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these cases, the points with the same extra dimension have the same singularity type. Using these
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1. Introduction

The study of the cohomology of various tautological sheaves on Hilbert schemes of points starts from
[G6t90]. There are many important works, and we just mention a few of them: [GS93, EGLOL, Sca09, WZ14,
Krul8]. These works all concern Hilbert schemes of points on smooth surfaces, except for [WZ14|, where
Hilb>(IP3) is discussed. The involved Hilbert schemes are all smooth.

The Hilbert schemes of points on higher-dimensional varieties are in general singular. There is a
conjecture on the tautological sheaves proposed by Jian Zhou (see [WZ14])lY, as we recall in the following.
Let k be an algebraically closed field of characteristic zero and X be a smooth projective scheme over k.
Let Z be the universal subscheme over Hilb" (X):

|

Hilb"(X).

Let € be a locally free sheaf on X. The tautological sheaf associated with £ is
g = fr€.

Then &M is a locally free sheaf on Hilb"(X). For every length n closed subscheme Z of X, let [Z] denote
the point of Hilb"(X) representing Z; then

My, =H%(Z,8).

T his conjecture in [WZ14] was proposed by Zhou in a talk on Hilbert schemes at a conference held at the Chinese Academy of
Sciences, and Wang joined the work later.
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Moreover, let A, (€) be the polynomial of a formal variable u with K-theory elements as coefficients:
rank £
Au(€) = Z ut ALE,
i=0
For two locally free sheaves 7 and G on a projective scheme Y over kk, define
X(F,G)=) (-1) dimyExt), (F,G).
i=0
We will also use the above notation for vector bundles associated with locally free sheaves. Now we are ready
to recall [WZ14, Conjecture 1] in a slightly generalized form.

Conjecture 1.1. Suppose dim X > 2. Then for line bundles K,L on X,
Qn

(L1) 1+ i x (A KM AL, L) Q" = exp i XA K, A L) = |.

n=1 n=1

In particular, taking coefficients of lower-degree terms of # and v, we deduce from (1.1)
1+) x(Oxm) Q" = (1- Q)+
n=1

and

> x(tM)Qr=(1-Q Ixr)Q.

n=1
Remark 1.2. In [WZ14] the corresponding conjecture is stated with the assumption K = L, and it is shown to
be true in op. cit. when dim X = 2. Their proof also works for any line bundles K and L. They also studied
an equivariant version of this conjecture, for X = C3 and n = 3 (i.e., the equality induced by the coefficients
of Q3). For v = 0 and still dim X = 2, Conjecture 1.1 is a consequence of [Sca09, Theorem 2.4.5]. The
complete dimension 2 case, together with some sheaf version enhancement, is proven by Krug in [Krul8].
The conjecture fails for curves, as observed in [Krul8, Section 6.1]. See also [Wanl6] and [OS23] for related
problems on curves.

Remark 1.3. If K and L are allowed to be vector bundles of arbitrary ranks, in [WZ14, Section 2.3] it is
conjectured that Formula (1.1) remains true if K = L. In dimension 2, Krug showed in [Krul8, Section 6.3]
that this does not hold and gave a formula in a special case. We showed in [Hu24| the existence of a universal
formula in every dimension, but an explicit formula like the right-hand side of (1.1) is still missing even in
dimension 2.

As main motivation of this paper, we study the validity of Conjecture 1.1 for smooth toric 3-folds X, where
the involved Hilbert schemes are singular.

Our main tool is Thomason’s Lefschetz fixed-point theorem for singular schemes with torus actions (see
also [Tho86, Theorem 6.4] and [Tho92, théoréme 3.5]). In fact, we prove a Lefschetz fixed-point theorem for
such schemes with reduced isolated fixed points, without assuming a global equivariant embedding. Roughly
speaking, for such schemes (and, more generally, algebraic spaces) X and a locally free T-sheaf on X, we
have the following.

Proposition 1.4 (=Corollary 2.7 and Equation (2.8)).
(1.2) Y COH(X,F)= ) (A/mF)-H(Oxst),

xeXT

where H(@\X,x;t) is the equivariant Hilbert function of the completed local ring of X at the fixed points x.



This revised formula makes Thomason’s theorem more computable. In Section 3.4, we outline how (1.2)
can in principle be used to compute the Euler characteristics of tautological sheaves on Hilbq)(IPr) for any
Hilbert polynomial @. Conjecture 1.1 is reduced to a conjecture on equivariant Hilbert functions

)

AePR

OMH(A;6,,...,6,) l_[ (1 —uf! ...9;'*)(1 —v0" ...Qr‘ir)

i=(iy i, )EA

I Rl BT o
13) =e P[;n(l-ey)---u—w) ’

where r > 2 and & is the set of r-dimensional partitions and H(A);0,...,0,) is the equivariant Hilbert
function of the completed local ring of Hilbw(Ar) at the monomial ideal I associated with the partition A;
for the notation, see Sections 3.3 and 4.1. The equivariant Hilbert functions seem far from being effectively
computable in general, while a natural expansion of the right-hand side of (1.3) into terms parametrized by
higher-dimensional (at least 3) partitions does not seem to exist in combinatorics for the time being. The
work of Wang-Zhou [WZ14] essentially solved the case r = 2.

Therefore, to apply this formula, we need to study the local structure of Hilbert schemes of points
on A’. In this paper, we only study A3. The tool is Haiman’s equations; see [Hai98] (see also [Hui06]). We
make some algebraic manipulations on Haiman’s equations so that we can compute the equivariant Hilbert
functions.

Conjecture 4.23, mentioned in Theorem 1.7, predicts the equivariant local structure at points defined
by non-Borel monomial ideals of colength 7 and extra dimension 6. The equivariant local structures at
the points defined by Borel ideals of colength at most 6, and the non-equivariant local structures at the
points for all monomial ideals of colength at most 7, are solved in this paper. In this process, we find some
interesting phenomena.

Proposition 1.5 (= Proposition 4.30). Let z be a point on Hilb" (A3). For n < 7, if the embedded dimension at z
is 311+ 6, then there exist an open neighborhood U of z and an open immersion U < G(2,6) x A3,

When n = 4, this is a classical result of S. Katz [Kat94]. For points with embedded dimension 371 + 8, we
also find such similarity phenomena (see Section 4.3.4 and Appendix C.2). For an extensive discussion, we
refer the reader to Section 4.5. In summary, although the local structures of Hilbert schemes of points are in
general very bad (see [Jel20]), there seem to be unexpected patterns.

As a result, we can show that the Hilbert schemes of at most 7 points on smooth 3-folds have certain
good local properties.

Theorem 1.6. Let X be the smooth quasi-projective 3-fold. Then Hilb"(X) is normal, Gorenstein for n <7, and
has only rational singularities for n < 6.

We expect that Hilb” (X) also has only rational singularities; see the end of Section 6 for some discussions.
In Section 5.4, we consider Conjecture 1.1 from the viewpoint of the McKay correspondence. This provides
us motivation to consider the rationality of the above-mentioned singularities.

Our results on the local structures enable us to compute the equivariant Hilbert functions. Consequently,
we verify Conjecture 1.1 for 7 < 6 and equivariant line bundles K and L on toric 3-folds. In [Hu24], using
degenerations of Hilbert schemes, we extend this result to all smooth proper 3-folds.

Theorem 1.7. Conjecture 1.1 modulo Q7 holds for smooth proper toric 3-folds X and equivariant line bundles K, L
on X. Assume that Conjecture 4.23 is true; then Conjecture 1.1 modulo Q8 holds for smooth proper toric 3-folds X
and equivariant line bundles K, L on X.

The difficulty that prevents us from extending Theorem 1.7 to the 7-point case, i.e., the validity of
Conjecture 1.1 modulo Q8, is that our determination of the local structure of Hilb” (A3) at the torus-fixed
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points corresponding to non-Borel ideals is indirect, and presently we are not able to find an explicit
equivariant isomorphism. This difficulty appears already for Hilb®(A3), where we find an explicit equivariant
isomorphism in Appendix B by brute force.

The structure of this paper is as follows:

(1) In Section 2, we prove a Thomason-type localization theorem without assuming a global equivariant
embedding into a regular scheme. This enables us to apply this theorem to smooth proper toric
varieties. Moreover, we recall the notion of equivariant Hilbert functions and the properties of these
functions that we will use.

(2) Section 3 explains the framework needed to apply the localization theorem to compute the equivariant
Euler characteristic of tautological sheaves on Hilbert schemes. We introduce some notions and
notation for later use.

(3) Section 4 is the most technical part of this paper. We recall Haiman’s defining equations of
Hilbert schemes of points and the notions of Borel and non-Borel ideals. Then we give an explicit
superpotential function for 3-dimensional pyramids; we consider the pyramid partitions as a window
to get a glimpse of the structure of Hilbert schemes of points in higher dimensions. In Section 4.3.2,
we explain an algorithm and an elementary trick of manipulations of Haiman’s equations at the
unique singular fixed point of Hilb>(A3). Then we use it to simplify the Haiman ideal for singular
points corresponding to Borel ideals. In Section 4.4, we explain the difficulty in getting the equivariant
local structure at the singular points corresponding to non-Borel monomial ideals. We conclude this
section with a series of observations and conjectures on the local structure of Hilb"(A3). Recently,
Jelisiejew, Ramkumar, and Sammartano made remarkable progress on these conjectures in [JRS24].

(4) In Section 5, we compute the equivariant Hilbert functions of the local rings at the fixed singular
points and prove Theorem 1.7. We explain Conjecture 1.1 as a McKay correspondence, and using
Riemann-Roch for stacks, we give evidence for it.

(5) In Section 6, we study the local properties of Hilb"(X) for n < 7 using the results and tricks in
Section 4.

(6) The appendices contain some tedious details. Extremely complicated is Appendix B, where we
obtain the equivariant local structure at the unique non-Borel point of Hilb®(A3) by the trick of
Section 4.3.2. In principle, one can solve Conjecture 4.23 in a similar way. But we hope that there is a
more conceptual approach.

Notation and conventions 1.8.

(1) The results in Sections 2 and 3 hold over an arbitrary field k. Starting from Section 4.1, we assume
char(k) = 0.

(2) Most of the notation is defined in Sections 2.2, 3.3, and 4.1.

(3) G(2, 6) stands for the cone of the Grassmannian G(2,6) in IP'# by the Pliicker embedding.

Accompanying files

The Macaulay2 codes implementing Algorithm 4.21, the computation for Proposition 5.3, and the
computation in the proof of Proposition 5.8, together with some other pertinent accompanying files, can be
found at https://github.com/huxw06/Hilbert-scheme-of-points.
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2. Thomason’s localization theorem and equivariant Hilbert functions

The purpose of this section is twofold. Firstly, we will recall Thomason’s localization theorem, and in the
case that the fixed locus consists of reduced isolated points, we express the formula in terms of equivariant
Hilbert functions. Secondly, in this restricted case, we remove the assumption of the existence of a global
equivariant embedding into a regular algebraic space.

Throughout this section, all schemes and algebraic spaces are over a base field k. Let G be a group
scheme over Kk, and let X be a separated k-algebraic space with an action of G, that is, a k-morphism
T: G x X — X which satisfies the usual requirements of group actions when 7 is regarded as a functor
on the category of k-schemes. The fixed-point subfunctor X© of X is defined as X©(Y) = X(Y)° for any
Kk-scheme Y. By [Mill7, Proof of Theorem 7.1, the functor X is represented by a closed subspace of X, still
denoted by XC.

Thomason’s theorem is stated for diagonalizable group schemes G (over a general base scheme S). For
our purpose, we consider only split tori T over Kk, i.e., T = (G},)i for some r > 1. Then T = Spec(k[M]),
where M is the group of characters of T and k[M] is the group algebra associated with M. We can
identify M with the standard lattice Z" in IR". The representation ring R(T) of T is Z[M].

2.1. Localization theorem

For a regular T-space Z over k and a coherent T-sheaf 7 on Z, there always exist a locally free T-sheaf P
and a T-equivariant surjection P — F (see [Tho87, Lemma 5.6]). So there is a T-equivariant locally free
resolution P. — F, and we can define

Oz(f, G) = the it" homology of P, ®0, G € Ko(T, 2),

which is independent of the choice of P. By [Tho92, Proposition 3.1], ZT is a regular subspace. On each
connected component Z’ of ZT, the conormal sheaf NV is locally free of constant rank, and

1N Z TOI' OzT,OzT)

is invertible in K(T, Z’)(g), the localization of Ko(T,Z’) as a module over R(T) at the zero ideal of R(T).
Now we are ready to state Thomason’s localization theorem (see [Tho86, Theorem 6.4] and [Tho92,
théoréme 3.5]) in our setting.

Theorem 2.1 (Thomason). Let k be a field and T a split torus over k. Let X be a proper algebraic space over k
with a T -action, Z a regular and proper algebraic space over k with a T -action, and j: X — Z a T -equivariant
closed immersion. Let F be a coherent T -sheaf over X. Let N be the conormal sheaf of ZT in Z. Then in the
localized representation ring R(T) ), we have the equality

i L(-1)! Tor;” (j.F,Oz7)
21) Y (CHU(X,F) =) (-1fHF|XT, Ty _

We are going to prove a theorem of a similar form, assuming that all the connected components of X
are reduced isolated k-points and F is locally free, while not assuming a global embedding of X into a
regular T-space. The assumption of the local freeness of 7 is not essential.

(Q)https://tex.stackexchange.com/questions/l45137/tikz—plane»partitions—with—labeled—faces
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Suppose one of the connected components of X' is a reduced isolated point x € X(k). Thanks to
[AHDI19, Theorem 19.1], there exists a T-equivariant étale morphism : (Spec(A), w) — (X, x) such that w
is a k-point of Spec(A) and w is fixed by T. Since Spec(A)T = Spec(A) ®x X!, w is a connected

T

component of Spec(A)”; in particular, this means that this connected component is reduced. Let m,, be

the maximal ideal of A corresponding to w. Then my,, is a representation of the algebraic group T, and
m,, — m,/m?2 is T-equivariant. Let d = dimy m,,/m2, i.e., the embedding dimension of A at w. Recall
that any representation of T is decomposable (see [Mill7, Theorem 12.12]). So there exist fi,..., f; € my,
which are T-semi-variant and such that f},..., f; generate m,/m2,. Suppose T acts on f; by weight w; for
1<i<r. Let B=Kk[Yy,...,Y;], and equip B with a T-action by assigning the action on Y; by weight w;.
Then the homomorphism
p:B—A, Yi+—f, 1<i<d

is T-equivariant. Denote by ¢: Spec(A) — Spec(B) the morphism associated with ¢. Let A, = li(_rniA/miu

and B=K[[Y},...,Y;]]. The induced homomorphism

is surjective. Let T = ker ().

Lemma 2.2. The kernel T is generated by T -semi-invariant polynomials; i.e, 1 = (g1,...,8,), where the g; are
polynomials of Y1,...,Y;, and T acts on g; by a certain weight v;, for 1 < i < r. Moreover, degg; > 2 for
1<i<r.

Note that there is in general not an action of the algebraic group T on T, so we cannot use the
decomposability theorem for representations of T.

Proof. By the Weierstrass preparation theorem (see [Bou65, Section VIIL.3, n° 8, Proposition 6)), Tis generated
by polynomials, say hy,...,h,,. Each h; lies in a finite-dimensional sub-representation of k[Y7,..., Y;]. So we
have h; = Y ,c 4 h; . with the h; , € K[Yy,..., Y] such that T(k) acts on h; , in K[Y,..., Y ] by a weight v,
and the v, are pairwise distinct for 2 € A with A a finite set of indices. It suffices to show h; , € T for
each a € A. If Kk is an infinite field, this is obvious via the Vandermonde determinant. If k is finite, let
T=T+ Y uealhiz). Then K[[Y7,..., Yd]]/T—> Kk[[Y7,..., Yd]]/Tis an isomorphism after base change to k so
is itself an isomorphism. Hence 7=T and thus hi 4 eTforac A 0

Lemma 2.3. For1 <i<d, the weight w; of the T -action on Y; is not zero.
Proof- Without loss of generality, suppose that T acts on Y trivially. There is a surjection
K{[Yy, ., Y VT — K[[Y1,., Yall (T4 (Yo, Yo) ) = K[ Y ((T+ (Ya o, Ya) ) 0 K[[1]])
and thus a closed embedding
Spec(Ik[[Yﬂ]/((T+ (Yy,..., Yd)) Nk[[Y; ]])) < Spec (A\w),

where the left-hand side is equal to Spec(Kk[[Y7]]/( Ylk)) for some k > 1 and is T-fixed. Since T = (g1, ..., &),
we have

(T+(Ya,..., Y)) 0 K[[Y1]] = (81(Y3,0,...,0),...,(Y3,0,...,0)).

But no g; has a constant or linear term, so (g;(Y1,0,...,0),...,4(Y1,0,...,0)) C (le), so Spec(A)T is not
reduced at w. This gives a contradiction because X is reduced at x. U

Let I be the ideal (g,...,g,) of B. Then B/I, the completion of B/I at the ideal (Y7,...,Y}y), is isomorphic
to B/ =A,. So ¢ =q/I: B/l > A is étale at w.

Definition 2.4. We call the 5-tuple (i, ¢, A, B,I) an equivariant chart at x.



In the above, we see that an equivariant chart exists for every reduced isolated component of XT which is
a k-point. Note that even when X is a scheme, an equivariant chart may not exist in the Zariski topology,
i.e, if one demands that ¢ be an open immersion. By abuse of notation, we also denote the point of Spec(B)
corresponding to the maximal ideal (Y7,...,Y,;) by x. So we can speak of the conormal bundle N, of x (i.e,
the cotangent space of Spec(B) at x) in Spec(B). By Lemma 2.3, Spec(B)7 is reduced at x, and the weights
of N, are nonzero.

The following lemma says that a locally free T-sheaf 7 on an equivariant chart is determined by its fiber
at the fixed point.

Lemma 2.5. Let W = Spec(A) be an affine k-scheme with a T -action. Let m be a T -invariant maximal ideal
of A, and suppose that k — A/m is an isomorphism. Let F be a locally free T -sheaf of finite rank on W. Let
V = F/mF, the fiber of F at the closed point. Then there exists a T -invariant open subset U of X containing x
such that there is an isomorphism of T -sheaves on U

]:lU =V (2 OU-
Proof. Let s =rank F. Let fi,..., f; be a basis of 7/mF such that f; is a T-eigenvector with weight w; for
1 <i <s. Consider the surjection
w: [(X,F)— F/mF.

For any affine k-scheme Spec(R), there is an action of T(R) on
I(X xq SpeC(R),.;E ®kR)=T(X,F)®KR

and
F @ R/(mF @ R) = (F/mF)®K R

which is functorial in R and such that 7 is equivariant. So 7t is a surjection of representations of the algebraic
group T. Any representation of T is completely decomposable (see [Mill7, Theorem 12.12]). So there exist
fire.r fs €T(X, F) such that 7(f;) = f; and f; is a T-eigen section with weight w;. Then the morphism of
Ox-modules

P: VerOx — F

induced by f; > f; is an isomorphism in an open neighborhood of x. Moreover, by checking the actions of
T(A), one sees that 1 is T-equivariant. So the open subset where 1 is an isomorphism is T-invariant. [

Recall the concentration theorem [Tho92, Theorem 2.1: The pushforward induced by the closed
immersion 1: XT < X,

(2.2) L G(T,X")0)— G(T,X)(0),
is an isomorphism.

Theorem 2.6. Let k be a field and T a split torus over k. Let X be a proper algebraic space over k with a
T -action. Let F be a locally free T -sheaf over X. Suppose that all the connected components of X* are reduced
isolated Kk-points, denoted by x1,...,x,. For each fixed point xy, let (Yy, Px, Ay, Bk, Ix) be an equivariant chart
at xy, let Ny the cotangent space of xj in Spec(By), and let dy be the embedding dimension of X at xy. Let
F /oy F be the fiber of F at xi. Then

. " Y o(=1) Tor* (By/I, x(x1))
(2.3) (7F) = )| FrmeF S :

k=1

where the term in the sum corresponding to X is regarded as a sheaf supported at x; € X .
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Proof. By the concentration theorem, it suffices to show

n

B o (<1) TorP (B/Ti, (i)
(2.4) F =1 ;[}'/mxk}'~ AN, .

Let Uy = Spec(A)\(Spec(Ax)T — {wg}). Then Uy is an open subscheme of Spec(A), and UkT = wy. We

still denote the composition Uy < Ay ﬂ) X by X. Then we have the following cartesian diagram:

xT xT

l'\[ [l
Lty

|—|k 1Uk_>X

Set 1 = Liy; thus 1 is an étale morphism. We have the following commutative diagram of localized

K-theory:
G(T,XT)

®_, G(T, U)o X)(0)-

By the concentration theorem, both 1, and 1, are isomorphisms, so ¢* is an isomorphism. So it suffices
to show (2.4) after replacing X by | |{_; Ux. Then it suffices to prove the theorem for X = Uj. Denote
the composite Uy < Spec(Ax) — Spec(By) by ¢,. Denote the closed immersion Spec(By/I;) < Spec(By)
by ji. By Lemma 2.3, Spec(By)T = Spec(Bi/Ii) = xx. So we have a cartesian diagram

Wk Xk Xk
l;(l/,\ B l;{'\f l;(”[\
Uy ¢—k> Spec(Bk/Ik)L Spec(By).

By Lemma 2.5,
]:|Uk = ¢k ((.F/Inxk./f) (2 OBk/Ik)‘
Applying the concentration to Uy and to Spec(By/I), we obtain that the localized map

Pt G(T,Spec(B/It)) o) — G(T, Uk)o)

is an isomorphism. So we are reduced to showing (2.4) for X = Spec(By/Iy) and F = (F/m,, F)®x Op, 1,
Finally, we have the commutative diagram

Txk
/ X

G (T,Spec(By/Ix)), G(T,Spec(By)),o) -

By the concentration theorem, 1/ and t,’(': are isomorphisms, so ji, is an isomorphism. So it suffices to show

LEy(=1) Tor® (B/Ig, k(i)
A,lNk

(F/my F) @ jOpy 1, = 1 [f/mxkf

in G(T, Spec(Bk))(o), or equivalently

Y% (=1)i Tor* (Bi/Ir, ()
AN, '

( ///) (]k*OBk/Ik )
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But this is the localization theorem for regular schemes; see [Tho92, Lemma 3.3]. So we have completed the
proof. U

Corollary 2.7. With the assumption and notation of Theorem 2.6, we have

. iy B Z?ﬁo(—l)iTorin (Bi/ T, 1 (xx))
(2.5 ) o)=Y | Fimr or 0 ]
and

) o n Zfio(—l)iTor?; ((A\k)w ,K(xk))
(2.6) ;(—1) H(X, F) = ) F/mF - N
in R(T)(O).

Proof. Pushing both sides of (2.3) to Spec(k), we obtain the equality in R(T)q).
For (2.6), recall that (Z;)wk = m Taking an equivariant resolution of By/I; and base change to B\k, we
obtain

Tor?k ((Z;) :K(Xk)) = Tor; " (B/I, < (x¢))-

Wk

Then (2.6) follows from (2.5). O

Remark 2.8. The advantage of Formula (2.6) is that the right-hand side depends only on the completed local
ring Oy  at the fixed points x € XT. When X represents a moduli functor, we do not need to find a global
embedding of X but only need to solve the corresponding formal deformation problem at the fixed points.

Remark 2.9. Although in Theorem 2.6 and Corollary 2.7, we do not assume the existence of an embedding
of a (Zariski) local chart at a fixed point into a regular algebraic space Z over Kk, in practice to show that the
isolated (which is comparatively easy to verify set-theoretically) fixed points of X are reduced, it turns out to
be convenient to find such a local embedding satisfying that the fixed points of Z are isolated since the fixed
locus of a regular T-space is regular; see [Tho92, Proposition 3.1]. See Section 3 for examples.

Remark 2.10. In practice, the étale morphism 3 in the data of an equivariant chart (i, ¢, A, B,I) can
usually be taken as an open immersion. This is the case if there is an equivariant embedding of X into
a geometrically normal k-scheme Z since by Sumihiro’s theorem [Sum?75, Corollary 3.11], such Z can be
covered by T-invariant affine open subsets. Moreover, when X is a normal projective scheme over k with a
T-action, an equivariant immersion of X into a projective space always exists (see [MFK94, Corollary 1.6
and Proposition 1.7]).

Let us introduce some notation for our forthcoming computations. Let t = (f1,...,,) be the generic
point of T = GJ,; one can also regard it as a formal symbol. For a character w = (ay,...,a,) € M, the trace
of t is t¥ = t{'---#,". We use this formal product t¥ to represent a 1-dimensional representation in the
representation ring R(T). Thus direct sums (resp. tensor products) of representations correspond to sums
(resp. products) of polynomials of t1,...,¢,.

Example 2.11. Let Y C IP" be the union of the n+1 coordinate lines with the reduced subscheme structure. For
| € Z, equip O(I) with the T = G'!-linearization induced by the T-action on the module k[Xy,...,X,](]).
From (2.6) we have
t:
n 1-T: 2
J#L
x(Y,0() = Z[tﬁ |
M (1-2)

i=0
One can easily check this result by a dévissage on the components of X.
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The results in this section can be generalized to diagonalized groups. In this example, suppose that k
contains Q(C,,1). Let G = (p,,41)Kk be the constant group scheme Z/(n + 1)Z that acts on IP” by cyclicly
permuting the coordinates Xg,..., X, 1. This induces an action on Y. But with this action, Y has no fixed
points. Write X(G) = Z[A]/(A"*! —1). Then by the localization theorem, x(Y,(l)) vanishes in X(G)ps
where p is the prime ideal generated by A" + A"~! + ...+ 1. One can check this by observing that x(Y,O(I))
is a direct sum of copies of regular representations of Z/(n+ 1)Z.

2.2. Equivariant Hilbert functions

Definition 2.12. Let S = Kk[xy,...,x4] or K[[xq,...,x4]]. Suppose T acts on x; by weight w;, for 1 <i <d,
and extend the T-action to the ring Kk[xy,...,x4], and to k[[x1,...,x4]] continuously. Suppose w; # 0 for
1 <i<d. For an T-invariant ideal I of S and the associated quotient R = S/I, we define the equivariant
Hilbert function of R to be

Yio(~1)! Tor} (R k)

2.7 H(R;t
(27) )= )

Then we rewrite (2.6) as

(2.8) Y COH(X,F)= ) (B/mE)-HOx ut).
xeXT

By the Weierstrass preparation theorem and Lemma 2.2, for S = Kk[[x1,...,x;]] and a T-invariant ideal I,
there exists a T-invariant Iy of Sy = Kk[xy,...,x4] such that S/I = So/Ij ®s, S. Let Ry = So/Iy. By the

flatness of S — S, we have Tor (R, k) = Tor ’(Rg, k). So we only need to study the case S = Kk[xq,...,x4].

A T-equivariant S-module is equlvalent to an M-graded S-module (recall that M is the character group
of T). Regarding R as an M-graded S-module, the numerator of (2.7) is no other than the K-polynomial
of R (see [MS05, Definition 8.32]). So when the weights wy,...,w; are all positive, or more generally lie in
a convex sector of R" D Z" = M, our equivariant Hilbert function H(R;t) coincides with the multigraded
Hilbert function of R (see [MS05, Theorem 8.20]). This justifies the name.

In the following, we give a brief survey on the computation of H(S/I;t). By definition, one may compute
Torl-S (S/1,k) by finding a T-equivariant resolution, or equivalently a multigraded resolution of S/I. But this
is rather inefficient because one needs to compute a Grobner basis many times. Another way is using the
Koszul resolution of k as an S-module. This time it is difficult to compute the homology. A much more
efficient algorithm is given in [BS92].

In the first step, we apply the following theorem (see [MS05, Theorem 8.36]), which generalizes a famous
theorem of Macaulay to general, not necessarily positive, multigraded modules.

Proposition 2.13. We have H(S/I;t) = H(S/in.(I);t).

This reduces the computation of H(S/I;t) to the case of monomial ideals. Then one can compute
H(S/in.(I);t) by using a resolution of the monomial ideal in_(I), e.g., the Taylor complex. Alternatively, we
will use the following lemma.

Lemma 2.14. Let ], = (f1,---, fu_1, fm), where the f; are eigen-polynomials under the T -action. Denote the

weight of f; byw(f;). Let J,y_1 = (f1,--» fu_1)- Then
d

(29) ) (<1)'Tor;(S/], k) =

i=0 i

d
(=1) Tor;(S/Jn-1, ) = ") Y~ (=1)" Tor; (S/ (Ju-1 = (fu)
i=0

R

Il
o

Proof. We have exact sequences

0— S/(]mfl N (fm)) i S/]mfl eBS/(fm) — R/]m —0
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and

0 S/t O Fon): o) -2 S/ eos O (fin)) — S/(for) — 0.

By the definition of quotient ideals, (J,,_1 N (f) : (f)) = U1 : (fin)). Now (2.9) follows from the additivity
of Y4 (~1)! Tor; (-, k). O

When fi,..., f,, are monomials, both J,, 1 and (J,;,_1 : (f,;)) are monomial ideals generated by at most
m —1 monomials. So we can compute H(S/],,;t) recursively.
Finally, we recall a theorem of Stanley [Sta78, Theorem 4.4]. Let R be the ring in Definition 2.12.

Theorem 2.15 (Stanley). Let R be a ring as in Definition 2.12, and assume that R is Cohen-Macaulay of Krull
dimension d and the weights w; lie in a strictly convex cone. Then R is Gorenstein if and only if there is a
multi-index o € Z" such that

(2.10) H(R;t;l,...,t-l) (-1) " H(R;ty,...,1,).

Stanley’s theorem is stated for graded algebras with positive degrees in Z. When the weights w; lie in a
strictly convex cone, we can find a subtorus of T such that the induced gradings on the variables are strictly
positive.

3. Equivariant embeddings in Grassmannians and fixed points

3.1. Equivariant embeddings

Let V be the (+1)-dimensional vector space over k spanned by Xj,..., X,. Let P" = Proj(k[XJ,..., X,]).
For a graded ideal I of k[Xj,...,X,], we denote by I the sheaf of ideals associated with I. We say that [
is m-regular, and also that I is m-regular, if H'(IP",I(m —i)) = 0 for i > 0. For a polynomial ®(z) € Q[z]
which takes integer values for z € Z, set

o(®) =inf{m : I, is m-regular for every closed subscheme Z C IP" with Hilbert polynomial ®}.

For a k-vector space W, denote by Grass(n, W) the moduli scheme of dimension # quotients of W. Then
for any d > o(®), there is a closed embedding

a: Hilb®(P") < Grass (®(d), Sym?(V)),

Z)= [HO(IP’,O(d)) —» HO(IPr,(’)Z(d))].
Let G;;rﬁ( act on Xo,..., X, by (to,...,t,) X; = ;X;. Let T =G, be the subtorus of G;:ﬁ( defined by

tg:-+t, = 1. There are induced actions of T on IP”, and thus on Hilbq)(IPr) and Grass(P(d), Symd(V)),
rendering a T-equivariant.

Lemma 3.1. The fixed loci of the induced T -action on Grass(n,Sym®(V')) consist of reduced isolated k-points.
Let Sy be the set of monomials in X,,..., X, of degree d. Then the fixed points of Grass(n,Sym“ (V) correspond
bijectively to the subsets of S ofcardmalzty (d”) n.

Proof- Since Grass(n, Sym (V)) is smooth, the fixed loci are regular (see [Ive72, Proposition 1.3] and [Tho92,
Proposition 3.1]). So it suffices to show that the fixed points are isolated k-points. The monomials in
Xo,..., X, of degree d form a basis of Symd(V). The weights of the T-action on these monomials are
pairwise distinct. Let W be a T-invariant subspace of Symd(V). By the complete decomposability of the
representations of T, the space W is spanned by a subset of S;. So the fixed points are isolated k-points.
The second statement also follows. g

Corollary 3.2. The fixed loci of the induced T -action on Hilb® (IP") consist of reduced isolated Kk-points.
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Proof. This follows from Lemma 3.1 by using the embedding Hilb®(IP")T < Grass(®(d), Sym?(V))”, where
d>ao(D). O

Now let Y be a smooth proper toric variety of dimension r. Then Y contains T = Grm]k as a dense
open subset, and T acts on Y in a natural way. This induces a T-action on Hilb"(Y), the Hilbert scheme
parametrizing length # closed subschemes on Y.

Proposition 3.3.

() If Y is projective, there exists a T -equivariant closed immersion of Hilb"(Y) into a smooth and projective
k-scheme.
i) The fixed loci of the T -action on Hilb" (Y) consist of reduced isolated Kk-points.
4

Proof- (i) By [MFK94, Corollary 1.6], there exists a T-equivariant immersion of Y into a projective space
PN with a T-action. This T-action induces a T-equivariant closed immersion of Hilb”(IPY) into a certain
Grassmannian. Precomposing this immersion with the T-equivariant Hilb"(Y) < Hilb"(IPV), we are done.
But note that with this T-action, the fixed loci on PN may not be isolated.

(i) Let Z be a T-fixed length n closed subscheme of Y. Then Z = uf.;lzl-, where Z; is a T-fixed
length n; subscheme supported at a T-fixed point y; of Y, satisfying Zle n; = n. The T-fixed points
of Y form a finite set of k-points, and each fixed point y has a T-invariant open neighborhood Uy
such that there is a T-equivariant open immersion U, — Aj. There is a T-equivariant open immersion
Hilb" (U,,) < Hilb"/(IP"). Then Corollary 3.2 implies that the fixed loci of Hilb" (U,,) consist of reduced

i i

k-points. Then each Z; is a reduced k-point of Hilb"(U,). So Z is a k-point. Moreover, since
[Z] € Hilb"(Y) shares a common étale neighborhood with [Z;] % -+ x [Z;] € ]—[i{ Hilb”"(U}, ), there is an

i
equivariant isomorphism

—_— /\k —_
Onitb(v),[z] = ®i:10Hilb”f (U )12
hence [Z] is a reduced isolated fixed point. O

Remark 3.4. The embedding of Hilb®(IP") in Grassmannians can be explicitly defined as a determinantal
scheme of a homomorphism of two vector bundles on the Grassmannians. We refer the reader to [Got78,
IK99, Bay82] and [HS04, Section 4] for an account of various embeddings with explicit equations. In practice,
these global embeddings are too complicated for computing the equivariant Hilbert functions, unless one
can find a uniform projective resolution of the local rings at the fixed points x of Hilbq)(IPr), or at least a
uniform way to describe the generators of the initial ideal of I,. In Section 4, we will take another approach
for constant Hilbert polynomials @(z) = n.

3.2. Saturated monomial ideals

Recall that a saturated ideal of k[X,...,X,] is a homogeneous ideal I satisfying that s € I if for each
0 <i <, there exists an m > 0 such that X;"s € I. There is a one-one correspondence between the closed
subschemes of IP" and the saturated ideals of k[X,),..., X,].

The T-fixed points of Hilb(IP") correspond one-one to saturated ideals of k[Xj,..., X, ] generated by a
finite set of monomials in X,..., X,.

Definition 3.5. Let I be a monomial ideal of k[Xj,..., X,]. The minimal monomial generators (X%),c4
of I are unique, where a € ZL, and A is a finite set of indices. The affine monomial datum of dimension r
associated with I is the set A; = A, regarded as a subset of lattice points in ZZ,.

Definition 3.6. A projective monomial datum of dimension r is an (r + 1)-tuple (A, ..., A,), where A; is an
affine monomial datum of dimension 7.
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Let I C Kk[Xg,...,X;] be a saturated monomial ideal. For 0 < i < r, the localized ideal Ix, of

X X; X; X . . . . . .
lk[X—(_),..., > i Yr] is a monomial ideal. Let .4; be the affine monomial datum associated with
1 1 1 1

Ix,. Then we call
Pr=(Ap,..., A)

the projective monomial datum associated with I.

Lemma 3.7. The assignment I — P is a bijection from the set of the saturated monomial ideals of k[X,..., X,]
to the set of projective monomial data of dimension r.

Proof- Let Pp = (Ay,...,A,) be a projective monomial datum. For each A;, choose m; sufficiently large such

that . . a a
0 . i-1 . i+1 r
. Z:X;ni'(&) '“(Xl—l) '(Xz+1) (&) e k[Xo,..., X,]

X; X; X; X;
for all @ = (ay,...,a;_1,4i41,...,a,) € A;. Let Jp be the ideal of k[Xj,..., X, ] generated by the g,, where a
runs over A,..., A,. Let Ip be the saturation of Jp. Then the saturated monomial ideal Ip is independent
of the choice of {m;}o<;<,, and the assignment P +— Ip is an inverse to [ — P;. O

3.3. Monomial ideals of finite colength

For a = (ay,...,a,) and B = (by,...,b,) in Z", we say a <  if a; < b; for 1 <i <r. In this paper, an
r-dimensional partition of n is a set A C Z{; with |A| = n satisfying that if § € A and a < §, then a € A.
Thus, a 2-dimensional partition is a partiti;)n in the usual sense, and a 3-dimensional partition is usually
called a plane partition.

If I is a monomial ideal of k[X{,..., X,] with finite colength 7, there is a unique r-dimensional partition A
of 1 such that Aj is the set of minimal lattices of the complement Z[ \A. We denote this A by A;. The
set of monomials {Xﬁ}lge,\I is a k-basis of k[Xq,...,X,]/I. The map_/\ — Aj is a bijection between the
monomial ideals of k[X{,..., X,] with finite colength 7 and the r-dimensional partitions of #n. We denote
the inverse map by A+ I).

We can present r-dimensional partitions graphically. To each lattice point i = (iy,...,1,) € Z', we assign a
box

Bi ={(x1,...,x,) € R" | i < xj < i+ lfor 1 <k <r}.

Then B) := [J;c) Bj is a graphical presentation of A. For example, for the monomial ideal
I=(X7,X{ X2, X1X3,X3,X,X3,X3),

the 3-dimensional partition

(3.J) Ar=1{(0,0,0),(1,0,0),(2,0,0),(0,1,0),(1,1,0),(0,0,1)}

is presented as

We also need a compact way to present r-dimensional partitions for r > 2. If A is a 2-dimensional
partition of n, let
Ai={aeZ]|(ai)e A}
Then (Ag, Ay,...) is a partition of 7 in the usual sense. We will present a 2-dimensional partition in this way.
Note that Ag > Ay >---.



On singular Hilbert schemes of points: Local structures and tautological sheaves 15

If A is a 3-dimensional partition of #, let
A ={(a,b) € Z?| (a,b,i) € A).
Then A; is a 2-dimensional partition. Then we present A by an ascending chain of usual partitions
-+ C Ay C A
For example, the 3-dimensional partition (3.1) is presented compactly as

(1) (3,2).

3.4. Tautological sheaves

Let X be a projective scheme over k with a given polarization. Let @ € QQ[z] be a polynomial that takes
integer values for z € Z. Let Hilbq)(X) be the Hilbert scheme that parametrizes closed subschemes of X
with Hilbert polynomial ®. Consider the diagram

g

Hilb®(X),

where Z is the universal subscheme of X x Hilb®(X). Let # be a locally free sheaf on X. Since 7t is proper
and flat, R7t, f*F has a finite Tor-amplitude. Let 97® be a complex consisting of finitely many locally free
sheaves on Hilb®(X) that is a representative of R7, f*%, and define

Fol = Z(—ni [2'] € K° (Hilb®(X)).
i
By abuse of terminology, we call F [*! the tautological sheaf associated with F (when @ is understood).

It depends only on the class of & in K°(X). We are interested in the Euler characteristics defined as
K-theoretical pushforwards

()= (1)

and more generally
(3.2) x (W T, 1191 = no*(( g g /\qg[q’])
into K°(Spec k) = Z, where 7, denotes the structure morphism to Spec(Ik).

Now suppose that (X, D) is in one of the following two situations:
(1) X =IP" and @ is arbitrary, or
(2) X is a smooth proper toric variety and ® =n € Z,.

Let T be the open dense torus contained in X. By Corollary 3.2 and Proposition 3.3, respectively, the fixed
points of the T action on Hilb®(X) are reduced isolated k-points. We denote the fixed points by wy,..., wg.
Let Z; be the closed subscheme of X represented by w;.

Proposition 3.8. Let A; be the completed local ring of Hilb®(X) at w; for1 <i<k. Let F and G be locally
free T -sheaves. Then we have an equality in R(T)

.

(3.3) x (AW FIP, A1) = ZX(/\P?|Zi,Aq?|Zi)H(Ai;t).

i=1
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Proof. Using an ample invertible T-sheaf on X, we can take the above 9°°® to be a complex of locally free
T-sheaves, and similarly for such a complex @* for &. Then applying (2.8) to °* and @*°, and using the
base change theorem, we obtain Formula (3.3). g

Moreover, each Z; is a T-scheme with reduced isolated fixed points, as it is a subscheme of X which has
this property. One can thus compute x (AP F |z, A1%|7.) by using (2.8) again.

Summarizing, in principle one can compute (3.2) by using (2.8) “k + 1” times. In the rest of this paper, we
are concerned with situation (2). Then the factor x (AP F |z, A1%|;) is easily computed directly. Our main
task is to compute the equivariant Hilbert series.

4. Local equations of Hilbert schemes

In this section, we will study the local rings of Hilb"(A3) at the closed subschemes defined by monomial
ideals of colength n. We first introduce some notions and terminology. From now on in this paper, we
assume the base field k has char(k) = 0 unless otherwise stated.

For an ideal I of k[Xj,..., X,] of colength n, we denote the subscheme Spec(k[Xy,...,X,]/I) by Z;.

The main component of Hilb"(A”) is the component whose general point parametrizes 7 distinct points.
In general, Hilb"(A”) may be highly singular, e.g., nonreduced or reducible (see [lar72, Jel20]). But we recall
the following theorem.

Theorem 4.1. The points on Hilb" (A") corresponding to monomial ideals lie on the main component.

This is [MS05, Lemma 18.10] in characteristic zero, and [CEVV09, Proposition 4.15] in positive character-
istic. It follows that Hilb"(A”) is smooth at a monomial ideal Z; if and only if the dimension of the tangent
space of Hilb"(A") at Z; is equal to rn.

Definition 4.2. For an ideal I of k[Xy,...,X,] of colength 1, we define the extra dimension at I to be
extra.dimy, Hilb"(A") := dimy T, Hilb"(A") — rn.

At this moment, the reader can just think of the extra dimension as the simplest way to measure the
singularity. We will see later that the local structure of Hilb"(/A") seems related to the extra dimension in
unexpected ways.

Up to now, we only made use of the torus action on Hilb"(IP") or Hilb"(A"). But a larger group, GL(r),
also acts on them, which will also turn out to be useful. A notion related to this action is that of the Borel
fixed ideals; see [MS05, Section 2.1]. An ideal I of k[Xj,..., X,] is called Borel fixed if it is fixed by the Borel
subgroup B(r) (i.e., the subgroup of nonsingular upper-triangular matrices) in GL(r). Our later use of Borel
fixed ideals is based on the following consequence of the Borel fixed-point theorem.

Lemma 4.3. LetIy,...,1, be the set of Borel fixed ideals of colength n of k[X,...,X,]. Foreach 1 <p <gq, let
Uy be an open neighborhood of Z;  in Hilb"(Ay). Then for every ideal ] of colength n of K[Xy,...,X,], there
exists a § € B(r)(Kk) such that g - Zj lies in U, for some 1 <p <q.

Proof. Let Hilb"(Ay )o be the fiber of the Hilbert-Chow morphism p: Hilb"(Ap) — (Aﬁ()(”) over 0". It
parametrizes the length # subschemes of A} supported at 0. Note that Hilb"(Aj} ), is also a fiber of the
Hilbert-Chow morphism p: Hilb"(IP ) — (IPﬁ()(”), so it is projective.

We first consider the case where Z; is supported at 0, i.e., Z; lies in Hilb"(Ajf )o. The group GL(r)
fixes 0, so it acts on Hilb"(A} )o. The action morphism a: B(r) x Hilb" (A} )o — Hilb"(A] ), is smooth
and thus is an open map. Let U = ngl a(B(r)x Uy), and let V' be the complement Hilb"(Ap)o \ U. Then
V is projective. By the Borel fixed-point theorem, see [God95, Théoréme 2], if V' is nonempty, then V has
a k-point fixed by the solvable group B(r), and we have a contradiction. So V is empty and U contains
Hilb"(A} ). Moreover, since p is proper, U D p~! (W) for some open neighborhood W of 0" € (/Aﬁ()(”).
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Now let | be an arbitrary ideal of colength n. The support of Z; consists of finitely many closed points,
say 21,...,2y. There exists an open neighborhood W’ of 0 in A’ such that (W’)" maps into W under
the quotient map (Ay)" — (Aﬁ()(”). For each i with 1 <i < m, there exists a nonempty open subset T;
of the diagonal group G}, C B(r) such that T; -z; € W’. Then T, := (2, T; is nonempty and open, and
Ty-z; C W’ for 1 <i < m. Since p is GL(r)-equivariant, it follows that T - Z; lies in p~}(W) C U, and the
proof is complete. O

The Borel subgroup depends on the choice of the order of the variables X1, ..., X,; just now the default
choice was X; <--- < X,. Now we introduce an order-independent notion.

Definition 4.4. We say that an ideal I of k[X,...,X,] is a Borel ideal if one of the following two equivalent
conditions holds:

(i) There exists a total order on Xj,..., X, such that I is fixed by the corresponding Borel group.
(ii) The ideal I is monomial, and there exists a total order i} < --- < i,, where {iy,...,7,} ={1,...,7}, such
that if j € {1,...,r} and f €I is any monomial divisible by X, then f - ;—; €l foralli<j.

We say that a monomial ideal I is non-Borel if I is not a Borel ideal.
The equivalence of (i) and (ii) is [MS05, Proposition 2.3].
Example 4.5. In K[X1, X5, X3], the ideal (X}, X{X,, X1 X3, X3, X,X3,X3) is a Borel ideal, while
(X3, X1 X2, X1 X3, X3, X, X3, X3)
is non-Borel.

Example 4.6. The ideals corresponding to the partitions in Sections 4.3.1-4.3.3 and Appendix A.1-A.4 are
the only Borel ideals of colength at most 7.

Later on we will make some nonlinear changes of variables. To check that they are isomorphisms, we
introduce the following notion.

Lemma 4.7. Let ¢: K[xy,...,x,] = K[y1,...,v,] be a ring homomorphism. Let f; = @(x;) for 1 <i < n.
Assume that there is a permutation (iy,...,1,) of (1,...,n) such that fi]- — Vi, is a polynomial in X; ..., x;, for
1 <j<n. Then @ is an isomorphism.

Definition 4.8. A homomorphism ¢: k[xy,...,x,] = K[yy,...,,] satisfying the assumption of Lemma 4.7
is called a unipotent isomorphism.

From now on, our base field will be k > Q.

4.1. Haiman equations

We recall the explicit description by Haiman of the local defining equations of Hilb"(A") and some
consequences of it.
Fix a natural number r > 1. Let ¢; = (1,0,...,0), ..., e, =(0,...,0,1) be the standard basi_s of R". Let A

be the set of lattice points in an r-dimensional partition. The Haiman coordinates are C? , where 7 € A,
j € Z%), subject to the relations

; 1 ifi=jel,
() =4 T
0 ifi,jedandi=j,
and for 1 <b<r,
(4.2) =Y e, e jen
keA
For the following theorem, we refer the reader to [Hai98] and [Hui06].
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Theorem 4.9. Let

[ 1€AJ€Z>0
let T, be the ideal of R, gemerated by Equations (4.1) and (4.2), and let
AA R A,
Then
(i) Spec(A)) is isomorphic to an affine neighborhood U, of I, in HilbM(A");
(ii) for an ideal | of k[X,,...,X,], Z; lies in U, if and only if the monomials {(X*},c) form a basis of
K[Xy,..., X, /]

(iii) for any k-algebra K, a K -point (c )le,\ Jjezs, of Spec(A)) corresponds to the ideal of K[X,...,X,]
generated by

XI-Y dxt forjezl,
i€l
While R} is not finitely generated, it is not hard to see that the ring A is finitely generated over k. Let
us recall an explicit finite presentation of A
Definition 4.10. Let A be a r-dimensional partition. The glove of A is

glo(A)={i€Z{;|i ¢ A, and at least one element of {i —¢,...,i — ¢} lies in A}.

Definition 4.11. Let S be a subset of Z{ . An unordered pair {i, j} of two distinct elements of S is called an
adjacent pair in S if i — j is equal to e, or e, — ¢}, for some a,b € {1,...,r}. The set of adjacent pairs in S is

denoted by Adj(S).
Definition 4.12. Let A be an r-dimensional partition. For an adjacent pair {, j} of glo(A1), we define the set

of Haiman equations associated with {1, j}, denoted by HE(i, j), in the following way:
(i) Ifi-j=eyand 1 <b<r,

(4.3) HE(i, j { clrer chcf”b |le /\}.

kel
(i) fi—j=e,—e,and 1 <a=b<r,

(4.4) HE(i, j) = {Za{{af”ﬂ cic e /\}.

ke ke

Denote by p the glove of A. Set
R/\ =k I:C{:I ] o
i€, jeu

Let Adj(u) be the set of adjacent pairs in p. Let H be the ideal of R, generated by the equations in
(4.5) ) HEG)

ti.jleAdj(p)

Let Ay = R)/H,. The Gj,-action on A" induces actions on R and H ), and thus on A,. We denote the
associated equivariant Hilbert function of the completed local ring of A at I} by H(A;t).

Proposition 4.13. The obvious homomorphism Ry — R, induces an isomorphism A, = A .

One can find a proof in [Hui06, Sections 5-7].
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Corollary 4.14. The set {Cé}ge/\,ieﬂ modulo the equivalence relations generated by the relations

1+e, 1

Cpier ™~ Cp Jor1 <a <r satisfying that C+e, € A andi+e, € p,
Z‘Z:‘Z ~c, forl<a=b<r satisfying that € + e, C+e,—e, €A and i +e,— ey € i,
c2~0 ifi—e,€pandl—e, € 2 forsomel <a<r,

Jorms an equivariant basis of the cotangent space of Spec(A)) at 0. Here ~ 0 means deleting this equivalence of

coordinates from {Cé}ge/\yje”.

This is a direct consequence of (4.3) and (4.4). One can deduce from this description the smoothness of
Hilb"(A?) (see [Hai98] or [MS05, Section 18.2]). In Section 4.2, we will get a graphical impression of how
the smoothness fails in higher dimensions.

Lemma 4.15. Let 1: Z'~' — 77 be the embedding x — (x,0). In this way, for an (r — 1)-dimensional partition
A, I(A) is an r-dimensional partition. Then
Spec(A,y)) = AN x Spec(A)).

Proof. Let K be an arbitrary k-algebra. Consider the ideals I of K[Xj,...,X,] such that {Xi}ia(/\) freely
generates K[X1,...,X,]/I. For such I, there are unique elements ¢;(I) € K such that

X, = Z (DX X! mod 1.
i=(iy iy 1 )EA
Let ] =INK[Xy,...,X,_1]. Then there is a canonical isomorphism
K[Xi,...,X,1)/] =K[Xy,..., X, /L.
This gives a bijection of the sets of K-points
Spec(A)(K) — KM xSpec(A;)(K),
I'— ((ci(I))ier])-

This bijection is functorial in K. So we have the wanted isomorphism of schemes. O

4.2. Pyramids

In this section, we study the Haiman ideal corresponding to a special type of 3-dimensional partitions,
called pyramids. Let pyr,(n) be the r-dimensional partition
{(a,...,a,) € Ziy|a) +---+a, <n—1}.
The glove of pyr,(n) is
glo(pyr,(n)) ={(ay,...,a,) € Z | ay +---+a, = n}.
The monomial ideal corresponding to pyr;(n) is

Ly = ) (X{X3X5).

a+b+c=n

For example, pyr;(4) is graphically presented as
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Define a polynomial in ﬂ([{cg}|i|:n_1’|j|:n]

_ i+(0,0,1) j+(1,0,0) k+(0,1,0) i+(0,0,1) j+(0,1,0) k+(1,0,0)
(4.6) Foyryn) = — ¢ Cr ¢ + ¢ Cr ¢ .
lil=ljl=lkl=n-1 lil=ljl=lkl=n-1

Proposition 4.16. There is an isomorphism

(4.7) H‘[{C{ ]/IaC(prr3(n)) — Apyr,(n)-

}|i|:n—1,|j|=n

Proof. As a convention, we define c{ =0forieZ? \Z;O. The Haiman equations (4.1) and (4.2) remain valid.
In dimension 3, Equations (4.2) read

ke

(4.8b) JOMIZN O, ien, jen,
kel

(189 O =Y A O, en, jea
ked

Suppose i,] € Z;O satisfy |i| = |j| = n— 1. Applying (4.8a) to C{+(O'1'O)+(1’O'O)

, we obtain

i+(0,1,0)+(1,0,0 i+(0,1,0) k+(1,0,0
C; ( )+( ):Zci( )Ci+( )

ke
Then applying (4.1), we get
j+(0,1,0)+(1,0,0) _ j+(0,1,0) j+(0,1,0) k+(1,0,0)
(4.9) ¢ =Ci_1,00) T Z Cx Ci '
|k|=n-1
Similarly, applying (4.8b) and (4.1) to Cj+(0’1’0)+(1’0’0), we get
Y, applying i g

j+(0,1,0)+(1,0,0 j+(1,0,0) k+(0,1,0
C; (0,1,0)+( ):ZC;{( )Ci+( )

kel
_ Jj+(1,0,0) j+(1,0,0) k+(0,1,0)
(4.10) = Ci_(01,0) T Z Cy ¢; .
|k|=n-1
Equating the right-hand sides of (4.9) and (4.10), we obtain
j+(0,1,0)  j+(1,0,0) _ j+(1,0,0) k+(0,1,0) j+(0,1,0) k+(1,0,0)
(4.10) €i-(1,0,0) ~ €i-(0,1,0) = Z Ck € - Z Ck € :
|k]=n-1 [k]=n-1
Similarly, we have
j+(1,0,00  j+(0,01) j+(0,0,1) k+(1,0,0) j+(1,0,0) k+(0,0,1)
(4.12) €i-(0,0,1) ~ €i~(1,0,0) = Z Ck € - Z Ck € ,
|k|=n-1 |k|=n-1
. j+(0,01)  j+(0,1,0) _ j+(0,1,0) k+(0,0,1) j+(0,0,1) k+(0,1,0)
(4.13) €i-(0,1,0) ~€i~(0,0,1) = Ck € - Z Ck € :

|k]=n-1 |k]=n-1
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Suppose |i| =n—1, |j|=n, and j > (1,0,0). By (4.11), (4.12), and (4.13), we have

j

t

+_
€ —Cip(

0

j k+(0,1,0)

- Z k€i+(0,1,0)

k
|k|=n—-1

lkj=n—1

i+(=1,1,0) k+(0,0,1)

+ _IkIZ’ Ck Cit(-1,1,1)
=n-1

i+(=1,0,1) k+(1,0,0)

(4.14) +12:% Cr001)
k|l=n-1

Similarly, for |i| =n -1, |j| =, and j > (0,1,0), we have

Y e

i+(=1,0,1)
it(-1,01) €

|

i+(=1,0,1) k+(0,1,0)
k Civ(=1,1,1)

|

)

|

i+(=1,1,0)_k+(1,0,0)
k €i4(0,1,0)

Y e

Ikj=r—1

)

|k|=n-1

j kr(0.01)
kCi+(0,0,1)

3 j k+(0,0,1) j+(0,-1,1) k+(0,1,0)
0 = |- Z CkCir(0,01) Z Ck €i+(0,0,1)
|k|=n-1 |k|=n-1
j+(0,-1,1) k+(1,0,0) j+(1,-1,0) _k+(0,0,1)
- Ck Civ,-1,1) Tt Z Ck Civ(1,-1,1)
|k|=n-1 |k|=n-1
j+(1,-1,0) _k+(0,1,0) j k+(1,0,0)
(4.15) - Ck €it(1,0,0) Z kCi+(1,0,0) |’

lkj=n—1

and for |i| =n—-1, |j|=n, and j > (0,0,1), we have

lkj=n—1

B +(1,0,0) +(1,0-1)_k+(00,1)
0 = |- Z, 100 + Z z+100)]
|k|=n-1 |k|=n-1
j+(1,0,-1) k+(0,1,0) j+(0,1,-1) k+(1,0,0)
- Z Ck i+(1,1,-1) T Z Ck Ci+(1,1,—1)]
lkj=r-1 Ikj=r1
X j+(0,1,-1) k+(0,0,1) j k+(0,1,0)
(4.16) - Z Cx €i4(0,1,0) Z Cx¢ 1+(010)]
|k|=n-1 |k|=n-1
Note that
oF OF oF
RHS of (4.14) = — 25" RHS of (4.15) = —22"  RHS of (4.16) = — 25"
5 OLD) L0 L0
j—(1,0,0) j—(0,1,0) j—(0,0,1)

So ]ac(prrs(n)) is contained in the Haiman ideal. We are left to show that they are equal.

Let |i| = n—2 and [j| = n. Apply (4.11) successively to C{

runs out of Z‘;’O faster than the superscript, we obtain a
in {Cpbz}|a|:n—1,|b|:n- By (4.11)-(4.13), there are six possible

j+(1,-1,0)  j+(2,-2,0)

Cis(1,-1,0) Cit(2, 2,0 and so on. If the subscript

formula expressing CZ- as a quadratic polynomial

directions to do this. Since [j| > |i|, at least one

direction has this property. In fact, write i = (iy,1,73) and j = (j1, j2,j3); when j; > i1, we have

i

) )

1=0 |k|=n-1

j+(=1,1,0) k+(0,1,0)
Ck Cit(=1,1+1,0)

j_
¢

(4.17)

1=0 |k|=n-1

JH(=1=1,1+1,0) _k+(1,0,0)
k Cit(=1,1+1,0)
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and

_ -1,0,1) k+ 0,0,1) j+(=1-1,0,1+1) k+(1,0,0)
(4.18) = —Z Z (1041 T Z “k Cit(-1,0,1+1)

=0 |kj=n—1 1=0 [k|=n—1

Similarly, when j, > i, we have

i +(0,-L1) k+(0,0,1) j+(0,~1-1,1+1) k+(0,1,0)
(4.19) G —_Z Z Civ(ot,141) F Z Ck Civ(0,~Li+1)
1=0 |k|=n-1 1=0 |k|=n-1
iy
j_ +(1,-1,0) k+(1,0,0) j+(1+1,~1-1,0) _k+(0,1,0)
(4.20) G = _Z Z Cir(i+1,-1,0) Z ‘k Cit(1+1,-1,0)
=0 |k|=n-1 1=0 |k|=n-1

and when j3 > i3,

i3

i +(L0,~1) _k+(1,0,0) +(14+1,0~1-1)_k+(0,0,1)
(4.21) c! ——Z Y+ Z Cin(l41.0,-1)

1=0 |k|=n—1 1=0 [k|=n—
i is
j_ j+(0,1,=1) k+(0,1,0) +(0,1+1,-1-1) k+(0,0,1)
(422) €i __Z Z k Ci(0141,-1) T Z Citn(0,141,-1)"
1=0 k|=n—1 1=0 |k|=

When a Haiman coordinate of the form C with |1| = n—2 and |j| = n has different expressions via (4.17)-(4.22),
we obtain a quadratic relation in the ring k[{c }|a| n—1,lpj=n)- These relations are the same as the relations
(4.14)-(4.16), up to linear combinations. This can be seen from the following type of graphs of the glove of
pyr;(n) (this example is the glove of pyr;(4)):

do NN

That is to say, an expression in (4.17)-(4.22) is induced by a path from j to the boundary of the above graph.
Comparisons between paths can be decomposed into the relations induced by the triangles Zl, and the

upside-down triangles V The relations induced by the triangles ﬁ are no other than (4.14)-(4.16), while the
relations induced by the upside-down triangles turn out to be trivial:

(i j+1,-10) j+(1,-1,0)  j+(1,0,-1) iH1,0-1)
0 = (Ci_Ci+(1,—1,0))+(Ci+(1,—1,0)_Ci+(1,0,—1))+(c‘ - _Ci)

j k+(1,0,0) j+(1,-1,0)_k+(0,1,0)
- Z kCiv(1,00) T Z Ck Ci+(1,0,0)]

|k|=n—1 |k|=n-1
i+(1,-1,0) k+(0,1,0) i+(1,0,-1) k+(0,0,1)
- Z Ck Cir(1,00) * Z Ck €it(1,0,0)
|k|]=n-1 |k|=n-1
. j+(1,0,-1) k+001 +(1,0,0)
(4.23) +|- Z c 00 " Z 100

|k|]=n-1 |k|=n-1
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The same procedure applies to a Haiman coordinate c{ for |i| < n—3 and |j| = |n|, which results in expressions
for Cg as a quadratic polynomial that has homogeneous degree 1 in {CZ}|a|:n—1,|b|:n and homogeneous degree

]

1in {Cg}|a|:|i|+1,|b|:n; thus inductively we obtain expressions for ¢; as a homogeneous polynomial of degree

n—|i| in {C2}|a|:n—1,|b|:n- We need only to show that the triangles Zl do not induce new relations. For
li| = n— 3, modulo (4.14)-(4.16), we have

] k+(0,1,0) -1,1,0) k+(1,0,0)
- CkCiv0,1,00 T €i1(0,1,0)

|k|=n-1 |k|l=n-1
j+(—1,1,0) k+ 0,0,1) ~10.1)_k+(0,1,0)
- C 1, i+(=1,1,1)
|k|=n-1 |k|=n—-1
j+(=1,0,1) k+(1,0,0) i k+(0,0,1)
- Z Ck Cir0,01) T CkCi4(0,0,1)
|k|=n-1 |k|=n-1

B i k+(0,01)  k+(0,1,0) J+H=1,0,1) [ k+(0,1,0)  Kk+(1,0,0)
= Z Ck\Cit(0,0,1) ~ Cix(0,1,0) ) T Z Ck Cir(-1,1,1) ~ %it(0,0,1)

|k|=n—1 |k|]=n-1
j+(=1,1,0) { k+(1,0,0)  k+(0,0,1)
+ Cx Cir(0,1,0) ~ Cit(=1,1,1)
|k|=n-1
3 i k+(0,0,1) 1+(0,1,0) k+(0,1,0) 1+(0,0,1)
= Z k|~ Z € Cir0,,1) t Z € €i(0,1,1)
|k|=n-1 |l|=n-1 [l|l=n-1
-1,0,1) k+(0,1,0) [+(1,0,0) k+(1,0,0) 1+(0,1,0)
+ Z, - Z €l Cir0,1,1) " Z, € Cit(0,1,1)
|k|=n-1 [l|l=n-1 [l|l=n-1
j+(~1,1,0) k+(1,0,0) 1+(0,0,1) k+(0,0,1) 1+(1,0,0)
+ Z Ck - Z g Ciro,1,1) T Z, g Cit(0,1,1)
|k|=n-1 [l|l=n-1 [l|l=n-1
3 14(0,1,0) i k+(0,0,1) i+(~1,0,1) k+(1,0,0)
= Z Cir0,1,1)| Z k€1 + Z Ck |
[l|l=n-1 |k|=n-1 |k|=n-1
14(0,0,1) i+(=1,1,0)_k+(1,0,0) i k+(0,1,0)
+ Z Civio,1,1) |~ Z Ck €l + Z xCr
|l|=n-1 |k|=n-1 |k|=n—-1
14(1,0,0) i+(=1,0,1) k+(0,1,0) i+(=1,1,0)_k+(0,0,1)
+ Z Civio,1,1) |~ Z Ck €l + Z Cx €
ll]=n-1 Ikj=r—1 lkj=r—1
modulo (4.14)-(4.16 1+(0,1,0) i k+(0,1,0) i+(=1,1,0)_k+(1,0,0)
(; J-(416) Z Cir(011) %Cr01,-1) T Ck C14(0,1,-1)
ll=n-1 lkj=rn—1 Ikj=r—1
j+(~1,1,0) k+(0,0,1) j+(=1,0,1) k+(0,1,0)
- Z Ck Cly-1,1,00 " Z Ck Cle(-1,1,0))
|k|=n—-1 |k|=n-1

14(0,0,1) i+(=1,1,0)_k+(1,0,0) +(0,1,0)
+ Ciro,1,1)| C ¢ +

|l|l=n-1 |k|=n-1 |k|=n-1
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1+(1,0,0) i+(=1,0,1) k+(0,1,0) ~1,1,0) k+(0,0,1)
)l )@ )

ll|=n-1 lkj=n—1 Ikj=n—1
= 0.

By an induction on [i| from |i| = n—3 to |i| = 1, modulo (4.14)-(4.16), there are no new relations. The proof
is thus completed. O

Remark 4.17. Using deformation theory, modulo a conjecture, Hsu showed in [Hsul6] that the formal
completion of Spec(Apy; () at 0 is a critical locus in the tangent space, without giving an explicit form of
the superpotential.

Remark 4.18. An impression we get from the above proof is that the nonlinear relations of the Haiman
coordinates come from the configuration of the glove. In dimension 3, it is closely related to the triangles in
a certain plane projection of the glove. One can compare this to the dimension 2 case, where there is no
room for such triangles, so the resulting Haiman neighborhoods are smooth.

Remark 4.19. From Remark 4.18, one naturally expects that the pyramid ideal Iy, () should correspond

to the most singular point in Hilb!PYs(") |(A3 ), while its equations are the simplest within the singularities
of Hilb/P"'s("I(A3). An unsolved problem is to determine the smallest 7 such that Hilb”(A3) is reducible.
Up to now, it is only known that 12 <n < 77 (see [lar84, DJNT17]). Does the first reducible singularity of
Hilb"(A3) for n > 12 arise from a pyramid?

Remark 4.20. The potential Foyr,(n) can be slightly simplified by a linear change of variables that eliminates
the freedom of moving the support of the subscheme defined by the pyramid ideal. We do not do this at this

stage for it will break the symmetry of Fy;_(n)

4.3. Examples of local equations at Borel ideals

4.31. ((1)c(2,1)).— Let A1 be the 3D partition ((1) C (2,1)). The corresponding diagram is

and the corresponding monomial ideal is
I/\121 = (Xlzl X22; X%; X]XZ; X1X3,X2X3).

This is the pyramid pyr;(2). For clarity, we make the change of variables

200 110 101 _ 020 011 002
Cloo =% Cro0=b Clp0=6¢ ¢g0=4, Cipo=¢ Cio0=1,

200 110 101 _ ; 020 _ 011 002
(4.24) C10=8& Cor0=h cor0=1% Coi9=J» Coro=k Coio=1

200 110 101 020 011 002
Coo1 =M, Coo1 =M Coo1 =0, Coo1 =P Coo1 =4 Coo1 =71

and set
Fio(a,...,r) = —cdg+beg+bch—aeh+eh®—b%i+adi—dhi—egj+bij+dgk—bhk
—cem+bfm—ekm+dlm+c*n—afn+ fhn—k*>n—bln+ jln—beo
+aeo —dio+bko+ fno—eo® — fgp+cip+ikp—hlp+1lop +egq—chgq
—ijq+hkq— fmq—Inq +coq—koq +iq* + emr —cnr + knr —ipr.
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Then Proposition 4.16 in this case reads

oF JoF
Ay :]k[a,...,r]/( 915121""’ a1r21)

(see also, e.g., [Kat94, Appendix]| and [Ste03, Section 4] for such presentations). To cancel the freedom of
moving the support, we make a change of variables

ar—a+h+20, jr—j+2b+q, rr—r+c+2k,
gr—b+gq, cr—k+ec, h+—o+h.

Then we obtain

Ay, =Klacd,e f,8hi,j,L,mmn,p,q,r]/]i2 ®K[b,k, 0],

where
Jio1 = (em—cn—ip, eg—In+iq, eh—di+ fn, an+gp+mgq,
cg—ai—Im, dm+jn—hp, cd+ej+ fp, fg+hl+ir,
dl—fq+er, dg+hg+nr, —ch—ij—fm, —ae—Ip—cq,
(4.25) —ah—gj+mr, —ad + jq+pr, —af +jl—cr).

Finally, the map

ar—-p1a C+opya, dr—>-po3 er—p3a, fro—poa,
(4.26) §r—p1s5  hr—pos ir—pas,  jropor lFopra
mr=pys5 N> p3s5 prE>-P3, V> P13 =2 Pol
transforms J;,; into the Pliicker ideal for the Grassmannian G(2, 6):
(P3,4P2,5 = P2,4P3,5 + P2,3P4,5, P3,4P1,5~P1,4P3,5 + P1,3P4,5 P2,4P1,5~P1,4P2,5+ P1,2P4,5
P2,3P1,5 = P1,3P2,5 T P1,2P3,5, P3,4P0,5 —P0,4P3,5 1t P0,3P4,5, P2,4P0,5 ~P0,4P2,5 T P0,2P4,5/
(4.27) P1,4P0,5 — P0,4P1,5 + P0,1P4,5 P2,3P0,5 —P0,3P2,5 + P0,2P3,5 P1,3P0,5~ P0,3P1,5+ P0,1P3,5
P1,2P0,5 = Po,2P1,5 t P0,1P2,5, P2,3P1,4 — P1,3P2,4 + P1,2P3,4, P2,3P0,4 —P0,3P2,4 + P0,2P3,4,
P1,3P0,4 — P0,3P1,4 T P0,1P3,4» P1,2P0,4 — P0,2P1,4+ P0,1P2,45 P1,2P0,3 — P0,2P1,3 + P0,1P2,3)-
Denote by 5(2,6) the cone of G(2,6) in IP™4. So Spec(A),,) is isomorphic to the product A3 x 6(2,6).
This is [Kat94, Theorem 1.6(3)].

4.3.2. ((1)c(3,1)).— Let Ay3; be the 3D partition ((1) € (3,1)). It corresponds to the 3D diagram and
the monomial ideal

I/\131 = (X13' Xl X21 Xl X3: X22, X2X3, X32) .
In this subsubsection, we give a quite detailed account of our method of simplifying the Haiman equations.

There are 40 variables in R . . First we use the following algorithm to diminish the number of generators of
the k-algebra A) . .

Algorithm 4.21. Suppose given a 3-dimensional partition A.

(1) Find the glove y of A and the minimal lattices min(u) of p.
(2) Find the adjoint pairs in p.
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3) Define monomials ¢/ for i € A,j € u, and the ring Ry =k ¢! ielicn
1 ] I/l g 1 y]JER
(4) Define the Haiman equations (4.4). .
5) Run the simple elimination of the Haiman equations for the Haiman coordinates C]~, where i € A and
p q i
j € p\min(u). Here by a simple elimination, we mean that if there is an equation of the form

ax—f(y,z,...) =0,

where 0 #4 € Q and f(v,z,...) is a polynomial of variables other than x, then we eliminate the
variable x and replace the appearance of x in the other equations by f(y,z,...).

(6) Run the simple elimination for all the remaining Haiman coordinates, including those not eliminated
in the previous step and the coordinates C? , where i € A and j € min(p).

(7) Finally, for the convenience of finding further simplifications, we reindex the remaining variables by
X1, X,... and return this ring.

We implement this algorithm in Macaulay2. Since our base field k contains Q, the result is valid in k.©

There are 21 remaining coordinates:

1,1,0 1,0,1 3,0,0 1,1,0 1,0,1 ,0,0
Cro0X1, CiooF—>X2, Croo0™7%3 Croob X4  Copoo7X5  Cro0b— X6
0,2,0 01,1 0,0,2 1,1,0 1,0,1 3,0,0
00X, CrooF X8 Cro0"%9  Coi1o0F X100 Co1,0 %11, Cop0F X125
0,2,0 01,1 0,0,2 1,1,0 1,0,1 3,0,0
Co,1,0 ™ %13, Cp10F X140 Co1,0 7 X15 Coo,1 F X160 €01 7 *17, Cp0,1 T X185

0,2,0 0,1,1 0,0,2
Co,01 7 X19, Cgo,1 F X20,  Cp,1 T X21-

Thus A, ., is generated by x1,...,x,1. We denote the resulting equations for x1,...,x5; by Hj\m. We have

A)\lsl = ]k[xll s X1 ]/H:\wl ’

We call the above procedure Step 0.

The equations in H:\m are complicated; they may have degrees up to 5 and are long. We select a subset

of them.

Definition 4.22. For a polynomial f, we denote by minDegree(f) the lowest degree of the nonzero

monomials in f.

The equations of minDegree 2 of H{, are
—X4X5X10 + xixll —x%xm + X4X5X17 + XgX10 — X7X11 + X9X16 — X8X17,
x4xf0 + xﬁxn +X5X10X16 T X5X16X17 — X4xi7'7 +X1X10 —X7X12 + X2X16 T X14X16 — X1X17
—X10X20 + X17X20 — X16X21,
X4X10X16 T X4X16X17 + Xixls + X1X16 —X13X16 — X7X18 T X10X19 — X17X19 + X16X20/
X4X10X11 T X4X5X12 + X4X11X17 + X1X11 — XgX12 + X15X16 — X11X20,
X5X10X16 T X5X16X17 T X4X5X18 + X2X16 — X14X16 — XgX18 T X11X19,
X4X5X10 — Xixn + x§x16 — X4X5X17 —XgX10 + X7X11 — X9X16 + XgX17,
X4X10X11 T Xg4X5X12 +X4X11X17 + X1 X171 — XgX12 + X15X16 — X11X20,
X5X10X16 T X5X16X17 + X4X5X18 + X2X16 — X14X16 — XgX18 T X11X19,
X5X10X11 t X§X12 tX5X11X17 + X2X11 —X9X12 + X11X14 — X10X15 T X15X17 — X11X21,
_xSx%o +X4X10X11 + X4X11%77 + sz%7 + xﬁxls —XpX10 T X1X11 —X11X13 + X10X14

tX3X17 —X14X17 — X9X18 + X11X20,

) fact, this is probably valid even over Z. We have not checked this. The following steps of change of variables are over Z.
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X6X10X16 — xfoxm —X4X12X16 — X11X%6 + XeX16X17 — X10X16X17 ~ X16Xf7 —X4X10%18
—X5X16X18 — X4X17X18 + X3X16 — X1X18 + X12X19 + X18X20,

X6X10X11 — xfoxn —X5X10X12 —X4X11X12 — Xf1x16 +XeX11X17 —X10X11X17 — X5X12X17
—x11X%7 —X5X11X18 + X3X11] —X2X12 + X12X14 + X15X18,

—X6X%o + xfo +2x4X10X12 + X10X11X16 — X11X16X17 + X6X%7 - Xf7 —2X5X17X18 — X3X10
+X1X12 = X12X13 + X3X17 — X2X18 — X14X18 + X12X20 + X18X21,

—X4XT( = XjX1p — 2X5X1X16 — 2X5X16X17 + X4X]; — X4X5X1g — X1 X10 + X7X15 — 2XpX1 6
+X1X17 + XgX18 — X11X19 + X10X20 — X17X20 + X16%X21,

X5XTo — 2X4X10X11 — X4X5X12 — 2X4X11X17 — X5X17 — X3X1g + XpX10 — 2X1X11 + XX12
+X11X13 —X10X14 — X15%X16 — X2X17 + X14X17 + X9X18,

xix5x10 — xixll + X4X§X16 — X2X5X17 — XZXE + X1X4X5 + X5X7X10 — 2X4X8X10 + X4X7X11
—X4X5X13 + XZX];L —X4X9X16 + X5X7X17 — X%X]g + X4X5Xp0 + XpX7 —X1Xg + XgX13
—X7X14 + X9X19 — XgX20,

—2x4X5X6X10 + xixéxll + xix5x12 - x§x6x16 + X4X5X11X16 — 2X4X5X10X17 + Xixllxw
—x§x16x17 + x4x5xf7 + x4x§x18 — X3X4X5— 2XpX4X10 — 2X1X5X10 + 2XgXgX10 — 3 xgxfo
+2X1X4X11 — XeX7X11 + 2X7X10X11 + X5X7X12 — 2X4XgX 12 — X4X11X13 + 2X4X10X14
—2XX5X16 + XeX9X16 — 2X9X10X16 — XgX11X16 + X4X15X16 + X7X11X17 — X9X16X17
—X4X9X1g — X5X11X19 + 2X5X10X20 + X5X16X21] — X1 X2 + X3Xg + X1 X14 + X15X19
+X2X20 — X14X20,

xixﬁxlo - xixlz - xixnxm + xﬁx6x17 + xixloxn - xix5x18 + x3xﬁ + 2X1X4X10
—XeX7X10 + x7xf0 +X4X7X10 — X4X10X13 + X7X11X16 + 2X1X4X17 — XeX7X17 + X7X10X17
—X4X13X17 + x7xf7 + X5X7X18 —X5X10X19 — X5X17X19 + X% —X3X7 —X1X13 ~ X2X19
—X14X19 + X13X20 —xﬁo + X19%21,

—XX4X5 + x1x§ + X5X8X10 — X4X9X10 — X4X5X14 + xixw + X5X8X17 — X4X9X17 — xgxzo
+X4X5X1 + XpXg — X1 X9 + XgX14 — X7X15 + X9Xp0 — XgX21,

—x§x6x10 + x4x§x12 + xéxuxm - x§x6x17 - x%xloxw + xgxlg - x3x§ —2Xx7X5X10
+X6X9X10 — X9X%o — X4X9X1p + X4X10X15 — X9X11X16 — 2X2X5X17 + XX9X17 — X9X10X17
+X4X15%17 — x9x%7 — X5X9X18 + X5X10X21 + X5X17X21 — x% + X3X9 + xﬁ +X1X15 — X13X15
+X15X0 + X2X21 — X14X21,

X4X5X6X10 — Xixsxlz —X4X5X11X16 T X4X5X6X17 + X4X5X10X17 — X4X§X18 + X3X4X5
+XpX4X10 + X1X5X10 — XeXgX10 + szfo T X4XgX1p — X4X10X14 T XgX11X16 T X2X4X17
+X1X5X17 — XeXgX17 + XgX10X17 — X4X14X17 + xgx%7 + X5XgX18 — X5X10X20 — X5X17X20
+X1Xy —X3Xg — X1X14 — X15X19 — X2X20 + X14X20-

There are also minDegree at least 3 equations. A typical one is
ZX4XSX6X%O — 2X2X6X10X11 - ZXZX5X10X12 + ZXZX'l]Xlz + 2x§x6x10x16 —X4X5X10X11X16
+xix%lx16 — 2X4X§X12X16 — X§X11X%6 — X4X5XeX10X17 + X4X5X%OX17 — X2X6X11X17

—xixmxllx” + 2xix5x12x17 + x§x6x16x17 + x§x10x16x17 T X4X5X11X16%17 — x4x5x6x%7

2 2 2 2 2 3 2 2 3
-2 X4X5X10X17 + X4 X11X17 — X5X16X17 + X4X5X17 — X4X5X10X18 + X4X5X11X18 —X5X16X18
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2 2 2 2 3 2
+X4X5X17X18 + 2X3X4X5X10 + XpX4X] 0 + X1 X5X] — XgXgX]g + XgX]g — 2X3X;X1]
2 2
—2X1X4X10X11 T X6X7X10X11 — X7X]gX11 + X2X}X12 — X1 X4X5X12 — X5X7X10X12 + 2 X4X8X10X12
2 2 2
—X4X7X11X12 + X4X10X11X13 + X4X5X12X13 — X4X]gX14 — X3X12X14 + 2X3X5X16 + 2X2X5X10X16
2
—X6X9X10X16 + X9X](X16 T X4X9X12X16 — X4X10X15X16 — 2X3X4X5X17 — X2X4X10X17
2 2
—X1X5X10X17 + X6XgX10X17 — X8X19X17 — X4X8X12X17 + X4X10X14X17 T+ X2X4X5X18 — X1X5X18
2 2 2
—X5X8X10X18 T X4X9X10X18 T X4X5X14X18 — X4 X15X18 T X5X10X11X19 + X5X12X19 — X5X19X20
2
—X4X5X12X20 + X5X10X17X20 T X5X18X20 — X5X10X16X21 — X4X5X18X21 — X3XgX10 T X3X7X1]
—X3X9X16 T X3XgX17.
e do not present a e equations in /1. n fact, it turns ou at, for 137, we can avoi e use O
We do not t all th t H’, ) In fact, it t t that, for 1 d th f

equations with minDegree at least 3, as we will see at the end of this subsubsection. Now we start to make
changes of variables, in several steps.

Step 1:
X1 F— X1 +X13,
Xy > Xy +Xq4,
X10 > X0t X17,
X13 +— X1+ 2x13+ X0,
Xy H— X1+ X131+ X0,
Xp1 F—  Xp+2X14+X21-

Then the equations of minDegree 2 are transformed into

—X4X5X10 F Xixu - X§xls T XgX10 —X7X11 + X9X16/

X4X%o + Xixn +X5X10X16 + 2X4X10X17 + 2X5X16X17 — X7X12 — X10X20 — X16X21

X4X10X16 T 2X4X16X17 + Xixw +X1X16 —X7X18 T X10X19;

X4X10X11 + X4X5X12 + 2X4X11X17 — XgX12 + X15X16 — X11X20,

X5X10X16 + 2X5X16X17 + X4X5X18 + X2X16 — XgX18 + X11X19,

X4X5X10 — xixn + XExm —XgX10 t X7X11 — X9X16s

X4X10X11 + X4X5X12 + 2X4X11X17 — XgX12 + X15X16 — X11X20,

X5X10X16 T 2X5X16X17 + X4X5X18 + X2X16 — XgX18 + X11X19,

X5X10%X11 + xéxlz +2X5X11X17 — X9X12 = X10X15 — X11X21,

—X5X7o + XaX10X11 — 2X5X10X17 + 2X4X X 7 + X3X1g — XpX10 + X1 X11 — XoX1g,

XX10X16 — X7 oX16 — XaX12X16 — X11 X6 + 2XeX16X17 — 3X10X16X17 — 3 X16X]7
—X4X10X18 — X5X16X18 — 2X4X17X18 + X3X16 + X12X19 + X18X20,

XX10X11 — X1oX11 — X5X10%X12 — X4X11X12 — X7 X16 + 2X6X11X17 — 3X10X11X17 — 2X5X12%X17
—3x11x‘17'7 —X5X11X18 + X3X11 —X2X12 + X15X18,

—x6xf0 + xfo +2Xx4X10X12 + X10X11X16 — 2X6X10X17 + 3x%ox17 +2Xx4X12%X17 + 3x10x%7
—2X5X17X18 — X3X10 + X1X12 + X18X21,

—x4xf0 - xixu —2X5X10X16 — 2X4X10X17 — 4X5X16X17 — X4X5X18 + X7X12 — XpX16 + XgX13

—X11X19 + X10X20 t X16X215

(YThe reader can find them using https://github.com/huxw06/Hilbert-scheme-of-points.
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(4.28)

Step 2:

2 2
X5X7g = 2X4X10X11 — X4X5X12 + 2X5X10X17 —4X4X11X17 — X5X18 + XpX10 — X1 X171 + XgX12

—X15X16 + X9X18 + X11X20,

2 3 2 2
XgX5X10 — XgX11 + X4X5X16 —X2Xy + X1X4X5+ X5X7X10 — 2X4X8X10 + X4X7X11 — X4X9X1¢6

2
+2X5X7X17 — 2X4X8X17 — X5X19 + XpX7 — X1Xg + X9X19,

2 2 2
—2Xx4X5X6X10 + XgXeX11 + X4 X5X12 — X5X6X16 + X4X5X11X16 — 2X4X5X6X17 — 2X4X5X10X17

2 2 2 2 2
+X3X11X17 — X5X16X17 — X4X5X]7 + X4X5X18 — X3X4X5 — 2XpX4X10 + 2 X6XgX10 — 3 X8X7]

+X1X4X11 — XeX7X11 + 2X7X10X11 + X5X7X12 — 2X4X8X12 — X2X5X16 + X6X9X16 — 2X9X10X16

—XgX11X16 + XaX15X16 — 2X2X4X17 + 2XeXgX17 — 6 XgX10X17 +3X7X11X17 —3X9X16X17

2
—3xgX]7 — X4X9X1g — X5X11X19 + 2X5X10X0 — X4X11X20 + 2X5X17X20 + X5X16X21 + X3Xg

+X15X19 + X2X20,

2 3 2 2 2 2.2 2 2
XpXeX10 — X3X12 — X4 X11X16 + 2X4X6X17 + X3X10%X17 +X4X17 —X3X5X18 +X3X4 + X1X4X10

—XgX7X10 + X7X%O +X4X7X12 + X7X11X16 T+ 2X1X4X17 - 2X6X7X17 + 3X7X10X17 + 3X7X%7

+X5X7X18 — X5X10X19 — 2X5X17X19 — X4X10X20 — 2X4X17X20 — X3X7 — X1 X0 + X19X21,

2 2
X5XgX10 — X4X9X10 + X3 X15 + 2X5XgX17 — 2X4X9X17 — X5X20 + X4X5X21 — X7X15 + X9X2

—X8X21,

2 2 2 2 2 2.2 3 2
—X5XeX10 T X4X5X12 + X5X11X16 — 2X5X6X17 —X5X10X17 — X5X17 + X5X18 —X3X5 — X2X5X10

2
+X6X9X10 — X9XT( — X4X9X12 + X4X10X15 — X9X11X16 — 2X2X5X17 + 2XcX9X17 — 3 X9X10X17

2
+2 X4X15X17 — 3X9X17 —X5X9X18 + X5X109Xp1 + 2X5X17X21 + X3X9 +X1X15 +X3X21,

2 2 2
X4X5X6X10 — X3 X5X12 — X4X5X11X16 + 2 X4X5X6X17 + X4X5X10X17 + X4X5X]7 — X4X5X1g

+X3X4X5 + XpX4X10 — XeXgX10 + XgX%O + X4XgX17 + XgX11X16 + 2X2XqX17 — 2XgXgX17

2
+3xgX10X17 + 3X8X17 + X5XgX18 — X5X10X20 — 2X5X17X20 — X3Xg — X15X19 — X2X70.

Now we are going to find a nonhomogeneous, but weighted homogeneous, change of variables, to
absorb the terms of degree at least 3. The above Step 1 change of variables has greatly diminished the

possible choices for such absorbing.

X1
X2
X7
X8
X9
X19
X20

X721

PTTTTT DI

X1~ 2X4X17,

Xy = X5X10 + X4X11 — 2X5X17,
X7 +Xi,

Xg + Xy4Xs5,

X9 +x§,

X19 —X4X16/

Xp0 + 2X4X17 + X4X10s

X1 + X5X19 + 2X5X17.

Then Equations (4.28) are transformed into

XgX10 —X7X11 T X9X16,

—X7X12 —X10X20 — X16X21~

X1X16 —X7X18 T X10X19,

—XgX12 + X15X16 — X11X20,
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(4.29)

(4.30)

X2X16 — XgX18 + X11X19,

—XgX10 T X7X11 — X9X16/

—XgX12 T X15X16 — X11%20;

X2X16 —XgX18 + X11X19;

—X9X12 —X10X15 — X11X21,

—X2X10 T X1X11 — X9X138,

XgX10X16 — X10X16 — 2X4X12X16 — X11X74 + 2 X6X16X17 — 3X10X16X17 — 3X16X17
—X5X16X18 + X3X16 T X12X19 + X18X20,

XeX10%X11 — X]0X11 — 2X4X11X1p — X71 X1 + 2XgX11X17 — 3X10X11X17 — 3 X117,
—X5X11X18 +X3X11 — X2X12 + X15X18,

—X6X%O + X%O + 2X4X10X12 +X10X11X16 — 2X6X10X17 + 3X%0X17 + 3X10X%7
+X5X10%X18 — X3X10 + X1X12 + X18%21,

X7X12 —X3X16 + XgX18 — X11X19 + X10X20 + X16%X21,

XpX10 — X1X11 + XgX12 — X15X16 + X9X18 + X11X20,

—2X4X8X10+ 2X4X7X11] — 2X4X9X16 + XpX7 — X1Xg + X9X19,

—XpX4X10 + 2X6X8X10 — 3X8X%O + X1X4X11 —XeX7X11 + 2X7X10X11 + X5X7X12
—2X4XgX1 — XpX5X16 + X6X9X16 — 2X9X10X16 — XgX11X16 + 2XcXgX17 — 6 XgX10X17
+3X7X11X17 — 3XoX16X17 — 3XgX]; — XgXoX1g — X5X11X19 + X5X10X20 + X5X16X2]

+X3Xg +X15X19 + X2Xp(,

—XeX7X10 + x7xfo + X4X7X1p + X7X11X16 — 2X6X7X17 + 3X7X10X17 + 3 x7x%7
+X5X7X18 — X4X10X20 — X4X16X21 — X3X7 — X1X20 t X19X21,

—X7X15 + X9Xp0 — XgX21,

X6X9X10 — x9x%o — X4X9X1p + X4X10X15 ~ X9X11X16 + 2X6X9X17 — 3X9X10X17
-3 X9X%7 —X5X9X18 T X4X11X21 + X3X9 + X1X15 + X2X21,

—XeXgX10 t XSX%O + X4XgX12 + XgX11X16 + X4X15X16 — 2XgXgX17 + 3 XgX10X17

2
+3 XgX]7 + X5XgX18 — X4X11X20 — X3Xg — X15X19 — X2X2(-

We select the quadratic equations in (4.29), deleting the repeating or linear dependent ones:

XgX10 —X7X11 + X9X16, —X7X12 —X10X20 — X16X21, X1X16 —X7X18 t X10X19,
—XgX12 + X15X16 — X11X20, X3X16 —XgX18 T X11X19, —X9X12 —X10X15 —X11X21,
—X2X10tX1X11 — X9X18, —X7X15 T X9X20 — XgX21.

2 2 2
X6X10X16 — X10X16 — 2X4X12X16 — X11 X1 + 2X6X16X17 — 3X10X16X17 — 3 X16X77

—X5X16X18 T X3X16 + X12X19 + X18X20,

2 2 2
XeX10X11 — X19X11 — 2X4X11X12 — X1 X16 + 2X6X11X17 — 3X10X11X17 — 3X11X77

—X5X11X18 + X3X11 —X2X12 + X15X18,

2 3 2 2
—X6X10 + xlO + 2X4X10X12 +X10X11X16 — 2X6X10X17 + 3X10X17 + 3X10X17

+X5X10X18 —X3X10 + X1X12 + X18X21,

Take the equations in (4.29) modulo these quadratic equations, removing the repeating ones. We are
left with
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XpX7 —X1Xg + X9Xq9,

XeX7X11 — X7X10X11 — X6X9X16 + X9X10X16 — X8X11X16 — 2X4X15X16 + 2X6XgX17 — 3 X7X11X17

2
+3 X9X16X17 — 3x8x17 —X5XgX18 + ZX4X11X20 + X3Xg + X15X19 + X2X70,

2 2
—XeX7X10 t+ X7X70 +X7X11X16 — 2X6X7X17 + 3X7X10X17 + 3X7X17 + X5X7X18 — 2X4X10X20

—2Xx4X16X21 —X3X7 —X1X20 + X19X21,

2 2
X6X9X10 — X9X7( t 2X4X10X15 — X9X11X16 T 2X6X9X17 — 3 X9X10X17 — 3 X9X]7 — X5X9X1g

(4—31) +2X4X11X21 +X3X9 + X1X15 + X2X31.

Step 3:

X3 > X3+ X%O +X11X16 + 3X10X17 + 3X%7 —XeX10 — 2X6X17 + X5X18 + 2X4X12.
Then Equations (4.30) and (4.31) are transformed into

XgX10 —X7X11 t X9X16, —X7X12 —X10X20 — X16X21, X1X16 —X7X18 + X10X19/
—XgX12 + X15X16 —X11X20, X2X16 —XgX18 +X11X19, —X9X12 —X10X15 — X11X21,
—X2X10 t X1X11 —X9X18, —X7X15t+ X9X0 — XgX21, X3X16 T X12X19 + X18%X20,
X3X11 —X2X12 + X15X18, —X3X10 t X1X12 + X18X21, XXy —X1Xg + X9Xq9,
2
(4.32) — XXgX10 + XgX1g + XeX7X11 — X7X10X11 + 2X4XgX12 — X6X9X16 + X9X10X16 — 2 X4X15X16

+3xgx10X17 = 3X7X11X17 + 3X9X16X17 + 2X4X11X20 + X3Xg + X15X19 + X2X20,

—2X4X7X17 — 2X4X10X20 — 2X4X16X21 — X3X7 —X1X20 + X19X21,

2x4x9x12 + 2X4X10X15 + 2X4X11X21 +X3X9 +X1X15 + X2X21q.

Select the quadratic equations

XgX10 —X7X11 t+ X9X16, —X7X12 —X10%X20 — X16X21, X1X16 —X7X18 + X10X19,
—XgX12 T X15X16 — X11X20, X2X16 —XgX18 t X11X19, —X9X12 —X10X15 — X11X21,
—X3X10 T X1X11 — X9X18, —X7X15 + X9X20 — XgX21, X3X16 + X12X19 + X18X20,
X3X11 —X2X12 + X15X18, —X3X10 + X1X12 + X18X21,  X2X7 —X1Xg + X9X19.

Taking the last three equations of (4.32) modulo these quadratic equations, we get the equations

X3Xg t X15X19 + X2X20, —X3X7 —X1Xp0+ X19X21, X3X9+X1X15+X2X21.

One easily checks that Step 1 is a nonsingular linear transformation, and Steps 2 and 3 are unipotent

isomorphisms (in the sense of Definition 4.8). We record the total change of variables (i.e., the composition

Step 3 o Step 2 o Step 1):

X1

X2

X3

X7

X8

(4.33) Xg
X10

X13

X19

X20

X21

PITITTTTTDTDT ]

—2X4X17+X1 + X13,

—X5X10 + X4X11 — 2X5X17 + X2X14,

—XeX10 + xfo +2x4X10 +X11X16 — 2X6X17 + 3 X10X%17 + 3x%7 + X5X18 + X3,
Xi+X7,

X4Xs5 + Xg,

X§+X9,

X10 + X17,

X4X10+ X1 + 2X13+ X320,

—X4X16 T X19,

X4X10 T X1 + X131+ X0,

X4X11 + X + le4 + X51.
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Therefore, after this change of variables, the subideal of 1’| generated by its minDegree 2 equations is
transformed into the ideal generated by

XgX10 —X7X11 + X9X16, —X7X12 —X10X20 —X16X21, X1X16 — X7X18 T X10X19,

—XgX12 + X15X16 —X11X20, X2X16 —XgX18+ X11X19, —X9X12 —X10X15 — X11X21,

(4.34) —X2X10tX1X11 —X9X18, X3X16 T X12X19 t+ X18X20,  X3X11 —X2X12 + X15X18,

—X3X10 t X1X12 T X18%X21, —X7X15t+ X9Xp0 — XgX21, XpX7 —X1Xg + X9X19,

X3Xg + X15X19 + X2X20, —X3X7 —X1Xp0 + X19X21, X3X9 +X1X15 + X2X31.

The final quadratic equations (4.34) are simple enough so that one can compute the Grébner basis of the
ideal generated by them. Then one finds that the ideal 7, after the above change of variables (4.33), is
equal to the ideal generated by (4.34). A more elegant way to confirm this, without the use of a Grobner
basis, is the following. The map

X1+ Po,2
X10 > P25,

X19 /— —Po,4

X2 F=Po3
X11 > P35,
X20 > P14
transforms Equations (4.34) into the Pliicker equations (4.27). So there is a closed immersion
(4.35) Spec(A,) — G(2,6) x A°.

But by Theorem 4.1, the point corresponding to the ideal I lies in the main component, so dimA) > 15.

X3 > —Po,1-
X12 /> —P1,5»

X1 V> —P1,2

X7 V> P24,

X15 /> P1,3,

Xg — P3,4s

X16 /= P4,5/

X9 > P23,

X18 /> —Po,5/

Note that 6(2,6) x A® is an integral scheme. Hence the equality of dimensions implies that (4.35) is an
isomorphism.

In Section 4.3.3 and Appendices A.1-A.4, the Haiman neighborhoods turn out to be trivial affine fibrations
over G(2,6) as well. We present only the final change of variables, omitting the intermediate steps that lead
to it. The relevant Macaulay2 codes and an example for Appendix A.l illustrating the use of the codes, are

given in the ancillary files.®)

433. A3, =((1)c(3,2)).— The partition A;3, has the 3D diagram

and corresponds to the ideal

Iy, = (XS’X%XLX1X3, X%, X2X3,X32),
Algorithm 4.21 gives
N R PR ok T ol SRSt R PURC LR R a2
ngg X7, Cgécl) > X, ngg > Xo, C(I)(l)cl) — X10, CS’(l)'g —> X11, Cg%g — X12,
A, Ao, Pl xs S xe by, VR,
R R O TN ke CMC Ao

and

A/\132 =Kk[x,

7
..,x24]/H/\132.

(®)see also https://github.com/huxw06/Hilbert-scheme-of-points
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The unipotent isomorphism

Xy > 2X14X16X19 + X13X14X20 — X12X14 — X5X15 — X11X16 + X5X19 — 2X15X19 + 3X74
—X17X20 — X14X23 + X2,

X3 > X13X16X22 — X5X7 — XeX16 — 2X7X19 — X4Xpp —X17X22 — X16X23 + X3,

Xy P —X13X16+ X4+ X7,

X5 F—>  —X14X16¢+ X5+ X15,

X > X7X14+ X+ X33,

Xg +— X7X13+Xg,

X9 +— xf3xf6 + x7xf3 —2X4X13X16 — 2X13X16X17 + xi + 2xXgX13 + 2X4X17 + xf7 + X9,

X10 > —X13X19 + X190,

X711 P —X14X19 + X711,

X12 F —X1eX19 — 2X13X2p + Xg + X12 + 2X23,

X15 >  X15—X19/

X138 +— —xf3x16 + X4X13 + 2X13%X17 + X138,

Xpq > —4x3X16X19 — X13X00 + X12X13 — XgX14 + X4X15 + X1 0X16 + XaXg + 4X17%X19

+2X13X23 + 2X1 + X)4.
transforms the ideal H:\m into
Jiz2 = (=XxgXpo+X4Xp1 +X10X22, —XoX11 —XpX18 —X10X24, —XeX20 +X5Xp1 +X11X22,
—XpX5 —X11X12 T X20X24, X2Xg —X3X10t X9X21, —X2Xg + X3X11 t+X21X24,
—X3Xp0 —X12X21 t X2X22, X2X4+X10X12 1t X9X20, X5X10 —X4X11 t X18%X20s

X3X4 tXgX12 + X9X3)2, —X4X6 + X5Xg + X18X22, —XeX9 —X3X18 — XgX24,

X5X9 — X12X18 T X4X24, —X3X5— XgX12 +X22X24, XeX10—XgX11 + X18X21)-
Then the map

Xg > =P34, X20F— P25/ X4 —Pr4, X221 P35 X100 P45, X22 V> P23,
XpF—>—p15 X9F—>—pP14, XzbF—>—pP13, X11F—>Pos5 X188+ —Po4» X24+——Po,1,

X6 = P0,3 X5 P02, X127 P12
transforms Equations (4.3.3) into the Pliicker equations (4.27). So we obtain an equivariant isomorphism

Spec(A,,,,) = @\(2, 6)x A°.

4.3.4. /\1321 = ((1) C (3, 2, 1)) , extra dim =8.—

Iizo1 = (X3, X7 X0, X, X3, X1 X3, X3, X, X3, X3 ).
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The extra dimension of Hilb” (A3) at Zj,,,, is 8. Algorithm 4.21 gives

0,02 _ 1,01 _ 0,02 _ 01,1 _ 3,0,0
CLi,0 =% C10=%2»  Co0=%3  Cyoo0=X4  Cpo0 = X5
1,20 _ 03,0 _ 1,01 _ 21,0 _ 0,02 _
€200 =%7, €00~ %8  Cp00=%9 €110~ X100 Co0,1 = X101/
03,0 _ 1,01 _ 03,0 _ 3,00 3,0,0
(4.36) €0,01 =X13, Co2,0=*14 €110 =X15 €01 = X160 Co,2,0 = X175
21,0 _ 1,20 _ 1,01 _ 01,1 _ 01,1 _
€200 =%19 €01 =%200 Cpo,1 =X21» €p0,1 = X220 Cpp0 = X235
01,1 _ 1,2,0 03,0 _ 1,01 _ 21,0 _
€1,1,0 =X25, €0 =%26r Cpp0 = X270 €100 = %28 Cp,1 = X29-

and
A/\1321 = lk[xl,...,ng]/H'

The unipotent homomorphism

3,00
€1,1,0 = X6

0,02 _

Co,2,0 = X12
1,2,0 _

C1,1,0 = X18

21,0 _
Co,2,0 = X24

X1 P> Y1+ 292905+ 2923925 + Y14Y4 +Y2Y09
X2 > V2+tY23,
X3 k= Y3+9s+ 9204+ 292394 + 292599 + Vs,
X5 = Ys+V10+ 2921+ 3V26
Xe > VetY24,
X9 = Y9+t Y25,
X10 F V10 +¥21 + 202
(4.37) X1 F= Y11+ Y1adis + VisV2 +Y19V2 + 202022 + 292023 + 4921925
+4925Y26 + 2Y28 — Y24V4 — VaVe + V14Y7 + V10V9 + 3921¥9 + 4V26Y9,
X2 = Y12+Y53+ 2914905+ Y14Yo,
X15 > Yi5tY7,
X158 > V1g+ Y19+ 202,
X19 > Vi9ot+¥22,
X1 V= Y21t Y26
X7 = V7 +¥18+ Y19+ 3922,
xj +— vy;fori=4,7,813,14,16,17,20,22,23,24,25,26, 28,29,

transforms H:\m into the Jacobian ideal of F;351, where

Fizo1 = —Ys¥s¥Vi0V14 +Y6Y7V14¥15 + V8VoV10V17 — Y2V7V15Y17 + VaV10V15¥17 — V6VsV14V1s
TY2V8Y17Y18 — ¥Y10¥14¥15Y19 T ¥2Y5Y7Y21 — Y6¥Y7Y9Y21 — YaY5Y10¥Y21 — Y4Y6¥18Y21
TY9V10¥Y19¥21 T ¥2YV18Y19Y21 T ¥2Y5Y8Y24 — Y6¥Y8Y9Y24 — YaY6Y15Y24 + ¥2¥15Y19Y24
—Y5Y7Y14Y27 T V7Y9V17Y27 T+ Ya¥17V18Y27 — Y14¥18Y19Y27 + V4Y5V24Y27 — V9V19Y24Y27
—V11Y13Y14 T V1Y7%16 T VaV11V16 + ¥8Y12¥V16 — V3¥13V17 + ¥3V16Y19 ~ ¥3Y6Y20
—V1¥10Y20 —¥Y2¥11¥Y20 T Y12Y13Y21 — Y1¥Y13Y24 T V12Y20Y27 — ¥3Y5Y29 — Y9¥11¥29

+V12V15Y29 + V1Y18Y29,
and thus

Ay =K[Y1,..., 920/ Jac(Fr321).
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4.4. Local equations at non-Borel ideals

Let 11311 be the 3D partition ((1) € (3,1,1)). It corresponds to the 3D diagram and ideal

L1311 = (X13,X1X2,X1X3,X§,X2X3,X§).
This is the unique non-Borel monomial ideal of k[X;, X,, X3] of colength 6.

First we show that Lemma 4.3 and the result in Section 4.3.3 give us the local structure of Spec(A, , )
at 0. Let € € k be a nonzero element. A linear transform X; — X; + €X, transforms I into the ideal

Jo = (X]+3eX?X,+3€*X X3 + X3, X, X, +€X2, X, X3 + €X,X3, X3, X, X3, X3)
= (X}, XX, +€eX3,X, X3, X3, X, X3, X3).

Since € # 0, the resulting ideal is equal to

1
(XD, X3 + = X1 X2, X1 X3, X3, X2 X3, X3)

1
= (X3, X1 X3, X, X3, X3 + Exlxz,xz)g,xg)

1
(4.38) = (X3, X7 X5, X, X3, X3 + Exlxz,xz)g,xg).
So it lies in the Haiman neighborhood of I 3,, with Haiman coordinate C(l)%g = —%. Since the extra dimension

of Hi1b6(A3) at Zj . is 6, the extra dimension at Z;_is also 6. But we have seen that the whole Haiman
neighborhood of I;3, is a trivial affine fibration over the cone 5(2, 6). So J. lies in the fiber (= /AE() over the
vertex of the cone. Thus we obtain that there is an open neighborhood of Z; ,  ~that is isomorphic to an
open subset of G(2,6) x A°. This is not enough for the computation of the equivariant Hilbert function of
A}, The isomorphism obtained above is not equivariant.

We could not find a conceptual proof of such an equivariant isomorphism but only apply the algorithm
and the trick of change of variables in the previous sections. Algorithm 4.21 does not perform as well for
non-Borel monomial ideals as for the Borel ideals. For example, the Haiman equations imply, for i € 1311,

1
210 _ 110 .100 , 110,200 , 110,300 , .110.110 , 110,101
¢ ——(1 110 110)(COOOCi T Clo0C  TC00C  t €106 T Co016i
~€020€200

110 (110 .010 , 110,020 , .110.030 , .110.110 , .110 011
+COZO(COOOC1' TCo106 T €206  tC€100¢ T €016 ))

and symmetrically

1
120 _ 110 .010 , .110.020 , 110,030 , .110.110 , .110 .011
¢ T (1 10,110y (COOOCi TCo106 TC0206  tC€100¢ T €016
(1= ¢p20¢200)

110,110 100 , .110 200 , 110,300 , 110,110 , .110 .101
+¢200(C000C; +C€100Ci 2006 T Co106  +C001Ci ))'
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This is typical for non-Borel monomial ideals: To eliminate the variables, we need to allow the fractions.
Algorithm 4.21 gives a set of equations in xq,...,X,9, where

2,1,0 2,1,0 2,1,0 2,1,0 1,1,0 1,0,1

Cr00X1, CopoF X2, Co1077%3  Coo1 X4 Croot— X5 Cio0b— X6
3,0,0 0,0,2 1,1,0 1,0,1 3,0,0 01,1

CrooF>X7, CrooF—%8  CroobF—>Xor  Chroo0F X100 Cp00F %11, €300 X125
0,3,0 0,0,2 1,1,0 01,1 0,3,0 1,1,0

€00 %13, CrooF X140 Co1,0—X%15 Cor10F X160 Co1,0 %17, Coo0 > X185
1,0,1 3,0,0 01,1 0,3,0 0,0,2 1,1,0

Co,2,0 ™ X199, Cop0 %20, Cpp0—X21, CgpoF— %22, Cppo0—%X23 Cpo1 b X24
1,0,1 3,0,0 01,1 0,3,0 0,0,2

Co,01 P> %25, Cpo,1 P> X260 Cpo,1 > X27, Coo1 F X280 Coo,1 2 X29-

The number of variables is larger than the embedded dimension 24. There are equations of minDegree 1.
Using them, we eliminate x1, x5, x3, X4, Xg, allowing the inversion

(1 = x9x18)(1 = 2x9x13).
For Ay311 we can find a fractional change of variables, more precisely an automorphism of the ring

1
(1—x18%0)(1 — 2x78x9)(1 — 2x1 80 — X{gx3)(1 — 3x15Xg + X75X3)

’

H([X5,X6,X7,X9,...,X29]

such that the Haiman ideal is transformed into the ideal

Jizor = (x12X15+ X13X19 + X14%04, X12X20 + X23X24 + X19X5,  —X16X24 — X12X26 + X19X28,
—X14X20 t+ X15X23 + X19X29, Xp0X28 t+ X26X5 + X24X7, X17X24 — X13X26 — X15X28,
—X16X20 + X23X26 —X19X7,  —X13X23 + X12X29 + X14X5, X13Xp0 t X24X29 — X15X5,
X17X20 T X26X29 + X15X7, X13X16 T X12X17 + X14X28, X15X16 — X17X19 — X14X26,
X23X28 + X16X5 — X12X7, X17X23 + X16X29 + X14X7,  X28X29 — X17X5 — X13X7).

For the details, see Appendix B. Finally, the map

X5 —>pP1,3, X7+ P12 X12 > P34, X13+F—>Po,3» X14 P04 X15 > Po,5s
X16 F> P24, X177 P02, X19+-— P45, X0 P15 X3V P14, X242 P35

X26 /= P2,5, X28 V== —P2,3, X29 /> Po,1-

transforms the ideal J;3,; into the Pliicker ideal (4.27).

There are three non-Borel monomial ideals of k[X;, X;, X3] of colength 7; see Appendix C. However,
such an explicit fractional change of variables is too difficult to find in these cases. We can only state the
following conjecture.

We say that a torus action on the cone G(2,6) is standard if it is induced by an action on the tangent
space at the vertex that preserves the Pliicker ideal.

Conjecture 4.23. Let I, be a non-Borel monomial ideal of k[X,,X,, X3] with extra dimension 6. Then there
exist a T-stable open subset U of 0 € Spec(A\)) and an equivariant open immersion f: U <> G(2,6) x A?,
where G(2,6) is equipped with a standard T -action.

Once we know the existence of such an equivariant isomorphism, to compute the equivariant Hilbert
function of A, it suffices to determine the standard action on 5(2, 6) and the action on A° induced by f.
We do this by considering only the degree at most 2 terms of the Haiman equations when we eliminate the
variables. That is, we modify Algorithm 4.21 by cutting off the monomials of degree at least 3 appearing in
the resulting equations in every step. In this way, assuming Conjecture 4.23, we compute the equivariant
Hilbert functions of A, , , Ay, ,»and A, . in Appendix C.
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4.5. Phenomenology of the local structures

In this subsection, we discuss several conjectures observed from the computations in the previous sections
and Appendices A and C.

4.5.1. Critical locus.—

Conjecture 4.24. Let A be a 3-dimensional partition of n such that I is a Borel ideal of k[X, X, X3]. Then
there exists a regular function F, on the tangent space of Hilb"(A3) at Z; such that the Haiman neighborhood
Spec(A)) is isomorphic to the critical locus of F).

It is known (see, e.g, [BBSI3, Proposition 3.1]) that Spec(A,) is a critical locus in a regular scheme of
dimension larger than the embedded dimension of A}.

By the results in Sections 4.3.1-4.3.4 and 4.4, and Appendices A and B, the conjecture is true for n <7. By
Theorem 4.16, it holds for pyramids. By Lemma 4.3, the conjecture implies that for any ideal I of colength n
of k[X;,X>, X3], there exists a regular function F on the tangent space of Hilb"(A3) at Z; such that an
open neighborhood of Z; is isomorphic to an open neighborhood of the critical locus of F.

Such statements are not true in dimension greater than 3.

4.5.2. Monomial ideals with extra dimension 6.— By abuse of notation, we say a monomial ideal |
of k[X1, X, X3] of finite colength 7 is a monomial ideal with extra dimension d if the extra dimension
of Hilb"(A%) at Z; equals d. As we have noted after Theorem 4.1, if I is a monomial ideal with extra
dimension 0, then Hilb"(A3%) is smooth at Z;. Inspired by the results in the previous sections and the
appendices, and the verifications on computers, we have the following conjecture.

Conjecture 4.25. For n > 4, the smallest nonzero extra dimension of points on Hilb"(A3) is 6.

As one sees in Sections 4.3.1-4.3.3 and 4.4 and the appendices, the monomial ideals with extra dimension
equal to 6 have similar shapes. A typical case of ideals of this shape is

I = (X]", X1 X5, X1 X3, X352, X, X3, X57),

where ny,n,,n3 > 2. Using Corollary 4.14, an easy counting shows that the extra dimension of I; is 6.
Graphically, its corresponding 3-dimensional partition looks like

This picture inspires the following name.

Definition 4.26. A monomial ideal I of k[X;, X,, X3] is called a ¢ripod ideal if I has a set of minimal
generators of the form

X2, X xs, x4x¢, xJ, x8xh xi,

Note that the condition minimal puts restrictions on these exponents.



38 X. Hu

There exist monomial ideals I of k[X{, X,, X3] with extra dimension 6 that are not tripod ideals, for
example,

I,= (Xf,Xfxz,X1X§,X1X2X3,X§,X§X3,X§), Z;, € Hilb'*(A3).

The corresponding 3-dimensional partition is

But I, is not a Borel ideal. In fact, after checking monomial ideals of colength at most 25, we make the
following conjecture.

Conjecture 4.27. A Borel ideal of k[X,,X,, X3] with extra dimension 6 is a tripod ideal.

Conversely, let us consider which tripod ideals have extra dimension equal to 6. First we select the Borel
tripod ideals.

Lemma 4.28. A tripod ideal I = (Xf,XfX;,XfX;,X;,X‘;X?, Xé) is Borel fixed in the lexicographic order
X1 > X, > X5 if and only if

c=e=g=h=1, f=i=2.
The proof is straightforward from Definition 4.4(ii). Then we make the following conjecture.

Conjecture 4.29. A Borel ideal of the form I = (Xf,Xsz,XfX3,X§,X2X3,X§) has extra dimension 6 if and
only if at least one of b and d is equal to 1 ora—1.

We have checked it for the ideals of this form of colength at most 100.

4.5.3. Types of singularities.—

Proposition 4.30. Let z be a point on Hilb"(A3). For n < 7, if the embedded dimension at z is 3n + 6, then
there exist an open neighborhood U of z and an open immersion U < G(2,6) x A3".

Proof. By Lemma 4.3, we need only consider the Haiman neighborhoods of Z; where I runs over the Borel
ideals of k[X;, X5, X3] of colength at most 7. Then by Example 4.6, the results follow from Sections 4.3.1-
4.3.3, Appendices A.1-A .4, and the proof of Proposition 6.2 (also Appendix D). O

Conjecture 4.31. Let z be a point on the main component of Hilb"(A3). If the embedded dimension at z is
3n+6, then z has an open neighborhood which is isomorphic to an open subset of a trivial affine fibration over the

—

cone G(2,6).

In short, these singular points are of the same type; i.e., their germs can be transformed into each other
by a chain of smooth morphisms. Note that when 7 is sufficiently large, e.g., n > 78, the Hilbert scheme
Hilb"(A3) is reducible. Conjecture 4.31 might need to be modified for the points not lying in the main
component. But since the monomial ideals all lie on the main component (see Theorem 4.1), Conjecture 4.31
should be true for them.

Also, the monomial ideals Iy3;; in Section 4.3.4 and I,3;; in Appendix A.5 are ideals with extra
dimension 8 and have similar partition shapes. By the results of Section 4.3.4 and Appendix A.5, they
correspond to the same type of singularities on Hilb’ (A3) and Hilb®(A3), respectively.

In general, we make the following conjecture.
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Conjecture 4.32. Let Ay, A, be two r-dimensional partitions of length 11, 1,, respectively. Suppose A1 and A,
have similar shapes and

ex.dim;, Hilb" (A") = ex.dim;, Hilb2(A").

Then Hilbh (AS)ZI and Hilblz(/A3)ZIA are singularities of the same type.
2

A

The shape of a partition A roughly means the relative positions among the minimal lattices of the glove
of A, or equivalently among the lattices of the exponents of the minimal monomial generators of the ideal I}.
For example, the minimal lattices of the glove of a tripod partition look like

R
/N
/N
\

/
\
£
7\ 7\
NN
\ oy \

7/
AN VAR Y

On the other hand, as we have checked on Hilb"(A3) for n < 20, the minimal lattices of the glove of a
partition which corresponds to Borel ideals with extra dimension 8 look like

(Note that in both graphs, collinear vertices do not indicate that the corresponding lattices in Z3 are
collinear.)

So for two partitions to have similar shapes, it is necessary that the corresponding monomial ideals
have the same number of minimal monomial generators. But this condition is of course not sufficient. For
example, plane partitions embedded into Z> always correspond to smooth points (see Lemma 4.15), but
the corresponding ideals can have an arbitrary number of minimal monomial generators. We expected a
stronger necessary condition for two 3D partitions A; and A, to have similar shapes: There exists a 3D
partition A such that A C Ay and A C A, and I, I, I, have the same number of minimal monomial
generators.

We cannot formulate Conjecture 4.32 in a precise way because we do not have enough examples to make
precise what similar shapes mean. In fact, in our examples above, having the same extra dimension suffices.
But we still feel that in the general cases, we need a certain condition on the shapes of the r-dimensional
partitions. A reason is that, as we have seen in Section 4.5.2, when the extra dimension is small, the shape
of the partition has few choices, or at least the Borel ones do. The first example of partitions that do not
have similar shapes while the corresponding ideals have the same extra dimension is the following; these
partitions correspond to Borel ideals with extra dimension 12:



40 X. Hu

Question 4.33. Are the singularities on Hilb®(A3), Hilb®(A3), Hilb'?(A?), and Hilb!®(A3) corresponding
to the above 3-dimensional partitions, respectively, of the same type?

Remark 4.34. Recently, in 2024, Jelisiejew, Ramkumar, and Sammartano [JRS24] proved Conjectures 4.27
and 4.29 completely and confirmed Conjectures 4.25 and 4.31 in many cases.

5. Euler characteristics of tautological sheaves

5.1. Hilbert series of tripod singularities

The singularities of A) in Sections 4.3.1-4.3.3 and 4.4 and Appendices A.1-A.4 and C.I-C.3 have the same
singularity type (in the sense of modulo the smooth equivalence). We compute their equivariant Hilbert

functions in a uniform way. Let Rg(2,6) = k[p; j]o<i<j<5- Then the ring

S6(2,6) = Rg(2,6)/16(2,6)

—_

is the coordinate ring of the cone G(2,6), where Ig(; ) is the Pliicker ideal (4.27). There is an action of
T, = G$, on 56(2,6)» With weights
(5.0) w(p;j)=€i+e€Zb 0<i=j<5,

where {€;}o<j<5 is a basis of Z°, the character group of T;. We denote the generic point of T; by
u = (ug, Uy, Uy, Uz, Uy, Us). We are going to compute

. R
}:50(_1)1 Tori e (SG(Z,G):]k)

HS(G(2,6))3u) = ———— )
<izj< L)

as a virtual representation of Tj.

Lemma 5.1
15 ‘ R
Y (=1)Tor, “**(Sg(a.6, k)
i=0
5 5
1= Y [ X ([ mfesl T[T X oo
5c{0,..5} ieS 5$c{0,..5} \ ieS ieS i=0 i=0 0<i<j<5
|S|=4 |S|=5
5 5
- ¥ [ 3T T X ([ -5l ]
Sc(0,..5) i€S Sc(0,.5)\ ieS jes i=0  $cl0,..5)\ieS €S i=0
[S|=5 |S|=4 |S|=5

5

(5.2) —]_lui2~ Z uiuj+li[ui3.
i=0

i=0  0<i<j<5
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Proof. We use an explicit resolution of the Pliicker ideal of G(m,n), which is known for m = 2 and
arbitrary n. Let E be a k-vector space with a basis vy, vq,v,,v3,v4, Vs, equipped with a T;-action with
weights w(v;) = €; € Z° for 0 < i < 5. We identify the ring Rg(2,6) with the symmetric algebra Sym'(/\2 E)
so that the induced torus action coincides with (5.1). For a 2-dimensional partition A, let LE be the
associated Schur module of E (see [Wey03, Section 2.1]). Each L)E is an irreducible GL(E)-representation
and has highest weight A’ (the conjugate partition of A).

By [Wey03, Theorem 6.4.1], the minimal resolution P, of Sg(26), as an Rg(2,6)-module, has the form
P; = V; ®k Rg(2,6), where Vj = k is the trivial GL(E)-representation and

Vi =Lk, V2=LBjjij, V3 = L1 E @ L E,

(6.3) Vy= LEEEEEPE, Vs = L@EEEHE, Ve = L%E

and V; =0 for i > 7. The character of L)E is equal to the Schur function s)/(uy,.., u5). For example,

Char(LBEEEE‘E)

es e
5%(u0,..,u5)det(ez eg)

Y] X ([
S|CS{|O:,.55} i€eS Slcs{lt):,.f} ieS jeS

where the e; = ¢;(u,...,Us) are the elementary symmetric functions. The characters of the other Schur
modules in (5.3) can be computed directly from the definition:

Char(LDjij) = Z Hui,
5$c{0,..5} ieS
|S|=4
harllzn) =Y []—[ Dl]w]—[ul,
Sc{o,..5}\ ieS i€S
|S|=5
5

Char(Lﬁj:\:DjE) = ]_[ui- Z ujuj,

i=0  0<i<j<5

hrl5575) - o Y [r[ Zul]wﬂ 2

i=0 5cfo,..5}\ ieS ieS
ISI 5

5
har(L E) = 2 0,
char(leppegf) = | Jud- ) win

i=0

char(L%E) = ]i[ u?.
i=0

Taking the signed summation Zi(—l)ichar(Vi), we are done. O

Denote the function (5.2) by K(ug, uy, tip, Uz, Uy, Us).
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Corollary 5.2.

H(A),;t) =

(WV’ff WF S W)
Vi VR VB VEVE ViR VRvE

/((1 —11)°(1-1)*(1 —t3)3(t1;t2)(t1 ‘tltzts)(tl;ts )(fzt—zfl )(tz —tztltg,)
t2_t3 t3_t1 t3 =11ty t3—t§
)( )( t3 )( t3 ))

i 5o 12 3/2 2
H(A/\ l - K ( t3 y tl 3 tl t2 » t3 y tl
o Vi Vi3 hivis byl Viyis

NI
((1—f1)3(1—t2)3(1—t3) (1—t1)(t2_t1t3)(t2 tS)(tZ tl)(tS t1tz)
1) ty tr t3

9 e [ [ e s [ e
' t t3 t t t2 t2 2 )

H(A, ) (WV'WV'WW ne o8P _W]
e Vi VR VR T VEVE R VRV

H—12 [t —ta\ [t —t5\* (12 —t2
“u—nfu—uﬁu—%fu—ﬁx ) (5
(t —t2t3)( t3)(t2—t1t3)(t2—tf)(t2—t3)(t2—tf)(t1t2—t§)
1 i ty 153 1) t1t)
5.6 (t3—t1)(t3—t1t2)(t3—t§))’
t3

2 3/2 2
tz\/_3 tl‘/_B kit T f )

—_

H(A/\lsu’ K-

) N2y tl\/gl tity’ ty\Es

t—ty\[t —t5\[ 12 —tat3
Kl—h)ﬂ—b)ﬂ—%Pﬂ—ﬁxb49(l ) ()
ty ty t
(tf—t%)(tf—t%)(tg—tl)(t%—t1t3)(t%—tf)(tQ—tg,)(t%—t%)
t2 t ty t5 t5 ta t2
ts—tito \(t3—t\ [tz -1
& S
3 3 3

Proof. We only show (5.4); the others are similar. Let T = GJ,; the T-action on the Haiman coordinates
transfers via (4.24) and (4.26) to an action on the Pliicker coordinates. One checks that this action coincides
with the one induced by the map

SRV 1\t IVt
VEVE L nE L nyE

Ug— ————=, 1 —-——, U

ty Vi’ Vi3
t3/2 t;/z tf

Uz — —

2
’ Uy ’
tiVts tiVE
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The appearance of square roots arises from that our choice of the T;-action on G(2,6), where T; = G$,, is
not the primitive one. This gives the numerator of (5.4). The denominator is computed by the weights of the
tangent spaces, via, e.g, the description of Corollary 4.14. g

In the same way, in Appendices A and C, we compute the other equivariant Hilbert functions that we
need later.

5.2. The equivariant Hilbert function of the local ring at ((1) € (3,2,1))

We compute the equivariant Hilbert function of A) ., =K[yy,...,¥29]/Jac(F;371) in the way recalled in
Section 2.2. Namely, we first compute the Grébner basis of Jac(F;351) and then apply Proposition 2.13 and
Lemma 2.14. We record the result in the following.

Proposition 5.3.
H(A),,t)

= (6863 (- 1581 - 888 - 5838 +15651) + 138 + 3t51] — 1545 — 1715 + 31545 + 5434
+ i3t 26510 1 1510 2658348 20338 4 134248 — 34240 — 2268 1 1 451D 4 158518
+ 51310 — 157 10T — 1o tSt] + 2035t — 1351] + 15H5H] + £3151] — t515t] + £3t5t] + 3t3t5t]
+tptat] = 3183t — 336317 + 133t — 13347 — 154247 + 2USE2H] 4 13431] — 245434 — 243151]
+15t3t] + 1o tat] + t5tst] + tytat] — 1510 — 1SS0 — 15450 — 134510 — 254548 — 154548 + 35545146
2656548 — 1310 1 154548 + 150348 — 2654548 1+ 2651515 + 6134540 + 1234548 — 3174348 — 34531
+ 2658318 2638310 1+ 151310 + 2054240 1+ 154248 — 3454215 — 3131245 + 13510 + 184515 1+ 14540
+ 26565t + 53 15t0 551 + 51510 + 1587 — 15158 + 131587 — 331540 — 2434547 + 354387
—BBE - A5 + B - 2158 — 151 + 1S5 + 151580 — 2SI + 3151 + St551)
+2BI5E — 3151 + tat5t) = 251310 — Bt + 2USHE — A3 + 23651 — 1513t + 15438
+HBE = 3551 — 3551 + I — B + 13t + 1513t + 2U5t3t] + Htst] + 1yt t]
+ 265651+ ]t + 15t — 180t 13651 — 35St} = 33 e5t} + 245t ] + 154581 — 154]
+ 2B — A3t + 255t — BISE3T — 20,1341 + 5 tatT — £5 15t ] + 2S5t T + 8315 1] + 1515t}
—2835tt+ st st — Bt - 288t v 31 —an B - 8tt v 355 - 205 2t]
382t et - Bt v sttt st 4 15t3t] — o380 + 31580 4 205580 4 134543
+ it + 1580 = 365150 — 3151880 + 531583 + 2024880 + 36383 — 265383 + 2636513 — 3634543
=325 + 151 + 615151 + 25151 — 2651515 + 151 + 15 — 3t — 2551 + 351
— 881283 2651280 — 51283 — 3158 — 3126 — 51517 — 1,137 + 54517 + 517 + 21547
+ o517 = 2451817 — 2431547 + 154517 + 2631547 — 124847 — 1) 347 + 5547 — 351347 — 334517
51512 4 357 + 15151 — 515t + st + 5t — 33t 1 2656347 — 151247 — 518
— 1515t — 115ty + 5150+ 3850y + 3150 — 5850 — 1585 + 1515 — 265150 — 265631

FS I+ D + 5t + it + 1565t + 58] + 58] + 5] — 115 — 135 — 1583 - 383 )

/((tl —1)% (¢ - tz)z(tz— 1°(# —tiz)z(tf —83)(F-8)(t—t3)* (5 —t3) (2~ 13)°

(5 ta—ts) (183 —13) (83 — t3) (b3 — 1)°(t1 + t3)(t2 + t3) (11t — 13 ) (£ — tat3 ) (11 t2 — £3)).
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5.3. The localization computation

Conjecture 5.4. Let X be a smooth projective scheme. For line bundles K,L on X,

(5.8) 1+ i X(A,,,K[”],A,ML[”])Q” = exp i X (A_pK,A_nL) %n .
n=1 =

In particular,
Y x(LM)Q" = (1-Q )
n=1

Conjecture 5.5. Denote by 9 the set of r-dimensional partitions (an empty partition is allowed). For A € L.,
recall that A) is the coordinate ring of the Haiman neighborhood and H(A);01,...,0,) is the equivariant Hilbert
Sfunction of A,. Then forr > 2,

Y [QWH(A/\;Ql,...,@r) [T (1-u6y--6r)(1-ver"--0:")

AeP i=(i) i)
(& amwma—ener
-9) ‘eXp[;nu —on)(1-67) |

Remark 5.6. Conjecture 5.5 is a refinement of [WZ14, Conjecture 3|. Note that when r =1, (5.9) is not true,
but it is still true if v = 0.

Proposition 5.7. Let X be a smooth proper toric variety over k of dimension r. Let T = G}, be the open dense
torus contained in X. Let K, L be two T -line bundles on X. Then Conjecture 5.5 implies Conjecture 5.4 for X, K,
and L. More precisely, if Conjecture 5.5 holds modulo Q° for some s > 0, Conjecture 5.4 modulo Q° also holds for
such triples (X, K, L).

Proof. The T-action on X has only isolated fixed points, denoted by xi,...,x,. For 1 < b < m, let
Wp 1,..., Wy be the weights of the cotangent space of X at x;,. Let ky, (resp. 1) be the weight of K (resp. L)
at x,. Forn>1,let a,,: T — T be the homomorphism t = (t,...,t,) = t" = (t{,...,t}'). Recall our notation
introduced before Example 2.11. For each n > 1, applying (2.6) to X, with the action on X, K, and L by T
precomposed with «,,, we obtain

— yu" 1k ) (1 — gy )

tl’lwb']')

m
(5.10) X (A_y K, A_yuL) = Z
b=1 J 1

Summing over 1, we get an equality of series of virtual T -representations

n m 1— ”t—”ki 1— ”t”li
(5.11) exp[Z)( _,,nKA_unL)Q] I_[e p[( ur )(—tm:f) )Q”].

n=1 i=1 nﬂj:l (1

Now assume Conjecture 5.5 is valid. Replacing u in (5.9) by ut™%¢, v by vtls, and 0; by t"i for 1 <j<r,

we have
(6.12)
1— unt—nki 1— v”tnli ro
R L Y TR e |
=1 AeP i=(ip,... i) €A j=1

Consider the T-action on Hilb"(X) induced by the action on X (not involving «,,). The equivariant local
structure of Hilb"(X) at a fixed subscheme Z of length I supported at x;, is isomorphic to the equivariant
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local structure of Hilbl(Ar) at Zj supported at 0, where I is a monomial ideal, and where T acts on A by
weights wy, 1,...,Wp,, (see the proof of Proposition 3.3). By (2.6) or (2.8), we obtain an equality in R(T)

m

(513) x(AK A LM)= N Y H (A, e | [1—ut-kb.ﬁtirwb,/]].
j=1

Ay A €P b=1 i=(iy iy )EN,
Ayl Al=r
Summing over n > 0, and combining (5.11), (5.12), and (5.13), we obtain the validity of (5.8) for the
equivariant triple (X, K, L), as an equality of series of virtual representations of T. Taking the limit t — 1,
we complete the proof of the first statement. The second statement follows by ignoring the higher-order
terms of Q in the above proof. 0

Proposition 5.8. Conjecture 5.5 modulo Q’ holds for smooth proper toric 3-folds X and equivariant line bundles
K,L on X. Assume that Conjecture 4.23 is true. Then Conjecture 5.5 modulo Q¥ holds for smooth proper toric
3-folds X and equivariant line bundles K,L on X.

Proof. The computations of equivariant Hilbert functions H(A ;t) at singular points are done in Corollary 5.2,
Proposition 5.3, and Appendices A and C. The contribution of smooth points is computed using the
description of the cotangent spaces in Corollary 4.14, and its implementation in Macaulay2. Then we verify

(5.9) by brute force.(©) g

Remark 5.9. The right-hand side of (5.9) is manifestly symmetric in # and v, while the left-hand side seems
not to be. Replacing v by v™!, and Q by vQ, we obtain a formula equivalent to (5.9), which is symmetric in

u and v:
Z[( DQUH(A0,,....00] o7+ [ (1-uoy--0r)(1-vey -67)
A ied AT
o (1-u")(1-v")Q"
14 = _ ,

Remark 5.10. 1t is very desirable to have an at least conjectural formula for every single H(A);t). Then
it should be possible to show (5.9), or (5.14), as a combinatorial identity and thus avoid the cumbersome
verifications in the final step of the proof of Proposition 5.8, once and for all.

Remark 5.11. The equivariant Hilbert functions H(A,;601,...,0,) in Corollary 5.2 and Proposition 5.3 satisfy
the self-reciprocal law

(5.15) H(A,;64,...,0,) = (-1)M©o, ---6,) W H 0y -6y -H(A;67",...,6,").
(i1,eerip)EA

This is related to the Gorenstein property by Theorem 2.15.
By Propositions 5.7 and 5.8, we obtain the following.

Corollary 5.12. Conjecture 5.4 modulo Q” holds for smooth proper toric 3-folds X and T -line bundles K,L on X,
where T is the dense open torus in X. Assume that Conjecture 4.23 is true. Then Conjecture 5.4 modulo Q¥ holds
for smooth proper toric 3-folds X and equivariant line bundles K,L on X.

Remark 513. In [Hu24], we show that Conjecture 5.4 can be reduced to the cases where X is a product of
projective spaces and K, L are exterior tensor products of the line bundles of the form O(k). Thus it follows
that Conjecture 5.4 modulo Q7 holds for all smooth proper 3-fold.

(6)The verification using Mathematica is given in the ancillary files. See also https://github.com/huxw06/Hilbert-scheme-
of-points.
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5.4. A McKay correspondence

Denote the symmetric group of cardinality 7! by $,,. Denote by X(") = X"/S, the n'" symmetric product
of X. There is the Hilbert-Chow morphism p: X[ — X (see [Berl2, Section 2.2]); set-theoretically, it
sends a 0-dimensional subscheme to the associated 0-cycle.

Conjecture 5.14 (K-theoretical pushforward). We have p,Oxin = Oxo in Ko(X™).

For a smooth projective surface, this conjecture follows from [Sca09, Propositions 1.3.2 and 1.3.3].

Let L be a line bundle on X. Denote by p;: X" — X the i" projection. Let L; = p;L. Consider the
quotient stack [X/S,]. There is an obvious action of S, on the vector bundle ®7_, L;, rendering & L — X"
equivariant, which gives a vector bundle [®}_  L;/S,] on [X"/S,]. Denote by m: [X/S,] — ) the
projection to the coarse moduli space. Thus 7,O[xn/s | = Ox.

Conjecture 5.15. Suppose dim X > 2. Let K, L be line bundles on X. For the vector bundles U = ®;_, p'K and
V =@! |piL on X", we have the K-theoretical pushforward

oo (A ((KIM) )@ AL, (L)) = m[(A_, U ® A, V)/S, )

For u = 0 and dim X = 2, this conjecture follows from [Sca09, Proposition 2.4.5]. We regard this conjecture
as a sort of McKay correspondence:

[X"/3]

|~
x[n] x(n)
Although X[ is not smooth in general, it is a modular substitute of the quotient scheme X™. In the

remainder of this subsection, we show Theorem 5.20, from which one sees that Conjecture 5.15 implies
Conjecture 5.4.

Remark 5.16. As pointed out by a referee, Theorem 5.20 follows directly from [Krul8, Proposition 4.1]. In
fact, the Euler characteristic of 7, [(A°U* ® Af V)/S,] can be computed as the Euler characteristic of the
Sy-invariant Ext-space Extg (AU, AfV), and the proof of [Krul8, Proposition 4.1] works in all dimensions.
The related combinatorial identities are given in [Krul8, Appendix].

We give another proof of Theorem 5.20 using the Riemann-Roch theorem for smooth Deligne-Mumford
quotient stacks (see [EG05]). Let us recall some notation. We follow the presentation of [Edil3].

Let Y be a smooth projective scheme over k of characteristic zero, with an action by a finite group G.
Let \,...,\V,, be the conjugacy classes of G. Choose a representative g € \V; for each 1 < k < m. For
any element g € G, let Z; be the centralizer of g in G, and let Hy be the subgroup generated by g. Let
Y8 be the fixed subscheme of Y and : Y& <> Y be the closed immersion. Since the subgroup Hg, is
diagonalizable, Y8 is regular. Let N, be the normal bundle of Y& in Y.

Let E be a G-equivariant vector bundle on Y. Now assume that k is algebraically closed. The restriction

of E on Y& decomposes into a sum of g -eigenbundles P )Eé’ where X(H) is the group of characters

feX(H,
of an abelian group H. Define

(5.16) th, (E) = Z (8k)Ee

£€X(Hg, )

Here t means twisting and does not indicate any relation to a torus. Then the Riemann-Roch theorem for
the Deligne-Mumford stack ) = [Y/G] says

0813 f e ()
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Remark 5.17. In [EGO05], the base field is assumed to be C, and the group G is a general algebraic group. In
our case, G is a finite abstract group, so the formula is simpler. And in this case, the assumption that the
base field is algebraically closed is used only in the decomposition into eigenbundles. The characteristic
zero assumption is essential for the sufficiently higher cohomology to vanish so that the left-hand side of

(6.17) can be defined.

For a vector bundle F, by the splitting principle, we may assume F = @_, W;, where the W; are line

bundles, and define
' emma(Wi) _q

Y, (F) = ]_[—e_cl(wi)_1 .

i=1

Lemma 5.18. (i) Let Cpy = e . Then

m-=1 r
(5.18) Y,(F) = (=1)'Ch, ch(A'(FY).
k=1 i=1

(i) Let Tx be the tangent bundle of X. Then
5.19) j Shlly” o) —f M) _ )

‘ X Y‘m(TX) X Tm(TX) '

h(K*)" ch(L)" Td(X —mei(K) gmer(L) 7 (X
6520) [ PINPTI) _ [ OSTN _g
X Yu(Tx) X Yon(Tx)

Proof- (i)

m=1 r m—1 r \m r —mc (W)

k kw1 k) ch(W)"-1 e—mei(Wy) _ 1
| | H( 1)ick ch(a I_[ch (1-ckwp)--( mer))_];l W1 _E[ — T
(ii) Let xq,...,x4qimx be the Chern roots of TX. Then
dim X dim X
ch(L)"Td(X) _ eyt ﬁ 5i _ 1 waw ﬁ mx,;
X Tm(TX) X i1 1 —emXi mdimX X io1 1 —e mXi
1 dim X X
_ ., dimX c1(L) i _
= " Lel ]_[ — Lch( )Td(X) = x(L).
i=1

The proof of (5.20) is similar. g

For a (usual) partition p, let z, =[];5, ikik;!, where k; is the number of parts of y equal to i. The following
identity is obtained by directly expanding the right-hand side.

Lemma 5.19. For indeterminates Y1,Y,..., we have the identity

(5.21) 1+ Z %[]LlijQ“‘l]:exp[inQTr],
I j=1 r=1

where the sum on the lefi-hand side runs over all partitions of natural numbers.

Theorem 5.20. Let X be a smooth projective scheme over a field of characteristic zero. For line bundles K,L on X,
lee U=0!" piK and V =®!_|piL. Then

1+ i){(x(n)’m [(A_, U*®A_VV)/S,1]) = exp[Z)( A_ynK,A_nL) Q”]

n=1 n=1
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Proof. The formation of the quotient X"} commutes with flat base changes, so we can assume that k is
algebraically closed. The conjugacy classes of S, correspond to the partitions of n. Let = (my,...,m;) be
a partition of 7, and also use p to represent the conjugacy class corresponding to y. Let 1, be the element
of S, which preserves the I parts of y and in the i" part is the addition by 1 mod m;. Formally, h, is
uniquely determined by the following requirement: For 1 <k </l and 1 <i < my,

k-1 k k
ij<hy I+Zm]- < mj
j=1 j=1 j=1

and
k-1 k-1
h, i+Zm]- Ei+1+Zm]- mod (my).
j=1 j=1

The fixed locus of h,, is (X”)hl‘ = (Ax)1 x---x(Ax);, where (Ax)r = X is the small diagonal in X"*. Denote
by 1, (X™) < X" the obvious closed immersion. For 1 < j <1, denote by

g (X" = (Ax); x - x (Ax); — (Ax);

the j™™ projection. The order of h, is M, = gcd(my,...,m;). The center of h, is denoted by Z,, and its
order is z;,. The twisting operator (5.16) according to h, is denoted by t,. We have i,V = EB;-:IG];(L@’”J'),

mi—1
V) = Zp][]z Zk’fﬂer],

and

]

m;i—1 /dim X %m¢7
s (N3 zp][ (5 s ]]
=1

k=1 =0

So by (5.18), we have

B K s
ch(t (i;(A_uU*@)A_vv))) _ l_[] lp]l_[k 0 ( —ue " ch(K ))(l—ve i ch(L))
AN [T P}, (T0)
Ty 51— ch(K*)™) (1™ ch(L)")
) ]_[] 1P ( x) '

Then using (5.19) and (5.20), we obtain

h(t (i;(A‘”U*@)A‘”V) Td([X*/Z,]
f[mf (” (N )) 2

:Zi]:[ xX(Ox)—u"ix(K*)=v"ix(L)+ u™iv™i x(K*®L)).

—

In (5.21), we set
Y, = x(Ox) —u" x(K*) =v" x (L) + u"™v" x(K* ® L).
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Then we obtain

(o8]

1+ ) x (AU ®ALVY/S,)Q"

n=1

l
Lo [ ] (Ox) - () =" (1) + s (K @ 1)
Boi=1

r

= eXP(Z(X(OX) —u'x(K*)=v"x(L)+ u"v" x (K" ® L)=—
r=1

o
= |.

= exp(z X(A_ K, A_yL)

6. Local properties of Hilbert schemes

In this section, we study certain properties of the singularities encountered in this paper.
Proposition 6.1. The scheme Spec(A, , ) is normal and Gorenstein, and it has only rational singularities.

Proof. The first two properties follow from the general fact that Grassmannians with respect to Pliicker
embeddings are arithmetically normal and arithmetically Gorenstein (see, e.g, [LB15, Sections 6.3 and 7.5]).
More explicitly, we have a regular sequence a,c,d,e, g, h, f +m+q,i+p+71,j+1+n for the ring (see (4.25))

(6-1) A= Ik[ay (o5} d: e:f;g; h; i}j: lr m,n,p,q, r]/]lZ]'
The annihilator of the maximal ideal P = (a,c,d,e, f,g,h,i,j,1,m,n,p,q,r) in
Ik[a,C,d, e;f;g;h;i;j; l; m; n;p,q,r]/(jlzl + (a,C,d,E,g,h,f +m+ q,l +p + T,j + l + n))

is a principal ideal generated by 2. So by definition, (6.1) is Gorenstein. By Serre’s criterion, Cohen-Macaulay
plus regularity in codimension 1 implies normal. So A, , is normal because it has an isolated singularity
at P.

For the third property, when we blow up the cone (6.1) at the origin, the exceptional divisor E is isomorphic
to G(2,6), with normal sheaf O(—1). Denote the total space of the normal bundle by N. We only need to
show H'(N,Oy) = 0 for i > 0. Since 77,0y = Sym®*(N'V), where 7t: N — E is the projection, we are left to
show

H'(G(2,6),0(j)) = 0

for 7,7 > 0. This follows from the Kodaira vanishing theorem for the canonical bundle K¢, ,) = O(-n). 0O
In the rest of this section, we study Spec(A),,, ). Look at the superpotential

Fizp1 = —Vs5¥s¥V10V14 +Y6Y7V14¥15 + V8VoV10V17 — Y2V7¥15Y17 + VaV10V15¥17 — V6¥VsV14V1s8
TY2¥Y8Y17Y18 —Y10¥Y14¥15¥19 T ¥2¥5Y7Y21 — Ye¥Y7Y9¥Y21 — Ya¥s5¥10Y21 — Y4¥VeV18Y21
TY9¥Y10¥19¥21 T ¥2¥V18V19Y21 T ¥2¥5Y8Y24 — Y6¥Y8Y9Y24 — YaY6¥15Y24 + V2V15Y19Y24
—Y5Y7¥14Y27 Y Y7Y9Y17Y27 + Va¥17Y18Y27 — Y14¥18Y19Y27 + Y4Y5Y24Y27 — Y9¥Y19Y24Y27
~V11Y13Y14 T V1Y7%16 T VaV11V16 + ¥8Y12¥V16 — V3¥V13V17 T+ ¥3V16Y19 ~ ¥3¥V6Y20
~V1V10Y20 — ¥Y2Y11¥20 T V12Y13Y21 — Y1¥13%24 + V12Y20Y27 — Y3Y5Y29 — V9¥11¥29
TY12¥15%29 + Y1Y18Y29-
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The variables V55,723, v25, V26, V28 do not appear in the above expression. It has the Z/2 symmetry

F1321(91,92, 93, Y4, Y5, V6, Y7, V8, Y9, Y10, V11, V12 V13, V14, V155
V16, V17, Y18 Y19, Y20, Y21, Y22, V23, Y24, V25, V26, Y27, V28, V29)
(6.2) = F1301(¥1, =99, V12, V14, Y27, V15, Y24, Y17, —Y2, V18, Y11, Y3, V16 V4 Vo
V13,8, Y100 —V21, Y29, ~Y19, Y22, Y23, Y7, Y25, Y26, V5, Y28, ¥20)-

In this section, we set R = Q[yy,...,V29]/Jac(F1321) and S = R/(v22, V23, V25, V26, V28)-

Proposition 6.2. Away from 0, Spec(S) has extra dimension equal to O or 6 and has at most rational singularities.
More precisely, every point away from 0 is a smooth point or has an open neighborhood that is isomorphic to an
open subset of a trivial affine bundle over the cone G(2,6).

Proof- We use the notation of Section 4.3.4. Let I be an ideal of k[X;,X;, X3] such that Z; lies in the
Haiman neighborhood Spec(A) ,,, ). By Theorem 4.9(iii), this implies that

(6.3) 1, X1, X2, X0, X1 X0, X3, X3
form a basis of k[X7, X,, X3]/I. Suppose Z; lies the open subset {x4 = 0}. Recall x4 = Cg(l)é Then
(6.4) 1, X1, X, X3, X1 X5, X2, X5 X3

form a basis of k[X;, X5, X3]/I. By Theorem 4.9(iii), this implies that I lies in the Haiman neighborhood of
the ideal | = (X%,Xlez,Xng,,X;’,X§X3,X32). After the permutation X; < X, J is transformed into the
ideal I, , in Appendix A.4. The ideal I}, , is a Borel tripod ideal with extra dimension 6. By the result of
Appendix A.4 and Proposition 6.1, the Hilbert scheme Hilb”(A3) is smooth or has a rational singularity
at Zj.

Similarly, we have

0,3,0

{xg = €00 * 0} C Spec(A, )= SpeC(A/\142)’

(x2,X1 X3,X1 X3,X3,X, X3,X2

)
(6.5a) {x13 = a1 # 0} C Spec(A, ),

(X3 X2Xp X1 X2.X5 X3)
1,0,1
{x14 = Co 2 0 # 0} C Spec(A),.,,),

(6.5b) {x16 = Co 0 1 # 0} C Spec(A, ),

(X} X2Xp, X1 X2,X3,X3)
3,0,0
{x17 = o 2 0 # 0} C Spec(A),,,),

(6.5¢) {x20 = Co 0 1 # 0} C Spec(A, ),

)-

(X3 X2X5,X3,X3)

(6.5d) {x29 = CO 0 1 # 0} C Spec(A,

(x3,X1 X3,%3,X3)

Thus by the results of Appendices A.4 and A.3, when one of the coordinates xg, X14, X717 is not zero, the
point is smooth or a rational singularity. By Lemma 4.15, each of the Haiman neighborhoods (6.5a)-(6.5d)
is isomorphic to the product of A7 with a Haiman neighborhood in Hilb’(A2). Thus when one of the
coordinates X13,X1¢, X20,X29 is not zero, the point is smooth.

Note that on S we have v, = V53 = V35 = V6 = ¥p3 = 0, which is equivalent to x;; = X33 = X35 = X6 =
X8 = 0. It remains to show that if one of the coordinates

X1,X2,X3, X5, X6, X7, X9, X105 X115 X125 X15, X18,X19, X21, X24, X27

is nonzero, then the point is smooth or a rational singularity. By (4.37), we may consider the y-coordinates.
By the Z/2 symmetry (6.2), we only need to consider v1,v2,v3, V5, Vs, V7, V10, V11, V19-
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If y; # 0, the relations in Jac(F;3,1) imply
—Yu1Y14 +¥12¥21 — V173

Y24 =
21
_ TY11¥Y4—V12V8 —V19Y3
y7 - ’
Y1
_ “Yu¥2tY12¥Y27 — Y3V
Yio = ,
Y1
_ Y11Y9 — Y1215 + ¥3¥5
Yis = ” ,
Ve = ~14Y15Y6 T ¥14Y27Y5 + Y15V17Y2 ~¥17Y27Y9 ~ Y2¥21Y5 + ¥21Y6¥9
%1 '
Vo0 = —Y14Y15Y19 —¥Y14Y5Y8 + V15YV17Y4 T V17Y8Y9 + V19V21Y9 — ¥21¥4¥5
n '
Vrg = Y14Y19Y27 T V14¥V6¥Y8 — V1732¥8 —V17¥Y27¥Y4 — Y19¥Y2¥21 T ¥21Y4Ye
N '
V3 = Y15Y19Y2 ~ Y15Y4Y6 — ¥19Y27Y9 + ¥2¥5Y8 + ¥27Y4Y5 ~ Y6¥8Y9
21

Substituting these equations into Jac(Fj3,1), we obtain a zero ideal. So Spec(S) is an open subset of an
affine space near such points. Similarly, one can show this on {y3 # 0} and {y;; = 0}.
If v, # 0, the relations in Jac(F;3,1) imply

—V13V14 T V16Y4 — Y299

Y20 = %
_ “HiViotY12Y27 — Y3V
Yir = .
V2
When we substitute these equations into Jac(Fj,31) and then make the change of variables
Ys > s + ey 7 vy + y109s Vg > Vg — Y2794
Y2 Y2 V2
(6.6) V15— D15+ 3)273/9’ Y17 17+ V14}’6’ Y1s — Pis — 3110}’9,
Y2 Y2 V2

V14927

P19+—>y19+%, V21 F Vo1 + by y24}_)y24+}’103/14,

the ideal Jac(F;;31) is transformed into the ideal

(=913924 + V167 + V18Y29, —Y13Y17 T ¥16Y19 — V29Y5, V2V21Y7 + Y2Y24Y8 — ¥Y29Y3,
Y1¥16 —¥15¥17Y2 T ¥2¥21Y5,  V12V16 T Y17Y18Y2 + ¥2Y24Y5,  Y13¥Y21 + Y15Y29 + V16Ys,
—V1Y24 +YV12Y21 —V17Y3, V12329 = ¥V17Y2Y7 T V19V2Y24,  V1Y7 + V128 T ¥19Y3,
—Y13Y3 —V15Y2Y7 + V18Y2Y8,  V1Y29 T ¥17Y2¥8 T ¥19Y2¥21,  Y15Y2¥24 T V16Y3 T V18Y2Y21/
V12Y13 + V18Y19Y2 + ¥2¥5Y7,  —V1Y13 +V15V19Y2 +V2V5¥s,  V1Vis +Y12¥15 — Y3Ys)-

Finally, the map

Po,5
Vi —-pPo1, ¥Y3—Po4 Ys— —P1,2, Y7V P45 Yg — ;; Y12 V> —P1,4%2»
Po,2
(6.7) y13+>-p2s5, Y15+ P V6 P23 Y17+ P13 YisF— P24 V19— P15
Po,3
Vorb— —— YVoa =P34, Y29 P35

3’2’
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transforms the ideal (6) into the Pliicker ideal (4.27). Similarly, we can show that if one of the coordinates
Y5, V6, V7, Y10, V19 does not vanish, then the corresponding open locus is an open subset of a trivial affine

fibration over the cone G(2,6).
The proof is completed. U

Proposition 6.3. The ring S is normal and Gorenstein.

Proof. The dimension of S is 16. With the help of Macaulay2, we find a regular sequence of length 16

V1,Y2,93, V5 + V21, V6 + V24, V7, V8, V10 T V21, V13, V17, V18 T V19 t V27, Y9 + V11 + Y14, Y20 + V245
Va+Y7+ Y15+ V16 V12 + V14 + V15 + V18 + V19, —Y7 + V11 + V14 — Y15 — 2¥19 — 2Y20.

One easily checks that the vector (—1,—1,—-2) has positive inner products with each weight of the Haiman
coordinates X1,...,Xp9 (see (4.36)). So these weights lie in a strictly convex cone. Applying Theorem 2.15 and
Remark 5.11, we see that R is Gorenstein, and so is S.

By Proposition 6.2, the ring S is regular in codimension 1. Thus S is normal. The proof is completed. [

Theorem 6.4. Let X be the smooth quasi-projective 3-fold. Then

(i) Hilb"(X) is normal, Gorenstein for n <7, and has only rational singularities for n < 6;
(i) le; p: Hilb"(X) — X" be the Hilbert-Chow morphism; then for n < 6, ROP*OHﬂb”(X) = Oxm and
Rlp*OHﬂbn(X) =0 f071 > 0.

Proof. Being Gorenstein and having only rational singularities are both étale-local properties. Being
simultaneously normal and Cohen-Macaulay is also an étale-local property by Serre’s criterion. Since
Hilb"(X) has the same étale-local structure as Hilb"(A%), conclusion (i) for arbitrary smooth quasi-
projective 3-folds follows from Propositions 6.1 and 6.3. Since X'7) has only rational singularities, (ii) follows
from (i). U

This theorem suggests that if Conjecture 5.14 is true, one expects that the equality moreover holds in the
derived category, so that the local results glue. It also suggests the following question.

Question 6.5. Does Hilb’ (A3) have only rational singularities?
We make the following remarks related to this question.

Remark 6.6. The locus of points of extra dimension 8 in Hilb”(A3) is a trivial IP?>-bundle over the diagonal
6: A= A3 — (A% via the Hilbert-Chow morphism p, where & is the diagonal embedding. This can be
shown by an explicit comparison of Spec(k[v22, V23, V25, V26, V28]) and the corresponding fiber induced by
permuting the coordinates X;, X,, X3 on A3. We leave the details to the reader.

Remark 6.7. According to the discussions in Section 4.5, the points with extra dimension 8 on Hilb"(A3)
are expected to be the second-simplest singularities. They deserve a detailed study. We do not know whether
the point 0 € Spec(S) is a rational singularity, though we expect this. Let f: Y — Spec(S) be a resolution
of singularities. Since S is Cohen-Macaulay and the points away from O are at most rational singularities, by
[Kov99, Lemma 3.3], the point 0 € Spec(S) is a rational singularity if and only if R'>£,Oy = 0. Since the
locus of such singularities in Hilb’ (IP3) is a trivial IP2-bundle over the diagonal in (P )7), it seems plausible
that the Euler characteristic X(OHilb7(1P3)) determines R'>£,0y. But to implement this idea, we need to
know not only the locus of points of extra dimension 8, but also the structure of an open neighborhood
of this locus. Proposition 6.2 and its proof give us a way to resolve the singularity of Spec(S). Consider
the blow-up of Spec(S) at 0, i.e,, along m = (vy,...,V21,V24,¥27, V29). Denote the homogeneous coordinates
corresponding to the generators vy,...,V21,V24,V27, V29 of m by z4,...,221,224,277,229. We are going to see
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that the proof of Proposition 6.2 gives all the data of this blow-up. For example, the chart {z; # 0} is smooth.
The chart {z, # 0}, after the change of variables (compare to (6.6), setting z, = 1)

Z5 /> Z5 + 2629, 27 /> Z7 + 21024, 28 > 28 — 23724,
Z15 /> 215+ 23729, 217 b 217t 21426, 218 > 218 — 21029,

219 V> 219+ 2426, 221 b 221 t 214227, 224 > 224t 2102145
becomes

Spec (H([Z4, 265,29,210s 214+ 227] ® H([Zl, V2,23,25,27,28,212,213, 215,216, 217,218,219, 221,224, 229]/]),

where | is the ideal (compare to (6))

(=213224 + 21627 + 218229, —Z213217 T 216219 — 22925, V222127 +Y222428 — 22923,

21216 —¥2215217 Y ¥222125, 212216 T ¥2217218 + ¥222425, 213221 + 215229 + 21628,
(6.8) — 21234 + 212221 — 21723, 212229 = Y221727 + ¥2219224, 2127 + 21228 + 21923,

— 21323 — V221527 + V221828, 21229+ ¥221728 T ¥2219221,  Y2215224 + 21623 T ¥2218221,

212213 + Y2218219 + ¥22527,  —Z1213 + Y2215219 + ¥22528, 21218 + 212215 — Z325).

In this computation, we need to note that the factors such as 21272162921 + 2128216224 — 23215217279 +
23252731229 of

(V222127 + V222428 — 22923)21216 + (21216 — Y2215217 + ¥222125)23229
lie in J. Now consider the blow-up of G(2,6)x Al = G(2,6) x Spec(k[t]) along the subscheme
{t=0, p;; =0 for (i,j) = (0,1),(0,4),(1,4)} = A>.

Denote by p; ; the homogeneous coordinates corresponding to p; ;, for (i,j) # (0,1),(0,4),(1,4), and by f
the homogeneous coordinate corresponding to t. Then the map (compare to (6.7))

21 V> —pPo,1» 23V Po4 25— P12, Z7F—= P45 Zg — Po,5» 212 P14
(6.9) 213> —=P2,5, 215> P02, 216 /> P2,3, 217 —=P1,3» 218 V> ~P2,4, 219 P1,5;
Z21 V> P03, Z24F— P34, 229 P35, Yor—t

gives an isomorphism between

Spec(Ik[21, V2,23,25,27,28,212,213, 215,216,217, 218,219, 221,224, 229]/])

and the chart {f # 0}. The other charts {z; # 0} are similar; one can use the formulae in Appendix D. A
further blowing-up of the cone singularities will give a resolution of singularities and help understand the
singularity 0 € Spec(S).

A. Change of variables for some Borel ideals

Al ((1)c(41)), extra.dim = 6
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4 2 2
Iy, = (Xl'X1X21X1X3;X2;X2X3,X3)_
Algorithm 4.21 gives
0,1,1 — 1,0,1 N 1,1,0 1,0,1
Co,0 X1 CroobX2 Corot X3 Coon T X4
4,0,0 4,0,0 4,0,0 0,2,0
Co,01 %5 G300 % Cor0t X7, Coo1 X8
1,0,1 1,1,0 0,0,2 0,2,0
3,00 %9, €00 X100 Co0,1 X110 Co1,0 > X126
1,1,0 1,0,1 0,0,2 1,10
€300 %13, Co1o0F>X14 Coi1obtX15 Cooq X6
0,0,2 1,0,1 4,0,0 0,2,0
C30,0 %17, €00 %18 €00 %19, €300 X20,
1, 0, 4,0,0 01,1

and

1,0
€200 7 X21»

1,1
C30,0 = X22/

All41 = Ik[xl, ..

€100 = X23,

’
.,X24]/HA141 .

Co,01 7 X24

The change of variables

!

X1 X1+ Xy,

2 2 2
Xy B> —X3Xg—3X3X4Xg — 3X X9 — X5X§ — X7X9X13 — X9X14X16 — X3X18 — 2X4X1g + X2,

X3 o X3+ Xy,
X1 > —X3X13— 3X3X4X13 — 3XjX13 — X5XgX13 — X7X13 — X13X14X16 — X3X21 — 2X4X21 + X10,
X117 F— X1+ 2x+Xqq,
(AD) x1, +— 2x109+ X712+ X024,
X17 x3x§ + 2x4x§ + x6x§ + 2x9X18 + X17,
Xp0 F— x3xf3 + 2x4xf3 + x6x%3 + 2x13X71 + X200,
Xp2 > X3X9X13+ 2X4X9X13 + XeX9X13 + X13X18 + X9Xp1 + X22,
Xp3 +H— xg + 4x§x4 + 6x3xi + 4xi - x§x6 —3x3X4X¢ — 3xix6 + X3X5X9 + 3x4X5Xg

+2X3X7X13 + 3X4X7X13 + X5X13X14 + X7X9X16 t+ 2X3X14X16 + 4X4X14X16
—X6X14X16 T X5X18 — X3X19 — 2X4X19 + X7X21 + X33,

X24 F—  Xy0t X34,

transforms the subideal of H:\m generated by the minDegree 2 equations into

(x1X7 + X5X15 + X14X23, —X11X14 — X3X15 —X7X17, X7Xg+ X16X23 + X5X24,

X15X16 —X7X22 — X14X24,  X1X3 —X12X14 —X5X17, X16X17 —X14X20 + X3X22,

(A.2) XgX14 —X1X16 — X5X22, X1X11 tX12X15 —X17X23, X3Xg — X12X16 — X5X20,

—X11X16 —X7X20 —X3X24, —X5X11tX7X12+tX3X23, —XgX15—X22X33+ X1X)4,

XgX17 — X1X20 + X12X22, XgX11 = X20X23 + X12X04, —X15Xp0 = X11X22 + X17X24).

The map
X1 > P24, X3b—>—Pos5, Xst—>>—pPps5, XzF—> P15 XgF—2> P23, X11 > —Po1s
X12 V> Po,2, X14 > P45, X15 V> P1,4» X16 /> P35, X17 /> Po,4» X207 Po,3;

Xy V> P34, X23+F— P12, X24 > P1,3
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transforms (A.2) into the Pliicker ideal (4.27). Using the dimension argument as in Section 4.3.2, we obtain
that the change of variables (A.l) transform the ideal H:\m into (A.2). A computation similar to Corollary 5.2
yields

3/2 3/2 3/2 3/2 5/2
I R e R G Y- G- G ¢
R Y R NN A A

2 2
/((1 —1)°(1-1)°(1-t3)°(1 - £3)(1 _tlz)(tl —fz)(tl —t3)(t1 —tz)(h —tg)

H(A),,51)

2 2
ty t t t
3.2\ /43 32 4 2
(tl —tz)(t1 —t2t3)(t1 —t3)(t2—t1t3)(t2—tl )(tz—t3)
t2 t2 t2 ty t) ty
4 2
ty—tity \[t3—t7\ [tz —t
(A3) 3—hity 1 2|\
t3 t3 t3
In the following sections, we omit the intermediate explanations.
A2. ((1)c(51)), extra.dim = 6
I, = (Xf,XlXZ,X1X3,X§,X2X3,X§), h=(1,31,1,1).
1,1,0 1,0,1 5,0,0 1,1,0 1,0,1 5,0,0
€00 7%, G0 %2 Croob X3 G0 X4 G0 X5 G007 X6
1,1,0 1,0,1 5,0,0 1,1,0 1,0,1 5,0,0
€300 X7, G300 X8 C3007 X0 Ch00 X100 Cg00 7 X110 G400 F X120
0,2,0 0,1,1 0,0,2 1,1,0 1,0,1 5,0,0
€400 77 X137 Cq0,0 X140 Cg00 X150 Cou,0F X160 Co,1,0 %170 Co,1,0 7 X18s
0,2,0 0,1,1 0,0,2 1,1,0 1,0,1 5,0,0
€o,1,0 = X19,  Cp,1,0 7> X20,  Cp,1,0 > X21, Co0,1 T X220 Cp01 > X23, €1 T X240

Coot P Xas Cot o %26 Cogt P Koy
X3 +— —4x12x‘;’6 + 535116 + 6x10xf6x18 + x%oxfs —4x12X16X17X20 + 10x%6x17x22

+4X11X16X18X22 + 2X10X17X18X22 + X%7X§2 — 6X12X%6X23 + 10X%6X23
+4X10X16X18X23 — 2X12X17X22X23 + 10X716X17X22X23 + 211 X18X22%X23
—4x12x16x§3 + 10x{'6x%3 + x10x18x§3 + 3x17x22x%3 - x12x§3 + 5x16x§3
+x33 + 6X11 X X4 + 4X10X16X17X24 + X10X11X18X24 + 2X11X17X20X24
+8X11X16X23%X04 + 2X10X17X23%X04 + 3x11x§3x24 + xflx§4 - E»chxf6 + 3x7x16X18
—X9X17X22 + XgX18X22 — 3X9X16X23 + X7X18X23 — x9x§3 +3XgX16X24 + X7X17X24
+2XgX23X04 — 2X6X16 + X4X18 — X6X23 + X5X04 + X3,

X13 F— x%oxfz + 2x%0x12x16 + 3x%0xf6 + xfoxlg + x%0x12x23 + 3x%0x16x23 + x%0x§3

2 2 2
+X10X11XZ4 + X9X7g + 2X7X10X12 + 4x7x10x16 + ZX7X10XQ3 + Xz + 2X4X10 +X13,
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X14

X15

X19

X20

X723

X26

X27

—

I

X10x11X%2 +2Xx10X11X12X16 + 3X10X11Xf6 + Xfoxnxus +X10X11X12%23
+3X10X11X16X23 + x10x11x§3 + xloxf1x24 + X9X10X11 + X8X10X12 + X7X11X12
+2XgX10X16 + 2X7X11X16 + XgX10X23 + X7X11X23 + X7Xg + X5X10 + X4X11 + X14,

xflez + 2xf1x12x16 + 3x%1xf6 - x%oxf7 + xloxflxlg + x%lxnxzz + x%1x12x23
+3X%1X16X23 —X10X11X17X23 + x%lx% + X%1X24 + ng%l + 2X8X11X12 + 4X8X11X16
+2x8x11x23 + X?; + ZX5X11 + X15,

8X10X76 + 2X70X12X18 + 6X7 (X1 6X15 + 8X10X16X17X22 + 3X10X11X18%X22

+12x10x56x23 + fooxlgx% + 4x10X17X22X23 + 8x10x16x§3 + 2x10xg3

+2X70%1 1X12X04 + 6X10X11 X1 6X24 + 3XT(X17X04 + 4X10X11X23%24 + 627X
+4x7x10X18 + 2X7X17X9 + 6X7X1 X023 + 2x7x§3 + 2XgX10Xp4 + 2X7X11X04

+4x4X16 + 2X4X03 + 2X1 + X19 + X206,

4X11Xf6 +X10X11X12%18 + 3X10X11X16X18 + 4X11X16X17X22 + x%1X18X22 + 6x11xf6x23
+X10X11X18%23 + 2X11X17X20X23 + 4x11x16x§3 + x11x§3 + x%1x12x24

+3X%1X16XZ4 + 2X10X11X17X24 + 2x%1x23x24 + 3X8X%6 + XgX10X18 + X7X11X18
+XgX17Xp0 + 3xgX16X23 + x8x§3 + 2XgX11X04 + 2X5X16 + X5X023 + X5 + X0,

X16 T X23,

4x10xf6 + x%oxlles + 3x%0x16x18 +4x10X16X17X22 + 2X10X11X18X22 + 6x10xf6x23
+x%0x18x23 + 2X10X17X22X23 + 4x10x16x§3 + xloxis +X10X11X12X24 + 3X10X11X16X24
+x%ox17x24 + 2X109X11X23%X04 + 3x7x%6 + 2X7X10X18 + X7X17X02 + 3X7X16Xp3 + x7x§3
+XgX10X24 + X7X11X024 + 2X4X16 + Xg4Xp3 + X1 + X3¢,

8X11X7 + 2X10X11X12%18 + 6X10X11X16X18 + X10X17X18 + 8X11X16X17%20 + 2X11 X18%2)
+12x11xf6x23 + 3X10X11X18X23 + 4x11x17x22x23 + 8.X11X16X§3 + 2X11X§3 + 2x%1x12x24
+6x%1x16x24 + 3X10X11X17%X04 + 4xf1x23x24 + 6x8xf6 + 2xgX10X18 + 2X7X11X18

+2X8X17X22 + 6X8X16X23 + 2X8X§3 + 4X8X11X24 + 4X5X16 + 2X5X23 + 2X2 + X0 + X27.

(=X13X17 + X15X00 — X14X23, —X13X18 +X23X06 —X22X27, —X19X2p — X13X24 — X23X25,

—X14X18 Tt X21X20 —X17X26, —X20X22 —X14X24 + X17X35, —X15X18 + X21X23 —X17X27,

—X17X19 —X20X23 — X15X24, X3X2p t+X18X25+ X24X26, X3X17 T X18X20 + X21X24,

—X18X19 + X3X23 + X24X27,  X14X19 —X13X20 + X15X25,  X3X14 + X21X25 —X20X26,

—X3X13 t X19X26 + X25X27, —X13X2] +X15X06 — X14X27, X3X15— X19X2] — Xp0X27).

X3 P1,2, X13F—>Po,3» X14 > P34 X15 > Po4, X17+— P45, X18 P15,
X19 /> Po,2, X20F— P24, X217 P14s X2 V= P35, Xp3 V= Po,5, X24 V= —P2,5,

X5 /> P23, X267 P1,3, X27 V= —Po,1-
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3
B

H(A),.;t)
151 ) 2 ’ ’ ’ 2 ’ 2 ’
B Vi2 — Vi Vi VR VhV
2 2
3 3 3 4 2 si(ti—fb\[ti—t3\(ti —t2\[t —t3
/((1—t1> (1 - 021 521 = )1 = 2)(1 - £3) ) (i
f f t] t7
3 3 4 .2\ /.4 4 .2 5 2
(t1 —tz)(tl —t3)(t1 —tz)(t1 —t2t3)(t1 —t3)(t2—t1t3)(t2—tl )(t2—t3)(t3—t1t2)
3 3 4 4 4
£ t t t t ty ty ty t3
5 2
ty—t2\ [tz —t
1 37
3 3
A3. ((1)c(4,2)), extra.dim = 6
4 2 2 2
Iy, = (X1, X7 X2, X1 X35,X3, X, X3,X3).
1,0,1 1,0,1 2,1,0 4,0,0 0,2,0 1,0,1
CrLo0™—X1, CrooF—X2, Croo7%3, Croob X4 Cppot—X5 €300 X6
2,1,0 4,0,0 0,2,0 0,1,1 0,0,2 1,0,1
C300X%7,  C300F %8  C300"%9, C300F %10, C300" %11, Cg1,0FH X125
2,1,0 4,0,0 0,2,0 1,0,1 2,1,0 4,0,0
Co,1,0 = X13, €10 %14 Co10—%15 Ci10F> X160 Cp1,0 %17, €110 X185
0,2,0 0,1,1 0,0,2 1,0,1 2,1,0 4,0,0
CLi,0 %19, €10 %20 Cp1,0 %21, Cgo,1 P %220 Cppo1 T X23, Cpo,1 F X24s
0,2,0 0,1,1 0,0,2
Co,01 7 X25, Cgo,1 F X260 Cp0,1 T X27-
Xy P> —X16X19 + X5+ X20 —X17X6 — X22X6,
X3 F—= Xi5+X19Xp + 2X16X25 + X0 + X3 — 2X17X7 — 2Xp2X7 + 2X1gX9,
2 2
X4 o X13+ X7 — X18X19 + 2X5) + X16X23 + X4 + X024 X6 + X18X7 — X17Xg — X22Xg,
2
X5 F—> X5 —X35Xg —X19X7 + X7+ X17X9 — X22X9 — XgXo,
X190 > Xjo0 + X X7 + X16X9,
X11 > X171 +X10X16 — 2X16X19X6 + 2XZX6 + 2X20X6 — 2x17x§ + 2x16x6x7 + ng8 + X%6X9,
X12 = X12 —X16%X22/
2
X13 B X13—X17X22 + X359,
X14 P X14 —X18X22 t X16X24s
X15 2X15 + X19Xpp + 2X16XZ5 + X6 + X3 — 2x17x7 - 2X22X7 + 2X18X9,
2 2
X21 B —X{gX19 + 2X16XZ + 2X16XZ0 + Xy + X18Xg»
X26 B X157+ X19X22 +X16X25+ X26 —X17X7 — X22X7 + X18X09,
Xo7 B 2Xx1 +2X15X16 — X10X18 + X12X19 + X17Xp — 2X16X19X22 + 2X2Xpp + 4X00 X2

+3X%6X25 + Xo7 + X16X3 + 2X13X6 — 4:X17X22X6 + 2X§2X6

2
+2X16XZ3X6 + Xo4Xg — 2X16X17X7 — 2X16XQZX7 + 2X16X18X9.
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(X2X23 —X10X04 + X12X05, —X5X1p+X10X13 +X11X23, —X5X24 + X13X25 + X23X26,

X3X12 —X10X14 T X21X23, X4X23 —X3X24 + X14X35, Xg4X12 — XpX14 T X21X24,
X2X5 +X11X25 —X10X26,  —X2X3 t X4X10 + X21X25, —X2X13 — X11X24 + X12X26,
X3X13 —X5X14 —X23X27,  —X4X13 1 X14X26 T X24X27, —X3X11 —X5X21 —X10X27,
X4X11 T X21X06 T X2X27,  —X4X5+ X3X26 + X25X27, —X11X14 — X13X2] — X12X27).
X > Po4, X3F—p1,3, X4 P12, X5 > Po,3, X100 P34, X11 V> —P04s

X12 V> —P45, X13F—>> P05, X14 VP15, X21 VP14 X23F— P35, Xpab— P25,

X325 V> P23, X26 /> Po,2,» X277V —Po,1-

3/2 3/2
N R Y IR TR Y G G
b VR VB 6B NG VERVE

/(1—t1)3(1—t2>3(1—t3)2(1_tf)2(“‘f3)2(f12—f§)(tf—t3)(t1—t2)2

f t12 tf 5]
2 2
(tf—tz)(tf—t2t3)(tf—t3)(t2—t1t3)(tz—tf)(tz—t3)(t2—tf)
£ £ t) ty ty ty ty
trty —t2\ [t —t2ty \[t3 — 3\ [t —t2
(A.5) 142 3 3 142 3 1 3 2 '
f1tp t3 f3 f3

A4 ((2)c(3,2)), extra.dim = 6

H(A/\14z;t)

I3 = (Xf,X12X2,X12X3,X§,X2X3,X32).

G o dil—n Son Gil—x i
Y00 X7 Coro o s Copo b Xer i Y10, € o X1, Crag b X1z
iy ms alne difxs diboxe Al Gl
Bty iyl @i, G G i
C?:§:§) > X25, C%cl)ﬁ = X26 C?jgf > X57.

X1 = —X12X16X22%X06 + 2xi7'2x§6 — x16x§2x27 + 5X19X09X06X07 + 3x§2x§7 — XgX12X22
—XpX16X22 + X12X16X23 + X17X22X23 + X16X22X24 + X12X14X25 + 3X2X12X26
—3X12X13%6 — 5X12X04X 26 + 4X2X20X07 — 3X13X20X07 — 6X29X24X07 + X3 + X3X1
—2xX13 + X%3 — XgX15 — X16X18 — X12X20 — X10X22 — X21X22 + X14%X23 — 4X2X24

+3x13%4 + 3X§4 + X1,
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X3 = X12X16X25 + X17X22X25 — X12X15X26 — X16X22X26 T 2x12x§6 —X12X25X27
+X22X26X27 + X5X12 + XeX22 + X16X23 + X2X26 — X13X26 — X24X26 — X23X27 + X3 + X3¢,
X4 x%gxzz —X15X17X22 + X12X17X25 + X17X22X26 + X2X16 — X16X24 + X4 + X10,
X5 > X16X25 —X15X26 + Xgﬁ —X25X27 + X5,
X F— X17X25 —X16X26 t X6,
X7 x%6_x15x17+x17x26_x16x27+x7f
Xg —szxzé —X12X22X27 —XpX12 + X12X13 + X12X24 + Xg,
X9 = —X12X15X26 F 2x12x§6 — X15X22X27 + 2X22Xp6X07 + X5X12 — X2X15 + XgX2)
+2X16X23 + X15X24 — X14X25 + 2X2X06 — X13X26 — 2X24X26 — X23X27 + X3 + X9 + 2X30,
X11 P —X12X17X06 — X17X22X27 —X7X13 — X2X17 + X17X24 + X171,
X13 P X12X15 + X16X22 — X12X26 — X22X27 + X13 + X204,
X14 P X12X16 T X17X22 + X174,
X183 2 —X12X22X26 —x§2x27—x2x22 +X13X2p —X12X23 + X22X24 + X138,
X19 P —X12X25X26 — X22X25Xp7 —X15X23 — XpXp5 + X13X5 + Xp4X05 + X23X26 + X109,
Xp1 b 2X1pX16X06 + 2X16X20X07 — X12X26X07 — X22X37 + 2XpX16 — X7Xpp — X17X23 — 2X16X24
+X14X26 — X2X27 + X24X27 + X4 + 2X10 + X21,
X33 k= X12Xp5+ Xp2Xp6 + X23.
(—X6X13 + X5X14 —X7X23, XeX1§ —X14X19 — X4X23, —X5X1g+X13X19 — X9X23,
—XeXg t X3X14 +X11X23, X5Xg —X3X13 +X21X23,  —X7Xg— X11X13 — X14%21,
—X3X18 + XgX19 —X1X23, —XgXg+X1X13+X18X21, —X4X13 —X9X14 —X7X18,
X4X5+ X6X9 + X7X19, —X3X7 —X5X11 —XeX21, X1X5—X3X9 +X19X21,
X1X7 + X9X11 — X4X21, —X4Xg — X1 X14 +X11X18, —X3X4 —X|Xg +X11X19)-
X1 P12, X3+ P13, X4 > —=P24, X5F>Po3, Xeb—>—P34, X7V P04,
Xg > P15 X9 —>=Po,2, X11 V> ~P1,4 X132 P05 X4 P45 X18 = P25,

X19 P23, X321 /> —Po,1» X23 > P35.

H(A/\zsz;t)

B R S R IR Y G G
h VB VB VB 0B VRV

22\ /42 2 2 5
fl-sra a2 (5 () =)

2 2 2
t t t ta
ty—t3\(ta—t\(ta—tit3\[t; — 1t 2 t)—t3 2 tity—t5\(ts—17 \(ts =13
t t t t t tity ts ts
ts—ti\(ts—tity\[tits — 13
t3 t3 t1t3 '
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A5 ((2) c(3,2,1)), extra.dim = 8

0,3,0
€101 7 %31,

I, = (Xf,X12X2,X1X22,X12X3,X§,X2X3,X32).

2,1,0
€2,0,0 /> X2,

0,0,2
Cl,O,l > X3).

After the change of variables

Xy

X3 >

2
—X19X26X29 — X16X59

2,0,1
€200 /> X3,

3,0,0
C1,1,0 = X9,

0,0,2

C1,1,0 7 *15/
0,3,0

€o,2,0 7 X21»

2,1,0
€101 7 *27/

01,1
€2,0,0 /> X4

2,1,0

C1,1,0 7 *10/

3,0,0

€o,2,0 7 X16/
0,0,2

€o,2,0 7 X22,

2,0,1
€101 7 X28/

1,2,0
€2,0,0 /> X5,

2,0,1
11,0 — X110
2,1,0

€o,2,0 = *17/

3,0,0
€o,0,1 7 X23,

0,1,1
€101 7 *29

0,3,0
€2,0,0 7 X6,

0,1,1
C1,1,0 7 X120

2,0,1

Co,2,0 7 X18
0,1,1

Co,01 7 X24/

1,2,0
€101 7 X30/

— X12X26 — X19X27 — X9X29 + 2X17X29 + X1 + X109 + 3Xp0 — 2X7g,

2 2 2 2 2
4x19X26X59 T DX12X19X26X29 — 2X19X27X29 — 2X9X19X59 — X17X19X59 — X19X26X29X3)

2 2
+X1pX26 — 2X4X19X26 — X12X19X27 — X9X12X29 — X1X19X29 + X15X26X29 + X18X5g

—X12X26X32 + X19X27X32 + X4Xg + X4X17 + 2X2X19 + X12X20 + X19X24 + X7X26

—X12X28 + X11X29 + X3 + Xg,

2
—X19X59 —X12X29 t Xy,

3 2 2 3 2
—X19X26X59 — X12X26X59 — 3X19X27X59 — X9X39 + X4X26X29 — 2X12X27X29 — X1 X5g

2
+X10X59 + 2X19X29X30 + X27X29X32 + X4X07 — X13X29 + X24X09 + X12X30 — X30X32 + X5,

4 3 2 3 2 2 2
—X19X26X59 — X12X26X59 + X4X26X59 — X10X39 — 3X19X59X30 + X13X59 — X21X5g

2
—X24X59 — 2X12X29X30 + 2X19X29X31 + X29X30X32 — X5X29 — X14X29 + X4X30

+X12X31 —X31X32 t Xg,

—X19X26 —X16X29 t X9 + X717,

+X12X17 —X1X19 T X15X26 T X18X29 + X171,

+Xp7X37 + 2X2 + X13 + X924,

2 .2 2
X19X59 + 2X12X19X09 — X19X29X32 + X1, + X4X19 + X15X29 — X12X32 + X7,

—X19X26X29 — X19X27 — X9Xp9 + X17X29 + X109 + 2X20 — X238,

2

2X19X26X29 + X12X19X26 — X12X16X29 + X22X26X29 — X19X26X32 + X9X12 + X4X16
2 3 19 2 2 2

X19X26X59 — X16X59 T 2X12X26X29 — £X19X37X29 — X9X59 T X17X59 — X4X26

3 2 3 3 2
—X19X26X59 — 3X19X27X59 — X9X59 — X17X59 + X4X26X29 — 2X12X27X29 — X1 X5g

2 2
+X10X59 + X28X59 + 2X19X29X30 + X27X29X32 + X4X27 — 2X13X29 + X24X29

+2Xx12X30 — X30X32 + X5 + X14,

X4
X5
X
X7
X9 +FH—>
X10
X11
X13
X14
X15 =
X17

—X16X29 + X17,

2
2X79X29 + 2X12X19 + X22X29 — X19X32 + X15,



On singular Hilbert schemes of points: Local structures and tautological sheaves

61

X18

X21

X22
X723

X24

X25

X27
X728
X30

X31

!

!

!

111

X12X16 T X17X19 + X22X26 + X183,

3x19x26x§9 — X16Xg9 + 3X12X26X29 — 4X19X27X29 — ZXQX§9 + X17X§9 — 2X4X26
—X12X27 = X1X29 + X10X29 + X19X30 + 2X27X32 + 3X2 + X135 + X21 + 2Xp4,

X%9 + X790,

—X17X26X29 — X20X26 + X26X28 + X23,

X19x26x§9 + X12X26X29 — 2X19X27X29 — X9X§9 - x17x§9 — X4Xp6 —X12X27
—X1X29 — X20X29 + X28X29 + X27X32 + X3 + X4,

4x74x26X30 + 4X12X19X26X29 — 8XToX27X09 — AX9 X195 — 4X4X19X26 — 4X12X19X)7
+X4X16X29 + 2X12X17X29 — 4X1X19X29 — X22X27X29 + 3x18x§9 +4x19X27X32
—X17X29X32 + X4Xg + X4X17 + 4X2X19 + 2X12X20 + 3X19X24 — X15X27 — 2X12X08
+2X11X29 — X22X30 — X20X32 + X28X32 + X3 + 2Xg + X35,

X26X29 + X27,

—2X19%X26X29 — X16X39 — X12X26 + 2X17X29 + Xp6X32 + X1 + X10 + 2X20 — X25,
XZ6X§9 + X30,

3
X26%X59 + X31,

the Haiman ideal becomes

(A7)

(=X3X16 = X11X17 + X22X23 — X18X28, = X5X15— XeX22 + X7X04 — X4X25,

X4Xp3 —X3Xp7 —X11X30 — X18X31, X5X9+XgX16 —X1X24 + X25X27,

X1X3 —X11X13 — X14X18 — X7X23, —X3X9 —X10X11 +X18X21 + X15X23,

X5X10 T XeX17 T X13X24 + X25X30, —X5X21 +X14X04 + XgX28 + X25X31,

X17X21X27 T X10X27X28 — X16X21X30 — X9X28X30 — X10X16X31 + X9X17X31 + X23X24,

X4X10X16 — X4X9X17 + X15X17X27 — X10X22X27 — X15X16X30 T X9X22X30 — X18X24,

X7X10X16 T X13X15X16 — X7X9X17 + X1X15X17 — X1X10X22 — X9X13X22 — X18X25,

X4X13X16 T X1X4X17 —X7X17X07 — X13X22X27 + X7X16X30 — X1X22X30 + X5X18,

— X14X17X27 + X13X27X28 + X14X16X30 T X1X28X30 — X13X16X31 — X1X17X31 — X5X23,

— X4X17X21 — X4X10X28 + X21X22X30 T X15X28X30 — X15X17X31 T X10X22X31 — X3X24,

X4X16X21 —X21X22X27 + X4X9X28 — X15X27X28 + X15X16X31 — X9X22X31 — X11X24,

X10X14X16 —X9X14X17 + X13X16X21 + X1X17X21 T X1X10X28 + X9X13X28 + X23X25,

X10X14X27 t X13X21X27 — X9X14X30 + X1X21X30 + X1 X10X31 + X9X13X3] — X6X23,

X14X15X16 — X7X16X21 — X9X14X22 T X1X21X2) —X7X9X28 + X1X15X28 + X11X25,

—X4X14X16 T X14X22X07 — X1 X4X28 + X7X27X08 — X7X16X31 T X1X22X31 + X5X711,

—X1X4X10 — X4X9X13 + X7X10X27 + X13X15X27 — X7X9X30 + X1X15X30 + X6X18,

X4X14X17 — X4X13X28 — X14X22X30 — X7X28X30 + X7X17X31 + X13X22X31 + X3X5,

—X14X15X17 + X7X17X21 T X10X14X22 + X13X21X22 + X7X10X28 + X13X15X28 + X3X25,

X4X9X14 — X1X4X21] — X14X15X27 + X7X21X27 + X7X9X31 — X1X15X31 T X6X11,

— X4X10X14 — X4X13X2] + X14X15X30 — X7X21X30 — X7X10X31 — X13X15X3] + X3X6).

After the change of variables

Y1 > Xs, Vo= —X14, Y3+ X, Yy X13, Y5 > —X3,  Yg > —X3g,
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Y7 F—> X100 Y8 X30, Y9 > X7, VioF— X21, Y11 X24, Y12 X35,
VizbF—> X3, Vg —X1, Y15+ Xy, Vie /> —X11, Y17 F X165 Y18 /> X15,
Vio > X17, Y20+ —X18, Y21 > —X27, Y24 > Xo, Vo7 > X371, Y29 F— X33,

the function Fy351(1,...,¥29) in Section 4.3.4 becomes a potential function for (A.7).

B. The change of variables of A, _ .

There are three steps.

Step 1: Use the equations of minimal degree 1 to solve xq, xy, X3, X4, Xg:

2
X5X9X18 + X13X]g + X12X18%X24 + X9X11 + X9X15+ X10X24 + X5

X =
! 1 —X18X9 ’
2 2
o = X5X7g + X{gX22 + X18X21X24 + 2X15X18 + X9X20 + X19X24
2 1 —X18X%X9 ’
_ 2 4 5 2 4 3 3
X3 = | 7XgX11X12X1gX24 — X9X10X13X7gX24 + XgX13X1gX19X24 + X9X12X7gX20X24

+ nglleglexu - xgxfgxzolexm + xéxloxfgxzzxu - XSfoXszzxu

- X9X10x123€‘118x%4 + 2X§X10X?8XZ1X§4 - xgx%8X19X21X§4 + xéxlzxi}sxﬂx%

- ngfslexzélxzs - xéxloxi‘gmm + ngfgxl9xz4x27 - X§X10X11Xf8x24

+ Xleoxwx?gxu - x5x9x12x§8x24 - x3x15xf8x19x24 + xSmefgxzoxu

+ X5X5X%8X21X24 + X9X13X4118X21X24 - XSX%8X21X22X24 - XgX%OX%SX;L

+ ngl()X%legX%Al + X9X12X?8X21X§4 - x%x%8x21x§4 - XSX%8X19X24X25

+ xSX%SXZS + XSX10X%8X26 — ng%s.'xngzﬁ — X9X12X4118X24X27 + X9X4118X%7

- x9x12x18x28 + x9x%8x21x28 + X7X9X18 - x5x9x11x18 - 2x5x9x15x18

— X§X17X41L8 + nglg,XfSXzo - x%xnxfgxn — XSX15X?8X22 - X5X9X10Xf8X24

+ 2X9X11X12X]gX24 — XoX12X15X]gX24 — 2XgX1 X7 gX24 + X10X13X X4

— X5XgX{gX19X04 — 2X9X3X]gX19X24 — 2XgX12X g X20X24 — 2X6X11 X1 5X21X24

— X§X15X1gX21X24 + XgX18X20X01 X204 — 2X9xloxfgx22x24 + 2X5 X7 gX19X22 X4

+ X10X12X?8X24 3X9X10X%8X21X24 + X9X18X19X21X24 + X5X3X?8X25

- 3X9X12X%8X24X25 + 3X9X%8X21X24X25 — X5X12X:1"8X26 + X9X%8X21X26

+ X3X15X]gX07 + 3X9X10X]gX24X7 — 3X5X15X19X24X27 — XgX15X25X7

+ xgxloxf‘gng — X%stxlg.)(fzg + x%xfsxﬂx” - 2x§x11x15xf8 - 3x§x%5x58
x5x9x18 2x9x15x18x20 - xéxzo 2x5x9x‘;’8x22 x9xf8x§2

+ x9x10X11x18x24 - 2X9x10X15x13x24 + x5x12xf8x24 - x§x11x189€19x24

— X3X|5X18X19X04 — XgX1 X1 8X20X24 — 2X3X19X20X24 — 2X5X9X] X1 X4

— X13X%8X21X24 + X%Ox%8x§4 - 2X9X10X18X19X§4 - ng%9X§4 — X12X%8X21X§4

+ x9x18x§1x§4 + X9X10X%8X24XZ5 + 2x§x18x19x24x25 - 2x§x%8x§5 - xgxloxfgx%

+ 2x;’x18x19x26 + xlzxf8x24x27 - 2x9xf8x%7 + xlzx‘fgng - 2x9xf8x21x28

- 2x7x3xfg + x5x9x11xf8 - x5x9x15xfg + 2x9x17xf8 - x5x§x18x20

2 2 2 2 2
— X9X13X1gX20 + X9X11X]gX22 — 3X9X15X g X020 — 3X5X18X20X22 + X5X10X]gX24
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- x11x12xf8x24 + x12X15X%3X24 + 4X9X16X%3x24 —X5X9X18X19X24 T x13xf8x19x24

+ 2X9X1 X1 §X20X24 + X9X11X18X21 Xo4 — 2X9X15X18X21 Xo4 — 2X6X20X21 X4

+ xlox%8x22x24 — 4X9X18X19X22X24 + X10x18X21x§4 - 2x9x19x21x§4

— 2X5X9XTgXa5 + 2X12X]gX24Xp5 — 3X9X18X01 X24X5 + XoX12X15X06 — 2XgX18X21 X26
— 2x9X15X]gX07 — 210X} gX24X27 + 3XoX1§X19X24X07 + 2XgX]gX25X07 — X10X;gX2g
+ 2X9X7gX19X08 — 2X9X]gX2aX0g + 2X9X11X15X 1§ — 2XGX15X20 + X10X15X18X24

+ X9X11X19X24 — 2X9X15X19X04 — X5X18X21 X4 — X18X21X22X04 + x10x19x§4 - x§1x§4
— X10X18X24X25 — X9X19X24X25 + X9X18X%5 - x§x19X26 + x%8x§7 + X%gx21x28
+X7X9X18 — X5X15X18 — x17xfs — X5X9X20 + X9X20X22 — 2X16X18X24 — X12X20X24
—X15X21X24 + X19X22X24 + X5X18X25 + X21X24X25 + X9X21X26 + X15X18X27
—X19X24X27 =~ X18X25X27 — X18X19X28 + X18X24X29 — x%S)

/((—1 +x15%9)* (=1 + 2x18x9)),

2
= X5X18X24 + X18X24X07 + X7gX28 + X15X24 + X24X25 + X9X26
4 1 —X18X9 ’

Xg = (—xéxgxlzxfs + x5x9x10x12x%8 + x§x12x16x%8 + x%x%zxfsxm + X6XSX%8X521
- xsxéxloxfgle - xquxnx%gle - nglzxwx%gle - ngléx%sxﬂ
- x9x10x13xf8x21 + x§x13x%8x19x21 - ng1zx1sx2oxz1 + ng11x18X%1 + ngwxlsx%l
+ X9X10X12ngx22 - X§X12x%8x19x22 - x§X12X18X19x21X24 + X3X10x189€§1x24
+ X3X12X%8X19x27 - xéxloxfgxﬂxy + xﬁxgxloxfg - x5x9xfoxf8 + 2x9x10x12x15xf8
- x§x10x16x%8 - x§x12x15X18x19 + xleoxllegxzo - x3x12x19x20 - xgxloxnxwle
— 2x5x9x12xf8x21 + xgxloxwle + 2x5x§x18x§1 + X9X13X%SX§1 — X9X%OX%SX22
+ X§X10X18X19X22 - 2x9x12xf8x21x22 + X§x18X§1X22 + X9X10X12X18%X19X24
- X§X12X%9X24 - 2x9x%oX18X21x24 + x§x10x19x21x24 - x9x12X18X§1x24
+ X§X12x18x199€25 + ngloxlslexzs - X§X10x189€19x27 + x5x18X§1x27 - x9x%ox11x18
- 2x9xfox15x18 + 2x6x9x12x58 - x5x10x12xf8 + x5x9x14xfs - 2x9x12x16x58
+ X3x10x11x19 + x§x10x15x19 + xlleax%gxw - ngfoxzo - 2X9X52X18X20
- xéxéxlstl +X9X11X12X18X21 — 2X9X12X15X18X21 + 3x§x16x18x21
—2X9X13X18X19X21 — x10X12x%gX22 + x9x14xf8x22 +X9X12X18X19X22
+ X9X10X18X21X22 — X§x18X22X23 + x%2x18x19x24 —X10X12X18%X21X24
T X9X14X18X21X24 —X9X12X19X21X24 + X9X10X§1X24 - X9Xfoxlsxzs + X9X12X18X21X25
—3X9X12X18X19X27 + X9X10X18X21X27 + X3X18x23xz7 - X§X18X21x29 —3X6X9X10X18
+X9X11X14X18 — 2X10X12X15X18 + 2X9X14X15X18 + X9X10X16X18 T 2X5X9X10X19
+ X9X11X12X19 + X10X13X18X19 — X9X10X12X20 + x§x14x20 + X9X10X15X21
T X5X12X18%X21 — X9X10X19X22 + X12X18X21X22 — x9x§1x22 - x§x11x23 - x§x15x23
+ X10X12X19X24 + X9X14X19X04 + x12x§1x24 —X9X10X23X24 —X9X14X18X25
—X9X12X19X25 — X9X10X21X25 + X9X10X19X27 — x9x§1x27 + X9X10X18X29 t+ x%oxll

2
—XeX12X18 + X12X16X18 + X5X12X19 + X]pX00 + X12X15X21 — 2X9X16X21 + X13X19X2]
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2
—X12X19X22 — 2X5X9X23 — X13X18X23 + X9X22X23 — X12X23X24 + X{ X205 — X12X21X25
+2X12X19X07 — X9X23Xp7 + X9X21X29 + 2 X6X10 — X11X14 + X14X25 — X10X29)
2
/(1 —X18X9)°.

Step 2: Substitute the above formulae of x1, x;, X3, X4, Xg into the equations of minimal degree 2. Then make
an invertible linear transformation (the variables that are not displayed remain unchanged):

X5 F— X5+ X7,
X15 > X15+ X25,
X16 F X+ X6,
Xp9 F—  2Xg+ X1+ Xp9.

Step 3: Finally, make an invertible fractional change of variables. We write the formulae as partial fractions
to present them in a way more consistent with the Borel case; this does not indicate the way we found

them. The variables that are not displayed remain unchanged.

2 2 2 2 2 2
xs X10X1gX24%9  X10X1gX24X9 X12X1gX24X9  X13X7g X15%9
(X189 —1)%  (x18%9—1)%  (x18X9—1)> (x38%9—1)3  (x38x9—1)3
2 3 2
X1gX21X24%Xg X5 . 2x19X24%§
3 _
(x18%9 — 1) (x18x9—1)3(xfsx§+2x18x9— 1) X18Xg — 1
+X21X24X9 — 2X35X9,
4 4
X10X13X24(2x18%9 — 1)x7g X13%21X24X9(2X18X9 — 1)xTg
X7 > —

2 2 2 2
(x18x9—1)5(x18x9—3x18x9+1) (x18x9—1)5(x18x9—3x18x9+1)
x10%12%2, (633 + 2x% %2 — 3x1g%9 + 1) x3 3 3
10412424\ *1849 1879 1849 18 X10X28X1g X21X28X9X]g

(x18%9 —1)4 (xlgx9 —3x18%g + 1) (xigxg—1)2 " (xigx9—1)2

2 3
X21X24X5X5(3X18%9 — 2)x7g

2
(x18%9 —1)° (xlgx9 3x18%9 + 1)(x18x9 + 2X1gXg — 1)
3
X10X24X5X9(3X18%9 — 2)x74

(x18x9 —1)0 (x‘lzgxg —3x18X9 + 1)(xf8x§ + 2x18X9 — 1)

+

2.3 2.3
X21X22X24X5X]g 3X01X24X27X5X]g

— +
(X18X9 - 1) (X18X9 3X18X9 + 1) (X18X9 - 1)(X%8X9 3X18X9 + 1)

3 3
N X10X22X24X9X7g ~ 3X10X24X27X9X7g
2 .2 2 .2
(x18%9 — 1) (x18x9 —3x18%9 + 1) (x18%9 — 1)(x18x9 —3x18%9 + 1)

xxxxx3x+2xx —3x18X9 +1)x3 3
12X21X94%9 | X1 Xg 18%9 18X9 18 x13X15(2x18%9 — 1)x7g

2 .2

(x18%9 —1)* (x18x9 —3x18%9 + 1) (x18x9—1)° (x18x9 —3x18%9 + 1)

x12x19x24x9 (5x18x9 4x18X9 + l)x18

(x18x9—1)3 (x18x9 3x18%9 + 1)

2 .3(3 23,2 .2 2
x12x15x24(x18x9 + 2x18x9 3x18%9 + l)x18 X19X21X5,4%Xg (x18x9 —X{gXy + l)x18

(x18x9 —1)° (x18x9 3x18X9 + 1) (x18x9 —1)% (x18x9 3x18X9 + 1)
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2 .2 2
X10%24 (x18x9 4x18x9 + 5x18x9 6x18x9 + 4x18x9 — 1)x18 X17X7g
3
(X18X9—1)5 (x18x9—3x18x9+1) (x18x9_1)
2.2 2 2
X23X54%5(X18X9 — 2)X7g X13X20X9X{g

- +
(x18x9 —1)0 (xfgxg +2X18X9 — 1) (x18x9 —1)° (xfgx9 3x18X9 + 1)(x18x9 +2X18X9 — 1)

2 2 2
x10x11x24x9x18 3x10x24x25x9x18 . X15X22X9X7g
2 2 2 .2
X18X9 3X18X9+ 1 X18X9 3X18X9+ 1 (x18x9_1)2 (x18x9—3X18X9+ 1)

2 .2 2
3x15x27x9xf8 X13X19%X24 (x18x9 + 2x1gX9 — 1)x18

2 .2 a 2 2
(X18X9 — 1)2 (x18x9 — 3x18x9 + 1) (XlSX9 — 1)4 (x18x9 — 3X18X9 + 1)
3.3 .2 .2
X12X26 (x18x9 —X{gXg + 1)x18
(x18x9 —1)?

X10X15%24 (3x18x9 7x18x9 + 2x18x9 + 2x18X9 — 1)x18

+X16%24(X18X9 + 1)x15 +

(X18X9 - 1)6 (x18x9 - 3X18X9 + 1)

x10x21x24(11x18x9 19x18x9 + 15x18x9 6x18X9 + 1)x18

(X18X9 - 1)5 (xlsxg — 3X18X9 + 1)

2 .2
X19X28 (x18x9 + 1)X18 X24X29%X13g

X18X9—1 (X18X9— 1)6 (x%8x§+2x18x9—1)

3
X15X5 (x18x9 7x18x9 + 6X18X9 — 1)x18 5
— - +3X25 —2X11X25
(x18%9 — 1) (xlgx9 —3x18%9 + 1)(x18x9 + 2x18X9 — 1)

X21X26X9 (xlgxg + xfgx9 2x18X9 + 1) x15 (xfsxg + 2x18x9 3x18x9 + 1)

(x18%9 — 1) (x18x9 —1)0 (xf8x9 —3x18%9 + 1)

2 .2
X{9X54%Xg (3x18x9 + 3x18x9 5x18x9 + 1) X15X19X24Xg (1 1x18x9 17x18x9 + 9x18X9 — 2)

(x18x9 —1)3 (xf8x9 —3x18%Xg + 1) (x18%9 —1)° (xf8x9 —3x18Xg + 1)

x10x19x24 (3x18x9 7x18x9 + 9x18x9 10x18x9 + 5X18X9 — 1)

(x18x9 —1)% (xf8x9 —3x18Xx9 + 1)

X15%X21%X24 (3x18x9 10x18x9 + 19x18x9 17x18x9 +7x18X9 — 1)

2
(X18X9 - 1)6 (X18X9 —3x18X9 + 1)
x10x26 (2X18X9 2x18x9 + 1) X7

(X18X9— 1) (X18X9— 1)3 (X%8X5+2X18X9— 1)

X20X22X9

(x18x9 —1)2 (x%sxg —3x18X9 + 1)(x:128x§ +2x18Xg — 1)
3X20X27X9

+
(x18%9 —1)? (xfgxg —3x18%9 + 1)(xf8x§ +2x18X9 — 1)

2
X11X20%9

(x18x9—1)3 (xfgx9 — 3x18Xg + 1)(x18x9 + 2x8Xg — 1)
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3x20x25x§
i
(x18%9—1)3 (xlgx9 3x18%9 + 1)(xf8x§ +2x18X9 — 1)
B X20%21X24X5(3x18%9 — 1)
(x18x9 —1)4 (xfgx9 3x18%9 + 1)(x18x9 + 2x18%9 — 1)
B X19%20X24%5 (8X18Xg — 5)
(x18X9 —1)° (xfsxg —3x18%9 + 1)(x18x9 +2x18%g — 1)
X10X20X24%9 (2x18x9 2x18X9 + 1)
(x18x9 —1)° (xlgx9 —3x18X9 + 1)(xf8x§ +2x18Xg — 1)
x12x20x24 (x18x9 4x18x9 + 8x18x9 7x18x9 +4x18x9 — 1)
(x18x9 —1)° (xlgx9 —3x18X9 + 1)(x18x9 +2x18Xg — 1)
x19x24x5 (xlgx9 6x18x9 + 3x18x9 + 8x18x9 6x18X9 + 1)
(x18x9 —1)° (x18X9 —3x18X9 + 1)(x18x9 +2x18Xg — 1)
x15x20x§(2x%8x§ - 1)
B (x18%9 —1)7 (x18x9 3x18X9 + 1)(x%8x§ +2X18%g — 1)
+ X3X .
(x18x9 —1)7 (xfgx9 3x18%9 + 1)(x18x9 +2x18X9 — 1)
B X20X5%9(3X18X9 — 2) X11X19%24X9(2X18X9 — 1)
(x18x9 —1)7 (xf8x9 —3x18X9 + 1)(x18x9 +2x18Xg — 1) X{gX5 — 3x1X9 + 1
 3X19X%24%p5%9(2X18X9 — 1) X11X21X24(3X18%9 —1)  X19X22%X4(3x15%9 —1)
xfgxg 3x18x9 + 1 xfgx9 3x18%9 + 1 xfgxg 3x18x9 + 1
3x21X24%25(3X18X9 — 1) 3x19Xp4Xp7(3x18X9 — 1) N X11%15(2X18X9 — 1)
X2ax5 — 3x %9 + 1 XX — 3x %9 + 1 (x18x9 —1)2 (xfgxg —3x18X9 + 1)

3x15%25(2x18x9 — 1)

(X18X9 - 1)2 (X%SXS - 3X18X9 + ].)

2 .2
X5 Xx54(2x18x9 — 1) (2x18x9 4x18x9 + 8x18x9 9x18x9 + 5x18%9 — 1)

’

(X18X9 - 1)5 (X18X9 - 3X18X9 + 1)
2
X10X9 X21X9
vz 1p————
1—X18X9 2 1—X18X9)
2 4 -3 3
x10x18x24x9(x183€9 ) X11%9

+
2 .2
(x18x9 —1)3 (x18x9—3x18x9+1) X1gXg —3x18x9 + 1

2 3 2 42 -
x12x18x24x9(x18x9 + 1) X13 (x18x9 + 2X18X9 1)

(x18x9 —1)2 (xfgxg — 3x18Xg + 1) (x18x9—1)3 (xfgxg — 3x18Xg + 1)

4
N X15X5(X18%9 + 1) X19X24Xq(5X18X9 — 4)

(x18x9 —1)3 (xf8x9 3x18Xg + 1) (x18x9 —1)2 (xf8x9 3x18Xg + 1)
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5
X20X9

(x18x9 —1)% (x%sxg — 3x18Xg + 1)(x:128x§ + 2X18Xg — 1)

3 2 .2
X21%24%9(3x18X9 — 1) (x18x9 —X18X9 + 1) xzzxg(X18x9 -1)

2 .2 2 .2
(x18x9—1)3 (X18X9—3X18X9+ 1) X18X9 3X18X9+ 1

3 2
3x25Xg ~ 3x77x5(x18x9 — 1)

xfgxg —3x18%9+1 x%sxg —3x18x9+1

2
3x5x§

+
(x18%9—1)3 (xfsxg — 3x18%9 + 1)(xf8x§ + 2x18X9 — 1)

x5x§

+ ,
(x18x9 —1)4 (xfgxg —3x1g%9 + 1)(xf8x§ +2x18%g — 1)

2 2 2 2 2
B 2X1pX18X9 X10 X10X12X18%9  X10X19%9 2X10X18%21X5

(x18%9—1)2  (x18x9—1)2  x18x9—1  (x18x9—1)>  (x18x9—1)?
4 2 .2
XXX | X12%9) X14 X18%19X%21%9  X31%9

x18%9—1  xi8%9—1  (x18x9—1)>  (x18%9—1)% (x18x9— 1)

X14

2 2 2
_ X10X18%24%9  X12X7gX24 X15 B X20Xg
2 2
(x18x9—1)*  x18%9—1 = (x18X9—1) (x18x9—1)4(xf8x§+2x18x9—1)

X15

2 .2
X21X24 (x18x9 +X18X9 — 1) X18Xs5 X18X19%24X3

(x18%9 —1)2 (x18%9 — 1)* (x2x3 + 2x15%9 — 1) (X18%0 = 1)2

+

—2x18%27,
2 .2 2 .2 2 2
x10x18x24x9 (X18X9 - 3X18XQ + 1) x12x18x24 (leoxlgxg —X10— X18X21X9)

(X189 —1)% (x18%9—1)3

X16

2
x10x13xf8 X15 (2X10x18X9 —X10~ x18x21X9)

(x18%9 —1)% (x18%9 —1)%

2 2
X19X24X§ (2x10x18x9 —X10X18 — 3X18X21X9 + 2x21)

(x18%9—1)3

2 3 2
X20 (x10x9 - lexg) X5 (—x10x18X9 +2X18X)1 X9 — le)

+
2 .2 2 .2
(X18X9 - 1)5 (X18X9 + 2XISX9 - 1) (XISX9 - 1)5 (X18X9 + 2X18X9 - 1)
4 4 3 .3 2 .2
X10X21%X24 (x18x9 —X1gXg + 4x18x9 - 3X18X9 + 1) Iy x13X%8X21
- 10425 —

+ X16
(x18x9—1)%

(x18x9 —1)*

2 2(n 2 2
X18X51 X24Xg (2x18x9 —2X18X9 + 1) )
— £X21X27,

(x18%9 —1)%
5
X19X20X24(2x18%X9 — 1)x3

17 2 .2 2 .2
(x18x9—1)6(x18x9—3x18x9+1)(x18x9+2x18x9—1)

2 .2 3.3 2 .2 4 4
x19x24(2x18x9+2x18x9 5x18x9+2)x9 X19X26%5

(x18%9 — 1)4(x%8x§—3x18x9+ 1) (x18%9 — 1)
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4
X20X21X24(X18%9 + 2)(2x18X9 — 1)xg

(x18x9 —1)° (x%sxg —3x18X9 + 1)(x%8x§ +2x18Xg — 1)

4 4
+ X11X18X19X24Xg 3X18X19X24X25Xg

(X18X9—1)(X18X9 3X18X9+ 1) (X18X9—1)(X18x9 3X18X9+ ].)

4
X15X18X19X24(3X18X9 — 2)xg

(X18X9 - 1)5 (x%sxg - 3X18X9 + 1)

3
x19x21x24 (3x18x9 + 69(18x9 13x18x9 + xlgx9 +7%x18X9 — 3)x9

(X18X9 — 1)5 (X18X9 — 3X18X9 + 1)
3 2 3
_lexze(xlsx9 + 2)x9 X18X23x24(x1sx9 - 2)X9

(X18X9— 1)2 (X18X9—1)6 (X%8X3+2X18X9— 1)

3x10X20%24(2x1 %9 — 1)x]
(x18%9—1)° (xf8x9 3x18Xg + 1)(x18x9 +2X18X9 — 1)

3
X20X5(2x18x9 — 1)xg

+

(x18%9—1)8 (xfgx9 —3x18%9 + 1)(x18x9 + 2X18X9 — 1)

3
X11X18%1 %24 (X18X9 + 2)X3 3x18%X21X24X25(X18%9 + 2)x5

(X18X9—1)(X18X9 3X18X9+ 1) (X18X9—1)(X%8X§—3X18X9+ ].)

3
X15X18%21X24(X18X9 + 2)(3x18%9 — 2)xg

2 2
(2 2 — X16X18X24Xg T X18X19X28Xg
(X18X9—1) (x18x9—3x18x9+1)

x18x21x22x24(3x18x9 4x18x9+2)x9

(X18X9 - 1)2 (X18X9 - 3X18X9 + 1)

X19X24X5 (xilgx9 2x18x9 + 11x18x9 —10x18x9 + 3)x§

(x18x9 —1)0 (x18x9 —3x18Xxg + 1)(x18x9 +2x18Xg — 1)

4 2
X12X20X24 (x18x9 6x18x9 + 4x18x9 +4x18X9 — Z)x9

(x18%9—1)° (xlgx9 — 3x18%9 + 1)(x18x9 + 2x18X9 — 1)

2
+x10x19x24 (2x18x9 16x18x9 + 18x18x9 + x18x9 10x18x9 + 4)
(x18x9 —1)° (xlgx9 —3x18%9 + 1)

2 .2 (.6 2
X5, X5, (x18x9 + 5x18x9 9x18x9 + 159(18x9 14x18x9 + 6X18X9 — 1)x9

2
(x18x9 —1)° (xlgx9 - 3x18%9 + 1)
2 2 2 2
3X10X26X5  X7gX21X28X§ X734

(X18X9 - 1)2 (X18X9 - 1)2 (X18X9 - 1)4 (X%ng + 2X18X9 - 1)

2
X11X18X5Xg
(x18x9 —1)3 (x18x9 3x18%X9 + 1)(x%8x§ +2x18Xg — 1)

2
3X18X25X5X9

+

(x18x9 —1)3 (xlgx9 3x18%9 + 1)(x:128x§ + 2X18%g — 1)
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2 2
3X10X11X18X24%Xg 9x10X18X24X25Xg

- +
(x18%9 — 1)(x18x9 3x18X9 + 1) (x18%9 — 1)(x18x9 3x18X9 + 1)
X19X22X24(2x18%9 — 1)x§ B 3x19X24%27(2x18X9 — 1)x§

(X18X9 - 1) (X%ng — 3X18X9 + 1) (X18X9 - 1)(X%8X9 3X18X9 + 1)

3x18x21x24x27(3x18x9 4X18X9 +2)X9 3X10X15X18XZ4(3X18X9 —Z)Xg

(X18X9 - 1)2 (X%8X9 - 3X18X9 + 1) (X18X9 — 1) (x18x9 - 3X18X9 + 1)

2.3 .2 2 .2
X12X1gX54 (2x18x9 +4x18%9 — 3)X9 3X10X18X24%27 (2x18x9 3x18x9 + 2)

(X18X9 — 1) (X18X9 — 3X18X9 + 1) (X18X9 — 1) (X18X9 — 3X18X9 + 1)

3,3 2 2
X15X5 (xlgx9 —X7gXg *+ 2x18Xx9 — 1)x9

+
(x18x9 —1)7 (x%8x9 — 3x18Xg + 1)(x18x9 +2X18X9 — 1)

+x12x19x24(15x18x9 26x18x9 + 14x18x9 X18Xg — 1)x9

(X18X9 — 1)4 (X%8X9 — 3XI8X9 + 1)

X91X24X5 (2x18x9 + 5x18x9 9x18x9 + 2x18x9 + 2x18X9 — 1)
+

(x18%9 —1)7 (xf8x9 —3x18X9 + 1)(x18x9 +2X1gX9 — 1)

+x10x21x24 (2x18x9 12x18x9 + 14x18x9 27x18x9 + 26x18x9 11x18x9 + 2)

(X18X9 - 1) (x18X9 - 3X18X9 + 1)

2 .2
X12X26 (X18X9 —X18X9 t 3)X9 X24X29X9

X18X9 — 1 (x18x9—1)6(xf8x§+2x18x9—1)

X13%20 (x18x9 Sx18X9 + 2)x9

(x18x9 —1)° (xfsxg —3x18X9 + 1)(x18x9 +2x18Xg — 1)

3 2
x10x18x22x24 (2x18x9 3x18X9 + 2)x9 2X10X13X]gX24 (x gXg — 5X18X9 + 2)x9

2
1
(X18X9 - 1)2 (X18X9 - 3X18X9 + 1) (X18X9 - ].)5( %SXS - 3X18X9 + 1)

x10x18x28(2x18x9 - 1) X12X18X22X24(2X18X9 2X18X9 + 1)

+3.X'§7 - 2X22X27 +
(X18x9 - 1)2 (X18X9 - ].) (X18X9 3X18X9 + 1)

2(.3
. X5 (x18x9 + 2x18x9 3x18%9 + 1)

2
(x18%9—1)8 (xfgx9 —3x18Xg + 1)(x18x9 +2X18Xx9 — 1)

3.3 2 .2
X12X15%24 (x18x9 +8x7gXg —7X18X9 + 1)

(X18X9 — 1)4 (X%S.Xé - 3X18X9 + 1)

X12X18X24X5 (10x18x9 15x18x9 + 8x18X9 — 2)
+

(x18x9 —1)0 (xf8x9 — 3x18Xg + 1)(x18x9 +2X18Xg — 1)

x10x12x18x24 (4x18x9 25x18x9 + 21x18x9 8x1gx9 + 2)

(X18X9 — 1)4 (X%8X9 - 3X18X9 + 1)
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X10X24X5 (2x18x9 13x18x9 + 159(18x9 legxg X18X9 + 1)
+

(X18X9 — 1)7 (X18X9 — 3X18X9 + 1)(X18X9 + 2X18X9 — 1)

x12x21x24 (12x18x9 17x18x9 + 29x18x9 289(18x9 +12x18%x9 — 2)

(X18X9 - 1)4 (X18X9 - 3x18x9 + 1)

2
_ X12X7gX28 X7 X22%5(2x18X9 — 1)

X1¥9—1 = (x18%9 = 1)® " (x;4%9—1)3 (xfgxg 3x15Xg + 1)(x18x9 +2x1gXg — 1)

3x97%5(2x18x9 — 1)

(x18x9—1)3 (xfgx9 3x18X9 + 1)(x18x9 + 2X18X9 — 1)

X13%7g %5 (fosxg - 1) X11x12X24(4X18x9 -1)
(x18x9 —1)7 (xfgx9 —3x18X9 + 1)(x18x9 +2x18X9 — 1) x18x9 3x18x9 +1
 3x1pX%24%)5(4x18%9 = 1) X11X13X18
X{gX5 —3x1gX9 + 1 (x18%9 —1) (xlgxg 3X18X9 + 1)
. 3X13X18X25 3X17X18%X04%27 (2x18x9 2x18X9 + 1)
(x18%9—1) (xlgx9 3x18X9 + 1) (x18%9 — 1) (xlgx9 —3x18%9 + 1)
X13X7gX22 3x13X7g%27

- +
2 .2 2 .2
(X18X9 — 1)2 (X18X9 — 3X18X9 + ].) (X18X9 — 1)2 (X18X9 — 3X18X9 + ].)
3 2 .4
_ X1aX13%1X24(7%18%9 — 3) N X13%1g
2
(x18x9 —1)% (xlgx9 3x18Xg + 1) (x18x9 —1)° (xlgx9 3x18Xg + 1)

X13X15X18(3X18X9 — 2)

(X18X9 - 1)5 (xfsxg - 3X18X9 + 1)

x13x18x21x24 (2x18x9 + 2x18x9 + 3x18x9 4x18%9 + 1)

(X18X9 - 1) (X18x9 - 3X18X9 + 1)

4 .4 _ .3
x13x19x24(3x18x9 x18x9 3x18x9 + 3x18X9 — 1)

(xl8X9 - 1)5 (x18x9 - 3X18XQ + 1)

2
x10x24(3x18x9 9x18x9 x18x9+7x18x9 4x18x9+1)

J

(X18XQ — 1)5 (x18x9 — 3X18X9 + 1)

2
X10X X18%X21

X19 F— - 18 + 8 + X19,
I—x18x9 1 —x18%9

3 3 2
x10x18x24(x18x9 3x18x9+1) X11x18(x18x9—1)

2
(X18X9— 1)3 (x18x9 —3X18X9+ 1) x18x9 3X18X9+ 1

4 5
X12X]g%24(3X18%9 — 2) X13X7g

(X18X9—1)2 (X%8X§—3X18X9+ 1) (X18X9— 1)3 (X%SXQ 3X18X9+ 1)
X15%75(3%18%9 — 2) B X20

+
(x18%9—1)3 (xfgxg —3x18X9 + 1) (x18%Xg —1)% (xfgx9 3x18X9 + 1)
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2 4 2( 2 2 3
3x7gX25(x18x9 — 1) N X18X21X24%g (xlgxg +x18%9 — 1

2 2 2 .2
X1gXg —3x18%9 + 1 (x18x9—1)3(x18x9—3x13x9+1)

3,3 2 .2
X18X19X24 (2x18x9 +X]gXg — 2X18X9 + 1) x{’gxzz
+
2,2 2 .2
(X18X9—1)2 (xlsxg —3X18X9+ ]_) X18Xg 3x18x9 + 1
3 3
3X18X27 X18X5(X18X9 + 1)

— 2 2 4
X{gXy —3X18Xg+1  (x7gx9 —1)* (xfsxg —3x1gXg + 1)(x%8x§ + 2X1g%Xg — 1)

2 .2 3 2 2
X10X18 + xloxlles 2X10X18X21X9 B x12x18x21

X3 > —
(X189 —1)2  x18x9—1 = (x18x9—1)?  x18x9—1
2 .2 2
+ X3 _ X19X9 B X21(2X18X9—1)
_ 2’
(x18x9—1)3(xf8x§+2x18x9— 1) x18X9—1  (x18x9—1)
X2 x20X04X9  X10X12X2 X X10X20%3(x18X9 — 2)
%20 _ X10X18X24%9  X10X12X]gX24 X10X15 10%20%X9(X18X9
2 _ 4
(x18x9 — 1) X18%9 — 1 (x18%9 —1) (x18x9—1)6(xf8x§+2x18x9—1)
X10X01 X4 (3x3.x3 + 557, x2 — 5x1g%9 + 1
" 10421424 1879 1879 1849 X10X19X24X9  X10X19X24X9
- 2
(xlsxg—1)2(xf8x§+2x18x9—1) x18X9—1  (x18x9—1)
X12X20X9 (Xz X2 - 3X18X9 + 1)
12x10%, X12X15X18 1879 X12X19%24
1 57 3 -
(x18%9 —1) (xlsxg—1)6(xf8x§+2x18x9—1) X18X9 — 1
2 2
_ X12X18X21X24  X15%19X9  X15X18X21X9 X19X5Xg
x18X9 =1  (xpgxo— 1) (xp8x9—1)*  (x;4x9—1)6 (xfgxg + 21 X9 — 1)

3 2
X20X21 Xy X18X23%X24X5(X18X9 — 2)

(X18X9 - 1)6 (X%SXg + 2X18X9 - 1) (XI8X9 = 1)6 (x%sxg + 2X18X9 - 1)

2 3 2
X29 X19X24Xg  X19X21X24Xg

(x18X9 —1)6 (xfsxg +2x18X9 — 1) (x18%9—1)%  (x18%9 —1)?

2 2
X18X21X24X9

+ 2X51X77.
(x18%9 = 1)
We need to show that Step 3 is an automorphism of the localized ring

1
1 —x18%9)(1 —2x78%x9)(1 — 2x18%9 — xfsxg)(l —3x18X9 + xfsxg)

(Bl) H([X5,X6,X7,X9,...,X29][(

In fact, Step 3 is block upper-triangular in the order
{x7,X17} < x29 < X3 < X5 < X714 <{x13, %15, %20} < X12 < X19.

The transformation inside the block {x;3,x15,x,0} is the matrix

B x2gx3+2x g9~ 1 X3 (x15%9+1) _ x3
(x18%9—1)3(x7gx3=3x15x9+1)  (x15x9—1)3 (xF5x5—3x15%9+1) (xlsxg—l)4(xf8x§—3x18x9+1)(xf8x§+2x18x9—1)
0 — L - X
(x18%9—1)2 (x1gx9—1)*(xZgxd+2x15x9—1)
_ xfg x128(3x13x972) _ 1

(X18X9—1)3<X%8x3—3X18X9+1) (X18X9—1)3(stxg—3xlg)€9+1) (X18X9—1)4(X%8x3—3X18X9+1)
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with determinant
1

(x18%9—1)8 (xfgxg —3x18X9 + 1)(xfgx§ + 2x1gXg — 1)

The transformation inside the block {x7,x;7} is the matrix

2

_ 1 _ X18
(x18%9—1)3 (xZgxd+2x15x9—1) (x18%9-1)?
x3 1
(x15x9—1)* (xFgx2+2x,5%9—1) (x18%9=1)?
with determinant
ZX18X9 -1

(XISX9 — 1)7 (X%ng + 2X18X9 - 1)

Both determinants are invertible in (B.1). Hence Step 3 is an automorphism.
After these three steps, the ideal generated by the equations of minimal degree at most 2 is transformed
into the ideal

(X12X15 + X13X19 + X14X24, X12X20 t X23X24 + X19X5,  —X16X24 — X12X26 + X19X28,

—X14X20 t+ X15X23 + X19X29, Xp0X28 + X26X5 + X24X7, X17X24 —X13X26 — X15X28,

—X16X20 + X23X26 —X19X7,  —X13X23 + X12X29 + X14X5, X13Xp0+ X24X29 — X15X5,
X17X20 t+ X26X29 + X15X7, X13X16 T X12X17 + X14X28, X15X16 —X17X19 — X14X26,
X23X28 t X16X5 — X12X7, X17X23 + X16X09 + X14X7,  XpgXp9 — X17X5 — X13X7)

in the localized ring (B.1).

C. (First-order) change of variables for some non-Borel ideals

Cl ((1)c(4,1,1)), extra.dim = 6

I/\1411 = (Xil'XIXZ’X1X3:X31X2X3,X§).
As we said in the last paragraph of Section 4.4, Algorithm 4.21 and the cutting of terms of degree at least 3

give

1,1,0 1,0,1 4,0,0 1,1,0 1,0,1 4,0,0

CrooF>X%1,  CrooF>X%2 CrooF—X3,  CoobF X4 CrooF X5 Cho0 > Xe
1,1,0 1,0,1 4,0,0 01,1 0,3,0 0,0,2

C300"—X7, C300F %8  C300"%X9, C300F %10, C300"X11, €300 X125
1,1,0 01,1 0,3,0 1,1,0 1,0,1 4,0,0

Co,1,0 = X13, Co10F X140 Co10F %15 Coo0 X160 Coo0 X170 Cop0 7 X185
01,1 0,3,0 0,0,2 1,1,0 1,0,1 4,0,0

Co,2,0 = X19, Cgpo0 %200 Cpp0—X21, Cpo,1 F %22, Cppo1 7 X23, Cpo,1 > X24
0,1,1 0,3,0 0,0,2

Co,01 7> X25, Cp,0,1 > X260 Co,0,1 > X277

and we denote the resulting ideal by Hf\‘ll;?lff The change of variables

Xo5 F— X1+ X35, Xp3 > X13+X23, X14 b X14+ Xy,  Xo7 B> Xo7 + 2X) + X1y,
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transforms Hf\umﬁ into
1411
cutoff _
a1 = (x11x17 —X12%20 + X10%23, —X10X18 + X21X22 —X17X25, —X14X22 —X10X24 T X17X26,

—X12X18 t X21X23 —X17X27, X3Xpp + Xp4X35+ X18X26, X3X17 + X14X18 + X21X24,

—X15X18 t+ X3X23 + X24X27, X15X17 +X14X23 + X12X24,  —X11X21 + X12X25 — X10X27,
X3X12 —X15X21 — X14X27, —X11X18 + X23X25 —X22X27, —X15X32 —X11X24 —X23X26,
—X11X14 T X10X15 T X12X26, —X3X11 +X15X25 + X06X27,  X3X10 — X14X25 + X21X26)-

Finally, the map
X3 P12, X10+— P34 X11 P03 X122+ Po4 X14F— P24, X157 Po,2s
X17 > Pas5, X18F—> P15 X1 > P1,4 X2 F—> P35, X3 Pos5, X24 > —P25,
X5 V> P13, X6 = P23, X277 —Po,1

transforms the ideal | f}ﬁ(ff into the Pliicker ideal (4.27). So assuming Conjecture 4.23, we obtain

3/2 3/2 2 3/2 5/2
v 67V 6% 2 85

27 NB G B b
f1—t\[(t ¢
/((1_flm_t2>3<1_t3)3(1_tf><1_tf)(1_t§>(u)(u)

t f
B —ty\ [t —t3\ (1] —tats\ (3 =5\ (] =13\ [ta—t; \[tr — 13
( t )( tt )( £ )( t )( t )( t )( t) )
(t§—t1t3)(t§—tf)(t§—t§)(t3—t1t2)(t3—tf)(t3—tg’))
t5 t2 t2 3 t3 ts )]

In the following two subsections, we omit the intermediate explanations.

H(A/\lzm;t) = K

C2. ((2) c(3,1,1)), extra.dim = 6

I/\2311 = (X1'X1X2;X1 X3, X ,X2X3,X3).

1,1,0 3,0,0 0,0,2 1,1,0 3,0,0 2,0,1

Cro0—X1, CiooF—X2, Croo=%3 Croob X4 Crpot7X5 Cyo0b— X6
01,1 0,3,0 0,0,2 1,1,0 01,1 0,3,0

€00 X7, CrooF X8 Crpoob X  CopoF— X100 Co1,0 7 X115 Co,1,0 — X126
1,1,0 3,0,0 2,0,1 01,1 0,3,0 0,0,2

Co20 %13, CopoF—X14 Cop0X15 Cgr0F X160 Cop0*17, Cg20F— X18
1,1,0 3,0,0 0,0,2 1,1,0 3,0,0 2,0,1

Co,01 7 X19, Cgo,1 F> %20, Cppo1 mX21, Cpo1 P X22, Cpoq 2 X23, Cpoq B X24s
0,1,1 0,3,0 0,0,2

Cr01 %25 €01 X260 Cp1 7 X27-

Xo5 F— Xg4+ X5, X1 F X+ X11, Xo1 Fo> Xo1 +2Xg + X171, X5+ X5+ X109+ X4,
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(=X7X14 + X18X19 — X15X25, X11X14 + X5X15 + X18X20,
XgX14 +X19X21 — X2X25, X5X19 + Xp0X25 + X14X26,
X2X11 + X12X15 + X3X20, —X3X14 + X2X18 — X15X21,
—X5X7 + X11X25 — X18X26, —X12X19 — X8X20 ~ X2X26,

—X5Xg t X12X25 T X21X26, —X3X5+ X12X18+X11X21,

X2 V> Po,5s X3 P4 XsF—=>P12, X7V DP34,
X12 /> Po,2» X14— P15 X157 P45, X18——P1,4s

X21 /> —Po,1» X25 V> P1,3, X26 V> P2,3-

X2X5 —X12X14 + X20X21,
XpX7 + XgX15 — X3X19,

—XgX18 — X7X21 + X3X25,
—XgX11 T X7X12 + X3X26,

X11X19 + X7Xp0 = X15X26)-

Xg = Ppo,3» X117 P24

X19 /> P35, Xp0 = —P25s

3/2 5/2
of2VB VEVE VEn 85 52

A/\ 5 = ’ ’ ’ ’
Vi NG PG VR hVE

2 N2y,
/(1—tl)"*(l—t2)2(1_zf3)3(1_tf>(1_t§>(t1 t3)(t1 tz)(tl t3)

f

3] f

(tf—tm)(tf—tg)(tf—t§)(t2—tl)(tg—
2 2 2 2
t t t 5 t5

tf)(t§—tft3)(t2—t3)(t§—t§
2 2
t5 t t

ty—titp\(ts =t \[ts—to \ [tz —t2\[tits — 15
t3 t3 t3 t3 t1t3 '

C3. ((1)c(1)c(3,1,1)), extra.dim = 6

19\11311 = (Xf’Xlxb X1X3: X;; X2X3, X;)

1,0,1 3,0,0

1,1,0 1,1,0

€100 X1, Crp07X2  Cro0F X3 G007 X4
01,1 0,3,0 0,0,3 1,1,0

€00 X7, CpooF X8 CpooF X9 € X100
1,1,0 1,0,1 3,0,0 01,1

Coo,0 P> X13, Coo0F X140 Copor—X15 Cpoo b Xie
1,0,1 01,1 0,0,3 1,1,0

Co,0,1 7 X19, Co0,1 > X200 €01 F X215 Cp02 > X22
01,1 0,3,0 0,0,3

CO,O,Z = X5, CO,O,Z = X576, CO,O,Z = X57.

X19 > X109+ X19, X9 F— X1 +X20, X171

(=x7X15 = X14X00 + X18X22,  —X11X22 — X7X24 + X14X26,
X3X22 + X20X24 + X15X26, X3X14 +X11X15 + X18X24,
XgX15 — X19X20 + X21X22, X12X14 T X11X19 + X9X24,
—XgX11 T X7X12 + X9X26, —X3Xg + X12X20 + X21X26,

—X9X15+X18X19 —X14X21, —XgX18+X9Xp0—X7X21,

1,0,1 3,0,0

€200 %5 €00 X6
0,1,1 0,3,0

€o,1,0 = X11»  Co,1,0 T X125
0,3,0 0,0,3

Co,2,0 = X17,  Cgp,0 F X185
1,0,1 3,0,0

Co,02 > X23, Cp > X24

> X7 + X711

XgX14 + X7X19 = X9X22,
—X12X15 + X3X19 + X21X24,
—X12X22 —XgX24 — X19X26s
X3X7 —X11X20 + X18%26,

X3X9 — X12X18 — X11X2])-

|
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X3 > P1,2
X14 ¥ P45,

X22 > P35,

X7 — P3,4»
X15 /P15,

X24 /> —P25;

2
J{a=nPa-napa-wra-da- g =g 1) (0 (1)

X8 > Po,3»
X18 V> P1,4»

X26 /= P2,3-

X9 — Po,4

X19 /> Po,5,

X11 V= P24

X20 /> P1,3»

X12 /> Po,2»

X21 V> —Po,1»

t t t

2 3\ /42 3
(tl_tz)(tl_t3)(t2_tl
2 2
t] t] ty

)(tz—tg,)(t%—tltg,
ty t3

t3

(C.)

(tg—tltz)(
2
t3

t3—t1)(t§—tf)(t3—t2)(t§—
2 2
t3 t5 t3 t5

2 3 2 3
)(tZ_tl)(tZ_t3)
2 2
t5 t5

)

D. Change of variables in the proof of Proposition 6.2

D1 p5=0

The relations in Jac(F;3,;) imply

_1Y18 = Y11Y9 + ¥12¥15

_ ~Y13%17 * ¥16¥19 ~ ¥20%6

& Ys b2 Ys
After the change of variables

Doy + 2 sy 2y, I8N

Y5 Ys Y5
Vs '—Ws—wy Y10 H?lo—mr Y14 '_>y14+y9y171

Ys Ys Y5
Yarr— o1t M, YVoa b= Yo4— wr Yo7 V— Vo7 + y15y6:

5 Y5 Ys

the ideal Jac(F;,371) is transformed into the ideal

(—=Y10%20 — ¥13¥24 + V16¥7/
Y1¥16 —Y14Y27Y5 + ¥2¥21Y5,
—Y13Y14 + Y16Y4 — ¥2Y20,
—Y10Y5Y8 —¥Y11Y13 — ¥27Y5Y7,
—V10Y4Y5 + Y12¥Y13 + Y2¥5¥7,

(D.1)

Finally, the map

Y1 > Po,1, Y2 V> —Po,2,

Y11= —P1,5 Y12+ —Po,5¥5,

P1,3
Voi1+r-— ", YurH—P35

—V11¥Y20 T ¥21Y5Y7 + Y24Y5Ys,
—Y10¥Y14Y5 T ¥12Y16 t ¥Y2Y24Y5,
V13Y21 + Y16¥Y8 t ¥20Y27,

V1¥7 T Y11Y4 + Y12Ys,

—V1%Y13 t ¥2Y5V8 + ¥27Y4Ys5,

Y4+ Po,4 Y7 /= P45,
Vi3> P24, Y14 Po3s
NN P12

27 -

Ys

P1,4
VS -

Y16 /= P2,3,

—Y10¥21Y5 + Y11¥Y16 T Y24Y27Y5,
—Y1%20 —Y14Y5Y8 —¥21Y4Y5,
—Y1¥24 = Y1114 T V123215
—V1Y10 — Y1192 + ¥12Y27,
V12920 — V14Y5Y7 + Y2494Y5)-

Y10 /= —P2,5

Y20 V> P34

transforms the ideal (D.1) into the Pliicker ideal (4.27). In the following sections, we omit the intermediate

explanations.
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D.2. y4=0
_ “Y13Y17 T Y16¥19 — ¥Y29¥Y5 _ V1Yo~ Y11¥2 + Y12¥27
V20 = y Y3 = .
Ye Y6
Y4 Dy + Y19%2 Yy > yy + 3710}’19’ Vg > Vg — 37193’27’
Y Y6 Y6
Y9 ’—>3)9+%; 3?14*—>3?14+y17y2; V15 *—>V15+y27y5,
Y6 Ye Y6
3’18'—%?18—%’ Y21 '—>})21+w: 3/24*—>V24+M'
Yo Ye Y6
(=V13V24 + V167 + V18V29, V11Y16 —V15V24Y6 —Y18Y21V6, Y1Y16 + ¥V14V15V6 — V21V6Y9,
V12V16 —V14Y18V6 — ¥Y24V6¥V9,  —V11V29 —V21Y6Y7 — V24V6Vs, —V13V14 +V16¥Y4 — V29Y9,
V13Y21 t V15929 + V16¥s, —V1924 —V11Y14 T V12Y215 —V11Y13 + V15Y6V7 — V18V6V8s
Y12Y29 t Y14Y6Y7 — V24¥Y4Ye, V1¥Y7 T V11Y4 + V12Ys, Y1Y29 —Y14Y6Y8 —¥21Y4Y6;
Y12¥13 —Y18Y4Y6 —Y6¥7Y9, —V1Y13 —V15Y4Y6 — V6¥8Y9,  Y1¥V18 —Y11¥9 +¥V12¥15)-
Y1 > Po,1» Vo> P15 Y7V P45 Ygb— _Po_,s, Yor— P12, Y11+ Po4
Vi2F— —P1,4Ye, Y13V P25 Y14+—P1,3 YisF— —@, Yie V> P2,3, Y18 V= —P2,4
Po,3
v, Vo4 V> P34, Y29 P35
D3. ;0
_ Y10Y20 * V13V24 —Y18Y29 _ TV11Y4—V12¥Y8 —V19Y3
Y16 = y Y1 = .
Y7 Y7
Y > vy + 3’10?41 Y5 > Y5 — 3’183/19, V6 — V6 + ZJ10V19’
Y7 Y7 Y7
ngyg_V18V4’ y14+—>y14+y24y4, Vis +—>y15+y18y8,
y7 Y7 Y7
Y17 '—>ZJ17+Mr Y21 ¥ —%’ Y27 '_>y27_y1;7yg.

(V11920 = Y15¥17V7 + ¥21¥597,
Y14¥Y15Y7 —Y20¥Y3 — ¥21Y7Y9,
Y13¥Y21 + ¥15Y29 + Y20¥27,
Y12¥29 T Y14Y6¥Y7 — V17Y2Y7,
Y12¥13 T ¥2¥5Y7 — Y6¥7Y9

Y2 > Po,1, Y3 = Po,2»

Y12V —Po,5» V13> —P1,4,

Y21 V= P2,3, Yo7 > —P1,2,

—Y13Y17 —Y20Y6 — Y295,
—Y11Y29 + ¥17Y27Y7 —V21¥Y6¥Y7,
—Y11Y14 t Y12Y21 —V17Y3,
—Y13Y3 —V15%2Y7 + ¥27Y7Y9,
Y12¥20 —¥Y14Y5Y7 T ¥17Y7Y9,

Pas
Ysb—> —, Y6 V> P15/
Y7
P24
Y14 /> Po,3, Yis— —,
Y7

V28 > P1,3Y7-

~V14Y27Y7 + ¥2Y21Y7 — ¥29Y3,
—V13Y14 —Y2Y20 — Y29Y9,
—Y11¥Y13 T ¥15Y6Y7 — ¥27Y5¥7,
V112 T V12Y27 — V3Ye,
=Y11¥9 + ¥12¥15 — ¥3Y5)-

Yo r— —’4,

Vi1 > P25

V7> P35 Vo b P34,
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D4 le =0
Va0 = —Y13Y24 T V16¥V7 t V18V29 _“Yud T V12927 —V3V6
Y10 ' Y10
y4+—>y4+y2y7, Vs 5_?183}6, 3jg}_)yg_yzﬂh’
Y10 Y10 Y10
Y9 *—>3/9—y18y2; V14*—>}’14+y2y 4’ Y15 HVlS_M:
Y10 a1 Y10
}’17'—>V17+y 4%’ }’19'—>}’19+M; Y21 *—>}’21+M'
Y10 Y10 Y10
(=13V17 + V16¥V19 — Y295, V10¥Y15Y17 —Y10¥Y21Y5 t Y11V160  —Y10Y14¥8 —V10¥V21Y4 — ¥Y29Y3,
—Y10Y14Y5 T V10YV17Y9 t V12V16,  Y10¥17Y8 T V10V19Y21 —Y11¥29, —Y13V14 +V16V4 — V29Y9,
V13¥Y21 + Y15Y29 + V1678, —V11V14 + V12921 —YV17Y3, —Y10¥Y15¥Y19 —Y10¥Y5¥Y8 —V11¥13,
—Y10¥14%V19 T V10Y17Y4 t Y12V29, Y11Y4+YV12V8 + V19V3, Y10V15Y4 + V10¥Y8Y9 — V13V3,

—Y10%14V15 T Y10V21Y9 + V16Y3,

V10¥19Y9 — V10Y4¥Y5 + V12V13»

~V11Y9 + Y12¥15 — ¥3Y5)-

p
Y3 Po,1- Y4 —Po,5s YsH— P23, Ygtb— _ﬁ' Yor—po2, Y117 P1,3
Y12 = Po,3%Y10, Y13 F— —P25 V14— Po4s Y15 F;—; Vie ™ —P24, Y17V P34
P1,4
Y19 F P35, Va1 ——, V29— P4s.
Y10
D.5. })19 =0
Y16 — Y13Y17 t Y20¥V6 t 3’293/51 R ~V1V7 — Y1194 —Vlz}’s'
Y19 Y19
F2F—>}’2+y4%: Y9 +—>y9+&, 1210*—>3110+M
Y19 Y19 Y19
ViaF— Y14+ 3217}’4, Yis— Y15~ M' Yis— Y18~ M
9 Y19 Y19
V21— ¥Y21 — m, Vou b= Y4t y”w, Yo7 F> Yo7 — M
Y19 Y19 Y19
(=V10%20 — ¥13V24 *+ V18Y29, —V11920 T V15Y19Y24 + Y18V19YV21, V10¥V19Y21 —¥11¥V29 — V19Y24Y27,

—Y1%Y20 — Y14¥15%19 + Y19¥Y21Y9,
—Y1Y24 —V11¥14 T V129215
Y1Y29 —¥14¥19Y27 T ¥19¥2¥21,

— Y1913 T Y15Y19Y2 — ¥19Y27Y9;

Y1+ Po,1» Y2 > Po,5;
Vis > —pP3,5, V14— Po,4s
P1,5
Voab— P4, Vo7 b—> ———

3/9

—Y13%Y14 — ¥Y2Y20 — ¥Y29Y9,
—Y10¥15%19 —¥Y11¥13 — ¥18Y19¥27/
—Y1¥10 —Y11Y2 + ¥12Y27,

Y12¥20 —Y14Y18Y19 — ¥19Y24%Y9,

Yo —po,3, Yio+— —P25/

P1,3
Y15 _y ;Y1 P23,
19

Y29 V> —P45.

Vi1 — P12

Y20 V> P34

Y13Y21 + ¥Y15¥29 + ¥20¥27;
—Y10Y14¥19 + Y1229 + Y19Y2Y24,
Y10Y19¥9 T+ ¥12¥13 + ¥18¥Y19Y2,
V1918 — Y11¥9 + V12915)-

Y12 /> Po,2¥19,
p1 4

Yo > ———

379
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