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Stability conditions on free abelian quotients

Hannah Dell

Abstract. We study slope-stable vector bundles and Bridgeland stability conditions on varieties
which are a quotient of a smooth projective variety by a finite abelian group G acting freely. We
show there is an analytic isomorphism between G-invariant geometric stability conditions on the
cover and geometric stability conditions on the quotient that are invariant under the residual
action of the group Ĝ of irreducible representations of G. We apply our results to describe a
connected component inside the stability manifolds of free abelian quotients when the cover has
finite Albanese morphism. This applies to varieties with non-finite Albanese morphism which
are free abelian quotients of varieties with finite Albanese morphism, such as Beauville-type and
bielliptic surfaces. This gives a partial answer to a question raised by Lie Fu, Chunyi Li, and Xiaolei
Zhao: if a variety X has non-finite Albanese morphism, does there always exist a non-geometric
stability condition on X? We also give counterexamples to a conjecture of Fu–Li–Zhao concerning
the Le Potier function, which characterises Chern classes of slope-semistable sheaves. As a result
of independent interest, we give a description of the set of geometric stability conditions on an
arbitrary surface in terms of a refinement of the Le Potier function. This generalises a result of
Fu–Li–Zhao from Picard rank 1 to arbitrary Picard rank.
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1. Introduction

Stability conditions on triangulated categories were introduced in [Bri07] by Bridgeland, who was motivated
by the study of Dirichlet branes in string theory. In the same paper, Bridgeland showed that the space
Stab(D) of stability conditions on a given triangulated category D has the structure of a complex manifold.
When X is a smooth projective variety over C, this leads to the fundamental question: how does the geometry
of X relate to the geometry of Stab(X)B Stab(Db(X))?

In this article, we investigate this question in the case of varieties that are free quotients by finite abelian
groups, especially quotients of varieties with finite Albanese morphism such as bielliptic and Beauville-type
surfaces.

One approach is via group actions on triangulated categories. We sharpen the correspondence between
G-invariant stability conditions on D and stability conditions on the G-equivariant category DG introduced
by Macrì, Mehrotra, and Stellari in [MMS09, Theorem 1.1]. This is used to control the set of geometric
stability conditions on any free quotient by a finite abelian group.

We also study the Le Potier function introduced by Fu, Li, and Zhao in [FLZ22, Section 3.1]. We give
counterexamples to the conjecture stated in [FLZ22, Section 4] and explain how a refinement of the Le Potier
function controls the set of geometric Bridgeland stability conditions on any surface.

1.1. Geometric stability conditions and group actions

Let k be an algebraically closed field, and let G be a finite abelian group such that (char(k), |G|) = 1.
Let D be a k-linear idempotent complete triangulated category with an action of G in the sense of [Del97].
This induces an action on Stab(D), the space of all numerical Bridgeland stability conditions on D. Let DG
denote the corresponding category of G-equivariant objects. There is a residual action by Ĝ = Hom(G,k∗)
on DG (see Proposition 2.6), and (DG)Ĝ �D by [Ela15, Theorem 4.2]. Theorem 2.26 describes an analytic

isomorphism between G-invariant stability conditions on D and Ĝ-invariant stability conditions on DG.
This builds on [Pol07, Proposition 2.2.3] and [MMS09, Theorem 1.1].

In this paper, we focus on the case where D = Db(X) for X a smooth projective connected variety
over C with a G-action. This induces an action on Coh(X) (and hence Db(X)) by pullback. In this setting,
(Db(X))G �Db

G(X)BDb(CohG(X)), the bounded derived category of G-equivariant coherent sheaves on X.
If G acts freely on X, we call Y a free abelian quotient and have Db(Y ) �Db

G(X). Furthermore, let π : X→ Y
denote the quotient map. Then π∗OX decomposes into a direct sum of numerically trivial line bundles Lχ
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according to the irreducible representations χ ∈ Ĝ. The residual action of Ĝ on Db(Y ) is given by −⊗Lχ.
The functors π∗ and π∗ give rise to the isomorphisms in Theorem 2.26. More precisely, given a G-invariant
stability condition σ ∈ Stab(X), there is a stability condition called (π∗)−1σ ∈ Stab(Y ) with the property
that E ∈Db(Y ) is semistable if and only if π∗E is σ -semistable. The construction with (π∗)−1 is analogous.

A stability condition σ ∈ Stab(X)B Stab(Db(X)) is called geometric if all skyscraper sheaves of points Ox
are σ -stable and of the same phase. In all known examples, the stability manifold contains an open
set of geometric stability conditions. We prove that geometric stability conditions are preserved under
Theorem 2.26.

Theorem 3.3. Suppose G is a finite abelian group acting freely on X. Let π : X → Y B X/G denote the
quotient map. Consider the residual action of Ĝ on Db(Y ). Then the functors π∗ and π∗ induce an analytic
isomorphism between G-invariant stability conditions on Db(X) and Ĝ-invariant stability conditions on
Db(Y ) which preserve geometric stability conditions,

(π∗)−1 : (Stab(X))G
�←−−−−→ (Stab(Y ))Ĝ : (π∗)

−1.

Very little is known about how the geometry of a variety X relates to the geometry of Stab(X). Recall
that every variety X has an algebraic map albX , the Albanese morphism, to the Albanese variety Alb(X)B
Pic0(Pic0(X)). Every morphism f : X → A to another abelian variety A factors via albX . In [FLZ22,
Theorem 1.1], the authors showed that if X has finite Albanese morphism, then all stability conditions on
Db(X) are geometric. In this set-up, we obtain a union of connected components of geometric stability
conditions on any free abelian quotient of X.

Theorem 3.9. Let X be a variety with finite Albanese morphism. Let G be a finite abelian group acting freely

on X, and let Y = X/G. Then Stab‡(Y )B (Stab(Y ))Ĝ � Stab(X)G is a union of connected components in
Stab(Y ) consisting only of geometric stability conditions.

Let StabGeo(X) denote the set of all geometric stability conditions. When X is a surface, we have the
following stronger result.

Theorem 3.10. Let X be a surface with finite Albanese morphism. Let G be a finite abelian group acting freely
on X. Let S = X/G. Then Stab‡(S) = StabGeo(S) � (Stab(X))G. In particular, Stab‡(S) is a connected
component of Stab(S).

We explain in Section 1.3 how to describe StabGeo(S) explicitly for any surface S . Moreover, Theorem 3.10
applies to the following two classes of minimal surfaces.

Example 1.1 (Beauville-type surfaces, q = 0). Let X = C1 ×C2, where the Ci are smooth projective curves
of genus g(Ci) ≥ 2. Each curve has finite Albanese morphism, and hence so does X. Suppose there is a
free action of a finite (not necessarily abelian) group G on X such that S = X/G has q(S)B h1(S,OS ) = 0
and pg(S)B h2(S,OS ) = 0. Then albS is trivial. This generalises a construction due to Beauville in [Bea96,
Exercise X.4], and we call S a Beauville-type surface. These are classified in [BCG08, Theorem 0.1]. There
are 17 families, 5 of which involve an abelian group. In the abelian cases, G is one of the following groups:
(Z/2Z)3, (Z/2Z)4, (Z/3Z)2, (Z/5Z)2.

Example 1.2 (Bielliptic surfaces, q = 1). Let S � (E × F)/G, where E,F are elliptic curves and G is a finite
group of translations of E acting on F such that F/G � P1. Then q(S) = 1 and Alb(S) � E/G, so albS is an
elliptic fibration. Such surfaces are called bielliptic and were first classified in [BDF07]. There are 7 families;
see [Bea96, List VI.20].

Let S be a Beauville-type or bielliptic surface. As discussed above, S has non-finite Albanese morphism.
By Theorem 3.10, StabGeo(S) ⊂ Stab(S) is a connected component. In particular, if Stab(S) were connected,
then the following question would have a negative answer.
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Question 1.3 (cf. [FLZ22, Question 4.11]). Let X be a variety whose Albanese morphism is not finite. Are there
always non-geometric stability conditions on Db(X)?

This is the converse of [FLZ22, Theorem 1.1]. In all other known examples, the answer to Question 1.3 is
positive (see Section 1.4).

1.2. The Le Potier function

A fundamental problem in the study of stable sheaves on a smooth projective connected variety X over C
is to understand the set of Chern characters of stable sheaves. This can be used to describe StabGeo(X)
for surfaces (see Theorem 5.10) and to control wall-crossing and hence indirectly control Brill–Noether
phenomena as in [Bay18, Theorem 1.1] and [Fey20].

For X = P2, Drézet and Le Potier completely characterised the Chern characters of slope-stable sheaves
in terms of a function of the slope, δ : R→ R; see [DLP85, Theorem B]. In [FLZ22, Section 3.1], the authors
define a Le Potier function ΦX,H which gives a generalisation of Drézet and Le Potier’s function to any
polarised surface (X,H). They use this to control geometric Bridgeland stability conditions with respect to a
sublattice of the numerical K-group of X, Knum(X), coming from the polarisation.

Let NSR(X)BNS(X)⊗R, where NS(X) is the Néron–Severi group of X, and let AmpR(X) denote the
ample cone inside NSR(X). In Section 4, we introduce a generalisation of the Le Potier function. We state
the version for surfaces below to ease notation.

Definition 5.8. Let X be a surface. Let (H,B) ∈ AmpR(X)×NSR(X). We define the Le Potier function twisted
by B, ΦX,H,B : R→ R∪ {−∞}, by

ΦX,H,B(x)B limsup
µ→x

{
ch2(F)−B . ch1(F)

H2ch0(F)
:
F ∈ Coh(X) is H-semistable with
µH (F) = µ

}
.

The Bogomolov–Gieseker inequality gives an upper bound for ΦX,H,B (see Lemma 4.7). If B = 0, this is
the same as [FLZ22, Definition 3.1], i.e. ΦX,H,0 = ΦX,H , and the upper bound is 1

2x
2. The function ΦX,H,B

naturally generalises to higher dimensions; see Definition 4.5.
The Le Potier function partially determines the non-emptiness of moduli spaces of H-semistable sheaves

of a fixed Chern character, which in turn controls wall-crossing, along with the birational geometry of these
moduli spaces, for example for P2 (see [LZ19, Theorems 0.2 and 0.4]), K3 surfaces (see [BM14, Theorem
5.7]), and abelian surfaces (see [MYY12, Theorem 4.4.1]).

The Le Potier function is known for abelian surfaces (see [Muk84, Corollary 0.2] and [Yos01]), K3
surfaces (see [Huy16, Chapter 10, Theorem 2.7]), del Pezzo surfaces of degrees 9 −m for m ≤ 6 (see
[LZ23, Theorem 7.15]), Hirzebruch surfaces (see [CH21, Theorem 9.7]), and for surfaces with finite Albanese
morphism (see [LR23, Example 2.12(2)]).

In this paper, we relate the Le Potier function of X to the Le Potier function of any free (not necessarily
abelian) quotient of X by a finite group. We state the version of these results for arbitrary surfaces in the
case B = 0 below.

Proposition 4.11. Let X be a surface, and let G be a finite group acting freely on X. Set S := X/G, and let
π : X→ S denote the quotient map, and let HS ∈ AmpR(S). Then ΦS,HS = ΦX,π∗HS .

Proposition 4.11 gives us a way to compute the Le Potier function for varieties that are finite free quotients
of varieties with finite Albanese morphism.

Theorem 4.18. Let X be a surface with albX finite. Let G be a finite group acting freely on X. Set S := X/G,
and let π : X→ S denote the quotient map. Let HX = alb∗XH = π∗HS ∈ AmpR(X) be an ample class pulled
back from Alb(X) and S . Then ΦS,HS (x) =

1
2x

2.
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In Example 4.19, we explain how to choose appropriate ample classes such that Theorem 4.18 applies to
bielliptic and Beauville-type surfaces. In particular, Beauville-type surfaces provide counterexamples to the
following conjecture.

Conjecture 1.4 (cf. [FLZ22, Section 4.4]). Let (S,H) be a polarised surface with q = 0; then the Le Potier
function ΦS,H is not continuous at 0.

This conjecture was motivated by Question 1.3 and the expectation that discontinuities of ΦS,H could
be used to show the existence of a wall of the geometric chamber for regular surfaces, as in the cases of
rational and K3 surfaces.

1.3. The Le Potier function and geometric stability conditions

Let X be a surface, and fix H ∈ AmpR(X). In [FLZ22, Theorem 3.4, Proposition 3.6], the authors
showed that ΦX,H gives precise control over StabGeo

H (X), the set of geometric numerical Bridgeland stability
conditions with respect to a sublattice ΛH ⊂ Knum(X) (see Theorem 3.13). When X has Picard rank 1,
StabGeo

H (X) = StabGeo(X).
We generalise this to the set of all geometric numerical Bridgeland stability conditions.

Theorem 5.10. Let X be a surface. There is a homeomorphism of topological spaces

StabGeo(X) � C×
{
(H,B,α,β) ∈ AmpR(X)×NSR(X)×R2 : α > ΦX,H,B(β)

}
.

In particular, StabGeo(X) is connected. We discuss in Remark 5.37 how Theorem 5.10 could be used to
describe the boundary of StabGeo(X). This emphasises how ΦX,H,B is a crucial tool for understanding the
existence of non-geometric stability conditions on surfaces. In particular, if one can compute the Le Potier
function, one should be able to tell whether the boundary of the set of geometric stability conditions has a wall.

1.4. Survey: Geometric stability conditions

It is still an open question whether geometric stability conditions exist on any smooth projective variety X
over C. If the answer to Theorem 1.3 is negative, then the question also remains as to which geometric
properties characterise the existence of non-geometric stability conditions. To give context for these questions
and for the results in this paper, we now survey all of the examples where geometric and non-geometric
stability conditions are known to exist.

There are the following general results:

• Varieties with albX finite: Stab(X) = StabGeo(X); see [FLZ22, Theorem 1.1].
• Quotients of varieties with albX finite: Let Y = X/G be a free abelian quotient of X, and assume
albX is finite. If G-invariant stability conditions exist on X, then Stab‡(Y ) is a union of connected
components of Stab(Y ) consisting only of geometric stability conditions; see Theorem 3.9.

Curves. The universal cover G̃L
+
2 (R) of GL+

2 (R) acts on Stab(X) (see [MS17, Remark 5.14]). Up to this
action, a geometric stability condition on a curve C corresponds to slope-stability for Coh(C). Hence
StabGeo(C) � G̃L

+
2 (R) � C×H; see [Mac07b, Theorem 2.7].

• We have Stab(P1) � C2; see [Oka06, Theorem 1.1]. Okada’s construction uses Db(P1) �Db(Rep(K2)),
where K2 is the Kroneker quiver. In particular, Stab(P1) ⊋ StabGeo(P1).
• Let C be a curve of genus g(C) ≥ 1; then Stab(C) = StabGeo(C) � G̃L

+
2 (R); see [Bri07, Theorem 9.1]

and [Mac07b, Theorem 2.7].

Surfaces. There is a construction called tilting which gives an open set of geometric stability conditions
on any surface; see for example [AB13, MS17].
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A connected component of Stab(X) is known in the following cases. This component always contains
StabGeo(X), but in some cases non-geometric stability conditions exist.

• Surfaces with finite Albanese morphism: This connected component is precisely the set of geometric
stability conditions which come from tilting. This follows from [FLZ22, Theorem 1.1] together with
Theorem 5.10.
• K3 surfaces: There is a distinguished connected component Stab†(X) described by taking the closure
and translates under autoequivalences of the open set of geometric stability conditions; see [Bri08,
Theorem 1.1]. Moreover, Stab† contains non-geometric stability conditions. By [Bri08, Theorem 12.1],
at general points of the boundary of StabGeo(X), either
– all skyscraper sheaves have a spherical vector bundle as a stable factor, or
– Ox is strictly semistable if and only if x ∈ C for C a smooth rational curve in X.

• P2: Stab(P2) has a simply connected component, Stab†(P2), which is a union of geometric and
algebraic stability conditions. The construction of the latter uses Db(P2) � Db(Rep(Q,R)) for the
associated Beilinson quiver Q with relations R; see [Li17, Theorem 0.1].
• Enriques surfaces: Suppose Y is an Enriques surface with K3 cover X, and let Stab†(X) be the
connected component of Stab(X) described above. Then there exists a connected component
Stab†(Y ) = Stab‡(Y ) which embeds into Stab†(X) as a closed submanifold. Moreover, when Y
is very general, Stab†(Y ) � Stab†(X); see [MMS09, Theorem 1.2]. The component Stab†(X) has
non-geometric stability conditions; hence by Theorem 3.3, so does Stab†(Y ).
• Beauville-type and bielliptic surfaces: Let S = X/G. By Theorem 3.10, there is a connected component
Stab‡(S) = StabGeo(X) � (Stab(X))G.

Non-geometric stability conditions are also known to exist in the following cases:

• Rational surfaces: The boundary of StabGeo(X) contains points where skyscrapers sheaves are
destabilised by exceptional bundles. This follows from the same arguments as in [BM11, Section 5],
where the authors use pushforwards of exceptional bundles on P2 to destabilise skyscraper sheaves
on Tot(OP2(−3)).
• Surfaces which contain a smooth rational curve C with negative self intersection: These have a wall
of the geometric chamber such that Ox is stable if x < C and strictly semistable if x ∈ C; see [TX22,
Lemma 7.2] and [LR22, Proposition 5.3].

Threefolds. Fix H ∈ AmpR(X). Denote by StabH (X) the space of stability conditions such that the
central charge factors via the sublattice ΛH ⊂ Knum(X) (see Theorem 3.13). If ρ(X) = 1, then ΛH = Knum(X)
so StabH (X) = Stab(X). A strategy for constructing stability conditions in StabH (X) for threefolds was first
introduced in [BMT14, Sections 3 and 4]. This uses so-called tilt stability conditions to construct geometric
stability conditions whenever a conjectural Bogomolov–Gieseker type inequality is satisfied, i.e. a bound on
the Chern characters of stable objects.

Geometric stability conditions in StabH (X) exist for some threefolds; see [BMS16, Theorem 1.4], [BMSZ17,
Theorem 1.1], [Piy17, Theorem 1.3], [Kos18, Theorem 1.2], [Li19, Theorem 1.3], [Kos20, Theorem 1.2], [Kos22,
Theorem 1.3], [Liu22, Theorem 1.2].

Below we describe the only threefolds where Stab(X) is known to be non-empty. These are also the only
cases where a connected component of StabH (X) was previously known.

• Abelian threefolds: There is a distinguished connected component Stab†H (X) of StabH (X) which is
completely described in [BMS16, Theorem 1.4]. Stability conditions in Stab†H (X) have been shown to
satisfy the support property with respect to Knum(X); in particular, they lie in a connected component
Stab†(X) ⊂ Stab(X); see [OPT22, Theorem 3.21]. Abelian threefolds are also a case of [FLZ22,
Theorem 1.1].
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• Calabi–Yau threefolds of abelian type: Let Y be a Calabi–Yau threefold admitting an abelian
threefold X as a finite étale cover. Then Y = X/G, where G is (Z/2)⊕2 or D4 (the dihedral
group of order 8); see [OS01, Theorem 0.1]. There is a distinguished connected component P of
StabH (Y ) induced from Stab†H (X) which contains only geometric stability conditions; see [BMS16,
Corollary 10.3]. By the previous paragraph together with Theorem 3.3, when G = (Z/2)⊕2, P lies in a
connected component of Stab‡(Y ).

The only examples where non-geometric stability conditions are known to exist on threefolds are those
with complete exceptional collections. We explain this in greater generality below.

Exceptional collections

There are stability conditions on any triangulated category, with a complete exceptional collection called
algebraic stability conditions; see [Mac07b, Section 3]. On Pn, this has been used to show the existence
of geometric stability conditions; see [Mu21, Proposition 3.5] and [Pet22, Section 3.3]. If X is a variety
with a complete exceptional collection, non-geometric stability conditions can be constructed from abelian
categories that do not contain skyscraper sheaves; see [Mac07a, Section 4.2].

We summarise this survey in the table below. Note that the examples in the rightmost column have
non-finite Albanese morphism. This gives a positive answer to Question 1.3 in those cases.

dimX StabGeo(X) Known examples with Stab(X) , StabGeo(X)

1 � G̃L
+
2 (R) P1

2 controlled by ΦX,H,B P2, K3 surfaces, rational surfaces, X ⊃ C rational
curve s.t. C2 < 0

3 , ∅ for some 3folds P3

≥ 4 , ∅ for Pn Pn

1.5. Related works

Theorem 2.26 was independently obtained in [PPZ23, Lemma 4.11]. We generalise Theorem 2.26 and the
results of Section 3 to non-abelian groups in [DHL24]. Theorem 5.10 was used to prove that StabGeo(X) is
contractible in [Rek23, Theorem A].

1.6. Notation

k an algebraically closed field
D a k-linear essentially small Ext-finite triangulated category with a Serre functor
G a finite group such that (char(k), |G|) = 1
DG the category of G-equivariant objects
X a smooth connected projective variety over C

Db(X) the bounded derived category of coherent sheaves on X
Db

G(X) the bounded derived category of G-equivariant coherent sheaves on X
K(D),K(X) the Grothendieck group of D, resp. Db(X)

Knum(D),Knum(X) the numerical Grothendieck group of D, resp. Db(X)
Stab(D),Stab(X) the space of numerical Bridgeland stability conditions on D, resp. Db(X)

StabGeo(X) the space of geometric numerical stability conditions on Db(X)
ch(E) the Chern character of an object E ∈Db(X)
NS(X) Pic(X)/Pic0(X), the Néron–Severi group of X
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NSR(X) NS(X)⊗R
AmpR(X) the ample cone inside NSR(X)
EffR(X) the effective cone inside NSR(X)

Chow(X) the Chow group of X
Chownum(X) the numerical Chow group of X
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2. G- and Ĝ-invariant stability conditions

We review the notions of equivariant triangulated categories in Section 2.1 and Bridgeland stability
conditions in Section 2.2. In Section 2.3, we use [MMS09] to describe a correspondence between stability
conditions on a triangulated category with an action of a finite abelian group and stability conditions on the
corresponding equivariant category.

2.1. Review: G-equivariant triangulated categories

Let C be a pre-additive category, linear over a ring k. Let G be a finite group with (char(k), |G|) = 1. The
definition of a group action on a category and the corresponding equivariant category are due to Deligne
[Del97]. We will follow the treatment by Elagin from [Ela15] in our presentation below.

Definition 2.1 (cf. [Ela15, Definition 3.1]). A (right ) action of G on C is defined by the following data:

• a functor φg : C → C for every g ∈ G;
• a natural isomorphism εg,h : φgφh→ φhg for every g,h ∈ G, for which all diagrams

φf φgφh φf φhg

φgf φh φhgf

εg,h

εf ,g εf ,gh
εgf ,h

are commutative.

Remark 2.2. Note that this definition of a G-action is more than a group homomorphism G → Aut(C)
as there is a fixed isomorphism φgφh

∼−→ φhg for all g,h ∈ G. This finer notion is required to define the
category of G-equivariant objects in Theorem 2.4. See [BO23, Section 2.2] for details on obstructions to
lifting a group homomorphism G→ Aut(C) to a G-action.

Example 2.3 (cf. [Ela15, Example 3.4]). Let G be a group acting on a scheme X. For each g ∈ G, let
φg B g∗ : Coh(X)→ Coh(X). Then for all g,h ∈ G, there are canonical isomorphisms

φgφh = g
∗h∗ ∼−→ (hg)∗ = φhg .

Together, these define an action of G on the category Coh(X).

Definition 2.4 (cf. [Ela15, Definition 3.5]). Suppose G acts on a category C. A G-equivariant object in C is a
pair (F, (θg )g∈G), where F ∈ObC and (θg )g∈G is a family of isomorphisms

θg : F −→ φg(F)
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such that all diagrams

F φg(F)

φhg(F) φg(φh(F))

θg

θhg φg (θh)
εg,h

are commutative. We call the family of isomorphisms a G-linearisation. A morphism of G-equivariant objects
from (F1, (θ1

g )) to (F2, (θ2
g )) is a morphism f : F1→ F2 compatible with θg , i.e. such that the below diagram

commutes for all g ∈ G:

F1 φg(F1)

F2 φg(F2).

θ1
g

f φg (f )
θ2
g

The category of G-equivariant objects of C is denoted by CG.

Example 2.5. Let G be a group acting on a scheme X with φg and εg,h defined as in Example 2.3. The
G-equivariant objects in Coh(X) are G-equivariant coherent sheaves. Let CohG(X) B (Coh(X))G and
Db

G(X)B Db(CohG(X)). Suppose k = k and G acts freely on a smooth projective variety X over k. Let
π : X→ X/G be the quotient map. Then Coh(X/G) � CohG(X) via E 7→ (π∗E , (θg )), where the linearisation
is given by θg : π∗E

∼−→ (π ◦ g)∗E = g∗π∗E . Thus Db
G(X) �Db(X/G).

There are few examples of group actions on categories which do not arise from a group action on a
variety. The following result gives one such example. It will also be key in proving that C can be recovered
from CG when G is abelian; see Theorem 2.10.

Proposition 2.6 (cf. [Ela15, Section 4, p. 12]). Suppose G is an abelian group acting on C and k is algebraically
closed. Let Ĝ = Hom(G,k∗) be the group of irreducible representations of G. Then there is an action of Ĝ on CG.
For every χ ∈ Ĝ, on objects, φχ is given by

φχ((F, (θh)))B (F, (θh))⊗χB (F, (θh ·χ(h))),

and on morphisms, φχ is the identity. For χ,ψ ∈ Ĝ, the equivariant objects φχ(φψ((F), (θh))) and φψχ((F, (θh)))
are the same; hence we set the isomorphisms εχ,ψ to be the identities.

There are two natural functors going between C and CG.

Definition 2.7. Suppose G acts on a category C. Then we denote by ForgG : CG→C the forgetful functor
ForgG(F, (θg )) = F. Also let InfG : C → CG be the inflation functor which is defined by

InfG(F)B

⊕
g∈G

φg(F),
(
ξg

) ,
where

ξg :
⊕
h∈G

φh(F)
∼−→

⊕
h∈G

φgφh(F)

is the collection of isomorphisms
ε−1g,h : φhg(F) −→ φgφh(F).

Lemma 2.8. The forgetful functor ForgG is faithful, and it is left and right adjoint to InfG.

Proof. The faithfulness follows immediately from the definition of morphisms between G-equivariant objects.
For the fact that ForgG is left and right adjoint to InfG, see [Ela15, Lemma 3.8] □
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The following proposition builds on a result of Balmer in [Bal11, Theorem 5.17]. We will need it later to
construct Bridgeland stability conditions on equivariant categories.

Proposition 2.9 (cf. [Ela15, Corollary 6.10]). Suppose G acts on a triangulated category D which has a
DG-enhancement; then DG is triangulated in such a way that ForgG is exact.

The proof of the following theorem will use comonads. The full definitions can be found in [Ela15,
Section 2], but for the proof we will only need to know the following: given a comonad T on a category C, a
comodule over T is a pair (F,h), where F ∈ObC and h : F→ T F is a morphism, called the comonad structure,
satisfying certain conditions (see [Ela15, Definition 2.5]). All comodules over a given comonad T on C form
a category, which is denoted by CT . There is a forgetful functor ForgT : CT →C which forgets the comonad
structure; i.e. (F,h) 7→ F.

Theorem 2.10 (cf. [Ela15, Theorem 4.2]). Suppose k is an algebraically closed field, and let C be a k-linear
idempotent complete category. Let G be a finite abelian group with (char(k), |G|) = 1. Suppose G acts on C. Then

(CG)Ĝ � C.

In particular, under this equivalence ForgĜ : (CG)Ĝ→CG is identified with InfG : C → CG, and their adjoints
InfĜ : CG→ (CG)Ĝ and ForgG : CG→C are also identified.

Proof. Elagin’s proof that (CG)Ĝ � C uses the following chain of equivalences:

(CG)Ĝ
(1)
� (CG)T (ForgĜ ,InfĜ)

(2)
� (CG)R

(3)
� (CG)T (InfG ,ForgG)

(4)
� C,

where T (ForgĜ, InfĜ), R,T (InfG,ForgG) are comonads on the corresponding categories. The equivalences
in (1) and (4) are the comparison functors from [Ela15, Proposition 2.6]. In particular, under (1), ForgĜ �
ForgT (ForgĜ ,InfĜ), and under (4), ForgT (InfG ,ForgG) � InfG. Moreover, the equivalences (2) and (3) only change
the comonad structure; hence the images of the forgetful functors for each category of comodules are the
same. Therefore, under the equivalence (CG)Ĝ, we have ForgĜ � InfG. Finally, recall that ForgĜ and InfĜ
are left and right adjoint, as are ForgG and InfG. Hence InfĜ � ForgG follows immediately. □

2.2. Review: Bridgeland stability conditions

For the rest of this section, assume that D is a k-linear essentially small Ext-finite triangulated category
with a Serre functor.

Definition 2.11 (cf. [Bri07, Definition 3.3]). A slicing P on D is a collection of full additive subcategories
P (φ) ⊂ D for each φ ∈ R such that

(1) P (φ)[1] = P (φ+1);
(2) if F1 ∈ P (φ1),F2 ∈ P (φ2), then φ1 > φ2 implies HomD(F1,F2) = 0;
(3) every E ∈ D has a Harder–Narasimhan (HN) filtration; i.e. there exist objects E1, . . . ,Em ∈ D, real

numbers φ1 > φ2 > · · · > φm, and a collection of distinguished triangles

0 = E0 E1 E2 · · · Em−1 Em = E,

A1 A2 Am

where Ai ∈ P (φi) for 1 ≤ i ≤m. We call the Ai the HN factors of E.

Notation 2.12.

(1) If 0 , E ∈ P (φ), we call φ(E) = φ the phase of E.
(2) Given an interval I ⊂ R, we denote by P (I) the smallest additive subcategory of D containing all

objects E whose HN factors all have phases lying in I , i.e. φi ∈ I .
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Definition 2.13 (cf. [Bri07, Definition 5.1]). A Bridgeland pre-stability condition on D is a pair σ = (P ,Z) such
that

(1) P is a slicing;
(2) Z : K(D)→ C is a group homomorphism such that if 0 , E ∈ P (φ) for some φ ∈ R, then Z([E]) =

m(E)eiπφ, where m(E) ∈ R>0.
We call Z the central charge.

Remark 2.14.

(1) To ease notation, we write Z(E)B Z([E]).
(2) The HN filtration in Theorem 2.11(3) is unique up to isomorphism. We set φ+

σ (E)B φ1, φ
−
σ (E)B φm,

and mσ (E)B
∑
i |Z(Ai)|.

(3) Each P (φ) is an abelian category; see [Bri07, Lemma 5.2]. Non-zero objects of P (φ) are called
σ -semistable of phase φ, and non-zero simple objects of P (φ) are called σ -stable of phase φ.

Definition 2.15. Let Λ be a finite-rank lattice with a surjective group homomorphism K(D) λ
↠Λ.

(1) A Bridgeland pre-stability condition σ = (P ,Z) on D satisfies the support property with respect to
(Λ,λ) if

(a) Z factors via Λ, i.e. Z : K(D) λ
↠Λ→ C, and

(b) there exists a quadratic form Q on Λ⊗R such that
(i) KerZ ⊗R is negative definite with respect to Q, and
(ii) every σ -semistable object E ∈ D satisfies Q(λ(E)) ≥ 0.

(2) A Bridgeland pre-stability condition σ on D that satisfies the support property with respect to (Λ,λ)
is called a Bridgeland stability condition (with respect to (Λ,λ)). If λ also factors via Knum(D), we call
σ a numerical Bridgeland stability condition.

The set of stability conditions with respect to (Λ,λ) will be denoted by StabΛ(D). Unless stated otherwise,
we will assume that all Bridgeland stability conditions are numerical. The set of numerical stability conditions
on D will be denoted by Stab(D).

As described in [Bri07, Proposition 8.1], StabΛ(D) has a natural topology induced by the generalised
metric

d(σ1,σ2) = sup
0,E∈D

{∣∣∣φ−σ2(E)−φ−σ1(E)∣∣∣ , ∣∣∣φ+
σ2(E)−φ

+
σ1(E)

∣∣∣ , ∣∣∣∣∣∣logmσ2(E)mσ1(E)

∣∣∣∣∣∣
}
.

Theorem 2.16 (cf. [Bri07, Theorem 1.2]). The space of stability conditions StabΛ(D) has the natural structure of
a complex manifold of dimension rank(Λ). The forgetful map Z defines the local homeomorphism

Z : StabΛ(D) −→HomZ(Λ,C)

σ = (P ,Z) 7−→ Z.

In other words, the central charge gives a local system of coordinates for the stability manifold.

Remark 2.17. Theorem 2.16 was originally stated for locally finite stability conditions: suppose σ = (P ,Z) is
a pre-stability condition and there exists an ε > 0 such that P (φ− ε,φ+ ε) is a quasi-abelian category of
finite length for all φ ∈ R; then σ is called locally finite; see [Bri07, Definition 5.7]. The support property
implies local finiteness; see [BMS16, Appendix A] for details. Denote by Stablf(D) the space of all locally
finite stability conditions on D.

Remark 2.18 (cf. [MS17, Remark 5.14]). There is a right action on Stab(D) by the universal cover G̃L
+
2 (R) of

GL+
2 (R); see [MS17, Remark 5.14] for details. If we consider C∗ as a subgroup of GL+

2 (R), then this induces
an action of C̃∗ = C on Stab(D).
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There is an equivalent characterisation of Bridgeland stability conditions, which uses the notion of
a t-structure on a triangulated category. The theory of t-structures was first introduced in [BBDG82,
Section 1.3]. We first need the following definitions.

Definition 2.19. A heart of a bounded t-structure in D is a full additive subcategory A such that

(1) if k1 > k2, then HomD(A[k1],A[k2]) = 0;
(2) for any object E in D, there are integers k1 > k2 > · · · > kn and a sequence of exact triangles

0 = E0 E1 E2 · · · En−1 En = E

A1 A2 An

such that Ai ∈ A[ki] for 1 ≤ i ≤ n.

Definition 2.20 (cf. [Bri07, Definitions 2.1 and 2.2]). Let A be an abelian category. A stability function for A
is a group homomorphism Z : K(A)→ C such that for every non-zero object E of A,

Z([E]) ∈HB {m · eiπφ |m ∈ R>0,φ ∈ (0,1]} ⊂ C.

For every non-zero object E, we define the phase by φ(E) = 1
π arg(Z([E])) ∈ (0,1]. We say an object E is

Z-stable (resp. Z-semistable) if E , 0 and for every proper non-zero subobject A, we have φ(A) < φ(E) (resp.
φ(A) ≤ φ(E)).

Definition 2.21 (cf. [Bri07, Definition 2.3]). Let A be an abelian category, and let Z : K(A)→ C be a
stability function on A. A Harder–Narasimhan (HN ) filtration of a non-zero object E of A is a finite chain of
subobjects in A,

0 = E0 ⊂ E1 ⊂ · · ·En−1 ⊂ En = E,
such that each factor Fi = Ei/Ei−1 (called a Harder–Narasimhan factor ) is a Z-semistable object of A and
φ(F1) > φ(F2) > · · · > φ(Fn). Moreover, we say that Z has the Harder–Narasimhan property if every non-zero
object of A has a Harder–Narasimhan filtration.

Proposition 2.22 (cf. [Bri07, Proposition 5.3]). To give a Bridgeland pre-stability condition (P ,Z) on D is
equivalent to giving a pair (ZA,A), where A is the heart of a bounded t-structure on D and ZA is a stability
function for A which has the Harder–Narasimhan property.
Moreover, (P ,Z) is a numerical Bridgeland stability condition if and only if ZA factors via Knum(D) and

satisfies the support property (Definition 2.15(1)) for ZA-semistable objects.

2.3. Inducing stability conditions

Suppose a finite group G with (char(k), |G|) = 1 acts on D by exact autoequivalences Φg . This induces
an action on the stability manifold via Φg · (P ,Z) = (Φg(P ),Z ◦ (Φg )−1∗ ), where (Φg )∗ : K(D)→ K(D) is the
natural morphism induced by Φg . We say that a stability condition σ is G-invariant if Φg · σ = σ . Write
(Stablf(D))G for the space of all G-invariant locally finite stability conditions.

Let σ ∈ (Stablf(D))G. By Lemma 2.8 and Proposition 2.9, ForgG : DG→D is exact and faithful. This
means we can apply the construction from [MMS09, Section 2.2], which induces a (locally finite) stability
condition on DG as follows.

Define Forg−1G (σ )B σG = (PσG ,ZσG ), where

PσG(φ)B
{
E ∈ DG : ForgG(E) ∈ Pσ (φ)

}
,

ZσG B Zσ ◦
(
ForgG

)
∗
.

Here (ForgG)∗ : K(DG)→ K(D) is the natural morphism induced by ForgG.
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Proposition 2.23 (cf. [MMS09, Theorem 2.14]). Suppose G acts on D and σ = (P ,Z) ∈ (Stablf(D))G. Then
Forg−1G (σ ) ∈ Stablf(DG).

Proof. By Theorem 2.9 and our assumptions on D, it follows that DG is a triangulated category and that the
assumptions stated before [MMS09, Theorem 2.14] are satisfied.

Suppose E ∈ P (φ). Then ForgG(InfG(E)) =
⊕

g∈GΦg(E). Since σ is G-invariant, Φg(E) ∈ Pσ (φ) for all
g ∈ G. Moreover, Pσ (φ) is extension closed; hence

⊕
g∈GΦg(E) ∈ Pσ (φ). The result then follows from

[MMS09, Theorem 2.14]. □

Lemma 2.24. Suppose G is abelian and acts on D. Consider the action of Ĝ on DG by tensoring as in
Proposition 2.6. Then Forg−1G (σ ) is Ĝ-invariant.

Proof. First note that, for every class [E] = [(E, (θg ))] ∈ Knum(DG), we have (ForgG)∗([(E, (θg ))]) = [E].
Hence ZσG([E]) = Zσ ◦ (ForgG)∗([(E, (θg ))]) = Zσ ([E]), where [E] ∈ Knum(D). Moreover, from the definition
of PσG , we have

PσG(φ) =
{
E ∈ DG : ForgG(E) ∈ Pσ (φ)

}
=

{(
E,

(
θg

))
∈ DG : E ∈ Pσ (φ)

}
.

In particular, since the action of Ĝ on (E, (θg )) ∈ DG does not change E, it follows that the central charge

ZσG and slicing PσG are Ĝ-invariant, and hence σG ∈ (Stablf(DG))Ĝ. □

Proposition 2.25 (cf. [MMS09, Proposition 2.17]). Under the hypotheses of Proposition 2.23, the morphism

Forg−1G : (Stablf(D))G→ (Stablf(DG))Ĝ is continuous, and the image of Forg−1G is a closed embedded submani-
fold.

Proof. The proof of [MMS09, Proposition 2.17] is for the action of a finite group G on Db(X), induced by the
action of G on X, a variety over C (i.e. Φg = g∗). The result follows in our setting by replacing this with the
action of exact autoequivalences Φg on D in the proof. □

In the case where G is abelian, we have the following description of the image of Forg−1G .

Theorem 2.26. Suppose k is an algebraically closed field. Let D be a k-linear essentially small idempotent
complete Ext-finite triangulated category with a Serre functor and a DG-enhancement. Let G be a finite abelian
group such that (char(k), |G|) = 1. Suppose G acts on D by exact autoequivalences Φg for every g ∈ G, and
consider the action of Ĝ on DG as in Proposition 2.6. Then the functors ForgG and InfG induce an analytic
isomorphism between G-invariant stability conditions on D and Ĝ-invariant stability conditions on DG,

Forg−1G : (Stablf(D))G
�−−→←−− (Stablf(DG))Ĝ :Forg−1

Ĝ
.

More precisely, the compositions Forg−1
Ĝ
◦ Forg−1G and Forg−1G ◦ Forg

−1
Ĝ
fix slicings and rescale central charges

by |G|.

Proof. Let σ ∈ (Stablf(D))G. Therefore, by Theorem 2.23 and Theorem 2.24, σG B Forg−1G (σ ) is in

(Stablf(DG))Ĝ. We now apply Theorem 2.23 again but with ForgĜ. In particular, let σĜ B Forg−1
Ĝ
(σG),

where

PσĜ (φ) =
{
E ∈ (DG)Ĝ : ForgĜ(E) ∈ PσG (φ)

}
=

{
E ∈ (DG)Ĝ : ForgG(ForgĜ(E)) ∈ Pσ (φ)

}
.

By Proposition 2.23, Forg−1
Ĝ
(σG) ∈ Stablf((DG)Ĝ). To complete the proof, we need to show that, under the

equivalence (DG)Ĝ �D, we have σĜ = σ up to rescaling the central charge by |G|. From Theorem 2.10 we
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know that ForgĜ � InfG under this equivalence. Hence we can apply the same argument as in the proof of
[MMS09, Proposition 2.17]. In particular,

PσĜ (φ) =
{
E ∈ D : ForgG(InfG(E)) ∈ Pσ (φ)

}
=

E ∈ D :
⊕
g∈G

Φg(E) ∈ Pσ (φ)

 .
Suppose E ∈ PσĜ(φ). Since P (φ) is closed under direct summands, Φg(E) ∈ Pσ (φ) for all g ∈ G. Thus
E ∈ Pσ (φ). Now suppose E ∈ Pσ (φ); then by the proof of Proposition 2.23, it follows that we have
ForgG(InfG(E)) = ⊕g∈Gφg(E) ∈ Pσ (φ). Therefore, E ∈ PσĜ(φ). In particular, PσĜ = Pσ . Now let [E] ∈
Knum(D)⊗C, and consider the central charge

ZσĜ([E]) = Zσ ◦ (ForgG)∗ ◦ (InfG)∗([E]) = Zσ

∑
g∈G

([Φg(E)])

 .
The central charge Zσ is G-invariant; hence Zσ ([E]) = (Φg )∗Zσ ([E]) = Zσ ([Φg(E)]) for all g ∈ G. Finally,
since Zσ is a homomorphism, it follows that ZσĜ([E]) = |G| ·Zσ ([E]).

Note that if we start instead with a stability condition σG ∈ (Stablf(DG))Ĝ, then by a symmetric argument
it follows that σG = Forg−1G ◦Forg

−1
Ĝ
(σG), up to rescaling the central charge by |Ĝ| = |G|. Therefore, Forg−1G

and Forg−1
Ĝ

are homeomorphisms since they are continuous by Theorem 2.25 and rescaling the central
charge is itself a homeomorphism. In fact, rescaling the central charge by |G| is a linear isomorphism on
HomZ(Knum(D),C) and HomZ(Knum(DG),C). Hence Forg−1G and Forg−1

Ĝ
are analytic isomorphisms since

they are isomorphisms on the level of tangent spaces; i.e.

(HomZ(Knum(D),C))G
�−−→←−− (HomZ(Knum(DG),C))Ĝ

Z 7−→ Z ◦ForgĜ
Z ′ ◦ForgG 7−→Z ′ . □

Remark 2.27. If D = Db(X), where X is a scheme, and if the action of G on D is induced by an action of G
on X, i.e. Φg = g∗, then the analytic isomorphism above gives the bijection in the abelian case of [Pol07,
Proposition 2.2.3].

Remark 2.28. As in [BMS16, Theorem 10.1], Theorem 2.26 also goes through with the support property. In
particular, a stability condition σ ∈ (Stablf(D))G satisfies the support property with respect to (Λ,λ) if and
only if the induced stability condition σG ∈ (Stablf(DG))Ĝ satisfies the support property with respect to
(Λ,λ ◦ (ForgG)∗).

3. Geometric stability conditions on abelian quotients

We apply the methods of Section 2.3 to describe geometric stability conditions on free abelian quotients.
In particular, we show that geometric stability conditions are preserved under the analytic isomorphism in
Theorem 2.26, and we use this to describe a union of connected components of geometric stability conditions
on free abelian quotients of varieties with finite Albanese morphism. In the case of surfaces, we obtain a
stronger result using a description of the set of geometric stability conditions from Section 5.
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3.1. Inducing geometric stability conditions

Let X be a smooth projective connected variety over C. Let G be a finite group acting freely on X.
Let Y = X/G, and denote by π : X → Y the quotient map. Let Db

G(X) denote the derived category of
G-equivariant coherent sheaves on X as in Example 2.5.

Recall that Db(Y ) �Db
G(X), where the equivalence is given by

Ψ : Db(Y ) −→Db
G(X)

E 7−→ (π∗(E),λnat)

and λnat = {λg }g∈G is the G-linearisation given by

λg : π
∗E ∼−→ g∗π∗E = (π ◦ g)∗E � π∗E .

Now assume G is abelian. By Theorem 2.10, there is an equivalence Ω : Db(X) ∼−→ (Db
G(X))Ĝ. This fits

into the following diagram of functors:

(3.1)

Db(Y ) Db
G(X)

Db(X) (Db
G(X))Ĝ,

Ψ
∼

π∗ InfĜ
ForgG

Ω
∼

π∗
InfG

ForgĜ

where

π∗
Ψ
� ForgG

Ω
� InfĜ, π∗

Ψ
� InfG

Ω
� ForgĜ, π∗ ◦π∗

Ψ
� InfG ◦ForgG, ForgG ◦ InfG

Ω
� InfĜ ◦ForgĜ.

The residual action of Ĝ on Db(Y ) is given by tensoring with numerically trivial line bundles Lχ for each
χ ∈ Ĝ.

Definition 3.1. A Bridgeland stability condition σ on Db(X) is called geometric if for every point x ∈ X, the
skyscraper sheaf Ox is σ -stable.

Proposition 3.2 (cf. [FLZ22, Proposition 2.9]). Let σ be a geometric numerical stability condition on Db(X).
Then all skyscraper sheaves are of the same phase.

In this context, the isomorphism from Theorem 2.26 preserves geometric stability.

Theorem 3.3. Suppose G is a finite abelian group acting freely on X. Let π : X→ Y B X/G denote the quotient
map. Consider the action of Ĝ on Db

G(X) �Db(Y ) as in Proposition 2.6. Then the functors π∗ and π∗ induce an

analytic isomorphism between G-invariant stability conditions on Db(X) and Ĝ-invariant stability conditions on
Db(Y ) which preserve geometric stability conditions:

(π∗)−1 : (Stab(X))G
�−−→←−− (Stab(Y ))Ĝ : (π∗)

−1.

The compositions (π∗)−1 ◦ (π∗)−1 and (π∗)−1 ◦ (π∗)−1 fix slicings and rescale central charges by |G|.
In particular, suppose σ = (Pσ ,Zσ ) ∈ (Stab(X))G satisfies the support property with respect to (Λ,λ). Then

(π∗)−1(σ ) =: σY = (PσY ,ZσY ) ∈ (Stab(Y ))
Ĝ is defined by

PσY (φ) =
{
E ∈Db(Y ) : π∗(E) ∈ Pσ (φ)

}
,

ZσY = Zσ ◦π∗,

where π∗ is the natural induced map on K(Db(Y )) and σY satisfies the support property with respect to (Λ,λ◦π∗).
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Proof. First note that π∗ ◦π∗ : Knum(Y )→ Knum(Y ) is just multiplication by |G| because it sends [E] to[
E ⊗

⊕
χ∈ĜLχ

]
. Therefore, π∗ : Knum(Y )→ Knum(X) is injective.

Together with Theorem 2.26 and Remark 2.28, the above implies that (π∗)−1 and (π∗)−1 give an analytic
isomorphism between numerical Bridgeland stability conditions as described above. It remains to show that
σ ∈ (Stab(X))G is geometric if and only if σY = (π∗)−1(σ ) is.

Step 1. Suppose σ = (Pσ ,Zσ ) ∈ (Stab(X))G is geometric. Let y ∈ Y . This corresponds to the orbit Gx for
some x ∈ X (so x is unique up to the action of G). We need to show Oy is σY -stable. Recall

PσY (φ) =
{
E ∈Db(Y ) : π∗(E) ∈ Pσ (φ)

}
for every φ ∈ R. Now consider

π∗Oy =
⊕
g∈G
Og−1x ∈Db(X).

By our assumption on σ and Proposition 3.2, all skyscraper sheaves of points of X are σ -stable and of the
same phase, which we denote by φsky. In particular, Og−1x ∈ Pσ (φsky) for all g ∈ G. Moreover, Pσ (φsky) is
extension closed; hence

⊕
g∈GOg−1x ∈ Pσ (φsky), and thus Oy ∈ PσY (φsky).

Now suppose that Oy is strictly semistable; then there exist E ,F ∈ PσY (φsky) such that

E ↪−→Oy −↠ F

is non-trivial, i.e. E is not isomorphic to 0 or Oy . By the definition of PσY (φsky), the pullbacks π∗(E) and
π∗(F ) are objects in Pσ (φsky). Hence we have the following exact sequence in Pσ (φsky):

π∗(E) ↪−→ π∗(Oy) =
⊕
g∈G
Og−1x −↠ π∗(F ).

Since π∗(E) is a subobject of π∗(Oy), we must have π∗(E) =
⊕

a∈AOa−1x, where A ⊂ G is a subset. Hence,

supp(π∗(E)) =
{
a−1x : a ∈ A

}
⊂

{
g−1x : g ∈ G

}
= supp

(
π∗

(
Oy

))
.

Note that π∗(E) is a G-invariant sheaf. But supp(π∗(E)) is G-invariant if and only if A = ∅ or A = G. Hence
E = 0 or E = Oy , and we have a contradiction.

Step 2. Suppose that σY = (PσY ,ZσY ) ∈ (Stab(Y ))
Ĝ is geometric. Recall

PσY (φ) =
{
E ∈Db(Y ) : π∗(E) ∈ Pσ (φ)

}
for all φ ∈ R. Fix x ∈ X, and let y ∈ Y be the point corresponding to the orbit Gx. By assumption, Oy is
σY -stable. Let φsky denote its phase. Then π∗(Oy) =

⊕
g∈G g

∗Ox ∈ Pσ (φsky). Moreover, since Pσ (φsky) is
closed under direct summands, g∗Ox ∈ Pσ (φsky) for all g ∈ G. In particular, Ox ∈ Pσ (φsky). Now suppose
that Ox is strictly semistable; then there exist A,B ∈ Pσ (φsky) such that

A ↪−→Ox −↠ B

is a non-trivial exact sequence in Pσ (φsky), i.e. A is not isomorphic to 0 or Ox. By Step 1, (π∗)−1 sends
Pσ (φsky) to PσY (φsky). Hence we have a short exact sequence in PσY (φsky),

π∗(A) ↪−→ π∗(Ox) = Oy −↠ π∗(B).

However, Oy is stable; hence π∗(A) = 0 or π∗(B) = 0. But π is finite; hence π∗ is conservative. Therefore,
A = 0 or B = 0, and we have a contradiction. □
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3.2. Group actions and geometric stability conditions on surfaces

We denote by StabGeo(X) the set of all geometric stability conditions on X. We will see in Theorem 5.5
that if X is a surface, then σ ∈ StabGeo(X) is determined by its central charge up to shifting by [2n]. This
means that to test if σ is G-invariant, we only have to check the central charge.

Lemma 3.4. Let G be a group acting on a surface X. Then σ = (P ,Z) ∈ StabGeo(X) is G-invariant if and only
if Z is G-invariant.

Proof. If σ = (P ,Z) ∈ StabGeo(X) is G-invariant, then so is Z . Suppose σ = (P ,Z) ∈ StabGeo(X) and Z is
G-invariant. Fix g ∈ G. Then g∗σ = (g∗(P ),Z ◦ g∗) and σ are both geometric, and skyscraper sheaves have
the same phase. By Theorem 5.5, we have σ = g∗σ . □

Lemma 3.5. Let G ⊆ Pic0(X) be a finite subgroup. Then the induced action of G on Knum(X) is trivial.

Proof. Let L ∈ G and [E] ∈ Knum(X). The induced action of G on Knum(X) is given by L · [E]B [E ⊗L].
Since L is a numerically trivial line bundle, ch(L) = ec1(L) and c1(L) = 0 in Chownum(X). Therefore,

ch |Knum
([E ⊗L]) = ch |Knum

([E]) · ch |Knum
(L) = ch |Knum

([E]).

By the Hirzebruch–Riemann–Roch theorem, the map ch: K(X) → Chow(X) induces an injective map
ch: Knum(X)→ Chownum(X). Therefore, L · [E] = [E ⊗L] = [E] in Knum(X). □

Corollary 3.6. Let S be a surface, and let G ⊆ Pic0(S) be a finite subgroup. Then every geometric stability
condition on S is G-invariant.

Proof. Let σ = (P ,Z) ∈ StabGeo(S). By Theorem 3.4, it is enough to show that Z is G-invariant. By
Theorem 3.5, the group G acts trivially on Knum(S). Since σ is numerical, Z : K(S) → C factors via
Knum(S); hence Z is G-invariant. □

Example 3.7. Suppose G is a finite abelian group acting freely on a variety X, and let Y B X/G. Then by
Proposition 2.6, there is also an action of Ĝ = Hom(G,C) on Db

G(X) �Db(Y ). As discussed in Section 3.1,
the corresponding action on Db(Y ) is given by tensoring with a numerically trivial line bundle Lχ for each
χ ∈ Ĝ. If X is a surface, then Theorem 3.6 tells us that every geometric stability condition on Db(Y ) is
Ĝ-invariant.

3.3. Applications to varieties with finite Albanese morphism

Lemma 3.8. Suppose that a finite group G acts on a triangulated category D by exact autoequivalences such that
the induced action on Knum(D) is trivial. Then (Stab(D))G is a union of connected components inside Stab(D).

Proof. By Theorem 2.16, there is a local homeomorphism

Z : Stab(D) −→HomZ(Knum(D),C).

Let g ∈ G, and denote by (Φg )∗ the induced action of g on K(D) and Knum(D). Recall that the action of
G on Stab(D) is given by (Φg )∗ · σ = (Φg(P ),Z ◦ (Φg )−1∗ ). The induced action of G on Knum(D) is trivial;
hence Z(σ ) is G-invariant and Z(g ·σ ) = Z(σ ). Furthermore, G acts continuously on Stab(D), and the local
homeomorphism Z commutes with this action. Hence the properties of being G-invariant and not being
G-invariant are open in Stab(D), so the result follows. □

We now combine this with the results of Sections 3.1 and 3.2.

Theorem 3.9. Let X be a variety with finite Albanese morphism. Let G be a finite abelian group acting freely

on X, and let Y = X/G. Then Stab‡(Y ) B (Stab(Y ))Ĝ � Stab(X)G is a union of connected components in
Stab(Y ) consisting only of geometric stability conditions.
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Proof. The variety X has finite Albanese morphism, so it follows from [FLZ22, Theorem 1.1] that all stability
conditions on X are geometric. In particular, all G-invariant stability conditions on X are geometric,
so from Theorem 3.3 it follows that all Ĝ-invariant stability conditions on Y are geometric. Hence

(Stab(Y ))Ĝ ⊂ StabGeo(Y ).
Recall from Example 3.7 that Ĝ acts on Db(Y ) by tensoring with numerically trivial line bundles. Now we

may apply Lemma 3.5, so it follows that Ĝ acts trivially on Knum(Y ). Hence, by Lemma 3.8, (Stab(Y ))Ĝ is
a union of connected components. □

When X is a surface, we will see in Theorem 5.36 that StabGeo(S) is connected. Hence we have the
following stronger result.

Theorem 3.10. Let X be a surface with finite Albanese morphism. Let G be a finite abelian group acting
freely on X. Let S = X/G. Then Stab‡(S) = StabGeo(S) � (Stab(X))G. In particular, Stab‡(S) is a connected
component of Stab(S).

Proof. By Theorem 3.9, Stab‡(S) ⊂ StabGeo(S) is a union of connected components. By Theorem 5.36,
StabGeo(S) is connected. In particular, Stab‡(S) = StabGeo(S), and this is a connected component of
Stab(S). □

Remark 3.11.

(1) The equality StabGeo(S) = (Stab(S))Ĝ also follows by combining Theorem 3.9 with Theorem 3.6.
(2) The equality Stab‡(S) = StabGeo(S) will be explicitly described in Theorem 5.10.

Example 3.12. Let S = (C1×C2)/G be the quotient of a product of smooth curves such that g(C1), g(C2) ≥ 1
and G is a finite abelian group acting freely on S . Then C1 × C2 has finite Albanese morphism. By
Theorem 3.10, StabGeo(S) is a connected component. In particular, we could take S to be any bielliptic
surface (see Example 1.2) or a Beauville-type surface with G abelian (see Example 1.1).

Remark 3.13. For an ample class H on a variety of dimension n, consider the following surjection from K(X):

[E] 7−→
(
Hnch0(E),H

n−1 . ch1(E), . . . ,chn(E)
)
⊆ Rn.

Let ΛH denote the image. The submanifold StabH (X)B StabΛH
(X) ⊆ Stab(X) is often studied. Note that

these are the same when X has Picard rank 1.
Now let X be a surface with finite Albanese morphism, and let G be an abelian group acting freely on X.

Let S = X/G, and denote by π : X→ S the quotient map. Moreover, let HX be a G-invariant polarization
of X, and let HS be the corresponding polarization on S such that π∗HS =HX . Then if a homomorphism
Z : K(X)→ C factors via ΛHX , it is G-invariant. Hence by Theorem 3.4, all stability conditions in StabHX (X)
are G-invariant.

From Theorem 3.10 it follows that Stab‡HS (S) � (StabHX (X))
G = StabHX (X). The component StabHX (X)

is the same as the component described in [FLZ22, Corollary 3.7]. This gives another proof that Stab‡HS (S) =

StabGeo
HS

(S) is connected.

Example 3.14. A Calabi–Yau threefold of abelian type is an étale quotient Y = X/G of an abelian threefold X
by a finite group G acting freely on X such that the canonical line bundle of Y is trivial and H1(Y ,C) = 0.
As discussed in [BMS16, Example 10.4(i)], these are classified in [OS01, Theorem 0.1]. In particular, G can be
chosen to be (Z/2Z)⊕2 or D4 (the dihedral group of order 8), and the Picard rank of Y is 3 or 2, respectively.

Fix a polarization (Y ,H), and consider StabH (Y ) as in Theorem 3.13. This has a connected component P
of geometric stability conditions induced from StabH (X), see [BMS16, Corollary 10.3], which is described
explicitly in [BMS16, Lemma 8.3]. When G = (Z/2)⊕2, by [OPT22, Theorem 3.21], the stability conditions
constructed by Bayer–Macrì–Stellari in StabH (X) satisfy the full support property (i.e. the support property
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with respect to Knum(X)), so they actually lie in Stab(X). Together with Theorem 3.9, this implies that
σ ∈ P also satisfies the full support property. In particular, P lies in a connected component of Stab‡(Y ).

4. The Le Potier function

We compute the Le Potier function of free abelian quotients and varieties with finite Albanese morphism.
We apply this to Beauville-type surfaces which provides counterexamples to Conjecture 1.4. Throughout, X
will be a smooth projective connected variety over C.

4.1. H -stability

Notation 4.1. Let A · B denote the intersection product of elements of Chownum(X) ⊗ R. If A · B is
0-dimensional, we define A . BB deg(A ·B).

Definition 4.2. Let dimX = n. Fix an ample class H ∈ AmpR(X). Given 0 , F ∈ Coh(X), we define the
H-slope of F as follows:

µH (F)B

H
n−1.ch1(F)
Hnch0(F)

if ch0(F) > 0,

+∞ if ch0(F) = 0.

We say that F is H-stable (resp. H-semistable) if for every non-zero subobject E ⊊ F,

µH (E) < µH (F/E) (resp. µH (E) ≤ µH (F/E)).

4.2. The Le Potier function

When studying H-stability, a natural question that arises is whether there are necessary and sufficient
conditions on a cohomology class γ ∈H ∗(X,Q) for there to exist an H-semistable sheaf F with ch(F) = γ .

The Bogomolov–Gieseker inequality (see [Bog79, Section 10] or [HL10, Theorem 3.4.1]) gives the following
necessary condition for H-semistable sheaves on surfaces:

2ch0(F)ch2(F) ≤ ch1(F)
2.

This generalises to the following statement for any variety X of dimension n ≥ 2 via the Mumford–Mehta–
Ramanathan restriction theorem.

Theorem 4.3 (cf. [Lan04, Theorem 3.2], [HL10, Theorem 7.3.1]). Assume dimX = n ≥ 2. Fix H ∈ AmpR(X).
If F is a torsion-free H-semistable sheaf, then

2ch0(F)
(
Hn−2 . ch2(F)

)
≤Hn−2 . ch1(F)

2.

Remark 4.4. Let B ∈NSR(X). The twisted Chern character is defined by chB B ch · e−B. Then

2chB0 (F)
(
Hn−2 . chB2 (F)

)
−Hn−2 .

(
chB1 (F)

)2
= 2ch0(F)

(
Hn−2 . ch2(F)

)
−Hn−2 . ch1(F)

2;

hence Theorem 4.3 also holds for twisted Chern characters.

Now assume dimX = n ≥ 2, and fix (H,B) ∈ AmpR(X) × NSR(X). Then Hn > 0. Let F be any
H-semistable torsion-free sheaf. By the twisted version of Theorem 4.3,

2Hnch0(F)
(
Hn−2 . chB2 (F)

)
≤Hn

(
Hn−2 . chB1 (F)

2
)
≤

(
Hn−1 . chB1 (F)

)2
,

where the final inequality is by the Hodge index theorem. Since F is torsion-free,

Hn−2 . chB2 (F)
Hnch0(F)

≤ 1
2

(
Hn−1 . chB1 (F)
Hnch0(F)

)2
.
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Now we expand the expressions for chB2 (F) and chB1 (F):

Hn−2 . ch2(F)−Hn−2 . B . ch1(F) +
1
2H

n−2 . B2 . ch0(F)
Hnch0(F)

≤ 1
2

(
Hn−1 . ch1(F)−Hn−1 . Bch0(F)

Hnch0(F)

)2
=
1
2

(
µH (F)−

Hn−1 . B
Hn

)2
.

Therefore,

(4.1) νH,B(F)B
Hn−2 . ch2(F)−Hn−2 . B . ch1(F)

Hnch0(F)
≤ 1

2

(
µH (F)−

Hn−1 . B
Hn

)2
− 1
2
Hn−2 . B2

Hn .

For a given µ ∈ R, if µH (F) = µ, we can therefore ask how large νH,B(F) can be. These leads us to make the
following definition.

Definition 4.5. Assume dimX = n ≥ 2. Let (H,B) ∈ AmpR(X)×NSR(X). We define the Le Potier function
twisted by B, ΦX,H,B : R→ R∪ {−∞}, by

(4.2) ΦX,H,B(x)B limsup
µ→x

{
νH,B(F) : F ∈ Coh(X) is H-semistable with µH (F) = µ

}
.

Remark 4.6. If B = 0, we will write ΦX,H B ΦX,H,0. If n = 2, then ΦX,H is exactly [FLZ22, Definition 3.1].

The above discussion and definition generalises [FLZ22, Proposition 3.2].

Lemma 4.7 (cf. [FLZ22, Proposition 3.2]). Let X be a variety of dimension n ≥ 2. Let (H,B) be classes in
AmpR(X)×NSR(X). Then ΦX,H,B is well defined and satisfies

ΦX,H,B(x) ≤
1
2

(x − Hn−1 . B
Hn

)2
− H

n−2 . B2

Hn

 .
It is the smallest upper-semi-continuous function such that

νH,B(F) ≤ ΦX,H,B (µH (F))

for every torsion-free H-semistable sheaf F.

4.3. The Le Potier function for free quotients

Let G be a finite group acting freely on X. There is an étale covering π : X → X/G =: Y . Then
Pic(Y ) � PicG(X), the group of isomorphism classes of G-equivariant line bundles on X. Fix HS ∈ AmpR(Y ).
Then π∗HS ∈ AmpR(X) is G-invariant. Beauville-type and bielliptic surfaces provide examples of such
quotients.

Example 4.8 (Ample classes on Beauville-type surfaces). Let S = X/G be a Beauville-type surface, as
introduced in Example 1.1. Then X = C1×C2 is a product of curves of genus g(Ci) ≥ 2, q(S)B h1(S,OS ) = 0,
and pg(S)B h2(S,OS ) = 0, so χ(OS ) = 1, and K2

S = 8, where KS is the canonical divisor of S .
Assume that there are actions of G on each curve Ci such that the action of G on C1 ×C2 is the diagonal

action. This is called the unmixed case in [BCG08, Theorem 0.1] and excludes 3 families of dimension 0. To
classify ample classes on S , we follow similar arguments to [GS13, Section 2.2]. Let pi : X→ Ci denote the
projections to each curve. For i, j ∈ Z, define the G-invariant divisor class

[O(i, j)]B p∗1
([
OC1

(i)
])
⊗ p∗2

([
OC2

(j)
])
∈NSG(X).
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Moreover,

χtop(S) =
χtop(C1) ·χtop(C2)

|G|
= 4

(1− g(C1))(1− g(C2))
|G|

= 4χ(OS ) = 4.

Therefore, rankNS(S) = b2(S) = 2 and

NSQ(S) �Q · [O(1,0)]⊕Q · [O(0,1)].

In particular, AmpR(S) � R>0 · [O(1,0)]⊕R>0 · [O(0,1)].

Lemma 4.9 (cf. [HL10, Lemma 3.2.2]). Let f : X → Y be a finite morphism of varieties of dimension n ≥ 2,
and let E ∈ Coh(Y ). Let (HY ,BY ) ∈ AmpR(Y ) ×NSR(Y ). Then E is HY -semistable if and only if f ∗E is
f ∗HY -semistable. Moreover, if ch0(E) , 0, then µHY (E) = µf ∗HY (f

∗E) and νHY ,BY (E) = νf ∗HY ,f ∗BY (f
∗E). In

particular, ΦX,f ∗HY ,f ∗BY ≥ ΦY ,HY ,BY .

Proof. The claim that E is HY -semistable if and only if f ∗E is f ∗HY -semistable follows from the same
arguments as in the proof of [HL10, Lemma 3.2.2]. If ch0(E) , 0, then

µf ∗HY (f
∗E) =

deg((f ∗HY )n−1 · f ∗(ch1(E)))
deg((f ∗HY )n · f ∗(ch0(E)))

=
deg(f ∗(Hn−1

Y · ch1(E)))
deg(f ∗(Hn

Y · ch0(E)))
(f is flat, so f ∗ is a ring morphism)

=
deg(f )deg(Hn−1

Y · ch1(E))
deg(f )deg(Hn

Y · ch0(E))
(projection formula)

= µHY (E)

By the same arguments, νf ∗HY ,f ∗BY (f
∗E) = νHY ,BY (E). □

Lemma 4.10. Suppose a finite group G acts freely on X. Let π : X → Y B X/G denote the quotient map. If
F ∈ Coh(X) is π∗HY -semistable, then π∗F is HY -semistable. Moreover, if ch0(F) , 0, then µHY (π∗F) = µπ∗HY (F)
and νHY ,BY (π∗F) = νπ∗HY ,π∗BY (F). In particular, ΦX,π∗HY ,π∗BY ≤ ΦY ,HY ,BY .

Proof. Suppose that F ∈ Coh(X) is π∗HY -semistable. Recall from Section 3.1 that, under the equivalence
Coh(Y ) � CohG(X), we have π∗ ◦π∗ � ForgG ◦ InfG, so

π∗(π∗(F)) � ForgG ◦ InfG(F) =
⊕
g∈G

g∗F.

Since π∗HY is G-invariant, it follows that g∗F is π∗HY -semistable for every g ∈ G. In particular,
⊕

g∈G g
∗F

is π∗HY -semistable. By Lemma 4.9, π∗F is HY -semistable.
Now suppose ch0(F) , 0. Since the Chern character is additive, µπ∗HY (π

∗π∗F) = µπ∗HY (F). By Lemma 4.9,
µHY (π∗F) = µπ∗HY (π

∗π∗F) = µπ∗HY (F), as required.
By the same arguments, νHY ,BY (π∗F) = νπ∗HY ,π∗BY (F). □

Proposition 4.11. Suppose a finite group G acts freely on X. Let π : X→ Y B X/G denote the quotient map. Let
(HY ,BY ) ∈ AmpR(Y )×NSR(Y ). Then ΦY ,HY ,BY = ΦX,π∗HY ,π∗BY .

Proof. This follows from Lemmas 4.9 and 4.10. □

4.4. The Le Potier function for varieties with finite Albanese morphism

The Le Potier function for surfaces with finite Albanese morphism was known previously; see [LR23,
Example 2.12(2)]. Below, we give a different proof which works for ΦX,H,B in any dimension. We first need
the following definition.
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Definition 4.12 (cf. [Muk78, Definitions 4.4 and 5.2]). A vector bundle E on an abelian variety A is
homogeneous if it is invariant under translations, i.e. for every x ∈ A, T ∗x (E) � E, where Tx is translation on A
by x. The vector bundle E is called semi-homogeneous if for every x ∈ A, there exists a line bundle L on A
such that T ∗x (E) � E ⊗L.

See [Muk78, Proposition 5.1] for some equivalent characterisations for when a vector bundle is semi-
homogeneous. We will need the following properties.

Theorem 4.13 (cf. [Muk78, Theorem 4.17, Lemma 6.11]). Let E be a vector bundle with ch0(E) = r on an
abelian variety A.

(1) The vector bundle E is homogeneous if and only if E � ⊕ki=1 (Pi ⊗Ui), where each Pi is a numerically
trivial line bundle and each Ui is a unipotent line bundle, i.e. an iterated self-extension of OA.

(2) Suppose E is semi-homogeneous, and consider the multiplication by r map, rA : A→ A. Then we have
r∗AE � det(E)⊗r ⊗V , where V is a homogeneous vector bundle with ch0(V ) = ch0(r∗AE) and c1(V ) = 0.

There are many H-semistable semi-homogeneous vector bundles on any abelian variety.

Proposition 4.14 (cf. [Muk78, Theorem 7.11]). Let A be an abelian variety, and fix H ∈ AmpR(A). For every
divisor class C ∈NSQ(A), there exists an H -semistable semi-homogeneous vector bundle EC on A with C = ch1(EC )

ch0(EC )

and ch(EC) = ch0(EC) · eC .

Proof. These vector bundles are constructed as follows: for any C ∈ NSQ(A), write C = [L]
l , where [L]

is the equivalence class of L ∈ NS(A) and l ∈ Z>0. Let lA : A→ A denote the multiplication by l map,
and define F = (lA)∗((L)⊗l). By [Muk78, Proposition 6.22], F is a semi-homogeneous vector bundle with

C = δ(F)B det(F)
ch0(F)

. Moreover, F has a filtration by semi-homogeneous vector bundles E1, . . . ,Em. By [Muk78,
Proposition 6.15], each Ei is µH -semistable for any H ∈ AmpR(A) and satisfies C = δ(Ei).

Let EC B E1, and let r = ch0(EC). We claim that ch(EC) = reC . Consider the multiplication by r map
rA : X→ X. By Theorem 4.13(2), we have r∗AEC � det(EC)⊗r ⊗V , where V is a homogeneous vector bundle,
and

(4.3) ch(r∗AEC) = ch(V ) · ch
(
det(EC)

⊗r
)
= ch0

(
r∗AEC

)
er det(EC ) = ch0

(
r∗AEC

)
er

2C .

Now recall that H2i(A,C) =
∧2iH1(A,C). On H1(A,C), r∗A is multiplication by r . It follows that on

Chowi
num(X), r

∗
A is multiplication by r2i . In particular, δ(r∗AEC) = r

2δ(EC). Hence (4.3) becomes

ch
(
r∗AEC

)
= ch0

(
r∗AEC

)
eδ(r

∗
AEC ) = r∗A

(
ch0(EC)e

δ(EC )
)
= r∗A

(
reC

)
.

Since rA is flat, the claim follows. □

We use this to compute the Le Potier function for abelian varieties.

Proposition 4.15. Let A be an abelian variety of dimension n ≥ 2. Fix (H,B) ∈ AmpR(A)×NSR(A). Then

ΦA,H,B(x) =
1
2

(x − Hn−1 . B
Hn

)2
− H

n−2 . B2

Hn

 .
Proof. For any k ∈ Q, define Ck B kH + B. Then by Theorem 4.14, there exists a µH -semistable vector

bundle ECk with Ck =
ch1(ECk )
ch0(ECk )

and ch(ECk ) = ch0(ECk ) · e
Ck . Let r = ch0(ECk ). Hence

µH (ECk ) =
Hn−1 . rCk
Hnr

= k +
Hn−1 . B
Hn ,
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and

νH,B(ECk ) =
Hn−2 . 12rC

2
k −H

n−2 . B . rCk
Hnr

=
1
2

Hn−2 .
(
k2H2 +2kH . B+B2

)
−Hn−2 . (2kH . B+2B2)

Hn

=
1
2

[
k2 − H

n−2 . B2

Hn

]
=
1
2

(µH (ECk )− Hn−1 . B
Hn

)2
− H

n−2 . B2

H2

 .
This gives a lower bound for ΦA,H,B

(
µH (ECk )

)
, which is the same as the upper bound in Lemma 4.7. Now

note that for any x ∈ Q, we can choose k so that µH (ECk ) = x. Hence ΦA,H,B(x) attains its upper bound
for all x ∈ Q. Finally, by the definition of the Le Potier function, it must attain this upper bound for all
x ∈ R. □

Varieties with finite Albanese morphism also have many H-semistable vector bundles.

Proposition 4.16 (cf. [LR23, Example 2.12(2)]). Let X be a variety with finite Albanese morphism a : X→ Alb(X)
and nB dimX ≥ 2. Let HX ∈ AmpR(X). Then a

∗EC is HX -semistable for every C ∈NSQ(Alb(X)).

Proof. Fix C ∈ NSQ(Alb(X)) and HA ∈ AmpR(Alb(X)). Let EC be the corresponding HA-semistable
semi-homogeneous vector bundle on Alb(X) from Proposition 4.14. Let r B ch0(EC), and consider the
multiplication by r map rAlb(X) : Alb(X)→ Alb(X). By Theorem 4.13,

r∗Alb(X)(EC) = L
−1 ⊗

 k⊕
i=1

Pi ⊗Ui

 ,
where L is a line bundle and for all i, Pi is a numerically trivial line bundle and Ui is an iterated self-extension
of OAlb(X). Therefore, L⊗ r∗Alb(X)(EC) is an iterated extension of numerically trivial line bundles.

Now consider the fibre square

Z B X ×Alb(X)Alb(X) Alb(X)

X Alb(X).

pX

pA

rA

a

Without loss of generality, fix a connected component Z of Z. Then on Z,

(pX |Z )∗a∗(EC) = (pA|Z )∗r∗A(EC).

The property of being an extension of numerically trivial line bundles is preserved by taking pullback. Hence
p∗A(L)⊗ (pX |Z )

∗a∗(EC) is an iterated extension of numerically trivial line bundles. Recall that line bundles
are stable with respect to any ample class. Thus p∗A(L)⊗ (pX |Z )

∗a∗(EC) is (pX |Z )∗HX-semistable; hence so is
(pX |Z )∗a∗(EC). By Lemma 4.9, a∗(EC) is HX-semistable. □

Proposition 4.17 (cf. [LR23, Example 2.12(2)]). Let X be a variety with finite Albanese morphism a : X →
Alb(X). Fix (H,B) ∈ AmpR(Alb(X))×NSR(Alb(X)), and assume nB dimX ≥ 2. Then

ΦAlb(X),H,B(x) = ΦX,a∗H,a∗B(x) =
1
2

(x − (a∗H)n−1 . a∗B
(a∗H)n

)2
− (a∗H)n−2 . (a∗B)2

(a∗H)n

 .
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Proof. First note that, by the projection formula, the upper bounds of ΦAlb(X),H,B and ΦX,a∗H,a∗B are the
same. By Theorem 4.9, ΦAlb(X),H,B ≤ ΦX,a∗H,a∗B. Hence it suffices to show that ΦAlb(X),H,B attains this upper
bound. This follows from Theorem 4.15. □

We now combine this with Proposition 4.11.

Theorem 4.18. Let X be a variety with finite Albanese morphism a : X→ Alb(X), and let G be a finite group
acting freely on X. Let π : X→ X/G =: Y denote the quotient map. Suppose we have

• HX = a∗H = π∗HY : a class in AmpR(X) pulled back from Alb(X) and Y , and
• BX = a∗B = π∗BY : a class in NSR(X) pulled back from Alb(X) and Y .

Then

ΦY ,HY ,BY (x) =
1
2

(x − Hn−1
Y . BY
Hn
Y

)2
−
Hn−2
Y . B2Y
Hn
Y

 .
Proof. By Propositions 4.11 and 4.17, it follows that

ΦY ,HY ,BY (x) = ΦX,π∗HY ,π∗BY (x) =
1
2

(x − (π∗HY )n−1 . π∗BY
(π∗HY )n

)2
− (π∗HY )n−2 . (π∗BY )2

(π∗HY )n

 .
The result follows by the projection formula. □

Example 4.19. Suppose X has finite Albanese morphism a : X → Alb(X), and let G be a finite group
acting freely on X. This induces an action of G on NS(Alb(X)). Fix L ∈ Amp(Alb(X)) and B = 0. Then
H B ⊗g∈Gg∗L ∈ AmpR(Alb(X)) satisfies the hypotheses of Theorem 4.18. In particular, this applies to
bielliptic surfaces (q = 1) and Beauville-type surfaces (q = 0). The latter provides a counterexample to
Conjecture 1.4 since ΦY ,HY ,0(x) =

1
2x

2 is continuous.

5. Geometric stability conditions and the Le Potier function

We use the Le Potier function to describe the set of geometric stability conditions on any surface. This
was previously known for surfaces with Picard rank 1; see [FLZ22, Theorem 3.4 and Proposition 3.6].

5.1. The deformation property and tilting

To prove the existence of stability conditions later in this section, we will need the following refinement of
Theorem 2.16.

Proposition 5.1 (cf. [BMS16, Proposition A.5], [Bay19, Theorem 1.2]). Let D be a triangulated category. Assume
σ = (P ,Z) ∈ StabΛ(D) satisfies the support property with respect to (Λ,λ) and a quadratic form Q on Λ⊗R.
Consider the open subset of HomZ(Λ,C) consisting of central charges whose kernel is negative definite with
respect to Q, and let U be the connected component containing Z . Let Z denote the local homeomorphism from
Theorem 2.16, and let U ⊂ StabΛ(D) be the connected component of the preimage Z−1(U ) containing σ . Then

(1) the restriction Z|U : U →U is a covering map, and
(2) any stability condition σ ′ ∈ U satisfies the support property with respect to Q.

Corollary 5.2. Let D be a triangulated category. Assume σ = (P ,Z) ∈ StabΛ(D) satisfies the support property
with respect to (Λ,λ) and a quadratic form Q on Λ⊗R. Let U ⊂HomZ(Λ,C), and let U ⊂ StabΛ(D) be the
connected components from Proposition 5.1. Suppose there is a path Zt in U parametrised by t ∈ [0,1] such that
ImZt is constant and Zt0 = Z for some t0 ∈ [0,1]. Then this lifts to a unique path σt = (Qt ,Zt) in U passing
through σ along which Qt(0,1] = P (0,1] and σt satisfies the support property with respect to Q.
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Proof. Let Z denote the local homeomorphism from Theorem 2.16. By Proposition 5.1(1), Z|U : U → U is
a covering map. By the path lifting property, there is a unique path σt = (Qt ,Zt) in U with σ = σt0 . By
Proposition 5.1(2), σt satisfies the support property with respect to Q for all t. It remains to show that
Qt(0,1] = P (0,1].

Fix a non-zero object E ∈ D. We claim that the set of points in the path σt where E ∈ Qt(0,1] is open and
closed. Suppose E ∈ QT (0,1] for some T ∈ [0,1]. Then all Jordan–Hölder factors Ei of E with respect to σT
are in QT (0,1] and satisfy ImZT (Ei) ≥ 0. The property for an object to be stable is open in StabΛ(D) (see
[BM11, Proposition 3.3]). Moreover, 0 < φQt (Ei) is an open property. Since ImZt is constant, ImZt(Ei) ≥ 0
for all t. Hence, for all sufficiently close σt , we have φQt (Ei) ≤ 1 and E ∈ Qt(0,1].

Now suppose σT is in the closure and not the interior of {σt : E ∈ Qt(0,1]} inside {σt : t ∈ [0,1]}. Recall
that φ+(E) and φ−(E) are continuous. Hence φ−QT (E) = 0, and E has a morphism to a stable object in
QT (0) which is also stable nearby. In particular, {σt : E <Qt(0,1]} is open, which proves the claim. Hence
Qt(0,1] is constant. Since Qt0(0,1] = P (0,1], the result follows. □

To construct stability conditions, we will also need the following definition.

Definition 5.3 (cf. [HRS96, Section I.2]). Let A be an abelian category. A torsion pair in A is a pair of full
additive subcategories (T ,F ) of A such that

(1) for any T ∈ T and F ∈ F , Hom(T ,F) = 0;
(2) for any E ∈ A, there are T ∈ T , F ∈ F , and an exact sequence

0 −→ T −→ E −→ F −→ 0.

Proposition 5.4 (cf. [HRS96, Proposition 2.1]). Suppose (T ,F ) is a torsion pair in an abelian category A. Then

A♯ B
{
E ∈ Db(A) :H0

A(E) ∈ T , H
−1
A (E) ∈ F , HiA(E) = 0 for all i , 0,−1

}
is the heart of a bounded t-structure on Db(A). We call A♯ the tilt of A with respect to (T ,F ).

5.2. The central charge of a geometric stability condition

For the rest of this section, let X be a smooth projective connected surface over C. We are particularly
interested in geometric Bridgeland stability conditions, i.e. σ ∈ Stab(X) such that the skyscraper sheaf Ox is
σ -stable for every point x ∈ X. Denote by StabGeo(X) the set of all geometric stability conditions.

Theorem 5.5 (cf. [Bri08, Proposition 10.3]). Let X be a surface, and let σ = (P ,Z) ∈ StabGeo(X). Then σ is
determined by its central charge up to shifting the slicing by [2n] for any n ∈ Z.
Moreover, if σ is normalised using the action of C such that Z(Ox) = −1 and φ(Ox) = 1 for all x ∈ X, then
(1) the central charge can be uniquely written in the form

Z([E]) = (α − iβ)H2ch0([E]) + (B+ iH) . ch1([E])− ch2([E]),

where α,β ∈ R, (H,B) ∈ AmpR(X)×NSR(X);
(2) the heart, P (0,1], is the tilt of Coh(X) at the torsion pair (T ,F ), where

T B
{
E ∈ Coh(X) : any H-semistable Harder–Narasimhan factor F of

the torsion-free part of E satisfies ImZ([F]) > 0

}
,

F B
{
E ∈ Coh(X) : E is torsion-free, and any H-semistable Harder–

Narasimhan factor F of E satisfies ImZ([F]) ≤ 0

}
.

Notation 5.6. We will use ZH,B,α,β = Z to denote central charges of the above form. Since ImZH,B,α,β
only depends on H and β, we will denote the torsion pair by (TH,β ,FH,β) and write CohH,β(X) for the
corresponding tilted heart. Then σH,B,α,β B (ZH,B,α,β ,Coh

H,β(X)).
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The proof is similar to the case of K3 surfaces proved in [Bri08, Section 10]. We first need the following
result which immediately generalises to any surface.

Lemma 5.7 (cf. [Bri08, Lemma 10.1]). Suppose σ = (P ,Z) ∈ Stab(X) is a stability condition on a surface X such
that for each point x ∈ X, the sheaf Ox is σ -stable of phase 1. Let E be an object of Db(X). Then

(1) if E ∈ P (0,1], then H i(E) = 0 unless i ∈ {−1,0}, and moreover H−1(E) is torsion-free;
(2) if E ∈ P (1) is stable, then either E = Ox for some x ∈ X, or E[−1] is a locally free sheaf;
(3) if E ∈ Coh(X) is a sheaf, then E ∈ P (−1,1]; if E is a torsion sheaf, then E ∈ P (0,1];
(4) the pair of subcategories

T = Coh(X)∩P (0,1] and F = Coh(X)∩P (−1,0]

defines a torsion pair on Coh(X), and P (0,1] is the corresponding tilt.

Proof Theorem 5.5.

Step 1. Since σ is numerical, the central charge can be written as follows:

Z([E]) = a ch0([E]) +B . ch1([E]) + c ch2([E]) + i(d ch0([E]) +H . ch1([E]) + e ch2([E])),

where a,c,d,e ∈ R and B,H ∈NSR(X).
Since σ is geometric, Ox is σ -stable and of the same phase for every point x ∈ X by Proposition 3.2.

As discussed in Remark 2.18, C acts on Stab(X). In particular, there is a unique element g ∈ C such that
g∗σ = (P ′ ,Z ′) satisfies Z ′([Ox]) = −1 and Ox ∈ P ′(1) for all x ∈ X. Now we may assume that Z([Ox]) = −1
and Ox ∈ P (1) for all x ∈ X. Hence −1 = c and e = 0. Let C ⊂ X be a curve. By Lemma 5.7(3), we have
OC ∈ P (0,1]. Since ch0(OC) = 0 and ch1(OC) = C,

ImZ([OC]) =H .C ≥ 0.

This holds for any curve C ⊂ X, so H ∈ NSR(X) is nef. By [BM02, Proposition 9.4], StabGeo(X) is open.
Moreover, by Theorem 2.16, a small deformation from σ to σ ′ in StabGeo(X) corresponds to a small
deformation of the central charges Z to Z ′ , and in turn a small deformation of H to H ′ inside NSR(X). In
particular, H ′ . C ≥ 0 for any curve C ⊂ X. Therefore, H lies in the interior of the nef cone; hence H is
ample.

Now let αB a
H2 and β B −d

H2 . Then the central charge is of the form

Z([E]) = (α − iβ)H2ch0([E]) + (B+ iH) . ch1([E])− ch2([E]).

Step 2. Consider the torsion pair (T ,F ) of Lemma 5.7(4), so P (0,1] is the tilt of Coh(X) at (T ,F ). By
Lemma 5.7(3), all torsion sheaves lie in T . To complete the proof, we need the following claim:

(∗) E ∈ Coh(X) is H-stable and torsion-free =⇒

E ∈ T if ImZ([E]) > 0,

E ∈ F if ImZ([E]) ≤ 0.

This is Step 2 of the proof of [Bri08, Lemma 10.3]. Bridgeland first shows that E must lie in T or F .
We explain why it then follows that ImZ([E]) = 0 implies E ∈ F . Assume E is non-zero and E ∈ T . Since
Z([E]) ∈ R, it follows that E ∈ P (1). For any x ∈ Supp(E), E has a non-zero map f : E→Ox. Let E1 be its
kernel in Coh(X). Since Ox is stable, f is a surjection in P (1). Thus E1 also lies in P (1) and hence in T .
Moreover, Z([E1]) = Z([E])−Z([Ox]) = Z([E])−1. Repeating this by replacing E with E1 and so on creates
a chain E ⊋ E1 ⊋ E2 ⊋ · · · of strict subobjects in P (1) such that Z([En]) = Z([E])− n. If this process does
not terminate, then Z([Ek]) ∈ R>0 for some k ∈N, contradicting the fact that En ∈ P (1). Otherwise, Ei � Ox
for some i, contradicting the fact that E is torsion-free. □
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5.3. The set of all geometric stability conditions on surfaces

In the previous section, we saw that a geometric stability condition on a surface with Z(Ox) = −1 and
φ(Ox) = 1 is determined by its central charge. In particular, it depends on parameters (H,B,α,β) in
AmpR(X)×NSR(X)×R2. To characterise geometric stability conditions on surfaces, we will find necessary
and sufficient conditions for when these parameters define a geometric stability condition. In Definition 4.5,
we introduced the Le Potier function twisted by B. We restate the version for surfaces below.

Definition 5.8. Let X be a surface. Let (H,B) ∈ AmpR(X) ×NSR(X). We define the Le Potier function
twisted by B, ΦX,H,B : R→ R∪ {−∞}, by

ΦX,H,B(x)B limsup
µ→x

{
ch2(F)−B . ch1(F)

H2ch0(F)
:
F ∈ Coh(X) is H-semistable with
µH (F) = µ

}
.

Remark 5.9. By [HL10, Theorem 5.2.5], for every rational number µ ∈Q, there exists an H-stable sheaf F
with µH (F) = µ.

The goal of this section is to prove the following result.

Theorem 5.10. Let X be a surface. There is a homeomorphism of topological spaces

StabGeo(X) � C×
{
(H,B,α,β) ∈ AmpR(X)×NSR(X)×R2 : α > ΦX,H,B(β)

}
.

Remark 5.11.

(1) Theorem 6.10 of [MS17] describes a subset of StabGeo(X) parametrised by classes (H,B) in the

product AmpR(X)×NSR(X). This corresponds to where α > 1
2

[(
β − H.B

H2

)2
− B2

H2

]
in Theorem 5.10

(see Theorem 5.21 for details). We will call this the BG range.
(2) The subset of AmpR(X)×NSR(X)×R2 on the right-hand side of the homeomorphism can be viewed

as a complex submanifold of NSC(X)×C via (H,B,α,β) 7→ (H + iB,α − iβ). With this identification,
the homeomorphism above is in fact one of complex manifolds.

Notation 5.12. To ease notation, we make the following definitions:

U B
{
(H,B,α,β) ∈ AmpR(X)×NSR(X)×R2 : α > ΦX,H,B(β)

}
,

StabGeo
N (X)B

{
σ = (P ,Z) ∈ StabGeo(X) : Z(Ox) = −1,Ox ∈ P (1) ∀x ∈ X

}
.

Idea of the proof of Theorem 5.10. By Theorem 5.5, for every σ ∈ StabGeo(X), there exists a unique g
in C such that g∗σ ∈ StabGeo

N (X). To prove Theorem 5.10, it is enough to show that there is a homeomorphism
StabGeo

N (X) � U . We do this in two steps:

Step 1. Construct an injective, local homeomorphism Π : StabGeo
N (X)→U . Theorem 5.5 shows that, for every

σ ∈ StabGeo
N (X), there are unique (H,B,α,β) ∈ AmpR(X)×NSR(X)×R2 such that σ = σH,B,α,β . This gives

an injective map

Π : StabGeo
N (X) −→ AmpR(X)×NSR(X)×R2

σ = σH,B,α,β 7−→ (H,B,α,β).

We will show that Π is a local homeomorphism (Theorem 5.13) and that the image is contained in U
(Theorem 5.15).
Step 2. Construct a pointwise inverse Σ : U → StabGeo

N (X). We will first show this is possible for (H,B,α,β)
in the BG range (Theorem 5.21). In Proposition 5.35, we extend this to any α > ΦX,H,B(β) by applying
Corollary 5.2 as follows:
• Fix (H,B) ∈ AmpR(X)×NSR(X) and α0 > ΦX,H,B(β0).

• Fix α1 >
1
2

[(
β0 − H.BH2

)2
− B2

H2

]
.
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If only α varies, then ImZH,B,α,β0 is constant. We construct a quadratic form (Proposition 5.28) and show
that it gives the support property for σH,B,α1,β0 (Lemma 5.34) and is negative definite on KerZH,B,α,β0 for all
α > ΦX,H,B(β0) (Lemma 5.29).

5.3.1. STEP 1: Construction of the map StabGeo
N (X)→U.

Proposition 5.13. Let X be a surface. Then there is an injective local homeomorphism

Π : StabGeo
N (X) −→ AmpR(X)×NSR(X)×R2

σ = σH,B,α,β 7−→ (H,B,α,β).

Proof. Let Z : Stab(X)→HomZ(Knum(X),C) denote the local homeomorphism from Theorem 2.16. Also
define N B {(P ,Z) ∈ Stab(X) : Z(Ox) = −1}, and consider the following diagram:

Stab(X) N StabGeo
N (X)

Hom(Knum(X),C) {Z : Z(Ox) = −1} Z(N ) Z(StabGeo
N (X)).

⊃

Z

⊃

Z|N Z|StabGeo
N (X))

⊃ ⊃ ⊃

Since Z is a local homeomorphism and restriction is injective, Z|N and Z|StabGeo
N (X) are also local homeo-

morphisms. Moreover, by the same argument as in Step 1 of the proof of Theorem 5.5,

{Z : Z(Ox) = −1}
�−→ (NSR(X))

2 ×R2

Z = ZH,B,α,β 7−→ (H,B,α,β).

Define Π to be the composition of Z|StabGeo
N (X) with this isomorphism. Now Theorem 5.5 implies that Π is

an injective local homeomorphism and

imΠ ⊆ AmpR(X)×NSR(X)×R2. □

Before we can prove that Π(StabGeo
N (X)) ⊆ U , we need the following result.

Lemma 5.14. Suppose σ = σH,B,α,β ∈ StabGeo
N (X) is geometric. There there is an open neighbourhood W ⊂ R2 of

(α,β) such that for every (α′ ,β′) ∈W , we have σH,B,α′ ,β′ ∈ StabGeo
N (X).

Proof. By [Bri08, Proposition 9.4], there is an open neighbourhood V of σ in Stab(X) where all skyscraper
sheaves are stable. Let Z : Stab(X)→ HomZ(Knum(X),C) denote the local homeomorphism from Theo-
rem 2.16. By Theorem 5.13, Π(V ) is open in AmpR(X)×NSR(X)×R2. Therefore, W BΠ(V )|R2 is open in
R2. □

Proposition 5.15 (cf. [FLZ22, Proposition 3.6]). Let σ = σH,B,α,β ∈ StabGeo
N (X). Then α > ΦX,H,B(β),

i.e. Π(StabGeo
N (X)) ⊆ U , where Π is the injective local homeomorphism from Proposition 5.13.

Proof. Suppose towards a contradiction that α ≤ ΦX,H,B(β). Let W ⊂ R2 be the open neighbourhood of
(α,β) from Lemma 5.14. Recall that

ΦX,H,B(β)B limsup
µ→β

{
νH,B(F) : F ∈ Coh(X) is H-semistable with µH (F) = µ

}
.

Therefore, there exist H-semistable sheaves with slopes arbitrarily close to β and νH,B arbitrarily close to
ΦX,H,B(β). In particular, there exist a pair (α0,β0) ∈W and a torsion-free H-semistable sheaf F with

(5.1) β0 = µH (F) =
H . ch1(F)
H2ch0(F)

and α0 ≤ νH,B(F) =
ch2(F)−B . ch1(F)

H2ch0(F)
.

Since (α0,β0) ∈W , we have σH,B,α0,β0 ∈ Stab
Geo
N (X). Moreover, ch0(F) > 0, so

Im(ZH,B,α0,β0([F])) =H . ch1([F])− β0H2ch0([F]) = 0.
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By the definition of the torsion pair (TH,β0 ,FH,β0) in Theorem 5.5, it follows that F ∈ FH,β0 . This implies
that ZH,B,α0,β0([F]) ∈ R>0. However, by (5.1),

Re(ZH,B,α0,β0([F])) = α0H
2ch0([F]) +B . ch1([F])− ch2([F]) ≤ 0.

Hence ZH,B,α0,β0([F]) ∈ R≤0, so we have a contradiction. □

5.3.2. STEP 2: Construction of the pointwise inverse U→ StabGeo
N (X). We first recall the construc-

tion of stability conditions in [MS17, Theorem 6.10].

Definition 5.16. Let X be a surface, and fix classes (H,B) ∈ AmpR(X) × NSR(X). Define the pair
σH,B B (CohH,B(X),ZH,B), where

ZH,B([E]) =
(
−chB2 ([E]) +

H2

2
. chB0 ([E])

)
+ iH . chB1 ([E])

=
[
1
2

(
1− B

2

H2

)
− i H . B

H2

]
H2ch0([E]) + (B+ iH) . ch1([E])− ch2([E]),

TH,B =
{
E ∈ Coh(X) :

any H-semistable Harder–Narasimhan factor F of
the torsion-free part of E satisfies ImZH,B([F]) > 0

}
,

FH,B =
{
E ∈ Coh(X) :

E is torsion-free, and any H-semistable Harder–
Narasimhan factor F of E satisfies ImZH,B([F]) ≤ 0

}
,

and CohH,B(X) is the tilt of Coh(X) at the torsion pair (TH,B,FH,B).

Lemma 5.17 (cf. [MS17, Exercise 6.11]). Let X be a surface. Then there exists a continuous function
C(−) : AmpR(X)→ R≥0 such that, for every D ∈ EffR(X),

CH (H .D)2 +D2 ≥ 0.

Proof. The inequality CH (H .D)2 +D2 ≥ 0 is invariant under rescaling. If we consider EffR(X) ⊂NSR(X)
as normed vector spaces, it is therefore enough to look at the subspace of unit vectors U ⊂ EffR(X).

Since D ∈ U is effective and D , 0, we have H . D > 0. Hence there exists a C ∈ R≥0 such that
C(H .D)2 +D2 ≥ 0. Define

CH,D B inf
{
C ∈ R≥0 : CH (H .D)2 +D2 ≥ 0

}
.

Since AmpR(X) is open, H
′ .D > 0 for a small deformation H ′ of H . It follows that U is strictly contained

in the subspace {E ∈NSR(X) : E .H > 0}. Moreover, CH,D is a continuous function on U , and U is compact
as it is a closed subset of the unit sphere in NSR(X). Therefore, CH,D has a maximum, which we call CH .
By construction, this is a continuous function on AmpR(X). □

Definition 5.18. Let X be a surface. Let (H,B) ∈ AmpR(X)×NSR(X). We define the following quadratic
forms on Knum(X)⊗R:

QBG B ch21 − 2ch2ch0,

∆
CH
H,B BQBG +CH (H . chB1 )

2,

where CH ∈ R≥0 is the constant from Lemma 5.17.

Theorem 5.19 (cf. [MS17, Theorem 6.10]). Let X be a surface. Let (H,B) ∈ AmpR(X) ×NSR(X). Then
σH,B ∈ StabGeo

N (X). In particular, σH,B satisfies the support property with respect to ∆
CH ′
H ′ ,B′ , where the pair

(H ′ ,B′) ∈ AmpQ(X)×NSQ(X) consists of nearby rational classes.
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Remark 5.20. Theorem 5.19 was first proved for K3 surfaces in [Bri08], along with the fact that this gives
rise to a continuous family. In [MS17, Theorem 6.10], the authors first prove the result holds for rational
classes (H,B) and sketch how to extend this to arbitrary classes. In particular, σH,B can be obtained as
a deformation of σH ′ ,B′ for nearby rational classes (H ′ ,B′), and σH,B satisfies the same support property,

∆
CH ′
H ′ ,B′ . This uses the fact that ∆CHH,B varies continuously with (H,B), together with similar arguments to

Proposition 5.1.

Proposition 5.21. Let X be a surface. Let (H,B) ∈ AmpR(X) × NSR(X), and fix α0,β0 ∈ R such that

α0 > ΦX,H,B(β0). Suppose α >
1
2

[(
β0 − H.BH2

)2
− B2

H2

]
. Define bB β0 − H.BH2 ∈ R and aB

√
2α − b2 + B2

H2 ∈ R>0.

Then σH,B,α,β0 and σaH,B+bH are the same up to the action of G̃L
+
2 (R). Moreover, this is a continuous family in

StabGeo
N (X) for α > 1

2

[(
β0 − H.BH2

)2
− B2

H2

]
.

Proof. We abuse notation and consider the central charges as homomorphisms Knum(X)⊗R→ C. We first
claim that KerZH,B,α,β0 = KerZaH,B+bH as sub-vector spaces of Knum(X)⊗R. Fix u ∈ Knum(X)⊗R. Since
a > 0, we have ImZaH,B+bH (u) = 0 if and only if

0 = aH . Bch0(u) + abH
2ch0(u)− aH . ch1(u)

= a
(
H .Bch0(u) +

(
β0 −

H .B

H2

)
H2ch0(u)−H . ch1(u)

)
= a

(
β0H

2ch0(u)−H . ch1(u)
)

= −a ImZH,B,α,β0(u).

Therefore, ImZaH,B+bH (u) = 0 if and only if ImZH,B,α,β0(u) = 0. Now assume ImZaH,B+bH (u) = 0, so
H . ch1(u) = β0H2ch0(u). Then ReZaH,B+bH (u) = 0 if and only if

0 =
1
2

(
(aH)2 − (B+ bH)2

)
ch0 +B . ch1 + bH . ch1(u)− ch2(u)

=
1
2

(
a2 − (B+ bH)2

H2 +2bβ0

)
H2ch0(u) +B . ch1(u)− ch2(u).

Moreover,

1
2

(
a2 − (B+ bH)2

H2 +2bβ0

)
=
1
2

(
a2 − B

2

H2 +2b
(
β0 −

B .H

H2

)
− b2

)
=
1
2

(
2α − b2 + B2

H2 −
B2

H2 + b2
)

= α.

Therefore, ZaH,B+bH and ZH,B,α,β0 are the same up to the action of GL+
2 (R). Moreover, by Theorem 5.19,

σaH,B+bH ∈ StabGeo
N (X). Together with Theorem 5.5, this implies that σH,B,α,β0 = g · σaH,B+bH ∈ Stab(X)

for some g ∈ G̃L
+
2 (R). Then, by definition, σH,B,α,β0 ∈ Stab

Geo
N (X). It remains to show this gives rise to a

continuous family. By Propositions 5.13 and 5.15,

Π : StabGeo
N (X) −→ U , σH,B,α,β 7−→ (H,B,α,β)

is an injective local homeomorphism. Let V B
{
(H,B,α,β) : α > 1

2

[(
β − H.B

H2

)2
− B2

H2

]}
. The restriction

Π|Π−1(V ) is still an injective local homeomorphism. Moreover, by the arguments above, Π|Π−1(V ) is surjective;
hence it is continuous. □

Remark 5.22. Let Sh+2 (R) ⊂GL+
2 (R) denote the subgroup of shearings, i.e. transformations that preserve the

real line. It is simply connected; hence it embeds as a subgroup into G̃L
+
2 (R) and acts on Stab(X). In the

above proof, σH,B,α,β0 and σaH,B+bH have the same hearts, so they are the same up to the action of Sh+2 (R).
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The next result follows from the proof of Theorem 5.19. We explain this part of the argument explicitly as
it will be essential for extending the support property in Lemma 5.34.

Lemma 5.23. Let X be a surface. Let (H,B) ∈ AmpR(X)×NSR(X). There exist rational classes (H ′ ,B′) in
AmpQ(X)×NSQ(X) such that, for a ≥ 1, the quadratic form ∆

CH ′
H ′ ,B′ is negative definite on KerZaH,B ⊗R. In

particular, ∆
C′H
H ′ ,B′ gives the support property for σaH,B.

Proof. By Theorem 5.19, we have σaH,B ∈ StabGeo
N (X) for a ≥ 1, and near (H,B), there exist rational classes

(H ′ ,B′) ∈ AmpQ(X) ×NSQ(X) such that ∆CH ′H ′ ,B′ gives the support property for σH,B ∈ StabGeo
N (X). In

particular, ∆CH ′H ′ ,B′ is negative definite on K1 B KerZH,B ⊗R. By Proposition 5.1, it is enough to show ∆
CH ′
H ′ ,B′

is negative definite on Ka B KerZaH,B ⊗R for a ≥ 1.
Recall that u = (chB0 (u),ch

B
1 (u),ch

B
2 (u)) ∈ Ka if and only if

a2
H2

2
chB0 (u) = chB2 (u), H . chB1 (u) = 0.

Let Ψa : K1→ Ka be the isomorphism of sub-vector spaces of Knum(X)⊗R given by

Ψa : v =
(
chB0 (v),ch

B
1 (v),ch

B
2 (v)

)
7−→

(
chB0 (v),ch

B
1 (v),ch

B
2 (v) + (a2 − 1)H

2

2
chB0 (v)

)
.

Let u ∈ Ka. Then u = Ψa(v) for some v ∈ K1. Clearly ∆
CH ′
H ′ ,B′ (0) = 0, so we may assume u , 0.

Hence v , 0, and it is enough to show that ∆CH ′H ′ ,B′ (Ψa(v)) < 0. Recall that chB
′

1 = ch1 − B′ . ch0; hence
chB

′

1 (Ψa(v)) = chB
′

1 (v). Therefore,

∆
CH ′
H ′ ,B′ (Ψa(v)) =

(
chB1 (v)

)2
− 2chB0 (v)ch

B
2 (v)− 2(a

2 − 1)H
2

2

(
chB0 (v)

)2
+CH ′

(
H ′ . chB

′

1 (v)
)2

= ∆
CH ′
H ′ ,B′ (v)− 2(a

2 − 1)H
2

2

(
chB0 (v)

)2
≤ ∆

CH ′
H ′ ,B′ (v).

Since ∆
CH ′
H ′ ,B′ is negative definite on K1, it follows that ∆

CH ′
H ′ ,B′ (Ψa(v)) < 0. □

Definition 5.24. Let X be a surface. Let (H,B) ∈ AmpR(X)×NSR(X). Let α > ΦX,H,B(β), and let δ > 0.
We define the following quadratic form on Knum(X)⊗R:

QH,B,α,β,δ B δ−1(H . ch1 − β0H2ch0)
2 − (H2ch0)

(
ch2 −B . ch1 − (α0 − δ)H2ch0

)
.

Lemma 5.25. Let X be a surface. Let (H,B) ∈ AmpR(X)×NSR(X). Fix α0,β0 ∈ R such that α0 > ΦX,H,B(β0).
Then there exists a δ > 0 such that, for every H-semistable torsion-free sheaf F, we have QH,B,α0,β0,δ([F]) ≥ 0.

Proof. Since ΦX,H,B is upper semi-continuous and bounded above by a quadratic polynomial in x, the same
argument as in [FLZ22, Remark 3.5] applies. In particular, there exists a sufficiently small δ > 0 such that

(x − β0)2

δ
+α0 − δ ≥ ΦX,H,B(x).

Suppose F is an H-semistable torsion-free sheaf. Let x = µH (F) =
H.ch1(F)
H2ch0(F)

; then

δ−1
(
H . ch1(F)− β0H2ch0(F)

)2
+ (α0 − δ)

(
H2ch0(F)

)2
≥

(
H2ch0(F)

)2
ΦX,H,B

(
H . ch1(F)
H2ch0(F)

)
.

From Lemma 4.7 it follows that

δ−1
(
H . ch1(F)− β0H2ch0(F)

)2
+ (α0 − δ)

(
H2ch0(F)

)2
≥

(
H2ch0(F)

)2 ch2(F)−B . ch1(F)
H2ch0(F)

.
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In particular,

δ−1
(
H . ch1(F)− β0H2ch0(F)

)2
−
(
H2ch0(F)

)(
ch2(F)−B . ch1(F)− (α0 − δ)H2ch0(F)

)
≥ 0. □

Remark 5.26. Let u ∈ Knum(X)⊗R. We now consider ZH,B,α0,β0 again as a homomorphism Knum(X)⊗R→ C.
Recall that u ∈ Kα0

B KerZH,B,α0,β0 ⊆ Knum(X)⊗R if and only if

α0H
2ch0(u) +B . ch1(u)− ch2(u) = 0 and H . ch1(u)− β0H2ch0(u) = 0.

Then

QH,B,α0,β0,δ(u) = −δ
(
H2ch0(u)

)2
≤ 0

for all u ∈ Kα0
. In particular, QH,B,α0,β0,δ is negative semi-definite on Kα0

. Hence QH,B,α0,β0,δ does not fulfil
the support property.

To construct a quadratic form which is negative definite on Kα0
= KerZH,B,α0,β0 , we will combine

QH,B,α0,β0,δ with QBG, the quadratic form coming from the Bogomolov–Gieseker inequality introduced in
Definition 5.18.

Lemma 5.27 (cf. [Bog79, Section 10], [HL10, Theorem 3.4.1]). Let X be a surface. Let H ∈ AmpR(X). Then
QBG([F]) ≥ 0 for every H-semistable torsion-free sheaf F.

Proposition 5.28. Let X be a surface. Let (H,B) ∈ AmpR(X) ×NSR(X), and fix α0,β0 ∈ R such that
α0 > ΦX,H,B(β0). Choose δ > 0 as in Lemma 5.25. Let Qδ,εH,B,α0,β0

BQH,B,α0,β0,δ + εQBG. Then there exists an
ε > 0 such that

(1) Qδ,εH,B,α0,β0
([F]) ≥ 0 for every H-semistable torsion-free sheaf F,

(2) Qδ,εH,B,α0,β0
([T ]) ≥ 0 for every torsion sheaf T, and

(3) Qδ,εH,B,α0,β0
is negative definite on Kα0

B KerZH,B,α0,β0 ⊆ Knum(X)⊗R.

Proof. (1) follows immediately for any ε > 0 from Lemmas 5.25 and 5.27. For (2), let CH be the constant from
Lemma 5.17. Choose ε1 > 0 such that ε1 <

δ−1
CH

. Let T be a torsion sheaf; then

Qδ,ε1H,B,α0,β0
([T ]) = δ−1 (H . ch1([T ]))

2 + ε1ch1([T ])
2

= ε1

(
δ−1

ε1
(H . ch1([T ]))

2 + ch1([T ])
2
)

> ε1
(
CH (H . ch1([T ]))

2 + ch1([T ])
2
)

≥ 0.

For (3), fix a norm on Knum(X), and let U denote the set of unit vectors in Kα0
with respect to this norm.

It will be enough to show there exists an ε2 > 0 such that Qδ,ε2H,B,α0,β0
|U < 0.

Let AB {u ∈U |QH,B,α0,β0,δ = 0}. For any a ∈ A, we have ch0(a) = 0. The condition that ZH,B,α0,β0(a) = 0
becomes

B . ch1(a) = ch2(a) and H . ch1(a) = 0.

The divisor H is ample, so ch1(a)2 ≤ 0 by the Hodge index theorem. If ch21(a) = 0, then ch1(a) = 0, and
hence 0 = B . ch1(a) = ch2(a). So a = 0, which contradicts the fact that a ∈U . Therefore,

QBG
∣∣∣
A
([E]) = ch1([E])

2 < 0.

We now claim that there exists a sufficiently small ε2 > 0 such that Qδ,ε2H,B,α0,β0
< 0 on U . Note that

Qδ,ε2H,B,α0,β0

∣∣∣∣
A
= ε2QBG

∣∣∣
A
< 0, so we only need to check the claim on U \A. Now suppose the converse, so for
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every ε > 0, there exists a u ∈U \A such that

QBG(u) ≥ −
1
ε
QH,B,α0,β0,δ(u).

We have QH,B,α0,β0,δ(u) < 0 since QH,B,α0,β0,δ is negative semi-definite on U and u ∈U \A. Therefore,

P (u)B
QBG(u)

−QH,B,α0,β0,δ(u)
≥ 1
ε
.

Thus P is not bounded above on U \A. Moreover, A is closed and QBG
∣∣∣
A
< 0 on A. Hence QBG is negative

definite on some open neighbourhood V of A, so P
∣∣∣
V
< 0. Finally, U \V is compact, so P must be bounded

above on U \V . In particular, P is bounded above on U \A, so we have a contradiction. It follows that

there exists an ε2 > 0 such that Qδ,ε2H,B,α0,β0
is negative definite on Kα0

. Finally, let ε =min{ε1, ε2}. □

Lemma 5.29. Let X be a surface. Let (H,B) ∈ AmpR(X)×NSR(X). Fix α0,β0 ∈ R such that α0 > ΦX,H,B(β0).
Choose δ,ε > 0 as in Proposition 5.28. Then Qδ,εH,B,α0,β0

is negative definite on Kα B KerZH,B,α,β ⊗R for all
α ≥ α0.

Proof. Recall that u = (ch0(u),ch1(u),ch2(u)) ∈ Kα = KerZH,B,α,β0 ⊗R if and only if

αH2ch0(u) +B . ch1(u)− ch2(u) = 0, H . ch1(u)− β0H2ch0(u) = 0.

Let Ψα : Kα0
→ Kα be the isomorphism of sub-vector spaces of Knum(X)⊗R given by

Ψα : v = (ch0(v),ch1(v),ch2(v)) 7−→
(
ch0(v),ch1(v),ch2(v) + (α −α0)H2ch0(v)

)
.

Let u ∈ Kα ; then u = Ψα(v) for some v ∈ Kα0
. Clearly Qδ,εH,B,α0,β0

(0) = 0, so we may assume u , 0. Hence

v , 0, and it is enough to show that Qδ,εH,B,α0,β0
(Ψα(v)) < 0. Moreover,

Qδ,εH,B,α0,β0
(Ψα(v)) =QH,B,α0,β0,δ(Ψα(v)) + εQBG(Ψα(v))

=QH,B,α0,β0,δ(v)− (α −α0)
(
H2ch0(v)

)2
+ εQBG(v)− 2ε(α −α0)H2ch0(v)

2

=Qδ,εH,B,α0,β0
(v)− (α −α0)H2ch0(v)

2
(
H2 +2ε

)
≤Qδ,εH,B,α0,β0

(v).

Finally, by Proposition 5.28(3), Qδ,εH,B,α0,β0
(v) < 0. □

Lemma 5.30 (cf. [MS17, Lemma 6.18]). Let (H,B) ∈ AmpR(X) ×NSR(X). If E ∈ CohH,B(X) is σaH,B-
semistable for all a≫ 0, then it satisfies one of the following conditions:

(1) H−1(E) = 0 and H0(E) is an H-semistable torsion-free sheaf.
(2) H−1(E) = 0 and H0(E) is a torsion sheaf.
(3) H−1(E) is a H-semistable torsion-free sheaf, and H0(E) is either 0 or a torsion sheaf supported in

dimension 0.

Proposition 5.31. Let (H,B) ∈ AmpR(X) ×NSR(X). Fix α0,β0 ∈ R such that α0 > ΦX,H,B(β0). Choose
δ,ε > 0 as in Proposition 5.28. If E ∈ CohH,B(X) is σaH,B-semistable for all a≫ 0, then Qδ,εH,B,α0,β0

([E]) ≥ 0.

Proof. Let Q B Qδ,εH,B,α0,β0
. By our hypotheses, E satisfies one of the three conditions in Lemma 5.30.

If E satisfies (1), then Q([E]) = Q([H0(E)]), where H0(E) is a H-semistable torsion-free sheaf, and the
result follows from Proposition 5.28(1). Similarly, if E satisfies (2), then by Proposition 5.28(2), Q([E]) =
Q([H0(E)]) ≥ 0. Now assume E satisfies (3). Then

ch([E]) = −ch
(
H−1(E)

)
+ length

(
H0(E)

)
.
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Hence
QBG([E]) =QBG

(
[H−1(E)]

)
− 2

(
−ch0

(
H−1(E)

))
length

(
H0(E)

)
≥QBG

(
H−1(E)

)
.

The same argument applies to QH,B,α0,β0,δ. Hence Q([E]) ≥ Q([H−1(E)]). The result follows by Proposi-
tion 5.28(1). □

Lemma 5.32. Let σ = (Z,P ) ∈ Stab(X) with support property given by a quadratic form Q on Knum(X)⊗R.
Suppose E ∈Db(X) is strictly σ -semistable and satisfies Q(E) , 0. Let A1, . . . ,Am be the Jordan–Hölder factors
of E. Then Q(Ai) < Q(E) for all 1 ≤ i ≤m.

Proof. It is enough to prove that Q(A1) < Q(E). Since E is σ -semistable, E ∈ P (φ) for some φ ∈ R. By
definition, A1 ∈ P (φ), and hence also E/A1 ∈ P (φ). Therefore, by the support property, Q(A1) ≥ 0 and
Q(E/A1) ≥ 0. Moreover, since A1 and E/A1 have the same phase, there exists a λ ∈ R>0 such that
Z(A1)−λZ(E/A1) = 0. Hence [A1]−λ[E/A1] ∈ KerZ ⊗R.

Let Q also denote the associated symmetric bilinear form. Now assume [A1]−λ[E/A1] , 0 in Knum(X)⊗R.
By the support property, Q is negative definite on Knum(X)⊗R; hence

0 > Q([A1]−λ[E/A1]) =Q(A1)− 2λQ(A1,E/A1) +λ
2Q(E/A1).

Moreover, λ > 0 and Q(A1),Q(E/A1) ≥ 0. It follows that Q(A1,E/A1) > 0. Therefore,

Q(E) =Q(A1) +Q(E/A1) + 2Q(A1,E/A1) > Q(A1).

Otherwise, if [A1] = λ[E/A1], then µB 1/λ > 0 and

Q(E) =Q(A1) +µ(µ+2)Q(A1).

If Q(A1) = 0, then Q(E) = 0, so we have a contradiction. Hence Q(A1) > 0, so Q(E) > Q(A1). □

Lemma 5.33 (cf. [Bay19, Lemma 6.1]). Let σ = (Z,P ) ∈ Stab(X), and let Q be a quadratic form which is
negative definite on KerZ⊗R. Suppose E ∈Db(X) is strictly σ -semistable, and let A1, . . . ,Am be the Jordan–Hölder
factors of E. If Q(E) < 0, then for some 1 ≤ j ≤m, we have Q(Aj ) < 0.

Proof. Assume towards a contradiction that Q(A1),Q(E/A1) ≥ 0. Let Q also denote the associated symmetric
bilinear form. By the same argument as in the proof of Lemma 5.32, it follows that Q(A,E/A1) > 0. Therefore,

Q(E) =Q(A1) +Q(E/A1) + 2Q(A1,E/A1) > 0,

so we have a contradiction. Hence either Q(A1) < 0 and we are done, or Q(E/A1) < 0. If Q(E/A1) < 0, we
can repeat the argument with E/A1 and A2 instead of E and A1. There are finitely many Jordan–Hölder
factors, so this process terminates. Therefore, Q(Aj ) < 0 for some 1 ≤ j ≤ n. □

Lemma 5.34. Let X be a surface. Fix classes (H,B) ∈ AmpR(X) ×NSR(X), and take α0,β0 ∈ R such that

α0 > ΦX,H,B(β0). Choose δ,ε > 0 as in Proposition 5.28. Fix an α1 ∈ R with α1 >max
{
α0,

1
2

[(
β0−H.BH2

)2
− B2

H2

]}
.

Assume E ∈ Db(X) is σH,B,α1,β0-semistable. Then it follows that Q
δ,ε
H,B,α0,β0

([E]) ≥ 0. In particular, σH,B,α1,β0

satisfies the support property with respect to Qδ,εH,B,α0,β0
.

Proof. To ease notation, let QBQδ,εH,B,α0,β0
. From Theorem 5.21, we know that for every α ≥ α1, the stability

conditions σH,B,α,β0 and σaαH,B+bH have the same heart when b = β0 − H.BH2 and aα =
√
2α − b2 + B2

H2 .

Moreover, by Lemma 5.23, there exist (H ′ ,B′) ∈ AmpQ(X)×NSQ(X) such that ∆CH ′H ′ ,B′ gives the support

property for σaH,B+bH if a ≥ aα1
. We may assume ∆

CH ′
H ′ ,B′ ∈ Z since it is true after rescaling by some integer.

Furthermore, since E is σaα1H,B+bH -semistable, ∆CH ′H ′ ,B′ ([E]) ∈ Z≥0.
If E is σH,B,α,β0-stable for α ≫ 0, then by the definition of aα , the vector bundle E is σaH,B-stable for

a≫ 0. It then follows by Theorem 5.31 that Q([E]) ≥ 0. Otherwise, there exists some α2 ≥ α1 such that E is
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strictly σH,B,α2,β0-semistable. Let A1, . . . ,Am denote the Jordan–Hölder factors of E. Then by Lemma 5.32,

we have ∆
CH ′
H ′ ,B′ ([Ai]) < ∆

CH ′
H ′ ,B′ ([E]) for all 1 ≤ i ≤m. Each Ai is σH,B,α2,β0-stable, so ∆

CH ′
H ′ ,B′ ([Ai]) ≥ 0 for all

1 ≤ i ≤m.
Assume towards a contradiction that Q([E]) < 0. From Lemma 5.33, we have Q([Aj ]) < 0 for some

1 ≤ j ≤m. Let E2 B Aj . We can now repeat this process for E2 in place of E1 B E, and so on. This gives a
sequence E1,E2,E3, . . . ,Ek , . . . and α1 ≤ α2 < α3 < · · · < αk · · · such that Ek ∈Db(X) is σH,B,αk ,β0-semistable,

Q(Ek) < 0, and 0 ≤ ∆
CH ′
H ′ ,B′ ([Ek+1]) < ∆

CH ′
H ′ ,B′ ([Ek]) for all k ≥ 1. But ∆CH ′H ′ ,B′ ([Ek]) ∈ Z≥0 for all k, so no such

sequence can exist. Hence we have a contradiction.
Finally, by Lemma 5.29, the quadratic form Qδ,εH,B,α0,β0

is negative definite on KerZH,B,α1,β0 ⊗R. □

We are finally ready to apply Corollary 5.2.

Proposition 5.35. Let X be a surface. Let (H,B) ∈ AmpR(X) ×NSR(X), and let α0,β0 ∈ R be such that
α0 > ΦX,H,B(β0). Then σH,B,α,β0 ∈ Stab

Geo
N (X) for all α ≥ α0.

Proof. Fix α1 ∈ R such that α1 >max
{
α0,

1
2

[(
β0− H.BH2

)2
− B2

H2

]}
. By Theorem 5.21, it follows that σH,B,α1,β0 ∈

StabGeo
N (X). Choose δ,ε > 0 as in Proposition 5.28; then by Lemma 5.34, the stability condition σH,B,α1,β0

satisfies the support property with respect to Qδ,εH,B,α0,β0
.

By Lemma 5.29, the quadratic form Qδ,εH,B,α0,β0
is negative definite on KerZH,B,α,β0 for all α ≥ α0.

Moreover, ImZH,B,α,β0 remains constant as α varies. Therefore, the result follows by Corollary 5.2. □

Proof of Theorem 5.10. By Theorem 5.5, for every σ ∈ StabGeo(X), there exists a unique g ∈ C such that
g∗σ ∈ StabGeo

N (X). Hence it is enough to show that StabGeo
N (X) � U , where

U =
{
(H,B,α,β) ∈ AmpR(X)×NSR(X)×R2 : α > ΦX,H,B(β)

}
.

This follows from Propositions 5.13, 5.15, and 5.35. □

5.4. Applications of Theorem 5.10

Theorem 5.36. Let X be a surface. Then StabGeo(X) is connected.

Remark 5.37. There are precisely two types of walls of the geometric chamber for K3 surfaces and rational
surfaces. They correspond either to walls of the nef cone (see [TX22, Lemma 7.2] for a construction) or
to discontinuities of the Le Potier function. For K3 surfaces, the second case comes from the existence of
spherical bundles, which is explained in [Yos09, Proposition 2.7]. For rational surfaces, the discontinuities
correspond to exceptional bundles. This is explained for Tot(OP2(−3)) in [BM11, Section 5], and the
arguments generalise to any rational surface.

It seems reasonable to expect this to hold for all surfaces. The description of the geometric chamber
given by Theorem 5.10 also supports this. Indeed, a wall where Ox is destabilised corresponds locally to the
boundary of U being linear. This boundary is exactly where one of the following holds:

(1) H becomes nef and not ample. We expect that this only gives rise to walls in the following cases:
• H is big and nef. Then H induces a contraction of rational curves. This can be used to construct
non-geometric stability conditions; see [TX22, Lemma 7.2].
• H is nef and induces a contraction to a curve whose fibres are rational curves. In this case, we
expect a wall. For example, let f : S→ C be a P1-bundle over a curve. We expect the existence
of stability conditions on S such that all skyscraper sheaves are strictly semistable and the sheaves
are destabilised by

Of −1(x) −→Ox −→Of −1(x)(−1)[1] −→Of −1(x)[1].
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(2) If ΦX,H,B is discontinuous at β, then StabGeo
N (X) locally has a linear boundary. We expect this to

give rise to non-geometric stability conditions.
(3) If α = ΦX,H,B(β), then we expect no boundary.

Corollary 5.38. Let X be a surface. If ΦX,H,B has no discontinuities and no linear pieces for any classes
(H,B) ∈ AmpR(X) ×NSR(X), then any wall of StabGeo(X) where Ox is destabilised corresponds to a class
H ′ ∈NSR(X) which is nef and not ample.

6. Further questions

Let X be a variety. There are no examples in the literature where Stab(X) is known to be disconnected.
It would be interesting to investigate the following examples.

Question 6.1. Let S be a Beauville-type or bielliptic surface. Is Stab(S) connected?

The surface S has non-finite Albanese morphism, and StabGeo(S) ⊂ Stab(S) is a connected component
by Theorem 3.10. If Stab(S) is connected, the following question would have a negative answer.

Question 1.3 (cf. [FLZ22, Question 4.11]). Let X be a variety whose Albanese morphism is not finite. Are there
always non-geometric stability conditions on Db(X)?

Question 6.2. Suppose Db(X) has a strong exceptional collection of vector bundles and a corresponding
heart A that can be used to construct stability conditions as in [Mac07a, Section 4.2]. If Ox ∈ A, then
does Ox correspond to a stable quiver representation?
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