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Pseudo-effectivity of the relative canonical divisor and
uniruledness in positive characteristic

Zsolt Patakfalvi

Abstract. We show that if f : X → T is a surjective morphism between smooth projective
varieties over an algebraically closed field k of characteristic p > 0 with geometrically integral and
non-uniruled generic fiber, then KX/T is pseudo-effective.

The proof is based on covering X with rational curves, which gives a contradiction as soon as
both the base and the generic fiber are not uniruled. However, we assume only that the generic
fiber is not uniruled. Hence, the hardest part of the proof is to show that there is a finite smooth
non-uniruled cover of the base for which we show the following: If T is a smooth projective variety
over k and A is an ample enough line bundle, then a cyclic cover of degree p ∤ d given by a
general element of

∣∣∣Ad ∣∣∣ is not uniruled. For this we show the following cohomological uniruledness
condition, which might be of independent interest: A smooth projective variety T of dimenion n is
not uniruled whenever the dimension of the semi-stable part of Hn(T ,OT ) is greater than that of
Hn−1(T ,OT ).

Additionally, we also show singular versions of all the above statements.
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1. Introduction

The base-field k is algebraically closed and of characteristic p > 0, unless otherwise stated.
Consider a fibration f : X→ T between smooth projective varieties. Over characteristic zero ground-fields,

the following statement has been known for a while:

(1.1)

KX/T is pseudo-effective whenever one of the following two equivalent conditions has been
met for the geometric generic fiber Xη :

(Psef) KXη is pseudo-effective.
(N-ur) Xη is not uniruled.

For a precise reference, we refer to [Nak04, Theorem 4.1], but the statement has been implicit already in the
works of Viehweg; see, e.g., [Vie83]. Statements stating different (semi-)positivity properties of KX/T have
been used extensively in characteristic zero algebraic geometry, for example to questions such as

◦ subadditivity of Kodaira dimension (here there are particularly many references, with the few initial
ones being [Fuj78, Kaw81, Vie77, Vie83, Kol87]),
◦ construction of moduli spaces of K-/KSBA-stable varieties (see, e.g., [Vie89, KSB88, Fuj18, KP17,

CP21, XZ20]),
◦ hyperbolicity questions (see, e.g.,[VZ03, CHM97, Abr97]),
◦ non-vanishing conjecture (see, e.g., [Zha20]),
◦ geography of varieties (e.g, [CCJ20]),
◦ etc.

Motivated in part by the above applications, (semi-)positivity of the relative canonical bundle has been an
active area of research in the past ten years also over fields k of characteristic p > 0; see, e.g., [Pat14, Pat18,
CZ15, Eji24, EZ18, BCZ18]. In these results, extra conditions are imposed compared to characteristic zero
to exclude wild behavior in positive characteristics. By now, it is known that these extra conditions are
necessary, as statement (1.1) with the assumption (Psef) is known to fail; see [CEKZ21].

Additionally, assumptions (Psef) and (N-ur) of (1.1) are not equivalent in positive characteristic, and (N-ur)
does take into account some of the typical wild behavior; see the introduction of [PZ21]. Hence, one could
hope that statement (1.1) with condition (N-ur) still holds in positive characteristic, which is exactly our main
theorem.

Theorem 1.1 (Smooth case of Theorem 4.3). Let f : X→ T be a surjective morphism between smooth projective
varieties over k with integral and non-uniruled geometric generic fiber. Then KX/T is pseudo-effective.

Note that Theorem 1.1 implies that the examples of [CEKZ21] need to have uniruled geometric generic
fiber, and indeed they are (very) singular rational curves. Also, as indicated in the statement of Theorem 1.1,
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and as will also be the case for Theorem 1.3 and Corollary 1.4, we state a singular version in the later
parts of the article, allowing as bad singularities as the proof lets us do. This means complete intersection,
WO-rational, and WO-rational and Cohen-Macaulay singularities in the three respective cases.

Our last remark concerning Theorem 1.1 is that the pseudo-effectivity of KX/T is one of the weakest
possible semi-positivity properties. For example, under the same assumption, f∗ωX/T is known to be not
always semi-positive. In fact, there are examples of families f : X→ T of smooth hyperbolic curves such
that f∗ωX/T is not nef; see [MB81]. Nevertheless, from Theorem 1.1 it follows that even in this case, at least
the weaker property holds that KX/T is pseudo-effective. In fact, a similar phenomenon was known earlier:
In [Pat14], it was shown that KX/T is nef as soon as it is f -nef and the fibers have mild singularities. The
novelty of Theorem 1.1 is to weaken these assumptions to the almost most general case, at the price of
also weakening the conclusion from being nef to being pseudo-effective. In fact, the only possible further
generalization of Theorem 1.1 would be to remove the geometrically integral assumption, which we leave as
an open question.

As usual for results as above, Theorem 1.1 implies the following subadditivity of Kodaira dimension-type
result, where we refer to the first paragraph of Section 4.2 for the definition of the canonical divisor of Xη
and for the fact that KXη = KX |Xη .

Corollary 1.2. If f : X→ T is a surjective morphism between smooth projective varieties over k such that T is of
general type and the geometric generic fiber Xη is integral, non-uniruled with KXη big, then

κ(X) ≥ κ
(
KXη

)
+κ(T ).

The hardest in the proof of Theorem 1.1 is to construct a smooth non-uniruled finite cover of T . Being in
the situation of charp > 0 renders this hard in two aspects:

◦ It is hard to show that a variety is not uniruled.
◦ We need to use a construction that gives smoothness directly, as resolution of singularities is not

available.

So, next we state the by-product statements we obtained while constructing this non-uniruled cover. The
first one is a simple non-uniruledness condition, in terms of coherent cohomology. The author is in fact
not aware of earlier such conditions in the literature that work for arbitrary varieties. However, before the
statement, we need to recall the notion of Frobenius-semi-stable part.

If X is a projective variety over k, then the absolute Frobenius morphism F : X → X induces a homo-
morphism F∗ : H i(X,OX)→ H i(X,OX). This is referred to as the Frobenius action on H i(X,OX). The
semi-stable part of H i(X,OX) with respect to this action can be defined multiple ways. It is given both by the
Fp-linear subspace where F∗ acts by the identity and also by the image of a high-enough iteration of F∗ (see,
e.g., [CL98, Lemma 3.3]):

H i(X,OX)ss :=
(
H i(X,OX)F

∗=Id
)
⊗
Fp
k = (F∗)e

(
H i(X,OX)

)
for e≫ 0.

Theorem 1.3 (Smooth case of Theorem 3.16). If for a smooth projective variety X over k of dimension n > 0, the
inequality

dimkH
n−1(X,OX)ss < dimkH

n(X,OX)ss

holds, then X is not uniruled.

The construction of the smooth non-uniruled cover of T is then given by the following corollary of
Theorem 1.3.

Corollary 1.4 (Smooth case of Theorem 3.21). Let X be a smooth projective variety over k, and let H be an
ample line bundle on X. Then there exists an integer s > 0 with the following property: For every integer p ∤ d > 0
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and for every general D ∈ |Hsd |, the corresponding degree d cyclic cover

Y := SpecX

 d−1⊕
i=0

H−si


the algebra structure is given by H−sd � OX (−D) ↪→OX

is not uniruled for s≫ 0.

Lastly, we mention a direct consequence of Theorem 1.3 to mixed characteristic. The starting point is
the fact that uniruledness is not a constructible property in mixed-characteristic families. In fact, [Kol96,
Theorem IV.1.8.1] states that the locus in flat families where fibers are uniruled is a countable union of closed
subvarieties. And, over mixed-characteristic bases that are of finite type over Z, this is the best on can say.
For example, consider X := V (x4 + y4 + z4 + v4 = 0) ⊆ P

3
Z[1/2]. By [SK79, Theorem III], Xp is unirational

and hence also uniruled whenever p ≡ −1(4). On the other hand, if p ≡ 1(4), then Xp is globally F-split,
as the coefficient of xyzvp−1 in (x4 + y4 + z4 + v4)p−1 is non-zero. Equivalently, Xp is weakly ordinary, and
then for example [PZ21, Theorem 1.1] implies that Xp in this case is not uniruled. Hence, in this case both
the uniruled and the non-uniruled loci are infinite, and they both have density 1

2 .
Summarizing, the above example shows that the constructibility of neither the uniruled nor the non-

uniruled locus holds. And in fact, both loci can be not only infinite, but even of high density. On the other
hand, the author is not aware of results pertaining to general varieties claiming that these infinite behaviors
are not only possible, but they happen whenever certain criteria are satisfied. This seems to be an extremely
hard problem, especially if one would also say something about densities. Nevertheless, Theorem 1.3 implies
a statement of this type assuming the weak ordinarity conjecture.

The weak ordinarity conjecture, see [MS11, Conjecture 1.1], states that if XS → S is a smooth, projective
family over an integral, mixed-characteristic base of finite type over Spec(Z) with generic point η, then the
set {

s ∈ S a closed point
∣∣∣∣ dimk(s)H

i
(
Xs,OXs

)ss
= dimk(η)H

i
(
Xη ,OXη

) }
is dense.

Corollary 1.5. Let X be a smooth projective variety over a field k0 of characteristic zero such that
dimk0H

dimX(X,OX) > dimk0H
dimX−1(X,OX), and let XS → S be a model of X over an integral,

mixed-characteristic base of finite type over Spec(Z). Then, under the weakly ordinarity conjecture, the following
set is dense in S :

{ s ∈ S a closed point | Xs is not uniruled } .

1.1. The structure of the article and the outline of the proof

The main idea of the proof of Theorem 1.1, or rather of its singular version Theorem 4.3, is relatively
straightforward; the proof is given in Section 4. We use a bend-and-break argument together with a
base-change to a non-uniruled cover of the base, a few iterated Frobenius base-changes, and the fact
that by now it is known in any characteristic that the pseudo-effective cone is the dual of the cone of
movable curves. We refer to the proof of Theorem 4.3 for the details, and here we only explain the main
technical obstacle, which leads to the majority of the work done in the article: It is essential that during the
above-mentioned base-changes, the total space of the fibration stays integral and its singularities stay local
complete intersections, so that bend-and-break applies. The only way we are able to guarantee this is if the
base-changes are induced by finite flat covers of the base by smooth varieties.

Hence, the majority of article, that is, Section 3, is about showing the existence of a finite flat smooth
non-uniruled cover for any smooth projective variety X of dimension n. This is done by first showing in
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Theorem 3.16, which can be found in Section 3.2, that if the inequality

(1.2) Hn−1 (X,OX)ss < Hn (X,OX)ss

holds, then Hn
(
X,WOX,Q

)
, 0. It has been known that this non-vanishing implies non-uniruledness in

the case of WO-rational singularities; see [Esn03] and [PZ21, Proposition 4.6]. So, let us focus on how
one shows the non-vanishing. By the definition of Hn(X,WOX,Q), it is equivalent to finding an element
x ∈ Hn(X,WOX) such that pix , 0 for every integer i > 0. The main idea to achieve this is to show that
inequality (1.2) implies that the length of the semi-stable part Hn(X,WiOX)ss is a strictly monotone function
of i. Based on this realization, we show in the proof of Theorem 3.16 that there exist another strictly
monotone sequence ji and compatible elements xji ∈H

n
(
X,WjiOX

)ss
such that pixji , 0. The key here is

to realize that pi = V iFi , so as i ·dimHn−1(X,OX) gives an upper bound for the kernel of V i and as F acts

by bijection on Hn
(
X,WjiOX

)ss
, we have plenty of elements y ∈Hn

(
X,WjiOX

)ss
with piy , 0 as soon as

we choose ji to be large enough. We refer for the finer details to the proof of Theorem 3.16. Instead, we give
two more general remarks:

(1) We think it is essential that in the above argument, we allow ji to be much larger than i, that is, one
cannot always find an x = (xi) ∈Hn(X,WOX) = lim←−−H

n(X,WiOX) such that pixi , 0. Unfortunately,
giving a precise example to such behavior is very hard, as it needs an example of a variety with
Bockstein operators that either are injective or at least have very small kernel. So, we leave this as an
open question. Nevertheless, we cannot exclude the existence of such varieties, and hence we are
forced to allow ji to be much larger than i in the proof of Theorem 3.16.

(2) The above argument needs a setup of some category into which H j(X,WiOX) fits, which takes into
account the Frobenius actions and hence using which one can talk about semi-stable submodules.
This is a situation that resembles that of F-crystals, but instead of free W (k) modules, we consider
finite-length W (k)-modules. As we did not find a reference for this setting, we worked out the details
in Section 3.1.

Finally, we have to show that a cyclic cover Y of X as in Corollary 1.4 (or as in the singular version in
Theorem 3.21) satisfies condition (1.2). As for such covers Hn−1(Y ,OY ) is bounded, this boils down to
showing that dimkH

n(Y ,OY )ss grows indefinitely for a general D . This then boils down to showing that
the semi-stable subspace Hn(X,H−s)ss,D with respect to the following Frobenius action for general D grows
indefinitely as we increase s (here e > 0 is an integer such that d|pe − 1):

H−s // H−s ⊗Fe,∗OX � Fe∗H−sp
e · p

e−1
d D

// Fe∗H−s.

It is not hard to show this for a specific choice of D as soon asHs is ample enough, using the local description
of the Frobenius trace; see the proof of Theorem 3.21 in Section 3.4. Then, we show in Proposition 3.20,
which can be found in Section 3.3, that the statement deforms to the Frobenius action given by a general D .

Acknowledgements

The author is particularly grateful to Maciej Zdanowicz, from whom he learned a big part of the Witt-
cohomology techniques used in Section 3 while working on their joint paper [PZ21], and with whom he had
multiple extremely useful conversations about the article. The author would like to thank in general the
members of his group who were present at the group meetings when discussing the paper.

2. Notation

We fix an algebraically closed base-field k of characteristic p > 0. In the present article, variety means a
quasi-projective, integral scheme over k.



6 Zs. Patakfalvi6 Zs. Patakfalvi

We use Witt-sheaves and Witt-cohomology in Section 3.1 and Section 3.2. For the notation concerning
this, we refer to [GNT19, Section 2.5].

Throughout the article, the generic fiber of a morphism f : X→ T to an integral scheme is the fiber Xη
over the generic point η = Spec(K(T )) of T . This is not to be confused with the general fiber of f , by which
we mean the closed fibers over a non-empty open set of the base, assuming that T is of finite type over k.
In fact, the generic fiber typically behaves quite differently than the general fiber. On the other hand, the
geometric generic fiber Xη usually has a singularity behavior similar to that of the general fiber (see, e.g.,
[PW22, Proposition 2.1]).

2.1. Local complete intersection singularities

We use the definition of [Sta23] for local complete intersection singularities. The definition of when
a morphism f : X → Y is local complete intersection is given in [Sta23, Definition 069F], using Koszul-
regularity. However, for locally Noetherian schemes, this agrees with the usual definition that it factors
as

X

f

##

g
// Z

h // Y ,

where h is smooth and g is a closed embedding defined locally by a regular sequence; see [Sta23, Lemma 063L
and Definitions 063J, 063D, and 00LF].

If we specialize the above definition to Y = Spec(k), then we obtain the notion of local complete intersec-
tion singularities. That is, X has local complete intersection singularities if locally around each x ∈ X, X is a
closed subscheme of a smooth variety Z , where the ideal of the embedding is generated by a regular sequence
fi ∈ OX,x (i = 1, . . . , r). Equivalently, one can require that dimxX = dimxZ − r ; see [Mat89, Theorem 17.4].

Proposition 2.1.

(1) If f : X→ Y is a complete intersection morphism and Y has complete intersection singularities, then X
also has complete intersection singularities.

(2) If f : X → Y is a morphism of finite type between regular Noetherian schemes, then f is a complete
intersection morphism.

Proof. (1) This is shown in [Sta23, Lemma 069J].
(2) By the finite-type assumption, locally f can be factored as

X

f

$$
g
//
A
n
Y

h // Y ,

where g is a closed embedding. Applying [Sta23, Lemma 0E9J] yields that g locally is given by an ideal
generated by a regular sequence. □

We also note that complete intersection singularities are Cohen–Macaulay. So, if X has complete
intersection singularities, then X being reduced is decided at the generic points of X.

3. A flat non-uniruled smooth cover

3.1. Category of W (k)σ -modules of finite W (k)-length.

For the convenience of the reader, we present this material, which might be well known to the experts. The
reason is that we need an F-module-like theory that applies to cohomology groups of the form H i

(
X,WjOX

)
,

where X is projective.

https://stacks.math.columbia.edu/tag/069F
https://stacks.math.columbia.edu/tag/063L
https://stacks.math.columbia.edu/tag/063J
https://stacks.math.columbia.edu/tag/063D
https://stacks.math.columbia.edu/tag/00LF
https://stacks.math.columbia.edu/tag/069J
https://stacks.math.columbia.edu/tag/0E9J
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Before we state the definition of our main objects, let us also explain two notational decisions:

◦ As usual in the theory of F-crystals, we also denote the Frobenius morphism on W (k) by σ : W (k)→
W (k) to avoid mixing it up with the Frobenius action on our modules.
◦ To avoid the clash of notation with the theory of F-crystals, which concerns free W (k)-modules, as

explained above, we call our modules W (k)σ -modules.

Just for the definition of W (k)σ -modules, we do not need to restrict to the case of finite lengthW (k). We will
impose this additional condition only later where it is necessary.

Definition 3.1. A W (k)σ -module is a pair (M,F) such that M is a W (k)-module and F : M →M is an
additive homomorphism such that

(3.1) ∀m ∈M,∀r ∈W (k) : F(rm) = σ (r)F(m).

A W (k)σ -submodule of a W (k)σ -module M is a W (k)-submodule N ⊆M such that F(N ) ⊆N .

Lemma 3.2. The action of σ is invertible on W (k).

Proof. Using the presentation of [Ser79, Section II.6] or [GNT19, Section 2.5], the elements of W (k) can be
thought of as vectors (a0, a1, . . . ) ∈ kN, and the map σ is given by (a0, a1, . . . ) 7→

(
a
p
0, a

p
1, . . .

)
. As k is perfect,

this is bijective. □

Notation 3.3. Let X be a projective variety over k of dimension n. We have ring homomorphisms

R : Wj+1OX →WjOX , V : WjOX →Wj+1OX , p : WjOX →WjOX , and F : WjOX →WjOX .

Using the notation of [Ser79, Section II.6] or [GNT19, Section 2.5], these homomorphisms are given by

R(a0, . . . , aj ) = (a0, . . . , aj−1), V (a0, . . . , aj−1) = (0, a0, . . . , aj−1),

F(a0, . . . , aj−1) =
(
a
p
0, . . . , a

p
j−1

)
, and p(a0, . . . , aj−1) =

(
0, ap0, . . . , a

p
j−2

)
.

In particular, we have the relations

p = VFR, FV = VF, pF = Fp, and V p = pV .

This then induces homomorphisms and also the respective relation after applying H i(X,_). By abuse of
notation, we also denote these induced homomorphisms by R, V , p, and F.

Remark 3.4. Using Notation 3.3, the following properties will be important for us. Apart from the first
one, these properties hold first on the ring level, and then consequently also after applying H i(X,_) by
functoriality.

So, the properties are as follows, where r ∈W (k) and m ∈H i
(
WjOX

)
are arbitrary:

(1) F and R are ring homomorphism before applying H i(X,_).
(2) F, V , R, and p are additive both before and after applying H i(X,_).
(3) F(r ·m) = σ (r) ·m.
(4) V (r ·m) = σ−1(r) ·V (m), where σ : W (k)→W (k) is bijective by Lemma 3.2.
(5) p(r ·m) = r · (pm).

Lemma 3.5. If X is a projective variety over k and i ≥ 0 and j ≥ 1 are integers, then H i
(
X,WjOX

)
is a

W (k)σ -module with F : H i
(
X,WjOX

)
→H i

(
X,WjOX

)
being the structure homomorphism.

Proof. This follows from the identities of Remark 3.4. □

Additionally, we want to work for different compositions of the maps F, V , p, R and the Bockstein
operators. These are not always W (k)-linear. This is the motivation for the notion of generalized W (k)σ -
module homomorphism, defined below.
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Definition 3.6. Let M and N be W (k)σ -modules, and let α : M→N be a map of sets. Then,

(1) α is an additive F-homomorphism if it is an additive homomorphism such that the following diagram
commutes:

(3.2) M

F
��

α // N

F
��

M
α
// N ;

(2) α is a W (k)σ -homomorphism if it is both an additive F-homomorphism and a W (k)-module homo-
morphism;

(3) α is a generalized W (k)σ -homomorphism if it is an additive F-homomorphism and there is an i ∈Z
such that for every r ∈W (k), the following diagram commutes:

M
α //

x 7→r·x
��

N

x 7→σ i (r)·x
��

M
α
// N .

The integer i is called the index of α.

Example 3.7. According to Remark 3.4, any composition of the maps F, V , R, and p on H i
(
X,WjOX

)
is a

generalized W (k)σ -module homomorphism.

We draw attention to the fact that in the next proposition, some statements are about W (k)-modules and
others are about W (k)σ -modules.

Lemma 3.8. Let M and N be W (k)σ -modules, and let α : M→N be a generalized W (k)σ -module homomor-
phism.

(1) If L ⊆M is a W (k)-submodule of M, then α(L) is a W (k)-submodule of N .
(2) If L ⊆N is a W (k)-submodule of N , then α−1(L) is a W (k)-submodule of M .
(3) kerα is a W (k)σ -submodule of M .
(4) imα is a W (k)σ -submodule of N .
(5) cokerα inherits a natural W (k)σ -module structure from N .
(6) lengthW (k)M − lengthW (k)kerα = lengthW (k) imα. (This is not obvious because according to Defini-

tion 3.6, α need not be a W (k)-homomorphism.)

Proof. Let i be the index of α; see point (3) of Definition 3.6.
(1) As α is additive, α(L) is an additive subgroup of N . To see that it is in fact a W (k)-submodule, choose

m ∈ L and r ∈W (k). Then r ·α(m) = α
(
σ−i(r) ·m

)
∈ α(L).

(2) Similarly, choose m ∈ α−1(L) and r ∈W (k). Then α(r ·m) = σ i(r) ·α(m) ∈ L, and hence r ·m ∈ α−1(L).
(3) imα = α(M) is a W (k)-submodule by point (1). So, we only have to show that F(imα) ⊆ imα. This

follows from the commutative diagram (3.2).
(4) Similarly, kerα = α−1(0) is a W (k)-submodule by point (2). So, we only have to show that

F(kerα) ⊆ kerα, which again follows from (3.2).
(5) By point (4), imα is a W (k)-submodule of M, and hence cokerα inherits a natural W (k)-module

structure. Additionally, F also descends to cokerα as F(imα) ⊆ α holds by point (4) as well.
(6) Note that α induces an additive bijection α̃ : M

/
kerα → imα. Using that α is a generalized

W (k)σ -homomorphism, we see that so is α̃. The only reason we are not ready is that if the index is not zero,
then α might not be an actual W (k)-module homomorphism. However, by points (1) and (2), the chains of
submodules of M

/
kerα and imα correspond to each other via α̃. This concludes our proof. □
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Lemma 3.9. For every integer j > 0, lengthW (k)H
i
(
X,WjOX

)
is finite.

Proof. We give a proof by induction on j . If j = 1, then WjOX = OX , and the statement follows straight from
the projectivity of X. For j > 1, consider the exact sequence

(3.3) H i(X,OX)
V // H i

(
X,WjOX

) R // H i
(
X,Wj−1OX

)
.

According to Lemma 3.5 and Example 3.7, the modules and the maps of (3.3) are W (k)σ -modules and
generalized W (k)σ -module homomorphisms. By the induction hypothesis, their lengths over W (k) are finite.
Then Lemma 3.8 concludes our proof. □

Definition 3.10. For a W (k)σ -module M with lengthW (k)M finite, consider Fe(M) ⊆M for every integer
e > 0. Applying Lemma 3.8 with α = Fe, this gives a descending chain of W (k)σ -submodules of M . As
lengthW (k)M <∞, this chain stabilizes. Hence, we may define

Mss := Fe(M) for e≫ 0.

Note: By point (4) of Lemma 3.8, Mss is a W (k)σ -submodule.

Proposition 3.11. Let C be the category of finite W (k)-length W (k)σ -modules with arrows being the generalized
W (k)σ -module homomorphisms.

(1) For any arrow α in C, kerα, imα, and cokerα are also in C (here kerα, imα, and cokerα are taken
as for additive groups, and then they are endowed with a W (k)σ -module structure using Lemma 3.8 ).

(2) M 7→Mss is an exact functor C → C.
(3) lengthW (k)(_) is additive in exact sequences in C.

Remark 3.12. The category C of Proposition 3.11 has somewhat unusual properties too, which are not
mentioned in Proposition 3.11. This is due to allowing generalized W (k)σ -module homomorphisms of
different indices into the category. The main issue is that it is not possible to add homomorphisms with
different indices, or to construct homomorphisms to products induced by component homomorphisms of
different indices. Therefore, C is not abelian, and it does not have products. One can solve this by disallowing
generalized W (k)σ -homomorphisms and introducing instead a notion of twist of the objects (i.e., twisting
the W (k)σ -structure by an adequate power of σ ). This way one can turn every commutative diagram in C
into a commutative diagram in this more restrictive category by adequately twisting the modules. To avoid
writing twists in each diagram, we chose the first approach.

We prove Proposition 3.11 after a few more lemmas.

Lemma 3.13. Let M and N be two finite W (k)-length W (k)σ -modules, and let α : M → N be an additive
F-homomorphism. Then

(1) F|Mss is an isomorphism;
(2) α(Mss) ⊆N ss;
(3) if α is surjective, then α(Mss) =N ss.

Proof. (1) Fix an e > 0 such that Fe
′
(M) = Fe(M) for every e′ ≥ e. Then F|Fe(M) : Fe(M)→ Fe+1(M) = Fe(M)

is surjective. Now, point (6) of Lemma 3.8 shows that length = ker
(
F|Fe(M)

)
= 0; that is, F|Fe(M) is bijective.

(2) Diagram (3.2) yields the following commutative diagram:

(3.4) M

Fe
��

α // N

Fe
��

M
α
// N .

The statement of the present point then follows directly from diagram (3.4).
(3) This also follows from (3.4), taking into account that α is surjective. □
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Remark 3.14. Point (2) of Lemma 3.13 implies that if α : M→N is a generalized W (k)σ -module homomor-
phism, then there is an induced generalized W (k)σ -module homomorphism αss : Mss→N ss.

Lemma 3.15. Consider an exact sequence of W (k)σ -modules of finite W (k)-length with arrows being generalized
W (k)σ -module homomorphisms:

0 // M
α // N

β
// L // 0.

Then

0 // Mss αss
// N ss βss

// Lss // 0

is exact.

Proof. According to point (3) of Lemma 3.13, we only have to show that kerβss = imαss. This is equivalent
to showing that α(Mss) =N ss ∩kerβ, which is further equivalent to (kerβ)ss =N ss ∩kerβ. We prove this
last one. As (kerβ)ss is contained in both N ss and kerβ, we have (kerβ)ss ⊆N ss ∩kerβ. So, we only have
to show the opposite containment, for which it is enough to show that F|N ss∩kerβ is bijective.

We note at this point that as both kerβ and N ss are W (k)σ -submodules of N , so is N ss ∩ kerβ. In
particular, F|N ss∩kerβ is a generalized W (k)σ -module endomorphism of N ss∩kerβ. Additionally, by point (1)
of Lemma 3.13, F|N ss is injective. So, we obtain that F|N ss∩kerβ is an injective generalized W (k)σ -module
endomorphism of N ss ∩kerβ. Point (6) of Lemma 3.8 then shows that this endomorphism in fact has to be
surjective, and hence bijective. □

Proof of Proposition 3.11. Point (1) is shown in Lemma 3.8. Point (2) is shown in Remark 3.14 and Lemma 3.15.
Point (3) is shown in point (6) of Lemma 3.8. □

3.2. Witt non-vanishing criterion

Theorem 3.16. If for a projective variety X over k of dimension n > 0, the inequality

(3.5) dimkH
n−1(X,OX)ss < dimkH

n(X,OX)ss

holds, then Hn(X,WOX,Q) , 0.
In particular, if X additionally is normal and it has WO-rational singularities (e.g., X is smooth), then X is

not uniruled.

Proof. The addendum follows directly from [PZ21, Proposition 4.6]. So, we only show the statement that
Hn

(
X,WOX,Q

)
, 0.

Throughout the rest of the proof, all our cohomology groups are in the category C of Proposition 3.11,
except a one-time mention of Hn(X,WOX). In particular, we will use the statements of Proposition 3.11,
without each time explicitly indicating a reference to that proposition.

Step 0: Initial setup. Set

r := dimkH
n(X,OX)ss = lengthW (k)H

n(X,OX)ss.

It is enough to exhibit

x = (xj ) ∈Hn(X,WOX) = lim←−−H
n
(
X,WjOX

)
such that

(3.6) ∀i ≥ 1, pix , 0 ⇐⇒ ∀i ≥ 1, ∃ji > 0 : pixji , 0.

So, our goal is to exhibit xji as above satisfying the second equivalent condition of (3.6). We will do this by

induction on i, and we will choose xji such that xji ∈H
n
(
X,WjiOX

)ss
.
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Step 1: The semi-stable subspace grows indefinitely. Consider, for any integer j ≥ 0, the exact sequence

Hn−1
(
X,WjOX

) B // Hn(X,OX)
V // Hn

(
X,Wj+1OX

) R // Hn
(
X,WjOX

)
// 0.

By taking the semi-stable subspace, we obtain another exact sequence:

(3.7) Hn−1
(
X,WjOX

)ss Bss
// Hn(X,OX)ss

V ss
// Hn

(
X,Wj+1OX

)ss Rss
// Hn

(
X,WjOX

)ss // 0.

By taking lengthW (k)(_) and using (3.5), we obtain that

(3.8) lengthW (k)H
n
(
X,Wj+1OX

)ss
> lengthW (k)H

n
(
X,WjOX

)ss
=⇒ lengthW (k)H

n
(
X,WjOX

)ss
≥ j.

Step 2: Rss : Hn
(
X,Wj+1OX

)ss
→Hn

(
X,WjOX

)ss
is surjective. This follows from (_)ss being an exact

functor and Hn
(
X,Wj+1OX

)
→Hn

(
X,WjOX

)
being surjective.

Step 3: Start of the induction. As Hn(X,OX) , 0 by (3.5), we may set j0 := 1, and we may choose
xj0 ∈H

n(X,OX) to be any non-zero element.

Step 4: Induction step, initial setup. So, fix an integer i > 0, and assume that xji−1 ∈ H
n
(
X,Wji−1OX

)ss
is chosen. In particular, we have pi−1xji−1 , 0. We have to choose ji > ji−1 and xji ∈H

n
(
X,WjiOX

)ss
such

that Rji−ji−1
(
xji

)
= xji−1 and pixji , 0.

Now consider, for any integer t > ji−1, the diagram

0 // WtOX
V i
// Wt+iOX

Rt // WiOX // 0.

Taking cohomology and then the semi-stable subspace, we obtain

(3.9) Hn−1 (X,WiOX)ss
Bss
i,t // Hn (X,WtOX)ss

V i
// Hn (X,Wt+iOX)ss /

According to (3.8), we may choose a t > ji−1 such that Z := Kerα ⊈ imBssi,t =: M, where α is the

homomorphism
(
Rt−ji−1

)ss
: Hn (X,WtOX)ss→Hn

(
X,Wji−1OX

)ss
. Fix this value of t, and set ji := t + i.

Step 5: We claim that α−1
(
xji−1

)
⊈M . Indeed, assume the opposite, that is, that α−1

(
xji−1

)
⊆M . By

Step 2, there is a z ∈ α−1
(
xji−1

)
. Hence, we have Z + z = α−1

(
xji−1

)
, and then Z + z ⊆M . Using the fact that

M is additively closed, we then have the implications

z ∈M =⇒−z ∈M =⇒−z+ (z+Z) = Z ⊆M.

This contradicts the choice of t made in Step 4.
Step 6: Conclusion of the induction step. By Step 5, we may choose a z′ in α−1

(
xji−1

)
\M . In particular, as

M is the image of the left-side map of the exact sequence in (3.9), we obtain that V i(z′) , 0. Now choose xji
to be any element of Hn

(
X,WjiOX

)ss
mapping to z′ . By Step 2, this is possible. Additionally, as V i(z′) , 0,

we have

pixji = F
iV iRi

(
xji

)
= FiV i(z′) ,

0 , V i (z′) ∈Hn
(
X,WjiOX

)ss
, and F is bijective on Hn

(
X,WjiOX

)ss
0 □
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3.3. Deformation of (Frobenius) semi-stable subspaces

Recall the following way of defining different Frobenius actions on a fixed line bundle: Let L be a line
bundle on a projective scheme X over k of dimension n, let p ∤ d be an integer, and let D ∈

∣∣∣Ld ∣∣∣ be a divisor.
Also fix an integer e > 0 such that d|pe − 1. Then, one may define a Frobenius action induced by D on L−1

given by the following composition:

(3.10) L−1 //

ηL,D

,,
L−1 ⊗Fe∗OX �

projection formula

Fe∗F
e,∗L−1 � Fe∗L

−pe

· p
e−1
d D

// Fe∗L
−1.

Applying Hn(X,_) to the this composition, we obtain a pe-linear action ψL,D on Hn
(
X,L−1

)
. We denote by

Hn
(
X,L−1

)ss,D
the semi-stable part with respect to ψL,D , that is, the image of a high-enough iteration of

ψL,D . We suppressed the integer e from the notation of the semi-stable part, as it is an elementary exercise
to see that the action is independent of the choice of e up to passing to a divisible-enough iteration.

Recall that a perfect point y of a scheme Y is a morphism Spec(L)→ Y such that L is a perfect field.

Lemma 3.17. Let E be a locally free sheaf of finite rank over a Noetherian integral scheme Y , and let F ⊆ E be a
coherent subsheaf. Then for every y ∈ Y ,

rkF ≥ dimk(y) im(F ⊗ k(y)→E ⊗ k(y)) .

Proof. Set I := im(F ⊗ k(y)→E ⊗ k(y)), and set r := dimk(y) I . We are supposed to show that rkF ≥ r . We
have

(3.11) dimk(y)

(
k(y)⊗

(
Ey

/
Fy

))
=

right exactness of tensor product

dimk(y) (E ⊗ k(y))−dimk(y) I =

E is locally free

rkE − r.

Hence, if η is the generic point of Y , then the following computation concludes our proof:

rkE − rkF = rk
(
Ey

/
Fy

)
= dimk(η)

(
k(η)⊗

(
Ey

/
Fy

))
≤

[Har77, Exercise II.5.8]

dimk(y)

(
k(y)⊗

(
Ey

/
Fy

))
=

(3.11)

rkE − r. □

Proposition 3.18. Consider the following situation:

(1) Let f : X → Y be a projective, flat, Gorenstein morphism between varieties over k with geometrically
integral fibers of dimension n;

(2) let L be a line bundle on X such that dimk(y)H
n
(
Xy ,L

−1
y

)
is a constant function of y ∈ Y ;

(3) let d > 0 be an integer such that p ∤ d;
(4) let D be an effective divisor on X, not containing any fiber, such that OX(D) � Ls; and

(5) suppose that for some perfect point y0 ∈ Y , we have l := dimk(y0)H
n
(
Xy0 ,L

−1
y0

)ss,Dy0 > 0.

Then, there is a non-empty open set U ⊆ Y such that dimk(y)H
n
(
Xy ,L

−1
y

)ss,Dy ≥ l for every perfect point y ∈ Y .
Proof. The main technical difficulty in proving Proposition 3.18 is that one needs to work with a relative
version of the Frobenius morphism. That is, one needs a morphism that restricts on each (perfect) fiber
to the Frobenius morphism of the corresponding fiber. This morphism is called the eth relative Frobenius
morphism Ferel of f , and it exists only after an adequate iterated Frobenius base-change, as shown on the
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following diagram:

Xe

f e

%%

Ferel **
FeX

,,X ×Y Y e //

��

X
f��

Y e
FeY

// Y .

Additionally, the depth of this base-change depends on the considered iteration of the Frobenius action on
the fibers. Keeping track of these base-changes is notationally somewhat burdensome.

So, we have to work with Frobenius pullbacks of the base. Hence we adopt the following notation:

◦ Choose an integer e > 0 such that d|pe − 1.
◦ Set r := pe−1

d .
◦ Since the statement is local, we may assume that Y is affine and regular, with A = Γ (Y ,OY ).
◦ Set φ := Fe and Ai := A1/pie = Fie∗ A. In fact, by abuse of notation, we will use φ for FeS , where S is

any of the schemes appearing in the proof.

◦ Let ξ be the natural morphism A→ A1 sending x to x =
(
x1/p

ie
)pie

.

Consider the following commutative diagram of relative Frobenii of f , where we used the commutative
algebra notation on the right side and the algebraic geometry notation on the left side. In fact, as all
considered schemes are finite inseparable over X, diagram (3.12) contains the pushforwards to X of the
structure sheaves of the considered spaces, instead of the spaces themselves. Also note that for the whole
proof, pushforward is understood to have higher priority in the order of operations than tensor product.

(3.12) OX ⊗AAs

ξ⊗A1As

��

OX ⊗AA1/pse

��

φ∗OX ⊗A1
As = φ∗ (OX ⊗AAs−1)

φ∗ξ⊗A2As=φ∗(ξ⊗A1As−1)
��

O1/pe

X ⊗A1/pe A1/pse

��
...

φs−2∗ ξ⊗As−1As=φ
s−2
∗ (ξ⊗A1A2)

��

...

��

φs−1∗ OX ⊗As−1 As = φ
s−1
∗ (OX ⊗AA1)

φs−1∗ ξ

��

O1/p(s−1)e

X ⊗
A1/p(s−1)e A

1/pse

��

φs∗OX O1/pse

X .

The notable feature of diagram (3.12) is the following:

(3.13)

For any perfect point y ∈ Y (or equivalently a non-zero k-algebra homomorphism A→
L =: k(y), where L is a perfect field), by restricting (3.12) to y1/p

se
(
or equivalently by

applying (_) ⊗A1/pse k(y)1/p
se
)
, we obtain the iterated relative Frobenii of Xy , and then

by the perfectness of k(y), we may identify these morphisms with the iterated absolute
Frobenii of Xy .
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Now tensor the left side of (3.12) by L−1 over A. Using a considerable amount of projection formulas
together with the fact that φ∗L−1 � L−p

e
, we obtain the following commutative diagram, where we define

ζ : L−1 ⊗AA1→ φ∗L
−pe by ζ := ξ ⊗A L−1:

(3.14) L−1 ⊗AAs

ζ⊗A1As

��

φ∗L
−pe ⊗A1

As = φ∗
(
L−p

e ⊗AAs−1
)

φ∗ζ⊗A2As=φ∗(ζ⊗A1As−1)
��
...

φs−2∗ ζ⊗As−1As=φ
s−2
∗ (ζ⊗A1A2)

��

φs−1∗ L−p
(s−1)e ⊗As−1 As = φ

s−1
∗

(
L−p

(s−1)e ⊗AA1

)
φs−1∗ ζ

��
φs∗L

−pse .

Now modify (3.14) so that after each homomorphism, we apply multiplication by rD (after also applying
adequate φi∗(_) and (_)⊗Aj As). This way we obtain the following diagram, where η is the composition of ζ
with multiplication by rDA1

:

(3.15) L−1 ⊗AAs

η⊗A1As

��

φ∗L
−1 ⊗A1

As = φ∗
(
L−1 ⊗AAs−1

)
φ∗η⊗A2As=φ∗(η⊗A1As−1)
��
...

φs−2∗ η⊗As−1As=φ
s−2
∗ (η⊗A1A2)

��

φs−1∗ L−1 ⊗As−1 As = φ
s−1
∗

(
L−1 ⊗AA1

)
φs−1∗ η

��
φs∗L

−1.

Using the notation of (3.13), we obtain that

(3.16)
the restriction of the homomorphisms of (3.15) over y can be identified with the iterations
of ηLy ,Dy .

Now apply Rnf∗(_) to (3.15). Note that as n is the dimension of all fibers of f , in this situation Rnf∗(_)
commutes with arbitrary base-change for coherent sheaves flat over Y . Hence, if we define E := Rnf∗L−1,
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then we obtain, for every integer 0 ≤ i ≤ s,

(3.17) Rnf∗
(
φi∗L

−1 ⊗Ai As
)
� Rnf∗φ

i
∗
(
L−1 ⊗AAs−i

)
�

f ◦φ = φ ◦ f and φ is affine

φi∗R
nf∗

(
L−1 ⊗AAs−i

)

�

Rnf∗(_) commutes with arbitrary base-change for coherent sheaves flat over Y

φs∗φ
s−i,∗Rnf∗L

−1 = φs∗φ
s−i,∗E .

Similarly, by defining ψ = Rnf∗(η), we obtain, for every integer 0 ≤ i ≤ s − 1,

(3.18) Rnf∗φ
i
∗
(
η ⊗A1

As−i
)
= φs∗φ

s−i−1,∗(Rnf∗(η)) = φ
s
∗φ

s−i−1,∗(ψ).

Combining (3.15), (3.17), and (3.18), and disregarding the φs∗, we obtain the following commutative diagram:

(3.19) φs,∗E
ψs

11
φs−1,∗(ψ)

// φs−1,∗E
φs−2,∗(ψ)

// · · ·
φ∗(ψ)

// φ∗E
ψ

// E .

Using the notation of (3.13) and (3.16), as Rnf∗(_) commutes with arbitrary base-change, we see that

(3.20)
the restriction of the homomorphisms of (3.19) over y can be identified with the iterations
ψLy ,Dy .

However, a warning should be given here: (3.20) does not mean that (imψy)⊗ k(y) = imψLy ,Dy , where
ψLy ,Dy is defined in (3.10). In fact, we have

(3.21) im
(
ψLy ,Dy

)s
= im

(
(imψs)⊗ k(y) −→ E ⊗ k(y) �Hn

(
Xy ,L

−1
y

))
.

Now note that assumption (2) implies that E is locally free. Then consider (3.21) for the special case y = y0.
By assumption (5) and Lemma 3.17, we obtain that rk(imψs) ≥ l. In particular, as rk(imψs) is a monotone
decreasing function of s, there is an integer t such that rk(imψs) is the same positive number for every
s ≥ t. Note that by assumption (5), this number is at least l.

We claim the following disjointness of subsheaves of φt,∗E :

(3.22)
(
φt,∗ imψt

)
∩kerψt = 0.

Indeed, if the intersection was not zero, then as E is locally free, the intersection would have positive rank,
and hence imψ2t = ψt

(
φt,∗ imψt

)
would have rank smaller than that of imψt . This is impossible by the

choice of t, showing (3.22).
Equation (3.22) implies that ψt |φt,∗ imψt : φt,∗ imψt → imψt is an isomorphism. Hence, for any integer

j > 0, we have imψjt = imψt . Additionally, by shrinking Y we may assume that both imψt and E
/
imψt

are locally free. In particular, for all y ∈ Y ,
(
imψt

)
⊗ k(y)→E ⊗ k(y) is an injection. Then (3.21) shows that

for every integer j > 0, we have dimk(y) im
(
ψLy ,Dy

)jt
= rk

(
imψt

)
≥ l. This concludes our proof. □

3.4. Non-vanishing of a specific Frobenius action

Remark 3.19. In what follows, the following fact will be essential: If X is any variety and x ∈ Xreg is a closed
point and t1, . . . , tn is a system of regular parameters at x, then the trace homomorphism TrFe : Fe∗ωX →ωX
can be identified in the formal neighborhood of x with the following:

Fe∗k⟦x1, . . . ,xn⟧ ∋
n∏
i=1

x
ji
i 7−→


∏n
i=1 x

ji−pe−1
pe

i ∈ k⟦x1, . . . ,xn⟧ if pe|ji − pe − 1 (∀i),

0 ∈ k⟦x1, . . . ,xn⟧ otherwise.
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Proposition 3.20. Let X be a projective S2 variety of dimension n. Let H be an ample line bundle, and let
l > 0 be an integer. Then, for every integer s≫ 0, the following holds: For any integer p ∤ d > 0 and for general
D ∈

∣∣∣Hsd ∣∣∣, we have dimkH
n(X,H−s)ss,D ≥ l.

Proof. Choose an integer e > 0 such that d|pe − 1, and set r := pe−1
d .

According to Proposition 3.18, we only have to exhibit a single D as above. Additionally, with this single D ,
we can show that the Serre-dual action has at least l-dimensional semi-stable part. Additionally, in degrees 0
and n, Serre duality works for S2 varieties by the proof of [PZ21, Proposition 2.4]. Hence, we need to show
that the following action on H0(X,ωX ⊗Hs) has at least l-dimensional semi-stable part:
(3.23)

H0(X,ωX ⊗Hs)
·rD // H0

(
X,ωX ⊗Hsp

e
)
�H0(X,Hs ⊗Fe∗ωX)

H0(X,TrFe ⊗ IdHs )// H0(X,ωX ⊗Hs).

Fix pairwise-distinct closed points x1, . . . ,xl ∈ Xreg. For each 1 ≤ j ≤ l, let{
ti,j ∈mX,xj | i = 1, . . . ,n, j = 1, . . . , l

}
be a regular system of parameters, and define the ideals Ij :=

(∏n
i=1 ti,j

)
· OX,x ⊆ OX,x. After this, choose an

integer s≫ 0 satisfying the following conditions:

◦ For all 1 ≤ j ≤ l, there are sections gj ∈H0(X,ωX ⊗Hs) such that

(3.24)
(
gj
)
⊗ k

(
xj ′

)
=

{
1 if j = j ′ ,
0 otherwise,

◦ There is an h ∈H0(X,Hs) such that for all 1 ≤ j ≤ l, we have hxj ∈ Ij \
(
Ij ·mX,xj

)
.

Let Γ ∈ |Hs| be the divisor corresponding to h, and set D := dΓ . The main point is that if we apply the
action of (3.23) to gj , then by the above choice of D , this is the same as applying the trace (or more precisely
H0 (X,TrFe ⊗ IdHs )) to gj · hp

e−1. As

(
gj ′ · hp

e−1
)
xj
∈

I
pe−1
j \ Ip

e−1
j ·mX,xj if j ′ = j,

I
pe−1
j ·mX,xj otherwise.

using Remark 3.19, it follows that trace takes gj · hp
e−1 to a section that also satisfies property (3.24). In

particular, the same holds for the image of gj via the action of (3.23). Iterating this argument, we obtain
that after iterating the action of (3.23) arbitrarily many times, for every 1 ≤ j ≤ l, there will be a section
in the image that is non-zero at xj and is zero at xj ′ for every j , j ′ . This shows that the image is at least
l-dimensional after arbitrarily many iterations, concluding our proof. □

3.5. General cyclic covers

Theorem 3.21. If X is a projective, S3 variety of dimension n over k and H an ample line bundle on X, then for
every integer s≫ 0, the following holds: For every integer p ∤ d > 0 and for every general D ∈ |Hsd |, if Y is the
corresponding degree d cyclic cover, then Hn

(
Y ,WOY ,Q

)
, 0.

If additionally X is normal and Y has WO-rational singularities, then Y is not uniruled for s≫ 0.

Proof. Let π : Y → X be the considered cyclic cover. Then, we have π∗OY �
⊕d−1

j=0 H
−js, and as D is

general, Y is normal. By the proof of [PZ21, Proposition 2.4], in degrees 1 and n− 1, Serre duality works for
S3 varieties. Pairing this up with Serre vanishing, we obtain that for every s≫ 0, we have Hn−1

(
X,H−sj

)
= 0

for every integer j > 0. Hence, for every integer s≫ 0, we have Hn−1(Y ,OY ) �Hn−1(X,OX). In particular,
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according to Theorem 3.16, it is enough to show that for any integer l > 0, for every integer s≫ 0, we have
Hn(Y ,OY )ss , 0, for choices of d and D as in the statement of the theorem. However, it is easy to see that

Hn(Y ,OY )ss =Hn(X,OX)ss ⊕

 d−1⊕
j=1

Hn
(
X,H−sj

)ss,D .
So, we are done by Proposition 3.20. □

In Theorem 3.21, it is expected that it is enough to assume that X has WO-rational singularities, instead
of the current assumption that Y has WO-rational singularities. The corresponding questions are the
following.

Question 3.22. Suppose that X is a WO-rational variety over k.

(1) Does a general hyperplane section of X have WO-rational singularities?
(2) Is a general cyclic cover, as in Theorem 3.21, WO-rational?

4. Proof of Theorem 1.1 and Corollary 1.2

4.1. Lemmas

Lemma 4.1. Let f : X→ T be a surjective projective morphism of varieties such that both T is not uniruled and
the geometric generic fiber is integral. If X is uniruled, then so is the geometric generic fiber Xη of f .

Proof. First, note that by the definition [Kol96, Definition IV.1.1], being uniruled is invariant under finite
base-extension of geometrically integral varieties. Also taking into account [Kol96, Proposition IV.1.3], one
can even drop the word “finite.” In particular, we may assume that k is uncountable.

Second, note that by shrinking T , we may assume that f is flat. Then [Kol96, Theorem 1.8.1] tells us that
there are countably many subsets

⋃
i Ti such that Xt is uniruled if and only if t < Ti . Hence, it is enough to

show that Ti , T for all i, or equivalently that the very general closed fiber is uniruled.
As T is not uniruled, according to [Kol96, Proposition IV.1.3.6] we are in the following situation: If Ri

is the closure of the image of the cycle map from the universal family over the space of degree i rational
curves on T , then the following hold:

◦ Ri , T for every i.
◦ There is no rational curve in T through any t ∈ T \ (

⋃
i Ri).

Furthermore, according to [Kol96, Proposition IV.1.3.5], there is an open set U ⊆ X such that there is a
rational curve through each x ∈U (k) in X. Hence, for any k-point x ∈U \

(⋃
i f
−1Ri

)
, there is a rational

curve Cx through x, but f (Cx) cannot give a rational curve through f (x). Therefore, Cx ⊆ Xf (x) must hold.
This shows that for any k-point t ∈ T \ (

⋃
i Ri), there is a rational curve in Xt through every closed point of

U ∩Xt . Additionally, for general such t, we have U ∩Xt , ∅. Hence, we obtain that very general fibers of f
are uniruled. □

Lemma 4.2. Let f : X→ T be a surjective morphism of projective varieties with integral geometric generic fiber,
and let S→ T be a finite flat morphism of varieties. Then X ×T S is a projective variety (that is, it is integral ).

Proof. By the geometric generic fiber assumption, the generic fiber of X ×T S → S is integral; see [Har77,
Exercise II.3.15]. Hence, X ×T S is integral at its generic point, and then it is enough to see that X ×T S
satisfies the S1 property. Indeed, S1 varieties have no embedded points by the definition of the S1 property.

However, the fact that X ×T S is S1 follows directly from the behavior of the depth along flat maps. In the
special case of finite flat morphisms, which is X ×T S → X in our case, the depth is simply the same for
points lying over each other; see [Gro65, Proposition 6.3.1]. This concludes our proof. □
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4.2. The proof

Recall that a morphism of varieties is separable if the geometric generic fiber is reduced. Also, by the
definition in Section 2.1, local complete intersection singularities are Gorenstein. According to point (1)
of Proposition 2.1, if f : X → T is a surjective local complete intersection morphism from a variety to a
smooth variety, X also has local complete intersection singularities. Hence, in this case X is Gorenstein.
Recall additionally that the general definitions of ωX/T and ωX are ωX/T :=H−dimX/T

(
f !OT

)
and ωX :=

H−dimX
(
g !OSpec(k)

)
, where g : X→ Spec(k) is the structure morphism. Therefore, whenever T is Gorenstein,

and hence ωT is a line bundle, by [Nee96, Theorem 5.4], we have

(4.1) ωX/T =ωX ⊗ f ∗ω−1T .

In the above special situation, however, we also know that both sides of (4.1) are line bundles, by the
Gorenstein property. In particular, in this case, there is a well-defined linear equivalence class KX/T of
Cartier divisors corresponding to ωX/T , even if X is not normal, satisfying KX = KX/T + f ∗KT . This is
important to make sense of the statement of Theorem 4.3. It is also important to note that if S → T is
a flat morphism, then ωXS /S � τ

∗ωX/T , where XS := X ×T S and τ : XS → X are the induced morphisms;
see [Har66, Theorem III.8.7(5)]. Therefore, one has the following base-change isomorphism on the level of
divisors:

(4.2) KXS /S � τ
∗KX/T .

Theorem 4.3. Let f : X → T be a surjective, local complete intersection, separable, projective morphism to a
smooth projective variety T , such that the geometric generic fiber is connected and not uniruled. Then KX/T is
pseudo-effective.

Proof. Assume that KX/T is not pseudo-effective. We will derive a contradiction.
Recall that a Cartier divisor is pseudo-effective if and only if its pullback under an arbitrary finite

morphism is pseudo-effective. Hence, using Lemma 4.2 and (4.2), we may replace f by a pullback fS via any
finite flat morphism S → T between smooth varieties. In particular, according to Theorem 3.21, we may
assume that T is not uniruled.

Let Fn : T n → T be the n-times iterated Frobenius morphism (for all n ≥ 0), and set Xn := X ×T T n.
Then, by Lemma 4.1, Xn are not uniruled.

If KX/T is not pseudo-effective, then there is a general element C of a moving family of curves on X with
KX/T ·C < 0; see [Das20, Theorem 1.4] and [Ful21, Remark 2.1]. According to [Das20, Theorem 1.4], we may
even assume that C is irreducible.

Let Cn be the normalization of the reduced preimage of C in Xn. We note that as σn : Xn → X is
inseparable, Cn→ C is a normalization followed by a few Frobenii. In particular, σn∗ C

n = anC for some
integer an > 0.

As C is general in a moving family, Xn is smooth along the general points of Cn, and it has complete
intersection singularities according to point (1) of Proposition 2.1. Hence [Kol96, Theorem IV.5.14 and
Remark IV.5.15] apply to Cn and Xn as soon as we know that KXn ·Cn < 0. However, for n≫ 0 this is
satisfied because of the following, where f n : Xn→ T n is the induced morphism:

KXn ·Cn = (KXn/T n + (f n)∗KT n) ·Cn ≡

(4.2) and the fact that (Fn)∗KT ∼ pnKT

(
(σn)∗KX/T +

(f n)∗ (Fn)∗KT
pn

)
·Cn

=

Fn ◦ f n = f ◦ σn

(σn)∗
(
KX/T +

f ∗KT
pn

)
·Cn =

projection formula

(
KX/T +

f ∗KT
pn

)
· σn∗ Cn =

σn∗ C
n = anC

(
KX/T +

f ∗KT
pn

)
· anC < 0.

for n≫ 0, as KX/T ·C < 0
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So, according to [Kol96, Theorem 5.14 and Remark 5.15], for every n≫ 0, there is a rational curve through
each point of Cn. As C is general, there is a rational curve through a general point of Xn. Hence, Xn

is uniruled, which gives a contradiction. Hence, our assumption that KX/T is not pseudo-effective was
false. □

Proof of Theorem 1.1. This follows immediately from Theorem 4.3 using point (2) of Proposition 2.1. □

Proof of Corollary 1.2. As KX/T is f -big, we may write KX/T ∼Q A+E, where A is an f -ample and E is an
effective Q-Cartier Q-divisor on X. Similarly, we may write KT =H +G, where H is an ample and G is an
effective Q-divisor on T . Hence, KX is big by the following computation, which concludes our proof:

KX = f ∗KT +KX/T = f ∗G+ f ∗H + ε(A+E) + (1− ε)KX/T = εA+ f ∗H

ample for 0 < ε≪ 1, as A is f -ample, and H is ample

+ f ∗G+ εE + (1− ε)KX/T

pseudo-effective by Theorem 1.1

□
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