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Terminalizations of quotients of compact hyperkähler
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Abstract. Terminalizations of symplectic quotients are sources of new deformation types of
irreducible symplectic varieties. We classify all terminalizations of quotients of Hilbert schemes
of K3 surfaces or of generalized Kummer varieties, by finite groups of symplectic automorphisms
induced from the underlying K3 or abelian surface. We determine their second Betti number and the
fundamental group of their regular locus. In the Kummer case, we prove that the terminalizations
have quotient singularities and determine the singularities of their universal quasi-étale cover. In
particular, we obtain at least eight new deformation types of irreducible symplectic varieties of
dimension 4. Finally, we compare our deformation types with those in papers by Fu–Menet and by
Menet. The smooth terminalizations are only three and of K3[n] type, and surprisingly they all
appeared in different places in the literature.
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1. Introduction

1.1. Irreducible symplectic varieties

Irreducible symplectic varieties play a key role in the classification of varieties with Kodaira dimension
zero. In the last decades, fundamental results about their birational geometry, algebraic cycles and moduli
theory have been proved; see for instance https://www.erc-hyperk.org/papers for a list of the latest
advances in the field. The importance of irreducible symplectic varieties rests on the celebrated Beauville–
Bogomolov decomposition, proved in increasing degree of generality in [Bea83, GKKP11, DG18, Dru18,
Gue16, GGK19, HP19, Cam21, BGL22]: Any compact Kähler space with numerically trivial canonical class
and klt singularities admits a quasi-étale cover(1) which can be written as the product of complex tori, strict
Calabi–Yau varieties or irreducible symplectic varieties.

It is expected that the number of deformation types of irreducible symplectic varieties is finite in each
dimension; see Remark 3.13. Therefore, it is natural to ask whether it is possible to even classify irreducible
symplectic varieties, at least in low dimension. Despite active research in the field, irreducible symplectic
varieties (especially smooth ones) are notoriously difficult to construct. At the moment, in the smooth case,
there are in each dimension at most three known deformation types of irreducible symplectic manifolds, see
[Bea83, O’G03, O’G99], namely those of
• Hilbert schemes S[n] of n points on a K3 surface S ,
• generalized Kummer varieties Kn(A) associated to an abelian surface A,

(1)A quasi-étale cover is a finite morphism étale in codimension 1.

https://www.erc-hyperk.org/papers
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• two sporadic examples built by O’Grady in dimensions 6 and 10.
Dropping the smoothness assumption, we can generate more examples. For instance, there are, in [Men22]
alone, at least 29 distinct deformation types of singular 4-dimensional irreducible symplectic orbifolds. The
implicit hope is that while studying singular symplectic varieties, one may find some of them admitting a
symplectic resolution, so ideally new smooth examples. Historically this is indeed how the O’Grady examples
in dimensions 6 and 10 were discovered.

All known deformation types of irreducible symplectic varieties arise in the following ways:
• moduli spaces of semistable sheaves on K3 or abelian surfaces [PR23],
• compactifications of Lagrangian fibrations, see [MT07, ASF15, Mat16, SS22, BCG+24, LLX24],
• terminalizations p : Y → X/G of symplectic quotients of a symplectic variety X by a finite group G,

see [Fuj83, FM21, Men22],
X

Y X/G.

q

p

See also the survey [Per20].
The purpose of this paper is to study systematically terminalizations of quotients of known irreducible

symplectic manifolds. In particular, we complete part of the classification program designed by Menet in
[Men22, Section 1.3].

1.2. Criteria for an efficient classification of terminalizations

For a sensible and efficient description of the terminalizations above, some reductions and assumptions
are in order. We first propose to restrict to the case of

projective Q-factorial terminalizations Y of symplectic quotients X/G

with simply connected regular locus Y reg.(2)

Although the combination of quotients and birational modifications of X/G is a source of many more
irreducible symplectic varieties, they should be considered redundant as we explain in Section 4. Concretely,
the reduction above requires that the candidate G-actions satisfy the following conditions; see Section 3.1,
Section 3.2 and Proposition 8.1 for the equivalence.

Assumption 1.1. The following equivalent conditions hold:
(1) X/G has strictly canonical singularities.
(2) The singular locus of X/G has codimension 2.
(3) An element of G fixes a codimension 2 subvariety in X.(3)

Assumption 1.2. The finite group G acts on X in such a way that the automorphisms whose fixed locus
in X has codimension two generate the entire group G.

In this paper, we study the case of X being a known irreducible symplectic manifold. In view of
Assumption 1.1, we can rule out the case of manifolds of O’Grady type as explained in Remark 3.19. Without
loss of generality, we can then restrict to the case of Hilbert schemes or generalized Kummer varieties.

Finite groups of symplectic automorphisms of them have been extensively studied in the literature; see
Remark 3.19. However, the lattice-theoretic information of these classifications seems insufficient to prescribe

(2)Some authors call irreducible symplectic varieties with quotient singularities and simply connected regular locus irreducible
orbifolds. We avoid this convention as it competes with the now well-established definition of irreducible symplectic varieties and it
may cause confusion: An irreducible symplectic orbifold whose regular locus has nontrivial fundamental group would not be an
irreducible orbifold!

(3)If X has Q-factorial singularities, Assumption 1.1 is equivalent to the following condition:
(4) The Q-factorial terminalization of X/G is a nontrivial morphism.
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the geometry and the intersection theory of the fixed loci, and ultimately the geometry and singularities
of Y . In order to maintain control over the geometry of the fixed loci, in this paper we assume the following.

Assumption 1.3. The finite group G acts on S[n] or Kn(A) via symplectic automorphisms induced by
automorphisms of the underlying K3 or abelian surface S or A, respectively.

While Assumptions 1.1 and 1.2 are necessary to obtain an efficient classification (and should be required
even in future works on the subject), Assumption 1.3 should be considered primarily as a technical requirement.
Indeed, not all symplectic automorphisms with fixed loci of codimension 2 (so satisfying Assumption 1.1)
are induced. Consider for instance the example of a non-induced automorphism of order 3 on a variety of
K3[2] type in [Nam01a, Example 17(iv)]; cf. also [Kaw09, Section 3].

There are certainly other classes of automorphisms whose fixed loci may be controlled effectively. For
example, to also keep into account the Namikawa–Kawatani automorphism above, it would be interesting
to also classify quotients of Fano varieties of lines on cubic fourfolds induced by automorphisms of the
underlying cubic fourfold, or automorphisms of EPW sextics, or the more challenging automorphisms of
moduli spaces of semistable sheaves induced by automorphisms of the underlying surface. We plan to tackle
some of these other cases in the near future and include them in the classification program of [Men22,
Section 1.3].

1.3. Classification results

We first show that the geometric Assumptions 1.1 and 1.3 impose group-theoretic constraints on G and on
the dimension of X.

Theorem 1.4. Let G be a finite group of induced symplectic automorphisms acting on X ≃ S[m] or Kn(A). Then
X/G has strictly canonical singularities if and only if one of the following holds:
• m = 2 or n = 2, and G contains an involution.
• n = 2, and G contains a special type of automorphisms of order 3 as in Lemma 5.6 (2).
• n = 3, and G contains a special type of involutions as in Lemma 5.6 (1).

In particular, X is isomorphic to S[2], K2(A) or K3(A).

Proof. This follows from Lemmas 5.4 and 5.6. □

Theorem 1.5 (cf. Corollary 5.9). Away from the dissident locus (see Definition 3.6 ), a terminalization of X/G
as in Theorem 1.4 is isomorphic to the blowup of the reduced singular locus.

It is open whether Theorem 1.5 holds unconditionally without Assumption 1.3.

Theorem 1.6 (Second and third Betti numbers, cf. Proposition 6.1, Remark 10.5 and Proposition 7.1). Let G
be a finite group of induced symplectic automorphisms of X = S[n] or Kn(A). Let q : X→ X/G be the quotient
map, p : Y → X/G be a terminalization of X/G, and Σ be the singular locus of X/G. Denote by
• Fg ⊂ X the (unique) component of the fixed locus of g ∈ G of codimension 2, if any,
• L a lattice isomorphic to H2(X,Z),
• N2 the number of components q(Fg ) in Σ with ord(g) = 2,
• N3 the number of components q(Fg ) in Σ with ord(g) = 3.

Then the following topological identities hold:

b2(Y ) = rk
(
LG

)
+N2 +2N3 − ϵ,

IH3(Y ,Q) ≃H3(X,Q)G,

where IH ∗(Y ,Q) stands for the intersection cohomology of Y with rational coefficients, and ϵ equals 1 if
X = K2(A) and G◦ ≃ BD12 (cf. Section 2 ), or 0 otherwise.
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Theorem 1.7 (cf. Tables 4, 7 and 8). For any action of a finite group of symplectic automorphisms of X ≃
S[2],K2(A) or K3(A) induced by the underlying K3 or abelian surface, the second Betti number and fundamental
group of the regular locus of a projective terminalization Y of the quotient X/G are listed in Tables 4, 7 and 8.

If X ≃ S[2], the topological invariants of Y depend only on the abstract isomorphism type of G, while in
the Kummer case, they rely on the actual action of the group G and neither on the abstract isomorphism
type nor on the induced action in cohomology; see Example 10.2. In any case, we find a group-theoretic
description of these topological invariants depending on the embedding of G in the automorphism group of
the underlying surface; see Proposition 6.4 and Corollary 8.4.

Theorem 1.8 (cf. Theorem 9.5). Let G be a finite group of induced symplectic automorphisms acting on S[2]

and Y a projective terminalization of S[2]/G with simply connected regular locus. There are at least five new
deformation classes of such irreducible symplectic varieties Y . In particular, they are not deformation equivalent to
any terminalization of quotients of Kummer fourfolds by groups of induced symplectic automorphisms, or a Fujiki
fourfolds appearing in [Men22, Theorem 1.11] (cf. Definition 12.2 ).

Theorem 1.9 (cf. Table 9). Let G be a finite group of induced symplectic automorphisms acting on K2(A) and Y
a projective terminalization of K2(A)/G with simply connected regular locus. The Betti numbers, Chern classes
and singularities of Y are listed in Table 9.
In particular, there exist at least three new deformation classes of irreducible symplectic orbifolds of dimension 4.

All other terminalizations are deformation equivalent to Fujiki varieties, with the exception of G = C2 (called a
Nikulin orbifold ) and possibly G = BT24.

Theorem 1.10 (cf. Table 10 and Lemma 12.9). Let G be a finite group of induced symplectic automorphisms
acting on K3(A) and Y a projective terminalization of K3(A)/G with simply connected regular locus. The second
Betti number and the singularities of Y are listed in Table 10. In particular, Y is deformation equivalent to one of
the Fujiki sixfolds appearing in [Men22, Section 6].

Corollary 1.11 (cf. Corollary 10.8). Any projective terminalization of a quotient of K2(A) or K3(A) by a finite
group of induced symplectic automorphisms has quotient singularities.

If instead X ≃ S[2], the configurations of the singularities and topological invariants have already been
studied in [Men22] for so-called admissible symplectic groups. We have been informed that Menet is working
on non-admissible group actions.

It is natural to ask whether some of the previous terminalizations are smooth. We show that this happens
only in three cases, and quite surprisingly they already appeared in the literature, scattered over three
different places.

Theorem 1.12 (Smooth terminalizations). Let G be a nontrivial finite group of induced symplectic automorphisms
of X = S[n] or Kn(A). The quotient X/G admits a smooth terminalization if and only if

(1) X = S[2] and G ≃ C4
2 , see [Fuj83, Proposition 14.5],

(2) X = K2(A) and G ≃ C3
3 acting nontrivially on H2(A,Z), see [Kaw09, Theorem 4.2],

(3) X = K3(A) and G ≃ C5
2 , see [Flo24, Theorem 1.1].

All three terminalizations are birational to an irreducible symplectic manifold of K3[n] type.

Proof. This follows by direct inspection of our tables; see Proposition 9.1, Table 9 and Proposition 10.7. See
also Remark 10.3. □

1.4. Second Betti numbers

The study of terminalizations of quotients of symplectic manifolds goes back to the work of Fujiki. Nowa-
days, Fujiki varieties are terminalizations of certain quotients of squares of K3 surfaces; see Definition 12.2.
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Their classification was initiated by Fujiki in [Fuj83] and recently completed in [Men22]. Terminalizations of
cyclic quotients of K2(A) and S[2] have also been studied by Fu and Menet in [FM21]. There, their interest
was not to provide an exhaustive classification of all possible terminalizations arising, but rather to realize
examples of irreducible symplectic fourfolds with different second Betti numbers.

In the following table, we compare the second Betti numbers of irreducible symplectic fourfolds constructed
in [FM21], [Men22] and in the present paper.

b2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
[FM21] ◦ ◦ ◦ • • • ◦ • • •

[Men22] • • • • • • • • • •
Present paper • • • • • • • • •

Table 1. The first row lists all possible second Betti numbers of irreducible symplectic fourfolds. A
circle in the table corresponds to known examples of such fourfolds: The column gives their second
Betti number, and the row indicates a reference in the literature where the examples appear. Black
circles correspond to examples with simply connected regular locus. White circles mean that the
regular locus of all examples with a fixed Betti number (column) in a given reference (row) is not
simply connected.

Observing the table, it is natural to ask the following:
(1) Is there an irreducible symplectic variety Y with b2(Y ) = 3 and π1(Y reg) = 1? A nontrivial terminal-

ization of a quotient of a symplectic variety will always have at least b2 ≥ 4. In fact, the example of
[FM21] with b2 = 3 is a quotient of a variety of K3[2] type by an automorphism of order 11, but its
regular locus is not simply connected.

(2) Is there an irreducible symplectic variety Y with b2(Y ) = 4 and non-quotient singularities? In [Men22],
Menet exhibits some Fujiki orbifolds of dimension 4 with the smallest Betti number possible, namely
b2 = 4. This Betti number cannot be realized by terminalizing the quotient of K2(A) or S[2] by
induced symplectic automorphisms (see Tables 4 and 7), while examples in dimension 6 appear
in Table 8. It would be interesting to find an example with (Q-factorial terminal) non-quotient
singularities since at the moment the global Torelli theorem is not known in this case; see [BL22,
Theorem 1.1] and [Men20].

(3) Are there examples of irreducible symplectic fourfolds, possibly with simply connected regular locus, with
b2 = 9,12,13,15 or 16 < b2 < 23.

(4) Is there a conceptual explanation for the gap 16 < b2 < 23? Note that the only examples with b2 = 23
and b2 = 16 are, respectively, S[2] and a Nikulin orbifold, i.e., a terminalization of a quotient of S[2]

by an involution. Further, a 4-dimensional irreducible symplectic orbifold with b2 = 23 is necessarily
smooth by [FM21, Theorem 1.3].

Terminalizations of sixfolds are less studied in the literature. In Table 2, we summarize the second
Betti numbers of irreducible symplectic sixfolds constructed in this paper as terminalizations of quotients
of K3(A).

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
◦ ◦ ◦ ◦ • • • • •

Table 2. Second Betti numbers of terminalizations of quotients of K3(A), in the same notation as in
Table 1.
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1.5. General results on terminalizations

In the perspective of producing examples of irreducible symplectic varieties, we prove new results about
terminalizations of symplectic varieties of independent interest.

Proposition 1.13 (Terminalization of symplectic varieties, cf. Proposition 3.7). Let f : Y → X be a proper
birational morphism onto a symplectic variety X. Let X◦ be the complement of the dissident locus (see Definition 3.6 )
and f ◦ : Y ◦→ X◦ be the unique symplectic resolution of X◦.
Then f is a terminalization of X if and only if f is a compactification of f ◦ : Y ◦ → X◦ and we have

codim(Y \Y ◦) ≥ 2.

Proposition 1.14 (Terminalization of symplectic varieties with only quotient singularities, cf. Corollary 3.11).
Let f : Y → X be a projective Q-factorial terminalization of a complex symplectic variety X with only quotient
singularities. Suppose that the divisor E|f −1(U ) is irreducible for any prime exceptional divisor E ⊂ Y and for
any connected open set U ⊆ X in the Euclidean topology. Assume further that U is a connected Euclidean
neighborhood of some x ∈ X, and let T →U be a projective terminalization of U . Then, up to shrinking U to a
smaller neighborhood of x, YU B f −1(U ) admits a locally trivial deformation to T . Furthermore, YU and T are
locally analytically Q-factorial over U (see Definition 3.8 ), and they have the same singularities (in the sense of
Proposition 3.10 ).

Remark. A deformation π : X → S is called locally trivial if for any x ∈ X , there exist analytic neighborhoods
U ⊂ X of x and S0 ⊂ S of π(x) such that U ≃ S0×U , where U B π−1(π(x))∩U ; see e.g. [Ser06, Section 1.2.1]
or [BL22, Definition 4.1].

Proposition 1.15 (Fundamental group of terminalizations, cf. Proposition 8.1). Let X be a simply connected
smooth symplectic variety endowed with an action of a finite groupG of symplectic automorphisms. Let p : Y → X/G
be a terminalization of the quotient. The fundamental group of the regular locus of Y is

π1(Y
reg) ≃ G/N,

where N ◁G is the normal subgroup generated by elements γ ∈ G whose fixed locus in X has codimension 2. The
universal quasi-étale cover of Y is a terminalization of the quotient X/N .

1.6. Outline

• In Section 3, we recall the definition of (irreducible) symplectic variety and describe properties of
their terminalizations.
• In Section 4, we motivate the criteria of the classification and comment in particular on Assumptions 1.1

and 1.2.
• In Section 5.3, we specialize the previous results to the case of quotients of irreducible symplectic

manifolds S[n] or Kn(A) by induced automorphism groups. For this purpose, in Section 5.2, we
show that the codimension 2 fixed loci of induced symplectic automorphisms are subject to severe
constraints.
• In Sections 6, 7 and 8, we provide group-theoretic formulas for the second and third Betti numbers

of Y and the fundamental group of the regular locus of Y .
• We list the second Betti number and fundamental group of the regular locus of all terminalizations of

induced symplectic quotients of S[2], K2(A) and K3(A), respectively in Table 4 (Section 9), Table 7
(Section 10.2) and Table 8 (Section 10.2).
• In Table 9 (Section 10.4), we list Betti numbers, Chern classes and singularities of the terminalizations

of quotients K2(A)/G with simply connected regular locus. The analysis of the singularities is carried
on in Section 11.
• In Section 10.5 and in Table 10 (Section 10.4), we describe the singularities of the terminalizations of

quotients K3(A)/G with simply connected regular locus.
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• In Section 12, we determine whether terminalizations with the same topological invariants are actually
deformation equivalent.
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2. Notation

• Denote by S(n) B Sn/Sn the n-fold symmetric product of the surface S . A point in S(n) is an
unordered n-tuple [(x1, . . . ,xn)] or the formal sum x1 + · · ·+ xn with xi ∈ S .
• The Hilbert–Chow morphism

ϵ : S[n] −→ S(n), ξ 7−→
∑
x∈ξ

length(Oξ,x) · x,

sends any subscheme ξ of length n in the surface S to its weighted support. It is a symplectic
resolution of the symmetric product S(n).
• The generalized Kummer variety Kn(A) is the fiber over 0 of the composition

A[n+1] ϵ−→ A(n+1) s−→ A,

where ϵ is the Hilbert–Chow morphism and s is the summation map. We denote by A
(n+1)
0 the fiber

over 0 of s. The restriction ϵ : Kn(A)→ A
(n+1)
0 is a symplectic resolution.

• Let A = C
2/Λ be a complex torus with period lattice Λ B H1(A,Z). The group of symplectic

automorphisms of A is

A⋊ SL(Λ),

where A acts on itself by translation and SL(Λ) ⊂ SL(2,C) is the group of linear automorphisms of
the universal cover C2 with determinant 1 and preserving the period lattice Λ. The group of induced
symplectic automorphisms of Kn(A) is

A[n+1]⋊ SL(Λ).

Denote by τα the automorphism on Kn(A) induced by the translation α ∈ A[n+1].
• Given a group G ⊆ A[n+1]⋊ SL(Λ), we write

Gtr B G∩A[n+1]

for the normal subgroup of translations in G, and we set

(2.1) G◦ B G/Gtr = Im(π : G ↪−→ A[n+1]⋊ SL(Λ) −→ SL(Λ)).
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• We use the notation

Cn cyclic group of order n,

Sn symmetric group of degree n,

An alternating group of degree n,

Dn dihedral group of degree n,

Q8 quaternion group,

BD12 binary dihedral group of order 12,

BT24 binary tetrahedral group of order 24.

• Let G be a group acting on a normal variety X, and let q : X→ X/G be the quotient map. For any
x ∈ X and g ∈ G, we write

Gx B {g ∈ G | g(x) = x},
Fix(g)B {x ∈ X | g(x) = x}.

The isotropy (group) of a point z in X/G is the stabilizer of a point of the orbit q−1(z), up to
conjugation.
• Assume that G acts on a smooth complex algebraic variety X of dimension n and fixes a point x.

Then an analytic (or étale) neighborhood of q(x) in X/G is isomorphic to the linear quotient TxX/G
of its tangent space. If G is cyclic of order k, then the action of G on TxX ≃A

n can be diagonalized
and written as

(x1, . . . ,xn) 7−→
(
ξm1
k x1, . . . ,ξ

mn

k xn
)
,

where ξk is a primitive kth root of unity and the integers mi are called weights of the action. We
usually abbreviate the quotient by this action as

A
n/ 1k (m1, . . . ,mn).

Definition 2.1. Let X be an algebraic variety of dimension 2n. We denote by ak = ak(X) the number
of singularities of analytic type

A
2n/ 1k (1,−1, . . . ,1,−1).

3. Symplectic varieties and terminalizations

3.1. Symplectic varieties

We refer to [KM98] for the standard terminology in birational geometry. If X is a normal variety and

j : Xreg ↪→ X is the inclusion of the regular locus, then Ω
[p]
X B j∗Ω

p
Xreg is the sheaf of reflexive p-forms on X.

Definition 3.1. Let X be a normal variety. A reflexive 2-form

ωX ∈H0
(
X,Ω

[2]
X

)
=H0

(
Xreg,Ω2

Xreg

)
is symplectic if its restriction to the regular locus of X, denoted by Xreg, is closed non-degenerate.

Definition 3.2. A normal variety X is symplectic, or equivalently has symplectic singularities, if

• it admits a symplectic form ωX ∈H0(X,Ω
[2]
X ),

• it has rational singularities.
By [KS21, Corollary 1.8], this means that a holomorphic symplectic form ωXreg on Xreg extends to a (possibly
degenerate) holomorphic 2-form ωX̃ on a resolution X̃→ X. We say that X admits a symplectic resolution if
ωX̃ is non-degenerate.
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Proposition 3.3. A symplectic variety has Gorenstein canonical singularities, and it is terminal if and only if the
singular locus has codimension at least 4.

Proof. See e.g. [Kol13, Claim 2.3.1] and [Nam01b, Corollary 1]. □

Definition 3.4. Let X be a variety with canonical singularities. A terminalization of X is a proper birational
morphism f : Y → X such that Y has terminal singularities and f ∗KX = KY .

A terminalization of X exists by [BCHM10, Corollary 1.4.3], and it can be chosen projective, Q-factorial
(see Definition 3.8) and equivariant with respect to a group G acting on X. Further, it is also unique up to
isomorphism in codimension 1; see [KM98, Corollary 3.54].

3.2. Terminalization of symplectic varieties

Proposition 3.5. Let f : Y → X be a crepant birational modification of a symplectic variety X, e.g. a terminal-
ization of X. Then f is semismall; i.e., dim(Y ×X Y ) ≤ dimX.

Proof. See e.g. [Kal06, Lemma 2.11], [Los22, Proposition 2.14] and [Tig25, Proposition 2.15]. □

Definition 3.6. Let X be a symplectic variety. Let X◦ be the largest open set of points x in X such that
either X is smooth at x, or the formal completion X̂x admits a decomposition M̂x × Ŵx, where Mx is a
smooth scheme and W is a canonical surface singularity. The complement X \X◦ is called the dissident
locus.

In other words, X◦ is the union of the strata of dimension dimX and dimX − 2 of the stratification of X
constructed in [Kal06, Theorem 2.3]. Note that X◦ admits a unique symplectic resolution f ◦ : Y ◦→ X◦

obtained by repeatedly blowing up the singular locus of X◦ (or of its blowup), as in the surface case.

Proposition 3.7. Let f : Y → X be a proper birational modification of a symplectic variety X. Then f is a
terminalization of X if and only if f is a normal compactification of f ◦ : Y ◦→ X◦ and codim(Y \Y ◦) ≥ 2.

Proof. Suppose that f is a terminalization of X. By the uniqueness of minimal surface resolution, f must
restrict to f ◦ over X◦. Now, if f extracts a divisor E ⊆ Y \Y ◦, then

dim(E ×X E) = 2dimE −dimf (E) ≥ 2dimX − 2−dim(X \X◦)
≥ dimX − 2+4 > dimX,

which contradicts Proposition 3.5. Hence, codim(Y \Y ◦) ≥ 2.
Conversely, a compactification of f ◦ : Y ◦→ X◦ such that codim(Y \Y ◦) ≥ 2 is isomorphic in codimen-

sion 1 to a terminalization of X, so it is terminal. □

Definition 3.8. A normal algebraic or analytic variety X is Q-factorial if for every Weil divisor D on X,
there is an m ∈N such that mD is Cartier. A normal complex analytic variety X is locally analytically
Q-factorial if every open set U ⊆ X in the Euclidean topology is Q-factorial.

Let f : Y → X be a proper morphism of normal complex varieties; then Y is locally analyticallyQ-factorial
over X if YU B f −1(U ) is Q-factorial for any open set U ⊆ X in the Euclidean topology.

Lemma 3.9. Let f : Y → X be a proper birational morphism of normal complex algebraic or analytic varieties
with exceptional divisor E =

∑
i Ei . Suppose that

(†) the divisors Ei |f −1(U ) are irreducible for any connected open set U ⊆ X in the Euclidean topology.
If X is locally analytically Q-factorial and Y is Q-factorial, then Y is locally analytically Q-factorial.

Proof. By assumption (†), any prime exceptional divisor of f |YU
: YU B f −1(U )→ U is Ei |YU

for some i.
Then by the localization formula, we have⊕

i

QEi |YU
−→ Cl(YU )Q −→ Cl(YU \E)Q −→ 0.
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Since X is locally analytically Q-factorial, then Cl(YU \E)Q ≃ Cl(U \ f (E))
Q
≃ Cl(U )

Q
≃ Pic(U )

Q
. Since

Y is Q-factorial, a multiple of Ei |YU
is Cartier. We conclude that Cl(YU )Q is generated by Cartier divisors;

i.e., Y is locally analytically Q-factorial over X. □

Proposition 3.10. Let f : Y → X be a projective Q-factorial terminalization of a complex symplectic variety X
with exceptional divisor E =

∑
i Ei . Suppose that

(1) X is locally analytically Q-factorial,
(2) the formal completion X̂x of X at any singular point x ∈ X admits a Gm-action with only positive weights

on the maximal ideal of OX̂x
and on the local symplectic form,

(3) the divisors Ei |f −1(U ) are irreducible for any connected open set U ⊆ X in the Euclidean topology.
Assume further that U is a connected Euclidean neighborhood of some x ∈ X, and let T → U be a projective
terminalization of U which is locally analytically Q-factorial over U . Then, up to shrinking U to a smaller
neighborhood of x if necessary, YU B f −1(U ) admits a locally trivial deformation to T . In particular, YU and T
have the same singularities; i.e., for any t ∈ T , there exist a y ∈ YU and a formal isomorphism T̂t ≃ ŶU,y .

Proof. We closely follow [Nam08]. For any x ∈ X, there exists a pointed affine symplectic scheme (Z,z),
(i) with a good Gm-action fixing z, (ii) algebraizing X̂x, i.e., X̂x ≃ Ẑz, and (iii) only depending on X̂x and the
weights of the Gm-action; see [Nam08, Lemma A.2 and the proof of Lemma 22]. The local Gm-action on X̂x

lifts to Ŷx B X̂x ×X Y and linearizes a f |Ŷx
-ample line bundle; see [Nam08, Steps 1 and 2 of Proposition A.7,

Lemma A.8].
Now, by [Nam08, Proposition A.5], there exists a Gm-equivariant projective morphism g : W =W (YU )→ Z

such that Ŷx ≃ Ŵz B Ẑz ×Z W . By Artin’s approximation [Art69, Corollary 2.4], there exists an analytic
open neighborhood z ∈ V ⊂ Z such that, up to shrinking U , the following diagram commutes:

Y

f
��

YU
≃ //

fU
��

? _oo WV

gV
��

� � // W

g
��

X U
≃ //? _oo V �

� // Z .

Since YU is a Q-factorial terminalization of U by Lemma 3.9, and since the Gm-action retracts W into WV ,
we conclude that WV and W are terminal and Q-factorial too. Applying the same construction to T →U ,
we obtain two projective Q-factorial terminalizations of Z

W (YU )
g
−→ Z

g ′

←−W (T ).

The result then follows from [Nam08, Corollary 25]. □

Corollary 3.11. Let f : Y → X be a projective Q-factorial terminalization of a complex symplectic variety X with
only quotient singularities. Suppose that the divisor E|f −1(U ) is irreducible for any prime exceptional divisor E ⊂ Y
and for any connected open set U ⊆ X in the Euclidean topology. Assume further that U is a connected Euclidean
neighborhood of some x ∈ X, and let T →U be a projective terminalization of U . Then, up to shrinking U to a
smaller neighborhood of x, YU B f −1(U ) admits a locally trivial deformation to T . Furthermore, YU and T are
locally analytically Q-factorial over U , and they have the same singularities in the sense of Proposition 3.10.

Proof. If X has quotient singularities, then assumptions (1) and (2) in Proposition 3.10 hold. The local analytic
Q-factoriality of Y and T follows from Lemma 3.9. □

3.3. Irreducible symplectic varieties

Definition 3.12. A symplectic compact Kähler(4) variety (X,ωX) is an irreducible (holomorphic) symplectic
variety (IHS variety for short) if for any finite quasi-étale cover g : X ′→ X, the exterior algebra of reflexive

forms H0(X ′ ,Ω[•]
X ′ ) on X ′ is generated by the reflexive pullback g∗ωX .

(4)We refer to [Gra62, Section 3.3, p. 346] or [BL22, Section 2.3] for the notion of (possibly singular) compact Kähler space.
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Remark 3.13 (Finiteness results for IHS varieties). It is expected that the number of deformation types of
irreducible symplectic varieties is finite in each dimension. For instance, in any given dimension, there are
only finitely many diffeomorphism types of irreducible symplectic manifolds with isomorphic Beauville–
Bogomolov lattice (H2,q); see [Huy03, Theorem 4.3] and the refinement [Kam18, Theorem 4.4]. Topological
bounds are known in low dimension: The second Betti number of a 4-dimensional irreducible symplectic
orbifold is at most 23 by [Gua01, FM21], and in the smooth fourfold case is either at most 8 or 23 by [Gua01],
and conjecturally only 5,6,7 or 23 according to [BS22, Corollary 1.3] (cf. [DHMV24, Theorem 9.3]); see
also the recent survey [BD22]. It is expected that the same bound of at most 23 holds for smooth sixfolds
too; see [Kur16, Saw22] for partial results. A conjectural bound for the second Betti numbers of irreducible
symplectic manifolds in arbitrary dimension is proposed in [KL20].

Proposition 3.14. Birational projective Q-factorial terminal IHS varieties are deformation equivalent. In
particular, a projective Q-factorial terminalization of an IHS variety is unique up to deformation.

Proof. See [BL22, Corollary 6.17]. □

Definition 3.15. An automorphism ϕ : X→ X of a symplectic variety (X,ωX) is symplectic if ϕ∗ωX =ωX .

Lemma 3.16. Let G be a symplectic group acting on a symplectic variety X. Any irreducible components of the
fixed locus of G has even dimension.

Proof. If X is smooth, the fixed locus Fix(G) is smooth and symplectic as its tangent bundle is the G-fixed
part of the tangent bundle of X, thus symplectic and even-dimensional:

TFix(G) =
(
(TX) |Fix(G)

)G
.

In general, we stratify X into smooth G-invariant locally closed symplectic subsets as in [Kal06, Theorem 2.3]
and reduce to the argument in the smooth case. □

Proposition 3.17. The sets of symplectic varieties and of IHS varieties are both closed under projective terminal-
izations or finite quotients by symplectic groups.

Proof. The terminalization of a symplectic variety is symplectic by construction. Let q : X → X/G be a
symplectic quotient of a symplectic variety. Any G-invariant symplectic form descends to X/G, and X/G
has rational singularities by [KM98, Proposition 5.13]. Hence, X/G is symplectic.

Now suppose that X is an IHS variety. The statement for projective terminalization is proved in [Sch20,
Proposition 12].(5) The statement for symplectic quotients q : (X,ωX)→ X/G is proved in [Mat15, Lemma 2.2]
when X is smooth. The argument in the singular case is essentially identical. We give a self-contained
proof for completeness. Let g : X ′→ X/G be a quasi-étale cover of X/G and Z be the normalization of an
irreducible component of X ×X/G X ′ that maps surjectively onto X and X ′ . All maps in the commutative
square

Z X ′

X X/G

g̃

q′

g

q

are quasi-étale. Since X is an IHS variety, the algebra H0(Z,Ω[•]
Z ) is generated by the pullback ωZ B g̃∗(ωX).

Since q′ is quasi-étale and g̃∗(ωX) descends to a symplectic form ωX ′ on X ′ , the inequalities

dim⟨ωZ⟩ = dimH0
(
Z,Ω

[•]
Z

)
≥ dimH0

(
X ′ ,Ω

[•]
X ′

)
≥ dim⟨ωX ′⟩

are identities, and so H0(X ′ ,Ω[•]
X ′ ) is generated by ωX ′ . Hence, X/G is an IHS variety. □

(5)The notion of primitive symplectic in loc. cit. stands for IHS varieties.
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Corollary 3.18. Let G be a finite symplectic group acting on a symplectic variety X or an IHS variety. A projective
terminalization of the quotient X/G is symplectic or an IHS variety, respectively.

Remark 3.19. Finite groups of symplectic automorphisms of known irreducible symplectic manifolds have
been extensively studied in the literature. Particularly relevant for the present paper are the classifications of
finite symplectic groups acting on K3[2] by Höhn and Mason in [HM19] (see also the preliminary results in
[Mon13]), and on K2(A) by Mongardi, Tari and Wandel in [MTW18, Section 5]. See also [Mon16, KMO23].

In view of Assumption 1.1, O’Grady examples instead are less interesting for our classification purposes.
Indeed, the only symplectic automorphism of an irreducible symplectic manifold of O’Grady 10 type is
the identity by [GGOV24]. On the other hand, all symplectic automorphisms of an irreducible symplectic
manifold of O’Grady 6 type act trivially on the second cohomology group by [GOV23], and their fixed loci
have codimension at least 4 by [MW17, Section 6], so they do not satisfy Assumption 1.1.

4. Remarks on the criteria of the classification

Given an irreducible symplectic variety X, it is possible to obtain new such varieties by taking quotients,
birational contractions or terminalizations. When one classifies birational modifications of symplectic
quotients, in order to avoid redundancy, it is convenient to restrict to projective Q-factorial terminalizations Y
of symplectic quotients X/G by a finite group G, with simply connected regular locus Y reg. If X has Q-
factorial singularities, this amounts to Assumptions 1.1 and 1.2.

Symplectic quotients X/G of irreducible symplectic varieties X are irreducible symplectic varieties
themselves; see Proposition 3.17. However, they are less interesting from a classification viewpoint as the
geometry of X/G can be essentially recovered from the G-equivariant geometry of X. For instance, we have
the following:
• The rational cohomology of X/G is isomorphic to the G-invariant part of the rational cohomology

of X:

H ∗(X/G,Q) =H ∗(X,Q)G.

Note, however, that the relation between the integral cohomology H ∗(X/G,Z) and H ∗(X,Z) is more
subtle, and even for a single involution, their connection is not trivial; see for instance [KM18].
• The fundamental group of the regular locus of X/G is an extension of G by π1(Xreg):

1 −→ π1(X
reg) −→ π1((X/G)reg) −→ G −→ 1.

In particular, if Xreg is simply connected, then π1((X/G)reg) ≃ G
• The deformations of X/G are the deformations of X preserving the group action.

More conceptually, the building blocks of the Beauville–Bogomolov decomposition are defined only
up to quasi-étale cover. Nonetheless, for the symplectic factors of the decomposition, one can actually
choose a distinguished representative in the class of all quasi-étale covers of a fixed symplectic factor,
namely its universal quasi-étale cover. In other words, the irreducible symplectic factors Y in the Beauville–
Bogomolov decomposition can always be chosen so that the regular locus Y reg is algebraically simply
connected, i.e., the algebraic fundamental group π̂1(Y reg) of the regular locus is trivial. This is indeed
possible since the algebraic fundamental group of an irreducible symplectic variety is known to be finite by
[GGK19, Corollary 13.2].(6) The conclusion is that we should only classify irreducible symplectic varieties Y
with π̂1(Y reg) = 1 (conjecturally, π1(Y reg) = 1) as all other irreducible symplectic varieties are quasi-étale
quotients of them.

(6)Actually, the same is expected to hold for the topological fundamental group: This is implicit in [GGK19, Section 13], explicitly
conjectured in [Wan22, Conjecture 3] and proved by Engel, Filipazzi, Greer, Mauri and Svaldi in [EFG+25] under the assumption
that Y admits a Lagrangian fibration.
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Birational transformations of X/G are also potential new sources of irreducible symplectic varieties.
However, to preserve the non-degeneracy of the symplectic form, one is only allowed to extract divisors with
discrepancy zero. Any such birational modification is dominated by a Q-factorial terminalization Y , see
[BCHM10, Corollary 1.4.3], and moreover it can be recovered by the Mori theory of Y itself. Therefore, it is
superfluous to study symplectic birational modifications of X/G other than its Q-factorial terminalizations.
Actually, it has always been clear in the literature that Q-factorial and terminal irreducible symplectic
varieties form a particularly agreeable class of varieties for their well-behaved birational and deformation
theory:
• Birational projective Q-factorial terminal irreducible symplectic varieties are deformation equivalent.

In particular, any two projective Q-factorial terminalizations of the same irreducible symplectic
variety are deformation equivalent. See [BL22, Corollary 6.17].
• Deformations of projective Q-factorial terminal irreducible symplectic varieties are equisingular.

In particular, the Betti numbers and the fundamental group of the regular locus are deformation
invariants. See [Nam06].
• The global Torelli theorem holds for Q-factorial Kähler terminal irreducible symplectic varieties with
b2 ≥ 5. See [BL22, Theorem 1.1].(7)

Also note that if Assumption 1.1 holds, then the cohomology class of each exceptional divisor of a
terminalization Y → X/G in H2(Y ,Z) remains of type (1,1) only along a divisor in the Kuranishi family
of Y . This implies that the general deformation of Y cannot come from the quotient-terminalization
construction and should be considered as an honestly new deformation type of irreducible symplectic variety.

Finally, observe that the projectivity condition can always be achieved by [BCHM10, Corollary 1.4.3]. The
projectivity of terminalizations obtained by gluing local terminalization is discussed in Sections 3.2 and 11.1.

5. Induced symplectic automorphisms and terminalizations

In this section, we show that terminalizations of quotients of S[n] or Kn(A) by induced symplectic
automorphism groups can be obtained via a single explicit blowup away from the dissident locus; see
Corollary 5.9.

5.1. Induced automorphism

Let X be either a Hilbert scheme S[n] of a K3 surface S, or a generalized Kummer variety Kn(A)
associated to an abelian surface A.

Definition 5.1. An automorphism φ : S→ S of a K3 surface S induces an automorphism of S[n]. We call
such an automorphism of S[n] induced.

Definition 5.2. An automorphism φ : A→ A of the abelian surface A (not necessarily fixing the origin)
induces an automorphism φ(n+1) : A(n+1) → A(n+1) of its symmetric product A(n+1). If φ(n+1) preserves

A
(n+1)
0 , then it lifts to an automorphism of Kn(A). We call such an automorphism of Kn(A) induced.

Note that an induced automorphism on S[n] or Kn(A) is symplectic if and only if the underlying
automorphism of S or A is symplectic.

(7)It is expected that the assumption on the Betti number can be removed, and this is known if the irreducible symplectic variety
has only quotient singularities; see [Men20].
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5.2. Codimension 2 fixed loci of induced authomorphisms

Let G be a finite group of induced symplectic automorphisms of X = Kn(A) or S[n]. In this section, we
describe the connected components of codimension 2 fixed by automorphisms g ∈ G. The importance
of these loci lies in the fact that their images in X/G are the centers of blowups giving a terminalization
Y → X/G. Their geometry is severely constrained: We show that they occur only if the orders of g and n are
either 2 or 3. Further, these fixed components are all of K3 or K3[2] type; see also [KMO23, Theorems 1.0.2
and 1.0.4].

Denote the Hilbert–Chow morphism by ϵ : S[n]→ S(n) or ϵ : Kn(A)→ A
(n+1)
0 as in Section 2.

Lemma 5.3. Let G be a finite group of symplectic automorphisms of X. Let F ⊂ X be a subvariety of codimension 2
fixed by an element of the group. Then the restriction ϵ|F is generically finite.

Proof. If F ⊈ Exc(ϵ), then ϵ|F is birational, so generically finite. Then suppose F ⊆ Exc(ϵ). If F = ϵ−1(ϵ(F)),
then F is uniruled, which is impossible as F is the fixed locus of a symplectic automorphism and hence F
is symplectic so not uniruled. It follows that F ⊊ ϵ−1(ϵ(F)) and dim(ϵ−1(z) ∩ F) < dim(ϵ−1(z)) for a
general z ∈ ϵ(F). By [Kal06, Lemma 2.11] or Proposition 3.5, the morphism ϵ is semismall; i.e., dim(X) =
dim

(
X ×ϵ(X) X

)
. We get

2n = dim
(
X ×ϵ(X) X

)
≥ dim

(
ϵ−1(ϵ(F))×ϵ(F) ϵ−1(ϵ(F))

)
≥ dim(ϵ(F)) + 2dim

(
ϵ−1(z)

)
> dim(ϵ(F)) + 2dim

(
ϵ−1(z)∩F

)
= dim(F) + dim

(
ϵ−1(z)∩F

)
= 2n− 2+dim

(
ϵ−1(z)∩F

)
,

and so dim
(
ϵ−1(z)∩F

)
≤ 1. If dim

(
ϵ−1(z)∩F

)
= 0, then ϵ|F is generically finite. Otherwise, dim(ϵ(F)) is

odd, which is impossible since ϵ(F) is symplectic as fixed locus of a symplectic automorphism of ϵ(X). □

Lemma 5.4 (Order of automorphisms with large fixed locus). Let F be a subvariety of codimension 2 fixed by
an induced symplectic automorphism g : X→ X. Then
• ord(g) = 2 and X = S[2], K2(A) or K3(A), or
• ord(g) = 3 and X = K2(A).

Proof. Let G be the cyclic group ⟨g⟩ acting indifferently on the surface M B S or A, on the singular

symplectic variety Xsing B S(n) or A
(n)
0 , or on the symplectic resolution X B S[n] or Kn−1(A). Stratify the

surface M according to length of G-orbits; i.e.,

M =
ord(g)⊔
i=1

Mi with Mi B {m ∈M : |Gm| = i}.

The locus Mord(g) is open and dense, while Mi with i < ord(g) consists of at most finitely many points as g is
symplectic. A g-fixed point z of Xsing is a union of orbits for the action of G on M ; i.e., z = {Gm1, . . . ,Gmr}
for some mj ∈M such that

∑r
j=1 |Gmj | = n.

For any partition n =
∑ord(g)

i=1 i ·ni of n, define Fn ⊆ Xsing as the union of the g-fixed subvarieties whose
general points z = {Gm1, . . . ,Gmr} satisfy |{j ∈ [r] : |Gmj | = i}| = ni . The finite morphism

ord(g)∏
i=1

Mni
i −→M(n), (mi) 7−→ {Gmi},
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contains Fn in its image, and so

dimFn ≤
ord(g)∑
i=1

ni dimMi = nord(g)dimMord(g) = 2nord(g)

since dimMi = 0 for i , ord(g) and dimMord(g) = dimM = 2. In particular, we obtain

codimXsing

(
Fn

)
≥ 2n− 2nord(g) − 2ϵ,

where ϵ = 0 or 1 if M = S or A, respectively. Finally, the equation codimXsing
(Fn) = 2 admits a solution

only in the cases listed in Lemma 5.4. By Lemma 5.3, the solutions for Xsing are solutions for the symplectic
resolution X too. □

Remark 5.5. Note that on X = S[2], any induced involution g fixes a locus of codimension 2, namely the
strict transform of {[(x,g(x))]|x ∈ S} in S(2). Thus, for X = S[2] the condition on g in Lemma 5.4 is actually
necessary and sufficient. See also [KMO22, Theorems 1.1 and 1.2].

In the Kummer case, the automorphisms fixing a locus of codimension 2 (see Lemma 5.4 above) admit a
particularly explicit description.

Lemma 5.6 (Induced involutions and automorphisms of order 3 on Kn(A)).
(1) An induced symplectic involution g of Kn(A), with n = 2 or 3, fixes a subvariety F of codimension 2 if
and only if

g = τα(−id) ∈ A⋊ SL(Λ)

with α ∈ A[3] if n = 2, or α ∈ A[2] if n = 3.
(2) An induced symplectic automorphism g of order 3 of K2(A) fixes a subvariety F of codimension 2 if and

only
g = τα ◦ T ∈ A⋊ SL(Λ)

with T 3 = 1, T , id and T (α) = α (equivalently, T is a linear automorphism of order 3 commuting with
τα).

Proof. Since −id is the only involution of SL(2,C), any induced involution g of K2(A) is of the form

τα(−id) ∈ A[3]⋊ (−id),

and it fixes the strict transform of the surface {[(x,g(x),−x − g(x))] | x ∈ A} ⊂ A
(3)
0 ; see also [KM18,

Theorem 7.5].
If n = 3, induced involutions of K3(A) are of the form either

τα(−id) ∈ A[4]⋊ (−id) or τα ∈ A[2],

but the only involutions g that fix a fourfold in A
(4)
0 , namely {[(x,g(x), y,g(y))] | x,y ∈ A}, are those of the

form τα(−id) ∈ A[2]⋊ (−id).
An order 3 automorphism g fixes a surface F in K2(A) if and only if it fixes the surface

ϵ(F) =
{[(

x,g(x), g2(x)
)]
| x ∈ A

}
in A

(3)
0 by Lemma 5.3. This occurs if and only if g satisfies 1+ g + g2 = 0, i.e., if and only if T ∈ SL(Λ) has

minimal polynomial 1+ t + t2, i.e., T 3 = id, T , id and T (α) = α. □

Remark 5.7. Lemmas 5.4 and 5.6 imply that an induced symplectic automorphism of S[n] or Kn(A) fixes at
most one subvariety of codimension 2. When it exists, such a subvariety F is a crepant resolution of ϵ(F)
and is isomorphic to a K3 surface or a Hilbert square of a K3 surface.
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Table 3. Codimension 2 subvarieties F fixed by an induced symplectic automorphism g of X. We
denote by S2 and S3 the minimal resolutions of A/g .

ord(g) X F ϵ(F) g

2 S[2] S [(x,g(x))] any involution

2 K2(A) S2 [(x,−x+α,−α)] τα(−id) with α ∈ A[3]
3 K2(A) S3 [(x,T (x) +α,T 2(x)−α)] τα ◦ T with T 3 = 1, T , id, T (α) = α

2 K3(A) S
[2]
2 [(x,−x+α,y,−y +α)] τα(−id) with α ∈ A[2]

5.3. Terminalizations via explicit blowups

Notation 5.8. Let G be a finite group of induced symplectic automorphisms of X = S[n] or Kn(A). Let
q : X → X/G be the quotient map, p : Y → X/G be a terminalization of X/G, and Σ be the singular
locus of X/G. Denote by Fg ⊂ X the (unique by Remark 5.7) component of the fixed locus of g ∈ G of
codimension 2, if any:

X ⊃ Fg

Y X/G ⊃ ΣB Sing(X/G) ⊇ q(Fg ).
p

q

Corollary 5.9 is a refinement of Proposition 3.7 in our special context. It asserts that in order to obtain a
terminalization of X/G away from the dissident locus, it suffices to blow up once the irreducible components
of the singular locus of codimension 2—no need to repeat the process—in the same way as a single blowup
suffices to resolve the surface singularities of type A1 and A2.

Corollary 5.9. We use the notation of Definition 3.6. Away from the dissident locus, the terminalization Y is
isomorphic to the blowup of the reduced singular locus of X/G; i.e.,

Y ◦ ≃ BlΣ∩(X/G)◦(X/G)◦.

Proof. By Proposition 3.3, the quotient X/G is not terminal if and only if the fixed locus of some element
of G has a component of codimension 2. This occurs only if ord(g) = 2 or 3, and in the precise cases
detailed in Lemma 5.4. Geometrically, this implies that a normal slice to a general point in q(Fg ) is a
canonical surface singularity of type A1 or A2, which can be resolved with a single blowup. We conclude by
applying Proposition 3.7. □

Remark 5.10. Up to a small Q-factorial modification, see [Kol13, Corollary 1.37], which is an isomorphism
away from the dissident locus of X/G, we can suppose that Y is Q-factorial too.

6. Second Betti number of a terminalization

Proposition 6.1. We use Notation 5.8. Let
• L be a lattice isomorphic to H2(X,Z),
• N2 be the number of components q(Fg ) in Σ with ord(g) = 2,
• N3 be the number of components q(Fg ) in Σ with ord(g) = 3.

Then the identity

b2(Y ) = rk
(
LG

)
+N2 +2N3

holds except in the case where X = K2(A) and G◦ ≃ BD12, treated in Remark 10.5.
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Remark 6.2. Let X B S[n] or K2(A) with M B S or A, respectively. Recall that

H2(X,Z) ≃H2(M,Z)⊕Ze,

where 2e is the class of the ϵ-exceptional divisor. Since the group G of induced automorphisms preserves
the ϵ-exceptional divisor, we obtain

H2(X/G,Q) ≃H2(X,Q)G ≃H2(M,Q)G ⊕Qe.

We conclude that
rk

(
LG

)
= rk

(
H2(M)G

)
+1.

Proof of Proposition 6.1. The blowup formula (or the decomposition theorem) gives

H2(Y ,Q) = IH2(Y ,Q) ≃H2(X/G,Q)⊕
⊕
i

H0(Ei ,Q),

where the sum runs over all the p-exceptional divisors Ei . Then, it suffices to compute the p-exceptional
divisors. As shown in Section 5.3, the terminalization p : Y → X/G extracts an exceptional prime divisor for
each q(Fg ) with transversal A1 singularities, and at most two exceptional prime divisors for each q(Fg ) with
transversal A2 singularities.

The latter case occurs only if g has order 3 and X = K2(A). Suppose that this is indeed the case, and
denote simply by F the g-fixed surface. Consider the blowup of K2(A)/G along q(F),

pq(F) : Blq(F)(K2(A)/G) −→ K2(A)/G.

A neighborhood U of a general point in q(F) is locally analytically isomorphic to the product A2 × (A2/C3).
In particular, the restriction of pq(F) over U extracts two exceptional prime divisors. Globally, these may
be contained in two distinct pq(F)-exceptional prime divisors of Blq(F)(K2(A)/G), or be two branches of
the same non-normal pq(F)-exceptional divisor. The latter case occurs only when G◦ ≃ BD12, as explained
in Lemma 6.3. We conclude that if G◦ ; BD12, the terminalization p : Y → X/G extracts exactly two
exceptional prime divisors for each q(Fg ) with transversal A2 singularities, whence the statement. □

Lemma 6.3. Suppose that a finite group G of induced symplectic automorphisms of K2(A) contains an element g of
order 3 fixing a surface F. Then the blowup p′ : Y ′→ K2(A)/G of K2(A)/G along q(F) extracts two exceptional
prime divisors, unless g is contained in a subgroup of G which is isomorphic to the binary dihedral group BD12
and splits the quotient G→ G◦ ≃ BD12 ⊂ SL(Λ) (cf. Section 2 ). In this case, the exceptional divisor of p′ is
irreducible.

Proof. The G-orbit of F, denoted by G ·F, consists of r irreducible components

F BFg ,Fg1 , . . . ,Fgj = Fh−1j ghj
= h−1j (Fg ), . . . ,Fgr−1 ,

where gj B h−1j ghj for some hj ∈ G. Then consider the blowup of K2(A) along G ·F,

p1 : X1 B BlG·FK2(A) −→ K2(A),

with exceptional divisors Ẽ0 B p−11 (F), Ẽ1 . . . , Ẽr−1.
Denote by ξ3 a primitive third root of unity, and let Z ⊂ K2(A) be the locus of points in K2(A) whose

stabilizer is neither trivial nor conjugate to ⟨g⟩. The normal bundle of Fgj in K2(A) splits into the sum of
two ⟨gj⟩-equivariant line bundles:

NFgj /K2(A) ≃ Lξ3 ⊕Lξ̄3 ,

where gj acts on Lξ3 or Lξ̄3 by scaling by ξ3 and ξ̄3, respectively. Therefore, away from Z, Ẽj is ⟨gj⟩-
equivariantly isomorphic to P

(
NFgj /K2(A)

)
≃ P

(
Lξ3 ⊕Lξ̄3

)
with two ⟨gj⟩-fixed sections of Ẽj → Fgj , denoted

by
sξ3,j B Im

(
P

(
Lξ3

)
↪→ P

(
Lξ3 ⊕Lξ̄3

))
and sξ̄3,j B Im

(
P

(
Lξ̄3

)
↪→ P

(
Lξ3 ⊕Lξ̄3

))
.
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Let p2 : X2→ X1 be the simultaneous blowup of the closure of the sections sξ3,j and sξ̄3,j for j = 0, . . . , r −1,

with exceptional divisors Ẽξ3,j and Ẽξ̄3,j . Since the centers of the blowups p1 and p2 are G-invariant,
X2 inherits an action by G. Further, away from q(Z), the quotient X2/G is isomorphic to the blowup
p3 : Y1→ Y ′ along the double locus of the p′-exceptional locus E; it suffices to verify it in the local model
A

2 × (A2/C3). Therefore, away from Z, there exists a commutative diagram

(6.1)

K2(A) X1 X2

K2(A)/G Y ′ Y1 ≃ X2/G,

q

p1 p2

q1

p′ p3

where the horizontal arrows are blowups and the vertical arrows are G-quotient maps.
The p′-exceptional divisor E is the image under p3 ◦ q1 of the distinct divisors Ẽξ3,j and Ẽξ̄3,j . Suppose

that E is irreducible. Then there exists a ι ∈ G such that

ι
(
Ẽξ3,0

)
= Ẽξ̄3,0.

Note that the subgroup H ⊆ G generated by g and ι has the following presentation:

H =
〈
g, ι | ιgι−1 = g2, ι2k = 1

〉
.

Indeed, the following facts hold:
• The automorphism ι preserves Fg , so it exchanges Ẽξ3,0 and Ẽξ̄3,0, and thus it has even order.
• The automorphism ι preserves the locus ϵ(F) = {[(x,g(x), g2(x))] | x ∈ A}, so either ιg = gι or ιg = g2ι.
• For any (x,v) ∈ Lξ3 ⊂NF/K2(A) with x ∈ Fg and v ∈ Lξ3,x, we have

g · (x,v) = (g · x,dgx(v)) = (x,ξ3v).

Hence, we obtain

g · (ι · x,dιx(v)) = gι · (x,v) = ιgm · (x,v)
= ι · (x,ξm

3 v) = (ι · x,dιx(ξm
3 v)) = (ι · x,ξm

3 dιx(v)),

i.e., ι(Lξ3) = Lξm
3
. Since ι must exchange Lξ3 and Lξ̄3 , we must have m = 2, i.e., ιg = g2ι.

Further constraints on the subgroup H are imposed by the fact that G is a group of symplectic auto-
morphisms coming from an abelian surface A. Indeed, since G ⊂ A⋊ SL(Λ), the order of ι must be 2, 4
or 6.
• If ord(ι) = 2, then H ≃ S3 and H projects isomorphically onto H◦ ⊂ SL(Λ), which gives a contradic-

tion since no subgroup of SL(Λ) is isomorphic to S3.
• If ord(ι) = 4, then H ≃ BD12 and H projects isomorphically onto G◦ ⊂ SL(Λ) since BD12 is a

maximal finite subgroup of SL(Λ); see Section 10.1.
• If ord(ι) = 6, we replace ι with ι3 and obtain the same contradiction as in the case ord(ι) = 2.

We conclude that E is irreducible if and only if g is contained in the subgroup H ≃ BD12 ≃ G◦. □

We provide an alternative group-theoretic characterization of N2 and N3.

Proposition 6.4. In the notation of Proposition 6.1, we have the following:
(1) N2 is the number of conjugacy classes of involutions of G if X = S[2] or K2(A).
(2) N2 is the number of conjugacy classes of involutions satisfying Lemma 5.6 (1) if X = K3(A).
(3) N3 is the number of conjugacy classes of subgroups of G of order 3 satisfying Lemma 5.6 (2) if X = K2(A).
(4) N2 =N3 = 0 in all other cases.

Proof. Recall that the pointwise stabilizer of Fg is the group generated by g ; in symbols,

Stab(Fg )B {g ∈ G | ∀x ∈ Fg , g(x) = x} = ⟨g⟩.
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It is a standard and general fact that q(Fg ) = q(Fg ′ ) if and only if g ′ ∈ h−1Stab(Fg )h for some h ∈ G,
hence q(Fg ) = q(Fg ′ ) if and only if g ′ ∈ h−1⟨g⟩h for some h ∈ G. Together with Section 5.2, this gives the
group-theoretic characterization of N2 and N3 of the statement. □

Lemma 6.5. If X = K2(A), then

N2 =

1 if |G| is even,
0 if |G| is odd.

Proof. If |G| is odd, then we have N2 = 0. Otherwise, any two involutions in G, namely t1 B τα(−id) and
t2 B τα′ (−id), are conjugate to each other as (t2t1)−1t1(t2t1) = t2; hence N2 = 1. □

7. Third Betti number of a terminalization

Proposition 7.1. We use Notation 5.8. The third intersection cohomology group of Y is the G-invariant part of the
third cohomology group of X; i.e.,

IH3(Y ,Q) ≃H3(X,Q)G.

Proof. Let Σ2 =
⋃

Fg be the components of the singular locus of X/G of pure codimension 2. The
decomposition theorem for the semismall terminalization p : Y → X/G gives

(7.1) Rp∗ICY = ICX/G ⊕ICΣ2

(
R2p∗QY

)
[−2]⊕S ,

where S is a summand of the decomposition theorem supported in codimension at least 4. Over a dense
open set of Σ2, the constructible sheaf R2p∗QY is a trivial local system (of rank 1 or 2, more precisely
ord(g)−1). The normalization ν : q(Fg )ν → q(Fg ) and X/G have quotient singularities, so their intersection
complexes are trivial local systems:

ICX/G =QX/G, ICq(Fg ) = ν∗ICq(Fg )ν = ν∗Qq(Fg )ν .

Therefore, we can rewrite (7.1) as

Rp∗ICY =QX/G ⊕
⊕

q(Fg )⊆Σ2

ν∗Q
ord(g)−1
q(Fg )ν

[−2]⊕S .

Taking H3, we obtain that

IH3(Y ,Q) =H3(X,Q)G ⊕
⊕

q(Fg )⊆Σ2

H1
(
q
(
Fg

)ν
,Q

)ord(g)−1
.

Let Stab({Fg })B {g ∈ G | g(Fg ) = Fg } be the setwise stabilizer of Fg . Then the Galois quotient

Fg → Fg / Stab({Fg }) = q(Fg )
ν

induces the inclusion

H1
(
q
(
Fg

)ν
,Q

)
=H1

(
Fg ,Q

)Stab({Fg }) ⊆H1
(
Fg ,Q

)
.

Since in our cases Fg is simply connected, we conclude that IH3(Y ,Q) =H3(X,Q)G. □

Proposition 7.2. We use Notation 5.8. Suppose further that X = Kn(A) and G◦ , 1. Then

H3(Y ,Q) = IH3(Y ,Q) = 0.

Proof. There exists a G-equivariant isomorphism

H1(A,Z)⊕H3(A,Z) ≃H3(Kn(A),Z)/Tors;
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see [KM18, Corollary 6.3] or [O’G21, Theorem 2.7], or the classical version with rational coefficients in [GS93,
Theorem 7]. A nontrivial symplectic linear automorphism g ∈ G◦ acting on T0A ≃H0,1(A) does not fix any
vector, so by Proposition 7.1,

0 =H1(A,Q)G ⊕H3(A,Q)G ≃H3(Kn(A),Q)G ≃ IH3(Y ,Q).

Finally, note that H3(Y ,Q) ≃ IH3(Y ,Q) since Y has quotient singularities by Corollary 1.11. □

8. Fundamental group of the regular locus of a terminalization

Proposition 8.1. Let X be a simply connected smooth complex symplectic variety endowed with an action of a finite
group G of symplectic automorphisms. Let p : Y → X/G be a terminalization of the quotient. The fundamental
group of the regular locus of Y is

π1(Y
reg) ≃ G/N,

where N ◁G is the normal subgroup generated by the elements γ ∈ G whose fixed locus in X has codimension 2.
The universal quasi-étale cover of Y is a terminalization of the quotient X/N .

Proposition 8.1 is a refinement of [Men22, Proposition 2.13].

Remark 8.2. The fundamental group of the regular locus of a terminalization of X/G is actually independent
of the choice of the given terminalization since all terminalizations of X/G are isomorphic in codimension 1.
In general, however, the fundamental group of the regular locus of a variety is not a birational invariant. For

instance, the fundamental group of the regular locus of the singular Kummer surface A
(2)
0 is infinite, but its

minimal resolution is simply connected.

Remark 8.3. The subgroup N generated by elements in G whose fixed locus in X admits a component of
codimension 2 is a normal subgroup of G. Indeed, the property of an element of having a component of the
fixed locus of a certain codimension is invariant up to conjugation: If g fixes a locus F of codimension m,
then hgh−1 fixes the locus h(F) ≃ F of the same codimension. It follows that any element conjugate to a
generator of N is in N ; hence N is normal.

Proof of Proposition 8.1. The quotient map q : X→ X/G is étale over the regular locus of X/G. Therefore,
we have a short exact sequence

1 −→ π1

(
q−1((X/G)reg)

)
−→ π1((X/G)reg) −→ G −→ 1.

Since X is simply connected and q is étale in codimension 1, we have π1((X/G)reg) ≃ G. As (X/G)reg can
be identified with a Zariski dense open subset of Y reg, we have a surjective map

G ≃ π1((X/G)reg) −↠ π1(Y
reg).

Let F be a codimension 2 subvariety of X fixed by an element of G. An analytic neighborhood U
of a general point of q(F) in X/G is isomorphic to an analytic open set of AdimX−2 ×W , where W is
the canonical surface singularity A

2/ Stab(F). The restriction of a terminalization p : Y → X/G to U is
isomorphic to an analytic simply connected open subset Ũ of AdimX−2 × W̃ , where W̃ is the unique (simply
connected) minimal resolution of W . By inclusions, we obtain the following commutative diagram:

Stab(F) = π1

(
A

2 \ {0}/ Stab(F)
)
= π1(U ∩ (X/G)reg) π1

(
Ũ

)
= 1

π1((X/G)reg) π1(Y reg).

Therefore, there exists a surjective map

G/N −↠ π1(Y
reg).



22 V. Bertini, A. Grossi, M. Mauri, and E. Mazzon22 V. Bertini, A. Grossi, M. Mauri, and E. Mazzon

We prove that the previous surjection is invertible. Let pN : YN → X/N be a G/N -equivariant terminalization
of X/N . We obtain the following commutative square:

X/N YN

X/G YN /(G/N ),

q1

pN

q2

p

where the horizontal arrows are birational morphisms and the vertical arrows G/N -quotient maps. Let
(X/G)◦ be the complement of the dissident locus; see Definition 3.6. By the definition of N , q1 is étale over
(X/G)◦, so p−1((X/G)◦) is a symplectic resolution of (X/G)◦ built via the same sequence of blowups which
gives YN over (X/N )◦. We conclude that YN /(G/N ) is a terminalization of X/G by Proposition 3.7, and by
Remark 8.2, there exists a surjective morphism

π1(Y
reg) −↠ G/N. □

Corollary 8.4. We use Notation 5.8. The fundamental group of the regular locus of Y is

π1(Y
reg) ≃ G/N,

where N is the normal subgroup generated by all elements of
• order 2 if X = S[2],
• order 2 and 3 satisfying Lemma 5.6 (1) and (2) if X = K2(A),
• order 2 satisfying Lemma 5.6 (1) if X = K3(A).

In all other cases, π1(Y reg) ≃ G.

9. Terminalizations of quotients of Hilbert schemes on K3 surfaces

Symplectic actions of finite groups on S[2] have been classified in [HM19, Table 12]. Here we restrict to
the groups G of even order whose action comes from an action on the underlying K3 surface S (which are
marked with the label Type K3 in the fourth column of [HM19, Table 12]). Since any involution gives rise to a
surface with transversal A1 singularities in S[2]/G (see Remark 5.5), the previous conditions grant that the
quotient S[2]/G is not terminal, as required by our criteria of classification (cf. Section 4).

In Table 4, for any such group G, we list
• the group ID as in GroupNames,
• an alias of G as abstract group,
• rkB rk

(
H2(S[2])G

)
= rk

(
H2(S)G

)
+1, as computed in [HM19, Table 12, fifth column],

• the number N2 of codimension 2 components of the singular locus of S[2]/G, as computed in
Proposition 6.4(1),
• b2(Y ) = rk+N2, see Proposition 6.1 and Lemma 5.4 for the fact that N3 = 0,
• π1(Y reg) ≃ G/N , where N is the subgroup generated by involutions, see Corollary 8.4.

We highlight in gray the quotients whose terminalization has simply connected regular locus.

Table 4. Terminalizations of S[2]/G

ID G rk N2 b2(Y ) π1(Y reg)

2,1 C2 15 1 16 {1}

4,1 C4 9 1 10 C2

4,2 C2
2 11 3 14 {1}

6,1 S3 9 1 10 {1}

6,2 C6 7 1 8 C3

https://people.maths.bris.ac.uk/~matyd/GroupNames/index500.html
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ID G rk N2 b2(Y ) π1(Y reg)

8,1 C8 5 1 6 C4

8,2 C2 ×C4 7 3 10 C2

8,3 D4 8 3 11 {1}

8,4 Q8 6 1 7 C2
2

8,5 C3
2 9 7 16 {1}

10,1 D5 7 1 8 {1}

12,1 BD12 5 1 6 S3
12,3 A4 7 1 8 C3

12,4 D6 7 3 10 {1}

12,5 C2 ×C6 5 3 8 C3

16,2 C2
4 5 3 8 C2

2

16,3 C2
2 ⋊C4 6 5 11 C2

16,6 M4(2) 4 2 6 C4

16,8 Q8 ⋊C2 5 2 7 C2

16,9 Q16 4 1 5 D4

16,11 C2 ×D4 7 7 14 {1}

16,12 C2 ×Q8 5 3 8 C2
2

16,13 C4 ◦D4 6 4 10 {1}

16,14 C4
2 8 15 23 {1}

18,3 C3 × S3 5 1 6 C3

18,4 C3 ⋊ S3 7 1 8 {1}

20,3 C5 ⋊C4 5 1 6 C2

24,3 Q8 ⋊C3 4 1 5 A4

24,8 C3 ⋊D4 5 3 8 {1}

24,12 S4 6 2 8 {1}

24,13 C2 ×A4 5 3 8 C3

32,6 C3
2 ⋊C4 5 5 10 C2

32,7 C4.D4 4 4 8 C2

32,11 C4 ≀C2 4 3 7 C2

32,27 C2
2 ≀C2 6 10 16 {1}

32,31 C4.4D4 5 5 10 C2

32,44 C8.C
2
2 4 3 7 C2

32,49 D4 ◦D4 6 10 16 {1}

36,9 C2
3 ⋊C4 5 1 6 C2

36,10 S2
3 5 3 8 {1}

36,11 C3 ×A4 5 1 6 C2
3

48,3 C2
4 ⋊C3 5 1 6 A4

48,29 Q8 ⋊ S3 4 2 6 {1}

48,30 A4 ⋊C4 4 3 7 S3
48,48 C2 × S4 5 5 10 {1}

48,49 C2
2 ×A4 4 7 11 C3

48,50 C2
2 ⋊A4 6 5 11 C3

60,5 A5 5 1 6 {1}

64,32 C2 ≀C4 4 6 10 C2

64,35 C2
4 ⋊3 C4 4 4 8 C2

2
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ID G rk N2 b2(Y ) π1(Y reg)

64,136 D4.9D4 4 6 10 C2

64,138 C2 ≀C2
2 5 9 14 {1}

64,242 C4
2 ⋊C2

2 5 9 14 {1}

72,40 S3 ≀C2 4 3 7 {1}

72,41 C2
3 ⋊Q8 4 1 5 C2

2

72,43 C3 ⋊ S4 5 2 7 {1}

80,49 C4
2 ⋊C5 4 3 7 C5

96,64 C2
4 ⋊ S3 4 2 6 {1}

96,70 C4
2 ⋊C6 4 4 8 C3

96,195 A4 ⋊D4 4 6 10 {1}

96,204 C3
2 ⋊A4 4 4 8 C3

96,227 C2
2 ⋊ S4 5 5 10 {1}

120,34 S5 4 2 6 {1}

128,931 C2
4 ⋊5D4 4 7 11 {1}

144,184 A2
4 4 3 7 C2

3

160,234 C4
2 ⋊D5 4 4 8 {1}

168,42 GL3(F2) 4 1 5 {1}

192,955 C4
2 ⋊D6 4 6 10 {1}

192,1023 C2
4 ⋊A4 5 3 8 C3

192,1493 C3
2 ⋊ S4 4 6 10 {1}

288,1026 A4 ⋊ S4 4 4 8 {1}

360,118 A6 4 1 5 {1}

384,18135 F384 4 4 8 {1}

960,11357 M20 4 2 6 {1}

Proposition 9.1. All terminalizations in Table 4 are singular with the exception of G ≃ C4
2 .

Proof. If the terminalization Y is smooth, then in particular the quotient S(2)/G does not admit an isolated
singularity [(x,y)] with x , y. In fact, such points lie in the locus where the birational morphism Y → S(2)/G
is an isomorphism.

Equivalently, for any g ∈ G, there exists no point (x,y) ∈ S2 such that (g(x), g(y)) = (x,y) and y < Gx.
Otherwise, such a g-fixed point would not be of the form (x, ι(x)) for any involution ι ∈ G, so it would not
lie on a codimension 2 component of the fixed locus of some element g ∈ G, and it certainly would give rise
to a singularity of Y .

Equivalently, if Y is smooth, then the following statement holds true.

Assumption 9.2. For any g ∈ G, the fixed locus Fix(g) ⊂ S lies in a fiber of π : S→ S/G.

We deduce the following Lemmas 9.3 and 9.4.

Lemma 9.3. Under Assumption 9.2, ord(g) · |Fix(g)| divides |G| for any g ∈ G.

Proof of Lemma 9.3. Given g ∈ G and x ∈ Fix(g) ⊂ S, any point of the orbit Gx is fixed by a conjugate of g
since Fix(hgh−1) = hFix(g) with h ∈ G. Moreover, Fix(g) ⊆ Gx by Assumption 9.2, so the orbit Gx is the
disjoint union of the fixed loci of conjugates of g , and |Fix(g)| divides |Gx|. We conclude that

ord(g) · |Fix(g)| divides |Gx| · |Gx| = |G|. □
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Lemma 9.4. Under Assumption 9.2, there exists a bijective correspondence

{conjugacy classes of involutions of G} ←→ {singular points in S/G with even isotropy}
[ι] 7−→ π(Fix(ι)).

Proof of Lemma 9.4. The correspondence ι 7→ π(Fix(ι)) is well defined since Fix(ι) lies in the same π-fiber
by Assumption 9.2. It is also independent of the representative of [ι] since Fix(gιg−1) = g Fix(ι). The inverse
map sends a singular point q to the conjugacy class of the unique involution of Gx for any x ∈ π−1(q). The
uniqueness of such an involution follows from the faithfullness of the action of Gx as finite subgroup of
SL(2,C) on the tangent space TxS (recall that there is a unique involution in SL(2,C)). □

By [Gua01], if Y is a smooth IHS fourfold, then either 3 ≤ b2(Y ) ≤ 8 or b2(Y ) = 23, and according to
Table 4, the latter occurs only if G ≃ C4

2 . All terminalizations Y in Table 4 with b2(Y ) ≤ 8 and π1(Y reg) = {1}
fail to satisfy the necessary conditions for smoothness detailed in Lemmas 9.3 and 9.4. In order to apply
these lemmas, we use the classification of the singularities of S/G obtained in [Xia96] and the computation
of the cardinality of Fix(gn) ⊂ S for a symplectic automorphism gn on S of order n, contained for instance
in [Nik80, Section 5]:

n 2 3 4 5 6 7 8

|Fix(gn)| 8 6 4 4 2 3 2

More precisely, we are able to exclude all the cases, as
• if |G| = 160 or 288, Lemma 9.4 fails,
• if |G| = 48,96,384 or 960, Lemma 9.3 fails since 3 | |G| but 3 · 6 ∤ |G|,
• for all other groups G, Lemma 9.3 fails since 2 | |G| but 2 · 8 ∤ |G|. □

Theorem 9.5. Let G be a finite group of induced symplectic automorphisms acting on S[2], and let Y be a projective
terminalization of S[2]/G with simply connected regular locus. There are at least five new deformation classes of
such irreducible symplectic varieties Y . In particular, they are not deformation equivalent to any terminalization of
quotients of Kummer fourfolds by groups of induced symplectic automorphisms, or a Fujiki fourfolds appearing in
[Men22, Theorem 1.11].

ID G b2(Y )
10,1 D5 8

60,5 A5 6

120,34 S5 6

168,42 GL3(F2) 5

360,118 A6 5

Proof. If the projective terminalizations Y1→ S[2]/G1 and Y2→ S[2]/G2 are deformation equivalent, then
b2(Y1) = b2(Y2) and

√
|G1|/ |G2| is a rational number; see [Men22, Proposition 3.21, Proof of Proposition 1.13].

We then conclude by direct inspections of Tables 4 and 9 and [Men22, Section 5].
Note that the terminalization Y → S[2]/D5 has b2(Y ) = 8, but it cannot be deformation equivalent to any

of the new terminalizations with b2 = 8 in Table 9. Indeed, the subgroup C5 ◁D5 fixes two points z1, z2 on S
lying in different D5-orbits (cf. [Xia96, Theorem 3]), and so the point (z1, z2) ∈ S2 corresponds to an isolated
singularity of Y with isotropy C5, but this singularity never appears in Table 9. □

Remark 9.6. The terminalizations of S[2]/G in Table 4 are Fujiki varieties S(G)[2]θ with trivial involution
θ = id; see Definition 12.2. More information on their singularities is available in [Men22], provided that G
is an admissible group of induced symplectic automorphisms; see [Men22, Definition 1.10].
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10. Terminalizations of quotients of generalized Kummer manifolds

In this section, we compute the second Betti number and the fundamental groups of the regular locus of
terminalizations of quotients of K2(A) and K3(A) by finite groups of induced symplectic automorphisms; see
Tables 7 and 8, respectively.

10.1. Symplectic automorphisms of an abelian surfaces

Let G be a finite group of symplectic automorphisms of an abelian surface A. In the notation of Section 2,
the group G ⊆ A[n+1]⋊ SL(Λ) fits in the short exact sequence

1 −→ Gtr −→ G −→ G◦ −→ 1.

By the classification of finite subgroups of SL(2,C) together with [Fuj88, Lemma 3.3], G◦ is isomorphic
to {1}, Cm for m ∈ {2,3,4,6}, Q8, BD12 or BT24. Moreover, by [Fuj88, Remarks 3.6 and 3.12], (A,G◦) is
deformation equivalent to one of the following:

(A,⟨−id⟩ ≃ C2),

(E2,⟨gm⟩ ≃ Cm) for E =C/⟨1,ξm⟩, gm =
(ξm 0
0 ξ−1m

)
, ξm = e

2πi
m ,

(E2,⟨h,k⟩ ≃Q8) for E =C/⟨1, i⟩, h =
(
0 −1
1 0

)
, k = g4 =

(
i 0
0 −i

)
,

(H/Γ ,⟨i, j⟩ ≃Q8) for H =R[1, i, j,k], Γ =Z[1, i, j, t], t = 1+i+j+k
2 ,

(E2,⟨h, l⟩ ≃ BD12) for E =C/⟨1,ξ6⟩, h =
(
0 −1
1 0

)
, l = g6 =

(
ξ6 0
0 ξ−16

)
,

(H/Γ ,Γ × ≃ BT24) for H =R[1, i, j,k], Γ =Z[1, i, j, t], t = 1+i+j+k
2 ,

Γ × = ⟨r, t⟩, r = 1+i+j−k
2 ;

see also [Fuj88, Proposition 3.7, Lemma 2.6] and the surveys [Pie22, Section 2.2] and [KMO23, Appendix 2].
Therefore, without loss of generality, we can assume that G◦ acts on A as above, and we identify actions
of G up to conjugation in A[n+ 1]⋊ SL(Λ). In fact, the topological invariants we are interested in, that
is, b2(Y ) and π1(Y reg), are independent on the deformation type of the pair (A,G) and invariant under
conjugation in A[n+1]⋊ SL(Λ).

Lemma 10.1. Let G be a finite group of symplectic automorphisms of an abelian surface A. Then,

rk(H2(A)G) =


6 if G◦ ≃ C2,

4 if G◦ ≃ C3,C4,C6,

3 if G◦ ≃Q8,BD12,BT24.

Proof. Note that the group

A⋊ (−id) = ker{A⋊ SL(Λ) −→ SL(Λ) −→ PSL(Λ)}

acts trivially on H2(A), so H2(A)G = H2(A)G◦ and if −id ∈ G◦, we have H2(A)G = H2(A)G◦/⟨−id⟩. The
claim then follows from [Fuj88, Section 6]. □

10.2. Second Betti numbers and fundamental groups of terminalizations

Let G be a finite group of induced symplectic automorphisms of K2(A) or K3(A). In Tables 7 and 8, we
list
• the group ID of G as in GroupNames, when available (otherwise, we write NA),

https://people.maths.bris.ac.uk/~matyd/GroupNames/index500.html
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• an alias of G as abstract group (we express G as a (split or non-split) extension of G◦ by Gtr and,
when available, we adopt the enumeration of extensions in GroupNames; otherwise, we add the
subscript * for unnumbered extensions),
• rkB rk

(
H2(K2(A))G

)
= rk(H2(A)G) + 1, where the ranks are computed in Lemma 10.1,

• the number Ni of components of codimension 2 of the singular locus of Kn(A)/G with transversal
Ai−1 singularities, see Proposition 6.4,
• b2(Y ), see Proposition 6.1 and Remark 10.5,
• π1(Y reg), see Corollary 8.4.

The explicit values of Ni , b2(Y ) and the groups π1(Y reg) can be obtained using GAP.(8) We highlight in gray
the quotients whose terminalization has simply connected regular locus.

Example 10.2. Let ξ3 be a primitive third root of unity, and let E be an elliptic curve with complex
multiplication ξ3 ↷ E : x 7→ ξ3 · x. Consider the symplectic automorphism g3(x1,x2) = (ξ3x1,ξ

−1
3 x2).

Choose a = (a1, a2) and b = (b1,b2) in E2[3] such that g3(a) = a and g3(b) , b. Denote by τa, τb : E2→ E2

the translations τa(x1,x2) = (x1 + a1,x2 + a2) and τb(x1,x2) = (x1 + b1,x2 + b2). Now, both τag3 and τbg3
induce the same action on H ∗(K2(E2),Z). However, the quotient K2(E2)/⟨τag3⟩ has strictly canonical
singularities, while K2(E2)/⟨τbg3⟩ is terminal. The actions correspond to the two distinct rows for the cyclic
group C3 in Table 7.

Remark 10.3 (Group actions vs. abstract realization). In Example 10.2, we pointed out that different actions
of the same abstract group may lead to terminalizations with different deformation type. This explains why
in the tables below, the same abstract group may appear multiple times. A priori, the table should include all
possible actions, namely all possible subgroups of A[n+1]⋊G◦. A GAP code can easily provide all of them
and their relevant invariants, but to avoid redundancy,

we identify groups which are conjugate in A[n+1]⋊G◦
or give the same string of invariants [G,G◦,rk,Ni ,b2,π1].

Note that the latter condition leaves open the possibility that there may be terminalizations with different
deformation type but same string of invariants; see for instance Remark 10.4. In this regard, we check the
following facts:
• Using a GAP code, we observe that the actions whose quotients have a smooth terminalization, i.e.,
C3
3 in Table 7 and C5

2 in Table 8, are unique up to conjugation in A[n+1]⋊G◦.
• By elementary algebraic considerations, the actions whose quotients admit a terminalization with

simply connected regular locus (the most relevant according to Section 4) are all affine; i.e., the group
G is conjugate to the semidirect product Gtr ⋊G◦ by an element in A[n+1]; see Lemma 10.6.

Remark 10.4 (Quaternion group). The moduli space of pairs (A,G◦), where A is an abelian surface and G◦
is a symplectic group of linear automorphisms, is connected except for G◦ =Q8, in which case it has two
connected components represented by the pairs (E2,Q8) and (H/Γ ,Q8) defined in Section 10.1; see [Fuj88,
Remark 3.12]. The action of Q8 on E2 is maximal; i.e., it is not contained in any other finite subgroup of
Aut(E2) (fixing the origin), while the action on H/Γ is the restriction of the action of BT24 in Section 10.1.
The induced actions on K3(A) of their overgroups give rise to terminalizations with different b2 and π1; we
distinguish the two cases in Table 9.

Accidentally, the terminalizations of K2(E2)/G and K2(H/Γ )/G, with G◦ =Q8, have the same b2 and π1
(because the groups E2[3]⋊Q8 and H/Γ [3]⋊Q8 turn out to be abstractly isomorphic to the group of ID
648,730). Therefore, we write them only once in Table 7. Mind, however, that the terminalizations are not
deformation equivalent. For instance, the terminalizations of the quotients K2(E2)/Q8 and K2(H/Γ )/Q8

(8)A GAP code containing all the calculations is available from the authors upon request.

https://people.maths.bris.ac.uk/~matyd/GroupNames/index500.html
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have different singularities:

Sing
(
K2

(
E2,Q8

))
: 4Q8 +6C4 +29C2,

Sing(K2(H/Γ ,Q8)) : 2Q8 +9C4 +28C2,

where m ·Gx means that the terminalization has m isolated singularities with isotropy Gx. These singularities
are computed in the same way as in Section 11.5; we omit the details.

Remark 10.5 (Binary dihedral group). If G ≃ C2k
3 ⋊ BD12 with k = 0,1 or 2, then there exists a unique

conjugacy class of subgroups of order 3 satisfying Lemma 5.6(2) and further contained in a subgroup of G
isomorphic to BD12, splitting the projection G ≃ C2k

3 ⋊BD12→ BD12. So if G◦ ≃ BD12, by Lemma 6.3, the
formula in Proposition 6.1 acquires a correction term as follows:

b2(Y ) = rk
(
LG

)
+N2 +2N3 − 1.

Table 7. Terminalizations of K2(A)/G

ID G G◦ rk N2 N3 b2(Y ) π1(Y reg)

2,1 C2 1 0 8 {1}
6,1 C3 ⋊C2 1 0 8 {1}
18,4 C2

3 ⋊2 C2 1 0 8 {1}
54,14 C3

3 ⋊C2 1 0 8 {1}
162,54 C4

3 ⋊C2

C2 7

1 0 8 {1}
3,1 C3 0 0 5 C3

3,1 C3 0 1 7 {1}
9,2 C2

3 0 0 5 C2
3

9,2 C2
3 0 3 11 {1}

27,3 C2
3 ⋊C3 0 0 5 C2

3 ⋊C3

27,3 C2
3 ⋊C3 0 1 7 C3

27,5 C3
3 0 0 5 C3

3

27,5 C3
3 0 9 23 {1}

81,12 C3
3 ⋊2 C3 0 0 5 C3

3 ⋊2 C3

81,12 C3
3 ⋊2 C3 0 3 11 C3

243,37 C4
3 ⋊1 C3

C3 5

0 1 7 C2
3

4,1 C4 1 0 6 C2

36,9 C2
3 ⋊C4 1 0 6 C2

324,164 C4
3 ⋊4 C4

C4 5

1 0 6 C2

6,2 C6 1 1 8 {1}
18,3 C3 ⋊C6 1 2 10 {1}
54,13 C2

3 ⋊4 C6 1 5 16 {1}
54,5 C2

3 ⋊C6 1 1 8 {1}
162,40 C3

3 ⋊4 C6 1 2 10 {1}
486,146 C4

3 ⋊4 C6

C6 5

1 1 8 {1}
8,4 Q8 1 0 5 C2

2

72,41 C2
3 ⋊Q8 1 0 5 C2

2

648,730 C4
3 ⋊Q8

Q8 4

1 0 5 C2
2

12,1 BD12 1 1 6 C2

108,37 C2
3 ⋊3 BD12 1 3 10 C2
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ID G G◦ rk N2 N3 b2(Y ) π1(Y reg)

972,NA C4
3 ⋊∗ BD12

BD12 4

1 1 6 C2

24,3 BT24 1 1 7 {1}
216,153 C2

3 ⋊BT24 1 1 7 {1}
1944,NA C4

3 ⋊∗ BT24

BT24 4

1 1 7 {1}

Table 8. Terminalizations of K3(A)/G

ID G G◦ rk N2 b2(Y ) π1(Y reg)

2,1 C2

C2 7

0 7 C2

2,1 C2 1 8 {1}
4,2 C2

2 0 7 C2
2

4,2 C2
2 2 9 {1}

8,5 C3
2 0 7 C3

2

8,3 C4 ⋊C2 1 8 C2

8,3 C4 ⋊C2 0 7 C4 ⋊C2

8,5 C3
2 4 11 {1}

16,11 C3
2 ⋊C2 0 7 C3

2 ⋊C2

16,11 C3
2 ⋊C2 2 9 C2

16,14 C4
2 0 7 C4

2

16,14 C4
2 8 15 {1}

32,46 (C2
2 ×C4)⋊5 C2 0 7 (C2

2 ×C4)⋊5 C2

32,34 C2
4 ⋊6 C2 0 7 C2

4 ⋊6 C2

32,51 C5
2 0 7 C5

2

32,51 C5
2 16 23 {1}

32,46 (C2
2 ×C4)⋊5 C2 4 11 C2

32,34 C2
4 ⋊6 C2 1 8 C2

2

64,211 (C2 ×C2
4 )⋊11 C2 0 7 (C2 ×C2

4 )⋊11 C2

64,261 (C3
2 ×C4)⋊7 C2 0 7 (C3

2 ×C4)⋊7 C2

64,211 (C2 ×C2
4 )⋊11 C2 2 9 C2

2

64,261 (C3
2 ×C4)⋊7 C2 8 15 C2

128,2172 (C2
2 ×C

2
4 )⋊23 C2 0 7 (C2

2 ×C
2
4 )⋊23 C2

128,2172 (C2
2 ×C

2
4 )⋊23 C2 4 11 C2

2

128,1599 C3
4 ⋊15 C2 0 7 C3

4 ⋊15 C2

128,1599 C3
4 ⋊15 C2 1 8 C3

2

256,29630 (C2 ×C3
4 )⋊∗ C2 2 9 C3

2

256,29630 (C2 ×C3
4 )⋊∗ C2 0 7 (C2 ×C3

4 )⋊∗ C2

512,NA C4
4 ⋊C2

C2 7

1 8 C4
2

3,1 C3 C3

12,3 C2
2 ⋊C3 C2

2 ⋊C3

48,3 C2
4 ⋊C3 C2

4 ⋊C3

48,50 C4
2 ⋊2 C3 C4

2 ⋊2 C3

192,1020 (C2
2 ×C

2
4 )⋊3 C3 (C2

2 ×C
2
4 )⋊3 C3

768,1083578 C4
4 ⋊C3

C3 5 0 5

C4
4 ⋊C3

4,1 C4 0 5 C4

4,1 C4 1 6 C2
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ID G G◦ rk N2 b2(Y ) π1(Y reg)

8,2 C2 ×C4 0 5 C2 ×C4

8,2 C2 ×C4 2 7 C2

16,3 C2
2 ⋊C4 3 8 C2

16,10 C2
2 ×C4 4 9 C2

16,3 C2
2 ⋊C4 0 5 C2

2 ⋊C4

16,10 C2
2 ×C4 0 5 C2

2 ×C4

32,22 C3
2 ⋊2 C4 0 5 C3

2 ⋊2 C4

32,6 (C2 ×C4)⋊C4 2 7 C2
2

32,6 (C2 ×C4)⋊C4 1 6 C4

32,6 (C2 ×C4)⋊C4 2 7 C4

32,6 (C2 ×C4)⋊C4 0 5 (C2 ×C4)⋊C4

32,22 C3
2 ⋊2 C4 6 11 C2

64,34 C2
4 ⋊C4 0 5 C2

4 ⋊C4

64,34 C2
4 ⋊C4 1 6 C2

2 ⋊C2

64,90 (C2
2 ×C4)⋊3 C4 0 5 (C2

2 ×C4)⋊3 C4

64,90 (C2
2 ×C4)⋊3 C4 2 7 C4

64,90 (C2
2 ×C4)⋊3 C4 4 9 C2 ×C2

64,60 C4
2 ⋊3 C4 0 5 C4

2 ⋊3 C4

64,60 C4
2 ⋊3 C4 10 15 C2

128,856 (C2 ×C2
4 )⋊9 C4 0 5 (C2 ×C2

4 )⋊9 C4

128,513 (C3
2 ×C4)⋊6 C4 6 11 C2

2

128,513 (C3
2 ×C4)⋊6 C4 4 9 C4

128,513 (C3
2 ×C4)⋊6 C4 0 5 (C3

2 ×C4)⋊6 C4

128,856 (C2 ×C2
4 )⋊9 C4 2 7 C2

2 ⋊C2

256,5681 (C2
2 ×C

2
4 )⋊∗ C4 3 8 C2

2 ⋊C2

256,5681 (C2
2 ×C

2
4 )⋊∗ C4 0 5 (C2

2 ×C
2
4 )⋊∗ C4

256,1534 (C2
2 ×C

2
4 )⋊∗ C4 2 7 C2 ×C4

256,1534 (C2
2 ×C

2
4 )⋊∗ C4 4 9 C3

2

512,NA (C2 ×C3
4 )⋊∗ C4 2 7 C3

2 ⋊C2

512,NA (C2 ×C3
4 )⋊∗ C4 1 6 C2

2 ⋊C4

1024,NA C4
4 ⋊∗ C4

C4 5

1 6 C4
2 ⋊1 C2

6,2 C6 1 6 C3

24,13 C2
2 ⋊C6 2 7 C3

96,72 C2
4 ⋊2 C6 1 6 C2

2 ⋊C3

96,229 C4
2 ⋊4 C6 6 11 C3

384,18223 (C2
2 ×C

2
4 )⋊∗ C6 2 7 C2

2 ⋊C3

1536,NA C4
4 ⋊∗ C6

C6 5

1 6 C4
2 ⋊2 C3

8,4 Q8

Q8 4

0 4 Q8

8,4 Q8 1 5 C2
2

16,4 C2.Q8 0 4 C2.Q8

16,12 C2 ×Q8 0 4 C2 ×Q8

16,4 C2.Q8 2 6 C2

16,12 C2 ×Q8 2 6 C2
2

32,29 C2
2 ⋊Q8 0 4 C2

2 ⋊Q8

32,29 C2
2 ⋊Q8 4 7 C2

2

64,224 C3
2 ⋊2Q8 5 9 C2

2
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ID G G◦ rk N2 b2(Y ) π1(Y reg)

64,23 C3
2 .2Q8 5 9 C2

2

64,23 C3
2 .2Q8 0 4 C3

2 .2Q8

64,224 C3
2 ⋊2Q8 0 4 C3

2 ⋊2Q8

128,764 (C2
2 ×C4)⋊Q8 1 5 C2.2C

2
2

128,764 (C2
2 ×C4)⋊Q8 4 8 C3

2

128,761 C4
2 ⋊2Q8 0 4 C4

2 ⋊2Q8

128,761 C4
2 ⋊2Q8 7 11 C2

2

256,298 (C3
2 ×C4).∗Q8 3 7 C2 ×C4

256,25861 (C3
2 ×C4)⋊∗Q8 5 9 C3

2

256,298 (C3
2 ×C4).∗Q8 4 8 C2.1C

2
2

256,25861 (C3
2 ×C4)⋊∗Q8 2 6 C2.2C

2
2

512,NA (C2
2 ×C

2
4 )⋊∗Q8 3 7 C2

2 ⋊C2
2

512,NA (C2
2 ×C

2
4 )⋊∗Q8 2 6 C2

2 .C
2
2

1024,NA (C2 ×C3
4 )⋊∗Q8 2 6 C3

2 ⋊2 C
2
2

1024,NA (C2 ×C3
4 ).∗Q8 1 5 C3

2 .1C
2
2

2048,NA C4
4 ⋊∗Q8

Q8 4

1 5 C4
2 ⋊1 C

2
2

8,4 Q8 0 4 Q8

8,4 Q8 1 5 C2
2

16,12 C2 ×Q8 2 6 C2
2

16,12 C2 ×Q8 0 4 C2 ×Q8

32,2 C2
2 .2Q8 0 4 C2

2 .2Q8

32,47 C2
2 ×Q8 0 4 C2

2 ×Q8

32,2 C2
2 .2Q8 4 8 C2

2

32,47 C2
2 ×Q8 4 8 C2

2

64,74 C3
2 ⋊1Q8 0 4 C3

2 ⋊Q8

64,74 C3
2 ⋊1Q8 5 9 C2

2

128,36 C4
2 .4Q8 0 4 C4

2 .4Q8

128,1572 C4
2 ⋊6Q8 7 11 C2

2

128,36 C4
2 .4Q8 7 11 C2

2

128,1572 C4
2 ⋊6Q8 0 4 C4

2 ⋊6Q8

256,3378 (C3
2 ×C4)⋊∗Q8 0 4 (C3

2 ×C4)⋊∗Q8

256,3378 (C3
2 ×C4)⋊∗Q8 2 6 Q8

256,3378 (C3
2 ×C4)⋊∗Q8 5 9 C3

2

512,NA (C2
2 ×C

2
4 ).∗Q8 1 5 C2

4
512,NA (C2

2 ×C
2
4 )⋊∗Q8 1 5 C2 ×Q8

512,NA (C2
2 ×C

2
4 ).∗Q8 2 6 C2

2 ⋊C4

512,NA (C2
2 ×C

2
4 )⋊∗Q8 4 8 C4

2

1024,NA (C2 ×C3
4 )⋊∗Q8 1 5 C2

4 ⋊5 C2

1024,NA (C2 ×C3
4 )⋊∗Q8 2 6 C4

2 ⋊1 C2

2048,NA C4
4 ⋊∗Q8

Q8 ⊂ BT24 4

1 5 C4
2 ⋊1 C

2
2

12,1 BD12 1 5 S3
48,30 C2

2 ⋊BD12 2 6 S3
192,1495 C4

2 ⋊4 BD12 BD12 5 9 S3
192,185 C2

4 ⋊BD12 1 5 C2
2 ⋊ S3

768,1088649 (C2
2 ×C

2
4 )⋊BD12 2 6 C2

2 ⋊ S3
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ID G G◦ rk N2 b2(Y ) π1(Y reg)

3072,NA C4
4 ⋊BD12

4

1 5 C4
2 ⋊3 S3

24,3 BT24 1 5 A4

96,3 C2
2 .BT24 2 6 A4

96,203 C2
2 ⋊BT24 2 6 A4

384,4 C4
2 .∗BT24 3 7 A4

384,5868 C4
2 ⋊∗ BT24 3 7 A4

1536,NA (C2
2 ×C

2
4 )⋊∗ BT24 2 6 C2

2 ⋊A4

1536,NA (C2
2 ×C

2
4 ).∗BT24 1 5 C2

2 .A4

6144,NA C4
4 ⋊∗ BT24

BT24 4

1 5 C2
4 ⋊A4

10.3. Technical digression: Affine actions

In this technical section, we show that all actions giving a terminalization with simply connected regular
locus are affine. The possible groups arising are listed in Tables 7 and 8 and satisfy one of the assumptions
(1)–(5) in Lemma 10.6.

Lemma 10.6 (Affine groups). Let G be a finite group of induced symplectic automorphisms of Kn(A). Then G is
conjugate by an element of A[n+1] to the affine subgroup Gtr ⋊G◦ if

(1) n = 2 and G◦ ≃ C2,
(2) n = 2 and G◦ ≃ C6,
(3) n = 2 and G◦ ≃ BT24,
(4) n = 2, G◦ ≃ C3 and N3 , 0,
(5) n = 3, G◦ ≃ C2 and N2 , 0.

Proof. We follow the notation of Section 10.1. It suffices to prove that, up to conjugation in A[n+ 1], the
quotient G→ G◦ splits. If {gi} are generators of G◦ ⊂ SL(Λ), and ταi

gi is a lift of gi in G ⊂ A[n+1]⋊SL(Λ),
we show that there exists an α ∈ A[n+1] such that the τα(ταi

gi)τ−α ⊂ SL(Λ) generate G◦; i.e., G◦ ⊂ ταGτ−α
splits the quotient ταGτ−α→ G◦.

(1) Let τα(−id) ∈ G be a lift of −id ∈ C2. Conjugating by τα , we write

τα(τα(−id))τ−α = −id ∈ ταGτ−α .

(2) Let ταg6 ∈ G be a lift of g6 ∈ C6. Observe that (id− g6) is an automorphism of A[3], so we can pick
a β such that β − g6(β) = −α, which gives

τβ(ταg6)τ−β = g6 ∈ τβGτ−β .

(3) Let ταt be a lift of t to G. Observe that (id− t) is an automorphism of A[3], so we can pick a γ such
that γ − t(γ) = −α, which implies

τγ (ταt)τ−γ = t ∈ τγGτ−γ .

Let τβr be a lift of r to τγGτ−γ . As t3 = −id ∈ τγGτ−γ and (τβr)3 = τβ+r(β)+r2(β)(−id) ∈ τγGτ−γ , we write

τβ+r(β)+r2(β)(τβr)τ−β−r(β)−r2(β) = r ∈ τγGτ−γ .

(4) As N3 , 0, by Lemma 5.6(2), there exists an

α ∈Πg3 B {α ∈ A[3] |g3(α) = α} = Im(id− g3)

such that ταg3 ∈ G. Pick a β such that β − g3(β) = −α. Then

τβ(ταg3)τ−β = g3 ∈ τβGτ−β .
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(5) As N2 , 0, by Lemma 5.6(1), there exists an α ∈ A[2] such that τα(−id) ∈ G. Pick a β such that
2β = α. Then

τβ(τα(−id))τ−β = −id ∈ τβGτ−β . □

10.4. Terminalizations with simply connected regular locus

Tables 9 and 10 are refinements of Tables 7 and 8 for terminalizations Y of quotients with simply
connected regular locus.
• We list the group ID, the alias of G, the integers Ni and b2(Y ) as in Tables 7 and 8.
• We list the numbers ak of isolated singularities in Y of analytic type A

2n/ 1k (1,−1, . . . ,1,−1); see
Definition 2.1, the computations in Section 11 for n = 2, and in Proposition 10.7 for n = 3.
• If n = 3, we list the number s2 of surfaces of Y with general transversal singularities of type

1
2 (1,1,−1,−1); see Proposition 10.7.

• If n = 2, we list the topological Euler characteristic χ, the fourth Betti number b4 and the Chern
numbers c4 and c22 of Y , which are functions of b2(Y ) and ak as follows:(9)

b4(Y ) = 10b2(Y )− b3(Y ) + 46− a2 − 2a3 − 3a4 by [FM21, Proposition 3.6],

χ(Y ) = 12b2(Y )− 3b3(Y ) + 48− a2 − 2a3 − 3a4 by [FM21, Proposition 3.6],

c4(Y ) = χ(Y )− a2
2
− 2a3

3
− 3a4

4
by [Bla96, Theorem 2.14],

c22(Y ) =
1
3
c4(Y ) + 720− 240

(a2
25

+
2a3
27

+
9a4
26

)
by [FM21, ].

Note that we can apply the previous identities since our terminalizations have quotient singularities;
see Corollary 1.11.
• If Y is deformation equivalent to a known IHS variety, we write the latter in the last column; this

analysis follows from Proposition 12.3 for n = 2 and Theorem 1.12 for n = 3. The notation Kn(A,G)
stands for a projective terminalization of Kn(A)/G, while S(G)[n]θ is the Fujiki variety; see Notation 12.1
and Definition 12.2. The question mark in the correspondence of G = BT24 indicates that it shares

the singularities and topological invariants of S(S2
3 ⋊C2)

[2]
id , but we could not decide whether the two

are deformation equivalent; see also Remark 12.4. Note that K2(A,C2) is studied in [KM18] and also
appeared in [FM21]. In all other cases, we declare the deformation type to be new.

Table 9. Terminalizations of K2(A)/G with simply connected regular locus

ID G N2 N3 b2 a2 a3 a4 b4 χ c4 c22

2,1 C2

1

0 8 36 0 0 90 108 90 480 [KM18]

6,1 C3 ⋊C2 0 8 36 13 0 64 82 166/3 712/3 new

18,4 C2
3 ⋊2 C2 0 8 36 16 0 58 76 142/3 544/3 new

54,14 C3
3 ⋊C2 0 8 36 13 0 64 82 166/3 712/3 K2(A,S3)

162,54 C4
3 ⋊C2 0 8 36 0 0 90 108 90 480 K2(A,C2)

3,1 C3

0

1 7 0 12 0 92 108 100 540 S(C2
3 )

[2]
−id

9,2 C2
3 3 11 0 15 0 126 150 140 500 S(C3)

[2]
−id

27,5 C3
3 9 23 0 0 0 276 324 324 828 S[2]

(9)Recall that in our case, b3(Y ) = 0 by Proposition 7.2.
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6,2 C6

1

1 8 28 12 0 74 92 70 320 S(C3 ⋊ S3)
[2]
id

18,3 C3 ⋊C6 2 10 28 12 0 94 116 94 328 S(S3)
[2]
id

54,13 C2
3 ⋊4 C6 5 16 28 0 0 178 212 198 576 S(C2)

[2]
id

54,5 C2
3 ⋊C6 1 8 28 20 0 58 76 146/3 512/3 S(C3 ⋊ S3)

[2]
(−id,id)

162,40 C3
3 ⋊4 C6 2 10 28 12 0 94 116 94 328 S(S3)

[2]
id

486,146 C4
3 ⋊4 C6 1 8 28 12 0 74 92 70 320 S(C3 ⋊ S3)

[2]
id

24,3 BT24

1

1 7 20 12 3 63 79 235/4 275 S(S2
3 ⋊C2)

[2]
id ?

216,153 C2
3 ⋊BT24 1 7 20 16 3 55 71 577/12 601/3 new

1944,NA C4
3 ⋊BT24 1 7 20 12 3 63 79 235/4 275 K2(A,BT24)

Table 10. Terminalizations of K3(A)/G with simply connected regular locus

ID G N2 b2 a2 s2

2,1 ⟨−id⟩ 1 8 140 0 S(C4
2 )

[3]

4,2 C2 × ⟨−id⟩ 2 9 112 7 S(C3
2 )

[3]

8,5 C2
2 × ⟨−id⟩ 4 11 64 18 S(C2

2 )
[3]

16,14 C3
2 × ⟨−id⟩ 8 15 0 28 S(C2)[3]

32,51 C4
2 × ⟨−id⟩ 16 23 0 0 S[3]

10.5. Singularities of terminalizations of quotients of K3(A)

We determine the singularities of the terminalizations of K3(A)/G with simply connected regular locus.

Proposition 10.7. Let X = K3(A) and G = Ci
2 × ⟨−id⟩ for 0 ≤ i ≤ 4. Then the singular locus of Y consists

only of a2 isolated points of type A
6/ 12 (1,1,1,1,1,1) and s2 surfaces with general transversal singularities

A
4/ 12 (1,1,1,1), where

a2 = 4
(
42− 7 · 2i + 1

3
(2i − 1)(2i − 2)

)
,

s2 = (2i − 1)(8− 2i−1).

Proof. The fixed loci of an automorphism in G are computed for instance in [Flo24, Lemma 2.10, Proposi-
tion 2.12].

(1) Any nontrivial translation τα ∈ A[2] fixes eight K3 surfaces Vα,θ in K3(A), where

ϵ(Vα,θ) = {[(x,x+α,−x+θ,−x+α +θ)] |x ∈ A}

with θ ∈ A[2] and Vα,θ = Vα,θ+α .
(2) Any involution τα(−id) ∈ A[2]× ⟨−id⟩ fixes the fourfold Wα of K3[2]-type, where

ϵ(Wα) = {[(x,−x+α,y,−y +α)] |x,y ∈ A},

and 140 isolated fixed points of the form

[(ε1, ε2, ε3,−ε1 − ε2 − ε3)] with 2εi = α and the εi pairwise disjoint.

Observe that these fixed loci satisfy the following intersection rules:
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• Two fourfolds Wα and Wβ intersect along the surface Vα+β,α = Vα+β,β .
• Three fourfolds Wα ,Wβ and Wγ intersect in four points of the form

[(ε,ε+α + β,ε+α +γ,ε+ β +γ)] with 2ε = α + β +γ .

Thus, Wα ∩Wβ ∩Wγ consists of 4 of the 140 isolated points fixed by τα+β+γ (−id).
Let z be an isolated point of Fix(τα(−id)). Then one of the following cases holds:
(i) Gz = ⟨τα(−id)⟩, and z corresponds to a singular point of Y .
(ii) Gz = ⟨τα(−id), τβ(−id)⟩ ≃ C2

2 , and

z ∈Wβ ∩Vα+β,θ

(
=Wβ ∩Wθ ∩Wα+β+θ

)
for some θ , α,β in A[2], equivalently τθ(−id) < G. Indeed, z is an isolated fixed point only for
the involution τα(−id) as can be seen by writing 2εi = α, so z must lie in Wβ . Locally at q(z), the
terminalization q : Y → X/G is isomorphic to

Tot(T ∗
P

1)×A4/ 12 (1,1,1,1) −→A
2/ 12 (1,1)×A

4/ 12 (1,1,1,1);

thus it contains only a singular surface with general transversal singularities of type 1
2 (1,1,1,1).

(iii) Gz = ⟨τα(−id), τβ(−id), τγ (−id)⟩ ≃ C3
2 , and

z ∈Wβ ∩Wγ ∩Wα+β+γ .

Locally at q(z), the quotient X/G is isomorphic to the triple product of a canonical surface singularity
of type A1, which admits a symplectic resolution.

z

Vα+β,θ

Wβ

Wα+β+θ Wθ

(ii) Gz ≃ C2
2

z

Wβ

Wα+β+γ Wγ

Vα+β,γ

Vα+γ,β Vβ+γ,β

(iii) Gz ≃ C3
2

As a result, Y has only (quotient) singularities of the types appearing in the statement of Proposition 10.7,
with the invariants a2 and s2 as follows:

s2 = # surfaces inSing(X/G)

= (# surfaces in X fixed by a translation)− (# such surfaces lying on a fixed fourfold)

= 8 · (# nontrivial translations in G)− (# intersection of two fixed fourfolds)

= 8(2i − 1)−
(
2i

2

)
,

a2 = # isolated singular points of X/G

=
(
# isolated points inFix(τα(−id)) for some τα(−id) ∈ G

and not lying on Wβ for any β ∈ Gtr

)
/(#orbits of such points)

= 2i ·
(
(# points fixed by τα(−id) and not lying on Wα)

− (# such points lying on Wβ for some β ∈ Gtr)
)
/2i .

The points z ∈ Fix(τα(−id)) lying on Wβ \Wα for β , α are in particular fixed by τα+β ; hence they lie
on one of the seven fixed surfaces Vα+β,θ =Wθ ∩Wα+β+θ for θ , α,β in A[2]. Thus, for each choice of
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β ∈ Gtr \ {α}, there are 4 · 7 such points z ∈Wβ ∩Wθ ∩Wα+β+θ . However, note that when θ is in Gtr, we
count the same point z three times. Indeed, if θ ∈ Gtr, then z is a point of type (iii), and it lies on three fixed
fourfolds Wβ , Wθ and Wα+β+θ . So,

(# isolated points fixed by τα(−id) and lying on Wβ for some β ∈ Gtr)

= 4 · 7 · (# translations in Gtr \ {α})− 4 · 2 · (# choices of {β,θ} in Gtr \ {α})/3

= 4 · 7 · (2i − 1)− 4 · 2 ·
(
2i − 1
2

)
1
3
,

and we conclude

a2 = 140− 4 · 7 · (2i − 1) + 4 · 2 ·
(
2i − 1
2

)
1
3
. □

Corollary 10.8 (Quotient singularities). Any projective terminalization of a quotient of K2(A) or K3(A) by a
finite group of induced symplectic automorphisms has quotient singularities.

Proof. By direct inspection of the singularities of Kn(A)/G, where G is one of the groups in Table 9 (more
precisely, because of the analysis of the local model of terminalizations in Lemma 11.1 and the projectivity of
their gluing explained in Section 11.1) and Proposition 10.7, we see that the projective terminalizations with
simply connected regular locus have quotient singularities. The result in general follows since any other
projective terminalization is deformation equivalent to a quotient of a terminalization with simply connected
regular locus by Proposition 8.1. □

11. Singularities of quotients of generalized Kummer fourfolds

In this section, we analyze the singularities of the quotients K2(A)/G (see Table 9) and describe local
models for their terminalizations (see Section 11.2). A result of Namikawa grants that the singularity type
of global terminalizations agrees with that of the local models; see Section 11.1. One of the difficulties,
compared to similar previous investigations, is that our groups G are not necessarily cyclic and may contain
several translations. This implies that the intersections and combinatorics of fixed loci of all elements g ∈ G
make the analysis technically more challenging. To navigate this complexity, we display the configuration of
the singularities of K2(A)/G in some schematic pictures in Section 11.5: The diagrams clarify the relative
position and isotropy of each stratum of the singular locus.

We pursue the desired analysis of the singularities of K2(A)/G and their terminalizations, as follows:
• We describe the G-fixed locus on K2(A); see Table 11. This can be done in terms of the G-fixed locus

of A3
0, except where the Hilbert–Chow morphism ϵ : K2(A)→ A3

0 is not an isomorphism, especially
on the punctual Hilbert scheme ϵ−1(0) ≃ P(1,1,3); see Section 11.3.
• In Section 11.5, we provide an algorithm that extracts the configuration of the singularities of K2(A)/G

from the intersection theory and combinatorics of the G-fixed loci. We run this explicitly for the new
deformation types that appear in Table 9 and represent the singularities in a diagram (see Figure 3
and Section 11.5.3).
• We provide local models for the singularities of K2(A)/G, describe the singularities of a local

terminalization and show that they can be glued to a projective terminalization of K2(A)/G by results
of Namikawa; see Sections 3.2 and 11.1.

11.1. Projective terminalizations

Gluing together local analytic models of terminalizations may lead to a non-projective global terminaliza-
tion, as in [Fuj83, Proposition 13.3]. One may wonder whether the local singularities of a global projective
terminalization differ from that of an arbitrary local model. This is not our case.
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The only local terminalization that is not obtained by blowing up the reduced singular locus, and which
may potentially affect the projectivity of the global terminalization, corresponds to a singularity with isotropy
BT24, namely singularity (9) in Lemma 11.1. Two local symplectic resolutions of such a singularity are
described in [LS12]. They are blowups of local analytic Weil divisors followed by the blowup of the singular
locus of the previous blowup. In particular, the exceptional locus is irreducible. We do not know whether the
same sequence of birational transformations can be carried out globally on K2(A)/G, namely if the effective
Weil divisor extends (at least its class in the class group does). Nevertheless, by Corollary 3.11, any projective
terminalization of X/G should be locally isomorphic to one of the two symplectic resolutions obtained by
Lehn and Sorger. In fact, Bellamy showed that these are the only symplectic resolutions of such a quotient
singularity; see [Bel16, Section 4.3]. We conclude that, in our case, a projective terminalization of K2(A)/G
can indeed be obtained by gluing local models of terminalization, which are listed in Lemma 11.1.

11.2. Local models of some symplectic singularities and their terminalizations

Lemma 11.1. Let G be a finite group with a faithful complex symplectic representation V of dimension 4.
(1) If G ≃ Ck for k = 2,3,4 or 6 and V /G has an isolated (terminal ) singularity, then

V /G ≃A
4/ 1k (1,1,−1,−1).

(2) If G ≃ C4 and Sing(V /G) is an irreducible surface generically of transversal A1-singularities, then

V /G ≃A
4/ 14 (1,−1,2,2),

and a terminalization of V /G has two singularities of type 1
2 (1,1,1,1); i.e., a2 = 2.

(3) If G ≃ C6 and Sing(V /G) is an irreducible surface generically of transversal A1-singularities, then

V /G ≃A
4/ 16 (1,−1,3,3),

and a terminalization of V /G has two singularities of type 1
3 (1,1,−1,−1); i.e., a3 = 2.

(4) If G ≃ C6 and Sing(V /G) is an irreducible surface generically of transversal A2-singularities, then

V /G ≃A
4/ 16 (1,−1,2,2),

and a terminalization of V /G has three singularities of type 1
2 (1,1,1,1); i.e., a2 = 3.

(5) If G ≃ C6 and Sing(V /G) consists of two surfaces generically of transversal A1- and A2-singularities,
respectively, then

V /G ≃A
2/C2 ×A2/C3.

(6) If G = C3 ×C3, then
V /G ≃A

2/C3 ×A2/C3.

(7) If G = S3 and V /G has singularities in codimension 2, then

V /G ≃ h⊕ h∗/S3,

where S3 acts by permutation on the hyperplane h = {x ∈A3 |
∑

i xi = 0}.
(8) If G = C3 × S3 = C2

3 ⋊C2 and Sing(V /G) consists of two surfaces generically of transversal A1- and
A2-singularities, respectively, then

V /G ≃ (h⊗χ)⊕ (h⊗χ)∗/C3 × S3,

where h is the irreducible 2-dimensional representation lifted from S3 and χ is a nontrivial character of
order 3.

(9) If G = BT24 and Sing(V /G) is an irreducible surface generically of transversal A2-singularities, then

V /G ≃ ρ⊕ ρ∗/BT24,

where ρ is the (unique up to dual ) irreducible 2-dimensional representation of BT24 generated by complex
reflections of order 3.
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The quotients V /G as in (5), (6), (7), (8) and (9) all admit a smooth terminalization.

Proof. The symplectic form ωV induces a G-equivariant isomorphism V ≃ V ∗, and W is an irreducible
subrepresentation of V if and only if its dual W ∗ is so too. Therefore, V decomposes in irreducible
representations in one the following ways:
• χ1 ⊕χ∗1 ⊕χ2 ⊕χ∗2 if and only if G is abelian,
• χ1 ⊕χ∗1 ⊕ ρ with ρ ≃ ρ∗ symplectic,
• ρ⊕ ρ∗,
• V ,

where χi and ρ are irreducible G-representations of dimension 1 and 2, respectively.
First consider the abelian cases: (1)–(6). The computation of the weights of the action is elementary. We

comment on the singularities of a terminalization. In cases (2) and (3), a terminalization is obtained in the
following way. Let pV : BlF(V )→ V be the blowup of the plane F ⊂ V with nontrivial stabilizer. The action
of G = C2k , with k = 2 or 3, lifts to BlF(V ) and in particular on p−1V (0) ≃ P

1 via [x : y] 7→ [ξ2kx : ξ−12k y]. We
obtain the following diagram:

BlF(V ) BlF(V )/C2 BlF(V )/C2k

V V /C2k .

pV

/C2 /Ck

Since C2 = ⟨ξk
2k⟩ fixes only the pV -exceptional divisor, the quotient BlF(V )/C2 is smooth, and the residual

Ck-action fixes the points [0 : 1] and [1 : 0] in p−1V (0)/C2 ≃ P
1. Hence, the terminalization BlF(V )/Ck →

V /Ck has exactly two singular points of type 1
k (1,−1,1,−1). A similar argument gives a proof of (4)

by chasing fixed points as above in a local version of diagram (6.1) in Lemma 6.3. Finally, note that
Bl0(A2/C2)×Bl0(A2/C3) and (Bl0(A2/C3))2 give symplectic resolutions in cases (5) and (6), respectively.

We are left with the non-abelian cases: (7)–(9).
• The only irreducible 2-dimensional representation h of S3 is not symplectic; it is generated by

complex reflections. So we must have V ≃ h⊕ h∗.
• The irreducible 2-dimensional representations of C3 ×S3 are h, h⊗χ, (h⊗χ)∗. The representation V

cannot be h⊕ h∗; otherwise, the (C3 × S3)-action would factor through S3. We must therefore have
V ≃ (h⊗χ)⊕ (h⊗χ)∗.
• BT24 has seven irreducible representations: three characters 1,χ,χ∗ lifted from BT24↠ BT24/Q8 =
C3; three 2-dimensional representations ρsymp, ρ = ρsymp×χ, ρ∗; and a 3-dimensional representation.
The reducible faithful 4-dimensional representations of BT24 are

1⊕ 1⊕ ρsymp, χ⊕χ∗ ⊕ ρsymp, ρsymp ⊕ ρsymp, ρ⊕ ρ∗.

Only the last representation admits a plane with generic stabilizer exactly C3. So V ≃ ρ⊕ ρ∗.
The quotient V /G admits a smooth terminalization in cases (7), (8) and (9); see [Bel09, Corollary 1.2] or
[LS12, Theorem 1]. □

11.3. Fixed points of the punctual Hilbert scheme

Let g be a symplectic automorphism of the complex torus A. The g-fixed points lying in the locus where

the Hilbert–Chow morphism ϵ : K2(A)→ A
(3)
0 is an isomorphism are fixed points in A

(3)
0 , and they can be

described as triples of points in A partitioned by g-orbits. The g-fixed points z in the ϵ-exceptional locus
deserve additional analysis.

The positive-dimensional fibers ϵ−1(ϵ(z)), with their reduced structure, are isomorphic to
(1) P(T ∗αA) ≃ P

1 if ϵ(z) = [(α,α,β)] and g(α) = α and g(β) = β, or
(2) H3 ≃ P(1,1,3) if ϵ(z) = [(α,α,α)] and g(α) = α.
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In the former case, g acts on T ∗αA with weights (1,−1), which gives the following lemma.

Lemma 11.2. The automorphism g acting on the rational curve ϵ−1(α,α,β) ≃ P(T ∗αA) fixes either the whole
curve if ord(g) = 2, or two points corresponding to the eigenlines of g if ord(g) > 2.

In the latter case, the fiber ϵ−1(ϵ(z)) is the so-called punctual Hilbert scheme H3 of three points on
a plane, isomorphic to the weighted projective space P(1,1,3); see [Bri77, Section IV.2, p. 76] or [Gor18,
Section 3]. It parametrizes ideals of colength 3 supported on a single point, say 0 ∈ T0A ≃A

2
x,y , namely

• the square m2 of the maximal ideal m = (x,y),
• the curvilinear ideals I of colength 3, i.e., ideals containing the ideal of a smooth curve passing

through the origin. In symbols, I = (f ,m3), where f ∈m and df , 0.

Note that if ∂f
∂x , 0 and ∂f

∂y , 0, we can write

I = (x+ c0y + c1y
2,m3) =

(
1
c0
x+ y +

c1
c30

x2,m3
)

using the equivalences x2 + c0xy ≡ 0 and xy + c0y
2 ≡ 0 modulo I . This gives the transition functions

of TotO
P

1(3) = P(1,1,3) \ [0 : 0 : 1] =H3 \m2. In particular, the zero-section of TotO
P

1(3), isomorphic
to P(T ∗0A) ≃ P

1
[λ : µ], represents the curvilinear ideals cosupported on the lines through the origin; i.e.,

I([λ : µ]) = (λx+µy,m3).

Lemma 11.3. Let V be a 2-dimensional symplectic representation of the finite group G. Denote by C(k) the
C
∗-character given by t · v = tkv, and let W (k)BW ⊗C(k) for any vector space W . Then the Hilbert scheme H3

of three points on V is G-equivariantly isomorphic to

V ∗(1)⊕ (detV ∗)⊗2(3) // C∗ ≃ P(1,1,3).

Proof. Consider the curvilinear ideal I = (x+ c0y + c1y
2,m3) and the matrix representation of the action of

an element g ∈ G on V ,

g =M =
(
a b
c d

)
.

The ideal g∗I = (f ◦ g−1,m3) is generated by(
dx − by
detM

+ c0
−cx+ ay

detM
y + c1

(−cx+ ay)2

detM2 ,m3
)
=

(
x+
−b+ c0a
d − c0c

+ c1
ad − bc
(d − c0c)3

y2,m3
)
.

In the quasi-homogeneous coordinates [x1 : x2 : x3] of P(1,1,3), we write

[1 : c0 : c1] 7−→
[
d − c0c
detM

:
−b+ c0a
detM

:
c1

detM2

]
,

or equivalently [x : x3] 7→ [(M−1)tx : det((M−2)t)x3], where x = (x1,x2). □

Note that G-fixed points of H3 ≃ P(1,1,3) are G-invariant subspaces of V ∗ ⊕ (detV ∗)⊗2. We obtain the
following elementary corollary.

Corollary 11.4. We use the notation of Lemma 11.3. A symplectic automorphism g ∈ G fixes
• P(V ∗) and m2 if ord(g) = 2,
• two lines through m2 corresponding to the eigenlines of g if ord(g) = 3,
• two points in P(V ∗) corresponding to the eigenlines of g and m2 if ord(g) > 3.

Let G be a group of symplectic automorphisms of the abelian variety A (fixing the origin). To determine
the points of H3 with nontrivial stabilizers, we proceed as follows:

(1) Note that the stabilizer of m2 is G.
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(2) Determine the stabilizers for the action of G on P(T ∗0A), i.e., the eigenspaces of all elements
g ∈ SL(T ∗0A).

(3) Note that if the automorphism g ∈ G of order 3 fixes the point z ∈ P(T ∗0A), then the line through z
and m2 has generic stabilizer C3.

F−id

m2

G = C4

F−id

Fg3

m2

G = C6

F−id

Fg ′′′3Fg ′′3Fg ′3
Fg3

m2

G = BT24

Figure 1. The picture represents the loci with nontrivial stabilizer in the punctual Hilbert scheme
H3 with respect to the action of the group G. We draw H3 as a cone with vertex m2, the horizontal
section is P(V ∗), and the segments from P(V ∗) to m2 are lines parametrizing ideals I = (f ,m3) with
fixed df .

11.4. Fixed points of K2(A)

Lemma 11.5. Let G be a finite group with a faithful symplectic linear action on A. In Table 11, we provide
the number of surfaces and isolated points in Fix(G) in K2(A), and their inclusion in surfaces Fg fixed by an
automorphism g ∈ G.

Table 11. Fixed loci of some linear actions on K2(A)

G G-fixed surface G-fixed points Relative position of fixed loci

C2 1 36 36 pts < F−id
C3 1 12 12 pts < Fg3

C4 0 16
8 pts ∈ F−id
8 pts < F−id

C6 0 12

2 pts = F−id ∩Fg3
4 pts ∈ F−id \Fg3
6 pts ∈ Fg3 \F−id

BT24 0 2 2 pts =
⋂

ord(g)=3Fg

Proof. Cases C2 and C3 are classical; see for instance [Tar15, Section 1.2.1] and [FM21, Section 5.5]. We focus

on the remaining cases. For any G-fixed point z in K2(A), the image ϵ(z) = [(x,y,−x − y)] in A
(3)
0 is G-fixed

too, and {x,y,−x − y} is a union of orbits for the action of G on A, equivalently a union of fibers of the
quotient A→ A/G.

(3) If G ≃ C4 = ⟨g4⟩, the singularities of A/G are 4A3 +6A1; see [Fuj88, Lemma 3.19] and also [Pie22,
Proposition 2.7]. We denote the point/orbit in A over the singularities 4A3 by 0,q1,q2 and q3, and
the orbits over 6A1 are {x,g4(x)} for some x ∈ A[2] \ {0,q1,q2,q3}. If z is a G-fixed point in K2(A),
then one of the following holds:
• ϵ(z) = [(0,0,0)], and G fixes two points in ϵ−1(0,0,0) lying in F−id and the point m2 < F−id; see

Corollary 11.4.
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• ϵ(z) = [(qi ,qi ,0)] ∈ ϵ(F−id), and G fixes two points in ϵ−1(qi ,qi ,0) lying on F−id; see Lemma 11.2.
• ϵ(z) = [(q1,q2,q3)] < ϵ(F−id).
• ϵ(z) = [(x,g4(x),−x − g4(x))] < ϵ(F−id) for some x ∈ A[2] \ {0,q1,q2,q3}.

(4) If G ≃ ⟨g3,−id⟩ ≃ C6, the singularities of A/G are A5 +4A2 +5A1. The point/orbit over A5 is 0, the
orbits over 4A2 are {x,−x} for some x , 0 with g3(x) = x, and the orbits over 5A1 are {x,g3(x), g23 (x)}
for some x ∈ A[2] \ {0}. If z is a G-fixed point in K2(A), then one of the following holds:
• ϵ(z) = [(0,0,0)], and G fixes two points in ϵ−1(0,0,0) lying in F−id ∩ Fg3 and the point m2 ∈
Fg3 \F−id; see Corollary 11.4.
• ϵ(z) = [(x,0,−x)] ∈ F−id \Fg3 for some x , 0 with g3(x) = x.
• ϵ(z) = [(x,g3(x), g32(x))] ∈ Fg3 \F−id for some x ∈ A[2] \ {0}.

(5) If G ≃ BT24, the singularities of A/G are E6 +D4 +4A2 +A1. The point/orbit over E6 is 0, the orbit
over D4 is {q1,q2,q3}, and all other orbits of G have cardinality greater than 3. If z is a G-fixed point
in K2(A), then one of the following holds:
• ϵ(z) = [(0,0,0)], and G fixes m2 = ϵ−1(0,0,0)∩

⋂
g∈G :ord(g)=3Fg ; see Corollary 11.4.

• ϵ(z) = [(q1,q2,q3)] ∈
⋂

g∈G :ord(g)=3Fg . □

Lemma 11.6. Let G be a finite group of induced symplectic automorphisms of K2(A).
(1) If G ≃ ⟨τα⟩ ≃ C3, then G fixes 27 points.
(2) If G ≃ ⟨τα ,−id⟩ ≃ S3, then G fixes the unique intersection point of all surfaces fixed by an involution

of G.
(3) If G ≃ ⟨τα , g3⟩ ≃ C2

3 , then G fixes the three intersection points between a pair of surfaces fixed by an
element of G.

(4) If G ≃ ⟨g3, τα ,−id⟩ ≃ C3×S3, then G fixes the unique intersection point of all surfaces fixed by an element
of G \ ⟨g3⟩.

Proof. Let z be a point whose stabilizer Gz contains τα with α , 0. Then z is of the form [(x,x+α,x −α)]
with x ∈ A[3], and there are 27 = |A[3]|/3 such points z. In particular, we have the following:
• If Gz = ⟨τα ,−id⟩, then x ∈ ⟨α⟩, so

p = [(0,α,−α)] ∈ F−id ∩Fτα(−id) ∩Fτ−α(−id).

• If Gz = ⟨τα , g3⟩, then one of the following holds:
– g3(x) = x, i.e., z ∈ Fταg3 ∩Fτ−αg3 \Fg3 .
– g3(x) = x −α, i.e., z ∈ Fg3 ∩Fτ−αg3 \Fταg3 .
– g3(x) = x+α, i.e., z ∈ Fg3 ∩Fταg3 \Fτ−αg3 .

Note that any pair of fixed surfaces intersects in three points of the form [(x,x+α,x −α)].
• If Gz = ⟨g3, τα ,−id⟩, then combining the two cases above, we obtain

z = [(0,α,−α)] ∈ F−id ∩Fτα(−id) ∩Fτ−α(−id) ∩Fταg3 ∩Fτ−αg3 \Fg3 . □

11.5. Singularities of symplectic quotients

The singular locus of K2(A)/G is stratified in
(1) locally closed surfaces with isotropy C2 or C3,
(2) points in the closure of the surfaces in (1) with isotropy strictly greater than C2 or C3,
(3) remaining isolated singular points.

The points of type (2) are images under the quotient map q : K2(A)→ K2(A)/G of
(2.1) the intersection of surfaces Fg ∩Fh fixed by some g,h ∈ G,
(2.2) fixed points in Fg for the residual action of NG(⟨g⟩)/ncl(g), where NG(⟨g⟩) is the normalizer of the

cyclic subgroup ⟨g⟩ generated by g , and ncl(g) is the normal subgroup generated by g in NG(⟨g⟩).
In order to determine the singularities of X/G effectively, we use the following algorithm:
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(1) List the possible stabilizers of points of X for the action of G.
(2) Determine all the points of type 1, (2.1) and (2.2).
(3) Note that the number of remaining isolated fixed points with isotropy m is

∑
g∈G, ord(g)=m

(
(# isolated g-fixed points)− (# g-fixed points of type (2.1) and (2.2))

)/
(|G|/ ord(g))

One may run the algorithm for all groups in Table 9, but for brevity we make the following expository
choice. For the terminalizations which are deformation equivalent to a Fujiki variety (see Proposition 12.3),
the singularities have been already computed in [Men22, Theorem 1.11], and we refer the reader to loc. cit.
Here we study in detail the singularities of the new deformation types of IHS fourfolds in Table 9, namely
G◦ = C2 (see Section 11.5.1) and G = C2

3 ⋊BT24 (see Section 11.5.2). For the only remaining case G = BT24,
for which we do not know yet if it is deformation equivalent to other Fujiki varieties (see Remark 12.4), we
provide the diagram of the singularities of K2(A)/G and leave the details to the reader; see Section 11.5.3.

11.5.1. Groups with G0 = C2. Suppose Gtr ≃ C⊕i3 for some i = 0, . . . ,4. Since any point z ∈ K2(A) cannot
be fixed by more than one translation up to multiples (i.e., Gz ∩Gtr = {1} or ⟨τα⟩), the possible nontrivial
stabilizers of points in K2(A) for the action of G are

⟨τβ⟩ ≃ C3, β ∈ Gtr \ {0},
⟨τα(−id)⟩ ≃ C2, α ∈ Gtr,

⟨τα(−id), τβ⟩ ≃ S3, α ∈ Gtr, β ∈ Gtr \ {0}.

The singular points of Y correspond to the isolated singularities of X/G. Indeed, as N2 = 1 and N3 = 0,
the singular locus contains a unique irreducible component of codimension 2, namely q(F−id), with points
of isotropy C2 or S3. By Lemma 11.1(7), the terminalization Y → X/G is a symplectic resolution in a
neighborhood of q(F−id).

The singularities of X/G away from q(F−id) are images of isolated points in X fixed by elements g ∈ G.
Given the list of possible stabilizers, the isolated points of the fixed locus of an involution do not lie on any
surface fixed by any other involution. We obtain that

a2 = # isolated singular points of X/G with isotropy C2

= (# isolated points in X fixed by an involution in G)/(#orbits of such points)

= (# involutions in G) · (# isolated points fixed by− id)/(|G|/2)

= 3i · 36/(2 · 3i/2) = 36.

On the contrary, if g = τβ is a translation, an isolated fixed point may lie on a surface Fτα(−id). In that case,
the point is the unique intersection of the three surfaces

Fτα(−id) ∩Fτα+β(−id) ∩Fτα−β(−id) = [(−α + β,−α − β,−α)].
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Since there are exactly 1
3
(3i
2
)

such points, we obtain that

a3 = # isolated singular points of X/G with isotropy C3

=
(
(# isolated points in X fixed by a translation)

− (# isolated such points lying on a fixed surface)
)/
(#orbits of such points)

=
(
(# subgroups ⟨τβ⟩ ⊂ G) · (# isolated points in X fixed by τβ)

− (# isolated such points lying on a fixed surface)
)/
(|G|/3)

=
(
3i − 1
2
· 27− 1

3

(
3i

2

))/
2 · 3i

3
=
(3i − 1)(34−i − 1)

4
∈ {0,13,16}.

11.5.2. Group C2
3 ⋊BT24 (ID 216,153). We first determine the possible nontrivial stabilizers of points of

K2(A) under the action of G = C2
3 ⋊BT24; see Figure 2.

We note in particular that there are no stabilizers isomorphic to S3 and Q8. To this end, observe that all
subgroups of G isomorphic to S3 and Q8 are conjugate, so it suffices to show that the groups S3 ≃ ⟨τα ,−id⟩
and Q8 = ⟨i, j,k⟩ ⊂ BT24 are not stabilizers of any point in K2(A).
• In the former case, any point [(0,α,−α)] ∈ Fix(⟨τα ,−id⟩) is also fixed by ταgα , where gα ∈ BT24 is

the unique automorphism of order 3 fixing the line ⟨α⟩ ∈ Gtr.

• In the latter case, any point z ∈ K2(A) fixed by Q8 is fixed by BT24 too. Indeed, ϵ(z) ∈ A(3)
0 is either

[(0,0,0)] or [(q1,q2,q3)], as in the proof of Lemma 11.5 for BT24, and they are both fixed by BT24.
Further, the only Q8-fixed point of the punctual Hilbert scheme (0,0,0) is m2, which is fixed by BT24
too.

9BT24 12C3 × S3 BT24 ⟨τα , gα ,−id⟩

27C4 36C6 4C
2
3 ⟨i⟩ ⟨gα ,−id⟩ ⟨τα , gα⟩

9C2 12C3 4C3 24C3 ⟨−id⟩ ⟨gα⟩ ⟨τα⟩ ⟨τγgα⟩

Figure 2. On the left, the poset of nontrivial stabilizers of points of K2(A) under the action of
G = C2

3 ⋊BT24, up to conjugation. The left subscript denotes the number of conjugate subgroups. On
the right, we provide a representative for each conjugacy class. Note that α,γ ∈ Gtr with gα(γ) , γ .

As N2 = 1 and N3 = 1 (cf. Table 7), the only surfaces in the singular locus of X/G are q(F−id) and
q(Fgα ). The residual groups acting on the K3 surfaces F−id and Fgα are A4 = BT24/−id and S3 = ⟨τα ,−id⟩,
respectively. The singularities of the quotients F−id/A4 and Fgα /S3 are

F−id/A4 : 6A2 +4A1,

Fgα /S3 : 3A2 +8A1;

see [Xia96, Theorem 3, #17, #6]. This suffices to describe the singular points of K2(A)/G lying on
q(F−id)∪ q(Fg3) (cf. Figure 3):
• The six points of type A2 in F−id/A4 correspond to

– three points in q(F−id) with isotropy C6,
– two points in the intersection of q(F−id) and q(Fgα ) with isotropy C6,
– The point [(α,−α,0)] ⊂ q(F−id)∩ q(Fgα ), with isotropy C3 × S3.
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q(Fgα )

q(F−id)

BT24 BT24 C6 C6 C6 C6 C6 C6 C2
3 C3 × S3

C4
C4 C4

C4

C6 C6
C6

10 points of type A
4/ 13 (1,1,−1,−1)

3 points of type A
4/ 14 (1,1,−1,−1)

Figure 3. Singularities of X/G for G = C2
3 ⋊BT24 (ID 216,153).

• The four points of type A1 in F−id/A4 correspond to four points in q(F−id) with isotropy C4.
• The three points of type A2 in Fgα /S3 corresponds to

– the point [(α,−α,0)] ⊂ q(F−id)∩ q(Fgα ), with isotropy C3 × S3,
– the point [(x+α,x −α,x)] ∈ q(Fgα ), with x ∈Πgα \Gtr and isotropy C2

3 .
Note that two points of type A2 in Fgα /S3 are identified by the normalization map Fgα /S3→ q(Fgα ).
• The eight points of type A1 in Fgα /S3 correspond to

– four points in q(Fgα ) with isotropy C6,
– two points in the intersection of q(F−id) and q(Fgα ), with isotropy C6,
– two points in q(Fgα ) with isotropy BT24.

We are left to determine the isolated singular points in K2(A)/G according to their stabilizer type. By
Lemma 11.5, an isolated fixed point in K2(A) can only have stabilizer isomorphic to C4, C3 or C2.
Isotropy C4. As all subgroups in G isomorphic to C4 are conjugate, it suffices to consider the fixed points

of the linear automorphism g4 ∈ BT24. By Lemma 11.5 for C4, the automorphism g4 fixes eight points not
lying on F−id, but two of them are fixed by the whole BT24, and they lie on Fgα ; see Lemma 11.5 for BT24.
Thus, the number of isolated singular points with isotropy C4 in X/G is

(11.1) (8− 2) · (#subgroups conjugate to ⟨g4⟩)/(|G|/ |C4|) = 6 · 27/(216/4) = 3.

Isotropy C2. As all subgroups in G isomorphic to C2 are conjugate, it suffices to consider the points fixed
by −id. By Lemma 11.5 for C2, the involution −id fixes 36 points not lying on F−id, but

- 2 of them are fixed by the whole BT24 and lie on Fgα ,
- 18 of them have stabilizer ⟨i⟩,⟨j⟩ or ⟨k⟩ ≃ C4,
- 16 of them lie on a fixed surface Fg for some g ∈ BT24 of order 3.

So there are no isolated points with isotropy C2 in X/G.
Isotropy 12C3. Consider the subgroups in G conjugate to ⟨gα⟩. By Lemma 11.5 for C3, the automorphism

gα fixes 12 points not lying on Fgα , but
- 1 lies on F−id ∩Fταgα ∩Fτ−αgα ,
- 2 lie on Fταgα ∩Fτ−αgα ,
- 9 lie on a single surface Fτβ(−id) with β ∈ {0,±α}.

So there are no isolated points with isotropy C3 conjugate to ⟨gα⟩ in X/G.
Isotropy 4C3. Consider the subgroups in G conjugate to ⟨τα⟩. By Lemma 11.6(1), the translation τα fixes

27 isolated points of the form z = [(x,x +α,x −α)] for x ∈ A[3]. If x ∈ Gtr, then z lies on Fτ−x(−id). Thus,
the number of isolated points with isotropy C3 conjugate to ⟨τα⟩ in X/G is

(11.2) (27− 9) · (#subgroups conjugate to ⟨τα⟩)/(|G|/ |C3|) = (27− 9) · 4/(216/3) = 1.

Isotropy 24C3. Consider the subgroups of G conjugate to τγgα with γ ∈ Gtr \Πgα . By Lemma 11.7, the
number of isolated points with isotropy conjugate to ⟨τγgα⟩ is

(11.3) 27 · (#subgroups conjugate to ⟨τγgα⟩)/(|G|/ |C3|) = 27 · 24/(216/3) = 9.
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Finally, combining Lemma 11.1 and (11.1)–(11.3), we conclude that

a2 = 3 · 4+4 · 2 = 20, a3 = 10+2 · 3 = 16, a4 = 3.

Lemma 11.7. There are precisely 27 points in K2(A) fixed by τγgα with gα(γ) , γ .

Proof. Let z ∈ K2(A) with Gz = ⟨τγgα⟩, and write ϵ(z) = [(x,y,−x − y)] ∈ A(3)
0 , where x and y are fixed

by τγgα . Note that x,y ∈ A[9]∩(gα−id)−1(γ), which consists of nine elements. If x , y,−2y,4y, then z does
not lie on the exceptional locus of ϵ, and we have (9 ·6)/3! = 9 such points z. Otherwise, ϵ(z) = [(x,x,−2x)]
and τγgα fixes two points in ϵ−1(x,x,−2x) by Lemma 11.2. In total, we obtain 18 more points fixed by τγgα
lying on the exceptional locus. □

11.5.3. Group G = BT24 (ID 24,3).

Fg

F−id

BT24 BT24 C6 C6 C6 C6 C6 C6

C4
C4

C4
C4 C6 C6 C6 C6

4 points of type A
4/ 13 (1,1,−1,−1)

3 points of type A
4/ 14 (1,1,−1,−1)

12. Birational orbifolds

In this section, we show some exceptional birational maps between terminalizations of different quotients
of IHS varieties; see Proposition 12.3. While the determination of Betti numbers, fundamental groups and
singularities are essentially algorithmic, determining whether projective terminalizations of two different
quotients X1/G1 and X2/G2 are deformation equivalent represents a subtle task. An obvious necessary
condition is that their deformation invariants coincide, namely the corresponding rows in Table 9 or in
[Men22, Table in Theorem 1.11] are identical. When this is the case (with the single open exception of
Remark 12.4), we find an explicit birational map between X1/G1 and X2/G2, so that their terminalizations
are deformation equivalent; see Propositions 3.14 and 12.3. The idea is to write G1 as an extension of G2 by
a normal subgroup N1 and then to show that X2 is birational to X1/N1, equivariantly with respect to the
given G2-action on X2 and the residual G2-action on X1/N1. As a result, we obtain

X1/G1 = (X1/N1)/G2 ∼bir. X2/G2.

Even when X1 = X2 = K2(A), we can still run the argument: It suffices to find an isogeny f : A→ A such
that N1 = ker(f ). The ultimate goal is to merge the classification of irreducible symplectic varieties in this
paper with [Men22, Theorem 1.11], avoiding redundancy.

Notation 12.1. Let a : G ×Kn(A)→ Kn(A) be the action of a finite group of symplectic automorphisms G
on Kn(A). A projective terminalization of the quotient Kn(A)/G is denoted by Kn(A,a). In the following, we
always assume that the action a is induced by a symplectic action on the underlying abelian surface A, and
we simply write Kn(A,G) when the action a of G is clear.

Definition 12.2. Let G be a finite group of symplectic automorphisms of a K3 surface S . Let θ : G→ G be
an involution (which may also be the identity). The group G acts on Sn by

g(x1,x2,x3, . . . ,xn) = (g(x1),θ(g)(x2),x3, . . . ,xn),

and the symmetric group Sn permutes the factors of Sn. A Fujiki variety, denoted by S(G)[n]θ , is a
terminalization of the quotient Sn/⟨G,Sn⟩. In particular, we have

S(G)[n]θ ∼bir. S
n/⟨G,Sn⟩.
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Proposition 12.3. The following couples or triples of symplectic orbifolds with simply connected regular locus are
deformation equivalent:

(1) K2(A,C2) ∼ K2(A,C
4
3 ⋊C2),

(2) K2(A,S3) ∼ K2(A,C
3
3 ⋊C2),

(3) K2(A,C3) ∼ S(C2
3 )

[2]
−id,

(4) K2(A,C
2
3 ) ∼ S(C3)

[2]
−id,

(5) K2(A,C6) ∼ K2(A,C
4
3 ⋊C6) ∼ S(C3 ⋊ S3)

[2]
id ,

(6) K2(A,C3 ⋊C6) ∼ K2(A,C
3
3 ⋊4 C6) ∼ S(S3)

[2]
id ,

(7) K2(A,C
2
3 ⋊4 C6) ∼ S(C2)

[2]
id

(8) K2(A,C
2
3 ⋊C6) ∼ S(C3 ⋊ S3)

[2]
(−id,id),

(9) K2(A,BT24) ∼ K2(A,C
4
3 ⋊BT24),

(10) K3(A,C
i
2 ×C2) ∼ S(C4−i

2 )[3]id for 0 ≤ i ≤ 4.

In all cases above, the group G acts on A as the affine group Gtr ⋊G◦ (see Lemma 10.6 and Equation (2.1)). For
suitable choices of surfaces A and S and actions, the orbifolds in each row are actually birational.

Remark 12.4. The IHS orbifolds K2(A,BT24) and S(S2
3⋊C2)

[2]
id share the same Betti numbers and singularities.

They could be a pair of deformation equivalent orbifolds, but the lemmas in this section are not sufficient to
decide it.

Proof of Proposition 12.3. The proposition follows from Equations (12.1) and (12.5) below, Proposition 3.14, and
- Lemma 12.6 for (1), (2), (5), (6) and (9),
- Lemma 12.7 for (5), (6) and (7),
- Lemma 12.8 for (3), (4) and (8),
- Lemma 12.9 for (10).

In order to apply Lemmas 12.7 and 12.8 in cases (3)–(8), we first deform the pair (A,G) to (E2,G), where E
has complex multiplication. This is possible since the moduli space of such pairs (A,G) is connected by
[Fuj88, Proposition 3.7]. □

Definition 12.5. Let f : X→ Y be a morphism of algebraic varieties. An automorphism h : X→ X descends
along f to an automorphism h̄ : Y → Y if the following square commutes:

X X

Y Y .

f

h

f

h̄

Vice versa, we say that h̄ lifts to h along f .

12.1. Birational orbifolds in dimension 4

Let G be a finite group of induced symplectic automorphisms of K2(A). By construction, we have the
following birational map:

(12.1) K2(A,G) ∼bir. A
(3)
0 /G ≃ A2/(S3 ×G),

where G acts diagonally on A2 and the action of S3 on A2 is given by

(12.2) σ (x,y) = (y,−x − y), τ(x,y) = (y,x).
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Lemma 12.6. Let H ≃ Ck
3 ⊆ A[3] for 0 ≤ k ≤ 4, acting by translation on A. Assume that G◦ contains −id. Then

the following quotients are isomorphic:

(A/H)2

S3 × (A[3]/H)⋊G◦
≃ A2

S3 ×H ⋊G◦
,

where the linear symplectic group G◦ and the translation group H (respectively, A[3]/H) act diagonally on A2

(respectively, (A/H)2).

Proof. Consider the isogeny f0 : A2→ A2 given by f0(x,y) = (x + 2y,x − y), whose kernel is the diagonal
copy of A[3] in A2[3]. The automorphisms σ , τ in (12.2) and g ∈ G◦ descend along f0 to

σ̄ (x,y) = (−x − y,x), τ̄(x,y) = (x+ y,−y), ḡ = g.

Note that the group ⟨σ̄ , τ̄⟩ = ⟨σ̄2, σ̄2τ̄⟩ = ⟨σ,−τ⟩ acts via the standard action of S3 up to a sign. Hence, the
action of S3 ×A[3]⋊G◦ = S3 ×ker(f0)⋊G◦ descends along f0 to the action of S3 ×G◦ since〈

σ̄ , τ̄ ,A[3],−id, ḡ
〉
=

〈
σ̄2, σ̄2τ̄ ,−id, g

〉
= ⟨σ,τ,−id, g⟩.

Further, for any (α,β) ∈ A2[3], the translation τ(α,β) descends along f0 to τ̄(α,β) = τ(α−β,α−β). In particular,
the anti-diagonal H−B {(α,−α)} ⊂H2 ⊂ A2[3] descends along f0 to the diagonal HB {(α,α)} ⊂H2 ⊂ A2[3].
We conclude that

(A/H)2

S3 × (A[3]/H)⋊G◦
≃ A2

S3 × (H− ×A[3])⋊G◦
≃ A2

S3 ×H ⋊G◦
. □

Let ξ3 be a primitive third root of unity, and let E be an elliptic curve with complex multiplication
ξ3 ↷ E : x 7→ ξ3 · x. Denote by g3 : E2→ E2 the diagonal automorphism g3(x1,x2) = (ξ3x1,ξ

−1
3 x2).

Lemma 12.7. Let G′ be a finite symplectic group acting diagonally on E2, and set GB ⟨Πg3 , g3,G
′⟩. The group

G′ acts on the K3 surface S ∼bir. E2/⟨g3⟩, and the following orbifolds are birational:

K2(E
2,G) ∼bir. S(G′)

[2]
id

Proof. We follow closely [Kaw09, Proof of Theorem 4.2]. As in (12.1), there exists a birational map

K2(E
2,G) ∼bir. E4/(S3 ×G).

Consider the isogeny f1 : E4→ E4 given by

f1(x1,x2,x3,x4) =
(
ξ2
3x1 − x3,ξ

2
3x2 − x4,−ξ3x1 + x3,−ξ3x2 + x4

)
,

whose kernel is the diagonal copy of Πg3 in E4[3]. The automorphisms σ , τ and g3 descend along f1 to σ̄ ,
τ̄ and ḡ3 such that

ḡ3σ̄ (x4,x1,x2,x3) =
(
ξ3x4,ξ

2
3x1,x2,x3

)
,

ḡ3σ̄
2(x4,x1,x2,x3) =

(
x4,x1,ξ3x2,ξ

2
3x3

)
,(12.3)

τ̄ σ̄ (x4,x1,x2,x3) = (x2,x3,x4,x1).

In particular, we obtain

(12.4) E4/⟨σ̄ , τ̄ , ḡ3⟩ = E4/⟨ḡ3σ̄ , ḡ3σ̄2, τ̄ σ̄⟩ ≃
(
(E2/g3)× (E2/g3)

)
/τ̄σ̄ ∼bir. S[2].

An element g ′ ∈ G′ is of the form

g ′(x1,x2,x3,x4) = (cx1 + a,dx2 + b,cx3 + a,dx2 + b)

for some c,d ∈C and a,b ∈ E[3], and it descends along f1 to

ḡ ′(x4,x1,x2,x3) =
(
dx4 + b̄, cx1 + ā,dx2 + b̄, cx1 + ā

)
,
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with ā = ξ2
3a − a and b̄ = ξ2

3b − b. Since ξ3ā = ā and ξ3b̄ = b̄, the morphism ḡ ′ commutes with all the
automorphisms σ̄ , τ̄ and ḡ3.

We conclude that

K2(E
2,G) ∼bir. E4/(S3 ×G) ≃ E4/(⟨σ̄ , τ̄ , ḡ3⟩ ×G′) ∼bir. S[2]/G′ ∼bir. S(G′)

[2]
id . □

Lemma 12.8. The following orbifolds are birational:

• K2(E2,C3) ∼bir. S(C2
3 )

[2]
−id with C3 = ⟨g3⟩ and S ∼bir. E2/⟨g3⟩,

• K2(E2,C2
3 ) ∼bir. Sα(C3)

[2]
−id with C

2
3 = ⟨g3, τα⟩ and Sα ∼bir. E2/⟨g3, τα⟩,

• K2(E2,C2
3 ⋊ C6) ∼bir. Sα(C3 ⋊ S3)

[2]
θ with C2

3 ⋊ C6 = ⟨g3,−id, τα , τβ⟩, g3(β) , β and θ = (−id, id)
acting on C3 ⋊ S3.

Proof. Consider the isogeny f2 : E4→ E4 given by

f2(x1,x2,x3,x4) =
(
x1 + x3,x2 + x4,ξ3x1 + ξ2

3x3,ξ3x2 + ξ2
3x4

)
,

whose kernel is the anti-diagonal copy of Πg3 in E4[3]; i.e.,

ker(f2) = {(a,b,−a,−b) ∈ E4 |ξ3(a) = a,ξ3(b) = b} ⊆ E4[3].

The automorphisms σ,τ in (12.2) and g3 lift along f2 to the automorphisms σ̃ , τ̃ and g̃3 such that

g̃3σ̃ (x4,x1,x2,x3) =
(
ξ3x4,ξ

2
3x1,x2,x3

)
,

g̃3σ̃
2(x4,x1,x2,x3) =

(
x4,x1,ξ3x2,ξ

2
3x3

)
,

τ̃ σ̃2(x4,x1,x2,x3) = (x2,x3,x4,x1).

Thus, the group ⟨σ̃ , g̃3⟩ ≃ C2
3 acts on E2

x4,x1 ×E
2
x2,x3 as ⟨g3⟩ × ⟨g3⟩, while the group ⟨ker(f2), τ̃ σ̃2⟩ ≃ C2

3 ⋊C2

acts on E4/⟨σ̃ , g̃3⟩ ∼bir. S2 as the group ⟨C2
3 ,C2⟩ in Definition 12.2 with θ = −id.

From the short exact sequence

1 −→ C2
3 = ⟨σ̃ , g̃3⟩ −→ (C3

3 ⋊C2)×C3 = ⟨ker(f2), σ̃ , τ̃ , g̃3⟩ −→ C2
3 ⋊C2 =

〈
ker(f2), τ̃ σ̃

2
〉
−→ 1,

we obtain that

K2(E
2,C3) ∼bir.E4/(S3 ×C3) = E4/⟨σ,τ,g3⟩ ≃ E4/⟨ker(f2), σ̃ , τ̃ , g̃3⟩ = E4/((C3

3 ⋊C2)×C3)

≃
(
(E2/g3)× (E2/g3)

)
/(C2

3 ⋊C2) ∼bir. S2/(C2
3 ⋊C2) ∼bir. S(C2

3 )
[2]
−id.

A 3-torsion point α in the diagonal E2[3] ⊂ E4[3] lifts along f2 to its opposite −α, up to a translation in
ker(f2). If α = (a,b) is a nonzero translation in Πg3 , then ⟨ker(f2), τ̃α⟩ is generated by three translations

τ1 B (a,0,0,b), τ2 B (0,b,a,0), τ3 ∈ ker(f2) \ ⟨(a,−b,−a,b)⟩.

From the short exact sequence

1 −→ C4
3 = ⟨σ̃ , g̃3, τ1, τ2⟩ −→ ⟨ker(f2), σ̃ , τ̃ , g̃3, τ̃α⟩ =

(
C3
3 ⋊C2

)
×C2

3 −→ S3 =
〈
τ3, τ̃ σ̃

2
〉
−→ 1,

we obtain that

K2(E
2,C2

3 ) ∼bir.E
4/

(
S3 ×C2

3

)
≃ E4/

((
C3
3 ⋊C2

)
×C2

3

)
≃

(
E2/⟨g3, τ(b,a)⟩

)2
/S3 ∼bir. S2

α/S3 ∼bir. S(C3)
[2]
−id.

Quotienting further by S3 = ⟨τβ ,−id⟩ with g3(β) = β +α, we also obtain

K2

(
E2,C2

3 ⋊C6

)
∼bir. Sα (C3 ⋊ S3)

[2]
θ . □
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12.2. Birational orbifolds in dimension 6

The following Lemma 12.9 was communicated to the authors by Menet. By construction, we have a
birational map

(12.5) K3(A,G) ∼bir. A
(4)
0 /G ≃ A3/(S4 ×G),

where G acts diagonally on A3 and the action of S4 on A2 is given by

σ12(x,y,z) = (y,x,z), σ13(x,y,z) = (z,y,x), σ14(x,y,z) = (−x − y − z,y,z).

Lemma 12.9. Let H ≃ Ck
2 ⊆ A[2] for 0 ≤ k ≤ 4, and set GB A[2]/H × ⟨−id⟩. The group H acts by translation

on A, and it induces an action on the corresponding Kummer surface T ∼bir. A/⟨−id⟩. Then the following orbifolds
are birational:

K3(A/H,G) ∼bir. T (H)[3]id .

Proof. Consider the isogeny f3 : A3→ A3 given by f3(x,y,z) = (x+y,x+z,y+z), whose kernel is the diagonal
copy of A[2] in A3[2]. The automorphisms σ12, σ13, σ14 and −id descend along f3 to, respectively, the
permutations (23), (13) ∈ S3 of the factors of A3, and

σ̄14(x,y,z) = (−y,−x,z) = (−id,−id, id)(12)(x,y,z), −id = (−id,−id,−id).

Hence, the action of S4 ×A[2]× ⟨−id⟩ = S4 ×ker(f3)× ⟨−id⟩ descends along f3 to the action of S3 × ⟨−id⟩3,
and

A3

S4 ×A[2]× ⟨−id⟩
≃ A3

S3 × ⟨−id⟩3
∼bir. T [3].

Further, for any (α,β,γ) ∈ A3[2], the translation τ(α,β,γ) of A3 descends along f3 to

τ̄(α,β,γ) = (τα , τα , id)(τβ , id, τβ)(id, τγ , τγ ).

In particular, the action of H3 ⊆ A3[2] descends along f3 to the action of H3 ⊂ ⟨H,S3⟩ as in Definition 12.2
with θ = id. We conclude that

(A/H)3

S4 ×A[2]/H × ⟨−id⟩
≃

(
A3

S4 ×A[2]× ⟨−id⟩

)/
H3 ≃ A3

⟨H,S3⟩ × ⟨−id⟩3
∼bir. T (H)[3]id . □
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