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1. Introduction

A normal projective variety is called Fano if its anti-canonical divisor is Q-Cartier and ample. A Fano
variety is called Q-Fano if it is Q-factorial and its Picard number is one. According to the minimal model
program, Q-Fano varieties with terminal singularities are one of the building blocks of algebraic varieties,
and they form a bounded family (see [Kaw92, KMMTO00, Bir21]).

Thanks to Reid’s orbifold Riemann-Roch formula, see [Rei87], terminal Q-Fano threefolds have been
studied intensively in the past two decades; see [ABR02, Suz(04, BS07a, BS07b, Prol0, Prol3, CJ16, BK22,
Pro25, Pro22] and the references therein. In particular, all the possibilities for their numerical types are
obtained in the Graded Ring Database (Grdb for short, [BK09]).

One of the key ingredients in the computation of possible numerical types of terminal Q-Fano threefolds is
an effective version of the Kawamata-Miyaoka-type inequality (see [Kaw92, Proposition 1], [Suz04, Theorem 1.7]
and [BK22, Theorem 2.6] for more details). In our previous paper [LL25], we established such an effective
Kawamata-Miyaoka-type inequality for terminal Q-Fano varieties in arbitrary dimension. In particular, using
a refined argument and Reid’s orbifold Riemann-Roch formula, we have proved the following inequality in
dimension three, which significantly improves the known ones in the literature.

Theorem 1.1 (¢f [LL25, Theorem 1.2]). Let X be a terminal Q-Fano threefold. Then we have
25
a(X)’ < 5 2(X)er(X).

In this paper, we aim to continue in this direction. To give a precise statement, let us recall the definition
of Fano indices. In general, let X be a singular Fano variety. We can define the Fano index of X in two
different ways:

qQ(X) := max{q | -Kx ~q 9A, A€ CIX]},
gW(X) :=max{q | -Kx ~ 9B, Be Cl1X]}.

If we assume in addition that X has at worst terminal singularities, then the Weil divisor class group Cl(X)
is finitely generated and the numerical equivalence for Q-Cartier Weil divisors coincides with the Q-linear
equivalence. This implies that both gQ(X) and gW (X) are positive integers.

The main result of this paper is the following optimal Kawamata-Miyaoka-type inequality for terminal

Q-Fano threefolds with large gQ.
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Theorem 1.2 (¢f Lemma 2.2, Theorems 3.1 and 5.1). Let X be a terminal Q-Fano threefold such that qQ(X) > 3.
Then we have

121
c(X)’ < 1 2(X)er(X),
and equality holds if and only if X is isomorphic to P(1,2,3,5).

As an immediate application, combining Theorem 1.2 with [LL25, Theorem 4.4] yields the following
generalisation of Theorem 1.1, which confirms a recent conjecture of K. Suzuki [Suz24, Conjecture 1].

Theorem 1.3. Let X be a terminal Q-Fano threefold. Then we have
c1(X)? < 3¢2(X)ey (X).

The main idea of the proof of Theorem 1.2 is as follows. Let X be a terminal Q-Fano threefold with
qQ(X) > 3 which does not satisfy the inequality in Theorem 1.2. Using the orbifold Riemann-Roch theorem,
[LL25, Corollary 4.3] and [Pro24, Proposition 3.2], we have the following two numerical possibilities for X
(see Lemma 2.2):

(1.3.0) gW(X)=qQ(X)=4 and Rx =1{7,13},

(13.2) gW(X) =qQ(X) =5 and Ry = {3,7%},
where R denotes the local index basket of X (see Section 2.1). The main contribution of this paper is to
exclude these two cases. To this end, we will introduce two different approaches. In the first one we use the
theory of foliations to rule out the second case; it is relatively simple (see Section 3). The first case is much
more difficult; we will follow a second approach developed by Yu. Prokhorov in [Prol0] by using the Sarkisov
link (see Section 5).

Theorem 1.3 can be directly applied to show that 13559 numerical types in the Grdb [BK09] do not
actually occur for terminal Q-Fano threefolds and the Hilbert series of a terminal Q-Fano threefold always
lies in the list F; see [BK22, Theorem 1.2]. On the other hand, if gQ(X) > 9, then [BS07a, Section 4]
and [Prol0] show that there are exactly nine numerical types which can be geometrically realised (Ne 23-31
in Table 2). However, the situation becomes much more complicated for smaller gQ. For instance, by
Theorem 1.3, if gQ(X) = 8, there are four possibilities (N¢19-22 in Table 2) for the numerical type of X with
corresponding local index baskets as follows:

32,5}, {3,7), {57}, {3,511}

It is known that the first three cases can be geometrically realised by appropriate examples, see [BS07a,
Table 1], and we will treat the last case in Section 6 (see N¢ 22 in Table 2 and Theorem 6.1), from which we
derive the following result.

Theorem 1.4. Let X be a terminal Q-Fano threefold with qQ(X) = 8. Then its local index basket Ry cannot be
{3,5,11}.

Finally, we remark that Theorem 1.3 cannot be generalised to Q-Fano threefolds with canonical singularities
as IP(1,3,7,11) shows (see [BK22, Section 4.5]), and our proof of Theorem 1.2 is not completely independent
of previously known non-existence results in the literature (see the proof of Lemma 2.2 for more details).
Moreover, there are also some non-existence results, which cannot be recovered by Theorem 1.2 (e.g. Ne 5
and Ne 8 in [Prol3, Lemma 8.1] and N¢5, Ne 8 and N9 in [Prol3, Lemma 9.1]).
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2. Preliminaries

Throughout this paper, we work over C, and varieties are always supposed to be irreducible. We will
freely use the terminology of [KM98] for birational geometry, especially the minimal model program (MMP
for short).

2.1. Orbifold Riemann-Roch formula

Let X be a terminal Fano threefold and q := gW(X). According to Reid [Rei87], there is a basket of
orbifold points

BX:{(T’i:biHi:l, ,8;0<b; < 2 ; b; is coprime to rl}

associated to X, where a pair (r;,b;) corresponds to an orbifold point Q; of type %(1,—1,17,'). Denote by
Rx the collection of r; (permitting weights) appearing in By, and simply write it as a set of integers whose
weights appear in superscripts, say for example

Ry =1{3,7,7} ={3,7%).

Note that ry := lcm(Rx) coincides with the Gorenstein index of X. Let A be a Q-Cartier Weil divisor on X
such that —Kx ~ qA. According to [Rei87, Corollary 10.3],

(2.1 x(tA) =1+ Wﬁﬁ + éCQ(X)cl (X)+ Z co(tA)
QeBy

for t € Z; here if the orbifold point Q is of type %(1,—1,[7(2) and 0 <ig; < rg is the integer uniquely
determined by qip; =—t mod rq, then

s

ig(rd—1) i@f jbo(ro - jbo)
etfo™ )yt /eVem/Re)

tA) = —
“oltd) 12 270

j=0

where the symbol ® means the smallest residue mod ry and Z]_:lo =0.
If t = —q, then (2.1) and Serre’s duality imply that

1
(2.2) L= 5ze(X)er(X) + 5 ~y ( Q——)

QeBy

If g >3 and —q <t <0, then x(tA) = 0 by the Kawamata-Viehweg vanishing theorem. Hence (2.1) implies
that

(2.3) 1+ Wﬁ + l—iqcz(X)cl(X) + Q; co(tA) =0

for —q <t < 0. In particular, if g > 3 and t = —1, then we obtain

3 12 c7(X)c1(X)
&4 BRTESITES]| BT +Q€ZBX QA

Moreover, the degree A3 and the Gorenstein index rx have the following relations (see [Suz04, Lemma 1.2]
for example):

(2.5) ged(ry,g)=1 and ry A% eZyy.
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2.2. Fano indices

We collect in the following some basic facts about the Fano indices of terminal Fano threefolds. We refer
the reader to [Suz04], [Prol0, Lemmas 3.2 and 3.3] and [Pro22, Proposition 3.3] for more details.

Lemma 2.1. Let X be a terminal Fano threefold.

(2.1.1) We have qW (X) | qQ(X).

(2.1.2) If -Kx ~q qA for some Weil divisor A, then q | qQ(X).
(2.1.3) If —Kx ~ gB for some Weil divisor B, then q | gW (X).
(2.14) If qQ(X) > 5, then qW (X) = gQ(X).

(2.1.5) We have qW(X),qQ(X) €{1,...,9,11,13,17,19}.

Proof. The first three statements follow from [Prol0, Lemma 3.2]. For the last two statements, without loss of
generality we may assume that gQ(X) > 5 and let A be a Q-Cartier Weil divisor such that —Kyx ~g qQ(X)A.
Let #: X" — X be a small Q-factorialization. Then we have —Ky, ~g qQ(X)A’, where A’ = y*A is a nef and
big Q-Cartier Weil divisor. Running a MMP g: X’ --> X" yields a Mori fibre space f: X" — Z. Denote by
A” the strict transform of A” on X”. Then we obtain —Ky» ~g gQ(X)A”. If dim(Z) > 0, then the general
fibre F of f is a non-singular Fano variety such that —Kp ~q qQ(X)A”|f, which is impossible as dim F < 2
and A”|f is Cartier. So Z is a point and X” is a terminal Q-Fano threefold.

By item (2.1.2), we have qQ(X) | gQ(X”), and then it follows from [Prol0, Theorem 1.4] and [Pro22,
Proposition 3.3] that we must have

4Q(X) = gW(X") = gQ(X") € {5,...,9,11,13,17,19).
Let m be the order of Kx» + qQ(X)A”. By [Pro22, Proposition 3.4], we have (m,qQ(X"”)) = 1. On the
other hand, by the negativity lemma, we also have ¢*(Kx» + qQ(X)A”) = Kx» + gQ(X)A’. So we obtain
m(Kx + qQ(X)A’) ~ 0 and then m(Kyx + gQ(X)A) ~ 0. Thus it follows from [Prol0, Lemma 3.2(iv)] that
gW(X) = qQ(X). O

2.3. Algorithm and numerical types

Let X be a terminal Fano threefold. We can define a positive rational number by as follows (see [[JL25,
Corollary 7.3]):
a(X)?
by = —————.
c2(X)er (X)
Now with the help of a computer program or using the Grdb [BK09], we get the following result, which is
our starting point - see also [LL25, Proof of Theorem 4.4 and Remark 4.5].

Lemma 2.2. Let X be a terminal Q-Fano threefold such that qQ(X) > 3 and by > 121/41. Then CI(X) is
torsion-free, and one of the following cases holds:

(2.2.1) gW(X) = qQ(X) = 4, Rx = {7,13} and by = 3 (¢f. [BK09, Ne 41313]);

(2.2.9) gW(X) = qQ(X) = 5, Rx = {3,72} and by = 25/8 (¢f [BK09, Ne 41436]);

(2.2.3) X =1P(1,2,3,5) and by = 121/41 (cf. [BK09, Ne 41510]).

Proof. By [Pro24, Proposition 3.2] and Table 3, we may assume that gW(X) = gQ(X). Moreover, by [LL25,
Corollary 4.3 and Theorem 4.4], we have

64 )
<o W) =4,
(%) bx 3%5 if gW(X) = 5,

<3 otherwise.
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Then we use a computer program written in Python, whose algorithm is sketched as follows.
Step 1. As c5(X)cq(X) > 0 by [Kaw92, Proposition 1], we can list a huge but finite number of possibilities
for Ry and c,(X)cq (X) satisfying (2.2).
Step 2. For each g = gW(X) > 3, we calculate A3 by (2.4) and pick up those satisfying (2.3) and (2.5).
Step 3. We find all candidates satisfying (%) and by > 121/41, which are as follows:

Ne q Rx by [BK09]
1 4 (7,13} 3 Ne 41313
2 5 {3,7%) 2 Ne 41436
3 5 {4,7) 3 Ne 41449
4 1 {2,3,5) 2 Ne 41510

Case Ne 3 was excluded in [Prol3, Section 7.5]. If the numerical type of X appears as N¢ 4, then we have
dim| - Kx| = 23, ¢f. [BK09, Ne41510], and hence X = IP(1,2,3,5) by [Prol0, Theorem 1.4]. Finally, the
torsion-freeness of Cl(X) follows from [Prol0, Proposition 2.9]. O

2.4. Torsion part of C1(X)

Let X be a terminal Q-Fano threefold. If gQ(X) > 8, then we have gW(X) = qQ(X) > 8 by Lemma 2.1,
and so Cl(X) is torsion-free by [Prol0, Lemma 3.5]. On the other hand, if 5 < gQ(X) <7 and the torsion
subgroup Cl(X); of CI(X) is non-trivial, then the possibilities for the numerical types of X have been
obtained in [Pro22, Proposition 3.4], which can be refined as follows.

Proposition 2.3. Let X be a terminal Q-Fano threefold such that qQ(X) > 5 and C1(X); is non-trivial. Then
CU(X); is cyclic of order 1. Moreover, let T be a generator of C1(X);, and let A be a Weil divisor such that
—Kx ~gW(X)A. Then one of the cases in Table 7 holds.

Table 1. qQ(X) > 5 with CI(X); # {e}

dim
N1 qQ | Rx
|Al | [2A] | 13A] | |4A] | |JA+T| | 2A+T| | [3A+T| | |4A+T]

715 (2] {2414) 0| 0 0 1 -1 -1 0 1
215 |3 {2,9%) 0 0 0 1 -1 0 1 2
3152 (42,12} 0 0 1 3 -1 0 1 3
4|5 | 2| {2%24,8) 0 1 2 5 0 1 3 5
515 |2 (24%6) 0 1 3 7 0 2 4 6
617 |2] {2610} 0| 0 0 1 -1 0 1 2
717 |2 (253,48 | -1| 0 1 2 0 0 1 2

Proof. Note that we have by = 125/37 and by =5 in cases Ne4 and Ne 5 of [Pro22, Proposition 3.4] (see also
[BK09, Ne 41424 and Ne 41431]), respectively, which are thus ruled out by Theorem 1.1. The dimensions of |kA|
and |[kA + T| can be derived from the orbifold Riemann-Roch formula (see [Rei87, Corollary 10.3] or [LL25,
(2.3)]) using the numerical data given in [Pro22, Proposition 3.4]. Here we note that kA—T ~kA+ T if 1 =2
and kA—-T ~kA+2T if 1 = 3. O
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The following result was pointed out to us by the anonymous referee. It is obtained by a computer search
using an algorithm outlined in [Pro24, Appendix A]; see also [Pro24, Section 3] for related results.

Lemma 2.4. Let X be a terminal Q-Fano threefold with gQ(X) = 3 such that C1(X) is not torsion-free. Let A
be any Weil divisor on X such that —Kx ~g¢ 3A. Then dim|A| < 1.

3. Case qQ(X) =5

The goal of this section is to prove the following result.

Theorem 3.1. Let X be a terminal Q-Fano threefold such that qQ(X) = 5. Then we have

(X < L ea(X)ar (X).

Assume to the contrary that there exists a terminal Q-Fano threefold X such that gQ(X) = 5 and
bx >121/41. Then Lemma 2.2 shows that the numerical type of X appears as (2.2.2). In particular, the
numerical invariants of X are as follows (¢f [BK09, Ne 41436]):

500 160 25

Bx =1{(3,1),(7,2),(7,3)}, a(X)’= 570 eXaX)=—r and bx=-—-.
In this case, the tangent sheaf .7 is not semi-stable by the Bogomolov-Gieseker inequality, and it follows
from [LL25, Theorem 4.2 and Corollary 4.3] that the maximal destabilizing subsheaf .# of J is of rank

two with ¢;(.#) = 4A, where A is a generator of C1(X)/ ~q.

3.1. Foliation

Let X be a normal variety. A foliation on X is a non-zero coherent subsheaf .# of the tangent sheaf .7
such that

(3.11) . is saturated in J (i.e. Ix/.F is torsion-free),
(3.1.2) .Z is closed under the Lie bracket.

The rank of .% is defined to be the generic rank r of .#, and the codimension of .# is defined as dim X —r.
Given a rank r foliation .# on a normal variety X, the inclusion .# < 9% induces a non-zero map

n: Qy — NIy — N'F* — det(F7).

The singular locus of .% is the singular scheme of the map 1; i.e. it is the closed subscheme of X whose ideal
sheaf is the image of the induced map

QY ®@det(F))™ — 0.

A point x € X is called a regular point of . if x is not contained in the singular locus of .%. If x is a regular
point of X, then .# is regular at x if and only if .7x/.% is locally free at x. In particular, the singular locus
of # has codimension at least two. Moreover, if both X and .% are regular at x, then by the holomorphic
Frobenius theorem, there exists a unique leaf of .# passing through x.

A foliation .# is called algebraically integrable if there exists a dominant rational map ¢: X --> Y to a
normal variety Y such that .# =ker(7x — ¢* ).

Lemma 3.2. Let X be a normal projective variety of dimension n which is regular in codimension two. Let F be
a codimension one algebraically integrable foliation on X. If X is Q-factorial and p(X) =1, then the singular
locus of F has codimension two.

Proof. Assume to the contrary that .% is regular in codimension two. By assumption, the foliation .7 is
induced by a rational map ¢: X --> Y to a curve. Let F and F’ be the closures of two general fibres of ¢.
Since X is Q-factorial and p(X) = 1, the divisors F and F’ are ample and dim(F N F’) = n— 2. Since both of



8 H. Liu and J. Liu

X and .# are regular in codimension two, there exists a point x € FNF’ such that X and .# are both regular
at x. In particular, both of F and F’ are the leaves of .# at x, which contradicts the uniqueness of leaves. [J

3.2. Proof of Theorem 3.1

Let X be a terminal Q-Fano variety of dimension 7. Denote by r the rank of the maximal destabilizing
subsheaf .# of 9% and by k the length of the Harder-Narasimhan filtration of .7x. Note that Jx is
semi-stable if and only if (,k) = (1,1). In this case, the Bogomolov-Gieseker inequality and [GKP2,
Theorem 1.2] imply

c1(X)" < 3cp(X)ey (X)" 2.
In [LL25, Proposition 3.8], the authors studied the case (r,k) = (1,k) for kK > 2. Now we study the case
(r,k) =(n—1,2) and prove the following result.

Proposition 3.3. Let X be a terminal Q-Fano variety of dimension n. Assume that the maximal destabilizing
subsheaf 7 of 7x has rank n—1. Then we have

(2(n—1)er(X) —ney (F))er (F)
2(n—-1)

Proof. Since Jx is generically ample by [LL25, Proposition 3.6], it follows from [CP19, Lemma 4.10] that .%

is actually a foliation. Moreover, as .% is semi-stable and det(.%) is ample, the foliation .% is algebraically

co(X)ey (X)" 2 > e (X)2,

integrable by [CP19, Theorem 11].!) Consider the following short exact sequence of coherent sheaves:
0—F —> Iy —>2—0.

By Lemma 3.2, the singular locus of the foliation .# has codimension two. In particular, the non-locally free
locus of the quotient 2 is supported on a closed subset of X with codimension two, and therefore ¢,(<2) is
represented by a non-zero effective codimension two cycle. So we get

2 (Tx)e1(X)"2 = (co(F) + c2(2) + €1 (F)er (2))ey (X))
> 0o (F)er(X)"2 + e (F)ey(X)' ! =y (F) ey (X)"?
n

C1 X
(X)) =

F
7 (F)er(X)"2,

(
2 (F)

2n—2

where the last inequality follows from the Bogomolov-Gieseker inequality. O

Proof of Theorem 3.1. Assume to the contrary that there exists a terminal Q-Fano threefold X such that
bx >121/41. By the discussion at the beginning of this section, the maximal destabilizing subsheaf .# of
Jx is of rank two and ¢ (.%#) = 4A. In particular, as n = 3 and ¢ (X) = 54, it follows from Proposition 3.3
that
8
c2(X)er(X) > 8A%¢y (X) = 55C1 (X)%,
which contradicts the fact that by = 25/8. O

4. Sarkisov link

Let X be a terminal Q-Fano threefold such that Cl(X) is torsion-free. In particular, gW(X) = gQ(X). Set
q :=qW(X) =qQ(X). Let A be an ample Weil divisor that generates the group CI(X) ~ Z. So —Kx ~ gA.
Following [Ale94], let .# be a movable linear system on X, and let ¢ := ct(X,.#) be the canonical threshold

(I)Though [CP19, Lemma 4.10 and Theorem 1.1] are only stated for non-singular projective varieties, it is easy to generalise them
to Q-factorial normal projective varieties by taking a resolution.
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of (X, .#'). Then the pair (X, c.#) is canonical but not terminal. Assume that —(Kx + c.#) is ample. Let
f: X — X be a (K + c.#)-crepant blowup such that

Kg+cdl = f*(Kx +c),
where . is the strict transform of .# and X has only terminal Q-factorial singularities.

Lemma 4.1 (¢f. [Prol0, Lemma 4.2]). Let P € X be a point of local index r > 1. Assume that .# ~ —tKx near
P, where 0 <t <r. Thenc<1/t.

By [Ale94, Section 4.2] (see also [Prol0, Section 4.3]), there exists a diagram called a Sarkisov link (of type [

or type II) as follows:
- { %
v N
X X,

where X and X have only Q-factorial terminal singularities, p(X) = p(X) = 2, the morphism f is a Mori
extremal divisorial contraction, the rational map x is a sequence of log flips and f is a Mori extremal
contraction (either divisorial or of fibre type).

In what follows, for a divisor D (also a linear system) on X, we denote by D and D the strict transforms
of D on X and X, respectively; if f is birational, then we put D = ﬁD. Conversely, for a divisor D (also
a linear system) on X, we denote by D and D the strict transforms of D on X and X, respectively; if f is
birational and F is the f -exceptional divisor, then we denote by F the strict transform of F on X and put
F = £(F).

Let E be the f-exceptional divisor. Set .7} = |kA| for k > 1. Write

(4—1) KX ~Q f*Kx+0(E, yk ~Q f*yk—ﬁkb:,

where o € Q. and By € Q¢ for k > 1. Since CI(X) is torsion-free and —kKx ~ q.%%, the relations (4.1)
provide that for any k > 1, we have
qpx —ka € Z.
Assume that the morphism f is birational (Sarkisov link of type I). Then X is a terminal Q-Fano threefold.
Set § := qQ(X) and let A; be an ample Weil divisor on X that generates the group Cl(X)/ ~q. Denote by
F the f-exceptional divisor. Write

F~dA, E~qeAg, i ~gsidy
where d, e,s, € Z>y.
Assume that the morphism £ is not birational (Sarkisov link of type II). Denote by F a general geometric

fibre of f, which is either a non-singular rational curve or a non-singular del Pezzo surface. The image of
the restriction map Cl(X) — Pic(F) is isomorphic to Z. Let Az be an ample generator of this image. Write

—Kxlp=-Kp~4Ag,  Elp~eAr,  Flr~siAp,
where 4§, ¢e,5; € Zs.

Proposition 4.2 (¢f [Prol0, Section 4]). The notation is as above.

(4.2.1) The integer e is positive. Moreover, if f is birational, then d/e is the order of the torsion subgroup C1(X), of
CI(X).

(4.2.2) Assume that f is birational. Then s, = 0 if and only if dim.% = 0 and the unique element of 7 is F.
Moreover, if s;. > 0 and C1(X) is torsion-free, then S ~ skAx and thus dim|spAy| > dim S = dim ..

(4.2.3) If § > 4, then f is birational.

(4.2.4) Iff is not birational and § = 3, then F =1P? and X = P'.
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Proof. The first part of (4.2.1) follows directly from [Prol0, Claim 4.6], and the second part follows from [Prol0,
Lemma 4.13]. The assertions of (4.2.2) follows from the definition. For the assertions of (4.2.3) and (4.2.4), we
assume that f is not birational. Since F is either a non-singular rational curve or a non-singular del Pezzo
surface, it follows that § < 3, where equality holds only if F = P2, O

The following very important equality, which indicates the relation between the various invariants
introduced above, will be intensively used in Sections 5 and 6.

Lemma 4.3 (¢f [Pro22, Section 4.8]). The notation is as above. For any k > 1, we have
(4.2) kq = qsx + (qPx —ka)e.

For any point P € X of local index rp, recall that the local Weil divisor class group CI(X, P) is a cyclic
group of order rp generated by —Ky, by [Kaw88, Corollary 5.2]. Let t;(P) be the local index of .7} near P.
When the context is clear, we shall omit P in the notation and abbreviate f;(P) to t;. The following fact
allows us to determine the possible value of p; once the value of a is known (see [Kaw96, Kaw05] and
[Pro22, Lemma 2.6)).

Lemma 4.4. If P := f(E) is a closed point of X, then we have
(4.3) Bk —tra € Z.

Proof- This follows from the relations (4.1) and the fact that f; Ky + .7} is Cartier near P. O

5. Case qQ(X) =4

The aim of this section is to prove the following result.

Theorem 5.1. Let X be a terminal Q-Fano threefold such that qQ(X) = 4. Then we have
121
(X))’ < 1 ©2X)er(X).

Assume to the contrary that there exists a terminal Q-Fano threefold X such that gQ(X) = 4 and
bx > 121/41. Then Lemma 2.2 shows that the numerical type of X appears as (2.2.1). In particular, the

numerical invariants of X are as follows (¢f. [BK09, Nv 41313]):
_ 1152 _ 384

By ={(7,2),(13,6)}, c1(X)? —p @XaX)=" and bx=3

5.1. Geometry of X
We collect some basic geometric properties of X, which will be used later in the proof of Theorem 5.1.

Lemma 5.2. Let X be a terminal Q-Fano threefold with numerical type (2.2.1) in Lemma 2.2.
(5.2.1) Every non-Gorenstein point of X is a cyclic quotient singularity.

(5.2.2) The Weil divisor class group C1(X) is torsion-free.

(5.2.3) Let A be a Q-Cartier Weil divisor on X such that —Kyx ~ 4A. Then we have

R 43 dim|kA|
X

|Al | 12A] | [BA] | |4A]
{7,13) S| 1 3 6

(5.2.4) Every divisor contained in the linear system |2A| or |3A| is reduced and irreducible.
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Proof. The first statement follows from the form of the basket By and [Mor85] (see [Rei87, Sections (6.1) and
(6.4)] for more details). The second statement follows from Lemma 2.2 (see also [Prol0, Proposition 2.9]).
The dimension of [kA| can be derived from the orbifold Riemann-Roch formula or [BK09, Ne 41313]. The
last statement follows from the facts that dim|A| = —1 and Cl(X) is torsion-free. O

We will use the Sarkisov link introduced in Section 4 to prove Theorem 5.1. This idea was initiated by
Yu. Prokhorov in [Prol0]. To be more precise, following the notation in Section 4, we consider the Sarkisov
link associated to the movable linear system .Z = .75 = |3A|.

Lemma 5.3. We have f3 > 6a, and if f is birational, then d > 2.

Proof. We apply Lemma 4.1 with P being the point of local index 7 on X, where ¢ < 1/6 as .3 ~ —6Kx
near the point P. Since ¢ = a/f3 by (4.1), the first inequality follows. For the second statement, note that
dim|A| = -1, so we have d > 2 iff is birational. O

The following observation can be easily derived from the definition and Lemma 5.2. It will play a key role
in the proof of Theorem 5.1.

Lemma 5.4. Any element in .75 (resp. .3) is of the form A+ aE, where a is a non-negative integer and A is
the strict transform of an element A in .75 (resp. /3). In particular, the divisor A is reduced and irreducible.
Moreover, if f is birational and f,A =0, then A = F and A = F.

The remainder of this section is dedicated to the proof of Theorem 5.1, which is conducted on a case-by-
case basis in accordance with the type of f(E). The proof concludes by demonstrating that no instance of

f(E) can be realised.

5.2. The image f(E) is a curve or a Gorenstein point

If f(E) is either a curve or a Gorenstein point of X, then @ and B3 are integers, and then it follows from
(4.2) and Lemma 5.3 that

(5.1) 3§ =4s3+ (4p3 —3a)e > 4s3 + 21 ae.

In particular, we get § > 7ae > 7, and therefore it follows from Proposition 4.2 that the morphism f is
birational. Moreover, as dim.¥ = 3, we get s3 > 0 by Proposition 4.2 and hence § > 9. By Proposition 2.3,
the group Cl(X) is torsion-free. Thus ¢ = d = 2 and @ = 1 by Proposition 4.2 as § <19. So § = 17 or
4 =19 by Lemma 2.1. However, there are no integral solutions for (5.1) in these two cases, so we have a
contradiction.

5.3. The image f(F) is a point of local index 13
If f(E) is a point of local index 13, then & = 1/13 by [Kaw96]. Moreover, as A ~ —10Kx near the point

f(E), we obtain t; =10, t, =7 and t3 = 4. Then it follows from (4.3) and Lemma 5.3 that f, =7/13 + m,
for some m, € Z and B3 = 4/13 + m3 for some m3 € Z.. Applying (4.2) to k = 3 yields

(5.2) 34 =4s3+ (4msz + 1)e = 4(s3 + mze) +e.

If 4 > 4, by Proposition 4.2, the morphism f is birational and s3 > 0 as dim.#3 = 3. Then we derive from
(5.2) that d # 4 or 5; the possibilities for § = 6 and 7 are listed below. If § > 8, then Cl(X) is torsion-free by
Proposition 2.3, so e =d > 2 and dim|[s3Ag| > dim s = 3 by Proposition 4.2. Combining these facts with
(6.2) and Table 2 yields the corresponding possible values of s3 for each 4. In summary, the possibilities for
(4,e,53) are as follows:

3,e=1and 0<s3<1;

6,e=2 and s3 =2;

7,e=1and 1 <s3<4;

= Dy D
Il
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e j=13,e=3and s3 =6;
e j=17,e=3 and s3=9.

This case will be treated on a case-by-case basis according to the value of 4.

5.3.1. The case § =3 and e = 1.— In this case, we have 0 <s3 <1 and s, =1 -m; <1 by (4.2). Now we
divide the proof into two subcases according to the type of f .

5.3.L1. The subcase where f is birational— As d = |Cl(X),| > 2 by Proposition 4.2, the group CI(X) is not
torsion-free. Thus we get a contradiction by Lemma 2.4 as s3 = 1 and dim.%3 = 3.

5.3.1.2. The subcase where f is not birational— Then the general fibre F of f is isomorphic to P2 and
X = P! by Proposition 4.2. Moreover, if .7 is f -vertical, then .73 consists of fibres of f , which contradicts
dim .73 = 3 and Lemma 5.4. So we obtain s3 = 1. Consider the restriction map

Sy — L3lp ClOp2(1)].

As dim|0p2(1)] = 2, dim.%3 = 3 and e = 55 = 1, we get F+ E € .3 by Lemma 5.4, so f*|0p1(1)|+ E ~ .75.
Pushing it forward to X yields ﬂ)(*f”|ﬁ]la1(1)| C .3, which implies f"|ﬁ1p1(1)| +E C.%5. Then it follows
from Lemma 5.4 that the (cycle-theoretic) fibres of f are reduced and irreducible.

We claim that s, = 1. Assume to the contrary that s, = 0. Since dim 7 =1 and its general elements are
reduced and irreducible, we have F € .%,. This implies that F € .%, N.#3, which is absurd. So s, = 1 and the
group CI(X) is generated by S, and F, where S, is a general element in .. In particular, as s3 = 1, there
exists an integer ¢ such that .#3 ~ S, + cF. Then pushing it forward to X shows A ~ .75 —.% ~ cF ~ 3cA,
which is impossible.

5.3.2. The case § =6, ¢ =2 and s3 = 2.— Then gW(X) = gQ(X) = 6 by Lemma 2.1, and the numerical
type of X appears as N1 in Table 2, so C1(X) is torsion-free by Proposition 2.3. In particular, we have
dim.%; =dim.%; = dim|2A| = 3. So S = |2A| and thus 2G € s for every G € |A|. This contradicts
Lemma 5.4 as dim|Ag|=1 and e =53 = 2.

5.3.3. The case § =7, e =1 and s3 < 4.— Since d/e = d > 2 is the order of the torsion subgroup of C1(X),
the numerical type of X appears as either N¢ 6 or Ne7 in Table 1 by Proposition 2.3. Then one obtains a
contradiction from Table 1 as dim.% = 3 and 1 < 55 < 4.

5.3.4. The case § =13, e=3 and s; = 6.— In this case, the numerical type of X appears as Ne 28 in
Table 2, and CI(X) is torsion-free by Proposition 2.3. As e = 3 and dim|A¢| = 0, the unique element
D €|Ag| is a prime divisor which is different from E. Moreover, note that we have

6 = dim|5A 4|+ dim.; > dim|s3Ag| = dim |6Ag¢| = 4.

In particular, since both D +|5A 4| and .5 are sublinear systems of |6A |, there must exist an element in
% of the form D + G for some G € |5A|. This contradicts Lemma 5.4 as e = 3.

5.3.5. The case =17, e=3 and s3 = 9.— The numerical type of X appears as N2 30 in Table 2, and
CI(X) is torsion-free by Proposition 2.3. As e = 3 and dim|Ag| = —1, the unique element D € |2Ay]|
is a prime divisor which is different from E. As dim.¥; = dim|[9Ag| = 3, we get Sy = |9A%|. So the
linear system . contains the divisor D + G for any G € [7Ag|. This contradicts Lemma 5.4 as e = 3 and
dim|7Ag|=2.

5.4. The image f(E) is a point of local index 7

If f(E) is a point of local index 7, then a = 1/7 by [Kaw96]. Moreover, as A ~ —2Kx near the point f(E),
we obtain t| = 2, t; =4 and f3 = 6. Then it follows from (4.3) that f, = 4/7 + m, for some m;, € Z-, and
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B3 = 6/7 + m3 for some mz € Zs(. Applying (4.2) to k = 3 yields
34 = 4s3+ (4ms + 3)e = 4(s3 + mze) + 3e.

As § <19 by Lemma 2.1, we obtain § — e = 4! for some integer 0 < I < 4. Moreover, if 4§ > 8, then CI(X)
is torsion-free by Proposition 2.3, so e = d > 2 and dim|s3A¢| > dim.¥; = 3 by Proposition 4.2. Thus it
follows from Table 2 that the possibilities for (4, e, s3) are the following:

=e, 53 =0;

g=4+e,1<e<4and1<s3<3;

>

g=11,e=3 and s3 = 6;
g=13,e=>5 and s3 = 6;
g=17,e=5and s3 =9;

g=19,e=3and s3=12.

In the following, we consider each case in accordance with the value of 4.

5.4.1. The case § = e and s3 = 0.— As dim.”5 = 3 and s3 = 0, it follows from Proposition 4.2 thatf is not
birational and hence 4 = e < 3. Since CI(X) is torsion-free, the group CI(X) is so by [Prol3, Section 2.3]; we
denote by Ay its ample generator. Since .73 is f -vertical and dim .3 = 3, it follows that a general member
D in .73 is the pull-back of a divisor on X as D is reduced and irreducible by Lemma 5.4. Thus we have
Py = f*|CAX| for some c € Z.. Then it follows from Lemma 5.4 that the elements in |[cAg| are reduced
and irreducible. In particular, as dim|Ay| > 0, we obtain ¢ = 1 and then X = IP? by [Prol3, Section 2.3]
as dim|.#3| = 3. Note that s, = 0 by (4.2). In particular, since dim.#, = 1 and the elements in .7, are
reduced and irreducible, applying the same argument as above yields .7, = f *|Ag|. This is impossible as
dim|Ay| = 3.

5.4.2. The case §=4+e and 1 <s3 <3.— In this case, Proposition 4.2 implies that the morphism f
is birational and thus s3 > 1 as dim.%3 = 3. If § > 8, then CI(X) is torsion-free by Proposition 2.3, so
dim|s3A¢| > dim s = 3. Then it follows from Table 2 that § < 8 and hence ¢ < 4. We divide the proof
into four subcases according to the value of e.

54.2.1. The subcase e = 4— Then § = 8, s3 = 3, and the numerical type of X appears as N¢19 in Table 2. In
particular, we have dim|[3A | = dim %5 = 3 and thus I3A%| = 5. As e = 4 and dim |A¢| = 0, the unique
element D € |Ag| is a prime divisor which is different from E. So we have 3D € 573, which contradicts
Lemma 5.4 as e = 4.

54.2.2. The subcase e = 3.— Then § = 7 and s3 = 3. In particular, as dim.#3 = 3, it follows from Table 1
that C1(X) is torsion-free and thus dim[3A¢| > dim %5 = 3. So the numerical type of X appears as one
of Ne7, Ne8 and Ne9 in Table 2. In all these three cases, we have dim|Ag| > 0. In particular, as e = 3,
there exists a prime divisor D € |Ay| which is different from E. Moreover, in all these three cases we have
dim|2A¢|+dim S5 >dim |3A%|. So there exists an element in ¥ of the form D + G for some G € [2A%],
which contradicts Lemma 5.4 as e = 3.

5.4.2.3. The subcase e = 2.— Then 4 = 6 and s3 = 1 or 3. By Proposition 2.3, the group Cl(X) is torsion-free
and thus dim|s3A | > dim 3’3 = 3. It follows that s3 = 3 and the numerical type of X appears as N1 in
Table 2. On the other hand, we have s, = 2 by (4.2). As dim|Ag|= 1, the image of the natural map

|[Ag¢|x|Ag| — |2A%], (D,D’)+—D+D’
is a two-dimensional sublinear system of |2A|. In particular, since dim % =1 and dim |2A| = 3, there
must exist an element in .% of the form D + D’ with D, D’ € |Ag|. This contradicts Lemma 5.4 as e = 2.
5.4.2.4. The subcase e = 1.— Then § = 5 and 1 < s, < 2 by (4.2), so gW(X) = qQ(X) = 5 by Lemma 2.1.

Let Ay be a Weil divisor on X such that -Ky ~5A%. As d > 2, the group CI(X) is not torsion-free by
Proposition 4.2. In particular, as dim % =1and 1 <s, <2, it follows from Table 1 that s, = 2, d = 2
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and the numerical type of X appears as one of N¢ 4 and Ne 5 in Table 1. On the other hand, since CI(X) is
torsion-free, we have F € .%,. So there exists a non-negative integer a such that F + af € .%,. Pushing it
forward to X shows that a=s, =2 as e = 1, i.e., 2E €.%,. This yields Sy ~2E ~ 2Ag asd = |CL(X),| = 2.
In particular, as dim.% = dim|2A¢| =1, we must have Sy = |2A|. On the other hand, by Table 1, we also
have dim|Ag|=dim|Ag + T| = 0. Let D and D’ be the unique elements in |[Ay| and |[Ay + T|, respectively.
Then D and D’ are distinct prime divisors. However, since 2D and 2D’ are contained in 572, it follows from
Lemma 5.4 that we must have D = D’ = E, which is impossible.

5.4.3. The case § =11, e =3 and s3 = 6.— The numerical type of X appears as one of Ne25 and Ne26
in Table 2. As e = 3, the unique element D € |A¢| is a prime divisor which is different from E. Moreover,
note that dim|5A |+ dim S5 > dim|6Ax], so there exists an element in ¥ of the form D + G for some
G €|5A%|, which contradicts Lemma 5.4 as e = 3.

5.4.4. The case § =13, e =5 and s3 = 6.— The numerical type of X appears as Ne 28 in Table 2. Then
applying (4.2) to k = 2 yields s, = 4. Moreover, as e = 5, the unique element D € |Ay| is a prime divisor
which is different from E. Since 2 = dim|3A¢|+dim &, = dim |4A|, there exists an element in ¥, of the
form D + G for some G € |3A|, which contradicts Lemma 5.4 as e = 5.

5.4.5. The case § =17, e =5 and s3 = 9.— The numerical type of X appears as N¢ 30 in Table 2, and
Cl(X) is torsion-free by Proposition 2.3. Thus [9Ag| = S as dim|[9A | = dim.; = 3. As e =5 and
dim|Ag| = -1, the unique element D € [2A] is a prime divisor which is different from E. So .7 = [9A%|
contains the divisor of the form D + G for any G € [7Ag¢|. This contradicts Lemma 5.4 as e = 5 and
dim|7Ax|=2.

5.4.6. The case § =19, e =3 and s; = 12.— Then applying (4.2) to k = 2 yields s, = 8 or s, < 5. Since
CI(X) is torsion-free by Proposition 2.3, we have dim[s,A¢| > dim.#, = 1 by Proposition 4.2. This implies
that s, = 8 from Table 2. In particular, we have dim|[8Ay| = dim % =1 and thus |8Ax| = . Ase=3

and dim |kAy| = -1 for k < 2, the unique element D € |4A| is a prime divisor which is different from E.
So 2D € 572, which contradicts Lemma 5.4 as e = 3.

6. Case qQ(X) =8

This section is devoted to proving the following result.
Theorem 6.1. Case N 22 in Table 2 does not occur for terminal Q-Fano threefolds.

Assume to the contrary that there exists a terminal Q-Fano threefold X whose numerical type appears as
Ne 22 in Table 2. Then the numerical invariants of X are as follows (¢f- [BK09, Ne 41495]):
2048 928 64
Bx=1{(3,1),(52),(1L4)}, aX)P’="r c(X)c1(X)=—,, =—.
x=(B0,6,2,0L4), aXP="2 aXaX) =" bx=1

6.1. Geometry of X

We collect in the following some geometric properties of X which will be used later in the proof of
Theorem 6.1.

Lemma 6.2. Let X be a terminal Q-Fano threefold with numerical type Ne 22 in Table 2.

(6.2.1) Every non-Gorenstein point of X is a cyclic quotient singularity.
(6.2.2) The Weil divisor class group C1(X) is torsion-free.
(6.2.3) Let A be a Q-Cartier Weil divisor on X such that —Kx ~ 8A. Then we have
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- . dim kA
X

Al 12A] | [3A] | [4A] | [5A] | [6A]

{3,5,11) e | -1 0 0 1 2 3

(6.2.4) Let Sy be the unique prime divisor in |2A|. Then an element A € |4A| is either equal to 25, or a prime
divisor.

Proof. The first statement follows from the form of Bx and [Mor85]. The second and third statements follow
directly from Proposition 2.3 and Table 2. The last statement follows from the facts that dim|A| = -1,
dim|2A| = 0 and CI(X) is torsion-free. O

We will always denote by S; the unique prime divisor in |iA| for i = 2 and 3. Following the notation
in Section 4, we consider the Sarkisov link associated to the movable linear system .# := .7 = |[4A|; the
arguments are very similar to the ones used in Section 5.

Lemma 6.3. We have py > 6a, and if f is birational, then d > 2.

Proof- We apply Lemma 4.1 with P being the point of local index 11 on X, where ¢ < 1/6 as .# = ./, ~—6Kx
near the point P. Then we obtain the first inequality from (4.1). For the second statement, note that
dim|Al=-1,s0d >2 iff is birational. O

The following simple but useful observation follows from item (6.2.4) of Lemma 6.2.
Lemma 6.4. Any element in .7} is of the form A+ aE, where a is a non-negative integer and A is the strict

transform of an element A in .. In particular, if A = 2S5, then A is a prime divisor, where S, is the strict
transform of S,.

As with the previous section, the remainder of this section is dedicated to the proof of Theorem 6.1 on a
case-by-case basis according to the type of f(E).

6.2. The image f(F) is a curve or a Gorenstein point

In this case, both @ and 4 are integers, and it follows from (4.2) and Lemma 6.3 that
(6.1) 44 =854+ (84 —4a)e > 854 + 44ae > 44.

So we have 4 > 11. In particular, the morphism f is birational by Proposition 4.2, and CI(X) is torsion-free
by Proposition 2.3. So e = d > 2 by Proposition 4.2, and (6.1) implies § > 22, which contradicts Lemma 2.1.

6.3. The image f(E) is a point of local index 3

In this case, we have a = 1/3 by [Kaw96]. Moreover, as A ~ —2Kx near the point f(E), we obtain t4 = 2.
In particular, by (4.3) and Lemma 6.3, there exists an integer m4 > 2 such that 4 = 2/3 + my. Then applying
(4.2) to k = 4 yields

(6.2) =254+ (2my+1)e.

As e >1 and my > 2, we have § > 5. In particular, the morphism f is birational, and thus s, > 1 by
Proposition 4.2. Therefore, we have § > 7.

If e = 1, then the group CI(X) is not torsion-free by Proposition 4.2 as d > 2, and then it follows from
Proposition 2.3 that § = 7. Then s4 = 1 by (6.2), which contradicts Table 1 as dim 574 =1.

If e > 2, then § > 12 and the group Cl(X) is torsion-free by Proposition 2.3. Thus we have the inequality
dim|sgA¢| > dim ., = 1. Then one can easily derive from Table 2 that there is no solution for (6.2).
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6.4. The image f(E) is a point of local index 5

In this case, we have a = 1/5 by [Kaw96]. Moreover, as A ~ —2Kx near the point f(E), we obtain
t =4, t3 =1 and t4 = 3. Then it follows from (4.3) and Lemma 6.3 that §, = 4/5 + m, for some m, € Z,,
p3 = 1/5+ mj3 for some m3 € Z5( and B4 = 3/5 + my for some my € Z.y. Now applying (4.2) to k = 4
yields

(6.3) 4 =254+ (2my+1)e.

As e>1 and my > 1, we have § > 3. On the other hand, if § > 4, then f is birational and s4 > 1
by Proposition 4.2. So 4 # 4 or 6. If § > 8, then Cl(X) is torsion-free by Proposition 2.3, so we have
dim|syAg| > dim.#, = 1 and e = d > 2 by Proposition 4.2. Then one can derive from Table 2 that
there is no solution for (6.3) in the case § > 8. In conclusion, the possibilities for (4,e,54) are the
following:

A

e j=3,e=1ands;=0;
e j=5,e=1andsy=1;
e j=7,e=1land 1<s4<2.

Moreover, the last two cases can be easily excluded by applying (4.2) to k = 3. Thus it remains to
consider the first case. In this case, by Proposition 4.2, the morphism f is not birational, and we have
X=P'. In particular, .7} is f—vertical as 5, = 0 and hence .7 = f*|ﬁp1(l)| as dim.#; = 1. Thanks
to Lemma 6.4, the divisor 25, € .7, is the only (cycle-theoretic) fibre of f which is not a prime divisor
on X. Then applying (4.2) to k = 3 yields s3 + m3 = 1. If s3 = 0, then Sj is f -vertical. In particular, there
exists a positive integer a such that aS; € .%;. Pushing it forward to X yields aS3 € ., which gives a
contradiction. So we have s3 = ¢ = 1 and m3 = 0. Notice that CI(X) is generated by S, and E, so there
exists an integer ¢ such that S3 — E ~ ¢S5, which implies that S3 ~ ¢S, by pushing forward to X. This is
absurd.

6.5. The image f(F) is a point of local index 11

Then we have a = 1/11 by [Kaw96]. Moreover, as A ~ —7Kx near the point f(E), we obtain t, = 3,
t3 =10, ty = 6, t5 = 2 and tg = 9. In particular, by (4.3), we have i = t;/11 + my for some my € Zs
(2 <k <6). Then applying (4.2) to k = 3 yields

(6.4) 34 =853+ (8ms+7)e.
Then one can derive that 3§ > 14 and hence 4 > 5. In particular, the morphism f is birational by
Proposition 4.2. Moreover, if § > 8, then CI(X) is torsion-free by Proposition 2.3, so e = d > 2 and

dim|s3Ag| > 0 if s3 # 0 by Proposition 4.2. Combining these facts with (6.4) and Table 2 yields the following
possibilities for (4, e):

e §=5-e=1;
o« §=7,e=3;
°j=17,e=5.

In the following, each case will be considered individually. Moreover, we also need the following two
additional equalities, which are obtained by applying (4.2) to k = 2 and k = 4, respectively:

(6.5) g =4s,+ (4dmy+1)e,
(6.6) g =254+ (2my+1)e.
6.5.1. The case §=5 and e=1.— As d > 2, the group CI(X) is not torsion-free by Proposition 4.2.

Moreover, note that 1 <s4 <2 by (6.6) and dim 4 =1, so it follows from (4.2.2) and Table 1 that 54 =2
and the numerical type of X appears as one of N 4 and Ne 5 in Table 1. In particular, we have d = 2 and
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S, = F. This implies s3 = m, = 1 and m3 = s, = 0 by Proposition 4.2, (6.4) and (6.5). As my =0 by (6.6), we
obtain 4 = 6/11; as m; = 1, we obtain 3, = 14/11. Since 25, € .%}, we have

2F +2E =25, + (2B, — B4)E € .

Pushing it forward to X yields 2F € 5’4. This implies 285 ~ 2A5 ~ 2F € 574 as S5 ~0 A% ~Q E and
d = |CI(X),| = 2. Then we get [2A%| = ) as dim|2Ag| = dim.¥, = 1, and hence 285 € ¥4, which
contradicts Lemma 6.4 as §3 =E.

6.5.2. The case § =7, e = 3.— In this case, we have 54 = 2 by (6.6). We also have s3 = m3 = 0 by (6.4)
and S3 = F by Proposition 4.2. In particular, we get d = ¢ = 3. Thus s, > 0 and CI(X) is torsion-free
by Proposition 4.2. Then we obtain s, = 1 by (6.5). As ¢ = 9/11 + mg, applying (4.2) to k = 6 yields
3mg +s¢ = 3. As dim.% = 3 and f is birational, it follows from Proposition 4.2 that s > 0. Therefore,
s¢ = 3 and mg = 0. In particular, since CI(X) is torsion-free, we get dim|[3A¢| > dim.¥; = 3, and hence
the numerical type of X appears as one of N 7-9 in Table 2. In particular, we have dim|— K[> 15, and it
follows from [Prol6, Theorem 1.1] that X is isomorphic to one of the following:

P(1%,2,3), XscCIP(1,2%,3,5), X¢cCIP(1,2,3%4).

Now we divide the proof into three subcases according to the type of X.
6.5.2.1. The subcase where X = P(12,2,3)— As dim |Ag| =1 and e = 3, there exists a prime divisor De |Ag]
which is different from S, and E. Note that we have

3 =dim|2A4| = dim|3Ag| - dim.%.

In particular, since both D + |2A%| and 576 are sublinear systems of [3A|, there must exist an element
Ae |2A%| such that D+Ae 96- Then there exists a unique rational number y such that f*(lj + A) —yFis
an effective integral divisor contained in .%. Denote by D and A the strict transforms of D and A on X,
respectively. Then D is different from S, and S3(= F). In particular, we have D ~ aA for some integer
a > 4 because CI(X) is torsion-free. Pushing the integral divisor f*(D + A) — y'F forward to X shows that
D+ A+ OF € . for some 6 € Zs. As E = A, we have A = 0. However, as d = 3 and a > 4, we must have
5=0,A=S,and D€ |4A]. So A=, ¢ |2A |, which is impossible as s, = 1.
6.5.2.9. The subcase where X = Xe CIP(1, 223, 5).— In this case, we have

dim|3A¢|=dim.%s =3 and 2=dim|2A¢|>dim.7;=1.
So .Y = I3A4|. Let .4 be the sublinear system of .7 such that f;/_V coincides with S, + |2A | as sublinear
systems of [3Ag| = Z. Denote by .4 the push-forward of .4 to X. Since S, is contained in the fixed
part of 4, we get A" = A - S, C .7, which is impossible as dim .4 = dim.4" = dim|2A¢| = 2 and
dim.7; =1.
6.5.2.3. The subcase where X = Xe CP(1,2, 32, 4).— Recall from [Pro22, Section 4.9] that we can write

Kg~q f'Ky+cE, Fi~of %-nE, E~qf'E-oF
with ¢ € Q5o and Y, 0 € Qs¢. For any k > 1 and k = 3, it follows from [Pro22, (4.5)] that we have
(6.7) —8sx + 7k = 3(csg — 7yk)-

Then applying (6.7) to k = 2, 4 and 6 yields

c—2
v2=—— 7a= 2y, Ve =32

In particular, we get ¢ > 2, and thus f(F) must be a point as ¢ =1 if f( ) is a curve. If ¢ > 2, then 4 >0
and y¢ > 0. In particular, as [2A | = ¥, and |3A%| = S, the point f(F) is contained in the base loci of
|2A| and |3A%|. So we obtain

F(F)=[0:0:0:0:1]e X = X¢ CIP(1,2,3%,4).
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Therefore, f (F) is a point of local index four, and thus ¢ = 1/4 by [Prol6, Remark 5.1, which gives a
contradiction. So we have ¢ = 2 and then y; = 0. Since [2A3| = §Aﬂ4 is a pencil, there exists an element
D €.¥, containing f(F). In particular, as y4 = 0, there exists a positive integer a such that

f*lj = D + aP € f_ﬁ4 ~Q f*y4 = f*|2AX|,
where D is the strict transform of D. This contradicts Lemma 6.4 as e = d = 3.

6.5.3. The case § =17, e = 5— In this case, we have s, = 6 and dim|6A¢| = dim.#; = 1 by (6.6) and
Table 2. So CI(X) is torsion-free by Proposition 2.3, and so [6A| = 5. Let D be the unique element in
|2A|. Then D is a prime divisor and 3D € 5”4. This contradicts Lemma 6.4 as e = 5.

Appendix. Database for Q-Fano threefolds with large qQ

Al Data for qQ(X) > 6

We collect in Table 2 below the possible numerical invariants for terminal Fano threefold with gQ(X) > 6
and by < 3. It can be obtained by using the same computer program as that in the proof of Lemma 2.2
or the Grdb [BK09]. We denote by A a Weil divisor such that —Kx ~ gQ(X)A. Moreover, we remark that
the assumption by < 3 holds automatically if X is a terminal Q-Fano threefold with gQ(X) > 6 by [LL25,
Theorem 4.4].

Assume in addition that X is a terminal Q-Fano threefold. Then we use the symbol “+” as a superscript
of its numbering N if it can be geometrically realised by appropriate examples, “+!” if it is completely
described, “=” if it cannot occur and “?” if it is unknown (see [BS07a, Prol0, Prol3, Prol6, Pro25] for the
details). The symbol “+” is used as a subscript in the case where Cl(X) is possibly not torsion-free (see
Proposition 2.3).

Table 2. Data for g = qW(X) =9qQ(X) > 6

dim kA

Ne | g Rx cf crcp | by =

AL | [2A] | [3A] | [4A] | [SA] | [6A] | [7A]| [8A] | |9A]
1" |6 {5} 26136 1 225 | 1 | 3| 6 |10 |16 | 23| 32 | 43 | 56
2 6| (570 || 2| 15 [0 | 1| 2| 4|7 |10 14|18 24
6| {517y || 21225 oo |0 |0 | 1] 2|3]|4]5
& | 6| {511} | HE | 8104736 0 [ O | O[O | 1| 2|3 ]| 4]S5
5 16| (577 | 2|2 225 | -1 0|1 |2|4]6 ]9 | 11]15
6 | 6| {711} |2 |8 09 |-1{ 0|0 |1 |1|3]|4]5] 7
AR {2,3} 3 19 128823 1 | 3 | 6 |10 | 15| 22| 30 | 40 | 52
8" | 7| {235y |3 | 123333 0 | 2| 3| 6| 9 |13]18 | 24|31
ot | 7| (2,324} |32 |18 {21304 0 | 1 | 3| 5 | 7 |11 |15 |20 |26
100 | 7] {2235 |22 | 2 [1689% | 0 | 1 | 2 | 4 | 6| 9 |12]16 ] 21
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w7 369 |3 |42 |2823) 0 0 | 1 | 2| 4|7 |10]13]17

7| (26105 |32 | 23 116896 0 | 0 | 0 | 1| 2| 41| 6| 8110

18° | 7| {2313} |22 |22 06363 0 | 0| 0|0 | 0|1 | 2]3]4

78
? 2 343 161
4y | 7 (253,48} | 57 | 57 | 21304 | -1 0 1 2 3 5 7 10 | 12

157 | 7 | {2%,3,11) | 3B | 2 14 | -1l o0 | 1|1 |2 |4]|5/|71]9

(O8]
=~
W
o
o ~
O
OLQ °4

167 | 7 | {23,3,4,5) 0.6901 | -1 0 0 1 1 2 3 4 5

o))
(=]

? 3 343 273

17 | 7| (258 |3 |2 112564 -1 0 | 0 | 1|2 |3 | 4|67
? 343 329

18 | 7] (389 |32 110425 -1|-1| 0|0 | 1| 1] 2]3]|4

19| 8| {325 | 22|22 24615 0 | 1 | 3 | 4| 7 |10] 13|18 |23
! 512 304

20" | 8 37y |32 |3% 16842 0 | 1 | 2| 3 |5 |7 |10]13 |17
512 432

21t | 8 57y |32 |42 ]850 0| 0 | 1|2 ]3| 4|68 |10
2048 | 928

2.2068 | -1 0 0 1 2 3 4 6 8

22 | 8 | (3,511} |2

N |
O |

23" | 9 | (245 |2 | % 26129 0 | 1 | 2| 4|6 |8 |11][15]19

2%t | 9| (2357 |2 | X 113278 -1 | 0 | O | 1 |1 | 2|3 | 4]°S5

70 0
25t [ 11| {2,3,5p || 8L 29512) 0 | 1 [ 2|3 |5 |7 |9 12|15
26 (11| (2,57} |31 22117536 0 | 0 | O | 1 | 2|3 | 4|5/ 6
27t | 11| {22,3,4,7) | 124 | &2 120508 | -1 | 0 | O | 1 | 1 | 2| 3 | 4|5
28% | 13| {3,455} |27 | Z87 128644 0 | 0 | 1 | 2 | 3 [ 4 |5 [ 7|9
207 113 | {2,3%57) |2 | 53718988 | -1 | -1 | 0 | O | O | 1 | 1 | 1 |2

20+ 4913 | 1717
307 [ 17| (2,3,57) | L3177 128613 | -1 | 0 | 0 | O | 1 | 1| 2] 2]3

! 6859 | 2489
31" |19 (3,457 |2 | 289 27557 | -1 | -1 | 0 |0 | O | 0| 1|11

A.2. Data for qW(X) #qQ(X) >3

We collect in Table 3 below the possible numerical invariants for terminal Q-Fano threefolds with
gW(X) = gQ(X) > 3, which is obtained in [Pro24, Proposition 3.2].

Table 3. Data for gW(X) = qQ(X) > 3

Ne | gQ Ry e CyCq by ~ [BK09]
. 4 27 15 0 <
1 3 {34,6) z L 1.8 Ne 30381
4 27 27 o
2 3 {34,5,6} z 2z 1 Ne 9014
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. 2 27 21 o

3 3 (2,32,12) z 2L | 1.2857 Ne 19801
5 64 32 X

4 4 {2°, 6} 5 = 2 Ne 35882
5 128 88 0

5 4 {2°,5,6} I 5 1.4545 Ne 23440
5 64 80 0

6 | 4 (2%,6,7) 6t | 80 0.8 Ne 10111

7 4 {23,10} 281 B 26666 N2 37308
3 64 104 X

8 4 {2°,3,10} 1= IE 0.6153 Ne 14290

9 4 {23,5,10} & 22,6666 Ne 29220
3 256 96 .

10 4 {2°,7,10} 55 35 2.6666 Ne 20313

References

[ABRO2] S. Altinok, G. Brown and M. Reid, Fano 3-folds, K3 surfaces and graded rings, in: Topology
and geometry: commemorating SISTAG, pp. 25-53, Contemp. Math., vol. 314, Amer. Math. Soc.,
Providence, RI, 2002, doi:10.1090/conm/314/05420.

[Ale94] V. A. Alexeev, General elephants of Q-Fano 3-folds, Compos. Math. 91 (1994), no. 1, 91-116.

[Bir21] C. Birkar, Singularities of linear systems and boundedness of Fano varieties, Ann. of Math. (2) 193
(2021), no. 2, 347-405, doi :10.4007/annals.2021.193.2.1.

[BKO9] G. Brown and A.M. Kasprzyk, The Graded Ring Database, http://www.grdb.co.uk, 2009.

[BK22] , Kawamata boundedness for Fano threefolds and the Graded Ring Database, preprint
arXiv:2201.07178 (2022).

[BSO7a] G. Brown and K. Suzuki, Computing certain Fano 3-folds, Japan J. Indust. Appl. Math. 24 (2007),
no. 3, 241-250, doi:10.1007/b£f03167538.

[BSO7b] _, Fano 3-folds with divisible anticanonical class, Manuscripta Math. 123 (2007), no. 1,
37-51, doi:10.1007/s00229-007-0082-6.

[CP19] F. Campana and M. Paun, Foliations with positive slopes and birational stability of orbifold
cotangent bundles, Publ. Math. Inst. Hautes Etudes Sci. 129 (2019), 1-49, doi:10.1007/
510240-019-00105-w.

. Chen and C. Jiang, On the anti-canonical geometry o -Fano threefolds, ]J. Differential Geom.

CJ16 M. Ch dC g, On th lg 'y of Q-Fano threefolds, J. Diff 1G
104 (2016), no. 1, 59-109, doi:10.4310/jdg/1473186539.

[GKP2]] D. Greb, S. Kebekus and T. Peternell, Projectively flat kit varieties, ]. Ec. polytech. Math. 8 (2021),
1005-1036, doi:10.5802/jep.164.

[JL25] M. Iwai, C. Jiang and H. Liu, Miyaoka type inequality for terminal threefolds with nef anti-canonical
divisors, Sci. China Math. 68 (2025), no. 1, 1-18, doi:10.1007/s11425-023-2230-6.

[Kaw05] M. Kawakita, Three-fold divisorial contractions to singularities of higher indices, Duke Math. J. 130
(2005), no. 1, 57-126, doi:10.1215/S0012-7094-05-13013-7.

[Kaw88] Y. Kawamata, Crepant blowing-up of 3-dimensional canonical singularities and its application to

degenerations of surfaces., Ann. of Math. (2) 127 (1988), no. 1, 93-163, doi:10.2307/1971417.


https://doi.org/10.1090/conm/314/05420
https://doi.org/10.4007/annals.2021.193.2.1
http://www.grdb.co.uk
https://arxiv.org/abs/2201.07178
https://doi.org/10.1007/bf03167538
https://doi.org/10.1007/s00229-007-0082-6
https://doi.org/10.1007/s10240-019-00105-w
https://doi.org/10.1007/s10240-019-00105-w
https://doi.org/10.4310/jdg/1473186539
https://doi.org/10.5802/jep.164
https://doi.org/10.1007/s11425-023-2230-6
https://doi.org/10.1215/S0012-7094-05-13013-7
https://doi.org/10.2307/1971417

Kawamata-Miyaoka-type inequality for terminal Q-Fano threefolds 21

[Kaw92] , Boundedness of Q-Fano threefolds, in: Proceedings of the International Conference on
Algebra, Part 3 (Novosibirsk, 1989), pp. 439-445, Contemp. Math., vol. 131, Amer. Math. Soc.,
Providence, RI, 1992, doi:10.1090/conm/131.3/1175897.

[Kaw96] , Divisorial contractions to 3-dimensional terminal quotient singularities, in: Higher-

dimensional complex varieties (Trento, 1994), pp. 241-246, de Gruyter, Berlin, 1996.

[KMMTO00] J. Kollar, Y. Miyaoka, S. Mori and H. Takagi, Boundedness of canonical Q-Fano 3-folds, Proc.
Japan Acad. Ser. A Math. Sci. 76 (2000), no. 5, 73-77, doi:10.3792/pjaa.76.73.

[KM98] J- Kollar and S. Mori, Birational geometry of algebraic varieties (with the collaboration of
C.H. Clemens and A. Corti; translated from the 1998 Japanese original), Cambridge Tracts in
Math., vol. 134, Cambridge Univ. Press, Cambridge, 1998, doi:10.1017/CB09780511662560.

[LL25] H. Liu and J. Liu, Kawamata-Miyaoka type inequality for Q-Fano varieties with canonical
singularities, ]. reine angew. Math. 819 (2025), 265-281, doi:10.1515/crelle-2024-0087.

[Mor85] S. Mori, On 3-dimensional terminal singularities, Nagoya Math. J. 98 (1985), 43-66, doi:
10.1017/50027763000021358.

[Prol0] Yu. G. Prokhorov, Q-Fano threefolds of large Fano index, I, Doc. Math. 15 (2010), 843-872,
d0i:10.4171/dm/316.

[Prol3| , On Fano threefolds of large Fano index and large degree, Mat. Sb. 204 (2013), no. 3,
43-78, doi:10.1070/SM2013v204n03ABEH004304.

[Prol6] , Q-Fano threefolds of index 7, Proc. Steklov Inst. Math. 294 (2016), no. 1, 139-153,
doi:10.1134/50371968516030092.

[Pro22] , Rationality of Q-Fano threefolds of large Fano index, in: Recent developments in algebraic
geometry—to Miles Reid for his 70th birthday, pp. 253-274, London Math. Soc. Lecture Note Ser.,
vol. 478, Cambridge Univ. Press, Cambridge, 2022, doi:10.1017/9781009180849.009.

[Pro24] , On the birational geometry of Q-Fano threefolds of large Fano index, I, Ann. Univ. Ferrara
Sez. VII Sci. Mat. 70 (2024), no. 3, 955-985, doi:10.1007/s11565-024-00515-7.

[Pro25] , Q-Fano threefolds of Fano index 13, in: Higher dimensional algebraic geometry—a volume

in honor of V. V. Shokurov, pp. 115-129, London Math. Soc. Lecture Note Ser., vol. 489, Cambridge
Univ. Press, Cambridge, 2025.

[Rei87] M. Reid, Young person’s guide to canonical singularities, in: Algebraic geometry, Bowdoin, 1985
(Brunswick, Maine, 1985), pp. 345-414, Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc.,
Providence, RI, 1987, doi:10.1090/pspum/046.1/927963.

[Suz04] K. Suzuki, On Fano indices of Q-Fano 3-folds, Manuscripta Math. 114 (2004), no. 2, 229-246,
doi:10.1007/s00229-004-0442-4.

[Suz24] , The graded ring database for Fano 3-folds and the Bogomolov stability bound, Ann. Univ.

Ferrara Sez. VII Sci. Mat. 70 (2024), no. 3, 1023-1035, doi:10.1007/s11565-024-00518-4.



https://doi.org/10.1090/conm/131.3/1175897
https://doi.org/10.3792/pjaa.76.73
https://doi.org/10.1017/CBO9780511662560
https://doi.org/10.1515/crelle-2024-0087
https://doi.org/10.1017/S0027763000021358
https://doi.org/10.1017/S0027763000021358
https://doi.org/10.4171/dm/316
https://doi.org/10.1070/SM2013v204n03ABEH004304
https://doi.org/10.1134/S0371968516030092
https://doi.org/10.1017/9781009180849.009
https://doi.org/10.1007/s11565-024-00515-7
https://doi.org/10.1090/pspum/046.1/927963
https://doi.org/10.1007/s00229-004-0442-4
https://doi.org/10.1007/s11565-024-00518-4

	Introduction
	Preliminaries
	Case qQ(X)=5
	Sarkisov link
	Case qQ(X)=4
	Case qQ(X)=8
	Appendix. Database for Q-Fano threefolds with large qQ
	References

