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Kawamata–Miyaoka-type inequality for Q-Fano varieties with
canonical singularities II: Terminal Q-Fano threefolds
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Abstract. We prove an optimal Kawamata–Miyaoka-type inequality for terminal Q-Fano threefolds
with Fano index at least 3. As an application, any terminal Q-Fano threefold X satisfies the
following Kawamata–Miyaoka-type inequality:

c1(X)3 < 3c2(X)c1(X).
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1. Introduction

A normal projective variety is called Fano if its anti-canonical divisor is Q-Cartier and ample. A Fano
variety is called Q-Fano if it is Q-factorial and its Picard number is one. According to the minimal model
program, Q-Fano varieties with terminal singularities are one of the building blocks of algebraic varieties,
and they form a bounded family (see [Kaw92, KMMT00, Bir21]).

Thanks to Reid’s orbifold Riemann–Roch formula, see [Rei87], terminal Q-Fano threefolds have been
studied intensively in the past two decades; see [ABR02, Suz04, BS07a, BS07b, Pro10, Pro13, CJ16, BK22,
Pro25, Pro22] and the references therein. In particular, all the possibilities for their numerical types are
obtained in the Graded Ring Database (Grdb for short, [BK09]).

One of the key ingredients in the computation of possible numerical types of terminal Q-Fano threefolds is
an effective version of the Kawamata–Miyaoka-type inequality (see [Kaw92, Proposition 1], [Suz04, Theorem 1.7]
and [BK22, Theorem 2.6] for more details). In our previous paper [LL25], we established such an effective
Kawamata–Miyaoka-type inequality for terminal Q-Fano varieties in arbitrary dimension. In particular, using
a refined argument and Reid’s orbifold Riemann–Roch formula, we have proved the following inequality in
dimension three, which significantly improves the known ones in the literature.

Theorem 1.1 (cf. [LL25, Theorem 1.2]). Let X be a terminal Q-Fano threefold. Then we have

c1(X)3 ≤ 25
8
c2(X)c1(X).

In this paper, we aim to continue in this direction. To give a precise statement, let us recall the definition
of Fano indices. In general, let X be a singular Fano variety. We can define the Fano index of X in two
different ways:

qQ(X)Bmax{q | −KX ∼Q qA, A ∈ ClX},
qW (X)Bmax{q | −KX ∼ qB, B ∈ ClX}.

If we assume in addition that X has at worst terminal singularities, then the Weil divisor class group Cl(X)
is finitely generated and the numerical equivalence for Q-Cartier Weil divisors coincides with the Q-linear
equivalence. This implies that both qQ(X) and qW (X) are positive integers.

The main result of this paper is the following optimal Kawamata–Miyaoka-type inequality for terminal
Q-Fano threefolds with large qQ.
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Theorem 1.2 (cf. Lemma 2.2, Theorems 3.1 and 5.1). Let X be a terminalQ-Fano threefold such that qQ(X) ≥ 3.
Then we have

c1(X)3 ≤ 121
41

c2(X)c1(X),

and equality holds if and only if X is isomorphic to P(1,2,3,5).

As an immediate application, combining Theorem 1.2 with [LL25, Theorem 4.4] yields the following
generalisation of Theorem 1.1, which confirms a recent conjecture of K. Suzuki [Suz24, Conjecture 1].

Theorem 1.3. Let X be a terminal Q-Fano threefold. Then we have

c1(X)3 < 3c2(X)c1(X).

The main idea of the proof of Theorem 1.2 is as follows. Let X be a terminal Q-Fano threefold with
qQ(X) ≥ 3 which does not satisfy the inequality in Theorem 1.2. Using the orbifold Riemann–Roch theorem,
[LL25, Corollary 4.3] and [Pro24, Proposition 3.2], we have the following two numerical possibilities for X
(see Lemma 2.2):

(1.3.1) qW (X) = qQ(X) = 4 and RX = {7,13},
(1.3.2) qW (X) = qQ(X) = 5 and RX = {3,72},
where RX denotes the local index basket of X (see Section 2.1). The main contribution of this paper is to
exclude these two cases. To this end, we will introduce two different approaches. In the first one we use the
theory of foliations to rule out the second case; it is relatively simple (see Section 3). The first case is much
more difficult; we will follow a second approach developed by Yu. Prokhorov in [Pro10] by using the Sarkisov
link (see Section 5).

Theorem 1.3 can be directly applied to show that 13559 numerical types in the Grdb [BK09] do not
actually occur for terminal Q-Fano threefolds and the Hilbert series of a terminal Q-Fano threefold always
lies in the list Fss; see [BK22, Theorem 1.2]. On the other hand, if qQ(X) ≥ 9, then [BS07a, Section 4]
and [Pro10] show that there are exactly nine numerical types which can be geometrically realised (№ 23–31
in Table 2). However, the situation becomes much more complicated for smaller qQ. For instance, by
Theorem 1.3, if qQ(X) = 8, there are four possibilities (№ 19–22 in Table 2) for the numerical type of X with
corresponding local index baskets as follows:

{32,5}, {3,7}, {5,7}, {3,5,11}.

It is known that the first three cases can be geometrically realised by appropriate examples, see [BS07a,
Table 1], and we will treat the last case in Section 6 (see № 22 in Table 2 and Theorem 6.1), from which we
derive the following result.

Theorem 1.4. Let X be a terminal Q-Fano threefold with qQ(X) = 8. Then its local index basket RX cannot be
{3,5,11}.

Finally, we remark that Theorem 1.3 cannot be generalised to Q-Fano threefolds with canonical singularities
as P(1,3,7,11) shows (see [BK22, Section 4.5]), and our proof of Theorem 1.2 is not completely independent
of previously known non-existence results in the literature (see the proof of Lemma 2.2 for more details).
Moreover, there are also some non-existence results, which cannot be recovered by Theorem 1.2 (e.g. № 5
and № 8 in [Pro13, Lemma 8.1] and № 5, № 8 and № 9 in [Pro13, Lemma 9.1]).
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2. Preliminaries

Throughout this paper, we work over C, and varieties are always supposed to be irreducible. We will
freely use the terminology of [KM98] for birational geometry, especially the minimal model program (MMP
for short).

2.1. Orbifold Riemann–Roch formula

Let X be a terminal Fano threefold and q B qW (X). According to Reid [Rei87], there is a basket of
orbifold points

BX =
{
(ri ,bi) | i = 1, . . . , s; 0 < bi ≤

ri
2
; bi is coprime to ri

}
associated to X, where a pair (ri ,bi) corresponds to an orbifold point Qi of type 1

ri
(1,−1,bi). Denote by

RX the collection of ri (permitting weights) appearing in BX , and simply write it as a set of integers whose
weights appear in superscripts, say for example

RX = {3,7,7} = {3,72}.

Note that rX B lcm(RX) coincides with the Gorenstein index of X. Let A be a Q-Cartier Weil divisor on X
such that −KX ∼ qA. According to [Rei87, Corollary 10.3],

(2.1) χ(tA) = 1+
t(q+ t)(q+2t)

12
A3 +

t
12q

c2(X)c1(X) +
∑
Q∈BX

cQ(tA)

for t ∈ Z; here if the orbifold point Q is of type 1
rQ
(1,−1,bQ) and 0 ≤ iQ,t < rQ is the integer uniquely

determined by qiQ,t ≡ −t mod rQ, then

cQ(tA) = −
iQ,t(r

2
Q − 1)

12rQ
+

iQ,t−1∑
j=0

jbQ
(
rQ − jbQ

)
2rQ

,

where the symbol • means the smallest residue mod rQ and
∑−1

j=0 B 0.
If t = −q, then (2.1) and Serre’s duality imply that

(2.2) 1 =
1
24

c2(X)c1(X) +
1
24

∑
Q∈BX

(
rQ −

1
rQ

)
.

If q ≥ 3 and −q < t < 0, then χ(tA) = 0 by the Kawamata–Viehweg vanishing theorem. Hence (2.1) implies
that

(2.3) 1+
t(q+ t)(q+2t)

12
A3 +

t
12q

c2(X)c1(X) +
∑
Q∈BX

cQ(tA) = 0

for −q < t < 0. In particular, if q ≥ 3 and t = −1, then we obtain

(2.4) A3 =
12

(q − 1)(q − 2)

1− c2(X)c1(X)
12q

+
∑
Q∈BX

cQ(−A)

 .
Moreover, the degree A3 and the Gorenstein index rX have the following relations (see [Suz04, Lemma 1.2]
for example):

(2.5) gcd(rX ,q) = 1 and rX ·A3 ∈Z>0.
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2.2. Fano indices

We collect in the following some basic facts about the Fano indices of terminal Fano threefolds. We refer
the reader to [Suz04], [Pro10, Lemmas 3.2 and 3.3] and [Pro22, Proposition 3.3] for more details.

Lemma 2.1. Let X be a terminal Fano threefold.

(2.1.1) We have qW (X) | qQ(X).
(2.1.2) If −KX ∼Q qA for some Weil divisor A, then q | qQ(X).
(2.1.3) If −KX ∼ qB for some Weil divisor B, then q | qW (X).
(2.1.4) If qQ(X) ≥ 5, then qW (X) = qQ(X).
(2.1.5) We have qW (X),qQ(X) ∈ {1, . . . ,9,11,13,17,19}.

Proof. The first three statements follow from [Pro10, Lemma 3.2]. For the last two statements, without loss of
generality we may assume that qQ(X) ≥ 5 and let A be a Q-Cartier Weil divisor such that −KX ∼Q qQ(X)A.
Let µ : X ′→ X be a small Q-factorialization. Then we have −KX ′ ∼Q qQ(X)A′ , where A′ = µ∗A is a nef and
big Q-Cartier Weil divisor. Running a MMP g : X ′d X ′′ yields a Mori fibre space f : X ′′→ Z . Denote by
A′′ the strict transform of A′ on X ′′ . Then we obtain −KX ′′ ∼Q qQ(X)A′′ . If dim(Z) > 0, then the general
fibre F of f is a non-singular Fano variety such that −KF ∼Q qQ(X)A′′ |F , which is impossible as dimF ≤ 2
and A′′ |F is Cartier. So Z is a point and X ′′ is a terminal Q-Fano threefold.

By item (2.1.2), we have qQ(X) | qQ(X ′′), and then it follows from [Pro10, Theorem 1.4] and [Pro22,
Proposition 3.3] that we must have

qQ(X) = qW (X ′′) = qQ(X ′′) ∈ {5, . . . ,9,11,13,17,19}.

Let m be the order of KX ′′ + qQ(X)A′′ . By [Pro22, Proposition 3.4], we have (m,qQ(X ′′)) = 1. On the
other hand, by the negativity lemma, we also have g∗(KX ′′ + qQ(X)A′′) = KX ′ + qQ(X)A′ . So we obtain
m(KX ′ + qQ(X)A′) ∼ 0 and then m(KX + qQ(X)A) ∼ 0. Thus it follows from [Pro10, Lemma 3.2(iv)] that
qW (X) = qQ(X). □

2.3. Algorithm and numerical types

Let X be a terminal Fano threefold. We can define a positive rational number bX as follows (see [IJL25,
Corollary 7.3]):

bX B
c1(X)3

c2(X)c1(X)
.

Now with the help of a computer program or using the Grdb [BK09], we get the following result, which is
our starting point – see also [LL25, Proof of Theorem 4.4 and Remark 4.5].

Lemma 2.2. Let X be a terminal Q-Fano threefold such that qQ(X) ≥ 3 and bX ≥ 121/41. Then Cl(X) is
torsion-free, and one of the following cases holds:

(2.2.1) qW (X) = qQ(X) = 4, RX = {7,13} and bX = 3 (cf. [BK09, № 41313]);
(2.2.2) qW (X) = qQ(X) = 5, RX = {3,72} and bX = 25/8 (cf. [BK09, № 41436]);
(2.2.3) X � P(1,2,3,5) and bX = 121/41 (cf. [BK09, № 41510]).

Proof. By [Pro24, Proposition 3.2] and Table 3, we may assume that qW (X) = qQ(X). Moreover, by [LL25,
Corollary 4.3 and Theorem 4.4], we have

(♣) bX


≤ 64

21
if qW (X) = 4,

≤ 25
8

if qW (X) = 5,

< 3 otherwise.
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Then we use a computer program written in Python, whose algorithm is sketched as follows.
Step 1. As c2(X)c1(X) > 0 by [Kaw92, Proposition 1], we can list a huge but finite number of possibilities

for RX and c2(X)c1(X) satisfying (2.2).
Step 2. For each q = qW (X) ≥ 3, we calculate A3 by (2.4) and pick up those satisfying (2.3) and (2.5).
Step 3. We find all candidates satisfying (♣) and bX ≥ 121/41, which are as follows:

№ q RX bX [BK09]

1 4 {7,13} 3 № 41313

2 5 {3,72} 25
8 № 41436

3 5 {4,7} 3 № 41449

4 11 {2,3,5} 121
41 № 41510

Case № 3 was excluded in [Pro13, Section 7.5]. If the numerical type of X appears as № 4, then we have
dim | −KX | = 23, cf. [BK09, № 41510], and hence X � P(1,2,3,5) by [Pro10, Theorem 1.4]. Finally, the
torsion-freeness of Cl(X) follows from [Pro10, Proposition 2.9]. □

2.4. Torsion part of Cl(X)

Let X be a terminal Q-Fano threefold. If qQ(X) ≥ 8, then we have qW (X) = qQ(X) ≥ 8 by Lemma 2.1,
and so Cl(X) is torsion-free by [Pro10, Lemma 3.5]. On the other hand, if 5 ≤ qQ(X) ≤ 7 and the torsion
subgroup Cl(X)t of Cl(X) is non-trivial, then the possibilities for the numerical types of X have been
obtained in [Pro22, Proposition 3.4], which can be refined as follows.

Proposition 2.3. Let X be a terminal Q-Fano threefold such that qQ(X) ≥ 5 and Cl(X)t is non-trivial. Then
Cl(X)t is cyclic of order ι. Moreover, let T be a generator of Cl(X)t , and let A be a Weil divisor such that
−KX ∼ qW (X)A. Then one of the cases in Table 1 holds.

Table 1. qQ(X) ≥ 5 with Cl(X)t , {e}

№ qQ ι RX
dim

|A| |2A| |3A| |4A| |A± T | |2A± T | |3A± T | |4A± T |

1 5 2 {2,4,14} 0 0 0 1 −1 −1 0 1

2 5 3 {2,92} 0 0 0 1 −1 0 1 2

3 5 2 {42,12} 0 0 1 3 −1 0 1 3

4 5 2 {22,4,8} 0 1 2 5 0 1 3 5

5 5 2 {2,42,6} 0 1 3 7 0 2 4 6

6 7 2 {2,6,10} 0 0 0 1 −1 0 1 2

7 7 2 {22,3,4,8} −1 0 1 2 0 0 1 2

Proof. Note that we have bX = 125/37 and bX = 5 in cases № 4 and № 5 of [Pro22, Proposition 3.4] (see also
[BK09, № 41424 and № 41431]), respectively, which are thus ruled out by Theorem 1.1. The dimensions of |kA|
and |kA± T | can be derived from the orbifold Riemann–Roch formula (see [Rei87, Corollary 10.3] or [LL25,
(2.3)]) using the numerical data given in [Pro22, Proposition 3.4]. Here we note that kA− T ∼ kA+ T if ι = 2
and kA− T ∼ kA+2T if ι = 3. □
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The following result was pointed out to us by the anonymous referee. It is obtained by a computer search
using an algorithm outlined in [Pro24, Appendix A]; see also [Pro24, Section 3] for related results.

Lemma 2.4. Let X be a terminal Q-Fano threefold with qQ(X) = 3 such that Cl(X) is not torsion-free. Let A
be any Weil divisor on X such that −KX ∼Q 3A. Then dim |A| ≤ 1.

3. Case qQ(X) = 5

The goal of this section is to prove the following result.

Theorem 3.1. Let X be a terminal Q-Fano threefold such that qQ(X) = 5. Then we have

c1(X)3 <
121
41

c2(X)c1(X).

Assume to the contrary that there exists a terminal Q-Fano threefold X such that qQ(X) = 5 and
bX ≥ 121/41. Then Lemma 2.2 shows that the numerical type of X appears as (2.2.2). In particular, the
numerical invariants of X are as follows (cf. [BK09, № 41436]):

BX = {(3,1), (7,2), (7,3)}, c1(X)3 =
500
21

, c2(X)c1(X) =
160
21

and bX =
25
8
.

In this case, the tangent sheaf TX is not semi-stable by the Bogomolov–Gieseker inequality, and it follows
from [LL25, Theorem 4.2 and Corollary 4.3] that the maximal destabilizing subsheaf F of TX is of rank
two with c1(F ) ≡ 4A, where A is a generator of Cl(X)/ ∼

Q
.

3.1. Foliation

Let X be a normal variety. A foliation on X is a non-zero coherent subsheaf F of the tangent sheaf TX

such that

(3.1.1) F is saturated in TX (i.e. TX /F is torsion-free),
(3.1.2) F is closed under the Lie bracket.

The rank of F is defined to be the generic rank r of F , and the codimension of F is defined as dimX − r .
Given a rank r foliation F on a normal variety X, the inclusion F ↪→TX induces a non-zero map

η : Ωr
X −→∧

rT ∗
X −→∧

rF ∗ −→ det(F ∗).

The singular locus of F is the singular scheme of the map η; i.e. it is the closed subscheme of X whose ideal
sheaf is the image of the induced map

(Ωr
X ⊗det(F ))∗∗ −→ OX .

A point x ∈ X is called a regular point of F if x is not contained in the singular locus of F . If x is a regular
point of X, then F is regular at x if and only if TX /F is locally free at x. In particular, the singular locus
of F has codimension at least two. Moreover, if both X and F are regular at x, then by the holomorphic
Frobenius theorem, there exists a unique leaf of F passing through x.

A foliation F is called algebraically integrable if there exists a dominant rational map ϕ : X d Y to a
normal variety Y such that F = ker(TX → ϕ∗TY ).

Lemma 3.2. Let X be a normal projective variety of dimension n which is regular in codimension two. Let F be
a codimension one algebraically integrable foliation on X. If X is Q-factorial and ρ(X) = 1, then the singular
locus of F has codimension two.

Proof. Assume to the contrary that F is regular in codimension two. By assumption, the foliation F is
induced by a rational map ϕ : Xd Y to a curve. Let F and F′ be the closures of two general fibres of ϕ.
Since X is Q-factorial and ρ(X) = 1, the divisors F and F′ are ample and dim(F∩F′) = n−2. Since both of



8 H. Liu and J. Liu8 H. Liu and J. Liu

X and F are regular in codimension two, there exists a point x ∈ F∩F′ such that X and F are both regular
at x. In particular, both of F and F′ are the leaves of F at x, which contradicts the uniqueness of leaves. □

3.2. Proof of Theorem 3.1

Let X be a terminal Q-Fano variety of dimension n. Denote by r the rank of the maximal destabilizing
subsheaf F of TX and by k the length of the Harder–Narasimhan filtration of TX . Note that TX is
semi-stable if and only if (r,k) = (n,1). In this case, the Bogomolov–Gieseker inequality and [GKP21,
Theorem 1.2] imply

c1(X)n < 3c2(X)c1(X)n−2.

In [LL25, Proposition 3.8], the authors studied the case (r,k) = (1, k) for k ≥ 2. Now we study the case
(r,k) = (n− 1,2) and prove the following result.

Proposition 3.3. Let X be a terminal Q-Fano variety of dimension n. Assume that the maximal destabilizing
subsheaf F of TX has rank n− 1. Then we have

c2(X)c1(X)n−2 >
(2(n− 1)c1(X)−nc1(F ))c1(F )

2(n− 1)
c1(X)n−2.

Proof. Since TX is generically ample by [LL25, Proposition 3.6], it follows from [CP19, Lemma 4.10] that F

is actually a foliation. Moreover, as F is semi-stable and det(F ) is ample, the foliation F is algebraically
integrable by [CP19, Theorem 1.1].(1) Consider the following short exact sequence of coherent sheaves:

0 −→F −→TX −→Q −→ 0.

By Lemma 3.2, the singular locus of the foliation F has codimension two. In particular, the non–locally free
locus of the quotient Q is supported on a closed subset of X with codimension two, and therefore c2(Q) is
represented by a non-zero effective codimension two cycle. So we get

c2(TX)c1(X)n−2 = (c2(F ) + c2(Q) + c1(F )c1(Q))c1(X)n−2

> c2(F )c1(X)n−2 + c1(F )c1(X)n−1 − c1(F )2c1(X)n−2

≥ c1(F )c1(X)n−1 − n
2n− 2

c1(F )2c1(X)n−2,

where the last inequality follows from the Bogomolov–Gieseker inequality. □

Proof of Theorem 3.1. Assume to the contrary that there exists a terminal Q-Fano threefold X such that
bX ≥ 121/41. By the discussion at the beginning of this section, the maximal destabilizing subsheaf F of
TX is of rank two and c1(F ) ≡ 4A. In particular, as n = 3 and c1(X) ≡ 5A, it follows from Proposition 3.3
that

c2(X)c1(X) > 8A2c1(X) =
8
25

c1(X)3,

which contradicts the fact that bX = 25/8. □

4. Sarkisov link

Let X be a terminal Q-Fano threefold such that Cl(X) is torsion-free. In particular, qW (X) = qQ(X). Set
qB qW (X) = qQ(X). Let A be an ample Weil divisor that generates the group Cl(X) ≃Z. So −KX ∼ qA.
Following [Ale94], let M be a movable linear system on X, and let cB ct(X,M ) be the canonical threshold

(1)Though [CP19, Lemma 4.10 and Theorem 1.1] are only stated for non-singular projective varieties, it is easy to generalise them
to Q-factorial normal projective varieties by taking a resolution.
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of (X,M ). Then the pair (X,cM ) is canonical but not terminal. Assume that −(KX + cM ) is ample. Let
f : X̃→ X be a (K + cM )-crepant blowup such that

KX̃ + cM̃ = f ∗(KX + cM ),

where M̃ is the strict transform of M and X̃ has only terminal Q-factorial singularities.

Lemma 4.1 (cf. [Pro10, Lemma 4.2]). Let P ∈ X be a point of local index r > 1. Assume that M ∼ −tKX near
P , where 0 < t < r . Then c ≤ 1/t.

By [Ale94, Section 4.2] (see also [Pro10, Section 4.3]), there exists a diagram called a Sarkisov link (of type I
or type II ) as follows:

X̃
f

��

χ // X̄
f̂

��
X X̂,

where X̃ and X̄ have only Q-factorial terminal singularities, ρ(X̃) = ρ(X̄) = 2, the morphism f is a Mori
extremal divisorial contraction, the rational map χ is a sequence of log flips and f̂ is a Mori extremal
contraction (either divisorial or of fibre type).

In what follows, for a divisor D (also a linear system) on X, we denote by D̃ and D̄ the strict transforms
of D on X̃ and X̄, respectively; if f̂ is birational, then we put D̂ = f̂∗D̄ . Conversely, for a divisor D̂ (also
a linear system) on X̂, we denote by D̄ and D̃ the strict transforms of D̂ on X̄ and X̃, respectively; if f̂ is
birational and F̄ is the f̂ -exceptional divisor, then we denote by F̃ the strict transform of F̄ on X̃ and put
F = f (F̃).

Let Ẽ be the f -exceptional divisor. Set Sk B |kA| for k ≥ 1. Write

KX̃ ∼Q f ∗KX +αẼ, S̃k ∼Q f ∗Sk − βkẼ,(4.1)

where α ∈ Q>0 and βk ∈ Q≥0 for k ≥ 1. Since Cl(X) is torsion-free and −kKX ∼ qSk , the relations (4.1)
provide that for any k ≥ 1, we have

qβk − kα ∈Z.

Assume that the morphism f̂ is birational (Sarkisov link of type I). Then X̂ is a terminal Q-Fano threefold.
Set q̂B qQ(X̂) and let AX̂ be an ample Weil divisor on X̂ that generates the group Cl(X̂)/ ∼

Q
. Denote by

F̄ the f̂ -exceptional divisor. Write

F ∼ dA, Ê ∼
Q
eAX̂ , Ŝk ∼Q skAX̂ ,

where d,e, sk ∈Z≥0.
Assume that the morphism f̂ is not birational (Sarkisov link of type II). Denote by F̄ a general geometric

fibre of f̂ , which is either a non-singular rational curve or a non-singular del Pezzo surface. The image of
the restriction map Cl(X̄)→ Pic(F̄) is isomorphic to Z. Let AF̄ be an ample generator of this image. Write

−KX̄ |F̄ = −KF̄ ∼ q̂AF̄ , Ē|F̄ ∼ eAF̄ , S̄k |F̄ ∼ skAF̄ ,

where q̂, e, sk ∈Z≥0.

Proposition 4.2 (cf. [Pro10, Section 4]). The notation is as above.

(4.2.1) The integer e is positive. Moreover, if f̂ is birational, then d/e is the order of the torsion subgroup Cl(X̂)t of
Cl(X̂).

(4.2.2) Assume that f̂ is birational. Then sk = 0 if and only if dimSk = 0 and the unique element of S̄k is F̄.
Moreover, if sk > 0 and Cl(X̂) is torsion-free, then Ŝk ∼ skAX̂ and thus dim |skAX̂ | ≥ dimŜk = dimSk .

(4.2.3) If q̂ ≥ 4, then f̂ is birational.
(4.2.4) If f̂ is not birational and q̂ = 3, then F̄ � P

2 and X̂ � P
1.
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Proof. The first part of (4.2.1) follows directly from [Pro10, Claim 4.6], and the second part follows from [Pro10,
Lemma 4.13]. The assertions of (4.2.2) follows from the definition. For the assertions of (4.2.3) and (4.2.4), we
assume that f̂ is not birational. Since F̄ is either a non-singular rational curve or a non-singular del Pezzo
surface, it follows that q̂ ≤ 3, where equality holds only if F̄ � P

2. □

The following very important equality, which indicates the relation between the various invariants
introduced above, will be intensively used in Sections 5 and 6.

Lemma 4.3 (cf. [Pro22, Section 4.8]). The notation is as above. For any k ≥ 1, we have

(4.2) kq̂ = qsk + (qβk − kα)e.

For any point P ∈ X of local index rP , recall that the local Weil divisor class group Cl(X,P ) is a cyclic
group of order rP generated by −KX , by [Kaw88, Corollary 5.2]. Let tk(P ) be the local index of Sk near P .
When the context is clear, we shall omit P in the notation and abbreviate tk(P ) to tk . The following fact
allows us to determine the possible value of βk once the value of α is known (see [Kaw96, Kaw05] and
[Pro22, Lemma 2.6]).

Lemma 4.4. If P B f (Ẽ) is a closed point of X, then we have

(4.3) βk − tkα ∈Z.

Proof. This follows from the relations (4.1) and the fact that tkKX +Sk is Cartier near P . □

5. Case qQ(X) = 4

The aim of this section is to prove the following result.

Theorem 5.1. Let X be a terminal Q-Fano threefold such that qQ(X) = 4. Then we have

c1(X)3 <
121
41

c2(X)c1(X).

Assume to the contrary that there exists a terminal Q-Fano threefold X such that qQ(X) = 4 and
bX ≥ 121/41. Then Lemma 2.2 shows that the numerical type of X appears as (2.2.1). In particular, the
numerical invariants of X are as follows (cf. [BK09, № 41313]):

BX = {(7,2), (13,6)}, c1(X)3 =
1152
91

, c2(X)c1(X) =
384
91

and bX = 3.

5.1. Geometry of X

We collect some basic geometric properties of X, which will be used later in the proof of Theorem 5.1.

Lemma 5.2. Let X be a terminal Q-Fano threefold with numerical type (2.2.1) in Lemma 2.2.

(5.2.1) Every non-Gorenstein point of X is a cyclic quotient singularity.
(5.2.2) The Weil divisor class group Cl(X) is torsion-free.
(5.2.3) Let A be a Q-Cartier Weil divisor on X such that −KX ∼ 4A. Then we have

RX A3
dim |kA|

|A| |2A| |3A| |4A|

{7,13} 18
91 −1 1 3 6

(5.2.4) Every divisor contained in the linear system |2A| or |3A| is reduced and irreducible.
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Proof. The first statement follows from the form of the basket BX and [Mor85] (see [Rei87, Sections (6.1) and
(6.4)] for more details). The second statement follows from Lemma 2.2 (see also [Pro10, Proposition 2.9]).
The dimension of |kA| can be derived from the orbifold Riemann–Roch formula or [BK09, № 41313]. The
last statement follows from the facts that dim |A| = −1 and Cl(X) is torsion-free. □

We will use the Sarkisov link introduced in Section 4 to prove Theorem 5.1. This idea was initiated by
Yu. Prokhorov in [Pro10]. To be more precise, following the notation in Section 4, we consider the Sarkisov
link associated to the movable linear system M BS3 = |3A|.

Lemma 5.3. We have β3 ≥ 6α, and if f̂ is birational, then d ≥ 2.

Proof. We apply Lemma 4.1 with P being the point of local index 7 on X, where c ≤ 1/6 as S3 ∼ −6KX

near the point P . Since c = α/β3 by (4.1), the first inequality follows. For the second statement, note that
dim |A| = −1, so we have d ≥ 2 if f̂ is birational. □

The following observation can be easily derived from the definition and Lemma 5.2. It will play a key role
in the proof of Theorem 5.1.

Lemma 5.4. Any element in S̄2 (resp. S̄3) is of the form ∆̄+ aĒ, where a is a non-negative integer and ∆̄ is
the strict transform of an element ∆ in S2 (resp. S3). In particular, the divisor ∆̄ is reduced and irreducible.
Moreover, if f̂ is birational and f̂∗∆̄ = 0, then ∆̄ = F̄ and ∆ = F.

The remainder of this section is dedicated to the proof of Theorem 5.1, which is conducted on a case-by-
case basis in accordance with the type of f (Ẽ). The proof concludes by demonstrating that no instance of
f (Ẽ) can be realised.

5.2. The image f (Ẽ) is a curve or a Gorenstein point

If f (Ẽ) is either a curve or a Gorenstein point of X, then α and β3 are integers, and then it follows from
(4.2) and Lemma 5.3 that

(5.1) 3q̂ = 4s3 + (4β3 − 3α)e ≥ 4s3 +21αe.

In particular, we get q̂ ≥ 7αe ≥ 7, and therefore it follows from Proposition 4.2 that the morphism f̂ is
birational. Moreover, as dimŜ3 = 3, we get s3 > 0 by Proposition 4.2 and hence q̂ ≥ 9. By Proposition 2.3,
the group Cl(X̂) is torsion-free. Thus e = d = 2 and α = 1 by Proposition 4.2 as q̂ ≤ 19. So q̂ = 17 or
q̂ = 19 by Lemma 2.1. However, there are no integral solutions for (5.1) in these two cases, so we have a
contradiction.

5.3. The image f (Ẽ) is a point of local index 13

If f (Ẽ) is a point of local index 13, then α = 1/13 by [Kaw96]. Moreover, as A ∼ −10KX near the point
f (Ẽ), we obtain t1 = 10, t2 = 7 and t3 = 4. Then it follows from (4.3) and Lemma 5.3 that β2 = 7/13+m2
for some m2 ∈Z≥0 and β3 = 4/13+m3 for some m3 ∈Z>0. Applying (4.2) to k = 3 yields

(5.2) 3q̂ = 4s3 + (4m3 +1)e = 4(s3 +m3e) + e.

If q̂ ≥ 4, by Proposition 4.2, the morphism f̂ is birational and s3 > 0 as dimŜ3 = 3. Then we derive from
(5.2) that q̂ , 4 or 5; the possibilities for q̂ = 6 and 7 are listed below. If q̂ ≥ 8, then Cl(X̂) is torsion-free by
Proposition 2.3, so e = d ≥ 2 and dim |s3AX̂ | ≥ dimŜ3 = 3 by Proposition 4.2. Combining these facts with
(5.2) and Table 2 yields the corresponding possible values of s3 for each q̂. In summary, the possibilities for
(q̂, e, s3) are as follows:

• q̂ = 3, e = 1 and 0 ≤ s3 ≤ 1;
• q̂ = 6, e = 2 and s3 = 2;
• q̂ = 7, e = 1 and 1 ≤ s3 ≤ 4;
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• q̂ = 13, e = 3 and s3 = 6;
• q̂ = 17, e = 3 and s3 = 9.

This case will be treated on a case-by-case basis according to the value of q̂.

5.3.1. The case q̂ = 3 and e = 1. In this case, we have 0 ≤ s3 ≤ 1 and s2 = 1−m2 ≤ 1 by (4.2). Now we

divide the proof into two subcases according to the type of f̂ .
5.3.1.1. The subcase where f̂ is birational. As d = |Cl(X̂)t | ≥ 2 by Proposition 4.2, the group Cl(X) is not
torsion-free. Thus we get a contradiction by Lemma 2.4 as s3 = 1 and dimŜ3 = 3.
5.3.1.2. The subcase where f̂ is not birational. Then the general fibre F̄ of f̂ is isomorphic to P

2 and

X̂ � P
1 by Proposition 4.2. Moreover, if S̄3 is f̂ -vertical, then S̄3 consists of fibres of f̂ , which contradicts

dimS̄3 = 3 and Lemma 5.4. So we obtain s3 = 1. Consider the restriction map

S̄3 −→ S̄3|F̄ ⊂ |OP
2(1)|.

As dim |O
P

2(1)| = 2, dimS̄3 = 3 and e = s3 = 1, we get F̄ + Ē ∈ S̄3 by Lemma 5.4, so f̂ ∗|O
P

1(1)|+ Ē ∼ S̄3.
Pushing it forward to X yields f∗χ

∗f̂ ∗|O
P

1(1)| ⊂S3, which implies f̂ ∗|O
P

1(1)|+ Ē ⊂ S̄3. Then it follows
from Lemma 5.4 that the (cycle-theoretic) fibres of f̂ are reduced and irreducible.

We claim that s2 = 1. Assume to the contrary that s2 = 0. Since dimS̄2 = 1 and its general elements are
reduced and irreducible, we have F̄ ∈ S̄2. This implies that F ∈S2∩S3, which is absurd. So s2 = 1 and the
group Cl(X̄) is generated by S̄2 and F̄, where S̄2 is a general element in S̄2. In particular, as s3 = 1, there
exists an integer c such that S̄3 ∼ S̄2 + cF̄. Then pushing it forward to X shows A ∼S3 −S2 ∼ cF ∼ 3cA,
which is impossible.

5.3.2. The case q̂ = 6, e = 2 and s3 = 2. Then qW (X̂) = qQ(X̂) = 6 by Lemma 2.1, and the numerical
type of X̂ appears as № 1 in Table 2, so Cl(X̂) is torsion-free by Proposition 2.3. In particular, we have
dimS3 = dimŜ3 = dim |2AX̂ | = 3. So Ŝ3 = |2AX̂ | and thus 2G ∈ Ŝ3 for every G ∈ |AX̂ |. This contradicts
Lemma 5.4 as dim |AX̂ | = 1 and e = s3 = 2.

5.3.3. The case q̂ = 7, e = 1 and s3 ≤ 4. Since d/e = d ≥ 2 is the order of the torsion subgroup of Cl(X̂),
the numerical type of X̂ appears as either № 6 or № 7 in Table 1 by Proposition 2.3. Then one obtains a
contradiction from Table 1 as dimŜ3 = 3 and 1 ≤ s3 ≤ 4.

5.3.4. The case q̂ = 13, e = 3 and s3 = 6. In this case, the numerical type of X̂ appears as № 28 in
Table 2, and Cl(X̂) is torsion-free by Proposition 2.3. As e = 3 and dim |AX̂ | = 0, the unique element
D ∈ |AX̂ | is a prime divisor which is different from Ê. Moreover, note that we have

6 = dim |5AX̂ |+dimŜ3 ≥ dim |s3AX̂ | = dim |6AX̂ | = 4.

In particular, since both D + |5AX̂ | and Ŝ3 are sublinear systems of |6AX̂ |, there must exist an element in
Ŝ3 of the form D +G for some G ∈ |5AX̂ |. This contradicts Lemma 5.4 as e = 3.

5.3.5. The case q̂ = 17, e = 3 and s3 = 9. The numerical type of X̂ appears as № 30 in Table 2, and
Cl(X̂) is torsion-free by Proposition 2.3. As e = 3 and dim |AX̂ | = −1, the unique element D ∈ |2AX̂ |
is a prime divisor which is different from Ê. As dimŜ3 = dim |9AX̂ | = 3, we get Ŝ3 = |9AX̂ |. So the
linear system Ŝ3 contains the divisor D +G for any G ∈ |7AX̂ |. This contradicts Lemma 5.4 as e = 3 and
dim |7AX̂ | = 2.

5.4. The image f (Ẽ) is a point of local index 7

If f (Ẽ) is a point of local index 7, then α = 1/7 by [Kaw96]. Moreover, as A ∼ −2KX near the point f (Ẽ),
we obtain t1 = 2, t2 = 4 and t3 = 6. Then it follows from (4.3) that β2 = 4/7+m2 for some m2 ∈Z≥0 and
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β3 = 6/7+m3 for some m3 ∈Z≥0. Applying (4.2) to k = 3 yields

3q̂ = 4s3 + (4m3 +3)e = 4(s3 +m3e) + 3e.

As q̂ ≤ 19 by Lemma 2.1, we obtain q̂ − e = 4l for some integer 0 ≤ l ≤ 4. Moreover, if q̂ ≥ 8, then Cl(X̂)
is torsion-free by Proposition 2.3, so e = d ≥ 2 and dim |s3AX̂ | ≥ dimŜ3 = 3 by Proposition 4.2. Thus it
follows from Table 2 that the possibilities for (q̂, e, s3) are the following:

• q̂ = e, s3 = 0;
• q̂ = 4+ e, 1 ≤ e ≤ 4 and 1 ≤ s3 ≤ 3;
• q̂ = 11, e = 3 and s3 = 6;
• q̂ = 13, e = 5 and s3 = 6;
• q̂ = 17, e = 5 and s3 = 9;
• q̂ = 19, e = 3 and s3 = 12.

In the following, we consider each case in accordance with the value of q̂.

5.4.1. The case q̂ = e and s3 = 0. As dimS3 = 3 and s3 = 0, it follows from Proposition 4.2 that f̂ is not
birational and hence q̂ = e ≤ 3. Since Cl(X) is torsion-free, the group Cl(X̂) is so by [Pro13, Section 2.3]; we
denote by AX̂ its ample generator. Since S̄3 is f̂ -vertical and dimS̄3 = 3, it follows that a general member
D̄ in S̄3 is the pull-back of a divisor on X̂ as D̄ is reduced and irreducible by Lemma 5.4. Thus we have
S̄3 = f̂ ∗|cAX̂ | for some c ∈ Z>0. Then it follows from Lemma 5.4 that the elements in |cAX̂ | are reduced
and irreducible. In particular, as dim |AX̂ | ≥ 0, we obtain c = 1 and then X̂ � P

2 by [Pro13, Section 2.3]
as dim |S̄3| = 3. Note that s2 = 0 by (4.2). In particular, since dimS̄2 = 1 and the elements in S̄2 are
reduced and irreducible, applying the same argument as above yields S̄2 = f̂ ∗|AX̂ |. This is impossible as
dim |AX̂ | = 3.

5.4.2. The case q̂ = 4+ e and 1 ≤ s3 ≤ 3. In this case, Proposition 4.2 implies that the morphism f̂

is birational and thus s3 ≥ 1 as dimS3 = 3. If q̂ ≥ 8, then Cl(X̂) is torsion-free by Proposition 2.3, so
dim |s3AX̂ | ≥ dimŜ3 = 3. Then it follows from Table 2 that q̂ ≤ 8 and hence e ≤ 4. We divide the proof
into four subcases according to the value of e.
5.4.2.1. The subcase e = 4. Then q̂ = 8, s3 = 3, and the numerical type of X̂ appears as № 19 in Table 2. In
particular, we have dim |3AX̂ | = dimŜ3 = 3 and thus |3AX̂ | = Ŝ3. As e = 4 and dim |AX̂ | = 0, the unique
element D ∈ |AX̂ | is a prime divisor which is different from Ê. So we have 3D ∈ Ŝ3, which contradicts
Lemma 5.4 as e = 4.
5.4.2.2. The subcase e = 3. Then q̂ = 7 and s3 = 3. In particular, as dimŜ3 = 3, it follows from Table 1
that Cl(X̂) is torsion-free and thus dim |3AX̂ | ≥ dimŜ3 = 3. So the numerical type of X̂ appears as one
of № 7, № 8 and № 9 in Table 2. In all these three cases, we have dim |AX̂ | ≥ 0. In particular, as e = 3,
there exists a prime divisor D ∈ |AX̂ | which is different from Ê. Moreover, in all these three cases we have
dim |2AX̂ |+dimŜ3 ≥ dim |3AX̂ |. So there exists an element in Ŝ3 of the form D +G for some G ∈ |2AX̂ |,
which contradicts Lemma 5.4 as e = 3.
5.4.2.3. The subcase e = 2. Then q̂ = 6 and s3 = 1 or 3. By Proposition 2.3, the group Cl(X̂) is torsion-free
and thus dim |s3AX̂ | ≥ dimŜ3 = 3. It follows that s3 = 3 and the numerical type of X̂ appears as № 1 in
Table 2. On the other hand, we have s2 = 2 by (4.2). As dim |AX̂ | = 1, the image of the natural map

|AX̂ | × |AX̂ | −→ |2AX̂ |, (D,D ′) 7−→D +D ′

is a two-dimensional sublinear system of |2AX̂ |. In particular, since dimŜ2 = 1 and dim |2AX̂ | = 3, there
must exist an element in Ŝ2 of the form D +D ′ with D, D ′ ∈ |AX̂ |. This contradicts Lemma 5.4 as e = 2.
5.4.2.4. The subcase e = 1. Then q̂ = 5 and 1 ≤ s2 ≤ 2 by (4.2), so qW (X̂) = qQ(X̂) = 5 by Lemma 2.1.
Let AX̂ be a Weil divisor on X̂ such that −KX̂ ∼ 5AX̂ . As d ≥ 2, the group Cl(X̂) is not torsion-free by
Proposition 4.2. In particular, as dimŜ2 = 1 and 1 ≤ s2 ≤ 2, it follows from Table 1 that s2 = 2, d = 2
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and the numerical type of X̂ appears as one of № 4 and № 5 in Table 1. On the other hand, since Cl(X) is
torsion-free, we have F ∈S2. So there exists a non-negative integer a such that F̄ + aĒ ∈ S̄2. Pushing it
forward to X̂ shows that a = s2 = 2 as e = 1, i.e., 2Ê ∈ Ŝ2. This yields Ŝ2 ∼ 2Ê ∼ 2AX̂ as d = |Cl(X̂)t | = 2.
In particular, as dimŜ2 = dim |2AX̂ | = 1, we must have Ŝ2 = |2AX̂ |. On the other hand, by Table 1, we also
have dim |AX̂ | = dim |AX̂ + T | = 0. Let D and D ′ be the unique elements in |AX̂ | and |AX̂ + T |, respectively.
Then D and D ′ are distinct prime divisors. However, since 2D and 2D ′ are contained in Ŝ2, it follows from
Lemma 5.4 that we must have D =D ′ = Ê, which is impossible.

5.4.3. The case q̂ = 11, e = 3 and s3 = 6. The numerical type of X̂ appears as one of №25 and №26
in Table 2. As e = 3, the unique element D ∈ |AX̂ | is a prime divisor which is different from Ê. Moreover,
note that dim |5AX̂ |+dimŜ3 > dim |6AX̂ |, so there exists an element in Ŝ3 of the form D +G for some
G ∈ |5AX̂ |, which contradicts Lemma 5.4 as e = 3.

5.4.4. The case q̂ = 13, e = 5 and s3 = 6. The numerical type of X̂ appears as № 28 in Table 2. Then
applying (4.2) to k = 2 yields s2 = 4. Moreover, as e = 5, the unique element D ∈ |AX̂ | is a prime divisor
which is different from Ê. Since 2 = dim |3AX̂ |+dimŜ2 = dim |4AX̂ |, there exists an element in Ŝ2 of the
form D +G for some G ∈ |3AX̂ |, which contradicts Lemma 5.4 as e = 5.

5.4.5. The case q̂ = 17, e = 5 and s3 = 9. The numerical type of X̂ appears as № 30 in Table 2, and
Cl(X) is torsion-free by Proposition 2.3. Thus |9AX̂ | = Ŝ3 as dim |9AX̂ | = dimŜ3 = 3. As e = 5 and
dim |AX̂ | = −1, the unique element D ∈ |2AX̂ | is a prime divisor which is different from Ê. So Ŝ3 = |9AX̂ |
contains the divisor of the form D +G for any G ∈ |7AX̂ |. This contradicts Lemma 5.4 as e = 5 and
dim |7AX̂ | = 2.

5.4.6. The case q̂ = 19, e = 3 and s3 = 12. Then applying (4.2) to k = 2 yields s2 = 8 or s2 ≤ 5. Since
Cl(X̂) is torsion-free by Proposition 2.3, we have dim |s2AX̂ | ≥ dimŜ2 = 1 by Proposition 4.2. This implies
that s2 = 8 from Table 2. In particular, we have dim |8AX̂ | = dimŜ2 = 1 and thus |8AX̂ | = Ŝ2. As e = 3
and dim |kAX̂ | = −1 for k ≤ 2, the unique element D ∈ |4AX̂ | is a prime divisor which is different from Ê.
So 2D ∈ Ŝ2, which contradicts Lemma 5.4 as e = 3.

6. Case qQ(X) = 8

This section is devoted to proving the following result.

Theorem 6.1. Case № 22 in Table 2 does not occur for terminal Q-Fano threefolds.

Assume to the contrary that there exists a terminal Q-Fano threefold X whose numerical type appears as
№ 22 in Table 2. Then the numerical invariants of X are as follows (cf. [BK09, № 41495]):

BX = {(3,1), (5,2), (11,4)}, c1(X)3 =
2048
165

, c2(X)c1(X) =
928
165

, bX =
64
29

.

6.1. Geometry of X

We collect in the following some geometric properties of X which will be used later in the proof of
Theorem 6.1.

Lemma 6.2. Let X be a terminal Q-Fano threefold with numerical type № 22 in Table 2.

(6.2.1) Every non-Gorenstein point of X is a cyclic quotient singularity.
(6.2.2) The Weil divisor class group Cl(X) is torsion-free.
(6.2.3) Let A be a Q-Cartier Weil divisor on X such that −KX ∼ 8A. Then we have
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RX A3
dim |kA|

|A| |2A| |3A| |4A| |5A| |6A|

{3,5,11} 4
165 −1 0 0 1 2 3

(6.2.4) Let S2 be the unique prime divisor in |2A|. Then an element ∆ ∈ |4A| is either equal to 2S2 or a prime
divisor.

Proof. The first statement follows from the form of BX and [Mor85]. The second and third statements follow
directly from Proposition 2.3 and Table 2. The last statement follows from the facts that dim |A| = −1,
dim |2A| = 0 and Cl(X) is torsion-free. □

We will always denote by Si the unique prime divisor in |iA| for i = 2 and 3. Following the notation
in Section 4, we consider the Sarkisov link associated to the movable linear system M BS4 = |4A|; the
arguments are very similar to the ones used in Section 5.

Lemma 6.3. We have β4 ≥ 6α, and if f̂ is birational, then d ≥ 2.

Proof. We apply Lemma 4.1 with P being the point of local index 11 on X, where c ≤ 1/6 as M = S4 ∼ −6KX

near the point P . Then we obtain the first inequality from (4.1). For the second statement, note that
dim |A| = −1, so d ≥ 2 if f̂ is birational. □

The following simple but useful observation follows from item (6.2.4) of Lemma 6.2.

Lemma 6.4. Any element in S̄4 is of the form ∆̄ + aĒ, where a is a non-negative integer and ∆̄ is the strict
transform of an element ∆ in S4. In particular, if ∆̄ , 2S̄2, then ∆̄ is a prime divisor, where S̄2 is the strict
transform of S2.

As with the previous section, the remainder of this section is dedicated to the proof of Theorem 6.1 on a
case-by-case basis according to the type of f (Ẽ).

6.2. The image f (Ẽ) is a curve or a Gorenstein point

In this case, both α and β4 are integers, and it follows from (4.2) and Lemma 6.3 that

(6.1) 4q̂ = 8s4 + (8β4 − 4α)e ≥ 8s4 +44αe ≥ 44.

So we have q̂ ≥ 11. In particular, the morphism f̂ is birational by Proposition 4.2, and Cl(X̂) is torsion-free
by Proposition 2.3. So e = d ≥ 2 by Proposition 4.2, and (6.1) implies q̂ ≥ 22, which contradicts Lemma 2.1.

6.3. The image f (Ẽ) is a point of local index 3

In this case, we have α = 1/3 by [Kaw96]. Moreover, as A ∼ −2KX near the point f (Ẽ), we obtain t4 = 2.
In particular, by (4.3) and Lemma 6.3, there exists an integer m4 ≥ 2 such that β4 = 2/3+m4. Then applying
(4.2) to k = 4 yields

(6.2) q̂ = 2s4 + (2m4 +1)e.

As e ≥ 1 and m4 ≥ 2, we have q̂ ≥ 5. In particular, the morphism f̂ is birational, and thus s4 ≥ 1 by
Proposition 4.2. Therefore, we have q̂ ≥ 7.

If e = 1, then the group Cl(X̂) is not torsion-free by Proposition 4.2 as d ≥ 2, and then it follows from
Proposition 2.3 that q̂ = 7. Then s4 = 1 by (6.2), which contradicts Table 1 as dimŜ4 = 1.

If e ≥ 2, then q̂ ≥ 12 and the group Cl(X̂) is torsion-free by Proposition 2.3. Thus we have the inequality
dim |s4AX̂ | ≥ dimŜ4 = 1. Then one can easily derive from Table 2 that there is no solution for (6.2).
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6.4. The image f (Ẽ) is a point of local index 5

In this case, we have α = 1/5 by [Kaw96]. Moreover, as A ∼ −2KX near the point f (Ẽ), we obtain
t2 = 4, t3 = 1 and t4 = 3. Then it follows from (4.3) and Lemma 6.3 that β2 = 4/5+m2 for some m2 ∈Z≥0,
β3 = 1/5 +m3 for some m3 ∈ Z≥0 and β4 = 3/5 +m4 for some m4 ∈ Z>0. Now applying (4.2) to k = 4
yields

(6.3) q̂ = 2s4 + (2m4 +1)e.

As e ≥ 1 and m4 ≥ 1, we have q̂ ≥ 3. On the other hand, if q̂ ≥ 4, then f̂ is birational and s4 ≥ 1
by Proposition 4.2. So q̂ , 4 or 6. If q̂ ≥ 8, then Cl(X̂) is torsion-free by Proposition 2.3, so we have
dim |s4AX̂ | ≥ dimŜ4 = 1 and e = d ≥ 2 by Proposition 4.2. Then one can derive from Table 2 that
there is no solution for (6.3) in the case q̂ ≥ 8. In conclusion, the possibilities for (q̂, e, s4) are the
following:

• q̂ = 3, e = 1 and s4 = 0;
• q̂ = 5, e = 1 and s4 = 1;
• q̂ = 7, e = 1 and 1 ≤ s4 ≤ 2.

Moreover, the last two cases can be easily excluded by applying (4.2) to k = 3. Thus it remains to
consider the first case. In this case, by Proposition 4.2, the morphism f̂ is not birational, and we have
X̂ � P

1. In particular, S̄4 is f̂ -vertical as s4 = 0 and hence S̄4 = f̂ ∗|O
P

1(1)| as dimS̄4 = 1. Thanks
to Lemma 6.4, the divisor 2S̄2 ∈ S̄4 is the only (cycle-theoretic) fibre of f̂ which is not a prime divisor
on X̄. Then applying (4.2) to k = 3 yields s3 +m3 = 1. If s3 = 0, then S̄3 is f̂ -vertical. In particular, there
exists a positive integer a such that aS̄3 ∈ S̄4. Pushing it forward to X yields aS3 ∈ S4, which gives a
contradiction. So we have s3 = e = 1 and m3 = 0. Notice that Cl(X̄) is generated by S̄2 and Ē, so there
exists an integer c such that S̄3 − Ē ∼ cS̄2, which implies that S3 ∼ cS2 by pushing forward to X. This is
absurd.

6.5. The image f (Ẽ) is a point of local index 11

Then we have α = 1/11 by [Kaw96]. Moreover, as A ∼ −7KX near the point f (Ẽ), we obtain t2 = 3,
t3 = 10, t4 = 6, t5 = 2 and t6 = 9. In particular, by (4.3), we have βk = tk/11 +mk for some mk ∈ Z≥0
(2 ≤ k ≤ 6). Then applying (4.2) to k = 3 yields

(6.4) 3q̂ = 8s3 + (8m3 +7)e.

Then one can derive that 3q̂ ≥ 14 and hence q̂ ≥ 5. In particular, the morphism f̂ is birational by
Proposition 4.2. Moreover, if q̂ ≥ 8, then Cl(X̂) is torsion-free by Proposition 2.3, so e = d ≥ 2 and
dim |s3AX̂ | ≥ 0 if s3 , 0 by Proposition 4.2. Combining these facts with (6.4) and Table 2 yields the following
possibilities for (q̂, e):

• q̂ = 5, e = 1;
• q̂ = 7, e = 3;
• q̂ = 17, e = 5.

In the following, each case will be considered individually. Moreover, we also need the following two
additional equalities, which are obtained by applying (4.2) to k = 2 and k = 4, respectively:

q̂ = 4s2 + (4m2 +1)e,(6.5)

q̂ = 2s4 + (2m4 +1)e.(6.6)

6.5.1. The case q̂ = 5 and e = 1. As d ≥ 2, the group Cl(X̂) is not torsion-free by Proposition 4.2.
Moreover, note that 1 ≤ s4 ≤ 2 by (6.6) and dimŜ4 = 1, so it follows from (4.2.2) and Table 1 that s4 = 2
and the numerical type of X̂ appears as one of № 4 and № 5 in Table 1. In particular, we have d = 2 and
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S2 = F. This implies s3 =m2 = 1 and m3 = s2 = 0 by Proposition 4.2, (6.4) and (6.5). As m4 = 0 by (6.6), we
obtain β4 = 6/11; as m2 = 1, we obtain β2 = 14/11. Since 2S2 ∈S4, we have

2F̄ +2Ē = 2S̄2 + (2β2 − β4)Ē ∈ S̄4.

Pushing it forward to X̂ yields 2Ê ∈ Ŝ4. This implies 2Ŝ3 ∼ 2AX̂ ∼ 2Ê ∈ Ŝ4 as Ŝ3 ∼Q AX̂ ∼Q Ê and
d = |Cl(X̂)t | = 2. Then we get |2AX̂ | = Ŝ4 as dim |2AX̂ | = dimŜ4 = 1, and hence 2Ŝ3 ∈ Ŝ4, which
contradicts Lemma 6.4 as Ŝ3 , Ê.

6.5.2. The case q̂ = 7, e = 3. In this case, we have s4 = 2 by (6.6). We also have s3 = m3 = 0 by (6.4)
and S3 = F by Proposition 4.2. In particular, we get d = e = 3. Thus s2 > 0 and Cl(X̂) is torsion-free
by Proposition 4.2. Then we obtain s2 = 1 by (6.5). As β6 = 9/11 +m6, applying (4.2) to k = 6 yields
3m6 + s6 = 3. As dimS6 = 3 and f̂ is birational, it follows from Proposition 4.2 that s6 > 0. Therefore,
s6 = 3 and m6 = 0. In particular, since Cl(X̂) is torsion-free, we get dim |3AX̂ | ≥ dimŜ6 = 3, and hence
the numerical type of X̂ appears as one of № 7–9 in Table 2. In particular, we have dim | −KX̂ | ≥ 15, and it
follows from [Pro16, Theorem 1.1] that X̂ is isomorphic to one of the following:

P(12,2,3), X6 ⊂ P(1,22,3,5), X6 ⊂ P(1,2,32,4).

Now we divide the proof into three subcases according to the type of X̂.
6.5.2.1. The subcase where X̂ � P(12,2,3). As dim |AX̂ | = 1 and e = 3, there exists a prime divisor D̂ ∈ |AX̂ |
which is different from Ŝ2 and Ê. Note that we have

3 = dim |2AX̂ | = dim |3AX̂ | −dimŜ6.

In particular, since both D̂ + |2AX̂ | and Ŝ6 are sublinear systems of |3AX̂ |, there must exist an element
∆̂ ∈ |2AX̂ | such that D̂ + ∆̂ ∈ Ŝ6. Then there exists a unique rational number γ such that f̂ ∗(D̂ + ∆̂)−γF̄ is
an effective integral divisor contained in S̄6. Denote by D and ∆ the strict transforms of D̂ and ∆̂ on X,
respectively. Then D is different from S2 and S3(= F). In particular, we have D ∼ aA for some integer
a ≥ 4 because Cl(X) is torsion-free. Pushing the integral divisor f̂ ∗(D̂ + ∆̂)−γF̄ forward to X shows that
D +∆+ δF ∈S6 for some δ ∈Z≥0. As Ê , ∆̂, we have ∆ , 0. However, as d = 3 and a ≥ 4, we must have
δ = 0, ∆ = S2 and D ∈ |4A|. So ∆̂ = Ŝ2 ∈ |2AX̂ |, which is impossible as s2 = 1.
6.5.2.2. The subcase where X̂ � X6 ⊂ P(1,22,3,5). In this case, we have

dim |3AX̂ | = dimS6 = 3 and 2 = dim |2AX̂ | > dimS4 = 1.

So Ŝ6 = |3AX̂ |. Let N̄ be the sublinear system of S̄6 such that f̂∗N̄ coincides with Ŝ2 + |2AX̂ | as sublinear
systems of |3AX̂ | = Ŝ6. Denote by N the push-forward of N̄ to X. Since S2 is contained in the fixed
part of N , we get N ′ BN − S2 ⊂ S4, which is impossible as dimN ′ = dimN = dim |2AX̂ | = 2 and
dimS4 = 1.
6.5.2.3. The subcase where X̂ � X6 ⊂ P(1,2,32,4). Recall from [Pro22, Section 4.9] that we can write

KX̄ ∼Q f̂ ∗KX̂ + cF̄, S̄k ∼Q f̄ ∗Ŝk −γkF̄, Ē ∼
Q
f̂ ∗Ê − δF̄

with c ∈Q>0 and γk ,δ ∈Q≥0. For any k ≥ 1 and k , 3, it follows from [Pro22, (4.5)] that we have

(6.7) −8sk +7k = 3(csk − 7γk).

Then applying (6.7) to k = 2, 4 and 6 yields

γ2 =
c − 2
7

, γ4 = 2γ2, γ6 = 3γ2.

In particular, we get c ≥ 2, and thus f̂ (F̄) must be a point as c = 1 if f̂ (F̄) is a curve. If c > 2, then γ4 > 0
and γ6 > 0. In particular, as |2AX̂ | = Ŝ4 and |3AX̂ | = Ŝ6, the point f̂ (F̄) is contained in the base loci of
|2AX̂ | and |3AX̂ |. So we obtain

f̂ (F̄) = [0 : 0 : 0 : 0 : 1] ∈ X̂ = X6 ⊂ P(1,2,32,4).
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Therefore, f̂ (F̄) is a point of local index four, and thus c = 1/4 by [Pro16, Remark 5.1], which gives a
contradiction. So we have c = 2 and then γ4 = 0. Since |2AX̂ | = Ŝ4 is a pencil, there exists an element
D̂ ∈ Ŝ4 containing f̂ (F̄). In particular, as γ4 = 0, there exists a positive integer a such that

f̂ ∗D̂ = D̄ + aF̄ ∈ S̄4 ∼Q f̂ ∗Ŝ4 = f̂ ∗|2AX̂ |,

where D̄ is the strict transform of D̂ . This contradicts Lemma 6.4 as e = d = 3.

6.5.3. The case q̂ = 17, e = 5. In this case, we have s4 = 6 and dim |6AX̂ | = dimŜ4 = 1 by (6.6) and
Table 2. So Cl(X) is torsion-free by Proposition 2.3, and so |6AX̂ | = Ŝ4. Let D be the unique element in
|2AX̂ |. Then D is a prime divisor and 3D ∈ Ŝ4. This contradicts Lemma 6.4 as e = 5.

Appendix. Database for Q-Fano threefolds with large qQ

A.1. Data for qQ(X) ≥ 6

We collect in Table 2 below the possible numerical invariants for terminal Fano threefold with qQ(X) ≥ 6
and bX < 3. It can be obtained by using the same computer program as that in the proof of Lemma 2.2
or the Grdb [BK09]. We denote by A a Weil divisor such that −KX ∼ qQ(X)A. Moreover, we remark that
the assumption bX < 3 holds automatically if X is a terminal Q-Fano threefold with qQ(X) ≥ 6 by [LL25,
Theorem 4.4].

Assume in addition that X is a terminal Q-Fano threefold. Then we use the symbol “+” as a superscript
of its numbering № if it can be geometrically realised by appropriate examples, “+!” if it is completely
described, “−” if it cannot occur and “?” if it is unknown (see [BS07a, Pro10, Pro13, Pro16, Pro25] for the
details). The symbol “†” is used as a subscript in the case where Cl(X) is possibly not torsion-free (see
Proposition 2.3).

Table 2. Data for q = qW (X) = qQ(X) ≥ 6

№ q RX c31 c2c1 bX ≈
dim |kA|

|A| |2A| |3A| |4A| |5A| |6A| |7A| |8A| |9A|

1+! 6 {5} 216
5

96
5 2.25 1 3 6 10 16 23 32 43 56

2? 6 {5,7} 648
35

432
35 1.5 0 1 2 4 7 10 14 18 24

3? 6 {5,17} 432
85

192
85 2.25 0 0 0 0 1 2 3 4 5

4? 6 {5,11} 216
55

456
55 0.4736 0 0 0 0 1 2 3 4 5

5? 6 {5,72} 432
35

192
35 2.25 −1 0 1 2 4 6 9 11 15

6? 6 {7,11} 432
77

480
77 0.9 −1 0 0 1 1 3 4 5 7

7+! 7 {2,3} 343
6

119
6 2.8823 1 3 6 10 15 22 30 40 52

8+! 7 {23,5} 343
10

147
10 2.3333 0 2 3 6 9 13 18 24 31

9+! 7 {2,32,4} 343
12

161
12 2.1304 0 1 3 5 7 11 15 20 26

10+ 7 {22,3,5} 343
15

203
15 1.6896 0 1 2 4 6 9 12 16 21
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11? 7 {3,6,9} 343
18

119
18 2.8823 0 0 1 2 4 7 10 13 17

12?† 7 {2,6,10} 343
30

203
30 1.6896 0 0 0 1 2 4 6 8 10

13? 7 {2,3,13} 343
78

539
78 0.6363 0 0 0 0 0 1 2 3 4

14?† 7 {22,3,4,8} 343
24

161
24 2.1304 −1 0 1 2 3 5 7 10 12

15? 7 {22,3,11} 343
33

245
33 1.4 −1 0 1 1 2 4 5 7 9

16+ 7 {23,3,4,5} 343
60

497
60 0.6901 −1 0 0 1 1 2 3 4 5

17? 7 {23,5,8} 343
40

273
40 1.2564 −1 0 0 1 2 3 4 6 7

18? 7 {3,8,9} 343
72

329
72 1.0425 −1 −1 0 0 1 1 2 3 4

19+! 8 {32,5} 512
15

208
15 2.4615 0 1 3 4 7 10 13 18 23

20+! 8 {3,7} 512
21

304
21 1.6842 0 1 2 3 5 7 10 13 17

21+ 8 {5,7} 512
35

432
35 1.1851 0 0 1 2 3 4 6 8 10

22− 8 {3,5,11} 2048
165

928
165 2.2068 −1 0 0 1 2 3 4 6 8

23+! 9 {2,4,5} 729
20

279
20 2.6129 0 1 2 4 6 8 11 15 19

24+ 9 {23,5,7} 729
70

549
70 1.3278 −1 0 0 1 1 2 3 4 5

25+! 11 {2,3,5} 1331
30

451
30 2.9512 0 1 2 3 5 7 9 12 15

26+ 11 {2,5,7} 1331
70

759
70 1.7536 0 0 0 1 2 3 4 5 6

27+ 11 {22,3,4,7} 1331
84

649
84 2.0508 −1 0 0 1 1 2 3 4 5

28+! 13 {3,4,5} 2197
60

767
60 2.8644 0 0 1 2 3 4 5 7 9

29+! 13 {2,32,5,7} 2197
210

1157
210 1.8988 −1 −1 0 0 0 1 1 1 2

30+! 17 {2,3,5,7} 4913
210

1717
210 2.8613 −1 0 0 0 1 1 2 2 3

31+! 19 {3,4,5,7} 6859
420

2489
420 2.7557 −1 −1 0 0 0 0 1 1 1

A.2. Data for qW (X) , qQ(X) ≥ 3

We collect in Table 3 below the possible numerical invariants for terminal Q-Fano threefolds with
qW (X) , qQ(X) ≥ 3, which is obtained in [Pro24, Proposition 3.2].

Table 3. Data for qW (X) , qQ(X) ≥ 3

№ qQ RX c31 c2c1 bX ≈ [BK09]

1 3 {34,6} 27
2

15
2 1.8 № 30381

2 3 {34,5,6} 27
10

27
10 1 № 9014
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3 3 {2,32,12} 27
4

21
4 1.2857 № 19801

4 4 {25,6} 64
3

32
3 2 № 35882

5 4 {25,5,6} 128
15

88
15 1.4545 № 23440

6 4 {25,6,7} 64
21

80
21 0.8 № 10111

7 4 {23,10} 128
5

48
5 2.6666 № 37308

8 4 {23,3,10} 64
15

104
15 0.6153 № 14290

9 4 {23,5,10} 64
5

24
5 2.6666 № 29220

10 4 {23,7,10} 256
35

96
35 2.6666 № 20313
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