Mi,1)i , (Ψi)i

)
7−→ FM ,

where FM : W (R)[1/p]⊗Qp
V � (W (R)[1/p]⊗Qp

V )σ →W (R)[1/p]⊗Qp
V is the Frobenius of the chain of

displays M = ((Λi,W (R))i , (ρi,j )i,j , (θi)i , (Mi,1)i , (Ψi)i). Consequently, we obtain equivalences(
ChDisph,J,d

)pf

Fp
−→ Shtloc

GL((Λi )i ),µd
and

(
ChDisp(m,n)

h,J,d

)pf

Fp
−→ Shtloc,(m,n)

GL((Λi )i ),µd

between the perfected special fibers of the stacks of chains of displays and the stacks of local shtukas for
(GL((Λi)i),µd).

Remark 3.17. One could also define a stack

ChDispLZ,(n)
h,J,d

of n-truncated chains of Lau–Zink-displays over R (see Remark 2.14) in the straightforward way. This is done
in [Hes20] for n = 1.

However, this definition is pathological away from the hyperspecial case J = r + hZ, even when restricting
to perfect rings of characteristic p. The truncation morphism

ChDisph,J,d −→ ChDispLZ,(n)
h,J,d

is not surjective, and its topological image is not even locally closed (in particular, [Hes20, Lemma 2.51] is
false) as the following example shows.

Let (h,J,d) = (2,Z,1) and define an n-truncated chain M = ((Mi ,Mi,1,Ψi)i , (ρi,j )i,j , (θi)i) of Lau–Zink-
displays over R = Fp[x1/p∞ , y1/p∞] as follows:

• (Mi ,Mi,1) B (M,M1) is the standard n-truncated Lau–Zink-pair of type (2,1) with fixed normal
decomposition (L,T ) = (Wn(R),Wn(R)).
• θi B id(M,M1).
•

ρ0,1 B

 [x] 1

p+ [y] · pn 0

 , ρ1,2 B

 0 1

p+ [y] · pn −[x]

 ∈ EndR((M,M1)) �

Wn(R) Wn(R)

In+1,R Wn(R)

 .
This uniquely determines ρi,j for all i, j .

• One can now check that both ((�Mi,1)i , (ρ̃i,j )i,j , (θ̃i)i) and ((Mi)i , (ρi,j ), (θi)i) are trivial n-truncated
chains over R. We let (Ψi)i be an arbitrary isomorphism between them.

We now claim that the set-theoretic locus Z ⊆ |Spec(R)| where M lifts to a chain of displays is given by the
constructible subset

Z =D(x)∪V (y)

that is not locally closed.
From the smoothness of GL((Λi)i), it follows that an n-truncated chain of Lau–Zink-displays lifts to a

chain of displays if and only if its underlying n-truncated chain of Lau–Zink-pairs lifts.

• Consider the n-truncated chain of Lau–Zink pairs M ′ B ((Mi ,Mi,1)i , (ρ′i,j )i,j , (θi)i) over Fp[x1/p∞],
where the ρ′i,j are defined by setting

ρ′0,1 B

[x] 1

p 0

 and ρ′1,2 B

0 1

p −[x]

 .
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Then M ′ lifts to a chain of pairs that is defined by the same expression.
Now M (or rather its underlying n-truncated chain of Lau–Zink-pairs) clearly becomes isomorphic

to M ′ after base changing along R→ (R/yR)pf � Fp[x1/p∞], so we have V (y) ⊆ Z . Moreover, we also
have an isomorphism (αi)i : M ′R[x−1]→MR[x−1] that is defined by

α0 B

1 0

0 1

 and α1 B

 1 0

[x−1y] · pn 1

 ,
so we also have D(x) ⊆ Z .
• Now let R→ k be a ring homomorphism from R into a perfect field k such that the image of x in k
vanishes while the image of y in k is non-zero, and suppose that Mk lifts to a chain of pairs Mlift.
After compatibly lifting normal decompositions, we obtain that Mlift is given by

ρlift
0,1 B

 pn · a 1 + pn · b

p+ [y] · pn + pn+1 · c pn · d

 and ρlift
1,2 B

 pn · e 1 + pn · f

p+ [y] · pn + pn+1 · g pn · h


for some a, . . . ,h ∈W (k). But then the upper-left entry of the matrix representing ρlift

1,2 ◦ ρ
lift
0,1 is given

by

(pn · e) · (pn · a) + (1 + pn · f ) ·
(
p+ [y] · pn + pn+1 · c

)
≡ p+ [y] · pn mod pn+1.

This gives a contradiction as ρlift
1,2 ◦ ρ

lift
0,1 really should be multiplication by p.

This proves the claim.

Let us now come back to the situation of Section 3.2, where h = 2g is even, d = g and −J = J . Fix a
polarization λ : V → V ∨ that restricts to isomorphisms λi : Λi →Λ∨−i for all i ∈ J . We also set Γ B Zp and
sometimes think of λ as a homogeneous polarization λ : V → Γ [1/p]⊗Qp

V ∨ that restricts to isomorphisms

λi : Λi → Γ ⊗Zp Λ
∨
−i .

We then again have associated parahoric Zp-group schemes

Sp((Λi)i)B Aut
(
(Λi)i ,

(
ρi,j

)
i,j
, (θi)i , (λi)i

)
and

GSp((Λi)i)B Aut
(
(Λi)i ,

(
ρi,j

)
i,j
, (θi)i ,Γ , (λi)i

)
with generic fibers Sp((Λi)i)Qp

= Sp(V ) and GSp((Λi)i)Qp
= GSp(V ) that fit into a short exact sequence

1 −→ Sp((Λi)i) −→GSp((Λi)i) −→Gm −→ 1,

where the second arrow is given by sending a symplectic similitude to the similitude factor. We also have the
local model

M
loc,Sp = M

loc,GSp : R 7−→
{
(Ci)i ∈Mloc,GL(R)

∣∣∣∣ λi(Ci) = C⊥−i

}
that is a closed subscheme of Mloc,GL stable under the action of GSp((Λi)i) ⊆ GL((Λi)i) whose generic
fiber is the Grassmannian of Lagrangian subspaces of V (see [RZ96, Theorem 3.16 and Definition 3.27]).

Again, by [Gör03, Theorem 2.1], Mloc,Sp = M
loc,GSp is flat over Zp, its special fiber is reduced, and the

irreducible components of its special fiber are normal with rational singularities. We write Mloc,Sp = Mloc,GSp

for the p-completion of Mloc,Sp = M
loc,GSp.

The reductive quotients Sp((Λi)i)
rdt
Fp

and GSp((Λi)i)
rdt
Fp

of the special fibers of Sp((Λi)i) and GSp((Λi)i)
identify with

Sp((Λe)e)B Aut((Λe)e, (θe)e, (λe)e) and GSp((Λe)e)B Aut((Λe)e, (θe)e,Γ /pΓ , (λe)e),
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where λe : Λe→Λ∨−e � (Γ /pΓ )⊗FpΛ
∨
−e is the isomorphism induced by (λi)i . These groups have the following

explicit description:

• Suppose that 0, g ∈ J . Then we have

Sp((Λe)e) =
∏

e∈E/(hZ,±)

GL(Λe), GSp((Λe)e) = Gm ×
∏

e∈E/(hZ,±)

GL(Λe).

• Suppose that 0 < J and g ∈ J , and write e0 ∈ E for the edge (i, j) with i < 0 < j . Then we have

Sp((Λe)e) = Sp
(
Λe0

)
×

∏
e∈(E/(hZ,±))\{e0}

GL(Λe), GSp((Λe)e) = GSp
(
Λe0

)
×

∏
e∈(E/(hZ,±))\{e0}

GL(Λe).

• Suppose that 0 ∈ J and g < J , and write eg ∈ E for the edge (i, j) with i < g < j . Then we similarly
have

Sp((Λe)e) = Sp(Λeg )×
∏

e∈(E/(hZ,±))\{eg }
GL(Λe), GSp((Λe)e) = GSp(Λeg )×

∏
e∈(E/(hZ,±))\{eg }

GL(Λe).

• Suppose that 0, g < J , and write e0, eg ∈ E as before. Then we have

Sp((Λe)e) = Sp
(
Λe0

)
× Sp

(
Λeg

)
×

∏
e∈(E/(hZ,±))\{e0,eg }

GL(Λe)

and
GSp((Λe)e) = GSp

(
Λe0

,Λeg

)
×

∏
e∈(E/(hZ,±))\{e0,eg }

GL(Λe),

where GSp(Λe0
,Λeg ) = GSp(Λe0

)×Gm
GSp(Λeg ) denotes the group of tuples of symplectic similitudes

of Λe0
and Λeg with the same similitude factor.

Lemma 3.18. We have natural equivalences of groupoids

{polarized chains over R} −→
{
L+ Sp((Λi)i)-torsors over R

}
and

{n-truncated polarized chains over R} −→
{
L(n) Sp((Λi)i)-torsors over R

}
for n , 1-rdt. When R is of characteristic p, we also have a natural equivalence of groupoids

{(1-rdt)-truncated polarized chains over R} −→ {Sp((Λe)e)-torsors over R}.

Similarly, we also have a natural equivalence between homogeneously polarized chains over R and
L+ GSp((Λi)i)-torsors over R and truncated variants.

Proof. The claims for (truncated) polarized chains follow from [RZ96, Theorem 3.16] and [BH20, Lemma 2.12].
To prove the claim for homogeneously polarized chains, we need to see that every such homogeneously

polarized chain ((Mi)i , (ρi,j )i,j , (θi)i , I , (λi)i) over R can be trivialized fpqc-locally on Spec(R). We can
certainly find a local trivialization of I so that the homogeneously polarized chain lifts to a polarized chain
that can be trivialized locally by the first part. □

Lemma 3.19. We have natural equivalences of groupoids

{polarized chains of pairs over R} −→
[
L+ Sp((Λi)i)\Mloc,Sp

]
(R)

and
{m-truncated polarized chains of pairs over R} −→

[
L(m) Sp((Λi)i)\Mloc,Sp

]
(R).

We also have analogous equivalences for (m-truncated ) homogeneously polarized chains of pairs.

Proof. This follows in the same way as Lemma 3.13. □
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Definition 3.20. Let
Mloc,Sp,+ −→Mloc,Sp

be the L+ Sp((Λi)i)-equivariant L+ Sp((Λi)i)-torsor corresponding to the functor from Remark 3.10 for
polarized chains under the equivalences from Lemmas 3.18 and 3.19 (as in Definition 3.14).

Similarly, let
Mloc,GSp,+ −→Mloc,GSp

be the L+ GSp((Λi)i)-equivariant L+ GSp((Λi)i)-torsor corresponding to the analogous functor from
Remark 3.10 for homogeneously polarized chains. Note that this agrees with the base change of
the L+ Sp((Λi)i)-torsor Mloc,Sp,+ → Mloc,Sp = Mloc,GSp along the morphism of Zp-group schemes
L+ Sp((Λi)i)→ L+ GSp((Λi)i).

We also use the notation Mloc,Sp,(n) and Mloc,GSp,(n) as in Definition 3.14.

Proposition 3.21. We have equivalences of stacks over Spf(Zp)

PolChDispg,J −→
[
(L+ Sp((Λi)i))∆\M

loc,Sp,+
]
, PolChDisp(m,n)

g,J −→
[(
L(m) Sp((Λi)i)

)
∆
\Mloc,Sp,(n)

]
and

HPolChDispg,J −→
[
(L+ GSp((Λi)i))∆\M

loc,GSp,+
]
, HPolChDisp(m,n)

g,J −→
[(
L(m) GSp((Λi)i)

)
∆
\Mloc,GSp,(n)

]
.

In particular, PolChDisp(m,n)
g,J and HPolChDisp(m,n)

g,J are p-adic formal algebraic stacks of finite presentation
over Spf(Zp) (algebraic stacks of finite presentation over Spec(Fp) when n = 1-rdt), and for (m,n) ≤ (m′ ,n′) the

morphisms PolChDisp(m′ ,n′)
g,J → PolChDisp(m,n)

g,J and HPolChDisp(m′ ,n′)
g,J → HPolChDisp(m,n)

g,J are smooth.

Proof. The proof is analogous to that of Proposition 3.15. □

Remark 3.22 (Relation with local shtukas, continued). Similarly to what is discussed in Remark 3.16, we have
equivalences(

HPolChDispg,J
)pf

Fp
−→ Shtloc

GSp((Λi )i ),µg
and

(
HPolChDisp(m,n)

g,J

)pf

Fp
−→ Shtloc,(m,n)

GSp((Λi )i ),µg
,

where µg is the conjugacy class of those cocharacters of GSp(V )Qp
that induce a weight decomposition

VQp
= V1 ⊕V0 with V0,V1 ⊆ VQp

Lagrangian.

The non-homogeneously polarized case, however, does not quite fit into the group-theoretic framework of
local shtukas. The problem is essentially that given a polarized chain of displaysM over R, the corresponding
Frobenius FM : M[1/p]σ →M[1/p] is not a symplectic isomorphism; it only preserves the symplectic form
up to the scalar p. The situation can be remedied as follows.

The similitude factor morphism LGSp(V )→ LGm restricts to a faithfully flat morphism

A+
GSp((Λi )i ),µg

−→ p ·L+Gm,

and we define A+
Sp((Λi )i ),µg

to be the fiber of this morphism over p ∈ (p ·L+Gm)(Fp). Then the isomorphism

(Mloc,GSp,+)pf
Fp
→A+

GSp((Λi )i ),µg
restricts to an (L+ Sp((Λi)i)×L+ Sp((Λi)i))-equivariant isomorphism(

Mloc,Sp,+
)pf

Fp
−→A+

Sp((Λi )i ),µg
,

so we obtain equivalences(
PolChDispg,J

)pf

Fp
−→ Shtloc

Sp((Λi )i ),µg
B

[
(L+ Sp((Λi)i))∆\A

+
Sp((Λi )i ),µg

]
and (

PolChDisp(m,n)
g,J

)pf

Fp
−→ Shtloc

Sp((Λi )i ),µg
B

[
(L+ Sp((Λi)i))∆\A

+
Sp((Λi )i ),µg

]
.
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3.4. (Polarized) chains of p-divisible groups

Let us again first return to the situation of Section 3.1, where h, J and d are arbitrary.

Definition 3.23. A chain of p-divisible groups (of type (h,J,d)) over R is a diagram ((Xi)i , (ρi,j )i,j ) of p-divisible
groups of height h and dimension d over R of shape Jop such that ρi,j : Xj → Xi is an isogeny of height j − i
and ker(ρi,i+h) = Xi+h[p]. We write

ChBTh,J,d

for the stack over Spf(Zp) of chains of p-divisible groups.
In the situation of Section 3.2, we equip the category of chains of p-divisible groups over R with a duality

by setting (
(Xi)i ,

(
ρi,j

)
i,j

)∨
B

((
X∨−i

)
i
,
(
ρ∨−j,−i

)
i,j

)
and define a polarized chain of p-divisible groups (of type (g, J)) over R to be a polarized object
((Xi)i , (ρi,j )i,j , (λi)i) in the category of chains of p-divisible groups over R. As before we write

PolChBTg,J

for the stack over Spf(Zp) of polarized chains of p-divisible groups.

Proposition 3.24. The functor D from Theorem 2.24 induces a morphism

ChBTh,J,d −→ ChDisph,J,d

that restricts to an equivalence ChBTfml
h,J,d → ChDispF-nilp

h,J,d between the substack of those chains of p-divisible
groups ((Xi)i , (ρi,j )i,j ) such that the Xi are formal p-divisible groups and the substack of those chains of displays
((Mi)i , (ρi,j )i,j , (θi)i , (Mi,1)i , (Ψi)i) such that the (Mi ,Mi,1,Ψi) are F-nilpotent.
In the situation of Section 3.2, we similarly obtain a morphism

PolChBTg,J −→ PolChDispg,J

that restricts to an equivalence PolChBTfml
g,J → PolChDispF-nilp

g,J .

Proof. Given a chain of p-divisible groups ((Xi)i , (ρi,j )i,j ) over R, the condition ker(ρi,i+h) = Xi+h[p] implies
that there exists a uniquely determined isomorphism θi : Xi+h→ Xi such that p ·θi = ρi,i+h. We can then
apply the functor D to the data Xi , ρi,j , θi , and by Remark 3.7 this yields a chain of displays; here we use
the last part of Theorem 2.24 to verify the rank condition for the homomorphism D(ρi,j ). Thus we obtain
the desired morphism ChBTh,J,d → ChDisph,J,d .

The claim that this morphism restricts to an equivalence ChBTfml
h,J,d → ChDispF-nilp

h,J,d follows immediately
from the corresponding statement in Theorem 2.24. □

4. Application to the Siegel modular variety

As in Section 3, (m,n) denotes a tuple of positive integers with m ≥ n+ 1, where we allow n to take the
additional value 1-rdt.

4.1. The Siegel modular variety at parahoric level

Fix a positive integer g and a non-empty subset J ⊆ Z such that J + 2gZ = J and −J = J as in Section 3.2.
Also fix an auxiliary integer N ≥ 3 such that p ∤N , and equip (Z/NZ)2g with the standard symplectic form
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that is represented by the matrix 
0 Ĩg

−Ĩg 0

 , where Ĩg B

(
1

. .
.

1

)
.

Definition 4.1. We define the Siegel modular variety as the moduli problem

Ag,J,N :
{
Zp-algebras

}
−→ {sets}

by setting Ag,J,N (R) to be the set of isomorphism classes of tuples ((Ai)i , (ρi,j )i,j , (λi)i ,η) that are given as
follows:

• ((Ai)i , (ρi,j )i,j ) is a diagram of projective Abelian varieties of dimension g over R of shape Jop such
that ρi,j : Aj → Ai is an isogeny of degree pj−i and ker(ρi,i+2g ) = Ai+2g [p].
• (λi)i : ((Ai)i , (ρi,j )i,j )→ ((A∨−i)i , (ρ

∨
−j,−i)i,j ) is a symmetric isomorphism such that for some (or equiv-

alently every) i ≥ 0 the symmetric isogeny

Ai
λi−→ A∨−i

ρ∨−i,i−−−→ Ai

is a polarization.
• η : A[N ]→ (Z/NZ)2g is an isomorphism of finite étale R-group schemes such that there exists an
isomorphism µN → Z/NZ making the diagram

A[N ]×A[N ] µN

(Z/NZ)2g × (Z/NZ)2g Z/NZ

η×η

commutative. Here A[N ] is the N -torsion of any of the Abelian varieties Ai (note that ρi,j restricts
to an isomorphism Aj [N ]→ Ai[N ] because p does not divide N ), and the upper horizontal arrow is
the Weil pairing with respect to (λi)i .

We also write A∧g,J,N for the p-completion of Ag,J,N , i.e. its restriction to the category of p-nilpotent rings.

Proposition 4.2. The Siegel modular variety Ag,J,N is representable by a quasi-projective Zp-scheme. Moreover,
there exists a natural smooth morphism

Ag,J,N −→
[
GSp((Λi)i)\Mloc,GSp

]
,

where we use the notation from Section 3.3.

Proof. The representability follows from [MFK94, Theorem 7.9]; see also [RZ96, Definition 6.9]. For the
second claim, see [HR16, Section 7(ii)]. □

Definition 4.3. We define the morphism Υ : A∧g,J,N → PolChDispg,J as the composition

Υ : A∧g,J,N −→ PolChBTg,J −→ PolChDispg,J ,

where the first arrow is given by(
(Ai)i ,

(
ρi,j

)
i,j
, (λi)i ,η

)
7−→

(
(Ai[p

∞])i ,
(
ρi,j

)
i,j
, (λi)i

)
(this is well defined because the functor A 7→ A[p∞] from projective Abelian varieties to p-divisible groups
is compatible with dualities up to a sign −1, see [Oda69, Proposition 1.8]), and the second arrow is the one
from Proposition 3.24.
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We then also have the induced morphism

υ(m,n) : A∧g,J,N −→ PolChDisp(m,n)
g,J

for n , 1-rdt and
υ(m,1-rdt) :

(
Ag,J,N

)
Fp
−→ PolChDisp(m,1-rdt)

g,J .

Remark 4.4. The perfection of the composition(
Ag,J,N

)
Fp

υ(m,1-rdt)

−−−−−−−→ PolChDisp(m,1-rdt)
g,J −→ HPolChDisp(m,1-rdt)

g,J

yields the morphism υK from [SYZ21, Section 4.4], at least up to the difference in normalization (see
Remarks 3.16 and 3.22).

In particular, the fibers of this composition are precisely the EKOR strata defined in [HR16, Definition 6.4].
More precisely, we have a natural bijection∣∣∣∣∣∣(HPolChDisp(m,1-rdt)

g,J

)
Fp

∣∣∣∣∣∣ � K̆σ\(K̆1\X), where X =
⋃

w∈Admg,J

K̆wK̆ ⊆GSp(V )(Q̆p)

as in the introduction. For x ∈ K̆σ\(K̆1\X) we thus have an associated reduced locally closed substack

Cx ⊆ (HPolChDisp(m,1-rdt)
g,J )Fp that satisfies |Cx| = {x}. The locally closed subscheme EKORx ⊆ (Ag,J,N )Fp

defined by the pullback square

EKORx
(
Ag,J,N

)
Fp

Cx
(
HPolChDisp(m,1-rdt)

g,J

)
Fp

then is precisely the EKOR stratum corresponding to x, up to possibly carrying some non-reduced structure.
Below in Theorem 4.10 we will prove that the morphism υ(m,1-rdt) is smooth, and by Lemma 3.11 this

implies the smoothness of Ag,J → HPolChDisp(m,n)
g,J . Observing that Cx → Spec(Fp) is a gerbe, hence

smooth, we can then deduce the smoothness of EKORx over Fp.

4.2. Smoothness of the morphism υ(m,n)

Definition 4.5. Let Bg be the finite partially ordered set of symmetric Newton polygons starting in (0,0),
ending in (2g,g) and with slopes in [0,1], where we declare ν ≤ ν′ if ν lies above ν′ . This is precisely the
set B(GSp(V ),µg ), see [HR16, Section 2], and it classifies isocrystals of height 2g and slopes contained in
[0,1] that are furthermore equipped with a symplectic form valued in the standard simple isocrystal of
slope 1; see also [RR96, Remark 3.4(iii)].

We have a natural map of sets |PolChBTg,J | → Bg that sends ((Xi)i , (ρi,j )i,j , (λi)i) ∈ PolChBTg,J (k) for
some algebraically closed field k of characteristic p to the Newton polygon of any of the Xi . We denote the
fibers of this map by SBT

ν and their preimages in |A∧g,J,N | by Sν and call these subsets Newton strata.

Proposition 4.6. We have the following properties:

• The Sν ⊆ |A∧g,J,N | are locally closed subsets.
• Let ν,ν′ ∈ Bg . Then the intersection Sν′ ∩ Sν is non-empty if and only if ν ≤ ν′ .
• |PolChBTfml

g,J | is the union of those S
BT
ν such that ν does not contain segments of slope 0 or 1.

Proof. This is all contained in [HR16]. See in particular Axiom 3.5, Theorem 5.6 and Section 7. □
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Proposition 4.7. Let ν,ν′ ∈ Bg with ν ≤ ν′ , and let x ∈ SBT
ν′ . Then there exists a preimage y ∈ Sν′ of x that

specializes to a point in Sν .

Proof. By Proposition 4.6 there exists a point in Sν′ specializing to a point in Sν . This specialization can be
realized by a point

A′ =
((
A′i

)
i
,
(
ρ′i,j

)
i,j
,
(
λ′i

)
i
,η′

)
∈ Ag,J,N (R)

for some rank 1 valuation ring R of characteristic p with algebraically closed fraction field K . Write
X ′ B A′[p∞] ∈ PolChBTg,J (R) for the image of A′ . After possibly enlarging R we also find an object

X =
(
(Xi)i ,

(
ρi,j

)
i,j
, (λi)i

)
∈ PolChBTg,J (K)

representing x.
Now X ′K and X both lie in SBT

ν′ ; hence there exists an isomorphism between their associated isocrystals
that is compatible with the polarizations. After multiplying such an isomorphism with pM for a suitable big
enough integer M ≥ 0, we obtain an isogeny

f = (fi)i : X
′
K −→ X

in ChBTg,J (K) that satisfies f ∗λ = p2M ·λ′ .
For i ∈ J let Hi ⊆ X ′i be the flat closure of ker(fi) ⊆ X ′i,K ; this is a finite free R-subgroup scheme of X ′i of

order p2gM . Define A′′i B A′i/Hi and let ρ′′i,j : A′′j → A′′i be the isogeny induced by ρ′i,j . Then there exists a

unique isomorphism λ′′i : A′′i → (A′′−i)
∨ that makes the diagram

A′i
(
A′−i

)∨

A′′i
(
A′′−i

)∨
p2Mλ′i

λ′′i

commutative. In this way we obtain a point

A′′ =
((
A′′i

)
i
,
(
ρ′′i,j

)
i,j
,
(
λ′′i

)
i
,η′

)
∈ Ag,J,N (R)

(note that A′′i [N ] = A′i[N ] because Hi is p-primary).
By construction A′′ still realizes a specialization from Sν′ to Sν , and moreover f gives rise to an

isomorphism A′′[p∞]K � X in PolChBTg,J (K). Thus setting y ∈ Sν′ ⊆ |A∧g,J,N | to be the point corresponding
to A′′K finishes the proof. □

Corollary 4.8. Every point x ∈ |PolChBTg,J | has a preimage y ∈ |A∧g,J,N | that specializes to a point mapping into
|PolChBTfml

g,J |.

Proof. This follows from combining Proposition 4.7 with the last part of Proposition 4.6. □

Lemma 4.9. Let X , Y be locally Noetherian formal algebraic stacks, let f : X →Y be a morphism representable
by algebraic stacks that is locally of finite type, and let x ∈ |X |.
Then f is smooth at x if and only if every lifting problem

Spec(B) X

Spec(B′) Y ,

f

where B′→ B is a surjective homomorphism between Artinian local rings and the map |Spec(B)| → |X | has image
{x}, admits a solution.
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Proof. When X and Y are schemes, this is precisely [Sta18, Tag 02HX]. The general case can be reduced to
this; see also [Sta18, Tag 0DNV]. □

Theorem 4.10. For n , 1-rdt the morphism υ(m,n) : A∧g,J,N → PolChDisp(m,n)
g,J is smooth. Similarly, the

morphism υ(m,1-rdt) : (Ag,J,N )Fp → PolChDisp(m,1-rdt)
g,J is also smooth.

Proof. Assume that n , 1-rdt. The morphism υ(m,n) factors as the composition

A∧g,J,N
π−→ PolChBTg,J −→ PolChDispg,J −→ PolChDisp(m,n)

g,J .

We have the following information:

• π : A∧g,J,N → PolChBTg,J is formally étale by the Serre–Tate theorem; see [Dri76, Appendix].

• PolChBTg,J → PolChDispg,J restricts to an isomorphism PolChBTfml
g,J → PolChDispF-nilp

g,J ; see Propo-

sition 3.24. As PolChDispF-nilp
g,J ⊆ PolChDispg,J is stable under nilpotent thickenings, this implies that

every lifting problem

Spec(B) PolChBTg,J

Spec(B′) PolChDispg,J ,

where B′→ B is a surjective homomorphism of p-nilpotent rings with nilpotent kernel and the map
Spec(B)→ PolChBTg,J has image inside PolChBTfml

g,J , admits a (unique) solution.

• PolChDispg,J → PolChDisp(m,n)
g,J is formally smooth; see Proposition 3.21.

Let U ⊆ |A∧g,J,N | be the smooth locus of υ(m,n). Using Lemma 4.9 we can now deduce the following:

• Every point x ∈ |A∧g,J,N | that maps into |PolChBTfml
g,J | is contained in U .

• U is of the form U = π−1(V ) for some V ⊆ PolChBTg,J .

Now Corollary 4.8, together with the openness of U ⊆ |A∧g,J,N |, implies that V = |PolChBTg,J | and conse-

quently that U = |A∧g,J,N | as desired.
The case n = 1-rdt now follows from Proposition 3.15. □

Appendix. Categories with actions and dualities

A.1. Commutative monoids and actions

Fix an ambient (2,1)-category C with finite 2-products. We write {∗} ∈ C for an empty 2-product.

Definition A.1. A commutative monoid in C is an objectM∈ C that is equipped with 1-morphisms

⊗ : M×M−→M, 1: {∗} −→M

and 2-isomorphisms

(a⊗ b)⊗ c −→ a⊗ (b⊗ c), a⊗ b −→ b⊗ a, 1⊗ a −→ a

between 1-morphismsMi →M for i = 3,2,1 such that the diagrams

((a⊗ b)⊗ c)⊗ d (a⊗ (b⊗ c))⊗ d a⊗ ((b⊗ c)⊗ d) a⊗ (b⊗ (c⊗ d))

((a⊗ b)⊗ c)⊗ d (a⊗ b)⊗ (c⊗ d) a⊗ (b⊗ (c⊗ d)),
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a⊗ b a⊗ b

b⊗ a,

(a⊗ b)⊗ c (b⊗ a)⊗ c b⊗ (a⊗ c) b⊗ (c⊗ a)

(a⊗ b)⊗ c a⊗ (b⊗ c) (b⊗ c)⊗ a b⊗ (c⊗ a),

(1⊗ a)⊗ b a⊗ b

1⊗ (a⊗ b)

are commutative.
The commutative monoids in C naturally form the class of objects of a (2,1)-category that is given as

follows.
A 1-morphism F : M→N between two commutative monoids in C is a 1-morphism F : M→N in C

that is equipped with 2-isomorphisms F(a⊗ b)→ F(a)⊗F(b), F(1)→ 1 such that the diagrams

F((a⊗ b)⊗ c) F(a⊗ b)⊗F(c) (F(a)⊗F(b))⊗F(c)

F(a⊗ (b⊗ c)) F(a)⊗F(b⊗ c) F(a)⊗ (F(b)⊗F(c)),

F(a⊗ b) F(a)⊗F(b)

F(b⊗ a) F(b)⊗F(a),

F(1⊗ a) F(1)⊗F(a) 1⊗F(a)

F(a)

are commutative.
A 2-isomorphism α : F → G between two 1-morphisms F,G : M→N as above is a 2-isomorphism

α : F→ G in C such that the diagrams

F(a⊗ b) G(a⊗ b)

F(a)⊗F(b) G(a)⊗G(b),

α

α⊗α

F(1) G(1)

1

α

are commutative.

Definition A.2. LetM be a commutative monoid in C. AnM-object in C is an object C ∈ C that is equipped
with a 1-morphism

⊗ : M×C −→ C
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and 2-isomorphisms

(a⊗ b)⊗ x −→ a⊗ (b⊗ x), 1⊗ x −→ x

such that the diagrams

((a⊗ b)⊗ c)⊗ x (a⊗ (b⊗ c))⊗ x a⊗ ((b⊗ c)⊗ x) a⊗ (b⊗ (c⊗ x))

((a⊗ b)⊗ c)⊗ x (a⊗ b)⊗ (c⊗ x) a⊗ (b⊗ (c⊗ x)),

(1⊗ a)⊗ x a⊗ x

1⊗ (a⊗ x)

are commutative.
The tuples (M,C) consisting of a commutative monoidM in C and anM-object C in C naturally form

the class of objects of a (2,1)-category that is given as follows.
A 1-morphism (F,F′) : (M,C)→ (N ,D) consists of a 1-morphism F : M→N of commutative monoids

in C and a 1-morphism F′ : C → D in C that is equipped with a 2-isomorphism F′(a⊗ x)→ F(a)⊗ F′(x)
such that the diagrams

F′((a⊗ b)⊗ x) F(a⊗ b)⊗F′(x) (F(a)⊗F(b))⊗F′(x)

F′(a⊗ (b⊗ x)) F(a)⊗F′(b⊗ x) F(a)⊗ (F(b)⊗F′(x)),

F′(1⊗ x) F(1)⊗F′(x) 1⊗F′(x)

F′(x)

are commutative.
A 2-isomorphism (α,α′) : (F,F′)→ (G,G′) between two 1-morphisms (F,F′), (G,G′) : (M,C)→ (N ,D)

as above consists of a 2-isomorphism α : F→ G between 1-morphisms of commutative monoids in C and a
2-isomorphism α′ : F′→ G′ in C such that the diagram

F′(a⊗ x) G′(a⊗ x)

F(a)⊗F′(x) G(a)⊗G′(x)

α′

α⊗α′

is commutative.

A.2. Categories with duality

Definition A.3. A category with duality is a category C that is equipped with an equivalence of categories

Cop −→ C, x 7−→ x∨

and a natural isomorphism

x −→ x∨∨
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between functors C → C such that the diagram

x∨ x∨

x∨∨∨

is commutative (where the sloped arrow on the right is the image of the isomorphism x→ x∨∨ under the
duality equivalence above).

A functor F : C → D between categories with duality is a functor F : C → D that is equipped with a
natural isomorphism F(x∨)→ F(x)∨ such that the diagram

F(x)

F(x∨∨) F(x∨)∨ F(x)∨∨

is commutative (where the second horizontal arrow denotes the inverse of the dual of the isomorphism
F(x∨)→ F(x)∨).

A natural isomorphism α : F→ G between two functors F,G : C →D as above is a natural isomorphism
α : F→ G such that the diagram

F(x∨) G(x∨)

F(x)∨ G(x)∨

α

α∨,−1

is commutative.
In this way the categories with duality naturally form the class of objects of a (2,1)-category.

Remark A.4. The (2,1)-category of (essentially small) categories with duality has finite 2-products, and the
natural forgetful 2-functor

{categories with duality} −→ {categories}

preserves finite 2-products.
Thus we obtain the notions of a symmetric monoidal category with duality and an action of such a symmetric

monoidal category with duality on a category with duality.

Remark A.5. Every rigid symmetric monoidal category naturally carries a duality. Thus we obtain a natural
(2,1)-functor

{rigid symmetric monoidal categories} −→ {symmetric monoidal categories with duality}.

Remark A.6. Let Λ be a commutative ring. Then the notions of a category with duality, a symmetric
monoidal category (with duality) and an action of a symmetric monoidal category (with duality) on a category
(with duality) have obvious Λ-linear variants that are obtained by requiring all appearing functors to be
Λ-(multi-)linear.

Definition A.7. Let C be a Z-linear category with duality. Then a morphism f : x→ x∨ in C is called
antisymmetric if the diagram

x x∨∨

x∨
−f f ∨
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is commutative. We define the groupoid Pol(C) of polarized objects in C as the groupoid of tuples (x,λ)
with x ∈ C and λ : x→ x∨ an antisymmetric isomorphism, where isomorphisms (x,λ)→ (y,ζ) are given by
isomorphisms x→ y in C such that the diagram

x y

x∨ y∨

λ ζ

is commutative (where the lower horizontal arrow is the inverse of the dual of x→ y).
Now suppose that C is equipped with an action of a Z-linear rigid symmetric monoidal categoryM (see

Remark A.5). Then a morphism f : x→ a⊗ x∨ in C with a ∈ M invertible is called antisymmetric if the
diagram

x x∨∨ a⊗ (a⊗ x∨)∨

a⊗ x∨
−f ida⊗f ∨

is commutative. In the case a = 1 this recovers the first definition above. We define the groupoid
HPol(C) = HPolM(C) of (M-)homogeneously polarized objects in C as the groupoid of tuples (x,a,λ) with x ∈ C,
a ∈M invertible and λ : x→ a⊗x∨ an antisymmetric isomorphism, where isomorphisms (x,a,λ)→ (y,b,ζ)
are given by tuples of isomorphisms x→ y in C and a→ b inM such that the diagram

x y

a⊗ x∨ b⊗ y∨
λ ζ

is commutative.

Lemma A.8. Let C be a Z-linear category with duality that is equipped with an action of a Z-linear rigid
symmetric monoidal categoryM. Then there is a natural 2-Cartesian diagram of groupoids

Pol(C) HPol(C)

{∗} M≃,

whereM≃ denotes the groupoid core ofM.

Proof. The upper horizontal arrow is given by (x,λ) 7→ (x,1,λ), the right vertical arrow by (x,a,λ) 7→ a and
the lower horizontal arrow by ∗ 7→ 1. The diagram is in fact strictly commutative, so we can use the identity
as a commutativity constraint.

Now the diagram is strictly Cartesian, and the right vertical arrow is a fibration (both claims can be
checked by a direct computation), so the diagram is also 2-Cartesian. □
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