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Abstract. We study the relationship between solutions to better-behaved GKZ hypergeometric sys-
tems near different large radius limit points, and their geometric counterparts given by the K-groups
of the associated toric Deligne–Mumford stacks. We prove that the K-theoretic Fourier–Mukai
transforms associated to toric wall-crossing coincide with analytic continuation transformations of
Gamma series solutions to the better-behaved GKZ systems, which settles a conjecture of Borisov
and Horja.
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1. Introduction

Borisov and Horja [BH13] introduced a better-behaved version of the hypergeometric systems of Gel’fand,
Kapranov and Zelevinsky [GKZ90], in the sense that the solution spaces always have the expected dimensions
in contrast to the original version where a rank-jumping phenomenon may occur. The better-behaved GKZ
systems (bbGKZ systems) are thus more suitable for any kind of functorial consideration. Furthermore, it
turns out that they are closely related to the moduli theory of hypersurfaces in toric varieties and play a
crucial role in toric mirror symmetry. For example, they describe the Gauss–Manin systems associated to the
Landau–Ginzburg mirror potentials of toric Deligne–Mumford stacks (see e.g. [CCIT20, Section 5.1]).

Due to the non-compactness of the toric Deligne–Mumford stacks we consider, there exist two such
systems bbGKZ(C,0) and bbGKZ(C◦,0), where the latter should be considered as a compactly supported
version of the former. In [BH15], Borisov and Horja formulated a pair of conjectures: one regarding the
duality between these two systems (which was settled in full generality in [BH24]) and another regarding
the connection between the analytic continuation of solutions to these systems and certain Fourier–Mukai
transforms. This paper is focused on the latter conjecture.

To formulate the main result more precisely, we first introduce our combinatorial setting and review the
definition of the bbGKZ systems.

Let C be a finite rational polyhedral cone in a vector space N
R
:= N ⊗

Z
R, where N is a lattice. We

assume the ray generators of C are lattice points in N and lie on a primitive hyperplane deg(−) = 1, where
deg is a linear function on N . These data define an affine Gorenstein toric variety X = Spec(C[C∨ ∩N∨]).
Consider a set {vi}ni=1 of lattice points of degree 1 which includes all ray generators of the cone C; a
simplicial subdivision Σ of C based on this set gives a crepant resolution PΣ→ X. Generally speaking, PΣ

is a smooth toric Deligne–Mumford stack rather than a smooth toric variety.

Definition 1.1. Consider the system of partial differential equations on the collection of functions
{Φc(x1, . . . ,xn)} in complex variables x1, . . . ,xn, indexed by the lattice points in C:

∂iΦc = Φc+vi ,
n∑
i=1

⟨µ,vi⟩xi∂iΦc + ⟨µ,c⟩Φc = 0

for all µ ∈ N∨, c ∈ C and i = 1, . . . ,n. We denote this system by bbGKZ(C,0). Similarly, by considering
lattice points in the interior C◦ only, we can define bbGKZ(C◦,0).

Borisov and Horja introduced Gamma series solutions with values in the complexified K-group (or,
equivalently, the orbifold cohomology) of the toric stack PΣ to these systems which is locally defined in a
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neighborhood of the large radius limit point corresponding to Σ in [BH15]. As a result, the K-groups provide
a local integral structure of the local systems of solutions to the bbGKZ systems.

In this paper, we show that this local integral structure is compatible with the natural analytic continuation
of solutions to the bbGKZ systems. More precisely, we prove that under the isomorphisms provided by
Gamma series (the mirror symmetry maps), the analytic continuation of solutions to bbGKZ systems from the
neighborhood of one triangulation Σ+ to the neighborhood of another adjacent triangulation Σ− coincides
with the K-theoretic Fourier–Mukai transform associated to the flop PΣ− d PΣ+

.

Theorem 1.2 (= Theorems 4.5 and 5.2). The following diagrams commute:

K0

(
PΣ+

)∨
FM∨
��

−◦Γ+ // Sol(bbGKZ(C,U+))

MB

��
K0

(
PΣ−

)∨ −◦Γ− // Sol(bbGKZ(C,U−)),

Kc0
(
PΣ+

)∨
(FMc)∨
��

−◦Γ ◦+ // Sol(bbGKZ(C◦),U+)

MBc

��
Kc0

(
PΣ−

)∨ −◦Γ ◦− // Sol(bbGKZ(C◦),U−),

where the horizontal arrows are mirror symmetry maps and FM and MB (respectively, FMc and MBc) denote the
Fourier–Mukai transforms (respectively, analytic continuation transformations of solutions).

This phenomenon was first observed in the Ph.D. thesis of Horja [Hor99] and was later studied by Borisov
and Horja in [BH06a]. However, the authors were using the original version of the GKZ systems, and the
map between the dual of the K-theory and the solution space is not necessarily an isomorphism due to the
rank-jumping phenomenon at non-generic parameters (see e.g. [MMW05]). The advantage of the bbGKZ
systems is that the mirror symmetry maps from the duals of the K-groups to the solution spaces are always
isomorphisms.

The motivation behind these works comes from Kontsevich’s homological mirror symmetry, see [Kon95],
which predicts that the fundamental group of the moduli space of the complex structures on the one side
naturally acts on the bounded derived category of coherent sheaves on the other side. This suggests the
existence of an isotrivial family of triangulated categories over the complex moduli space. For the toric case,
on the level of the Grothendieck groups, this family gives us the local system of solutions to the bbGKZ
systems. The main results of [BH06a] and this paper hence fit within this framework. Nevertheless, a general
construction of such a family on the level of triangulated categories is currently unknown, although progress
has been made in the quasi-symmetric case by Špenko and Van den Bergh in [ŠVdB22] (see also [Špe22] for
a survey on this).

The paper is organized as follows. In Section 2, we review basic facts about bbGKZ systems, toric
Deligne–Mumford stacks and toric wall-crossing, and we fix notation that will be used throughout this paper.
In Section 3, we compute the analytic continuation of Gamma series solutions to bbGKZ(C,0). In Section 4,
we compute the Fourier–Mukai transform associated to the toric wall-crossing PΣ− d PΣ+

and match it with
the analytic continuation computed in Section 3. Finally, in Section 5, we make use of the duality result
in [BH24] to prove the analogous result for the dual system bbGKZ(C◦,0).
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2. Better-behaved GKZ systems and toric wall-crossing

In this section, we collect basic facts about better-behaved GKZ systems and toric wall-crossing. The main
references are [BCS04,BH13,BH06a,CIJ18,GKZ94].

2.1. Toric Deligne–Mumford stacks and twisted sectors

First we recall the definition of smooth toric Deligne–Mumford stacks (or toric orbifolds) following
Borisov–Chen–Smith [BCS04]. See also [BH15, Section 3].

Definition 2.1. Suppose C, N , {v1, . . . , vn} and Σ are combinatorial data defined in Section 1. Consider the
open subset U of Cn defined by

U = {(z1, . . . , zn) ∈Cn : {i : zi = 0} ∈ Σ}

and the subgroup G of (C∗)n defined by

G =

(λ1, . . . ,λn) : n∏
i=1

λ⟨m,vi⟩i = 1,∀m ∈N∨


The smooth toric Deligne–Mumford stack PΣ associated to C, N , {v1, . . . , vn} and Σ is defined to be the
stack quotient of U by G.

Recall that the twisted sectors of a Deligne–Mumford stack are defined to be the connected components of
its inertia stack. In the case of smooth toric Deligne–Mumford stacks, we have the following combinatorial
description of twisted sectors.

Proposition 2.2. There is a 1-1 correspondence between the set of twisted sectors of a smooth toric Deligne–
Mumford stack PΣ with the set Box(Σ) of twisted sectors of Σ to the set of lattice points γ ∈ N which can be
written as γ =

∑n
j=1γjvj , where all coefficients satisfy γj ∈ [0,1), such that {j : γj , 0} is a cone in Σ.

Proof. See [BCS04, Proposition 4.7]. □

From now on we will use the symbol γ to denote either a connected component of the inertia stack or
its corresponding lattice points in C ∩N . Now we give an alternative characterization of twisted sectors
following [Iri09]. For any lattice point c ∈ C ∩N , we define

Kc : =

(li) ∈Qn :
n∑
i=1

livi = −c, {i : li <Z} is a cone in Σ


=

⋃
γ∈Box(Σ)

Lc,γ ,

where

Lc,γ :=

(li) ∈Qn :
n∑
i=1

livi = −c, li ≡ γi modZ


Clearly, the set L := L0,0 acts on Kc by translation. The following characterization of twisted sectors can be
found in [Iri09, Section 3.1.3].
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Lemma 2.3. There is an injection Kc/L ↪→ Box(Σ), and the image of this map consists of twisted sectors γ such
that the set Lc,γ is non-empty.

Proof. The map Kc → Box(Σ) defined by (li) 7→
∑n
i=1{li}vi clearly factors through Kc/L. Now take a

twisted sector γ ∈ Box(Σ); then any element in the lattice Lc,γ is mapped to γ due to the condition li ≡ γi
modZ. □

Thus each twisted sector γ with Lc,γ , ∅ is represented by elements in the lattice Kc. We call such
representatives the liftings of γ .

2.2. Orbifold cohomology and Grothendieck K-groups

Next we recall the combinatorial description of the orbifold cohomology ring H ∗orb(PΣ) and the
Grothendieck K-group K0(PΣ) of derived category of coherent sheaves of the toric stack PΣ. To give
the definition of orbifold cohomology, we need the following Stanley–Reisner-type presentation of the usual
cohomology of twisted sectors of PΣ that can be found in [BH15, Proposition 2.3].

Proposition 2.4. The cohomology space Hγ of the twisted sector γ is naturally isomorphic to the the quotient of
the polynomial ring C[Di : i ∈ Star(σ (γ))\σ (γ)] by the relations∏

j∈J
Dj , J < Star(σ (γ)) and

∑
i∈Star(σ (γ))\σ (γ)

µ (vi)Di , µ ∈ Ann(vi , i ∈ σ (γ)) ,

where Di denotes the torus-invariant divisor corresponding to the ray generated by vi , σ (γ) denotes (the set of
indices of ) the minimal cone in Σ containing the twisted sectors γ , Star(σ (γ)) denotes the set of all cones in Σ

containing σ (γ) as a subcone (i.e., the usual star construction) and Ann(vi , i ∈ σ (γ)) denotes the set of linear
functions in N∨ that take zero values on the vi for i ∈ σ (γ).

The orbifold cohomology H ∗orb(PΣ) of PΣ is then defined to be the direct sum
⊕

γHγ of the cohomology
spaces of the twisted sectors. Note that we ignore the degree shifting given by the age of each twisted sector,
since for our purpose there will be no difference.

Next we give a combinatorial description of the Grothendieck K-group K0(PΣ) of PΣ following [BH06b,
Theorem 4.10]. Note that there is a natural multiplication operation defined by the alternative sum of higher
Tor-sheaves. Recall that the toric stack PΣ is defined as the stack quotient [U/G] as in Definition 2.1. It is well
known that the category of coherent sheaves on [U/G] is equivalent to the category of G-linearized coherent
sheaves on U . For each 1-dimensional cone R≥0vi , i = 1, . . . ,n, we define a corresponding G-linearized
invertible sheaf Li whose underlying sheaf on U is simply OU , and the isomorphism OU → g∗OU for
g = (λ1, . . . ,λn) ∈ G is given by mapping 1 to λi . Note that in the special case where PΣ is a smooth toric
variety, Li is exactly the same as the line bundle O(Di) corresponding to the torus-invariant divisor Di
corresponding to the 1-dimensional cone R≥0vi .

Proposition 2.5. The Grothendieck K-group K0(PΣ) with complex coefficients is generated by the classes Ri := [Li]
for i = 1, . . . ,n. More precisely, K0(PΣ) is isomorphic to the quotient of the Laurent polynomial ring C[R

±1
i ] by the

ideal generated by

n∏
i=1

R
µ(vi )
i − 1, µ ∈N∨ and

∏
i∈I

(1−Ri), I < Σ.

The orbifold cohomology ring and the K-group of PΣ are related by the Chern character ch: K0(PΣ)
∼−→

H ∗orb(PΣ). A combinatorial description can be found in [BH15, Proposition 3.6].
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2.3. Secondary fans and toric wall-crossing

Before we describe the toric wall-crossing setting in this paper, we briefly recall the basic definitions and
properties of secondary fans.

Let Σ be a triangulation of the cone C based on the set of vertices {v1,v2, . . . , vn}. We define the
characteristic function ϕΣ : {v1,v2, . . . , vn} →R by ϕΣ(vi) :=

∑
Vol(σ ), where Vol(σ ) denotes the volume of

σ and the sum is taken over all simplexes σ in Σ that contain vi as a vertex. Note that ϕΣ could be seen as
a lattice point in R

n.

Definition 2.6. The secondary polytope of the cone C is defined to be the convex hull of ϕΣ for all
triangulations Σ in R

n, and the secondary fan of C is defined to be the normal fan of the secondary polytope.

The following basic properties of secondary polytopes and fans could be found in [GKZ94, Chapter 7].

Proposition 2.7. The vertices of the secondary polytope of C (equivalently, the maximal cones of the secondary
fan of C) are in 1-1 correspondence with regular triangulations of C.

Remark 2.8. It is clear that the intersection of two maximal cones in the secondary fan is either {0} or a cone
of codimension 1. In the latter case, the corresponding triangulations are said to be adjacent to each other.

Let Σ− and Σ+ be two adjacent triangulations of the cone C in the sense that the intersection of their
corresponding maximal cones (which we denote by CΣ− and CΣ+

, respectively) in the secondary fan is a
codimension 1 cone. Then there exists a circuit (i.e., a minimal linearly dependent set) I defined by an
integral linear relation

h1v1 + · · ·+ hnvn = 0

with I = I+ ⊔ I−, where I+ = {i : hi > 0} and I− = {i : hi < 0}. Moreover, the linear relation h = (h1, . . . ,hn)
gives the defining equation of the codimension 1 subspace that is spanned by the intersection of the maximal
cones corresponding to Σ± . We specify a special class of cones in the fan Σ±.

Definition 2.9. A maximal cone in Σ± of the form F ⊔ (I\i), where i ∈ I± and F ⊆ {1,2, . . . ,n}\I , is called
an essential maximal cone in Σ±, and the set F is called the separating set of the essential maximal cone.
We denote the set of essential cones in Σ± by Σes

± . If the minimal cone σ (γ±) of a twisted sector γ± is a
subcone of an essential maximal cone in Σ, then we say γ± is an essential twisted sector ; we denote the set of
essential twisted sectors by Box(Σes

± ).

Definition 2.10. Let σ± be essential maximal cones in Σ±. We say that σ+ and σ− are adjacent if they have
the same separating set F . Equivalently, σ− can be obtained from σ+ by adding the vector i ∈ I+ which is
missing in σ+ and deleting some vector k ∈ I−.

It is proved in [GKZ94, Section 7.1] that one can obtain one triangulation of Σ± from another by replacing
all essential cones of one triangulation with those of another. The associated toric Deligne–Mumford stacks
PΣ± are then related by an Atiyah flop that is a composition of a weighted blow-down and a weighted
blow-up:

PΣ̂

f+

!!

f−

}}
PΣ−

//
PΣ+

.

Here PΣ̂ is a common blow-up of PΣ± defined as follows. The linear relation can be rewritten as∑
i∈I+

hivi = −
∑
i∈I−

hivi .
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We denote this vector by v̂. We then define Σ̂ to be the fan obtained by replacing all essential cones of Σ±
by cones of the form F ∪ {v̂} ∪ (I\{i+, i−}), where i± ∈ I±.

The behavior of twisted sectors under the wall-crossing was studied in [BH06a, Section 4] and [CIJ18,
Section 6.2.3].

Definition 2.11. Let γ± ∈ Box(Σ±) be two essential twisted sectors. We say that γ− is adjacent to γ+ if there
exists a pair of essential maximal cones σ± in Σ± such that σ (γ+) and σ (γ−) are subcones of σ+ and σ−,
respectively.

Lemma 2.12. Let Σ± be two adjacent triangulations. Then there exists a choice of the lifting Box(Σ±)→K
±
c

such that for any pair of adjacent twisted sectors γ+ and γ−, the liftings γ̃+ and γ̃− differs by a rational multiple
of the defining linear relation h = (h1, . . . ,hn) of the circuit I that corresponds to the wall-crossing Σ+→ Σ−.

Proof. The proof is similar to that of [BH06a, Proposition 4.4(ii)]. We begin with an arbitrary essential twisted
sector γ+ ∈ Box(Σes

+ ) and an arbitrary lifting γ+ =
∑n
j=1(γ+)jvj . We write σ (γ+) ⊆ F ⊔ I\i, where F is a

separating set and i ∈ I+. For any k ∈ I−, we take a rational number q ∈Q such that (γ+)k + qhk ∈Z. Then
((γ+)j ) and ((γ+)j + qhj ) differ by a rational multiple of h. We denote the associated twisted sector of the
latter by γ−. It is then clear that σ (γ−) ⊆ F ⊔ I\k; hence γ− is an essential twisted sector of Σ−. Moreover,
since σ (γ±) share the same separating set, σ+ and σ− are adjacent.

Now we have proved that by adding an appropriate rational multiple of h to a lifting of an essential
twisted sector in Σ+, we get a lifting of an essential twisted sector in Σ−. It remains to show that any essential
twisted sector in Σ− can be obtained in this way. To see this, note that the procedure above is invertible (i.e.,
adding −q ·h to the lifting), so if we start with some γ+, apply the procedure above from Σ+ to Σ− and back,
we recover the original twisted sector. By switching the roles of Σ+ and Σ−, we deduce that any essential
twisted sector in Σ− can be obtained from this procedure. □

Remark 2.13. In the proof above, we see that for a fixed essential twisted sector γ+ of Σ+ and k ∈ I−, the
lifting we constructed for the adjacent twisted sector is not unique due to the freedom of the condition
(γ+)k +qhk ∈Z. However, it is important to note that any two such liftings differ by an integral multiple of h.
In fact, whenever we have two liftings γ+ + q1h and γ+ + q2h, they both define the same twisted sector of Σ−
if and only if the fractional part of the corresponding coordinates are equal. This means that (q1 − q2)h
should have integral coordinates. The primitivity of h then forces q1 − q2 to be an integer.

3. Analytic continuation of Gamma series

In this section, we compute the analytic continuation of Gamma series solutions to bbGKZ(C,0).
Following [BH24], the Gamma series solution to bbGKZ(C,0) associated to a triangulation Σ is given by

Γc =
⊕

γ∈Box(Σ)

∑
l∈Lc,γ

n∏
j=1

x
lj+

Dj
2πi

j

Γ

(
1+ lj +

Dj
2πi

) ,
and there exists a point ψ̂ in the maximal cone CΣ of the secondary fan corresponding to Σ such that the
series converges absolutely on the open set

UΣ =
{(
xj

)
∈Cn :

(
− log

∣∣∣xj ∣∣∣) ∈ ψ̂ +CΣ, arg(x) ∈ (−π,π)n
}
,

which should be thought of as a neighborhood of the large radius limit point corresponding to Σ.
We introduce some additional notation that will be used later. We define Lc,γ,σ to be the subset of Lc,γ

with the additional property that the set

I(l) := {i : li ∈Z<0} ⊔ σ (γ) = {i : li <Z≥0}
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is a subcone of the maximal cone σ . Note that an element l ∈ Lc,γ has a non-zero contribution to the series
if and only if it lies in one of the subsets Lc,γ,σ . Along the same line as the proof of [BH24, Proposition 3.8],
we can prove the following result. See also [BH13, Proposition 2.8] for a similar result for the usual GKZ
systems.

Proposition 3.1. For each maximal cone σ , the subseries

⊕
γ∈Box(Σ)

∑
l∈Lc,γ,σ

n∏
j=1

x
lj+

Dj
2πi

j

Γ

(
1+ lj +

Dj
2πi

)
is absolutely and uniformly convergent on compacts in the region

Uσ =
{(
xj

)
∈Cn :

(
− log

∣∣∣xj ∣∣∣) ∈ ψ̂σ +Cσ , arg(x) ∈ (−π,π)n} ,
where Cσ denotes the union of all maximal cones CΣ in the secondary fan that corresponds to triangulations Σ
such that σ ∈ Σ, and ψ̂σ is a point in Cσ .

Remark 3.2. More generally, for any subset of maximal cones J of Σ, the subseries taken over the union
of all Lc,γ,σ for σ ∈ J converges absolutely and uniformly on compacts in UJ := ∩σ∈JUσ . In particular, the
open set UΣ is a subset of the intersection of the Uσ for all σ ∈ Σ.

Furthermore, we define Lesc,γ to be the union of Lc,γ,σ for all σ ∈ Σes. Note that Lesc,γ is non-empty only
if γ ∈ Box(Σes). We define the essential part Γ esc = ⊕γΓ esc,γ of the Gamma series Γc to be the subseries that
consists of terms corresponding to l ∈ Lesc,γ , namely

Γ esc :=
⊕
γ

∑
l∈Lesc,γ

n∏
j=1

x
lj+

Dj
2πi

j

Γ

(
1+ lj +

Dj
2πi

) ,
and the non-essential part to be Γc − Γ esc .

Henceforth, we will add superscripts ± to the notation defined above to distinguish between Gamma
series associated to different triangulations Σ±.

The main goal of this section is to compute the analytic continuation of the Gamma series solution Γ + to
bbGKZ(C,0) defined on UΣ+

along the following path (see Figure 1) to UΣ− :

• The start and end points x± ∈UΣ± should be chosen so that both of them lie in the open set UΣ+∩Σ−
(1)

and satisfy arg(x+)j = arg(x−)j and − log |(x+)j | + log |(x−)j | = Ahj for any j and some constant
A > 0.(2)

• The path x(u), 0 ≤ u ≤ 1, from x+ to x− is chosen so that for any u ∈ [0,1],

arg(x(u)j ) = arg(x+)j = arg(x−)j ,

log
∣∣∣x(u)j ∣∣∣ = (1−u) log

∣∣∣(x+)j ∣∣∣+u log ∣∣∣(x−)j ∣∣∣ .
Moreover, we require the argument of the auxiliary variable

y := eiπ
∑
j∈I− hj

n∏
j=1

x
hj
j

to be restricted in the interval (−2π,0) along the path. The existence of this path is guaranteed by
the choice of x±.

(1)Here Σ+ ∩Σ− denotes the set of common maximal cones of Σ±; see Remark 3.2.
(2)This condition is equivalent to saying that the line connecting log |(x+)j | and log |(x−)j | is perpendicular to the wall that

separates Σ+ and Σ− in the secondary fan.
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Figure 1. Path of analytic continuation

Remark 3.3. The restriction on the argument of the variable y is imposed to avoid introducing monodromy
during the process of analytic continuation.

The main idea comes from [BH06a], where the technique of Mellin–Barnes integrals is used to compute
the analytic continuation for the usual GKZ systems. The main difference is that while they worked
with K-theory-valued solutions, we work with the orbifold cohomology-valued solutions which makes the
computation simpler, inspired by the approach of [CIJ18].

Remark 3.4. Let us make a remark here that throughout the remainder of this section, we think of the
symbols Di as generic complex numbers. The reason will be clear once we arrive at the proof of Theorem 4.5.

In the following, we study the analytic continuation of the essential part and the non-essential part
separately. The latter case is easier.

Proposition 3.5. The analytic continuation of Γ +c − Γ
+,es
c along the path λ is equal to Γ −c − Γ

−,es
c .

Proof. By definition, each single term
∏n
j=1

x
lj+

Dj
2πi

j

Γ (1+lj+
Dj
2πi )

in the non-essential part Γ ±c − Γ
±,es
c corresponds to

some l ∈
⋃
σ∈Σ+∩Σ− Lc,γ,σ . According to the choice of x±, both of them lie in UΣ+∩Σ− ; the convexity then

ensures that the whole path x(u) is contained in this open set. Therefore, by Proposition 3.1, the non-essential
parts Γ ±c − Γ

±,es
c are analytic on a open set which contains the analytic continuation path. This finishes the

proof. □

The rest of this section will be devoted to the continuation of the essential part Γ +,esc . From now on, we
fix a twisted sector γ ∈ Box(Σ+) such that Lc,γ is non-empty(3) and look at the corresponding component of
the Gamma series.

Recall from Section 2 that h is the primitive integral linear relation associated to the wall-crossing from
Σ+ to Σ−. It is clear from the definition that h acts on the lattice L+c,γ by translation. It is also clear that
if l ∈ Les,+c,γ , then for any m ≥ 0, the translation l +mh also lies in Les,+c,γ (see [BH06a, Proposition 4.7] for a

(3)If the set Lc,γ is empty, then the corresponding component Γc,γ is equal to zero, thus there is no need for analytic continuation.
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similar result for usual GKZ systems). Hence the subset of Les,+c,γ

L̃es,+c,γ :=
{
l ∈ Les,+c,γ : l − h < Les,+c,γ

}
is well defined, and Les,+c,γ = L̃es,+c,γ +Z≥0h. We can define L̃es,−c,γ ′ in the same way with an appropriate change of
signs.

With this notation, the essential part Γ +,esc,γ is equal to

∑
l∈Les,+c,γ

n∏
j=1

x
lj+

Dj
2πi

j

Γ

(
1+ lj +

Dj
2πi

) =
∑
l′∈L̃es,+c,γ

∞∑
m=0

n∏
j=1

x
l′j+mhj+

Dj
2πi

j

Γ

(
1+ l′j +mhj +

Dj
2πi

) .
By applying the Euler identity Γ (z)Γ (1− z) = π

sin(πz) , we can rewrite the product as

n∏
j=1

x
l′j+

Dj
2πi

j ·

∏
j∈I−

sin
(
π
(
−l′j−

Dj
2πi

))
π Γ

(
−l′j −mhj −

Dj
2πi

)
∏
j<I−

Γ

(
1+ l′j +mhj +

Dj
2πi

) ·

(−1)∑j∈I− hj
n∏
i=1

x
hj
j

m .
Now we consider

I(s) = −
n∏
j=1

x
l′j+

Dj
2πi

j

∏
j∈I−

sin
(
π
(
−l′j−

Dj
2πi

))
π Γ

(
−l′j − shj −

Dj
2πi

)
∏
j<I−

Γ

(
1+ l′j + shj +

Dj
2πi

) Γ (−s)Γ (1 + s)
(
eiπy

)s
,

where y = eiπ
∑
j∈I− hj

∏n
j=1 x

hj
j . There are two types of poles of I(s):

• integers s =m ∈Z, which come from the factor Γ (−s)Γ (1 + s),
• s = pk,w := − 1

hk

(
l′k +

Dk
2πi

)
+ w
hk
, k ∈ I−, w ∈Z≥0, which come from the factor

∏
j∈I− Γ (−l

′
j − shj −

Dj
2πi ).

The reason why we use this specific form of I(s) is that the residue of I(s) at integers s =m ∈Z is exactly

Ress=m∈ZI(s) =
n∏
j=1

x
l′j+mhj+

Dj
2πi

j

Γ

(
1+ l′j +mhj +

Dj
2πi

) ,
that is, what we have in the original Gamma series. Also note that the residues at non-positive integers are
in fact zero, which follows directly from the definitions of l′ and L̃es,+c,γ .

The next step is to compute the residues of I(s) at pk,w. An application of the Euler identity together
with an elementary computation show that

I(s) = − πeiπs

sin(−πs)

∏
j∈I−

sin
(
π
(
−l′j −

Dj
2πi

))
sin

(
π
(
−l′j − shj −

Dj
2πi

))eiπ(∑j∈I− hj)s
n∏
j=1

x
l′j+shj+

Dj
2πi

j

Γ

(
1+ l′j + shj +

Dj
2πi

)

=
2πi

1− e−2iπs
∏
j∈I−

1− e
−2iπ

(
l′j+

Dj
2πi

)

1− e
−2iπ

(
l′j+shj+

Dj
2πi

) n∏
j=1

x
l′j+shj+

Dj
2πi

j

Γ

(
1+ l′j + shj +

Dj
2πi

) .
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It suffices to look at the factor 1/(1− e−2iπ(l′k+shk+
Dk
2πi )), whose residue at pk,w is equal to 1

2πihk
. Putting all

these together, we get

Ress=pk,wI(s) =
1− e−2iπ

(
l′k+

Dk
2πi

)
hk

(
1− e−2iπpk,w

) ∏
j∈I−
j,k

1− e
−2iπ

(
l′j+

Dj
2πi

)

1− e
−2iπ

(
l′j+pk,whj+

Dj
2πi

) · n∏
j=1

x
l′j+pk,whj+

Dj
2πi

j

Γ

(
1+ l′j + pk,whj +

Dj
2πi

) .
Now we introduce new notation. We write w = w0 · (−hk) + r, where w0, r ∈Z and 0 ≤ r < −hk , and define

l′′ := l′ +
l′k − r
−hk

h.

Then we have

1+ l′j + pk,whj +
Dj
2πi

= 1+
(
l′j −

l′k
hk
hj +w

hj
hk

)
+

Dj −
hj
hk
Dk

2πi


= 1+

(
l′′j −w0hj

)
+

Dj −
hj
hk
Dk

2πi

 .
We denote the associated twisted sector by γ (k,r) ∈ Box(Σes

− ). The key observation is l′′ ∈ L̃es,−
c,γ (k,r) .

Lemma 3.6. Given l′ ∈ L̃es,+c,γ , k ∈ I− and 0 ≤ r < −hk , there is a uniquely determined essential twisted sector
γ (k,r) ∈ Box(Σ−)es such that l′′ ∈ L̃

es,−
c,γ (k,r) .

Proof. The twisted sector γ (k,r) is defined as the associated twisted sector of l′′ in the sense of Lemma 2.3;
i.e., γ (k,r) :=

∑n
j=1{l

′′
j }vj .

First we show that γ (k,r) is an essential twisted sector in Σ−. This is equivalent to showing that {j : l′′j <Z}
is a subcone of an essential cone in Σ−. Since l

′ ∈ L̃es,+c,γ , we can write

I(l′) =
{
j : l′j <Z≥0

}
⊆ F ⊔ I\{i} ∈ Σes

+

for some separated set F and i ∈ I+. Take j such that l′′j <Z. If j < I , then hj = 0 and l′′j = l′j , so j ∈ I(l
′),

and hence j ∈ F . On the other hand, if j ∈ I , then j , k because by the definition of l′′ , we have l′′k = r ∈Z≥0,
so k < I(l′′). Now we conclude that I(l′′) ⊆ F ⊔ I\{k}, which is an essential cone in Σ− because k ∈ I−. This
also shows that l′′ lies in Les,−

c,γ (k,r) .

Next we show that l′′ ∈ L̃es,−
c,γ (k,r) . It suffices to show that l′′ +h < Les,−

c,γ (k,r) . This follows from the construction

of l′′ . Note that l′′ is chosen such that l′′k = r ∈ Z≥0 while l′′k + hk = r + hk ∈ Z<0. This implies that
I(l′′) ⊆ F ⊔ I\{k} while I(l′′ + h) ⊈ F ⊔ I\{k}. Therefore, l′′ + h < Les,−

c,γ (k,r) and the proof is completed. □

The first two terms in the residue can be written as

1− e−2iπ
(
l′k+

Dk
2πi

)
hk

1− e−2iπ( l′k−l′′k−hk − Dk
2πihk

)
∏
j∈I−
j,k

1− e
−2iπ

(
l′j+

Dj
2πi

)

1− e
−2iπ

l′′j +Dj−
hj
hk
Dk

2πi


.

We claim that this factor only depends on the twisted sectors γ and γ (k,r). To see this, recall our choice of
the lifting Box(Σ±)→Kc made in Remark 2.12. It is then clear that (l′ − l′′)− (γ −γ (k,r)) is also a rational
multiple of h. However, the left side has integral coordinates, which forces the right side to be an integer
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multiple of h due to the primitivity. This implies that the kth coordinate (l′k − l
′′
k )− (γk −γ

(k,r)
k ) is an integer

multiple of hk , which means that

1− e
−2iπ

(
l′k−l
′′
k

−hk
− Dk

2πihk

)
= 1− e

−2iπ
 γk−γ(k,r)k

−hk
− Dk

2πihk


.

Together with the facts that l′j ≡ γj and l
′′
j ≡ γ

(k,r)
j modulo Z, this implies that the original factor is equal to

Cγ (k,r) :=
1− e−2iπ

(
γk+

Dk
2πi

)

hk

1− e−2iπ
 γk−γ(k,r)k

−hk
− Dk

2πihk


∏
j∈I−
j,k

1− e
−2iπ

(
γj+

Dj
2πi

)

1− e
−2iπ

γ (k,r)
j +

Dj−
hj
hk
Dk

2πi


;

hence the residue is

Ress=pk,wI(s) = Cγ (k,r) ·
n∏
j=1

x

(
l′′j −w0hj

)
+

Dj−
hj
hk
Dk

2πi


j

Γ

1+ (
l′′j −w0hj

)
+
Dj−

hj
hk
Dk

2πi


.

Finally, we use the techniques of Mellin–Barnes integrals to finish the computation. First of all, we fix an
l′ ∈ L̃es,+c,γ and do the analytic continuation to the corresponding subseries

∞∑
m=0

n∏
j=1

x
l′j+mhj+

Dj
2πi

j

Γ

(
1+ l′j +mhj +

Dj
2πi

) .
We consider the contour integral

1
2πi

∫
C
I(s)ds =

1
2πi

∫ a+i∞

a−i∞
I(s)ds.

Here the contour C is parallel to the imaginary axis, and the real part a of C is a negative number satisfying
ϵ < |a| < 1 for some ϵ > 0 which avoids any pole of the integrand.

Now by [BH06a, Lemma A.6] (see also the proof of [BH06a, Theorem 4.10]), the sum of residues of I(s) at
the poles on the right side of the contour C,

∞∑
m=0

n∏
j=1

x
l′j+mhj+

Dj
2πi

j

Γ

(
1+ l′j +mhj +

Dj
2πi

) + ∑
pk,w on the right side of C

Respk,wI(s),(3.1)

is analytically continued to

−
∑

pk,w on the left side of C

Respk,wI(s),(3.2)

that is, the negative of the sum of residues of I(s) at poles on the left side of C. Note that for a fixed l′ ∈ L̃es,+c,γ ,
the real part of the poles pk,w is bounded above; therefore, the second sum in (3.1) is finite. Therefore, we
can add the negative of it to both (3.1) and (3.2), and deduce that

∞∑
m=0

n∏
j=1

x
l′j+mhj+

Dj
2πi

j

Γ

(
1+ l′j +mhj +

Dj
2πi

)
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is analytically continued to

−
∑
k∈I−

∑
0≤r<−hk

Cγ (k,r)

∞∑
w0=0

n∏
j=1

x

(
l′′j −w0hj

)
+

Dj−
hj
hk
Dk

2πi


j

Γ

1+ (
l′′j −w0hj

)
+
Dj−

hj
hk
Dk

2πi


.

To proceed with the analytic continuation, we need some analytic results and estimates. The corresponding
results in the setting of the usual GKZ systems can be found in [BH06a]. Indeed, the results in this paper
could be proved word for word following the argument therein.

We denote the intersection of the cone CΣ+
and CΣ− in the secondary fan (i.e., the wall defined by the

linear relation h) by C̃.

Lemma 3.7. For any k,A > 0, there exists a c̃ in the interior of C̃ such that for any l′ ∈ L̃es,+c,γ , we have

n∑
j=1

l′juj ≥ k∥l
′∥

for any u ∈ C̃ + c̃+ a and any a ∈Rn with ∥a∥ ≤ A.

Proof. The proof is nearly the same as that of [BH06a, Lemma 4.11]; the only difference is that the L̃es,+c,γ is a
shift of the S ′ therein. See also the proof of [BH24, Proposition 3.8]. □

Lemma 3.8. There exist an A > 0 and a c̃ ∈ C̃ such that the set

VA :=
⋃

a:∥a∥<A

(
C̃ + c̃+ a

)
intersects with UΣ± , and such that the integral∫ a+i∞

a−i∞

∑
l′∈L̃es,+c,γ

Il′ (s)ds

(where we use the subscript l′ to emphasize the dependence of the integrand on l′) is absolutely convergent on the
region U defined by

U = {(xj ) ∈Cn : (− log |xj |) ∈ VA, −2π < argy < 0, arg(x) ∈ (−π,π)n}.

Proof. The proof is parallel to that of [BH06a, Lemma 4.12]. The contour is defined by s = a+ it for t ∈R.
By applying [BH06a, Lemma A.5], we see that the integrand Il′ (s) is controlled by

|y|ae−(π+argy)t(|t|+1)R+n/2e−π|t|
∑
l′∈L̃es,+c,γ

(4ek)∥l
′∥e

∑
l′j log |xj |

for some R > 0 independent of l′ . We now apply Lemma 3.7; we can choose c̃ in the interior C̃ such that on
the set VA, we have

(4ek)∥l
′∥e

∑
l′j log |xj | ≤ e−ϵ∥l

′∥

for some ϵ > 0 and any l′ ∈ L̃es,+c,γ and x ∈U . Since ∥l′∥ is of polynomial growth, the sum over all l′ is still
controlled by an exponential function with negative exponent. Hence the integral is absolutely convergent
and therefore defines an analytic function over U . □
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Now Lemma 3.8, together with the fact that the sum of the second term in (3.1) over all l′ ∈ L̃es,+c,γ is
absolutely convergent (because it is a subseries of a finite sum of the original gamma series), allows us to
deduce the following desired analytic continuation of Γ +c,γ :

−
∑
k∈I−

∑
0≤r<−hk

Cγ (k,r)

∑
l′′∈L̃es,−

c,γ(k,r)

∞∑
w0=0

n∏
j=1

x

(
l′′j −w0hj

)
+

Dj−
hj
hk
Dk

2πi


j

Γ

1+ (
l′′j −w0hj

)
+
Dj−

hj
hk
Dk

2πi


,

that is,

−
∑
k∈I−

∑
0≤r<−hk

Cγ (k,r)Γ
−,es
c,γ (k,r) |Dj→Dj−

hj
hk
Dk
,

where the subscript of Γ −,es
c,γ (k,r) |Dj→Dj−

hj
hk
Dk

denotes substitution of Dj by Dj −
hj
hk
Dk and we have used the fact

that l′′ ∈ L̃es,−
c,γ (k,r) . Therefore, we have proved the following result.

Proposition 3.9. The analytic continuation of Γ +,esc,γ is given by

−
∑
k∈I−

∑
0≤r<−hk

Cγ (k,r)Γ
−,es
c,γ (k,r) |Dj→Dj−

hj
hk
Dk
.

4. Fourier–Mukai transforms

In this section, we compute the Fourier–Mukai transform associated to the toric wall-crossing PΣ− d PΣ+

and match it with the analytic continuation computed in Section 3.
The Fourier–Mukai transform associated to the flop PΣ− d PΣ+

was studied by Borisov and Horja
in [BH06b] and [BH13]. More precisely, they computed the images of the K-theory classes Ri of PΣ−

under the pullback and pushforward functors and obtained the formulae for the K-theoretic Fourier–Mukai
transforms given below. See [BH06a, Propositions 5.1 and 5.2].

Before we state their result, we introduce some notation. Let γ+ =
∑
j(γ+)jvj be an essential twisted

sector of Σ+. We denote by I (γ+) the set of complex numbers t such that e2πi(γ+)j · thj = 1 for some j ∈ I−.
It is proved in [BH06a, Section 4] that this set is finite, consists of roots of unity and is in 1-1 correspondence
with the adjacent twisted sectors of γ+.

Proposition 4.1.

(1) For any analytic function ϕ and J which is not a subcone of any essential cone, the class∏
j∈J

(1−Rj )ϕ(R)

remains unchanged under the Fourier–Mukai transform.
(2) For any analytic function ϕ, the image of the K-theory class ϕ(R) = ϕ(R1, . . . ,Rn) under the Fourier–Mukai

transform FM is given by

FM(ϕ(R)) = (FM(ϕ)(R))(1),

where the function FM(ϕ) is defined as

FM(ϕ)(r) = ϕ(r)−
∑
t∈I

∫
Ct

T
(
r, t̂

)
ϕ

(
rt̂h

)
dt̂,
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where T (r, t̂) = 1
2πi(t̂−1)

∏
j∈I−

1−r−1j
1−r−1j t̂

−hj
and I is a set of roots of unity of a large enough order such that it

contains the set I (γ+) defined above for all essential twisted sectors γ+ of Σ+. The contours Ct for t ∈ I
are circles defined in a way such that they include all poles of the integrand in the interior, and Ri is the
endomorphism on K0(PΣ+

) defined by multiplication by Ri .

In this section, we use the formulae of Borisov–Horja to compute the Fourier–Mukai transform of the
non-essential part Γ −c − Γ

−,es
c and the essential part Γ −,esc separately. A comparison of the computation in this

section with the one in the last section hence yields the FM=AC result for bbGKZ(C,0).
The non-essential part is easier to deal with.

Proposition 4.2. The Fourier–Mukai transform FM(Γ −c − Γ
−,es
c ) is given by

FM(Γ −c − Γ −,esc ) = Γ −c − Γ −,esc .

Proof. By definition, for each single term
∏n
j=1

x
lj+

Dj
2πi

j

Γ (1+lj+
Dj
2πi )

in the non-essential part Γ −c − Γ
−,es
c , the set I(l)

(and therefore {i : li ∈ Z<0}) is not a subcone of any essential cone. Hence it contributes a factor of the
form

∏
j∈JDj , where J is not a subcone of any essential cone. Note that Dj can be written as the product of

1− eDj with an invertible element; the original product can therefore be written as∏
j∈J

(
1− eDj

)
ϕ̃(D),

where ϕ̃ is an analytic function. Taking the direct sum over all twisted sectors γ , we see that under the
Chern character K0(PΣ−)

∼−→⊕γHγ , the non-essential part Γ −c −Γ
−,es
c is exactly of the form

∏
j∈J (1−Rj )ϕ(R)

for some analytic function ϕ. Now the statement follows from the first part of Proposition 4.1. □

In order to compare the Fourier–Mukai transform of the essential part Γ −,esc with the analytic continuation
computed in the last section, we first rewrite the formula in the second part of Proposition 4.1 by computing
the residue of the integrand explicitly. Recall that K0(PΣ) is a semi-local ring whose maximal ideals are in
1-1 correspondence with twisted sectors γ ∈ Box(Σ).

Proposition 4.3. For any analytic function ϕ, we have

FM(ϕ)(z)γ =

 ϕ(z) if γ < Box(Σ+)es,

−
∑
k∈I−

∑
0≤r<−hk Cγ (k,r)ϕ

(
z
(
p(k,r)

)h)
if γ ∈ Box(Σ+)es,

where

p(k,r) := e
−2iπ

 γk−γ(k,r)k
−hk

− Dk
2πihk


for k ∈ I−, 0 ≤ r < −hk .

Proof. Fix a twisted sector γ ∈ Box(Σ+). We localize at the point rj = e
Dj+2πiγj corresponding to γ . If

γ < Box(Σ+)es, then by the definition of I , the integration kernel T (r, t̂) has no pole inside the contours Ct ,
and therefore, the second term in the formula is equal to zero.

Now suppose γ ∈ Box(Σ+)es. The poles of T (r, t̂) are 1 together with points t̂ such that there exists a
k ∈ I− with rk t̂hk = 1, where rk = eDk+2πiγk . The set of poles is then{

e
− 1
hk
(2πiγk+Dk)

(
e
2πi
hk

)r
: k ∈ I−,0 ≤ r < −hk

}
.
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An elementary calculation shows that this set is in fact the same asp(k,r) := e−2iπ
 γk−γ(k,r)k

−hk
− Dk

2πihk


: k ∈ I−,0 ≤ r < −hk

 ,
where γ (k,r) is defined as in Section 3.(4) To demonstrate this, we observe that according to Remark 2.13,
any two liftings differ by an integer multiple of h. Thus, p(k,r) does not depend on the choice of lifting, and

the set {γ (k,r)
k } is equal to {0,1, . . . ,−hk − 1} modulo −hk . To compute the residue of T (r, t̂) at these poles, it

suffices to consider the factor
1−r−1k

1−r−1k t̂
−hk

. The residue is then equal to

2πiRest̂=p(r,k)T
(
r, t̂

)
=

1
p(r,k) − 1

∏
j∈I−
j,k

1− e−Dj−2πiγj

1− e−Dj−2πiγj
(
p(r,k)

)−hj · p(r,k)(1− r−1k )

hk

=
e2πi

(
−γk−

Dk
2πi

)
− 1

hk(e
2iπ
−hk

(
γ
(r,k)
k −γk−

Dk
2πi

)
− 1)

∏
j∈I−
j,k

1− e
−2iπ

(
γj+

Dj
2πi

)

1− e
−2iπ

γ (r,k)
j +

Dj−
hj
hk
Dk

2πi


= Cγ (k,r) .

Putting all these together, we obtain the desired result. □

Corollary 4.4. The Fourier–Mukai transform FM(Γ −,esc ) is given by

FM(Γ −,esc )γ = −
∑
k∈I−

∑
0≤r<−hk

Cγ (k,r)Γ −c,γ (k,r) |Dj→Dj−
hj
hk
Dk

for each twisted sector γ ∈ Box(Σ+)es.

Proof. Apply Proposition 4.3 to Γ
−,es
c . □

Theorem 4.5. The following diagram commutes:

K0(PΣ+
)∨

FM∨

��

−◦Γ+ // Sol(bbGKZ(C,U+))

MB
��

K0(PΣ−)
∨ −◦Γ− // Sol(bbGKZ(C,U−)).

Proof. This is equivalent to proving that for any linear function ϕ : K0(PΣ+
)→C, there holds

ϕ ◦FM◦Γ− =MB(ϕ ◦ Γ+),

which follows directly from Propositions 3.5, 3.9 and 4.2 and Corollary 4.4. It is important to note that this
also explains why, in Section 3, we made the assumption that all Di are generic complex numbers. □

5. Compactly supported derived categories and dual systems

In this section, we make use of the duality result in [BH24] to prove the analogous result for the dual
system bbGKZ(C◦,0).

(4)We note that the γ
(k,r)
k denotes the kth coordinate of the lifting we chose for γ(k,r) in the sense of Lemma 2.12, not necessarily

equal to {l′′k }, which is zero.
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Recall that there is a similarly defined Gamma series solution Γ ◦ with values in the compactly supported
orbifold cohomology H ∗,corb =

⊕
γH

c
γ to the dual system bbGKZ(C◦,0). We define

Γ ◦c (x1, . . . ,xn) =
⊕
γ

∑
l∈Lc,γ

n∏
i=1

x
li+

Di
2πi

i

Γ
(
1+ li +

Di
2πi

) ∏
i∈σ

D−1i

Fσ ,
where σ is the set of i with li ∈Z<0 and the Fσ are generators of H ∗,corb as a module over H ∗orb.

In [BH15], a compactly supported version Kc0(PΣ) of the K-theory of PΣ is defined in a purely combinato-
rial manner: The group Kc0(PΣ) is generated as a K0(PΣ)-module by the GI for I ∈ Σ such that σ◦I ⊆ C

◦

with the following relations for all i < I :

(
1−R−1i

)
GI =

GI∪{i} if I ∪ {i} ∈ Σ,
0 otherwise.

It is also proved in [BH15] that Kc0(PΣ) is naturally isomorphic to the Grothendieck group Kc0(PΣ) of the full
subcategory Db(PΣ)c of Db(PΣ) consisting of complexes supported on the compact subset π−1

Σ
(0), where

πΣ : PΣ→ SpecC[C∨∩N∨] is the structure morphism of the toric stack. Furthermore, there is a compactly
supported Chern character chc : Kc0(PΣ)

∼−→Hc, from which one can regard the cohomology-valued Gamma
series solution as a Kc0(PΣ)-valued solution.

Remark 5.1. Another version of derived category with compact support has appeared in the literature, defined
as the full subcategory of the bounded derived category of coherent sheaves Db(X) consisting of complexes
supported on arbitrary compact subsets of X. The Grothendieck group of this category is isomorphic to the
direct limit of the usual K-groups of all compact subsets of X (see e.g. [Sho21, Appendix 2]). It is not clear
whether it agrees with our version of compactly supported K-theory.

The main theorem of this section is the following analogous result for the dual system bbGKZ(C◦,0).

Theorem 5.2. The following diagram commutes:

Kc0
(
PΣ+

)∨
(FMc)∨
��

−◦Γ ◦+ // Sol(bbGKZ(C◦),U+)

MBc

��
Kc0

(
PΣ−

)∨ −◦Γ ◦− // Sol(bbGKZ(C◦),U−).

(5.1)

The first goal is to prove that there is a well-defined compactly supported K-theoretic Fourier–Mukai
transform FMc : Kc0(PΣ−)→ Kc0(PΣ+

).

Lemma 5.3. Let f : PΣ̂→ PΣ be the weighted blow-up along the closed substack PΣ/σI , where σI is a cone in Σ

(not necessarily an interior cone). Then we have

f −1(π−1Σ (0)) ⊆ π−1
Σ̂
(0) and f (π−1

Σ̂
(0)) ⊆ π−1Σ (0).

Proof. The structure morphisms are compatible with the blow-up

PΣ̂

f
//

πΣ̂ &&

PΣ

πΣ

��
SpecC[C∨ ∩N∨],



18 Z. Han18 Z. Han

which induces the following Cartesian diagram:

PΣ̂\π
−1
Σ̂
(0) �
� //

��

PΣ̂

f

��
PΣ\π−1Σ (0) �

� //
PΣ.

The lemma follows directly from the commutativity of this diagram. □

Theorem 5.4. The Fourier–Mukai transform FM: Db(PΣ−)→Db(PΣ+
) maps Db(PΣ−)

c to Db(PΣ+
)c.

Proof. The center PΣ−/I+ of the blow-up PΣ̂→ PΣ− can be viewed as the zero locus of a regular section of
the vector bundle E =

⊕
j∈I+

O
PΣ−

(Dj ); therefore, the blow-up f− can be decomposed as

PΣ̂
� � i //

f− ##

P
PΣ−

(E∨)

p

��
PΣ− ,

where P
PΣ−

(E∨) is the projective bundle associated to E∨ and p is the projection. This is well known for
varieties and can be proved for stacks similarly.

Let F be an arbitrary coherent sheaf on PΣ− supported on π−1
Σ−
(0). We first prove that L(f−)∗(F ) is

supported on π−1
Σ̂
(0). Since i is a closed immersion, it suffices to show that i∗L(f−)∗F is supported on the

image of π−1
Σ̂
(0) under i. Note that we have

i∗L(f−)
∗F = i∗Li

∗p∗F � p∗F ⊗L i∗OPΣ̂
;

here we used the facts that p is flat, i∗ is exact and R(f−)∗OPΣ̂
= O

PΣ−
. From this we have

supp(i∗L(f−)
∗F ) ⊆ supp(p∗F )∩ supp

(
i∗OPΣ̂

)
⊆ p−1(supp(F ))∩ i

(
PΣ̂

)
⊆ p−1

(
π−1Σ−(0)

)
∩ i

(
PΣ̂

)
.

It suffices to show that p−1(π−1
Σ−
(0))∩i(PΣ̂) ⊆ i(π

−1
Σ̂
(0)), which is again equivalent to (f−)−1(π

−1
Σ−
(0)) ⊆ π−1

Σ̂
(0).

Applying Lemma 5.3, we get the desired result.
Now consider an arbitrary complex F • in Db(PΣ−)

c. We argue by induction on the length of F •. Denote
the lowest degree of non-zero cohomology of F • by i0; then there exists a distinguished triangle

H i0(F •)[−i0] −→F • −→ G • −→H i0(F •)[1− i0],

where the ith cohomology of G • is isomorphic to that of F • for all i > i0 and the ith0 cohomology is zero.
Applying the derived pullback, we get a distinguished triangle in Db(PΣ̂)

L(f−)
∗H i0(F •)[−i0] −→ L(f−)

∗F • −→ L(f−)
∗G • −→ L(f−)

∗H i0(F •)[1− i0].

By the induction assumption, both L(f−)∗H i0(F •) and L(f−)∗G • are supported on π−1
Σ̂
(0). Taking stalks of

this distinguished triangle, we get that L(f−)∗F • is also supported on π−1
Σ̂
(0).

Next we look at the pushforward R(f+)∗ : Db(PΣ̂) → Db(PΣ+
). Take an arbitrary complex K • in

Db(PΣ̂)
c. Consider the following Cartesian diagram used in the proof of the lemma:

PΣ̂\π
−1
Σ̂
(0) �
� //

��

PΣ̂

f+

��
PΣ+
\π−1

Σ+
(0) �
� //

PΣ.
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We apply the flat base change formula and see that the restriction of R(f+)∗K • to PΣ+
\π−1

Σ+
(0) is zero; that

is, R(f+)∗K • is supported on π−1
Σ+
(0). So R(f+)∗ maps Db(PΣ̂)

c into Db(PΣ+
)c. □

Therefore, the Fourier–Mukai transform induces an isomorphism FMc : Kc0(PΣ−)→ Kc0(PΣ+
) of compactly

supported K-theories. Now we are ready to prove the main theorem of this section.

Proof of Theorem 5.2. Since FM is an equivalence of categories, we have

χ−([E
•
1 ], [E

•
2 ]) =

∑
i

(−1)i dimHomDb(PΣ− )
(E •1 ,E

•
2 [i])

=
∑
i

(−1)i dimHomDb(PΣ+ )
(FM(E •1 ),FM

c(E •2 )[i])

= χ+(FM([E •1 ]),FM
c([E •2 ])),

(5.2)

where χ± denotes the Euler characteristic pairing on PΣ± . Hence FM preserves the Euler characteristic
pairing.

To proceed, we need the following duality result for the pair of better-behaved GKZ systems, proved
in [BH24, Theorems 2.4 and 4.2]. More precisely, there is a non-degenerate pairing between the solution
spaces of bbGKZ(C,0) and bbGKZ(C◦,0)

⟨−,−⟩ : Sol(bbGKZ(C,0))× Sol(bbGKZ(C◦,0)) −→ C

that corresponds to the inverse of the Euler characteristic pairing in the large radius limit under the
isomorphisms given by the Gamma series solutions.

Now consider the diagram

Kc0
(
PΣ+

)∨
(FMc)∨
��

−◦Γ ◦+ // Sol(bbGKZ(C◦),U+)

MBc

��
Kc0

(
PΣ−

)∨ −◦Γ ◦− // Sol(bbGKZ(C◦),U−).

To finish the proof, it suffices to show (FMc)∨(g)◦ Γ ◦− =MBc(g ◦ Γ ◦+ ) for any g ∈ Kc0(PΣ+
)∨. Take an arbitrary

f ∈ K0(PΣ+
)∨. We have

⟨(FM)∨(f ) ◦ Γ−, (FMc)∨(g) ◦ Γ ◦− ⟩ = χ∨− ((FM)∨(f ), (FMc)∨(g))

= χ∨+ (f ,g)

= ⟨f ◦ Γ+, g ◦ Γ ◦+ ⟩
= ⟨MB(f ◦ Γ+),MBc(g ◦ Γ ◦+ )⟩
= ⟨(FM)∨(f ) ◦ Γ−,MBc(g ◦ Γ ◦+ )⟩.

Here the first and third equalities follows from the duality of bbGKZ systems, the second equality follows
from (5.2), the fourth equality follows from the definition of analytic continuation, and the last equality is
Theorem 4.5.

Since the pairing of solutions is non-degenerate and the (FM)∨(f ) ◦ Γ− span the whole solution space, we
obtain the desired result. □
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