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1. Introduction

Kronecker moduli are geometric invariant theory (GIT) quotients parametrizing equivalence classes of
tuples of linear maps up to change of basis. Despite being interesting in themselves as moduli spaces for
a hard linear algebra problem, they have found applications in the theory of vector bundles on projective
planes, see [Dre88], or more generally as ambient spaces for moduli spaces of semistable sheaves on
projective varieties, see [ACK07], and to the tropical vertex and Gromov–Witten invariants of toric surfaces,
see [GP10, Rei10]. Kronecker moduli can be studied with techniques of quiver moduli. For example, in the
case where they are smooth and projective, their Poincaré polynomials can be computed; see [Rei03]. In the
special case of central slope (when the numerical parameters defining the space differ only by one), a simple
formula for the Euler characteristic is proven in [Wei13] using torus localization techniques.

The present paper starts from the second-named author’s observation that this Euler characteristic
coincides with a number of intervals in higher Tamari lattices, see [BMF+11], which makes it desirable to
understand the Betti numbers of central slope Kronecker moduli better, with the ultimate aim of relating
them directly to Tamari interval combinatorics. A crucial step in this direction is achieved in the present
work, by describing the generating function of motives of central slope Kronecker moduli by an algebraic
q-difference equation (in the spirit of a general result, see [Man16], about algebraicity of generating series
of Euler characteristics of framed Kronecker moduli). The derivation of the q-difference equation is made
possible by utilizing various dualities of Kronecker moduli, mainly originating in the reflection functors of
quiver representation theory. More precisely, our main result reads as follows.

Theorem 1.1. Consider the moduli spaces K
(m),fr
d,d parametrizing stable m-tuples of linear maps on a d-dimensional

complex vector spaceW , together with a framing vector inW , up to the action of GL(W )×GL(W ) (see Section 4).
Denote by

F(t) = 1+
∑
d≥1

[
K

(m),fr
d,d

]
vir

td ∈Q(v)[[t]]

the generating series of their virtual motives, where v denotes a square root of the Lefschetz motive (see Section 2.3).
Then the series F(t) is determined by F(0) = 1 and

F(t) =
m∏
i=1

1− v2i−m−1tm−2∏
j=1

F
(
v2i−2j−2t

)
−1

.
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We recall all necessary notions of quiver representations, (framed) quiver moduli spaces, and their
generating series of motivic invariants in Section 2. Isomorphisms of quiver moduli spaces induced by
reflection functors are constructed in Section 3. Specializing these to generalized Kronecker quivers, and
thus to Kronecker moduli, in Section 4, we obtain crucial dualities in Corollary 4.1 and Theorem 4.2. These
are used in Section 5 to establish a duality of generating series of motives, which is then specialized in
Section 6 to the case of central slope, and related to Tamari intervals. Moreover, Section 6 discusses several
other formulas for the motives and their generating series, as well as examples.

Acknowledgments

The authors would like to thank the referees for suggesting several improvements of the exposition.

2. Recollections on quiver moduli

2.1. Basic quiver notation

For all basic notions of the representation theory of quivers, we refer to [Sch14]. Let Q be a finite acyclic
quiver with set of vertices Q0 and arrows written α : i→ j . Let

d =
∑
i∈Q0

dii ∈NQ0

be a dimension vector for Q. We define the Euler form of Q as the bilinear form on ZQ0 given by

⟨d,e⟩ =
∑
i∈Q0

diei −
∑

α : i→j

diej ,

and we denote its antisymmetrization by

{d,e} = ⟨d,e⟩ − ⟨e,d⟩.

We fix complex vector spaces Vi of dimension di for all i ∈ Q0. We define the variety of complex
representations of Q of dimension vector d as the complex affine space

Rd(Q) =
⊕
α : i→j

Hom
C
(Vi ,Vj ),

on which the reductive complex algebraic group

Gd =
∏
i∈Q0

GL(Vi)

acts via change of basis
(gi)i · (fα)α = (gj ◦ fα ◦ g−1i )α : i→j ,

so that the Gd-orbits in Rd(Q) correspond canonically to the isomorphism classes of complex representations
of Q of dimension vector d. We can thus view a point (fα)α ∈ Rd(Q) as a representation V = ((Vi)i , (fα)α)
of Q of dimension vector d.

2.2. Moduli spaces of (semi-)stable representations

We now summarize basic facts on moduli spaces; see [Kin94]. We fix a linear form Θ ∈ (ZQ0)∗, called
a stability. If Θ(d) = 0, we define a point (fα)α ∈ Rd(Q), corresponding to a representation V , to be
Θ-semistable if

Θ(dim(U )) ≤ 0

for all subrepresentations U ⊂ V , that is, collections of subspaces (Ui ⊂ Vi)i∈Q0
such that

fα(Ui) ⊂Uj
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for all arrows α : i→ j and

dim(U ) =
∑
i

(dimUi)i.

Define V to be Θ-stable if
Θ(dim(U )) < 0

for all non-zero proper subrepresentations.
More generally, fixing another linear form κ ∈ (ZQ0)∗ such that κ(d) > 0 for all 0 , d ∈NQ0 (called a

positive functional), we define the slope function

µ(d) =Θ(d)/κ(d) ∈Q

for 0 , d ∈NQ0. Define V as above to be µ-semistable if

µ(dim(U )) ≤ µ(dim(V ))

for all non-zero subrepresentations U ⊂ V , and analogously for µ-stability. If Θ(dim(V )) = 0, then V is
µ-(semi-)stable if and only if it is Θ-(semi-)stable. For later use, we note the following.

Lemma 2.1. The notion of µ-(semi-)stability does not change when Θ is replaced by

Θ′ = aΘ + bκ

for a,b ∈Q with a > 0. In particular, the µ-(semi-)stable representations of a fixed dimension vector are precisely
the Θ′-(semi-)stable ones for an appropriate Θ′ .

We denote by R
Θ-(s)st
d (Q) the (open, Gd-stable) locus of Θ-(semi-)stable points in Rd(Q), and similarly

for R
µ-(s)st
d (Q). We define the moduli space

MΘ-sst
d (Q) = RΘ-sst

d (Q)//Gd

as the corresponding GIT quotient. The moduli space MΘ-sst
d (Q), if non-empty, is an irreducible projective

variety. It contains an open subset MΘ-st
d (Q) which is the image of RΘ-st

d (Q) under the quotient map

π : RΘ-sst
d (Q) −→MΘ-sst

d (Q).

The restriction of π to this open set is a principal bundle for the group

PGd = Gd/∆,

where ∆ is the diagonally embedded copy of C∗ in Gd. If non-empty, MΘ-st
d (Q) is thus smooth and

irreducible of dimension 1− ⟨d,d⟩. If the dimension vector d is Θ-coprime, that is, Θ(e) , 0 for all proper
e ≤ d (componentwise inequality), the stable and semistable loci coincide, so MΘ-sst

d (Q) = MΘ-st
d (Q) is

smooth and projective. In this case, d is indivisible; that is, it is not a proper multiple of another dimension
vector, and thus there exist universal bundles Vi of rank di on MΘ-sst

d (Q).
Changing the orientation of all arrows in the quiver Q yields the opposite quiver Qop. Dualizing all

vector spaces and linear maps in a quiver representation associates to V a representation V ∗ of Qop. On the
geometric level, fixing (C-bilinear) non-degenerate symmetric bilinear forms on the vector spaces Vi , we
have a map Rd(Q)→ Rd(Qop) associating to (fα)α the tuple of adjoint maps (f ∗α : Vj → Vi)α : i→j ), which is
compatible with the Gd-actions in the sense that, written symbolically,

(g · f )∗ = ϕ(g) · f ∗

for the automorphism ϕ of Gd which is the adjoint inverse in every component. We have thus proved the
following.

Lemma 2.2. There exists a natural isomorphism

MΘ-sst
d (Q) ≃M

(−Θ)-sst
d (Qop).
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2.3. Motives of moduli spaces

We consider the Grothendieck ring of varieties K0(VarC) and denote by [X] the class of a variety; in
particular, L = [A1] denotes the Lefschetz motive, that is, the class of the affine line. We will work in the
localization

R = K0(VarC)
[
L
±1/2,

(
1−Li

)−1
, i ≥ 1

]
(which is essentially the Grothendieck ring of stacks with affine stabilizers, see [Bri12]). For an irreducible
variety X, we define its virtual motive

[X]vir =
(
−L1/2

)−dimX
· [X] ∈ R

(in the present context, working with virtual motives has the advantage of making several formulas more
symmetric). It will turn out that all our calculations will already take place in the subring of R generated by
the rational functions in L

1/2. Define the so-called motivic quantum affine space of Q (see, for example,
[Moz14]) as the formal power series ring R[[xi | i ∈Q0]], with multiplication twisted by the anti-symmetrized
Euler form of Q:

xd · xe =
(
−L1/2

){d,e}
xd+e.

We define the motivic generating series

A(x) =
∑

d∈NQ0

[Rd(Q)]vir
[Gd]vir

xd =
∑

d∈NQ0

(
−L1/2

)−⟨d,d⟩
xd∏

i∈Q0

(
(1−L−1) · . . . ·

(
1−L−di

))
and, for all slopes s ∈Q,

A
µ
s (x) = 1+

∑
d :µ(d)=s

[
R
µ-sst
d (Q)

]
vir

[Gd]vir
xd.

We then have the following wall-crossing formula (which proves in particular that all motives of semistable
loci are rational functions in L

1/2).

Theorem 2.3. In the motivic quantum affine space, we have

A(x) =
→∏
s∈Q

A
µ
s (x),

where the product is taken in ascending order.

Proof. In [Rei10, Lemma 4.3] it is explained how such a factorization identity follows from a (Harder–
Narasimhan-type) recursive formula given in [Rei10, Definition 4.1(2)]. That this recursion holds on the
motivic level is explained in the proof of [RSW12, Theorem 3.5]. □

2.4. Framed moduli spaces

The reference for the material of this section is [ER08], with slight (but crucial to the following) adaptions
of stability parameters which will be explained later. Given (Q,d,Θ) as before and another dimension vector
0 , n ∈NQ0, we define a new datum (Q̂, d̂,Θ̂) as follows:

• The vertices of Q̂ are those of Q, together with an additional vertex 0.
• The arrows of Q̂ are those of Q, together with ni arrows from 0 to i, for all i ∈Q0.
• We have d̂i = di for all i ∈Q0 and d̂0 = 1.
• We choose a positive functional κ ∈ (ZQ0)∗ and a positive integer C such that κ(d) < C ·gcd(Θ) and
define Θ̂i = CΘi −κi for all i ∈Q0 and Θ̂0 = κ(d).
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Representations of Q̂ of dimension vector d̂ can be identified with pairs (V ,f ) consisting of a representa-
tion V of Q of dimension vector d, together with a tuple

f = (fi : C
ni → Vi) .

With this identification, the following holds.

Lemma 2.4. The dimension vector d̂ is Θ̂-coprime, and the pair (V ,f ) is Θ̂-semistable if and only if V is
Θ-semistable and Θ(dim(U )) < 0 for all proper subrepresentations U of V containing the image of f , that is,
satisfying

Im(fi) ⊂Ui ⊂ Vi

for all i ∈Q0.

Proof. This follows from adapting the proof of [ER08, Lemma 3.2]. There, a slope function µ̂ = (Θ+ϵ0∗)/ dim
is used. First, a direct inspection of this proof shows that the functional dim can be replaced by an arbitrary
positive functional κ. Second, normalization of this stability to one evaluating to zero on d̂, as provided by
Lemma 2.1, yields the choice of Θ̂ above. □

We define

MΘ-fr
d,n (Q) =MΘ̂-sst

d̂
(Q̂)

and call it a framed moduli space. The forgetful map (V ,f ) 7→ V induces a projective morphism

p : MΘ-fr
d,n (Q) −→MΘ-sst

d (Q).

Note that the group PGd̂ ≃ Gd is special (see [Bri12, Definition 3.7]), and MΘ-fr
d,n (Q) is the geometric quotient

of RΘ̂-sst
d̂

(Q̂) by this group; thus [
MΘ-fr

d,n (Q)
]
vir

=
[
RΘ̂-sst
d̂

(Q̂)
]
vir

/[Gd]vir.

We will use the following two results on framed moduli spaces.

Theorem 2.5. The following hold:

(1) If d is Θ-coprime, the map p is a Zariski-locally trivial projective space fibration; more precisely, it is the
total space of the projective bundle

P

⊕
i∈Q0

Vnii

 .
(2) For all s ∈Q, defining the generating series

AΘ-fr
s (x) = 1+

∑
µ(d)=s

[
MΘ-fr

d,n (Q)
]
vir

xd,

we have

AΘ-fr
s (x) = A

µ
s

((
−L1/2

)n
x
)
·Aµ

s

((
−L1/2

)−n
x
)−1

in the motivic quantum affine space of Q.

Here, for a series F(x) =
∑

d cdx
d, we define

F
((
−L1/2

)n
x
)
=

∑
d

cd
(
−L1/2

)n·d
xd.

Proof. The first statement is [ER08, Proposition 3.8]. The second statement follows from adapting [ER08,
Theorem 5.2] to the present definition of the motivic quantum affine space. □
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3. Reflection functors and moduli spaces

We continue to denote by Q a finite acyclic quiver. Let i be a sink in Q0. We define siQ as the quiver
with all arrows at i reversed. Formally, we have

(siQ)0 =Q0,

and the arrows in siQ are those of Q not incident with i, together with arrows α∗ : i→ j for every α : j→ i
in Q. We define a reflection operator si on ZQ0 by (sid)j = dj for j , i and

(sid)i =

 ∑
α : j→i

dj

− di .
To define si on (ZQ0)∗, we identify the latter with ZQ0 via the Euler form pairing. That is, if Θ = ⟨α,_⟩Q

for α ∈ZQ0, then

siΘ = ⟨siα,_⟩siQ.
Concretely, the following holds.

Lemma 3.1. We have (siΘ)i = −Θi and, for all j , i,

(siΘ)j =Θj +
∑

α : j→i

Θi .

Denote by Ri,−
d (Q) the open subset of Rd(Q) consisting of representations V (again given by linear maps

fα : Vi → Vj for α : i→ j in Q) such that the map

ΦV =
⊕
α : j→i

fα :
⊕
α : j→i

Vj −→ Vi

is surjective.
For such a representation V , define a representation S+

i (V ) of siQ of dimension vector sid by S+
i (V )j = Vj

for j , i and

S+
i (V )i = Ker(ΦV ).

The maps gα representing the arrows of siQ in the representation S+
i (V ) are given by gα = fα if α is not

incident with i, and

gα∗ : Ker(ΦV ) −→ Vj

is given by the projection to the component of
⊕

α : j→i Vj corresponding to α. Dually, for a source i in Q,

we define siQ, sid, siΘ, Ri,+
d (Q), and S−i (V ) accordingly. The definitions of S+

i and S−i are known to extend
to functors inducing mutually inverse equivalences between appropriate subcategories of representations. We
will now realize this correspondence of representations on the geometric level.

Denote by Q′ the full subquiver of Q supported on Q0 \ {i}, and denote by d′ the restriction of d to Q′ .
For a vector space Y and k ≤ dimY , denote by Grk(Y ) (resp. Grk(Y )) the Grassmannian of k-dimensional
subspaces (resp. quotient spaces) of Y . We have the standard duality

Grk(Y ) ≃GrdimY−k(Y )

which is GL(Y )-equivariant.
We have a GLdi (C)-principal bundle

Ri,−
d (Q) −→ Rd′ (Q

′)×Grdi

 ⊕
α : j→i

Vj


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by mapping a representation V to the restriction V |Q′ together with Coker(ΦV ), and dually

Ri,+
sid

(siQ) −→ Rd′ (Q
′)×Gr(sid)i

 ⊕
α : j→i

Vj

 .
Duality of Grassmannians identifies the targets of both maps Gd′ -equivariantly; we denote this common

target by Rd(Q)
i
. Composition with duality thus yields Gd′ -equivariant maps

Ri,−
d (Q) −→ Rd(Q)

i
←− Ri,+

sid
(siQ).

We now assume that Θ(d) = 0 and that Θi < 0. In this case, it is immediately verified that

RΘ-sst
d (Q) ⊂ Ri,−

d (Q).

Dually, we find

RsiΘ-sst
sid

(siQ) ⊂ Ri,+
sid

(siQ).

The images of both semistable loci under the above principal bundles coincide; we denote this image by

Z ⊂ Rd(Q)
i
and find the following.

Theorem 3.2 (cf. [Dom24]). We have an equality of localized motives[
RΘ-sst
d (Q)

]
/[Gd] =

[
RsiΘ-sst
sid

(siQ)
]
/[Gsid],

as well as an isomorphism of GIT quotients

MΘ-sst
d (Q) ≃MsiΘ-sst

sid
(siQ).

Proof. Both sides of the equation of motives coincide with [Z]/[Gd′ ]. In the same way, both sides of the
isomorphism coincide with Z//Gd′ . □

4. Dualities of Kronecker moduli

We now specialize the notions and results of the previous section to the m-arrow Kronecker quiver with
two vertices i and j, and m arrows αk : i → j for k = 1, . . . ,m. We fix a dimension vector d = di + ej
and vector spaces V , W of dimensions d, e, respectively. We consider the stability Θ = ei∗ − dj∗. Then a
representation, given by linear maps f1, . . . , fm : V →W , is Θ-semistable if and only if

dim
∑
k

fk(U ) ≥ e
d
dimU

for all (non-zero, proper) subspaces U ⊂ V . We denote the semistable locus by Hom(V ,W )msst. For this

datum, we consider the semistable moduli space K
(m)
d,e defined as the quotient of Hom(V ,W )msst by the

structure group GL(V )×GL(W ).
We consider the framing datum n = j. By Lemma 2.4, the framed moduli space then parametrizes

tuples ((fk : V →W )k ,w ∈W ) (up to the action of GL(V )×GL(W )) such that (fk)k defines a semistable
representation, and if w is contained in

∑
k fk(U ), then this space has dimension strictly larger than e

d dimU .

We denote this framed moduli space by K
(m),fr
d,e .

As a consequence of Lemma 2.2 and Theorem 3.2 (by reflecting at the vertex j), we find the following.

Corollary 4.1 (cf. [Dre87]). We have isomorphisms

K
(m)
d,e ≃ K

(m)
e,d and K

(m)
d,e ≃ K

(m)
md−e,d

whenever e ≤md.
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We now investigate in which case reflection induces an isomorphism even on the level of framed moduli
spaces; this constitutes the technical heart of the paper.

Theorem 4.2. For k ≤m and d ≥ 1, we have an isomorphism of framed moduli spaces

K
(m),fr
d,kd ≃ K

(m),fr
d,(m−k)d+1.

Proof. We model the left-hand side as the following moduli space: we consider the extended quiver Q̂ given
by

i
(m)
−→ j←− 0

with dimension vector d̂ given by

di+ kdj+ 0

and stability Θ̂ given by

(Ckd −κi)i∗ + (−Cd −κj )j∗ + d(κi + kκj )0
∗

for positive integers C,κi ,κj such that κi + kκj < C, compatible with the construction in Section 2.4. By

Lemma 3.1, reflection at the sink j yields the quiver sjQ̂ given by

i
(m)
←− j −→ 0,

the dimension vector sj d̂ given by

di+ ((m− k)d +1)j+ 0,

and the stability sjΘ̂ given by

(−C(m− k)d −κi −mκj )i
∗ + (Cd +κj )j

∗ + (−(C −κi)d + (kd − 1)κj )0∗.

Applying duality, we arrive at the quiver (sjQ̂)op = Q̂ with dimension vector sj d̂ and stability −sjΘ̂ given by

(C(m− k)d +κi +mκj )i
∗ − (Cd +κj )j

∗ + ((C −κi)d − (kd − 1)κj )0∗.

On the other hand, again by Section 2.4, the right-hand side of the claimed isomorphism is modeled by the
quiver Q̂, with dimension vector given by sj d̂, and stability Θ̂′ given by

(C′((m− k)d +1)−κ′i)i
∗ + (−C′d −κ′j )j

∗ + (κ′id +κ′j((m− k)d +1))0∗

for positive integers C′ ,κ′i ,κ
′
j such that κ′id + κ′j((m − k)d + 1) < C′ . We will now show that we can find

parameters C,κi ,κj ,C
′ ,κ′i ,κ

′
j such that −sjΘ̂ = Θ̂′ . Namely, we choose

κj = κ′i = κ′j = 1, κi = (m+1− k)d, C = C′ = (m+1− k)d +m+1,

and a direct verification shows that the necessary inequalities and the claimed equality are fulfilled.
Using the identification of framed Kronecker moduli as quiver moduli for (sj )Q̂, as well as Lemma 2.2

and Theorem 3.2, we thus have a chain of isomorphisms

K
(m),fr
d,kd ≃MΘ̂-sst

d̂
(Q̂) ≃M

sjΘ̂-sst

sjd̂
(sjQ̂)

≃M
−sjΘ̂-sst

sjd̂
(Q̂) ≃MΘ̂′-sst

sjd̂
(Q̂) ≃ K

(m),fr
d,(m−k)d+1,

finishing the proof. □
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5. Generating function identities

We introduce the following generating series in R[[t]] for fixed m and 1 ≤ k ≤ m (the first two are
specializations of the series A

µ
s (x) and AΘ-fr

s (x), respectively, introduced in Sections 2.3 and 2.4):

A(k)(t) = 1+
∑
d≥1

[
Hom

(
Cd ,Ckd

)m
sst

]
vir

[GLd(C)×GLkd(C)]vir
td ,

F(k)(t) = 1+
∑
d≥1

[
K

(m),fr
d,kd

]
vir

td ,

G(k),±(t) = 1+
∑
d≥1

[
K

(m)
d,kd±1

]
vir

td .

To shorten notation, we will abbreviate −L1/2 to v.
We introduce an (ad hoc) operator ∇(k) on formal series defined by

∇(k)B(t) = vB(vkt)− v−1B(v−kt)
v − v−1

.

It is linear and fulfills ∇(k)td = [Pkd]virtd . For a series B(t) with constant term B(0) = 1, we have

t∇(1)B(t)− 1
t

= ∆B(t)

for the operator ∆ defined by

∆B(t) =
B(vt)−B(v−1t)

v − v−1

(we note for later use that 1
t∆B(t) specializes to the standard derivative B′(t) at v = 1).

We can now specialize the generating series identities of the preceding section, and interpret the
isomorphism of framed moduli spaces of Theorem 4.2 as an identity of generating series.

Corollary 5.1. We have the following identities:

A(k)(t) = A(m−k)(t),

F(k)(t) =
A(k)(vkt)
A(k)(v−kt)

,

G(k),−(t) = G(m−k),+(t),

F(k)(t) = ∇(m−k)G(m−k),+(t).

Proof. The first identity follows from the equality of motives in Theorem 3.2. The second identity is a special
case of the identity in Theorem 2.5(2). The third identity follows again from Theorem 3.2. The fourth
identity follows from the first part of Theorem 2.5. □

We now combine all these identities. Because of the first and second identity, we find

m−k∏
i=1

F(k)
(
v(m+1−k−2i)kt

)
=

A(k)
(
v(m−k)kt

)
A(k)

(
v−(m−k)kt

)(5.1)

=
A(m−k)

(
v(m−k)kt

)
A(m−k)

(
v−(m−k)kt

) = k∏
i=1

F(m−k)
(
v(m−k)(k+1−2i)t

)
.

Using the fourth identity, this equality reads
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m−k∏
i=1

∇(m−k)G(m−k),+
(
v(m+1−k−2i)kt

)
=

k∏
i=1

∇(k)G(k),+
(
v(m−k)(k+1−2i)t

)
.

Using the third identity on the left-hand side, we arrive at the following identity between generating series
attached to Kronecker moduli of slopes k +1/d and k − 1/d, respectively.

Corollary 5.2. We have

m−k∏
i=1

∇(m−k)G(k),−
(
v(m+1−k−2i)kt

)
=

k∏
i=1

∇(k)G(k),+
(
v(m−k)(k+1−2i)t

)
.

6. Central slope

Now we specialize to the case k = 1 in the identities of Corollary 5.1; note that this corresponds to the case
of dimension vectors of slope 1 (which we call the central slope), thus d = e. We note the additional identity

(6.1) G(1),+(t) =
G(1),−(t)− 1

t
,

which follows from Lemma 2.2. We then abbreviate

F(t) := F(1)(t) and G(t) := G(1),−(t).

Then, by the third and fourth identities of Corollary 5.1,

F(t) = ∇(m−1)G(m−1),+(t) = ∇(m−1)G(t)

and, using again the fourth identity of Corollary 5.1, together with Equations (5.1) and (6.1), we obtain

m−1∏
i=1

F(vm−2it) = F(m−1)(t) = ∇(1)G(1),+(t) = ∇(1)G(t)− 1
t

=
1
t
∆G(t).

We thus arrive at our main result.

Theorem 6.1. The series F(t) and G(t), encoding the motives of framed Kronecker moduli of slope 1 and the
motives of Kronecker moduli of slope 1− 1/d, respectively, are mutually determined by

F(t) = ∇(m−1)G(t) and ∆G(t) = t
m−1∏
i=1

F
(
vm−2it

)
.

It is easily verified that the operators ∆ and ∇(k) commute, from which we immediately derive the
following v-difference equation determining F(t).

Corollary 6.2. The series F(t) is determined by

∆F(t) = ∇(m−1)
tm−1∏

i=1

F(vm−2it)


together with the initial condition F(0) = 1.

Taking the definition of F(t) as a generating series of virtual motives and comparing coefficients in the
previous formula, we find the following recursion which allows for practical calculations.
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Corollary 6.3. The virtual motives md = [K (m),fr
d,d ]vir are given recursively by m0 = 1 and

md =

[
P
(m−1)d

]
vir[

P
d−1

]
vir

∑
d1+···+dm−1=d−1

v
∑

i (m−2i)di
∏
i

mdi .

From Corollary 6.2, we will now derive an algebraic functional equation defining F(t).

Theorem 6.4. The series F(t) is determined by F(0) = 1 and

F(t) =
m∏
i=1

1− v2i−m−1tm−2∏
j=1

F
(
v2i−2j−2t

)
−1

.

Proof. We abbreviate the right-hand side to H(t); thus we have to prove that H(t) = F(t). We obviously have
H(0) = 1, and we will now consider ∆H(t).

We abbreviate

Ti := 1− v2i−mt
m−2∏
j=1

F
(
v2i−2j−1t

)
for i ≥ 0. Then

H(vt) = T −11 · . . . · T
−1
m and H(v−1t) = T −10 · . . . · T

−1
m−1,

and thus

∆H(t) =
1

v − v−1
(
T −11 · . . . · T

−1
m − T −10 · . . . · T

−1
m−1

)
=

1
v − v−1

· (T0 − Tm) · T1 · . . . · Tm−1
T0 · . . . · Tm−1 · T1 · . . . · Tm

=
H(vt) · (T0 − Tm)
(v − v−1) · T0

.

Since

T0 = 1− v−mt
m−2∏
j=1

F
(
v−2j−1t

)
, Tm = 1− vm

m−2∏
j=1

F
(
v2m−1−2jt

)
,

we have

∆H(t) =
H(vt)

(v − v−1) · T0

vmtm−2∏
j=1

F
(
v2m−1−2jt

)
− v−mt

m−2∏
j=1

F
(
v−2j−1t

)
=

H(vt)
F(vt) · (v − v−1) · T0

vmtm−1∏
j=1

F
(
v2m−1−2jt

)
− v−mt

m−2∏
j=1

F
(
v−2j−1t

)
·F(vt)


=

H(vt)
F(vt) · (v − v−1) · T0

vmtm−1∏
j=1

F
(
v2m−1−2jt

)
− v−mt

m−1∏
j=1

F
(
v−2j+1t

)
︸                                                  ︷︷                                                  ︸

(I)

+ v−mt
m−1∏
j=1

F
(
v−2j+1t

)
− v−mt

m−2∏
j=1

F
(
v−2j−1t

)
·F(vt)

︸                                                          ︷︷                                                          ︸
(II)

.
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The right-hand side of the v-difference equation defining F(t) in Corollary 6.2 reads

∇(m−1)
tm−1∏

j=1

F
(
vm−2jt

) = vmt
∏m−1

j=1 F
(
v2m−1−2jt

)
− v−mt

∏m−1
j=1 F

(
v1−2jt

)
v − v−1

,

which we recognize as 1
(v−v−1) (I), whereas (II) equals

(T0 − 1) ·
(
F(vt)−F

(
v−1t

))
.

We thus find

∆H(t) =
H(vt)

F(vt) · T0
(∆F(t) + (T0 − 1) ·∆F(t)) =

H(vt)
F(vt)

∆F(t).

This easily implies that

∆

(
H(t)
F(t)

)
= 0;

thus H(t) is a scalar multiple of F(t), thus equal to F(t) since H(0) = 1. □

We illustrate these formulas with some examples for m = 3 and small d. We only list the coefficients of
the motives, viewed as Laurent polynomials in v:

K
(3),fr
1,1 : 1,1,1

K
(3),fr
2,2 : 1,2,3,3,3,2,1

K
(3),fr
3,3 : 1,2,5,8,11,12,13,12,11,8,5,2,1,

K
(3),fr
4,4 : 1,2,5,10,18,28,40,50,58,62,64,62,58,50,40,28,18,10,5,2,1

K
(3)
1,0: 1

K
(3)
2,1: 1,1,1

K
(3)
3,2: 1,1,3,3,3,1,1

K
(3)
4,3: 1,1,3,5,8,10,12,10,8,5,3,1,1

K
(3)
5,4: 1,1,3,5,10,14,23,30,41,46,51,46,41,30,23,14,10,5,3,1,1

Finally, we specialize the above functional equations to v = 1; geometrically, this corresponds to passing
from virtual motives to Euler characteristics. Our aim is to give a new proof of [Wei13, Theorem 6.6] avoiding
the iterated torus fixed-point localization techniques used there.

We denote the specialized series by F(t) and G(t):

F(t) =
(
1− tF(t)m−2

)−m
and G(t)′ = F(t)m−1.

Since F(0) = 1, the series F(t)1/m exists and fulfills the equation

F(t)1/m = 1+ t
(
F(t)1/m

)(m−1)2
.

To solve this functional equation, we substitute t = x(m−1)
2
and apply the Lagrange inversion formula in the

following form:
Suppose that series U (x),V (x) ∈Q[[x]] with V (0) , 0 are related by

U (x) = V (xU (x)) .

Then, for all k,d ∈Z, we have

(k + d)[xd]U (x)k = k[xd]V (x)k+d ,

where [xd]U (x) denotes the xd-coefficient of the series U (x).
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Applying this to

U (x) = F
(
x(m−1)

2)1/m
, V (x) = 1+ x(m−1)

2
, k =m(m− 1)

and substituting back to the variable t, we find

[td]F(t)m−1 =
m(m− 1)

m(m− 1) + (m− 1)2d

(
(m− 1)2d +m(m− 1)

d

)
.

Finally, using d[td]G(t) = [td−1]G
′
(t), we find that the td-coefficient in G(t) equals

m
d((m− 1)d +1)

(
(m− 1)2d +m− 1

d − 1

)
.

After some cancellations, we see that this equals

m− 1
d((m− 2)d +1)

(
(m− 1)2d +m− 2

d − 1

)
,

which rederives [Wei13, Theorem 6.6].
Using the calculation of the number of intervals in generalized Tamari lattices in [BMF+11], we have thus

proved the following.

Corollary 6.5. The Euler characteristic of K
(m)
d,d−1 equals the number of intervals in the (m− 2)-Tamari lattice of

index d.

For the case m = 3, see sequences A000260, A255918 in [OEI24]. The generalized Tamari lattices are
defined by a covering relation on generalized Dyck paths, and play a central role in a fascinating set of
conjectures related to multivariate diagonal harmonics; see [BPR12]. It is thus desirable to find a statistic on
Tamari intervals whose partition function in v equals the motive of central slope Kronecker moduli. These
combinatorial ramifications of the present work will be pursued elsewhere.
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