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1. Introduction

Let k be an algebraically closed field of characteristic not 2. The periodicity theorem of Knörrer [Knö87]
shows that the indecomposable Ulrich bundles on a smooth quadric hypersurface in P

2g+1 over k have
rank 2g−1. In this paper we construct Ulrich bundles of the same rank 2g−1 on every smooth complete
intersection X of 2 quadrics in P

2g+1, and we show that every Ulrich bundle has rank of the form r2g−2

where r ≥ 2 and rg is even. To prove this we use an equivalence of categories that extends Reid’s famous
description of the Jacobian of a hyperelliptic curve [Rei72].

Let X ⊂ Pn be a projective scheme with homogenous coordinate ring PX . Recall that a sheaf E on X
is called Ulrich if the graded module of twisted global sections H0

∗(E) is a maximal Cohen–Macaulay
PX-module generated in degree 0 and having linear free resolution over the coordinate ring of Pn, or
equivalently if H i(E(m)) = 0 for all m with −1 ≥m ≥ −dimX and all i. See [ES03] for further information
and examples.

Let X be the smooth complete intersection defined by two quadratic forms q1,q2 on P
2g+1 over an

algebraically closed field k of characteristic not 2.
The pencil of quadrics sq1 + tq2,(s,t) ∈ P1 becomes singular at 2g + 2 points of P

1. Let E be the
hyperelliptic curve with homogeneous coordinate ring k[s,t,y]/(y2 − f ) branched over these points, and let
C be the Z-graded Clifford algebra of the form sq1 + tq2 over k[s,t].

We give two approaches to the construction of Ulrich sheaves on X. The first makes use of three categories:

(i) the category of coherent sheaves on E,
(ii) the category of graded C-modules, and
(iii) the category of coherent sheaves on X.

Categories (i) and (ii) are related by Morita equivalence, while categories (ii) and (iii) are related by a version
of the Bernstein–Gel’fand–Gel’fand correspondence.

Composing these correspondences to go from (i) to (iii), we show that every Ulrich module on X has rank
r2g−2 for some integer r ≥ 2.

Following [FL10] we say that a bundle B on E has the Raynaud property if H0(C,B) =H1(C,B) = 0. We
use the fact that the center of the even Clifford algebra is the homogeneous coordinate ring of E, and that
the category of coherent sheaves of modules over the sheafified even Clifford algebra Cev ≅ EndE(FU) is
Morita equivalent to the category of coherent sheaves on E via an OE −Cev bundle FU defined in Section 4.
With this notation, our first main theorem is the following.
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Theorem 1.1. There is a 1-1 correspondence between Ulrich bundles on the smooth complete intersection of two
quadrics X ⊂P2g+1 and bundles of the form G⊗FU with the Raynaud property on the corresponding hyperelliptic
curve E . The Ulrich bundle corresponding to a rank r vector bundle G has rank r2g−2.
If L is a line bundle on E then L⊗FU does not have the Raynaud property, so the minimal possible rank of an

Ulrich sheaf on X is 2g−1, and Ulrich bundles of rank 2g−1 exist.

The set of bundles G such that G⊗FU has the Raynaud property forms a (possibly empty) open subset in
any flat family of rank r vector bundles on E. Our second main theorem, the existence statement for r = 2 is
proven using a previously undiscovered property of Knörrer’s matrix factorizations to give a construction of
an Ulrich sheaf of the minimal possible rank, 2g−1 on any smooth complete intersection of two quadrics in
P
2g+1 and in P

2g+2.
Based on computed examples using our package [EKS22] with Yeongrak Kim, we conjecture the following.

Conjecture 1.2. There exist indecomposable Ulrich bundles of rank r2g−2 on every smooth complete intersection of
two quadrics in P

2g+1 for g ≥ 1 and r ≥ 2 if and only if rg ≡ 0 mod 2.

By Proposition 5.11 the condition is necessary.

In Section 2 we explain the description of vector bundles on E in terms of matrix factorizations. In the
case of line bundles, this theory can be traced through Mumford’s [Mum84] to work of Jacobi [Jac46].

In Section 3 we explain the relation of categories (ii) and (iii), a form of the Bernstein–Gel’fand–
Gel’fand (BGG) correspondence that holds for all complete intersections of quadrics. As far as we know
this correspondence was first introduced in [BEH87], and greatly extended in [Kap89]. For the reader’s
convenience we review the results that we will use.

In Section 4 we establish the Morita equivalence between categories (i) and (ii). In fact every maximal
(simultaneous) isotropic plane U for q1 and q2 gives rise to a Morita bundle FU and any two differ by the
tensor product with a line bundle on E. This explains the well-known result of Miles Reid’s thesis that the
space of maximal (simultaneous) isotropic planes for q1 and q2 can be identified with the Jacobian of E.

In Section 5 we put these tools together with the theory of Tate resolutions and maximal Cohen–Macaulay
approximations to establish the equivalence between Ulrich modules of rank r2g−2 on X and vector bundles
of rank r on E that satisfy certain cohomological conditions. We show that no line bundles on E satisfy the
conditions, establishing the lower bound for the rank of Ulrich modules announced above. This section was
inspired by Buchweitz’s famously unpublished manuscript on Koszul duality from 1986, now available at
[Buc21] and by the theory of Cohen–Macaulay approximations by Auslander and Buchweitz [AB89].

It is natural to look for Ulrich bundles on X using the shape of their Tate resolutions over PX . Theorem
5.5 is analogous to the main result on Tate resolution of coherent sheaves on P

n in [EFS03]: the Betti table
of the Tate resolution over the exterior algebra coincides with cohomology tables of the corresponding sheaf.
In Theorem 5.5 the resolution over the exterior algebra is replaced by the Tate resolution over PX .

In Section 6, which is independent of the rest of the paper, we give a direct construction of Ulrich modules
of rank 2g−1 on any smooth complete intersection of quadrics in P

2g+1 and P
2g+2 with the minimal possible

rank, 2g−1. In the case g = 2 the existence and minimality was established by [CKL21] with a different
method.

Historical remarks

The study of complete intersections of quadrics has a long history. The connection to vector bundles was
discovered by Newstead [New68], Reid [Rei72] and Desale–Ramanan [DR76] in the 1970’s. The connection
with Clifford algebras and Koszul pairs was used in [BEH87] and more generally by Kapranov [Kap89] in
the 1980’s.

The first three sections of the paper, which take the point of view of matrix factorizations, have their
roots in an unpublished manuscript by our dear friend Ragnar Buchweitz (1952–2017) and the second author
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in 90’s, now lost. The referee kindly pointed out to us that parts of Theorem 5.10 can be deduced from
Kuznetsov’s work [Kuz08], which, like the work of Kapranov [Kap89] instead takes the point of view of
derived categories.

The theory of quadratic complete intersections has many guises, and appears in descriptions of certain
completely integrable systems, for example in the recent paper of Claire Voisin and her coauthors [BEH+24].

Acknowledgements

We are grateful to the referees for their many constructive comments. This paper would have been
impossible without the program Macaulay2 [GS]. We thank Yeongrak Kim for working with us on the
associated Macaulay2 package, distributed with the Macaulay2 program.

2. Vector Bundles over a hyperelliptic curve via matrix factorizations

Let E be a hyperelliptic curve of genus g and let π∶E →P
1 its double cover of P1. Let H = π∗O

P
1(1)

and let f (s,t) be the homogeneous polynomial of degree 2g +2 such that

RE ∶= k[s,t,y]/(y2 − f ) =⊕
n
H0(E,H⊗n),

so that the roots of f are the ramification points of π and y ∈H0(E,H⊗g+1).
For a coherent sheaf G on E we denote by

H i
∗(G) =⊕

n
H i(E,G⊗H⊗n).

Thus H0
∗(OE) =RE and π∗ corresponds to forgetting the y-action on H0

∗(G).

Proposition 2.1. If L is a vector bundle on E, then B =H0
∗(L) is a graded free module over the homogeneous

coordinate ring k[s,t] of P1, and y∶L → L(g + 1) induces a map φ = H0
∗y∶B → B(g + 1) such that φ2 is

multiplication by f ; that is, a matrix factorization of f .
Furthermore, given a graded free module B corresponding to the vector bundle B on P

1, and a map
φ∶B→ B(g +1) with φ2 = f ⋅ IdB, the sheaf

L = coker (y −φ∶π∗B(−g −1)Ð→π∗B)

is a vector bundle on E whose pushforward is B, and on which y induces the matrix factorization φ. We have

χ(B) = χ(L), rkB = 2rkL, and degB = degL− (rkL)(1+ g).

The proof could be extended to show that the category of vector bundles on E is equivalent to the category
of matrix factorizations of f over k[s,t], cf. [Eis80].

Proof of Proposition 2.1. The equation φ2 = f follows from functoriality. Conversely, if a matrix factorization
φ2 = f ⋅ IdB is given, then (y −φ,y +φ) is a matrix factorization of y2 − f over k[s,t,y]. Thus the module
coker(y −φ) is a maximal Cohen–Macaulay RE-module, and it follows that the sheaf associated to its
cokernel is a vector bundle on E. □

The next Theorem reduces the computation of the tensor product of vector bundles on E to a syzygy
computation, and will be used this way in the sequel.

Theorem 2.2. If L1,L2 are vector bundles on E with matrix factorizations φi on the graded free k[s,t]-modules
Bi =H0

∗(Li), then

H0
∗(L1⊗L2) = ker(φ1⊗1−1⊗φ2∶ B1⊗B2(g +1)Ð→ B1⊗B2(2g +2))

and π∗y acts on π∗(L1⊗L2) with the common action of φ1⊗1 and 1⊗φ2.
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Proof. The following sequence of maps is a complex because y2 = f :

(∗) B1⊗B2(−g −1)
φ1⊗1−1⊗φ2- B1⊗B2

φ1⊗1+1⊗φ2- B1⊗B2(g +1)
φ1⊗1−1⊗φ2- B1⊗B2(2g +2)

Since the k[s,t]-module

ker(B1⊗B2(g +1)
φ1⊗1−1⊗φ2- B1⊗B2(2g +2))

is a 2nd syzygy, it is free. Thus, to prove the theorem, it suffices to show that the complex (∗) is locally exact
and that the sheaf cokernel

coker (B1⊗B2(−g −1)
φ1⊗1−1⊗φ2- B1⊗B2)

is π∗(L1⊗E L2).
For simplicity of notation we ignore the twists by powers of H. Note that Bi ∶=π∗(Li) is the sheafification

of Bi . Since Li is the cokernel of y −φi we see that L1⊗E L2 is the cokernel of

(π∗B1⊗E π∗B2)⊕ (π∗B2⊗E π∗B1)
(y⊗1−φ1⊗1,1⊗y−1⊗φ2)- π∗B1⊗E π∗B2.

Since the tensor products are over E, the maps y⊗1 and 1⊗y are equal, and are simply multiplication by y,
so this says that L1⊗L2 is the universal quotient of π∗B1⊗E π∗B2 on which the maps y,φ1⊗1,1⊗φ2 all
agree. Furthermore,

π∗(π∗B1⊗E π∗B2) =π∗π∗(B1⊗P1 B2) =π∗(OE)⊗P1 B1⊗P1 B2.

where the action of y is on the first factor only. Thus π∗(L1⊗L2) is the cokernel of

φ1⊗1−1⊗φ2 ∶ B1⊗B2 - B1⊗B2.

To complete the proof we must show that the sequence (∗) is locally exact. Choose a point x ∈P1 and
denote the local ring O

P
1,x by A and the A-module Bi,x by F1 + yF1 where the Fi are free A-modules.

The endomorphism φi takes Fi to yFi by multiplying with y, and yFi to Fi by sending y to f ∈A. In this
notation, the maps φ1⊗1±1⊗φ2 may be written as block matrices of the form

⎛
⎜⎜⎜⎜
⎝

F1⊗F2 F1⊗ yF2 yF1⊗F2 yF1⊗ yF2
F1⊗F2 0 ±f f 0
F1⊗ yF2 ±1 0 0 f
yF1⊗F2 1 0 0 ±f
yF1⊗ yF2 0 1 ±1 0

⎞
⎟⎟⎟⎟
⎠

Modulo the maximal ideal of A both these maps have rank equal to twice the rank of F1 ⊗ F2, so the
sequence above is locally split exact, as required. □

Definition 2.3. Let f (s,t) =∏2g+2
i=1 fi be a factorization of f into (necessarily distinct) linear factors, and,

for I ⊂ {1, . . . ,2g +2}, write fI ∶=∏i∈I fi . We write φI for the matrix

(0 fIc
fI 0

) ∶O
P

1 (⌈−∣I ∣/2⌉)⊕O
P

1 (⌈−∣Ic∣/2⌉)Ð→O
P

1 (⌈∣Ic∣/2⌉)⊕O
P

1 (⌈∣I ∣/2⌉)

on P
1 where Ic denotes the complement of I . Note that (φI ,φIc) is a matrix factorization of f . Let LI be

the corresponding line bundle on E, as defined in Proposition 2.1. Note that LI ≅LIc and L∅ ≅OE . Write
I∆J = (I ∖ J)∪ (J ∖ I) for the symmetric difference of I and J .

Theorem 2.4. For I,J ⊂ {1, . . . ,2g +2}

LI ⊗LJ ≅
⎧⎪⎪⎨⎪⎪⎩

LI∆J if ∣I ∣ ⋅ ∣J ∣ ≡ 0 mod 2,

LI∆J(H) else.
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Thus the line bundles LI with ∣I ∣ even are the 22g two-torsion line bundles on E. The line bundles LI with ∣I ∣ odd
are the 22g square roots of OE(H).

Proof. In this case the matrix φI ⊗1−1⊗φJ has the form

⎛
⎜⎜⎜⎜
⎝

0 fIc −fJc 0
fI 0 0 −fJc
−fJ 0 0 fIc
0 −fJ fI 0

⎞
⎟⎟⎟⎟
⎠
.

By Theorem 2.2, its kernel is the free module H0
∗(LI ⊗LJ). Because Jc ∖ Ic = I ∖ J and I ∖ Jc = J ∖ Ic this

kernel contains the free submodule B generated by the column vectors

⎛
⎜⎜⎜⎜
⎝

0 fJc∖I
fI∖J 0
fJ∖I 0
0 fI∖Jc

⎞
⎟⎟⎟⎟
⎠
.

These columns generate the kernel because the 2 × 2 minors of B have no common factor (see [BE73,
Corollary 1]).

To show that LI ⊗LJ ≅ LI∆J it now suffices to show that the matrix representing the action of φ1 ⊗ 1
restricted to the columns of B is

( 0 f(I∆J)c
fI∆J 0

) .

This, in turn, follows at once from the identities

Ic ∪ (I ∖ J) = (I∆J)∪ (Jc ∖ I), I ∪ (J ∖ I) = (I∆J)∪ (I ∖ Jc)

and similarly

I ∪ (Jc ∖ I) = (I∆J)c ∪ (I ∖ J), Ic ∪ (I ∖ Jc) = (I∆J)c ∪ (J ∖ I).
To show that LI /≅LJ for J ∉ {I,Ic} are non-isomorphic, we consider the ideals generated by the entries of

(0 fIc
fI 0

) and (0 fJc
fJ 0

) .

By looking at the elements of smallest degree, we see that these ideals could not be equal unless ∣I ∣ = ∣J ∣ = g+1.
Also, in case ∣I ∣ = ∣J ∣ = g +1, the intersection I ∩ J is non-empty since J /= Ic and for i ∈ I ∩ J we recover fI as
the smallest degree generator of (fi)∩ (fI , fIc).

There are 22g+2/4 unordered pairs {I,Ic} of even subsets of {1, . . . ,2g +2}. Thus we get all 22g different
two-torsion line bundles LI for even I . A similar argument applies to roots of H. □

3. BGG for complete intersections of quadrics

This section provides what we need of the theory of [BEH87] and [Kap89]. Let PX ∶= k[V ∗]/(q1, . . . ,qc) be
the homogeneous coordinate ring of the complete intersection X =Q1∩⋯∩Qc ⊂P(V ∗) =Pr−1 of c quadrics
Qi = V (qi) and choose a basis x1, . . . ,xr of V ∗. Write Bℓ for the symmetric matrix with i, j entry

bℓ,i,j =
1
2
(qℓ(xi +xj)−qℓ(xi)−qℓ(xj)).

Let T = k[t1, . . . , tc] denote a polynomial ring in c variables each of degree 2 and let

q ∶ { T ⊗V Ð→ T
1⊗v z→ t1q1(v)+⋯+ tcqc(v)
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denote the corresponding family of quadratic forms over SpecT . Let

C ∶= (T ⊗(⊕
n
V ⊗n))/(v⊗v −q(v) ∣ v ∈ V )

denote the Z-graded Clifford algebra of q, so that C is the quadratic dual of PX in the sense of [PP05]. The
algebra C is free as a T -module with basis

eI = ei1ei2⋯eik
where e1, . . . ,er is a basis of V dual to x1, . . . ,xr and I = {i1 < i2 <⋯ < ik} ⊂ {1, . . . , r} an ordered subset. See
for example [Jac80, Section 4.8].

Theorem 3.1. Let PX be the homogeneous coordinate ring of a complete intersection of c quadrics, and let C
denote the corresponding Z-graded Clifford algebra. Then PX and C are a pair of Koszul dual graded algebras. In
particular

ExtPX(k,k) ≅C and ExtC(k,k) ≅ PX .

Proof. See [Sjö76], [Kap89, Section 1] and [PP05]. □

Corollary 3.2. For any graded PX -module M the module ExtPX(M,k) is a graded C = ExtPX(k,k)-module.

The main result of this section is that for a graded PX-modules M with a linear resolution one can recover
M from the graded C-module ExtPX(M,k).

If M is a (left) PX-module and N is a right C-module then we define an endomorphism of left
PX ⊗C-modules

d ∶Homk(N,M)Ð→Homk(N,M)
taking φ ∈Homk(N,M) to ψ, where ψ(n) =∑i xiφ(nei).

Note that

d2(φ)(n) =∑
i,j
xixjφ(neiej) =∑

i≤j
xixjφ(n(eiej + ejei)) =∑

i≤j
xixjφ(n∑

ℓ

(tℓbℓ,i,j))

=∑
ℓ
∑
i≤j
bℓ,i,jxixjφ(ntℓ) =∑

ℓ

qℓ(x)φ(ntℓ) = 0.

Thus, when N is Z-graded, Homk(N,M) may be regarded as a complex of PX-modules

Homk(N,M) ∶ ⋯Ð→Homk(Ni ,M)Ð→Homk(Ni−1,M)Ð→⋯.

When M is Z-graded and N is a C −C-bimodule, then Homk(N,M) may also be regarded as a complex
of right C-modules

Homk(N,M) ∶ ⋯Ð→Homk(N,Mi)Ð→Homk(N,Mi+1)Ð→⋯.

Similar statements hold for Homk(M,N).

Theorem 3.3. If the graded PX -module M has a linear free resolution, then the resolution may be written in the
form

Homk(ExtPX(M,k),PX)
where we view ExtPX(M,k) as a graded C = ExtPX(k,k) module, and apply the construction above.

Example 3.4. The complex Homk(C,PX),

0 � C∗0 ⊗k PX � C∗1 ⊗k PX � C∗2 ⊗k PX � ⋯

is isomorphic to the PX-free resolution of k.
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Note that this statement may be deduced from [PP05, Corollary 3.2(iiM)]. Since this result plays a crucial
role in the proof of Proposition 5.6, we give a proof below. For our proof we need an explicit description of
the action of Ext1PX(k,k) on ExtPX(M,k).

To avoid keeping track of grading shifts we formulate this in case of a finitely generated module M over
a Noetherian local ring R with maximal ideal m. Let (x1, . . . ,xr) denote minimal generators of m, and let
ei ∈ Ext1R(k,k) be the extension

ei ∶ 0Ð→ k
xi- Ei - kÐ→ 0,

where Ei =R/(x1, . . . ,xi−1,x2i ,xi+1, . . .xr). Let

F ∶ ⋯ d- Fj
d- ⋯ d- F0

be the minimal free resolution of a finitely generated R-module M . Since the resolution F is minimal the
differential d(f ) of an element f ∈ Fj+1 can be written in the form d(f ) =∑ri=1xifi for fi ∈ Fj .

Lemma 3.5. Let α ∈ ExtjR(M,k) be a class represented by a map α
′ ∶ Fj → k. The element αei ∈ Extj+1R (M,k) is

then represented by the map βi with βi(f ) = α′(fi) for f ∈ Fj+1 with differential d(f ) =∑ri=1xifi .

Proof. We compute the image of α under the connecting homomorphism δ

ExtjR(M,Ei) - ExtjR(M,k)
δ- Extj+1R (M,k) - Extj+1R (M,Ei)

associated to the sequence ei above. Consider the diagram

Fj+1
d - Fj

k

βi

? xi - Ei

α′′

?
- k

α ′

-

where α′′ is a lift of α′ to Ei . The composition α′ ○d is zero since α′(mFj) = 0. Thus α′′ ○d factors over
the map

βi ∶{
Fj+1 Ð→ k
f z→ α′(fi).

This map is well-defined, i.e. independent of the choice of fi . Indeed, if d(f ) =∑ri=1xif ′i is a different choice
for the presentation of d(f ) then xi(fi − f ′i ) ∈ (x1, . . . ,xi−1,xi+1, . . .xr)Fj which maps to zero in Ei . □

Proof of Theorem 3.3. Let

F ∶ ⋯ d- Fj
d- ⋯ d- F0

be the minimal graded free resolution of M as a PX-module. Then

Fj ≅ Fj ⊗k PX

where Fj ≅ Fj/mFj . If M has a linear resolution then we claim that the isomorphisms

⎧⎪⎪⎨⎪⎪⎩
Fj = Fj ⊗ PX

≅Ð→ Homk(HomPX(Fj ,k),PX)
f ⊗p z→ {ϕ∶α↦ α(f )⊗p}

induce an isomorphism of complexes, i.e. we have to show that these maps commute with differentials
of the two complexes. Let b1, . . . ,bℓ be a k-basis of Fj with dual basis b∗1 , . . . ,b

∗
ℓ of F

∗

j = Homk(Fj ,k) =
HomPX(Fj ,k).
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Consider an element f = f ⊗1 ∈ Fj+1. Then

d(f ) =
r

∑
i=1

ℓ

∑
ν=1

ciνbν ⊗xi with ciν ∈ k

and we can take fi =∑ℓν=1 ciνbν for the coefficient of xi as in Lemma 3.5. The map

{ϕ∶α↦ α(f )} ∈Homk (HomPX(Fj+1,k),PX)

maps to

{α′↦
r

∑
i=1
xiϕ(α′ei)} ∈Homk (HomPX(Fj ,k),PX)

by the definition of the differential of Homk(ExtPX(M,k),PX). We have
r

∑
i=1
xiϕ(α′ei) =

r

∑
i=1
xiα
′(fi) (by Lemma 3.5)

=
r

∑
i=1
xiα
′(

ℓ

∑
ν=1

ciνbν)

In particular, for α′ = b∗µ we obtain b∗µ ↦∑ri=1 ciµxi . These values coincide with the values of the image of

d(f ) =
r

∑
i=1

ℓ

∑
ν=1

ciνbν ⊗xi

in Homk (HomPX(Fj ,k),PX), since b∗µ(∑ℓν=1 ciνbν) = ciµ. □

Corollary 3.6. Let N be a graded left C-module. The complex Homk(N,PX) is a resolution if and only if
N ≅ ExtPX(M,k) up to shift where M is a PX -module with a linear resolution.

Proof. If N ≅ ExtPX(M,k) up to shift where M is a PX-module with a linear resolution then by Theorem 2.4
the resolution of M is Homk(N,PX). Conversely, if the complex Homk(N,PX) is a resolution, then since it
is linear we may take the module it resolves to be M . □

4. Pencils of quadrics and hyperelliptic curves

We now specialize to the case of a smooth intersection of two quadrics in P
2g+1 with coordinate ring

PX = k[x1, . . . ,x2g+2]/(q1,q2). To simplify notation we write s,t instead of t1, t2. Let q = q(s,t) = sq1 + tq2
and let C =Cliff(q) denote the Z-graded Clifford algebra of q, so that T = k[s,t] ⊂C.

As in Reid’s thesis [Rei72] we note that none of the quadrics in the pencil can have corank 2: for, if one of
the quadrics had singular locus L of dimension at least 2, then X would be singular at L∩X. Further, by
Bertini’s Theorem the general linear combination of the two quadrics is non-singular outside the intersection.
But if it were singular at a point of the intersection, then the intersection would be singular there too.
Thus we may assume that one of the quadrics has full rank, and it follows that the two quadrics can be
simultaneously diagonalized (see [Gan59, XII, Paragraph 6, Theorem 7]). Thus we may assume that the
bilinear form q(s,t) = sq1 + tq2 is given by a diagonal matrix

⎛
⎜⎜
⎝

f1 0
⋱

0 f2g+2

⎞
⎟⎟
⎠

with entries that are pairwise coprime linear polynomials fi ∈ k[s,t]. As in Section 2 we denote by f =∏fi ,
and use the notation fI =∏i∈I fi .
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We write
C =Cev⊕Codd

for the decomposition of the Clifford algebra into its even and odd parts. As a T = k[s,t]-module, C is free
with basis eI and

(4.1) eIeJ = ϵ(I,J)fI∩J eI∆J .

with the sign ϵ(I,J) = (−1)∑i∈I ∣{j∈J ∣j<i}∣.
Since

∑
i∈I
∣{j ∈ {1, . . . ,2g +2} ∣ j < i}∣ =∑

i∈I
(i −1)

and

∑
j∈{1,...,2g+2}

∣{i ∈ I ∣i < j}∣ =∑
i∈I
(2g +2− i) ≡∑

i∈I
(i −1) mod 2

for even I , we see that e{1,...,2g+2} lies in the center of the even Clifford algebra. Because

2g+2

∑
i=1
(i −1) = (2g +2

2
) ≡ g +1 mod 2,

the element e{1,...,2g+2} satisfies the equation

e2
{1,...,2g+2} = (−1)

g+1f .

To adjust for the sign we take y = (
√
−1)g+1e{1,...,2g+2} as a generator of the center of the even Clifford

algebra over k[s,t] so that y2 = f . Note that the formula above for the central element y is only correct in
the case of diagonal quadrics; for the general case see [Haa91, Satz 1].

Furthermore, for any I ,

eIe{1,...,2g+2} = (−1)∑i∈I(i−1)fI eIc and eIce{1,...,2g+2} = (−1)∑i∈Ic(i−1)fIc eI .

Note that the signs in the two formulas differ by (−1)g+1. Thus with RE = k[s,t,y]/(y2 − f ) the coordinate
ring of the corresponding hyperelliptic curve, the RE-submodule of C generated by eI and eIc coincides with
H0
∗(LI) from Definition 2.3.
Notice however, that here, differently than in section 1, RE is 2Z-graded as a subring of Cev. Thus, since

the elements of Codd have odd degree, we have to twist by an odd number to obtain a non-trivial sheaf of
OE-modules.

We define Cev = C̃ev and Codd = C̃odd(1). Hence multiplication in C gives a map

Codd(1)×Codd(1)Ð→Cev(2)
which sheafifies to a map

Codd⊗OE CoddÐ→ Cev⊗π∗OP
1(1) = Cev⊗H.

In summary, we get the following statement.

Proposition 4.1. Let y = (
√
−1)g+1e{1,...,2g+2}. The element y is in the center of Cev and satisfies the equation

y2 = f , where f =∏2g+2
i=1 fi . If we write RE = k[s,t,y]/(y2 − f ) then the even Clifford algebra decomposes as an

RE-module as
Cev = ⊕

{I,Ic}
∣I ∣ even

H0
∗(LI).

The odd part of the Clifford algebra decomposes as a right RE-module as

Codd(1) = ⊕
{I,Ic}
∣I ∣ odd

H0
∗(LI).
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Moreover,

Codd ≅OE(p)⊗Cev

where p is any ramification point of π∶E→P
1.

Proof. This follows from Theorem 2.4. Note that since p is a ramification point we have OE(2p) ≅H and
the multiplication map Codd⊗Codd→ Cev⊗H is compatible with the map

OE(p)⊗OE(p)Ð→OE(2p) ≅π∗OP
1(1) =H. □

Remark 4.2. Notice that y and the elements of Codd anti-commute by equation (4.1) applied to the case when
I is a singleton and J = {1, . . . ,2g +2}.

The following result was proven in [Rei72].

Lemma 4.3. Let q1,q2 be two quadratic forms on a 2g + 2-dimensional vector space V over k. The set of
g-dimensional common isotropic subspaces of q1,q2 is non-empty and has dimension ≥ g locally at every point.

Proof. Let U be the universal sub-bundle on the Grassmannian G ∶=G(g,V ). The forms qi define homomor-
phisms Sym2V ∗⊗kOG

→O
G

, and thus, by restriction, sections of Sym2(U∗). The set of g-dimensional
common isotropic subspaces is the common zero locus of these two sections. Computing the Chern class we
see that the locus is non empty and, since

dimG(g,V )−2rk Sym2(U∗) = g(g +2)−2(g +1
2
) = g,

the inequality on dimensions follows. □

We return to the situation at the beginning of Section 3, with

P = k[x1, . . . ,x2g+2] = Sym(V ∗).

Let U ⊂ V be a g-dimensional isotropic linear subspace and denote by PU = Sym(U∗) = P /(U⊥) its
coordinate ring, where U⊥ ⊂ V ∗ is the space of linear equations of the isotropic space U .

Proposition 4.4. Let G = ks⊕ kt ≅ k2 be the space of parameters for the family of quadratic forms sq1 + tq2.
Considered as a PX -module, PU has a linear free resolution. Moreover

(4.2) Ext2pPX(PU ,k) =⊕
i
(Λ2iU⊥⊗k (Symp−iG)

∗)
∗

and

(4.3) Ext2p+1PX
(PU ,k) =⊕

i
(Λ2i+1U⊥⊗k (Symp−iG)

∗)
∗
.

Proof. The ideal (U⊥) contains the 2-dimensional vector space G ∶= ⟨q1,q2⟩. This ideal is generated by a
regular sequence of linear forms, and the P -free resolution of PU = P /(U⊥) is thus a Koszul complex with
underlying free module P ⊗ΛU⊥. Let γ ∶G→ P1⊗U⊥ be a map of vector spaces such that the composition
of γ with the multiplication map

GÐ→ P1⊗kU⊥Ð→ P2
is the inclusion of G in P2.

By [Tat57, Theorem 4], the minimal PX-free resolution of PU is the differential graded R-algebra

PX ⊗kΛU⊥⊗ (SymG∗)∗ .

Here U⊥ has internal degree 1 and homological degree 1, while G∗ has internal degree 2 and homological
degree 2, and the component of the differential G = (Sym1G∗)∗→ PX ⊗kU⊥ is induced by γ .
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This resolution is linear, and has degree j term

PX ⊗k
⎛
⎝ ⊕j=a+2b

(ΛaU⊥)⊗k (SymbG)
∗⎞
⎠
. □

Let T = SymG ≅ k[s,t] and write

FU = ExtevPX(PU ,k) =⊕
i
((Λ2iU⊥)∗⊗k T (−i))

regarded as a module over ExtevPX(k,k) =C
ev via the Yoneda pairing.

Proposition 4.5. The sheafification FU of FU as an OE-module is a vector bundle of rkFU = 2g and degree
degFU = g2g−1 on E. Moreover,

H0
∗(FU) = Extev(PU ,k),

and
H0
∗(FU(p)) = Extodd(PU ,k).

Proof. It follows from the formulas above that the sheafification FU of FU as an OE-module is a vector
bundle of rank equal to dimk(ΛevU⊥)/2 = 2g . Moreover

degπ∗FU = −∑
i≥0
i(g +2

2i
) = −(g +2)2g−1.

By Proposition 2.1, FU has degree

degFU = (g +1)rkFU +degπ∗FU = (g +1)2g − (g +2)2g−1 = g2g−1.
The first displayed formula is immediate from the definition of FU , while the second follows from the

equality Codd = Cev(p). □

Theorem 4.6. The endomorphism bundle of FU is isomorphic as an OE-algebra to the sheafified even Clifford
algebra Cev; that is,

EndE(FU) ≅ Cev.

Proof. Let (a,b) ∈P1 be a point that is not a branch point of π. The algebra π∗Cev is a sheaf of algebras
whose fiber at (a,b) is isomorphic to the product of the fibers of Cev at the two preimages of (a,b) in E. On
the other hand, the fiber of π∗Cev is the even Clifford algebra of the nonsingular quadratic form aq1 +bq2.
Thus it is a semisimple algebra with 2-dimensional center generated over k by y. Since we have assumed
that k is algebraically closed, this center is k × k. The corresponding decomposition of the push forward of
Cev as a direct product is the unique decomposition as the product of two algebras. Thus the fibers of Cev at
points of E other than the ramification points are simple algebras by [Jac80, Theorem 4.13].

Since FU is an RE −Cev bimodule we have an OE-algebra homomorphism

φ ∶ CevÐ→ EndE(FU).
Since the general fiber of Cev is simple, the kernel of this homomorphism must be torsion, and thus 0.
The source and target of φ are vector bundles of the same rank. By Proposition 4.1 the sheaf Cev is a
sum of the degree 0 line bundles LI , and since the endomorphism bundle also has degree 0, the map is
an isomorphism. □

Corollary 4.7 (Morita equivalence, see [Bas68, Chapter 2]). The OE −Cev bimodule FU defines an equivalence
of module categories

⎧⎪⎪⎪⎨⎪⎪⎪⎩

OE −mod ←→ mod −Cev
L z→ L⊗OE FU

G⊗Cev F∗U z→ G
where F∗U =HomOE(FU ,OE).
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Corollary 4.8 (Reid, 1972 [Rei72]). Let X =Q1 ∩Q2 ⊂P2g+1 be a smooth intersection of two quadrics and let E
be the corresponding hyperelliptic curve. Let U0 ⊂ V be a g-dimensional linear subspace such that P(U∗0 ) ⊂ X.
Then the map

ϕ∶{ {U ∈G(g,V ) ∣P(U
∗) ⊂X} Ð→ Pic0(E)

U z→ FU ⊗Cev F∗U0

is a bijection. If the ground field k has characteristic 0, it is an isomorphism.

Proof. By Lemma 4.3, a space U0 of dimension g such that P(U∗0 ) ⊂X exists. We claim that FU ⊗Cev F∗U0

is an element of Pic0(E). We know by Corollary 4.7 that FU0 and FU both define Morita equivalences.
Hence L ∶=FU ⊗Cev F∗U0

must be an invertible object in OE −mod, hence a line bundle. This line bundle
has degree 0 since FU ≅L⊗FU0 and both vector bundles have the same degree.

The map ϕ is injective because we can recover U from FU ≅L⊗FU0 as follows: by Proposition 5.6 (3)
below, we can recover the C = ExtPX(k,k)-module ExtPX(PU ,k) from FU . The free resolution of PU , hence
U⊥, can be obtained from ExtPX(PU ,k) by Theorem 3.3.

Since the source and target of ϕ are projective and the target is connected, smooth, and of the same
dimension as the source, the map is a surjective, hence a bijection. In case the ground field k has
characteristic 0 ϕ is thus an isomorphism. If k has positive characteristic it could be a purely inseperable
morphism. Miles Reid proved in [Rei72, Theorem 4.8] that {U ∈G(g,V ) ∣ P(U∗) ⊂ X} and Pic0(E) are
isomorphic for arbitrary characteristic. □

Remark 4.9. Our Macaulay2 package [EKS22] computes the action of Pic0(E) on the space of maximal
isotropic subspaces

G(g,X) = {U ∈G(g,V )∣P(U∗) ⊂X} .
For a different approach to the group law on Pic0(E) in terms of G(g,X) see [Don80].

5. Tate resolutions of PX-modules from Clifford modules

The constructions in this section are inspired by the theory of Cohen–Macaulay approximations of
Auslander and Buchweitz [AB89] and the construction of Tate resolutions as in [ES21]. Let R be a Noetherian
local or graded Gorenstein ring, and let M be a finitely generated R-module. Let F be the minimal R-free
resolution of M:

0 � M � F0 � F1 � F2 � ⋯.
We will use the notation N∗ =HomR(N,R) for the dual of an R-module N . If N is a maximal Cohen–

Macaulay (MCM) module, that is, an R-module of depth dimR, then we have (N∗)∗ ≅ N , because R is
Gorenstein.

The Tate resolution associated to M is a doubly infinite exact complex of free R-modules obtained
as follows: The ith syzygy module Mi = ker(Fi−1→ Fi−2) is an MCM module when i > dimR, so
M∗i = ker(F∗i → F∗i+1) is also an MCM module.

Choose an integer i > dimR, and let

⋯ - Gi−2 - Gi−1 - M∗i - 0

be a minimal free resolution of M∗i . The Tate resolution T(M) of M is obtained by splicing the dual
complex G∗ with the complex Fi � Fi+1 � ⋯ to a doubly infinite complex

T(M) ∶ ⋯ � G∗i−2 � G∗i−1 � Fi � Fi+1 � ⋯

of free graded R-modules. This is an exact complex because both Mi = ker(Fi−1→ Fi−2) and
M∗i ≅ ker(F∗i → F∗i+1) are MCM modules. Up to isomorphism this complex is independent of the choice of
i and the choice of the minimal free resolutions. The dual complex T(M)∗ is exact as well.
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Example 5.1. In case of a hypersurface ring R = P /(f ) the Tate resolutions are the double infinite periodic
complexes

⋯ �φ
Rn �ψ Rn �φ

Rn �ψ ⋯
obtained from matrix factorizations (φ,ψ) of f , cf. [Eis80].

Remark 5.2. Auslander and Buchweitz [AB89] used Tate resolutions to define the MCM approximation of M
for arbitrary Cohen–Macaulay rings. When R is Gorenstein, as in our case, we set Mes = coker (G∗1 →G∗0),
the essential MCM approximation, so that Mes is an MCM over R. By [AB89] there is an induced map
Mes →M and the modules M and Mes have free resolutions that differ in only finitely many terms: If
Rn→M is a map from a graded free PX module such that

0 � M � Mes⊕Rn

is a surjection, then the kernel of this homomorphism has a finite free resolution of length codepthM −1.
Auslander–Buchweitz define this homomorphism to be the MCM approximation of M if n is taken to
be minimal.

Proposition 5.3. Let PX = P /(q1, . . . ,qc) be the homogeneous coordinate ring of a complete intersection of quadrics.
Let M be a PX -module which has a linear resolution as a P -module. Then ExtPX(M,k) is a C = ExtPX(k,k)-
module which is free as a k[t1, . . . , tc]-module. If moreover M is a Cohen–Macaulay PX -module of codimension ℓ
then the Tate resolution of M has the form

⋯ � P b−2X (3) � P b−1X (2) � P b0X (1) � ⋯ � P bℓX (−ℓ +2) � 0

0 � P a0X

φ0

6

� P a1X (−1)

φ1

6

� ⋯ � P aℓX (−ℓ)

φℓ

6

� ⋯
with bℓ−i = ai with an overlap of length ℓ. The bottom row, which is a quotient complex, is the Eisenbud–Shamash
resolution of M as a PX -module, and the top row, a subcomplex, is its PX dual.

Proof. As in the special case explained in the proof of Proposition 4.4, the Eisenbud–Shamash graded free
resolution of M as a PX module [Eis80, Theorem 7.2] can be constructed from a series of higher homotopies
on a graded P -free resolution F of M . Because the qi have degree 2, all the higher homotopies are linear
maps, so the construction yields a minimal linear resolution of M whose underlying graded free module is a
divided power algebra over PX on c generators tensored with the underlying module of F, and this implies
that ExtPX(M,k) is a free module over the dual algebra, k[t1, . . . , tc].

If M is Cohen–Macaulay of codimension ℓ then the (ℓ +1)th syzygy of M is a maximal Cohen–Macaulay
module, and by [ES21] the Tate resolution of M has the given form. □

In [ES21] there is an explicit description of all maps in the Tate resolution in case of a nested pair of
complete intersections such as the following.

Example 5.4. Consider the coordinate ring PU of a g-dimensional isotropic subspace U in the complete
intersection X of two quadrics as a PX-module. The Tate resolution T(PU) has an overlap of length
ℓ = codimXP(U∗) = 2g −1− (g −1) = g . In case g = 3 it has Betti table

⋯ 28 20 12 5 1
1 5 12 20 28 36 ⋯

The vertical maps in the display of T(PU) are northwest diagonal maps in the Betti table, which are
represented by matrices of quadratic forms. For example the map φ0 as in Proposition 5.3 is given by a
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20×1 matrix of quadrics, represented in the Betti table by the northwest map from the left-most 1 on the
lower to the 20 in the upper row. For arbitrary g we obtain the formulas

a2p =
p

∑
i=0
(p− i +1)(g +2

2i
) and a2p+1 =

p

∑
i=0
(p− i +1)( g +2

2i +1)

for the ranks ai in the lower row of the diagram above from the equations (4.2) and (4.3) in Section 4.

Theorem 5.5. Let C =Cliff(q1,q2) be the Clifford algebra over k[s,t] of a nonsingular complete intersection
of two quadrics in P

2g+1. Let N be a graded C-module that is free as a k[s,t]-module, and such that the
corresponding vector bundles N ev = Ñ ev and N odd = Ñ odd(1) defined on the associated hyperelliptic curve E
satisfies

N odd ≅N ev⊗Cev Codd.
Let p ∈ E be a ramification point. There is a doubly infinite exact complex

T(N) ∶ ⋯ - Fi - Fi+1 - ⋯

of free modules Fi = P aiX (i)⊕ P
bi
X (i +1) with Betti numbers ai = h

1(N ev(ip)) and bi = h0(N ev((i +1)p)). In
terms of this decomposition, the complex T(N) takes the form

→ H1(N ev)⊗k PX → H1(N ev(p))⊗k PX(1) → H1(N ev(2p))⊗k PX(2) →
↘ ⊕ ↘ ⊕ ↘ ⊕ ↘
→ H0(N ev(p))⊗k PX(p) → H0(N ev(2p))⊗k PX(2) → H0(N ev(3p))⊗k PX(3) → .

Proof. We will use the notations xi ,ei as defined in Section 3. Consider the sequence of maps

⋯ d- Ni−1⊗k P
d- Ni ⊗k P

d- Ni+1⊗k P
d- ⋯

defined by d(n⊗k r) =∑
2g+2
i=1 nei ⊗k xir .

Computations similar to that at the beginning of Section 3 show that

d2(n⊗k r) =∑
i,j
(neiej)⊗k (xixjr) = ns⊗k q1(x)r +nt⊗k q2(x)r = n⊗k[s,t] (sq1(x)+ tq2(x))r,

where the last step uses the identification N ⊗k P =N ⊗k[s,t] P [s,t].
Set A ∶=N ev⊗k P and B ∶=N odd⊗k P . The map d induces a matrix factorization

(AÐ→ B(0,1), B(0,1)Ð→A(1,2))

of sq1 + tq2 over the bi-graded polynomial ring k[s,t,x1, . . . ,x2g+2]. As in Example 5.1, this matrix factoriza-
tion induces a 2-periodic resolution

⋯ - B(−1,−1) - A - B(0,1) - A(1,2) - ⋯

where A and B are restrictions of A and B to k[s,t,x1, . . . ,x2g+2]/(sq1 + tq2).
Sheafifying with respect to the variables (s,t) we get a doubly infinite exact complex

⋯ - B̃(−1,−1) - Ã - B̃(0,1) - Ã(1,2) - ⋯

of direct sums of line bundles on the hypersurface V (sq1 + tq2) ⊂P1 ×A2g+2.
We define an exact complex of O

P
1 ⊗ PX-modules by factoring out q1 on the set t ≠ 0 and q2 on the set

s ≠ 0, identified on the set where neither s nor t is zero with k[s/t, t/s]⊗ P /(q1,q2).
Since the central element y of the even Clifford algebra anti-commutes with the action of the ei on N by

Remark 4.2 we may regard this also as a complex of OE ⊗ PX-modules that are box products of locally free
OE-modules with graded free PX-modules,

T ∶ ⋯ - AE ⊠ PX - BE ⊠ PX(1) - AE(1)⊠ PX(2) - ⋯,
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where use the fact that OE(1) ≅OE(2p). Here AE =N ev and BE is isomorphic to

N odd =N ev⊗Cev Codd =N ev(p)

by Proposition 4.1, where the action of y on BE is induced by the action of −y on N odd. Thus these are the
vector bundles on E defined by the action of y or −y on the even and odd part of N respectively. In other
words, BE ≅ ι∗N odd, where ι∶E→ E denotes the covering involution of E→P

1.

Let ρ∶E ×SpecPX → SpecPX denote the second projection. The desired Tate resolution T(N) associated
to the Clifford module N is essentially Rρ∗T . Since T is a complex, we get a spectral sequence, which we
analyze as follows: truncate T on the left to obtain a left bounded complex

Li - AE(i)⊠ PX(2i) - BE(i)⊠ PX(2i +1) - AE(i +1)⊠ PX(2i +2) - ⋯,

and take a Čech resolution on E coming from a covering with two affine open subsets. We obtain a double
complex:

(∗i )

0 0 0

C1(Li)

OO

C1(AE(i))⊠ PX(2i) //

OO

C1(BE(i))⊠ PX(2i +1) //

OO

⋯

C0(Li)

OO

C0(AE(i))⊠ PX(2i) //

OO

C0(BE(i))⊠ PX(2i +1) //

OO

⋯

0

OO

0

OO

0

OO

The vertical homology of this double complex is a box product with the cohomology of AE and BE and
their twists. The E2-differentials of the spectral sequence of the double complex can be lifted to maps of the
form H1(AE)⊗ PX →H0(AE(1))⊗ PX(2) on the E1-page of the sequence. To do this, we choose k-vector
space splittings h of the Čech sequence

(α) 0 - H0(AE) - C0(AE) - C1(AE) - H1(AE)→ 0

and the corresponding sequences (αi) and (βi) for the sheaves AE(i)’s and BE(i)’s respectively. We define
the map

H1(AE)⊗ PX - H0(AE(1))⊗ PX(2)

as the composition

H1(AE)⊗ PX

h⊗id
��

C1(AE)⊠ PX // C1(BE)⊠ PX(1)

h⊠id
��

C0(BE)⊠ PX(1) // C0(AE(1))⊠ PX(2)

h⊗id
��

H0(AE(1))⊗ PX(2).
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Abusing notation we write h̃ for all south arrows, ∂̃ for all north arrows, and ϕ for all east arrows in the
corresponding diagram

(4) H1(AE(i))⊗ PX(2i)

h̃
��

ϕ
// H1(BE(i))⊗ PX(2i +1)

h̃
��

ϕ
// H1(AE(i +1))⊗ PX(2i +2)

h̃
��

C1(AE(i))⊗ PX(2i)

h̃
��

∂̃

OO

ϕ
// C1(BE(i))⊗ PX(2i +1)

h̃
��

∂̃

OO

ϕ
//// C1(AE(i +1))⊗ PX(2i +2)

h̃
��

∂̃

OO

C0(AE(i))⊗ PX(2i)

h̃
��

∂̃

OO

ϕ
// C0(BE(i))⊗ PX(2i +1)

h̃
��

∂̃

OO

ϕ
//// C0(AE(i +1))⊗ PX(2i +2)

h̃
��

∂̃

OO

H0(AE(i))⊗ PX(2i)

∂̃

OO

ϕ
// H1(BE(i))⊗ PX(2i +1)

∂̃

OO

ϕ
// H0(AE(i +1))⊗ PX(2i +2)

∂̃

OO

with four rows.
For α ∈H1(AE)⊠ PX we have

α = ∂̃h̃α since ∂h = idH1

⇒ ϕα = ∂̃ϕh̃α since [ϕ,∂̃] = 0
⇒ h̃ϕα = −∂̃h̃ϕh̃α +ϕh̃α since ∂h+h∂ = idC1

⇒ ϕh̃ϕα = −ϕ∂̃h̃ϕh̃α since ϕ2 = 0
⇒ ϕh̃ϕα = −∂̃ϕh̃ϕh̃α since [ϕ,∂̃] = 0
⇒ h̃ϕh̃ϕα = ∂̃h̃ϕh̃ϕh̃α −ϕh̃ϕh̃α since ∂h+h∂ = idC0

⇒ ϕh̃ϕh̃ϕα = ∂̃ϕh̃ϕh̃ϕh̃α since ϕ2 = 0 and [ϕ,∂̃] = 0
⇒ h̃ϕh̃ϕh̃ϕα =ϕh̃ϕh̃ϕh̃α since h∂ = idH0

⇒ (h̃ϕh̃ϕh̃)ϕ =ϕ(h̃ϕh̃ϕh̃).
Thus with the lifted maps we obtain a double complex, whose total complex is our desired complex T(N):

→ H1(AE)⊗ PX → H1(BE)⊗ PX(1) → H1(AE(1))⊗ PX(2)
↘ ⊕ ↘ ⊕ ↘ ⊕
→ H0(BE)⊗ PX(1) → H0(AE(1))⊗ PX(2) → H0(BE(1))⊗ PX(3).

The right truncated complexes are exact except at the first two position since the spectral sequence of
(∗i ) converges to the cohomology of Li . Since we can take i arbitrarily large negative, the complex T(N)
is exact. □

Proposition 5.6. Let M be a PX -module with a linear resolution as an P -module. Then

(1) N = ExtPX(M,k) is a C = ExtPX(k,k)-module which is free as an k[s,t]-module.
(2) The sheafifications N ev and N odd = Ñ odd(1) satisfies

N odd ≅N ev⊗Cev Codd.
(3) N =H0

∗(N ev)⊕H0
∗(N odd)(−1) and the C-module N is determined by the Cev-module N ev.

(4) The PX -dual complex T(N)∗ is the Tate resolution T(M) of M .
Proof. (1) Let 0→ Fc → ⋯→ F1 → F0 →M → 0 be the linear P -resolution of M . Then by the Eisenbud–
Shamash construction [Eis80, Theorem 7.2], ExtPX(M,k) =N =N ev⊕N odd is a free k[s,t]-module.

(2) We have
rkk[s,t]N

ev =∑
i≥0

rkP F2i and rkk[s,t]N
odd =∑

i≥1
rkP F2i+1.
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Since ∑ci=0(−1)i rkP Fi = 0 the k[s,t]-modules N ev and N odd have equal rank. Theorem 3.3 shows that the
minimal free PX-resolution of M is isomorphic to Homk(ExtPX(M,k),PX). From this construction we see
that if one of the maps

ExtiPX(M,k)×Ext
1
PX(k,k) - Exti+1PX (M,k)

were not surjective, then there would be a generator of the module Homk(Exti+1PX
(M,k),k) which maps to

zero in the complex. This is not possible because the complex is minimal. We conclude that the map

N ev⊗Cev Codd - N odd

is a surjective morphism of OE-vector bundles of the same rank and hence an isomorphism of Cev modules.
(3) It follows that

N odd⊗Cev Codd ≅N ev⊗Cev Codd⊗Cev Codd - N ev⊗H
is also an isomorphism.

The formula for N follows because N is a free k[s,t]-module. Since Cev = H0
∗(Cev) and

Codd =H0
∗(Codd)(−1) the maps above determine the maps N ev⊗k Codd→N odd and N odd⊗k Codd→N ev,

and thus the C-module structure on N .
(4) By parts (1) and (2) we can apply Theorem 5.5. The dual of the H0-strand of T(N) coincides with

Homk(ExtPX(M,k),PX) by construction. Since T(N)∗ and T(M) are exact minimal complexes which
coincide for large homological degree, they are isomorphic. □

Example 5.7. Thus in case g = 3 the Betti table

⋯ 28 20 12 5 1
1 5 12 20 28 36 ⋯

of the Tate resolution of M =T(H0
∗(FU ⊗Cev C)) has a second interpretation. It is also the cohomology table

(hi(FU((j +1− i)p))i=0,1
j∈Z

of FU as a vector bundle on the hyperelliptic curve E.

Theorem 5.8. Let N be a C-module which is free over k[s,t] satisfying N odd ≅N ev⊗Cev Codd. Let T(N) be the
complex constructed in Theorem 5.5 whose terms are described by cohomology groups of AE =N ev and B =N odd

and their twists. The cokernel GX of the map

H1(BE(−1))⊗ PX(−1) - H1(AE)⊗ PX ,

which is a component of the differential F−1 → F0 of T(N), is an Ulrich module if and only if H1(BE) and
H0(BE) vanish.

Proof. If GX is an Ulrich PX-module, then it is its own MCM approximation. Hence the Tate resolution of
GX has non-overlapping strands so H1(BE) and H0(BE) vanish.

Conversely, if these groups vanish then GX is a MCM module over PX with a linear PX-resolution, and
from the form of the complex T(N) we see that H0(AE) and all terms to the left of it in the lower row
must also vanish. To show that GX is an Ulrich module we must prove that GX has a linear resolution as
a P -module.

We first make the form of the PX-resolution more explicit. The cohomological vanishing h0(BE) = h1(BE) = 0
implies that π∗BE =OP

1(−1)2r , where r = rkBE = rkAE . Since B(−p) ≅A we have degAE = degBE − r .
Thus H0(AE) = 0 and, by the Riemann-Roch formula, h1(AE) = r . The form of the Tate resolution implies
that the bundle π∗AE splits into a direct sum of copies of O

P
1(−1) and O

P
1(−2). Indeed, there cannot be

any summands of the form O
P

1(−d) with d ≤ −3 because there are no nonzero maps to this sheaf from
π∗BE(−1) =OP

1(−2)2r . Hence
π∗AE =OP

1(−1)r ⊕O
P

1(−2)r .
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Since π∗BE(−1) =OP
1(−2)2rkBE we see that GX is defined by an r × 2r matrix of linear forms and the

PX-free resolution of GX has the form

⋯ - P (i+1)rX (−i) - ⋯ - P 2r
X (−1)

φ1- P rX - GX - 0.

We can now show that GX has linear resolution as a P -module. Since GX is maximal Cohen–Macaulay
module over PX , this statement can be checked after factoring out a maximal PX-regular sequence z of
linear forms in P . Note that PX/zPX has Hilbert function 1,2,1. The sequence z is also a regular sequence
on GX because GX is a maximal Cohen–Macaulay module. From the resolution of GX over PX we see
that the values of the Hilbert function of GX/zGX are r,0,0, . . .; that is, GX/zGX ≅ kr . As a module over
P /zP this has a linear resolution, and thus GX has a linear resolution as a P -module. Thus GX is an Ulrich
PX-module. □

Remark 5.9. The proof shows in particular that, the matrix

P 2r(−1) φ1- P r

obtained by regarding the linear PX-presentation of GX as a matrix over P is a presentation matrix of GX
as a P -module.

Using the Morita equivalence between the hyperelliptic curve E and the Clifford algebra C we can make
this more precise. Recall that a bundle B on E has the Raynaud property if H0(C,B) = H1(C,B) = 0.
We are now ready to prove parts of Theorem 1.1 from the introduction, which we repeat for the reader’s
convenience.

Theorem 5.10. There is a 1−1 correspondence between Ulrich bundles on the smooth complete intersection of two
quadrics X ⊂P2g+1 and bundles with the Raynaud property on the corresponding hyperelliptic curve E of the form
G⊗FU . The Ulrich bundle corresponding to a rank r vector bundle G has rank r2g−2.
If L is a line bundle on E then L⊗FU does not have the Raynaud property, so the minimal possible rank of an

Ulrich sheaf on X is 2g−1, and Ulrich bundles of rank 2g−1 exist.

Proof. Let p ∈ E be a ramification point. Consider B = G ⊗ FU , A = G(−p) ⊗ FU and the Clifford
module N = ⊕iH0(A(ip)). By Theorem 5.8 T(N) is the Tate resolution of the Ulrich module GX =
coker (H1(BE(−1))⊗ PX(−1)→H1(AE)⊗ PX) if and only if H0(B) = H1(B) = 0. If r = rkG and the
condition is satisfied then the corresponding Ulrich module GX on X has rank GX = r2g−2 since the number
of generators of GX is rk(G⊗FU) = r2g .

Conversely, suppose that M is an Ulrich module on PX , and let N = ExtPX(M,k). This is a C-module,
and thus an RE-module which is a free k[s,t]-module by the Eisenbud–Shamash construction [Eis80,
Theorem 7.2]. The odd part of its sheafification is thus of the form N odd = G ⊗OE FU for some a vector
bundle G by Corollary 4.7, the Morita theorem. By Theorem 5.8 G⊗OE FU has the Raynaud property.

An Ulrich module of rank 2g−2 would correspond to a line bundle L on E such that L⊗FU has vanishing
cohomology. By Corollary 4.8, L⊗FU =FU ′(mp) for some maximal isotropic plane U ′ and some integer
m. Thus T(N)∗ would be the Tate resolution of PU ′ up to shift. But T(PU ′) has overlapping strands (in
fact PU ′ is not a MCM PX-module).

The existence of Ulrich bundles of rank 2g−1 is proven in Section 6. □

Proposition 5.11. Ulrich bundles of rank r2g−2 on a smooth complete intersections of two quadrics in P
2g+1 do

not exist if r ⋅ g ≡ 1 mod 2.

Proof. If G is a vector bundle on E of rank r and degree d then

deg(G⊗FU) = degG rkFU + rkGdegFU = d2g + rg2g−1



20 D. Eisenbud and F.-O. Schreyer20 D. Eisenbud and F.-O. Schreyer

by Proposition 4.5 and

χ(G⊗FU) = deg(G⊗FU)+ rk(G⊗FU)(1− g) = d2g + rg2g−1 + r2g(1− g)

by Riemann-Roch. Thus χ(G⊗FU) = 0 implies r ⋅ g ≡ 0 mod 2. □

For small g we constructed Ulrich bundles of rank 2g−1 from sufficiently general rank 2 bundles G on E
with our Macaulay2 package [EKS22]. Consider the direct sum G0 =L0⊕Lg of two general line bundle Li
of degree i. In case of g = 3 the cohomology table of the bundle G0⊗FU is the sum of two tables, one of
which we displayed in Example 5.7 in case of g = 3. The other is a shifted version of that table.

So in case of g = 3 the cohomology table of G0⊗FU has shape

⋯ 64 48 33 21 12 5 1
1 5 12 21 33 48 64 ⋯.

If for a general extension 0→L0→ G →L3→ 0 the connecting homomorphisms are of maximal rank, then
the cohomology table of G⊗FU has the form

⋯ 64 48 32 16
16 32 48 64 ⋯.

and G gives rise to an Ulrich bundle of rank 2 ⋅2g−2. In special cases, for small g we verified that this does
occur with Macaulay2 [GS] using our package [EKS22]. With the same idea we constructed Ulrich bundles of
rank 3 ⋅2g−2 in special cases for g = 2.

However we were not able to control the cohomology of G⊗FU theoretically well enough to prove the
existence of rank 2g−1 Ulrich bundle for every X.

6. Ulrich bundles of rank 2g−1

In this section we prove that a smooth complete intersection of two quadrics in P
2g+2, and therefore also

in P
2g+1, carries an Ulrich bundle of rank 2g−1. Our construction uses the construction of Ulrich bundles

on a single quadric by Knörrer, which we now review.

Theorem 6.1 (cf. [Knö87]). The quadric qn =∑ni=0xiyi has the matrix factorization (ϕn,ψn) of size 2n defined
recursively by ϕ0 = (x0),ψ0 = (y0) and

ϕn = (
xn ϕn−1
ψn−1 −yn

) , ψn = (
yn ϕn−1
ψn−1 −xn

)

for n ≥ 1.

Let (A,B) = (ϕn,ψn) and consider the matrix factorizations

(A(x,y),B(x,y)) and (A(v,w),B(v,w))

of q(x,y) =∑ni=0xiyi and q(v,w) =∑ni=0viwi respectively over the ring P ∶= k[x∣y,v∣w], where x∣y denotes
the catenation x0, . . . ,xn,y0, . . . ,yn and similarly for v∣w.

Proposition 6.2. Let

q̃(v,w,x,y) =
n

∑
i=0
(xiwi + yivi) = (v∣w) ⋅ (y∣x).

There is an identity

(A(x,y) A(v,w))(B(v,w)
B(x,y)) = q̃(v,w,x,y)id2n .
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Proof. Since A(x,y)+A(v,w) =A(x+v,y +w) and B(x,y)+B(v,w) = B(x+v,y +w) we have

A(x+v,y +w)B(x+v,y +v) = q(x+v,y +w)id2n .

The mixed terms give
A(x,y)B(v,w)+A(v,w)B(x,y) = q̃(v,w,x,y)id2n . □

Thus if we restrict the matrices in Proposition 6.2 to an isotropic subspace Σ of q̃ we get a complex and
we will see that, for a sufficiently general choice of the isotropic subspace, the restriction to Σ is a minimal
free resolution of an Ulrich module over PΣ.

To define the isotropic subspace, let Λ be a skew-symmetric 2(n+1)×2(n+1) matrix of scalars, and set

GΛ = (
0 idn+1

idn+1 0
)Λ.

We have
(x∣y)GΛ ⋅ (y∣x) = (y∣x)Λ ⋅ (y∣x) = 0

and thus the equation (v∣w) = (x∣y)GΛ defines an isotropic subspace of q̃(v,w,x,y).
The matrices

A1 =A(x,y), B1 = B(x,y) and A2 =A((x∣y)GΛ), B2 = B((x∣y)GΛ)

define matrix factorizations of q1 = q(x,y) and q2 = q((x∣y)GΛ)). Let

AΛ =A1∣A2

be the concatenation, which is a 2n ×2n+1 matrix in the 2n+2 variables x0, . . . ,yn.

Theorem 6.3. For a general choice of Λ the ring k[x0, . . . ,yn]/(q1,q2) is a complete intersection with isolated
singularities and

MΛ ∶= cokerAΛ

is an Ulrich module of rank 2n−2 over this ring.

Proof. Set P = k[x0, . . . ,yn]. For each Λ we have maps

0 � MΛ
� P 2n �

(A1 A2)
P 2n+1(−1) �

⎛
⎜
⎝

B2
B1

⎞
⎟
⎠

P 2n(−2) � 0.

By our choice of A2 and B2 this is a complex.
We claim that for a general choice of Λ the ideal (q1,q2) is a prime ideal of codimension 2 with isolated

singularities. It suffices to prove this for a particular choice of Λ.
We will actually prove the result for matrices Λ of the form

Λ = ( 0 D
−D 0

)

where D is a diagonal matrix with entries di such that

d0, . . . ,dn,−d0, . . . ,−dn
are 2(n+1) different values. In this case

GΛ = (
−D 0
0 D

) , AΛ = (A(x0, . . . ,xn,y0, . . . ,yn)∣A(−d0x0, . . .−dnxn,d0y0, . . . ,dnyn),

and

q2 = q1(−d0x0, . . . ,−dnxn,d0y0, . . . ,dnyn) = −
n

∑
i=0
d2i xiyi .
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We will now show that V (q1,q2) is singular precisely at the coordinate points. The jacobian matrix of
(q1,−q2) is

( y0 y1 . . . yn x0 . . . xn
d20y0 d21y1 . . . d2nyn d20x0 . . . d2nxn

)

The squares d20 , . . . ,d
2
n are pairwise distinct, since d0, . . . ,dn,−d0, . . . ,−dn are 2(n + 1) distinct values by

assumption. Thus the zero locus of the ideal of 2× 2 minors of the jacobian matrix is the union of the
n+1 lines Li = V (⋃j /=i{xj ,yj}) defined by those linear combinations of the two rows that do not consist of
independent linear forms. These lines intersect V (q1,q2) in the 2n+2 coordinate points. It follows that
(q1,q2) has codimension 2 and isolated singularities, and thus is prime.

Since each qi is prime and Ai is part of a matrix factorization of qi , the determinant of Ai is a power
of qi . Thus if Λ is general, the maximal minors of AΛ generate an ideal of codimension at least 2, and
similarly for BΛ so the complex is exact by [BE73].

We conclude that
annMΛ = (q1,q2)

since any element of annMΛ ∖ (q1,q2) would lead to a support of codimension at least 3. Thus MΛ

is an Ulrich module over the ring P /(q1,q2) and the degree of MΛ is 2n, so the rank of MΛ as an
P /(q1,q2)-module is 2n−2. □

Theorem 6.4. Let k be an algebraically closed field of chark /= 2, and X ⊂P2n be a smooth complete intersection
of two quadrics. Then X carries an Ulrich bundle of rank 2n−2.

Corollary 6.5. Let k be an algebraically closed field of chark /= 2, and X ⊂ P2g+1 be a smooth complete
intersection of two quadrics. Then X carries an Ulrich bundle of rank 2g−1.

Proof of Corollary 6.5. Any smooth complete intersection in P
2g+1 is a hyperplane section of a smooth

complete intersection in P
2g+2. Taking n = g + 1, the restriction of the Ulrich module constructed in

Theorem 6.4 is an Ulrich module of rank 2g−1. □

Proof of Theorem 6.4. We obtain an Ulrich module on some smooth complete intersection by restricting MΛ

from above to a general hyperplane H =P2n ⊂P2n+1. The intersection will be smooth because V (q1,q2)
has only isolated singularities. To prove that every smooth complete intersection carries an Ulrich module
we need additional arguments. The complete intersection V (q′1,q′2) of two quadrics in P

2n is smooth if and
only if the discriminant

f = dethess(sq′1 +q′2) ∈ k[s]
of the pencil has 2n+1 distinct roots, and in that case q′1 and q′2 can be simultaneously diagonalized by
the argument given at the beginning of Section 4. Thus it suffices to construct an Ulrich module M′ on a
the complete intersection V (q′1,q′2) whose discriminant has any given set of 2n+1 distinct roots. In the
proof of Theorem 6.3 we constructed an Ulrich module for q1 =∑ni=0xiyi and q2 = −∑ni=0d2i xiyi for distinct
values d20 , . . . ,d

2
n . Since k is algebraically closed there exists an Ulrich module for V (∑ni=0xiyi ,∑ni=0aixiyi)

for every tuple of distinct values a0, . . . ,an. The corresponding Hessian is

H = ( 0 D′

D′ 0
) with a diagonal matrix D′ =

⎛
⎜⎜
⎝

s+ a0
⋱

s+ an

⎞
⎟⎟
⎠
.

We restrict the quadrics to the subspace generated by the columns of the (2n+2)× (2n+1) matrix of

B =
⎛
⎜⎜⎜⎜
⎝

1 0
⋱

0 1
b0 . . . b2n

⎞
⎟⎟⎟⎟
⎠
.
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Setting ℓi = s+ ai the Hessian of the restricted pencil is

BtHB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ℓnb0 ℓ0
0 ⋮ ⋱

ℓnbn−1 ℓn−1
ℓnb0 . . . ℓnbn−1 2ℓnbn ℓnbn+1 . . . ℓnb2n
ℓ0 ℓnbn+1

⋱ ⋮ 0
ℓn−1 ℓnb2n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Direct computation shows that the determinant of this matrix is

f = (−1)n2h
n

∏
i=0
ℓi = (−1)n2h

n

∏
i=0
(s+ ai)

with

h =
n−1

∑
i=0
(bibi+n+1∏

j≠i
(s+ aj))−bn∏

j≠n
(s+ aj).

Since the coefficients of ∏j≠i(s+ aj) are the elementary symmetric functions ei,k on {a0, . . . ,an}∖{ai}, we
obtain

(6.1) h = (b0bn+1, . . . ,bn−1b2n,−bn)E
⎛
⎜⎜⎜⎜
⎝

sn

⋮
s
1

⎞
⎟⎟⎟⎟
⎠

where E = (ei,k)i=0,...,n
k=0,...,n

. We claim that

detE = ∏
0≤i<j≤n

(ai − aj).

Regarding the ai ’s as variables, we see that detE ∈ k[a0, . . . ,an] is not identically zero, because
the term ∏n−1i=0 a

n−i
i occurs precisely once in the determinant as the product of the leading terms

1,a0,a0a1, . . . ,a0a1 . . .an−1 of the diagonal entries. On the other hand (ai − aj) is a factor of
detE ∈ k[a0, . . . ,an] because if ai = aj then the matrix E has two equal rows. So these linear forms
are factors of detE ∈ k[a0, . . . ,an], and their product coincides with detE for degree reasons and by
comparing the leading term.

Thus if the ai are distinct, then E is invertible, and every polynomial h of degree n in k[s] can be
represented in the form (6.1). In particular, we can choose b0, . . . ,b2n ∈ k such that the discriminant f is
equal to ∏ni=0(s+ ai)∏ni=1(s+ ci) for any 2n+1 distinct non-zero values a0, . . . ,an,c1, . . . ,cn ∈ k. A smooth
complete intersection of 2 quadrics in P

2n is determined up to projective equivalence by the 2n+1 distinct
roots of its discriminant, this concludes the proof. □
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