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Toric sheaves and flips

Andrew Clarke, Achim Napame, and Carl Tipler

Abstract. Any toric flip naturally induces an equivalence between the associated categories of
equivariant reflexive sheaves, and we investigate how slope stability behaves through this functor.
On one hand, for a fixed toric sheaf, and natural polarisations that make the exceptional loci small,
we provide a simple numerical criterion that characterizes when slope stability is preserved through
the flip. On the other hand, for a given flip, we introduce full subcategories of logarithmic toric
sheaves and characterize when polystability is preserved for all toric sheaves in those subcategories
at once.
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1. Introduction

Introduced by Mumford [Mum63] and generalized by Takemoto [Tak72], slope stability of vector bundles,
and more generally of torsion-free coherent sheaves, can be used as a device to produce moduli spaces. While
slope stability is not a GIT notion in higher dimension, it behaves well with respect to tensor products and
restrictions, and it has a differential-geometric interpretation in gauge theory through the Hitchin–Kobayashi
correspondence (see e.g. [Kob87] and references therein). In particular, stable bundles, and more generally
stable reflexive sheaves (see [BS94]), are of particular interest in gauge theory and mathematical physics
(see e.g. [KS98] for a survey on stable sheaves on toric varieties addressed to the mathematical physics
community).

Despite its usefulness, checking stability in practice remains a difficult problem. Our goal is to add
to the list of known methods to produce stable sheaves via transformations of the underlying polarised
manifold. In the equivariant context of toric geometry, the behaviour of slope stability through descent under
GIT quotients was studied in [CT23], while the problem of pulling back stable sheaves on fibrations was
considered in [NT24] (note though that stability is not necessary to produce moduli spaces of equivariant
toric bundles; cf. [Pay08]). In this paper, we study how slope stability is affected through a toric flip between
polarised (simplicial) toric varieties. Those transformations are of particular interest for several reasons.
From the complex geometry point of view, they form building blocks for the toric minimal model program
(MMP) (see [CLS11, Chapter 15] and references therein), and together with fibrations and blow-ups addressed
in [NT24], our results complete the study of slope stability through any type of extremal contraction arising
in toric MMP. From the mathematical physics perspective, toric flips can be seen as singular transitions
between toric varieties. Those transitions are of particular importance given the construction of Calabi–Yau
hypersurfaces in toric Gorenstein Fano varieties (see [Bat94]) and the connections between various Calabi–Yau
vacua through conifold transitions (see [CGH90, Rei87]). Our results then provide a toy model in the study
of stable sheaves through singular transitions between toric varieties (see [CPY24] for a differential-geometric
approach to stability of the tangent bundle through conifold transitions).

Consider a toric flip (see Section 2 for the precise definitions)

X X ′

X0

φ′

ψ

φ
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between two simplicial toric varieties X and X ′ . There is a Q-Cartier divisor D+ ⊂ X naturally attached to
the flip, such that −D+ is φ-ample and restricts to the anticanonical divisor of the φ-contracted fibres (see
Section 2.2). By abuse of notation, we will still denote by D+ the divisor ψ∗(D+) ⊂ X ′ . Then, for some ample
Cartier divisor L0 on X0, there exists an ε0 > 0 such that the divisors

L−ε := φ
∗L0 − εD+ ⊂ X

and
Lε := (φ′)∗L0 + εD+ ⊂ X ′

define ample Q-Cartier divisors for ε ∈ (0, ε0). Then, our first result (Theorem 4.4) relates slope stability of
toric sheaves on (X0,L0), (X,L−ε) and (X ′ ,Lε).

Theorem 1.1. Let E be a torus-equivariant reflexive sheaf on X. Then, up to shrinking ε0, we have the following
for all ε ∈ (0, ε0):

(i) If φ∗E is L0-stable, then E (resp. ψ∗E) is L−ε-stable on X (resp. Lε-stable on X ′).
(ii) If φ∗E is L0-unstable, then E (resp. ψ∗E) is L−ε-unstable on X (resp. Lε-unstable on X ′).
(iii) If φ∗E is L0-semistable, let E be the finite set of equivariant and saturated reflexive subsheaves F ⊆ φ∗E

appearing in a Jordan–Hölder filtration of φ∗E . If for every F ∈ E,

(1.1)
c1(E) ·D+ · (φ∗L0)n−2

rank(E)
<
c1((φ∗F )∨∨) ·D+ · (φ∗L0)n−2

rank(F )
,

then E is L−ε-stable on X.

Statements (i) and (ii) also follow from the openness of stability; see [GKP15, Theorem 3.3]. Indeed, if φ∗E
is L0-stable (resp. L0-unstable), then by the projection formula, E is stable (resp. unstable) with respect to the
nef and big divisor φ∗L0.

A similar statement to (iii) holds for ψ∗E with the reverse inequalities in (1.1) (see Theorem 4.4). The
intersection number that appears in (1.1) is the first-order term in the ε-expansion of the L−ε-slope. As
Theorem 1.1 shows, if φ∗E is strictly semistable, this term will never allow for both E and ψ∗E to be stable at
the same time, for the considered polarisations. As E is finite, the numerical criterion in (iii) can be used in
practice to produce examples of toric sheaves that go from being unstable to stable through a toric flip (see
Section 4.3).

Remark 1.2. Theorem 1.1 actually holds uniformly for flat families of toric sheaves with fixed characteristic
function (see the discussion at the end of Section 4.2).

While our first result focuses on specific flat families of sheaves for a given flip, our second result describes
toric flips that preserve slope polystability for all equivariant reflexive sheaves at once, in some adapted full
subcategories. Denote by RefT (X) the category of torus-equivariant reflexive sheaves on X. For any given
torus-invariant divisor D ⊂ X, we introduce in Section 3.3 a full subcategory RefT (X,D) of logarithmic toric
sheaves. Our terminology is inspired by the fact that the logarithmic tangent sheaf TX(− logD) belongs to
Obj(RefT (X,D)). Setting D ′ = ψ∗D, the birational transformation ψ : Xd X ′ induces an equivalence of
categories (still denoted ψ∗) between RefT (X,D) and RefT (X ′ ,D ′). We will say that the functor ψ∗ preserves
polystability for a pair of ample classes (α,α′) ∈ Pic(X)

Q
× Pic(X ′)

Q
if for any E ∈ Obj(RefT (X,D)), E

is polystable on (X,α) if and only if ψ∗E is polystable on (X ′ ,α′). Then, our result is as follows (see
Theorem 5.1).

Theorem 1.3. Let Σ be the fan of X, and let D be the torus-invariant divisor

D :=
∑
ρ∈∆

Dρ ⊂ X

for ∆ ⊂ Σ(1). Then, for a pair of ample classes (α,α′) ∈ Pic(X)
Q
× Pic(X ′)

Q
, the following assertions are

equivalent:
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(i) The functor ψ∗ : Ref
T (X,D)→RefT (X ′ ,D) preserves polystability for (α,α′).

(iii) There is a c ∈Q>0 such that for all ρ < ∆,

degαDρ = c degα′ D
′
ρ.

In the above statement, Dρ stands for the torus-invariant divisor associated to a ray ρ ∈ Σ(1), and degα
stands for the degree of a divisor on (X,α). We should point out that condition (iii) becomes very restrictive
when ∆ is small, while RefT (X,D) becomes smaller for larger ∆. Nevertheless, Theorem 1.3 provides a
simple numerical criterion for pairs of classes on X and X ′ to the preserve polystability of specific toric
sheaves through the toric flip.

Remark 1.4. Our approach to proving Theorems 1.1 and 1.3 uses Klyachko’s description of toric sheaves and
Kool’s formula for the slope of such objects (cf. [Kly90, Koo11]). It would be interesting to see how the recent
work by Devey [Dev22] on stable toric sheaves can be used to approach those results.

Notation and conventions

All varieties we will consider will be normal toric varieties over the complex numbers. For such a variety
X, we denote by T its torus, by N its lattice of one-parameter subgroups, and by M its lattice of characters.
For a field K of characteristic zero and a lattice W , we set W

K
:=W ⊗

Z
K. The fan of X will be denoted by

ΣX , or simply Σ when the situation is clear enough, and we will also use the notation XΣ for the variety
associated to the fan Σ. For a given cone σ ∈ Σ, we let Uσ = Specm(C[σ∨ ∩M]) be the affine chart in X,
O(σ ) ⊂ X the orbit associated to σ by the orbit-cone correspondence, and V (σ ) the closure in X of O(σ ).
Finally, for a fan Σ and a subset S ⊂N

R
, we set ΣS = {σ ∈ Σ | σ ⊂ S}.

Acknowledgments

The authors would like to thank the anonymous referees for their helpful advice.

2. Background on toric flips

2.1. Toric flips

We recall in this section the basics on toric flips (and refer the reader to [CLS11, Section 3.3] for the
definition of toric morphisms and their fan description). While our presentation differs slightly from [CLS11,
Chapter 15], we will keep most of the notation from that book, and the properties that we list here can be
recovered from [CLS11, Lemmas 15.3.7 and 15.3.11 and Theorem 15.3.13]. Let N be a rank n lattice, with
n ≥ 3.

Definition 2.1. A full-dimensional strictly convex cone σ0 ⊂NR
will be called a flipping cone if there exist

primitive elements {ν1, . . . ,νn+1} ⊂N such that

(1) the cone σ0 is spanned by the νi :

σ0 = Cone(ν1, . . . ,νn+1);

(2) there exist (b1, . . . , bn+1) ∈Zn+1 such that

n+1∑
i=0

biνi = 0;

(3) the sets J− = {i | bi < 0} and J+ = {i | bi > 0} both contain at least two elements.
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For a given flipping cone σ0 ⊂NR
as in Definition 2.1, we set

J0 = {i | bi = 0}.

For any J ⊂ {1, . . . ,n+1}, we also introduce the notation

σJ = Cone(νi | i ∈ J),

together with the fans

Σ− = {σJ | J+ ⊈ J}
and

Σ+ = {σJ | J− ⊈ J}.
Identifying σ0 with the fan of its faces, we see that Σ− and Σ+ provide refinements of σ0. Those refinements
induce toric morphisms φ± : XΣ± →Uσ0 , whose properties are listed below (see [CLS11, Lemma 15.3.11(c)]).

Lemma 2.2. The morphisms φ± : XΣ± →Uσ0 are surjective and birational. Their exceptional loci are given by
V (σJ±) ⊂ XΣ± and satisfy φ±(V (σJ±)) = V (σJ−∪J+) and dimV (σJ±) = n− |J±|, while dimV (σJ−∪J+) = |J0|.

We now introduce the notion of toric flips that we will use in this paper. If W is a subset of the support of
a fan Σ, we define the restriction Σ|W by

Σ|W = {σ ∈ Σ : σ ⊂W }.

Definition 2.3. Let X and X ′ be two n-dimensional simplicial toric varieties with fans Σ and Σ′ and
common lattice of one-parameter subgroups N . We will say that they are related by a toric flip if there exists
a normal toric variety X0 with fan Σ0 containing a flipping cone σ0 ∈ Σ0 such that

Σ|σ0 = Σ+, Σ
′
|σ0 = Σ− and Σ|N

R
\σ0 = Σ′|N

R
\σ0 = (Σ0)|N

R
\σ0 .

In this situation, the refinements Σ and Σ′ of Σ0 induce toric morphisms φ : X→ X0 and φ′ : X ′→ X0, the
latter being called the flip of the former.

In Definition 2.3, the fans Σ± are those associated to the flipping cone σ0 as described above. Note
that the definition, together with Lemma 2.2, implies that X and X ′ are birational and isomorphic in
codimension 2 and that Σ0 \ (σJ−∪J+) is simplicial. The situation of Definition 2.3 can be better summarized
in the following commutative diagram:

X X ′

V
(
σJ+

)
X0 V

(
σJ−

)

V
(
σJ+∪J−

)
.

φ′

ψ

ι+
φ

φ−

ι−

φ+ ι0

The maps φ and φ′ are the toric morphisms induced by the refinements Σ and Σ′ of Σ0, while the maps ι+,
ι− and ι0 denote inclusions. Finally,

ψ = (φ′)−1 ◦φ : X 9999K X ′

is the birational morphism that is an isomorphism away from V (σJ±). From now on, we fix two simplicial
toric varieties X and X ′ related by a toric flip ψ and retain the notation from the previous diagram.
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2.2. The exceptional loci and relatively ample divisors

We will be interested in stability later on; its definition requires that the varieties be polarised. We
therefore turn to the description of the fibres of φ± and describe some φ-ample (and φ′-ample) divisors. For
a cone σ ⊂N

R
, we denote by Nσ ⊂N the sublattice

Nσ = Span(σ )∩N

and by πσ the quotient map
πσ : N −→N (σ ) :=N/Nσ .

Recall that by the orbit-cone correspondence (see [CLS11, Section 3.2, Proposition 3.2.7]), the toric variety
V (σ ) can be obtained as the toric variety associated to the fan of cones in (N/Nσ )R:

Star(σ ) = {πσ (τ) | σ ⪯ τ}.

In particular, the lattices of one-parameter subgroups of V (σJ−) and V (σJ−∪J+) are, respectively, N/NσJ− and
N/NσJ−∪J+ . One can show that the projection map

N/NσJ− −→N/NσJ−∪J+

is compatible with the fans Star(σJ−) and Star(σJ−∪J+) and induces the toric morphism

φ− : V (σJ−) −→ V (σJ−∪J+).

The lattices fit naturally in the sequence

0 −→NσJ−∪J+ /NσJ− −→N/NσJ− −→N/NσJ−∪J+ −→ 0.

As we are interested in the fibres of φ−, we introduce the quotient lattice

NR :=NσJ−∪J+ /NσJ−
and denote the projection NσJ−∪J+ →NR, and its R-linear extension, by u 7→ u. Finally, we introduce the fan

ΣR :=
{
σ J | J ⊊ J+

}
and the associated toric variety XR.

Remark 2.4. We keep the notation XR to be consistent with [CLS11], where the R stands for an extremal ray
responsible for the flip in the context of toric MMP.

For the following, see [CLS11, Lemma 15.4.2 and Proposition 15.4.5(c)].

Proposition 2.5. The fibres of φ− are isomorphic to the Q-Fano toric variety XR. Moreover, XR has dimension
|J+| − 1 and Picard rank 1.

From the above, we deduce that the anticanonical divisor of XR,

−KR =
∑

ρ∈ΣR(1)
Dρ,

is Q-Cartier and ample. Note that by construction it can be written

−KR =
∑
i∈J+

D
R+·νi =

∑
i∈J+

Dρi ,

where we set
ρi =R+ · νi

and Dρ stands for the torus-invariant divisor associated to the ray ρ. An easy exercise, using the orbit-cone
correspondence, together with [CLS11, Proposition 15.5.1], shows the following.
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Proposition 2.6. The Q-Cartier torus-invariant divisor

(2.1) −DJ+ := −
∑
i∈J+

Dρi ∈Div(X)

is φ-ample, while the Q-Cartier invariant divisor

(2.2) D ′J+ := ψ∗
(
DJ+

)
=
∑
i∈J+

D ′ρi ∈Div(X ′)

is φ′-ample.

Remark 2.7. In Proposition 2.6, we add a superscript to D ′ to indicate that the torus-invariant divisor D ′ is
taken as the orbit closure of some ray in X ′ . As ψ : Xd X ′ is an isomorphism in codimension 2, it induces
an isomorphism ψ∗ between the groups of torus-invariant Q-Cartier divisors on X and X ′ , which can be
written on basis elements as Dρ 7→ D ′ρ for any ρ ∈ Σ(1) = Σ′(1). Then, to ease notation later on, we will
omit the superscript to D ′ρ, the context being clear enough whether Dρ is considered as a divisor on X or
X ′ . We will also simply denote DJ+ and D ′J+ by

D+ =
∑
i∈J+

Dρi ,

so that the conclusion of Proposition 2.6 is that −D+ is φ-ample on X and D+ is φ′-ample on X ′ .
Finally, we note that we could have considered the divisor

D− =
∑
i∈J−

Dρi ,

which is φ-ample (while −D− is φ′-ample). However, the wall relation∑
i∈J−

biνi +
∑
i∈J+

biνi = 0

from Definition 2.1 implies that from the intersection theory point of view, computing slopes with D+ or D−
will produce the same results regarding stability notions (see e.g. [CLS11, Section 6.4, Proposition 6.4.4]).

3. The flip functor

3.1. Equivariant sheaves and Klyachko’s equivalence

We now turn to the description of the flip functor, which requires first introducing the categories of
torus-equivariant reflexive sheaves. For a given toric variety X with fan Σ, a torus-equivariant reflexive sheaf
is a reflexive sheaf E on X together with an isomorphism

ϕ : α∗E −→ π∗2E

satisfying certain cocyle conditions, where α : T ×X→ X and π2 : T ×X→ X stand for the torus action
and the projection on X, respectively (see for example [Per04, Section 5]).

Definition 3.1. A toric sheaf is a torus-equivariant reflexive sheaf.

Klyachko has shown (see [Kly90] for locally free sheaves and [Per04] in general) that any toric sheaf is
uniquely described by a family of filtrations, denoted

(E,Eρ(i))ρ∈Σ(1),i∈Z .

Here, E stands for a finite-dimensional complex vector space of dimension rank(E), and for each ray
ρ ∈ Σ(1), (Eρ(i))i∈Z is a bounded increasing filtration of E (we will use increasing filtrations as in [Per04],
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rather than decreasing ones as in [Kly90]). Then, the equivariant reflexive sheaf E is recovered from the
following formula, for σ ∈ Σ:

Γ (Uσ ,E) :=
⊕
m∈M

⋂
ρ∈σ (1)

Eρ
(〈
m,uρ

〉)
⊗χm,

where uρ ∈ N is the primitive generator of ρ, ⟨·, ·⟩ the duality pairing and χm the weight m character
function.

Remark 3.2. If (E,Eρ(i)) and (F,Fρ(i)) denote, respectively, the families of increasing and decreasing
filtrations of a toric sheaf E , then they are related by the formula

Fρ(i) = Eρ(−i).

In our study of stability, nothing changes in the choice of increasing or decreasing filtrations.

A morphism between two families of filtrations

b :
(
E1,E

ρ
1 (i)

)
ρ∈Σ(1),i∈Z

−→
(
E2,E

ρ
2 (i)

)
ρ∈Σ(1),i∈Z

is a linear map b : E1→ E2 that satisfies

b
(
E
ρ
1 (i)

)
⊂ Eρ2 (i)

for any ρ ∈ Σ(1) and i ∈Z. Any such morphism corresponds uniquely to a morphism between the associated
reflexive sheaves, and a fundamental result of Klyachko and Perling (cf. [Kly90, Per04]) asserts that the
categories of families of filtrations and of toric sheaves are equivalent. For our purposes, it seems more
natural to slightly restrict the definition of morphisms. We will consider morphisms between toric sheaves Ei
to be equivariant morphisms of coherent sheaves β : E1→E2 that satisfy that Im(β) is a saturated reflexive
subsheaf of E2. Those morphisms correspond through Klyachko’s equivalence to linear maps b : E1→ E2
such that

b
(
E
ρ
1 (i)

)
= b(E1)∩E

ρ
2 (i)

for any (ρ, i), as can be seen via [NT24, Lemma 2.15] for example. We denote by RefT (X) on one hand
and by F ilt(X) on the other the categories of toric sheaves and of families of filtrations, endowed with those
classes of morphisms. We will denote by

Kl : F ilt(X) −→RefT (X)

Klyachko’s functor as described above. Then, Klyachko and Perling’s work readily implies the following.

Theorem 3.3 (cf. [Kly90, Per04]). The functor Kl is an equivalence of categories.

Remark 3.4. A nice feature of the categories F ilt(X) and RefT (X) is that they are abelian. This is no longer
true when we consider all morphisms of reflexive sheaves, as for example the quotient of O

P
1 by the subsheaf

O
P

1(1) is torsion, and hence not reflexive.

3.2. Flip functor

Now assume that φ′ : X ′ → X0 is the flip of φ : X → X0 as in the previous section. As φ and φ′ are
isomorphisms in codimension 2, we have

Σ(1) = Σ0(1) = Σ′(1).

We deduce that there is an equivariant injection i (resp. i0, i
′) of the T -invariant Zariski-open set

U :=
⋃

τ∈Σ(0)∪Σ(1)
Uτ



Toric sheaves and flips 9Toric sheaves and flips 9

into X (resp. X0, X
′). Then, from [Har80, Proposition 1.6], we deduce that for any toric sheaf E ∈

Obj(RefT (X)) (resp. F ∈Obj(RefT (X0)), G ∈Obj(RefT (X ′))), we have

i∗
(
E|U

)
≃ E

(resp. (i0)∗(F|U ) ≃ F , i′∗(G|U ) ≃ G). As reflexive sheaves are normal, meaning that their sections extend over
codimension 2 Zariski-closed subsets, we have the following.

Proposition 3.5. The pushforward i∗ (resp. i′∗, (i0)∗) induces an equivalence of categories

i∗ : Ref
T (U ) −→RefT (X)

(resp. RefT (U ) ≃RefT (X0), Ref
T (U ) ≃RefT (X ′)). Hence, we have equivalences

RefT (X) ≃RefT (X0) ≃RefT (X ′).

It is straightforward to check that the equivalence

RefT (X) ≃RefT (X0)

is induced by the pushforward φ∗, while the equivalence

RefT (X ′) ≃RefT (X0)

is induced by φ′∗. Moreover, the categories of families of filtrations on U , X, X ′ and X0 are readily the same,
and the above equivalences of categories simply correspond to the self-equivalence of F ilt(X) induced by
the identity on objects and morphisms.

Definition 3.6. We define the flip functor

ψ∗ : Ref
T (X) −→RefT (X ′)

to be the composition of functors induced by (φ′∗)
−1 and φ∗.

We conclude this section by noting that the flip functor sends the tangent sheaf TX of X to the tangent
sheaf TX ′ of X ′ .

Lemma 3.7. We have
φ∗TX = TX0

= φ′∗TX ′ .

Proof. The result follows from the facts that X, X0 and X ′ are normal and their tangent sheaves reflexive.
Hence, the sheaves are determined by their restrictions to the complements of the exceptional loci of φ and
φ′ , which have codimension greater than or equal to 2 (see [Har80, Proposition 1.6]). □

3.3. The logarithmic subcategories

In Section 5, we will be interested in specific subcategories of RefT (X) and RefT (X ′). For any ∆ ⊂ Σ(1),
we introduce the torus-invariant divisor

D∆ :=
∑
ρ∈∆

Dρ

and the full subcategory RefT (X,D∆) of Ref
T (X) whose objects are the toric sheaves on X whose associated

families of filtrations (E,Eρ(i))ρ∈Σ(1),i∈Z satisfy that for all ρ ∈ ∆, there is an aρ ∈Z such that

(3.1) Eρ(i) =

 0 if i < aρ,

E if i ≥ aρ.

Remark 3.8. From [Nap24, Theorem 1.1], it follows that the logarithmic tangent sheaf TX(− logD∆) belongs
to Obj(RefT (X,D∆)), which justifies our choice of terminology.

It is then straightforward to see that the flip functor ψ∗ induces an equivalence between RefT (X,D∆) and
RefT (X ′ ,D ′

∆
), where we use D ′

∆
to denote

∑
ρ∈∆D

′
ρ. Also note that ψ∗ sends TX(− logD∆) to TX ′ (− logD ′∆).
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4. Flips and stability for a given sheaf

4.1. Slope stability of toric sheaves

Let (X,L) be a polarised complex variety. Recall that a reflexive sheaf E on (X,L) is said to be slope stable
(resp. slope semistable ), or simply stable (resp. semistable) for short, if for any coherent and saturated subsheaf
F ⊂ E of strictly smaller rank, one has

µL(F ) < µL(E)

(resp. µL(F ) ≤ µL(E)), where for any coherent torsion-free sheaf F , the slope µL(F ) is defined by

µL(F ) =
c1(F ) ·Ln−1

rank(F )
∈Q.

A polystable sheaf is a direct sum of stable ones with the same slope. A sheaf will be called unstable if it is
not semistable.

Remark 4.1. When referring to a specific polarisation L used to define stability notions, we will use the
terminology L-stable (resp. L-unstable, L-semistable, etc.).

A remarkable fact, proved by Kool (see [Koo11, Proposition 4.13]), is that if we assume X and E to be toric,
to check stability for E , it is enough to compare slopes with equivariant and saturated reflexive subsheaves,
that is, subobjects of E in RefT (X) (note that this was proved in the smooth case by Kool, but it was noted
in [CT23] that the proof extends in the normal case). If (E,Eρ(•))ρ∈Σ(1) stands for the family of filtrations
of E , any saturated equivariant reflexive subsheaf of E is associated to a family of filtrations of the form
(F,F ∩ Eρ(i))ρ∈Σ(1),i∈Z for some vector subspace F ⊊ E (see [NT24, Lemma 2.15]). Moreover, Klyachko’s
formula for the slope of a toric sheaf (see [CT23, Corollary 2.18]) is

(4.1) µL(E) = −
1

rank(E)

∑
ρ∈Σ(1)

ιρ(E) degL
(
Dρ

)
,

where degL(Dρ) is the degree with respect to L and

ιρ(E) :=
∑
i∈Z

i (dim(Eρ(i))−dim(Eρ(i − 1))) .

To sum up, we have the following.

Proposition 4.2. The toric sheaf associated to (E,Eρ(i))ρ∈Σ(1),i∈Z is stable if and only if for any subspace F ⊊ E,
we have

1
dim(F)

∑
ρ∈Σ(1)

ιρ(F) degL
(
Dρ

)
>

1
dim(E)

∑
ρ∈Σ(1)

ιρ(E) degL
(
Dρ

)
,

where

ιρ(F) :=
∑
i∈Z

i (dim(F ∩Eρ(i))−dim(F ∩Eρ(i − 1))) .

The analogous statement holds for semistability by replacing the strict inequality by a weak inequality.

Remark 4.3. As observed in Section 3.2, for a given flip as in Section 2.1, the families of filtrations for
E ∈Obj(RefT (X)), ψ∗E and φ∗E are the same. We thus have the equalities ιρ(E) = ιρ(φ∗E) = ιρ(ψ∗E). Then,
to compare slopes on X, X0 and X ′ , only the terms coming from the degrees of the invariant divisors Dρ’s
will vary according to the polarisations on each variety.
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4.2. Main result and its proof

Now consider φ : X→ X0 and its toric flip φ′ : X ′→ X0 as defined in Section 2. From Proposition 2.6
(also recall Remark 2.7), for any ample Cartier divisor L0 on X0, there exists an ε0 > 0 such that the divisors

L−ε := φ
∗L0 − εD+

on X and

Lε := (φ′)∗L0 + εD+

on X ′ define ample Q-Cartier divisors for ε ∈ (0, ε0). We will then be interested in the behaviour of stability
for toric sheaves related by the flip functor on (X,L−ε) and (X ′ ,Lε), for 0 < ε < ε0. Note that a necessary
condition for the stability of an element E ∈Obj(RefT (X)) under those polarisations is the L0-semistability
of φ∗E .

Conversely, if the sheaf φ∗E is L0-semistable, then it admits a Jordan–Hölder filtration

0 = E1 ⊆ E2 ⊆ · · · ⊆ Eℓ = φ∗E

by slope-semistable coherent and saturated subsheaves with stable quotients of the same slope as φ∗E (see
e.g. [HL10]). We denote by

Gr(φ∗E) :=
ℓ−1⊕
i=1

Ei+1/Ei

the graded object of φ∗E and by E the finite set of equivariant and saturated reflexive subsheaves F ⊆ φ∗E
arising in a Jordan–Hölder filtration of φ∗E . Note that by Proposition 3.5, for any F ∈ E, (φ∗F )∨∨ (resp.
((φ′)∗F )∨∨) is saturated in E (resp. in ψ∗E).

Theorem 4.4. Let E be a toric sheaf on X. Then, up to shrinking ε0, for all ε ∈ (0, ε0), we have the following:
(i) If φ∗E is L0-stable, then E (resp. ψ∗E) is L−ε-stable on X (resp. Lε-stable on X ′).
(ii) If φ∗E is L0-unstable, then E (resp. ψ∗E) is L−ε-unstable on X (resp. Lε-unstable on X ′).
(iii) If φ∗E is L0-semistable and if for every F ∈ E,

c1(E) ·D+ · (φ∗L0)n−2

rank(E)
<
c1((φ∗F )∨∨) ·D+ · (φ∗L0)n−2

rank(F )
,

then E (resp. ψ∗E) is L−ε-stable on X (resp. Lε-unstable on X ′).
(iv) If φ∗E is L0-semistable and if for every F ∈ E,

c1(E) ·D+ · (φ∗L0)n−2

rank(E)
>
c1((φ∗F )∨∨) ·D+ · (φ∗L0)n−2

rank(F )
,

then E (resp. ψ∗E) is L−ε-unstable on X (resp. Lε-stable on X ′).

Remark 4.5. Note that, given the semistability of φ∗E , the numerical criterion in points (iii) and (iv) only
requires testing a finite number of inequalities, as E is finite. This makes this criterion useful in practice.

Before proving this theorem, we first recall some facts on intersection products in toric varieties that will
be used. Let {u1, . . . ,uk} be a set of primitive elements of N such that σ = Cone(u1, . . . ,uk) is simplicial.
We define mult(σ ) as the index of the sublattice Zu1 + · · ·+Zuk in Nσ = Span(σ )∩N . If Σ is simplicial,
according to [Ful93, Section 5.1], one can consider intersections of cycles or cycle classes with rational
coefficients. The Chow group

A•(X)
Q
=

n⊕
p=0

Ap(X)⊗Q =
n⊕
p=0

An−p(X)⊗Q
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has the structure of a graded Q-algebra, and by [CLS11, Lemma 12.5.2], if ρ1, . . . ,ρd ∈ Σ(1) are distinct, then
in A•(X)

Q
, we have

(4.2) [Dρ1] · [Dρ2] · · · [Dρd ] =


1

mult(σ )
[V (σ )] if σ = ρ1 + · · ·+ ρd ∈ Σ,

0 otherwise.

If χm is the weight m character function on XΣ, then by [CLS11, Proposition 4.1.2 and Equation (12.5.4)], the
divisor of χm is given by

(4.3) div(χm) =
∑
ρ∈Σ(1)

〈
m,uρ

〉
Dρ

and div(χm) ∼lin 0 in A1(XΣ).

Proof of Theorem 4.4. We first prove that for any ρ ∈ Σ(1),

(4.4) φ∗
(
Dρ ·D+

)
= φ′∗

(
D ′ρ ·D ′+

)
.

We use the notation of Section 2.1 for the toric flip and set

∆ = {Cone(νi) : i ∈ J+}.

Recall from Definition 2.1 that J+ and J− have at least two elements. It then follows from the definition
of Σ± that for any ρ ∈ σ0(1) \∆ and any j ∈ J+, ρ +Cone(νj ) is a 2-dimensional cone of Σ0, Σ+ and Σ−.
Therefore, we deduce that in the Chow ring A•(X0)Q,

φ∗
(
Dρ ·Dρj

)
=Dρ ·Dρj and φ′∗

(
D ′ρ ·D ′ρj

)
=Dρ ·Dρj .

If ρ ∈ Σ(1) \ σ0(1), then for any j ∈ J+,

ρ+Cone
(
νj
)
< {τ : τ ⪯ σ0}.

As by Definition 2.3,
Σ|N

R
\σ0 = Σ′|N

R
\σ0 = (Σ0)|N

R
\σ0 ,

we deduce that

• either ρ+Cone(νj ) ∈ Σ0 \ {τ : τ ⪯ σ0}, and then in A•(X0)Q, we have

φ∗
(
Dρ ·Dρj

)
=Dρ ·Dρj = φ

′
∗
(
D ′ρ ·D ′ρj

)
;

• or ρ+Cone(νj ) < Σ0\{τ : τ ⪯ σ0}, in which case Dρ ·Dρj = 0 in A•(X)
Q
and D ′ρ ·D ′ρj = 0 in A•(X ′)

Q
.

This proves that for any ρ ∈ Σ(1) \∆ and any j ∈ J+,

φ∗
(
Dρ ·Dρj

)
= φ′∗

(
D ′ρ ·D ′ρj

)
,

and then by linearity and the definition of D+,

φ∗
(
Dρ ·D+

)
= φ′∗

(
D ′ρ ·D ′+

)
.

We now assume that ρ ∈ ∆. By Lemma 2.2, one has dimV (σJ+) = n− |J+|; therefore, σJ+ is a simplicial cone,
and then {νj : j ∈ J+} forms part of a Q-basis of N ⊗

Z
Q. Let {ν∗j : j ∈ J+} be a part of a Q-basis of M ⊗

Z
Q

such that for any i, j ∈ J+, 〈
ν∗j ,νi

〉
=

 0 if i , j,

1 if i = j.

For any j ∈ J+, there is an aj ∈N∗ such that ajν
∗
j ∈M . By using (4.3) with m = ajν∗j , we get

ajDρj ∼lin −
∑

ρ∈Σ(1)\∆

〈
ajν
∗
j ,uρ

〉
Dρ
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on X and X ′ . By the first cases, we deduce that for any j ∈ J+,

φ∗
(
Dρj ·D+

)
= −φ∗

 ∑
ρ∈Σ(1)\∆

〈
ν∗j ,uρ

〉
Dρ ·D+


= −φ′∗

 ∑
ρ∈Σ(1)\∆

〈
ν∗j ,uρ

〉
D ′ρ ·D ′+


= φ′∗

(
D ′ρj ·D

′
+

)
.

This concludes the proof of (4.4).
We can now compute the slopes. By the projection formula, see [Ful84, Proposition 2.3], for any ρ ∈ Σ(1),

one has

Dρ · (φ∗L0)n−1 = degL0
(
Dρ

)
,

D ′ρ · ((φ′)∗L0)n−1 = degL0
(
Dρ

)
and

Dρ ·D+ · (φ∗L0)n−2 =D ′ρ ·D ′+ · ((φ′)∗L0)n−2.

As we have

(L−ε)
n−1 = (φ∗L0)

n−1 − (n− 1)εD+ · (φ∗L0)n−2 +O(ε2) and

(Lε)
n−1 = ((φ′)∗L0)

n−1 + (n− 1)εD+ · ((φ′)∗L0)n−2 +O(ε2),

we deduce that for any coherent sheaf E on X,

µL−ε(E) = µL0(φ∗E)−
c1(E) ·D+ · (φ∗L0)n−2

rank(E)
(n− 1)ε+O(ε2)

and

µLε (ψ∗E) = µL0(φ∗E) +
c1(E) ·D+ · (φ∗L0)n−2

rank(E)
(n− 1)ε+O(ε2).

Now assume that E ∈ Obj(RefT (X)) is given by the family of filtrations (E,Eρ(j)). By Proposition 4.2, to
check the stability of E , it is enough to compare the slope of E with the slope of any equivariant reflexive
sheaf F given by the family of filtrations (F,F ∩Eρ(j)) for a subspace F ⊊ E. As the set of vector subspaces
F ⊂ E on which it is necessary to test slopes is actually finite (see [NT24, Lemma 2.17]), we deduce from the
above ε-expansions for the slopes that there is an ε0 > 0 such that for all ε ∈ (0, ε0),
• if φ∗E is L0-stable, then E (resp. ψ∗E) is L−ε-stable on X (resp. Lε-stable on X ′); and
• if φ∗E is L0-unstable, then E (resp. ψ∗E) is L−ε-unstable on X (resp. Lε-unstable on X ′).

We now consider the case where φ∗E is L0-semistable. We first observe, as in the (un)stable case, that
there is an ε1 > 0, such that for all ε ∈ (0, ε1) and for all F ∈ Obj(RefT (X0)) with F ⊊ φ∗E such that
µL0(F ) < µL0(φ∗E), one has

µL−ε ((φ
∗F )∨∨) < µL−ε(E) and µLε(((φ

′)∗F )∨∨) < µLε (ψ∗E).

If F ⊊ φ∗E is a subobject such that µL0(F ) = µL0(φ∗E), then there is a Jordan–Hölder filtration

0 = E1 ⊆ · · · ⊆ El = φ∗E

with l ≥ 1 such that F = Ei for some i ∈ {1, . . . , l} (see [HL10, Section 1.6]), and we deduce that F ∈ E.
Therefore, from the expansions of the slopes, to get points (iii) and (iv) of the theorem, it suffices to compare

c1(E) ·D+ · (φ∗L0)n−2

rank(E)
and

c1((φ∗F )∨∨) ·D+ · (φ∗L0)n−2

rank(F )
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for any F ∈ E. By the uniqueness of the reflexive hull of the graded object of a Jordan–Hölder filtration
(see [HL10, Theorem 1.6.7]), E is finite, and the result follows. □

Remark 4.6. In the proof, we have shown that for any ρ ∈ Σ(1),

Dρ ·D+ · (φ∗L0)n−2 =D ′ρ ·D ′+ · ((φ′)∗L0)n−2.

In Equation (4.5), the coefficient of ε2 in the ε-expansion of degL−ε(Dρ) corresponds to Dρ · (D+)2. By (4.5)
and (4.6), we see that there exists a ρ ∈ Σ(1) such that

Dρ · (D+)
2 ,D ′ρ · (D ′+)2.

Therefore, if ℓ ≥ 2, then for any ρ ∈ Σ(1), we do not necessarily have the equality

Dρ · (D+)
ℓ · (φ∗L0)n−1−ℓ =D ′ρ · (D ′+)ℓ · ((φ′)∗L0)n−1−ℓ.

The arguments used to prove Theorem 4.4 are very close to those used in [NT24]. One should be careful
though that the results from [NT24] do not directly imply Theorem 4.4 as X0 is not Q-factorial.

Remark 4.7. While the case when φ∗E is semistable on X0 is not fully covered by Theorem 4.4, items (iii)
and (iv), one can easily adapt the numerical criterion of [NT24, Theorem 1.3] to take into account higher-order
terms in the ε-expansions of the L−ε- and Lε-slopes, and obtain a full description of the stability behaviour
of E in terms of that of φ∗E , for the considered polarisations.

Actually, Theorem 4.4 holds for some specific flat families of toric sheaves. We recall that the characteristic
function χ of an equivariant reflexive sheaf F with family of filtrations (F, {Fρ(j)}) is the function

χ(F ) : M −→ Z
♯Σ(n)

m 7−→
(
dim

(⋂
ρ∈σ (1)F

ρ
(〈
m,uρ

〉)))
σ∈Σ(n)

.

Let S be a scheme of finite type over C and E = (Es)s∈S be an S-family of equivariant reflexive sheaves over
X (see [NT24, Section 3.5] for more details). We denote by (Es,E

ρ
s (i)) the family of filtrations of Es. There is

a collection of increasing filtrations of reflexive sheaves(
F ,

{
F ρm :m ∈M

}
ρ∈Σ(1)

)
such that for any s ∈ S and all m ∈M,

Es = F (s) and E
ρ
s

(〈
m,uρ

〉)
= F ρm (s),

where F (s) and F ρm (s) are, respectively, the fibres of F and F ρm at s.

Lemma 4.8. Let X be a toric variety given by a simplicial fan Σ, and let E = (Es)s∈S be an S-family of
equivariant reflexive sheaves over X such that

(1) E is locally free over X × S or
(2) the map s 7→ χ(Es) is constant.

Then, for all ρ ∈ Σ(1) and j ∈Z, the map s 7→ dim(E
ρ
s (j)) is constant.

Proof. If E is locally free over X × S, by [Pay08, Proposition 3.13] (Klyachko’s compatibility condition for
S-families of locally free sheaves), for any σ ∈ Σ(n), there is a multiset Aσ ⊆M of size rank(E) such that for
any m ∈M, F ρm is a locally free sheaf of rank∣∣∣∣{α ∈ Aσ :

〈
α,uρ

〉
≤
〈
m,uρ

〉}∣∣∣∣ .
As for any s ∈ S and m ∈M, dim(F ρm (s)) = rank(F ρm ), we deduce that the map

s 7−→ dim
(
E
ρ
s

(〈
m,uρ

〉))
is constant.
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We now assume that the map s 7→ χ(Es) is constant. For any ρ ∈ Σ(1), we denote by iρ the smallest
integer such that for any j ≥ iρ and any s ∈ S ,

E
ρ
s (j) = Es.

Let σ ∈ Σ(n). The set {uρ : ρ ∈ σ (1)} is a Q-basis of N ⊗
Z
Q; we denote by {u∗ρ : ρ ∈ σ (1)} its dual basis.

For any ρ′ ∈ σ (1), there is an m′ ∈M such that ⟨m′ ,uρ′⟩ = j . Let m ∈M be given by

m =m′ +
∑

ρ∈σ (1)\{ρ′}
aρu

∗
ρ,

where for any ρ ∈ σ (1) \ {ρ′}, aρ ∈ Z satisfies aρu
∗
ρ ∈M and aρ + ⟨m′ ,uρ⟩ ≥ iρ. By the construction of m,

one has ⋂
ρ∈σ (1)

E
ρ
s

(〈
m,uρ

〉)
= E

ρ′

s (j).

As s 7→ χ(Es) is constant, we deduce that the map s 7→ dim(E
ρ′

s (j)) is constant for any ρ′ ∈ σ (1) and any
j ∈Z. □

If E is an S-family of equivariant reflexive sheaves on X which satisfies the conditions of Lemma 4.8, then
by [NT24, Lemma 3.12], for any ample Q-Cartier divisor L on X, the set{

µL(Gs) : s ∈ S, Gs is an equivariant and saturated reflexive subsheaf of Es
}

is finite. Therefore, in that case, the ε0 in Theorem 4.4 can be taken uniformly for (Es)s∈S .

4.3. An example

We illustrate in this section Theorem 4.4 by providing an example of a tangent sheaf that goes from
unstable to stable through a flip.

We denote by (e1, e2, e3) the standard basis of Z3. Let

u1 = e1, u2 = e1 + e2 − e3, u3 = e2, u4 = e3, u0 = −(e1 + e2 + e3)

and Σ0 be a fan in R
3 given by

Σ0 = {Cone(u1,u2,u3,u4)} ∪
4⋃
i=1

{Cone(A) : A ⊆ {u0,ui ,ui+1}} ,

where u5 = u1. We denote by σ0 the flipping cone Cone(u1,u2,u3,u4); we have

u2 +u4 −u1 −u3 = 0.

Let
Σ = (Σ0 \ {σ0})∪Σ+ and Σ′ = (Σ0 \ {σ0})∪Σ−,

where

Σ+ =
{
Cone

(
uj : j ∈ J

)
: J ⊂ {1, . . . ,4} and {1,3} ⊈ J

}
and

Σ− =
{
Cone

(
uj : j ∈ J

)
: J ⊂ {1, . . . ,4} and {2,4} ⊈ J

}
.

We denote by Di the torus-invariant divisor associated to the ray Cone(ui). By using (4.3) with m ∈ {e1, e2, e3},
we get the following linear equivalences of divisors on X0, X and X ′ :

D1 ∼lin D3 ∼lin D0 −D2 and D4 ∼lin D0 +D2.

By [CLS11, Theorem 4.2.8(d)], the divisor D0 generates the set of invariant Cartier divisors of X0. As Σ (resp.
Σ′) is simplicial, by [CLS11, Proposition 4.2.7], any invariant divisor of X (resp. X ′) is Q-Cartier.



16 A. Clarke, A. Napame and C. Tipler16 A. Clarke, A. Napame and C. Tipler

•

•u1

•u2

•
u3

•u4

•
u0

(a) Fan of Σ

•

•u1

•u2

•
u3

•u4

•
u0

(b) Fan of Σ0

•

•u1

•u2

•
u3

•u4

•
u0

(c) Fan of Σ′

Figure 1. Fans of varieties given in Section 4.3

Zu0 +Zu1 +Zu2 Zu0 +Zu2 +Zu3 Zu0 +Zu3 +Zu4 Zu0 +Zu4 +Zu1
2 2 1 1

Zu2 +Zu4 +Zu1 Zu2 +Zu4 +Zu3 Zu1 +Zu3 +Zu2 Zu1 +Zu3 +Zu4
1 1 1 1

Table 1. Sublattices and their indices in Z
3

Lemma 4.9 (Intersections of divisors).

(1) On X and X ′ , we have

D1 ·D2
0 =

1
2
, D2 ·D2

0 =
1
4
, D4 ·D2

0 = 1, D0 ·D2
0 =

3
4
,

D1 · (D0 ·D2) =
1
2
, D4 · (D0 ·D2) = 0, D2 · (D0 ·D2) = −

1
4
.

(2) On X, we have

D1 ·D2
2 =

1
2
, D4 ·D2

2 = −1, D0 ·D2
2 =
−1
4
, D2 ·D2

2 =
−3
4
.

(3) On X ′ , we have

D1 ·D2
2 =
−1
2
, D4 ·D2

2 = 0, D0 ·D2
2 =
−1
4
, D2 ·D2

2 =
1
4
.

Proof. The lemma follows from Formula (4.2) and Table 1. We show the first line of item (1) to illustrate the
computations; the other intersection numbers follow in the same way.

D1 ·D2
0 =D1 ·D0 · (D2 +D3) =D1 ·D0 ·D2 +D1 ·D0 ·D3 =

1
2
,

D2 ·D2
0 =

1
2
D2 ·D0 · (D3 +D4) =

1
4
,

D4 ·D2
0 =D4 ·D0 · (D2 +D3) = 1,

D0 ·D2
0 =

1
2
(D3 +D4) ·D2

0 =
1
4
+
1
2
=
3
4
. □
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We assume that E = TX . By [DDK20, Corollary 2.2.17], the family of filtrations of the tangent sheaf TX of
X is given by

Eρ(j) =


0 if j < −1,
Span(uρ) if j = −1,
N ⊗

Z
C if j > −1.

In this case, the inequalities of Proposition 4.2 become

1
dim(F)

∑
uρ∈F

degL
(
Dρ

) (≤)
<

1
n

∑
ρ∈Σ(1)

degL
(
Dρ

)
.

Therefore, to study the stability of E , it suffices to consider the vector spaces F given by

F = Span(uρ : ρ ∈ Γ )

with Γ ⊆ Σ(1).
Let L0 =D0 be an ample Cartier divisor on X0. We have

µL(φ∗E) = 1 =
1

dim(F1)

∑
uρ∈F1

degL
(
Dρ

)
=

1
dim(F2)

∑
uρ∈F2

degL
(
Dρ

)
,

where F1 = Span(u4) and F2 = Span(u0,u2,u4). As for any vector subspace F ⊊ E such that F < {F1,F2},
one has

1
dim(F)

∑
uρ∈F

degL
(
Dρ

)
< 1,

we deduce that φ∗E is semistable. We denote by F and F ′ , respectively, the subsheaves of φ∗E given by the
families of filtrations (F1,F1 ∩Eρ(i)) and (F2,F2 ∩Eρ(i)). We have

0 ⊆ F ⊆ F ′ ⊆ E .

Let

D+ =D2 +D4.

We have

D+ ∼lin D0 +2D2.

So

L−ε = φ
∗L0 − εD+ ∼lin (1− ε)D0 − 2εD2 = (1− ε)

(
D0 −

2ε
1− ε

D2

)
and

Lε = (φ′)∗L0 + εD+ ∼lin (1 + ε)D0 +2εD2 = (1+ ε)
(
D0 +

2ε
1+ ε

D2

)
.

According to points (iii) and (iv) of Theorem 4.4, to check the stability of E with respect to L−ε, it suffices to
compare µL−ε(E) with µL−ε(φ

∗F ) and µL−ε (φ
∗F ′). By Lemma 4.9, on X, we have

(4.5)
degL−ε (D1) =

1
2
− 3ε+ 9

2
ε2, degL−ε (D2) =

1
4
+
1
2
ε − 15

4
ε2,

degL−ε (D4) = 1− 2ε − 3ε2, degL−ε (D0) =
3
4
− 5
2
ε+

3
4
ε2,

and on X ′ , we have

(4.6)
degLε(D1) =

1
2
+3ε+

1
2
ε2, degLε (D2) =

1
4
− 1
2
ε+

1
4
ε2,

degLε(D4) = 1+2ε+ ε2, degLε (D0) =
3
4
+
5
2
ε+

3
4
ε2.
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By Formulas (4.5), we get

µL−ε (E) = 1− 10
3
ε+ ε2 and µL−ε (F ) = µL−ε(F

′) = 1− 2ε − 3ε2.

On the other hand, by Formulas (4.6), we have

µLε(ψ∗E) = 1+
10
3
ε+ ε2 and µLε((φ

′)∗F ) = µLε ((φ
′)∗F ′) = 1+2ε+ ε2.

Hence, there is an ε0 such that for any ε ∈ (0, ε0)∩Q,

• the tangent sheaf TX is unstable with respect to L−ε,
• the tangent sheaf TX ′ is stable with respect to Lε.

This example clearly shows point (iv) of Theorem 4.4.

5. Flips and stability for logarithmic subcategories

Consider a toric flip

X X ′

X0

φ′

ψ

φ

as in Section 2. Fix ∆ ⊂ Σ(1), and introduce the divisor

D :=
∑
ρ∈∆

Dρ

seen as a divisor on X, X ′ and X0. We consider the equivalent categories RefT (X,D) and RefT (X ′ ,D) as
in Section 3.3. We will say that

ψ∗ : Ref
T (X,D) −→RefT (X ′ ,D)

preserves polystability for the pair of polarisations (α,α′) ∈ Pic(X)
Q
×Pic(X ′)

Q
if for any E ∈Obj(RefT (X,D)),

E is α-polystable if and only if ψ∗E is α′-polystable.

Theorem 5.1. The following assertions are equivalent, for a pair of ample classes (α,α′) ∈ Pic(X)
Q
×Pic(X ′)

Q
:

(i) The functor ψ∗ : Ref
T (X,D)→RefT (X ′ ,D) preserves polystability for (α,α′).

(ii) There is a c ∈Q>0 such that for all ρ < ∆, degαDρ = c degα′ D
′
ρ.

We stated Theorem 5.1 for flips, but the proof that follows works for any small birational equivariant map
between two normal toric varieties (that is, a birational and equivariant map that is an isomorphism away
from codimension 2 subsets). We thank the anonymous referee for pointing this out.

Proof. Recall the formula

µα(E) = −
1

rank(E)

∑
ρ∈Σ(1)

ιρ(E) degα
(
Dρ

)
for the slope, with

ιρ(E) :=
∑
i∈Z

i (dim(Eρ(i))−dim(Eρ(i − 1))) ,

where (E,Eρ(•))ρ∈Σ(1) stands for the family of filtrations associated to E . Then, by the definition of the

logarithmic category RefT (X,D) (see Equation (3.1)), for any E ∈Obj(RefT (X,D)) and any ρ ∈ ∆, we have

ιρ(E) = aρdim(E),
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so the slope reads

µα(E) = −
1

rank(E)

∑
ρ<∆

ιρ(E) degα
(
Dρ

)
−
∑
ρ∈∆

aρdegα
(
Dρ

)
.

Also note that by construction, for any ρ,

ιρ(E) = ιρ (ψ∗E) .

Then, the implication (ii)⇒ (i) is straightforward. To prove the implication (i)⇒ (ii), we argue as in [CT23,
proof of Proposition 4.8] and consider for any pair (ρ1,ρ2) ∈ (Σ(1) \∆)2 the polystable toric sheaf

E = OX
(
ddegα

(
Dρ2

)
Dρ1

)
⊕OX

(
ddegα

(
Dρ1

)
Dρ2

)
,

where d is the common denominator of degα(Dρ2) and degα(Dρ1). Its image by ψ∗ is

ψ∗E = OX ′
(
ddegα

(
Dρ2

)
D ′ρ1

)
⊕OX ′

(
ddegα

(
Dρ1

)
D ′ρ2

)
.

As E ∈ Obj(RefT (X,D)) (see e.g. [DDK20, Example 2.2.13] for the family of filtrations of rank 1 toric
sheaves), if ψ preserves polystability, we must have

degα
(
Dρ2

)
degα′

(
D ′ρ1

)
= degα

(
Dρ1

)
degα′

(
D ′ρ2

)
.

The result follows. □

Remark 5.2. The reason for considering logarithmic subcategories is the following. If one considers the
case ∆ = ∅, i.e. the full RefT (X), then polystability is not preserved for any choice (α,α′). Indeed, by
Theorem 5.1(ii), for any ρ ∈ Σ(1), one must have degα(Dρ) = c degα′ (D

′
ρ). Up to scale, we can assume c = 1.

But then, a result due to Minkowski (see [Sch13, Theorem 8.2.1, p. 455]), translated into the toric setting in
[CT23, Proposition 5.3 and Corollary 5.4], implies that the polytope associated to (X,α) equals the polytope
associated to (X ′ ,α′), which is absurd as X and X ′ are not isomorphic.

Remark 5.3. Let L0 be an ample Cartier divisor on X0, and let ε > 0 be such that the divisors L−ε = φ∗L0−εD+
on X and Lε = (φ′)∗L0 + εD+ on X ′ define Q-ample Cartier divisors. If ψ∗ : Ref

T (X,D)→ RefT (X ′ ,D)
preserves polystability for (L−ε,Lε), then according to point (ii) of Theorem 5.1, for any ρ < ∆, we have

degL−ε
(
Dρ

)
= degLε

(
Dρ

)
because the constant terms in the ε-expansions of degL−ε (Dρ) and degL−ε(Dρ) are equal. Therefore,

∆ ⊆
{
ρ ∈ Σ(1) :Dρ ·D+ · (φ∗L0)n−2 , 0

}
.
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