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Abstract. We prove the rationality of the characteristic form for a degree 1 character of the Galois
group of an abelian extension of henselian discrete valuation fields. We prove the integrality of the
characteristic form for a rank 1 sheaf on a regular excellent scheme. These properties are shown
by reducing to the corresponding properties of the refined Swan conductor proved by Kato.

We define the F-characteristic cycle of a rank 1 sheaf on an arithmetic surface as a cycle on
the FW-cotangent bundle using the characteristic form on the basis of the computation of the
characteristic cycle in the equal-characteristic case by Yatagawa. The rationality and the integrality
of the characteristic form are necessary for the definition of the F-characteristic cycle. We prove
the intersection of the F-characteristic cycle with the 0-section computes the Swan conductor of
cohomology of the generic fiber.
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1. Introduction

Let K be a henselian discrete valuation field with residue field F of characteristic p > 0, and let L be
a finite abelian extension of K. Kato [Kat89] defined the refined Swan conductor of a character of the
Galois group Gal(L/K) as an injection to the F-vector space Qll;(log). Recently, Saito [Sai23] defined the
characteristic form of such a character as a non-logarithmic variant of the refined Swan conductor. The
characteristic form takes value in the F-vector space HI(LF/OK)’ where Ok denotes the valuation ring of
K and Hl(Lf/OK) denotes the first homology group of the cotangent complex. In the equal-characteristic
case, the non-logarithmic theory played an important role in the computation of the characteristic cycle; see
[Sailb, Section 7.3].

In Section 5, we show two properties of the characteristic form for rank 1 sheaves. The first property is
the rationality of the characteristic form.

Theorem 1.1 (Rationality, ¢/ Theorem 2.3). Let x: Gal(L/K) — Q/Z be a character. Let m be the total

dimension of x. Then the image of the characteristic form char x : m’/m/+! — H, (Lgjo,) = Hi(Lrvo, ) ®F F
of x is contained in Hy(Lpip/0, )-

The second property is the integrality of the characteristic form for rank 1 sheaves. Let D be a divisor with
simple normal crossings on a regular excellent scheme X. Let {D;};c; be the set of irreducible components
of D, and let K; be the local field at the generic point p; of D;. Let F; be the residue field of K;. Let U be
the complement of D. Let x be an element of H!(U,Q/Z). Let Z, be the union of the D; such that x|, is
wildly ramified and R, = }";; dt(x|x,)D; be the total dimension divisor. We put m; = dt(x|k.).

Theorem 1.2 (Integrality, ¢f. Theorem 2.5 and (6.1)). There exists a unique global section char(x) in
F(ZX,FQ}((pRX)lzx) such that the germ at p; is equal to the following composition of maps:

st har(xlc)

m; i
my/my Hl(LFil/p/OKi) — H; (LFil/p/OKi ) ®Fi1/p F;.

Here, the second map is induced by the p™ power map Fil/p — F;.

In the case where the characteristic of K is p, these properties have already been proved by using
Artin-Schreier-Witt theory by Matsuda [Mat97] and Yatagawa [Yatl7]. In the case where the characteristic of
K is zero, Artin-Schreier-Witt theory does not work, so we need to use a different method. The strategy of
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the proofs of Theorems 1.1 and 1.2 is to reduce to the corresponding properties of the refined Swan conductor
proved by Kato [Kat89]. To do this, we compare the refined Swan conductor with the characteristic form.

The relation between the refined Swan conductor and the characteristic form is explained as follows.
Let x: Gal(L/K) — Q/Z be a character. The characters are divided into two types. If x is of type I (for
example, the residue field extension is separable), the characteristic form of x is the image of the refined
Swan conductor of x. On the other hand, if x is of type II (for example, the ramification index of L/K
is 1 and the residue field extension is inseparable), the refined Swan conductor of x is the image of the
characteristic form of x. A large part of the proof of these relations is due to Saito. The author thanks him
for kindly suggesting the author to include the proof in this paper.

For a character of type I, Theorem 1.1 holds since the characteristic form is the image of the refined Swan
conductor and the refined Swan conductor takes value in the F-vector space Q[lj(log). For a character of
type II, we would like to change the character to a character of type I. The typical case where a character is
of type I is when the residue field F is perfect. Hence we would like to take an extension K’ of K such that
the residue field of K’ is perfect. In fact, it suffices to consider the field K’ with the pt" power roots of a
lifting of a p-basis of F, though the residue field of K’ may not be perfect.

As in the proof of Theorem 1.1, we prove Theorem 1.2 using the integrality of the refined Swan conductor,
but the proof is more complicated.

In Section 6, we consider the theory of the characteristic cycle. The characteristic cycle of an étale
sheaf on a smooth scheme over a perfect field of positive characteristic is defined by Saito [Sail6]. The
characteristic cycle is defined as a cycle on the cotangent bundle. By the index formula, the intersection
with the 0-section computes the Euler characteristic if the scheme is projective. The characteristic cycle was
computed on a closed subset of codimension less than 2 by using the characteristic form. Yatagawa [Yat20]
gave an explicit computation of the characteristic cycle of a rank 1 sheaf on a scheme of dimension 2.

The existence of the cotangent bundle on a scheme of mixed characteristic is not known. Instead,
Saito [Sai22a] defined the FW-cotangent bundle FT*X]|x, of a regular noetherian scheme X over a discrete
valuation ring Oy of mixed characteristic (0, p) to be the vector bundle of rank dim X on the closed fiber Xp
to consider the characteristic cycle of an étale sheaf on a scheme of mixed characteristic. The characteristic
cycle in the mixed characteristic case has not been defined in general.

Let D be a divisor with simple normal crossings on X, and let j: U = X —D — X be the open immersion.
Let A be a finite field of characteristic different from p, and let 7 be a smooth sheaf of A-modules of rank 1.
In the case dim X = 2, we define the F-characteristic cycle FCC jiF of jiF as a cycle on the FW-cotangent
bundle on the basis of the computation in the equal-characteristic case by Yatagawa.

On a closed subset of codimension less than 2, we define the F-characteristic cycle using the characteristic
form. To determine the coefficients of the fibers at closed points, we use both the refined Swan conductor
and the characteristic form. The main reason for using both non-log and log theories is that after successive
blowups, the refined Swan conductor becomes a locally split injection but the characteristic form has no
such properties. The rationality (Theorem 1.1) and the integrality (Theorem 1.2) of the characteristic form are
crucial to determine the coefficients of the fibers.

In analogy with the index formula, we prove that the intersection of the F-characteristic cycle with the
0-section computes the Swan conductor of cohomology of the generic fiber.

Theorem 1.3 (Theorem 6.15). Assume dim X = 2 and X is proper over Ox. Then we have

(FCCjiF ~FCCjiA, FT; X]x, )FT*X|XF =p - (Swk (Xg 1 F ) - Swi (Xg, 1A ).

Abbes [Abe(00] found the formula computing the Swan conductor of cohomology of the generic fiber of
an arithmetic surface under the assumption that a coefficient sheaf has no fierce ramification. Our formula
restricts to a coefficient sheaf of rank 1 but needs no assumption on ramification.
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We prove Theorem 1.3 using Kato-Saito’s conductor formula; see [KS13]. We study the relation between
the F-characteristic cycle and the pullback of the logarithmic characteristic cycle defined by Kato [Kat94].
This step is similar to the computation by Yatagawa in the equal-characteristic case.

We give an outline of the paper. In Section 2, we briefly recall the definition of the characteristic form and
state the rationality and the integrality of the characteristic form explained above. In Section 3, we recall the
definition and properties of the refined Swan conductor in parallel with the characteristic form. In Section 4,
we give relations between the refined Swan conductor and the characteristic form. In Section 5, we prove the
rationality and the integrality established in Section 2 using the results in Section 4. In Section 6, we define
the F-characteristic cycle of a rank 1 sheaf on an arithmetic surface. We prove the main theorem, which
gives a formula computing the Swan conductor of cohomology of the generic fiber. We give an example of
the F-characteristic cycle.

Acknowledgments

The author would like to express his sincere gratitude to his advisor Professor Takeshi Saito for suggesting
the problem, giving a lot of helpful advice, and showing his unpublished book on ramification theory, which
contains the contents of Section 3 and the proof of Lemma 4.3 and Proposition 4.4. The author thanks the
anonymous referees for their careful reading and comments.

2. Characteristic form

In this section, we recall the notion of characteristic form and state the integrality of the characteristic
form.

2.1. Cotangent complex and FW-differential

We briefly recall the properties on cotangent complexes from [Sai23].

Let K be a discrete valuation field with valuation ring Ok and with residue field F of characteristic p > 0.
Let E be a field containing F. For an element u € Ok, we write u for the image of u in F. If there exists a
pth root of 7 in E, the element du in Hi(Lg/o,) is defined in [Sai23, Equation (1.9)]. We write wu for this
element instead of du.

Proposition 2.1. Let 7@ be a uniformizer of K and (v;);c; be a p-basis of F. Assume that the field E contains
FYP. Then, {wrt, wv;}ic; forms a basis of the E -vector space H, (Lo )-

Proof. By [Sai23, Proposition 1.1.3(2)], we have an exact sequence
0— mK/m%(®F E = HI(LE/OK) — 0113®F E—0

of E-vector spaces, where my denotes the maximal ideal of Og. Then 7 defines a basis of mK/m%{ ®rE,
and {dv;};c; forms a basis of Q} ®f E. The assertion follows since the map H; (Lg/0, ) — Qll: ®r E sends
wv; to dv; by [Sai23, Proposition 1.1.4(2)]. O

Let L be a finite separable extension of K with residue field E. The morphism SpecE — SpecO; —
SpecOk of schemes defines the distinguished triangle Lo, /0, ®a E — Lgj0, — Lgso, — by [lI71, Propo-
sition I1.2.1.2]. Since we have quasi-isomorphisms Lg/0, = Ng/p,[1] and Lo, /0, = Q%OL/OK[O] by [Sai23,
Lemma 1.2.6(4)], we have an injection

@
(2.1) Tor " (Q¢, 0, E) — Hi(Leso, )

of E-modules.
The Frobenius-Witt differential was introduced by Saito [Sai22b] to define the cotangent bundle of a
scheme over Z(p). The following relation between the cotangent complex and the FW-differential is known.
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Proposition 2.2 (¢f: [Sai22b, Corollary 4.12]). Let A be a local ring with residue field k of characteristic p > 0.

Let Ly, 4 denote the cotangent complex for the composition Speck 5 Speck — Spec A, where F is the Frobenius.
Then, the canonical morphism FQ}L1 ®u k — Hy(Ly/a) is an isomorphism.

2.2. Characteristic form

We briefly recall the construction of the characteristic form in [Sai23]. Let K be a henselian discrete
valuation field with residue field F of characteristic p > 0. Let Gg be the absolute Galois group of K, and let
(Gk)req., be Abbes-Saito’s non-logarithmic upper ramification filtration; see [AS02, Definition 3.4]. For an
element x € H!'(Gg, Q/Z), we define the total dimension dt x to be the smallest rational number r satisfying
X(Gy) =0 for all s > r. The total dimension is an integer by [Xial2, Theorem 4.3.5] and [Sai23, Theorem
4.31].

We fix some notation. Let L be a finite separable extension of K, and let K’ be a separable extension of K
of ramification index e. Let E, F” be the residue fields of L, K’, respectively. Let S,S’, T be the spectra of the
valuation rings Ok, Ok, Or, respectively. Take a closed immersion T — P to a smooth scheme over S. For a
rational number 7 > 0 such that er is an integer, we define the scheme P to be the dilatation PIPT5'] of

Ps, = P xg S’ with respect to the Cartier divisor D, defined by m¥, and the closed subscheme Tg, = T xg S’.

(See [Sai23, Definition 3.1.1] for the definition of the dilatation.) Let PS(T) be the normalization of Ps[r]. Let

PF[t] and Pfff) be the closed fibers of Ps[f] and PS(T) , respectively.

For an immersion T — P to a smooth scheme over S, we have an exact sequence
1 1
(2.2) 0— Nr/p — Qp,s®0, Or — Q7,5 — 0
of Op-modules. We say that an immersion T — P to a smooth scheme over S is minimal if the map
0Ll

induced by (2.2) is an isomorphism. There exists a minimal immersion by [Sai23, Lemma 1.2.3(1)].

Let L/K be a finite Galois extension, and let G = Gal(L/K) be the Galois group. Let ¥ > 1 be a rational
number such that G’ = U,.,G* = 1. By the reduced fiber theorem, see [BLR95], there exists a finite
separable extension K’ of K of ramification index e such that er is an integer and the geometric closed fiber
Ps(t) xg F is reduced, where F denotes an algebraic closure of F’. We define the scheme @)g/)K,F’ to be the

vector bundle Homp(mfg,/m%f’l, Tor?L (Q(IQL/OK, E))Y over Spec(E®pF’) eq. If we take a minimal immersion
r] N @(r) b
’red L/K,F’ y
[Sai23, Proposition 3.1.3(2)]. We define the scheme CDS)K,F’ to be Pg). The definition does not depend on the
choice of a minimal immersion T — P, by [Sai23, Lemma 3.3.7].

T — P to a smooth scheme over S, the isomorphism (2.3) induces an isomorphism P

We fix a morphism i: L — K; to a separable closure of K. Let T be the normalization of T xg S’ and
Tf =Tg xs SpecF. Then the morphism i; can be regarded as a point of Tf = Morg (L, K;). We have the
cartesian diagram

T — T¢

I

by [Sai23, Lemma 3.3.7].

(r)o (r)e (r) (r) . -
Let @L P and CDL K denote the connected component of @L K and (DL KE respectively, containing

(r)o is an additive G”-torsor over G)(r)o

the image of the closed point of T corresponding to iy. Then (DL KE LK E
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by [Sai23, Theorem 4.3.3(1)] in the sense of [Sai23, Definition 2.1.4(1)]. By [Sai23, Proposition 2.1.6], there

(r)
L /K F such that

r (r)o
0—G H(DL/KF—)QL/KE—)O

is an extension of smooth group schemes. We define the map

exists a group scheme structure on @

. 1/a(re
[D]: Hom(G’,F )—H (G)L/KF F,)

sending a character x to the image )(*[(D(r)of] of [(D( —] by x.: H1(® e ,G") — H1(®() ,F5).

L/K,F L/K,F L/K,F’ L/K,F P
By [Sai23, Proposition 2.1.6], the morphism [®] is an injection, and the image of [P] is contained in
(r)o
Ext(@L/KF F,).

Let mK be the ideal {x € K, | ordg x > r}, and let m? be the ideal {x € K, | ordg x > r} for the extension
of the valuation of K to Kj. If we identify EXt(@;J/)K = F,) with (@L/)K F) HomF(mK /m?,TorOL(QIT/S,_))
by the isomorphism [Sai23, Equation (2..1)], we have a commutative diagram

(r)o (r)o
0 G’ q)L/K F ®L/K,f 0
(24) [X j j[@]m
0 F, G, G, 0

of extensions of smooth group schemes, where the lower extension is the Artin-Schreier extension.
We define the characteristic form to be the composition of injections

char: Hom(Gr, Fp) il Homf(mk/m” TorOL (QlT/S,_)) — Homf(mk/m}{,Hl (LF/OK )),
where the second morphism is induced by the injection (2.1). For a character x: G" — F,, we call char x the
characteristic form of x.
We now state the rationality of the characteristic form.

Theorem 2.3. Let x € H'(K,Q/Z) be a character of total dimension m. Then the image of the characteristic
form char x: mK/merl - HI(LF/OK) =H(Lpin/0, ) ®pur F of x is contained in Hy(Lpup/0,)-

We give a proof of Theorem 2.3 in Section 5.

Remark 2.4. We have an example where the image of the characteristic form is not contained in H;(Lf/0, )
when we assume that the characteristic of F is 2. Consider the Kummer character x defined by t? =
1+ 7ceDy, where 7t is a uniformizer of K, e = ordg 2 and u € Ok is such that Vi ¢ F. Then, the
computation in [Sai22a, Lemma 3.2.5.3] shows that we have

wiu — Vi - w(2/me )
72
When the characteristic of the residue field is not 2, we can expect from the results in equal characteristic,

chary =

) ¢ Hy (Lpizjo, ) ®F me/m

see [Mat97, Proposition 3.2.3] and [Yatl7, Proposition 1.17], that the image of the characteristic form is
contained in Hy(Lp/0, ), but the author does not know how to prove.

We now state the integrality of the characteristic form. In this article, we define the local field of a ring A
at a prime ideal p as the fraction field of the completion of the localization A,. We note that the residue
field may not be perfect.

Theorem 2.5. Let A be an excellent regular local ring of dimension d with fraction field K and with residue
field k of characteristic p > 0. We assume c = [k : kP] < co and fix a lifting (x;);=1,. . of a p-basis of k to A.
Let (1;)i=1.._4 be a regular system of parameters of A, and let K; be the local field at the prime ideal generated

.....
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by mt;. We fix an integer r satisfying 1 <r < d. Let D; be the divisor on X = SpecA defined by 1;, and let U
be the complement of D = U'_ | D;. Let x be an element of H'(U,Q/Z), and let x|x. be the pullback of x by
SpecK; — U. We put m; = dt(x|k,). By Proposition 2.1 and Theorem 2.3, we may write

char()(IK]_) = Z @; jWTT; + Z B1,jwx; /n'lnl...n;ﬂ’

1<i<d 1<i<c

with a; j, ) ; € Frac(A/n]-)l/p Jor1<i<d,1<j<r satisfyingm;>2, and 1 <1 <c. Then, the following
properties hold:
() We have o, By j € Alm;.
(2) For integers j,j’ satisfying 1 < j,j’ <r, the images ofaf’j and af’j, in A/(1tj) + (1) are equal for each i,
and the images of By ; and B in A/(1j)+ (1tj)) are equal for each |.

We give a proof of Theorem 2.5 in Section 5.

3. Refined Swan conductor

In this section, we recall the notion of refined Swan conductor. The refined Swan conductor was defined
by Kato [Kat89] as an injection from the dual of the graded quotients to twisted cotangent spaces with
logarithmic poles. Using Abbes-Saito’s (logarithmic) ramification theory, see [AS02], Saito [Sail2] defined
another injection from the dual of the graded quotients to twisted cotangent spaces with logarithmic poles.
The coincidence of these two notions of refined Swan conductor is verified by Kato and Saito; see [KS19,
Theorem 1.5]. In this paper, we use the definition by Saito, but we slightly change the construction to
compare with the characteristic form. The construction here is also given by Saito.

The content of this section is based on Saito’s unpublished book on ramification theory.

3.1. Some preliminaries

Let K be a discrete valuation field with valuation ring Ok and with residue field F of characteristic p.
Let L be an extension of K with valuation ring O; and with residue field E.

Definition 3.1.

(1) We say that a scheme Q locally of finite type over S = SpecOk is log smooth over S if the following
conditions are satisfied:
e The scheme Q) is regular and flat over S, and the generic fiber Qg is smooth over K.
e The reduced closed fiber D = QF ;q is smooth over F.
e For every point x € D where the multiplicity m of D in Qp is divisible p, there exist an open
neighborhood U of x and a smooth morphism

U —> SpecOg[x, u*!]/(ux™ — 1)

over S where 7t denotes a uniformizer of Ok.
(2) Let Q be a log smooth scheme over S. We say that an immersion T = SpecO; — Q over S is exact
if the inverse image T X QF req is equal to SpecE.

Let Q be a log smooth scheme over S. Let D be the reduced closed fiber Q4. We introduce the
following notation:

QlQ(log) = Qé(logD),

Q}Q/s(log/log) = Coker(Qé(log) ®o, Og — Qé(log)).
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The Og-module QlQ(log) is locally free. By checking the case Q = Spec Ok |[x, u*!]/(ux™ — 1), we can also
prove that Q;(log) ®o, Og — QlQ(log) is a locally splitting injection and QlQ/S(log/log) is a locally free
Og-module.

For an exact immersion T = SpecO; — Q to a log smooth scheme over S, we have an exact sequence

(3.1) 0 — Nr/q — Q}Q/s(log/log) ®0, 0L — QlT/S(log/log) —0

of locally free Op-modules. Here, the first arrow N7/o — Qé/s(log/log) ®0, Oy is injective since the map
N1/0®0, L — Q}Q/S(log/log) ®0, L of L-vector spaces is injective.
We say that an exact immersion T — Q to a log smooth scheme over S is minimal if the map

(3.2) Tor(lgL (QIT/S(log/log), E) —> N7/0®0, E
induced by (3.1) is an isomorphism.

Lemma 3.2 (¢f. [Sai23, Lemma 1.2.3(1)]). There exists a minimal exact immersion T — Q to a log smooth scheme
over S.

Proof. Let @ be a uniformizer of K and m be the ramification index of L/K. Take a system of generators
ay,...,a, € Op over Ok, and put ua’ = 7t with u € Of. We define an exact closed immersion

T = SpecOp — Q' =SpecOk[X, ..., X, U /(UX]" - 1)
to a log smooth scheme sending X,...X,,, U to ay,...,a,,u. Let I be the kernel of the map
Ox[Xy,..., X, US/(UX" =) — Of.

Take a lifting fi,..., f; € I of a basis of the image of N1,o ®p, E — Q%Q'/S (log/log)®p,, E. Then the closed
subscheme Q of Q’ defined by the ideal (fy,..., f;) is log smooth over S on a neighborhood of T. We show
that the immersion T — Q is minimal.

The construction of Q shows that Nr/o ®p, E — QIQ/S (log/log) ®o,, E is a zero map. Hence the exact

sequence (3.1) induces the isomorphism Tor?L(QlT/S(log/log), E)— N1/0®0, E. U

We fix an exact immersion T = SpecO; — Q to a log smooth scheme over S. We have the following
commutative diagram:

0 0
Tor{" (Qf/s(log/log),E) = = = = = = = = = === = = = = - ~ Q1 (log)®F E
N1/0®0, E = Ne/o QL ®p, E 0 (log) @, E
QIQ/S (log/log) ®0, E QIQ/S(log/log) ®0, E,

where the left vertical sequence is obtained from (3.1). Since the vertical sequences are exact, we get the
morphism

(3.3) Tor(* (QL 5 (log/log), E) — Q1(log) ® E.
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Let us prove that this morphism is independent of the choice of exact immersions T — Q. If we take two
exact immersions T — Q, T — Q’, we may assume there exists a morphism Q — Q’ such that the diagram

T——Q

N

is commutative by replacing Q by an etale neighborhood of T. Then the independence of the morphism
(3.3) follows from the functoriality of Nt,q, Q}Q(log) with respect to Q.

~

3.2. Refined Swan conductor

Let K be a henselian discrete valuation field with residue field F of characteristic p > 0. Let Gk be the

absolute Galois group of K, and let (G} log

see [ASO2, Definition 3.12]. For an element x € H!(Gg,Q/Z), we define the Swan conductor sw x to be

the smallest rational number r satisfying x(Gj 1Og)

since Kato’s definition, see [Kat89], of the Swan conductor coincides with the definition here by [KS19,

)req., be Abbes-Saito’s logarithmic upper ramification filtration;

=0 for all s > r. The Swan conductor is an integer

Theorem 1.3] and the Swan conductor is defined as an integer in Kato’s definition.

We use the same notation as in Section 2.2. Take an exact closed immersion T — Q to a log smooth
scheme over S. For a rational number r > 0 such that er is an integer, we define the scheme Q[Sr,] to
be the dilatation QIPrTs'] of Qg with respect to the Cartier divisor D, defined by m%, and the closed
subscheme Ts . (See [Sai23, Definition 3.1.1] for the definition of the dilatation.)

Let Qg,) be the normalization of Q[ST,]. Let QE;,] and Qg,) be the closed fibers of Q[Sr,] and Qg,), respectively.

Let L/K be a finite Galois extension, and let G = Gal(L/K) be Galois group. Let r > 0 be a ra-
tional number such that Glr(:rg U5>7’G10g By the reduced fiber theorem, see [BLR95]|, there ex-
ists a finite separable extension K’ of K of ramification index e such that er is an integer and the
geometric closed fiber Q(Sr,) xg/ F is reduced. We define the scheme ®(Lr/)K,log,F’ to be the vector bun-

dle Homp(mK,/In%rfrl,TorOL(Q(lg Ok (log/log),E))" over Spec(E ®f F’);eq. If we take a minimal exact

immersion T — Q to a log smooth scheme over S, the isomorphism (3.2) induces an isomorphism

by [Sai23, Proposition 3.1.3(2)]. We define the scheme o) to be Qg,). By a

(r)
QF’ red ®L/K log,F’ L/K,log,F’

logarithmic variant of [Sai23, Lemma 3.3.7], the definition of (Di /)K log, F’
minimal exact immersion T — Q, and for every exact immersion T = SpecO; — Q to a log smooth scheme

does not depend on the choice of a

Q over S, we have a cartesian diagram

= (r) [r]
TF Qp QFred
8.4 \ R
(r) (r)
(DL/K,log,F’ ®L/K log,F’*
We fix a morphism ip: L — K to a separable closure of K. Let ®(L/K1 ogF 2 and (DL/Kl — denote the
connected components of @L /K JogF 20 nd @ L /Kl 7 Tespectively, containing the image of the closed point of

Tf corresponding to i.
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Proposition 3.3 (¢f. [Sai23, Theorem 4.3.3]). The Gr -torsor CDE/)KI — over ®L/K1 — is additive. Hence, there
(r)o

exists a group scheme structure on <DL /K log

F Such that t/ze sequence

(Mo gine

r
0— Glog P kiog F /K jogE 0
is an extension of smooth group schemes.
(r)o (r)o
Proof (Saito). First, we prove that q)L/Kl = isa Gy o -torsor over ®L/Kl . We write 0 € ®L/K1 — for the
image of the closed point of T corresponding to 7y. Then the fiber CDIS /)Kl Xl 0 is identified with

L/K log,F

CDg);l —NMorg(L,Ky). The latter is a Glrog—torsor, so the assertion follows.

Next we prove the Glog—torsor is additive. We reduce the assertion to the case where the ramification
index ey i is 1. By [KS19, Theorem 3.1], there exists an extension K’/K such that e; ;x> = 1 and the map
Q}:(log) — Qll:,(log) is injective, where L’ = LK’ denotes the composite field and F’ denotes the residue
field of K’. From the functoriality of the construction of @}, — O}, we deduce the commutative diagram

(r)e (r)e
L'/K’log,F’ @L’/K’,log,?
(r)e (r)e
L/K log,F ®L/K,10g,f'
. ’r (r)o (r)o .
Hence, by [Sai23, Corollary 2.1.8(3)], it suffices to show that the G Jog-torsor (D /K lon F OVl @ LK Jog F S
additive, where G’ = Gal(L’/K").
If ey /k is 1, then we have G” = Gr and the morphism o e 7 s equal to o"°_ e

L/K log,F L/K log L/K,F L/K,F
since every immersion T — P to a smooth scheme is an exact immersion to the log smooth scheme P under

the assumption ey = 1. Hence the assertion follows from the fact that (DIE /)K

(r)o
®L/K 7> see [Sai23, Theorem 4.3.3(1)]. O

is an additive torsor over

In the same way as in Section 2.2, we get a morphism
[@1og]: Homg (Glog p) — Homgp (mK /m Tor (QIT/S(log/log),f)).
We define the refined Swan conductor to be the composition of 1njections

[q)log ]

(3.5) rsw: Hom(Gr,Fp)—>HomF(mK /my Torl (QlT/S(log/log),F))
— Homf(m%s/mz,Q}j(log) ®F f),

where the second morphism is induced by the map (3.3). We call rsw x the refined Swan conductor of x for
x: G —F,

Remark 3.4. The construction of the refined Swan conductor here coincides with the construction in [Sail2].
Indeed, using the notation in [Sail2], we have the diagram

r (r) (7]
0 Clog Qr ﬁ =QF —0
0 G’ cD(r)o . ®(r)o p—|

log L/K log,F L/K log,F
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by (3.4), where the right vertical map is induced by the second morphism of (3.5).

Proposition 3.5. Let x € H'(K, Q/Z) be a character of Swan conductor n. Then, the image of the refined Swan
conductor rsw x : II’[K/m”Jr1 — Q! r(log) ®¢ F is contained in Q[l:(log).

Proof. The assertion follows from [KS19, Theorem 1.5] since the refined Swan conductor is defined by Kato
as a map to Q}(log). O

We recall the integrality of the refined Swan conductor proved by Kato.

Theorem 3.6 (c¢f [Kat89, Theorem 7.1 and Proposition 7.3]). Let A be an excellent regular local ring of
dimension d with fraction field K and with residue field k of characteristic p > 0. We assume ¢ = [k : kP] < oo
and fix a lifting (x;);=1,. . of a p-basis of k to A. Let (1t;)i=1,. 4 be a regular system of parameters of A, and
let K; be the local field at the prime ideal generated by 1;. We fix an integer v satisfying 1 <r <d. Let D; be
the divisor on X = Spec A defined by 1;, and let U be the complement of D = U’_, D;. Let x be an element of
HY(U,Q/Z), and put n; = sw(x|k,). Write

rsw )(lK Z a; ;dlogT; + Z @; ;dm; + Z B1,jdx /711 Y T
1<i<r r+1<i<d 1<i<c
with a;;, ;i € Frac(A/m;) for 1 <i<d, 1 <j<r satisfying n; > 1, and 1 <1 < c. Then, the following
properties hold:
(1) We have ai’j,ﬂ,’j € A/T(]
(2) For integers j, ] satisfying 1 < j,j’ <r, the images of &; ; and a; j» in A/(1;) + (1)) are equal for each i
and the images of P ; and B in A/(1j)+ (7j) are equal for each |.

4. Comparison

In this section, we compare the refined Swan conductor with the characteristic form.

Let K be a henselian discrete valuation field with residue field F of characteristic p > 0. Let x be an
element of H!(K,Q/Z), and let L be a finite abelian Galois extension of K such that x factors through
G = Gal(L/K). Since we have G" D G{Og O G™*! for a rational number r > 0 by [AS03, Lemma 5.3] and
the Swan conductor and the total dimension are integers (as explained in Sections 2.2 and 3.2), we have
dt(x) =sw(x)+1 or dt(x) = sw(x). We say that x is of ¢ype I if dt(x) = sw(x)+ 1 and x is of ¢ype II if

dt(x) = sw(x). If the residue field F of K is perfect, the character x is of type I by [AS03, Proposition 6.3.1].

Proposition 4.1 (¢f [Sai23, Propositions 1.1.8(b) and 1.1.10]). Let K be a discrete valuation field with residue
field F. There exists an extension K’ of K with perfect residue field F’ such that

(4.1) Hi (Lo, ) — Hi (Lro,.)
is injective and eg /i is equal to 1.

Proposition 4.2. Let K be a henselian discrete valuation field with residue field F. Let L be a finite Galois
extension of K of Galois group G. Let v > 0 be a rational number, and assume Glrgg =1 and GlrOg =G\, Then,
there exists a commutative diagram

Homyg (Gfog p) = Homf(m%s/mz,()}(log)@pf)

| |

Homg, (G"*!,F, ) <" Homg (mj /my, H, (L0, ) ®0, my'),
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where the right vertical map is induced by the composition of the maps
— 1 — —
Q}:(log) ®r F ﬂ) F=F®p IIIK/IIIIZ< R0 IIII_<1 N H; (LF/OK) Q0 m%l.
We reduce the proof of Proposition 4.2 to the following case, which is proved by Saito.

Lemma 4.3. Proposition 4.2 holds if the residue field E of L is a separable extension of F. (In this case, the

equality G{Og = G holds by [AS03, Proposition 6.3.1]).

Proof (Saito). If L/K is tamely ramified, then we have G| - G™! =1 and the assertion is trivial. Hence
we may assume that L/K is wildly ramified. Let m = pn be the ramification index of L/K. Since E is a
separable extension of F and thus O; is generated by a single element over Ok, we may take a minimal
immersion T = SpecOp — P to a smooth scheme of relative dimension 1 over S = SpecOg. We prove that
the dilatation PI!! contains an open subscheme Q such that Q is log smooth over S and the immersion
T — Q is a minimal exact immersion. Let x € P the image of the closed point of T. Since the assertion
is local at x, after replacing P by an open neighborhood of x, we may assume P = SpecA is affine and
Op = A/f with f € A. Let 1t be a uniformizer of K, and let s € A be a lifting of a uniformizer of L. Further
replacing P, we may assume that the canonical morphism P — Aé = SpecOk|s] is étale. Let m, = (f,s)
be the maximal ideal of A at x. Since 7 is divisible by 5™ in Op = A/f and 7 € m, —m2, we have f =7t
mod m? and my = (7,s). We may write f = ar + bs™ with a,b € A. Since f is not in m2,
a is not in m,. Hence we may assume 4 is a unit in A by replacing P. We have ant + bs" = 0 € Oy,

we see that

so b is not in m,, and we may also assume b is a unit. Then we have an equality (f, ) = (7,s™) of
ideals of A. We have P!l = Spec A[s"/n] = Spec A[v]/(s" — vrt), and PI!! contains an open subscheme
Q =SpecA[u*']/(us™ —m) =P XAl Ox[s,u*']/(us™ - 1t), which is log smooth over S since P — Aé is étale.
Since the closed subscheme Qr .4 of Q is defined by s, the inverse image T X QF req is E, and T — Q is
an exact immersion. We note that Q — P induces an isomorphism N7,p ®o, mI_<1 — N7/0.

Let K’ be a finite separable extension of K such that the closed fibers of Ps(f) and Q(Sr,) are reduced. By
the functoriality of dilatations and normalizations, the middle square of the diagram

(r+1) = (r+1) [r+1] = (r+1)
N Py, P red = Ok p
o
(r) = (r) [r] = (r)
cI)L/K,log,F’ QF’ QF’,red ®L/K,log,F’

is commutative, and we have a commutative diagram

0 — > GHl . q)(r+1)o . ®(r+1)o R

L/K,F L/K,F
r (r)o (r)o
0 Glog L/K log,F L/K log,F 0

of extensions of smooth group schemes. Hence we have a commutative diagram

I'sw

Home (G{Og,FP) — Homf(m%s/mg,Tor?L (Q}OL/OK (log/log),f))

| |

Homg, (61, Fp) _char, Homf(m}g/m}gg,Tor?L (Q}DL/OKE) ®0, my' )
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It suffices to show that the diagram

N1/ ®0, E Qp(log)®F E

y |

Nr/p ®0, E®0, mg' — H;(Lgj0,) ®0, mg'

is commutative. Since ¢ = f/7 = a+ bv defines a basis of N1,p, we consider the image of this basis. The
left vertical map sends g to f ® ©~!. The lower horizontal map sends f @t ! to wf@n ! =a-wr@n!.
The right horizontal map sends ¢ = f/7 to da+vdb + bvdlogv. This is equal to da+vdb +adlogm in
Q}(log) ® E since we have mdlogs —dlogv —dlogmn = 0 in QlQ(log) and p divides m and g =a+bv =0
in O; = A[g]/g. The right vertical map sends da +vdb +adlogm to a-wrn®@ 7! since a and b are units

in A and da+vdbEQ}9. O

Proof of Proposition 4.2. Let K’ be an extension as in Proposition 4.1, and let L’ = LK’ be the composition
field and G’ = Gal(L'/K’) be the Galois group. Then, we have G'*! = G'"*! by [Sai23, Corollary 4.2.6].

Since the residue field F’ of K’ is perfect, we have ’fog = G’™*! by [AS03, Proposition 6.3.1]. Since we

assume Glrog =G, we have Glrog = Gl'(r)g.
By the commutative diagram
Q}(log)®F F Q4. (log) ®p F’

| |

-1 -1
it suffices to show that the diagram

I'sw

Home ( Glrog’ Fp )

Homg (m} /m, O (log) @ F)

Homg, (Gyhr Fp) —— Hom (mf. /m, O} (log) & F')

Home (G’”l,FP) _char_ Homp(m}q/m}é},Hl (LF/OK,)‘X’OW m%l,)

(4.1)

char

Homg, (G™*1,F,) Homg (mj /m, Hy (L0, ) ®0, mg')

is commutative since the map Hl(LF/OK) - Hl(L?/OK,) is injective. The upper and lower squares are
commutative by the functoriality of the refined Swan conductor and of the characteristic form, respectively.
The middle square is commutative by Lemma 4.3 since F’ is perfect. U

The following proposition is proved by Saito.

Proposition 4.4. Let K be a henselian discrete valuation field with residue field F. Let L be a finite Galois
extension of K of Galois group G. Let r > 1 be a rational number, and assume G'™ = 1. Then, there exists a
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commutative diagram

char

Homg (G',F,) Homp (m /mj¢, Hy (g0, ))

| |

Home (G{Og,FP) LU Homf(m}(s/mg, Q}E(log) ®F f),
where the right vertical map is induced from the composition of the maps
H(Lg)p,) — Qp ® F — Qp(log) @F F.

Proof (Saito). We show that there exists a commutative diagram

(r)o (r)o
0 Glrog CI)L/K,log,F’ ®L/K,log,F’ 0
(4.4) l l l
(r)o (r)o
0 G’ Pk Ok —0

of extensions of smooth group schemes. We may take a minimal immersion T — P to a smooth scheme over

S = SpecOk and a minimal exact immersion T — Q to a log smooth scheme over S. By replacing Q by

an étale neighborhood, we may assume that there exists a morphism Q — P. Let K’ be a finite separable

extension of K such that the closed fibers of Ps(,r)

and normalizations, we have a commutative diagram

Q) — @y

[

(") [
Py Pl

Since Q — P induces a morphism

0 —— N7,p Q113/5 ®0, Or

| | |

0 — Np/g —= Q}Q/S(log/log)@)(gQ O —— QlT/S(log/log) —0

of free resolutions, we obtain a commutative diagram
Tor’: (Q1 E ) = Nt/p®0, E
1 0,/0¢ /P ®0,

(4.6) l

@] =
Tor; " (Q, 0, (log/log), E) —— Nr/o @0, E,

where the isomorphisms are (3.2) and (2.3). The diagram

(r) = (r) (7] = (r)
(DL/K,log,F’ QF’ QF’,red ®L/K,10g,F’

R

e‘/-\
2
|
-
-2
'-U.—
=
|
@
=
B
™

and Q(Sr,) are reduced. By the functoriality of dilatations
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is commutative by (4.5), (4.6) and the functoriality of normalizations and dilatations. Hence the diagram (4.4)
is commutative and defines a commutative diagram

[©]

Homg, (G’,FP) Homf(mk/mg,Tor?L (Q(loL /OK,f))

| |

Homg, (Gfog, Fp) @—logl Homf(m%s/mg), Tor(fL (Q}DL/OK (log/log),f) .

Hence it suffices to show that the diagram

Tor{" (Qb, 0 E) H (Lo, )

| |

@
Tor" (Q(19L/OK (log/log), E) — Q}D(log) ®r E

is commutative, where E denotes the residue field of L. We deduce from the injectivity of the map
Q%(log) ®rE — Qé(log) ®0, E and the commutative diagrams

O O
Tory* (Q4, /0. E) — Ni/p®0, E Tor} “(Q, 0, (l0g/1og), E) — Nr,o ®0, E
H1 (LE/(’)K) NE/P: Q;(log) ®FE Q(lg(log) ®OQ E
that it suffices to show that the diagram
O
TOI‘IL(Q}%/OK,E) Nt/p ®(9TE — Ng/p H; (LE/OK)

| | |

O,
Tor" (Q, 0, (10g/10g), E) — Nryq 80, E — Ng/g — Q}(l0g) ®0, E <— Ql(log) ® E

is commutative. The left square is commutative by (4.6). The middle square is commutative by the
functoriality of conormal sheaves. The right square is commutative since the diagram

Hy (Lgso, ) — Hi (Lgse) Qp®r E Qp(log)®F E
Ngsp NE/p, Qp, ®0,, E Qp(log)®F E
1
NE/Q NE/QF,red Q QF,red ®OQF,red
is commutative by the functoriality of cotangent complexes. OJ

5. Proof of the rationality and the integrality

In this section, we prove Theorems 2.3 and 2.5.
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Proof of Theorem 2.3. Let L be a finite abelian extension such that x factors through G = Gal(L/K). Let 7t
be a uniformizer, and let (v;);c; be a family of elements of Og such that (dv;);c; forms a basis of Q; We
put m = dt(x). First we consider the case where the character x is of type I. If we put

rsw(x) = [adlogn + Zﬁidvi]/nm‘l,
iel
then we have
char(x) = (awmn)/nc™
by Proposition 4.2, and the assertion follows from Proposition 3.5.
Second we consider the case where the character x is of type II. If we put

char(y) = (awn + Zﬁiwvi]/n”’,
iel

then we have

i€l

rsw(x) = [Zﬁidvi]/nm

by Proposition 4.4. We see that the j; are contained in F by Proposition 3.5. We show that a is contained in
F/P. We define the discrete valuation ring Ok by

Ok = Oklw; )it/ (w} —v;)

and let K’ be the fraction field of Og:. Then the residue field F” of K’ is F/P. Let L’ = LK’ be the composite
field and G” = Gal(L’/K’) be the Galois group. The map H; (L5, ) = Hi(Lpp,,) sends wr to wr and
the other basis elements to 0. The diagram

iel

Homg, (G, F,) —%~ Homg (m} /my*, H, Lz, ))

| l

Homg, (G’m’FP) — Homp(ml”gs,/mﬁfr,Hl (L?/OK,))

is commutative by the functoriality; see [Sai23, Equation (4.17)]. Here, the lower horizontal arrow is char
if G # 1 and zero if G = 1. If the coefficient of w7t is not zero, then the image of char x by the right
vertical arrow is not zero. Hence G™ is not trivial, and thus we have dt(x’) = m. Let x’ be the image of the
character y by the left vertical arrow. Then the characteristic form char(x’) is of the form

char(y’) = a - wn/n™.

If the character x’ is of type II, then the refined Swan conductor of x’ is zero and we have a contradiction.
Hence the character x’ is of type L. By the first case, we have o € F’ = F/?. O

Next, we prove Theorem 2.5. We prepare the following lemma.

Lemma 5.1. We use the notation of Theorem 2.5 and assume the dimension of A is 2. We define the regular local
ring A’ of dimension 2 by
A= A[“z:}’l]lslsc/(“g - nZ’ylp _xl)1§l§c'

The maximal ideal of A’ is generated by 701 and u,. Let K| be the local field of A’ at the prime ideal generated
by 11, and let K, be the local field of A" at the prime ideal generated by uy. Let L; be a finite abelian extension
of K; (i = 1,2) such that x|k, factors through G; = Gal(L;/K;). Let L; = L;K] be the composite field, and put
G;=Gal(L/K]). Let F; and F; be the residue fields of K; and K, respectively. Let U’ be the pullback of U by
SpecA’ — SpecA, and let x’ € H (U’,Q/Z) be the pullback of x. We put m’ = dt(x'|x)-
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(1) Assume that x|k, is wildly ramified. If the coefficient of wrty in char(x|k,) is not zero, then we have
my = my and the character x'|x: is of type 1. If the coefficient of wrty in char(x|k,) is zero, then we have
my < my.

(2) Assume that x|k, is of type L. If the coefficient of wrt; in char(x|k,) is not zero, then we have m’, = pm,
and the character X'|k; is of type L. If the coefficient of wrc; is zero, we have sw(x'|x;) < pmy.

Proof. (1) The map H; (Lg 0 ) — Hl(LF/OK,) sends w1ty to wrry and the other basis elements to 0. The
1 1
diagram 1

m char f.om my+ o
HomFP (Gl I’Fp) - HomFl (mKl,s/mKl,s ,Hl (LFl/OKl ))

|

m m my+

o (7.5,) = o 5 1)
is commutative by the functoriality, see [Sai23, Equation (4.17)], where the lower horizontal arrow is char
if Giml # 1 and zero if G;ml = 1. The first assertion follows from the same argument as in the proof of
Proposition 2.3. If the coefficient of wrt; in char(x|k,) is zero, then the image of char x|k, by the right
vertical arrow is zero. Hence we have Giml C Ker x’|x;, and we have my < my.

(2) The map Q}:Q(log) — Qll:é(log) sends dlogm; to dlogr; and the other basis elements to 0. Since
Xlk, is of type II, we have sw(x|k,) = m,. The diagram

Isw

Homg, (G3p,g Fp) ——— Homp(my” /my>", Q} (log) @, F)

| |

) _ (.. pma,  prrt ~1] T
Hom, (G F) — Hom; (mKé,s /g, -y log) 8, F2)

is commutative by the functoriality, see [KS19, Equation (4.17)], where the lower horizontal arrow is rsw

7 Vs
if Gzpfzgz # 1 and zero if G;{Z; = 1. Since we assume the coefficient of w7t is not zero, the coefficient of

/pmy .
2log is not

trivial, and thus we have sw(x'|x;) = pm,. Since the inequality ) < pm; holds, we obtain m} = pm,, and

dlogrt; is not zero and the image of rsw x|k, by the right vertical arrow is not zero. Hence G

the character x|k, is of type IL If the coefficient of w7ty in char(x|k,) is zero, then the image of rsw x|k, by
the right vertical arrow is zero. Hence we have G;’TZ; C Ker )(’|K2f, and we have sw()(’|Ké) < pmy,. O

Proof of Theorem 2.5. Since A/ is regular, it suffices to show that af’ jrBuj are elements of (A/7j), for any
prime ideal g of height 1 of A/7;. By replacing A by A;, we may assume dim A = 2. We use the notation of
Lemma 5.1

We divide the proof into six cases.

(a) The case wherer =1 and x|k, is of type I In this case, the characteristic form char(x|g,) is the image
of the refined Swan conductor rsw(x|g,) by Proposition 4.2. If we put

rsw()(|1<l): ardlogmy + aydm, + Z Bidx; /TZ;nl—ll

1<I<c
then we have
m
char(x|x,) = qywmy /7y

Since a; is in A/mt; by Theorem 3.6, the assertion follows.
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(b) The case wherer =1 and x|k, is of type Il In this case, the refined Swan conductor rsw(x|,) is the
image of the characteristic form char(x|x,) by Proposition 4.4. Hence, if we put

char(xlx,) = (alwnl + awr, + Z ﬁlwxl]/n;m,

1<I<c
then we have
rsw(xlg,) = [azdrcz + Z /j’ldxl]/nilﬂl.
1<I<c

This implies a5, f; € A/7y by Theorem 3.6. It remains to prove a’f € A/mty. If aq = 0, then the assertion
holds, so we may assume a; is not 0. Then we have m] = m; and

m
char(x'|x;) = a1 - wry /7,

and x|, is of type I by Lemma 5.1.1. Hence we have a; € A’/7; by case (a) applied to the triple (A", U’, x').
Since A/ is of characteristic p, we obtain af e A/m.
(c) The case wherer =2 and x|k, or x|k, is tamely ramified. In this case, we can prove the assertion by a

similar argument to that in cases (a) and (b).
(d) The case where r =2 and x|k, and x|k, are both of type 1. If we put

I'SW()(lKl) = [audlog (1 + 0(2’161712 + Z ﬁl}ldX]]/TZ'lnl_lTZgh_l;

1<i<c

my—1 -1
rsw(xlg,) = [al,zdﬂl +ay,,dlogT, + Z /31,2dx1]/”1 B
1<i<c
then we have

char(xl,) = moay ywmny /)" 1ty 2,
char(x|g,) = nlaz'zwnz/n;ﬂl 71;"2
by Proposition 4.2. Since ay is in A/7) and @, ; is in A/1; by Theorem 3.6, the assertion follows. We
note that the coefficient of w7ty in char(x|k, ) is contained in 71, - (A/777).
(e) The case wherer = 2 and x|k, is of type Il and x|k, is of type, or x|k, is of type 1 and x|, is of type . We
only consider the case where x|, is of type I and x|k, is of type L If we put

m m
char(xl|k,) = [alylwnl + W + E ﬁl,lwxl]/nl 1,2,
1<l<c

I'SW()(lKZ) = [al,zdlog T + Olzyzdlog Tty + Z ﬁlng[]/TC;anlglz_ly
1<I<c
then we have

_ -1
rsw(xlg,) = [azlldlogn2+ Z 7121/51,1dx1]/n;”1 n;”Z ,
1<i<c
char()(|K2) = 0(27211}7'(2/7'(;”1 7'(;”2

by Propositions 4.2 and 4.4. By Theorem 3.6, we have a; 1,1 € A/7; and a;; € A/7; and the equalities
a1 = ap, and B = 0 in A/(mp) + (7). Hence it suffices to show that af’l € A/my and af’l =0 in
A/(1ty) + (112).

If @;; = 0, then the assertion holds, so we may assume a;; is not 0. Then the characteristic form
char()(’lK{) is of the form

m, pm mhy—pin, my
char(x'|g;) = a1,1 - wmy/m; 1u§ =y’ ayy - wry /Ty Uy
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and x'|[g; is of type I by Lemma 5.11. Since we assume x|, is of type I, we have sw(x|x,) = m, — 1. Since
the ramification index of the extension K;/Kj is p, we have sw(x'|x;) < p(1m;—1) by [KS19, Proposition 5.L1].
Thus we have m’, — pm, < 0. Hence we have ay; € u; - (A’/11) by case (c) applied to the pair (A", U’, x’) if
X’lk; is tamely ramified, by case (d) if x’[x; is of type I, and by the first half of the argument in case (e) if
X'lk; is of type II. Hence we obtain af}l €1y (A/T).

(f) The case where r = 2 and x|k, and x|k, are both of type 1. If we put

m m
char(x|g,) = a1 wmny +aywrp + > Brawx; |/ 1ty 2,
1<l<c

m m
char(xlk,) = [ a1 ,wry + ag wr, + E Brawxy |/ 'ty 2,
1<l<c

then we have

rsw(xlk,) = [nzaz,ldlognz + Z ﬁl,ldxl]/n;n‘ngiz,

1<i<c

rsw(xlk,) = [nlal,zdlog T + Z ﬁl,zdxl]/ﬂ;nln?z
1<i<c
by Proposition 4.4. By Theorem 3.6, we have ;1 = f;, in A/(71) + (7). It suffices to show af,l e A/my,
af,z € A/mt; and af,l = aflz € A/(m1) + (11,) since the assertion corresponding to a; 1 and «a; , is proved by
switching 7ty and ;.
If @1 # 0 and a;, # 0, then we have dt(x'|x;) = m; and dt(x’|g;) = pm, by Lemma 5.1. Further,
char(x’|[x;) is of type I and char(x’[x;) is of type II, and we have

char()(’IKl') = al,lwnl/nrlugmz,

char(x'|x;) = awry /)" ugmz

by Lemma 5.1. By case (e), we have ay y € A’/1ty, a1 € A'/uy and ay 1 = a1 € A’/(101) + (u43). Hence we
obtain 0"1),1 € A/nl,af,z € A/mt, and af’l = af’z e A/(mty) + (105).
If 17 # 0 and a; , = 0, then we have
char(x'l;) = argwrer /7" ug™ = uy P ey ywm /gy

and x’|; is of type I by Lemma 5.1(1). If x’|g; is tamely ramified, then we have u;nz—pmzalll € A'/mty by
case (c) and m) —pmy =1—-pm, <0. If X'lx; is of type I, then we have u?z_pmzal'l € uy - (A’/1t1) by the
last note in,case (d) and mj —pmy = 1 +sw(x'lg;) — pma < 0 by Lemma 5.1(2). If x'|x; is of type II, then
we have u’znz_pmzalll € A’/ by case (e) and m; — pmy = sw(x'|g;) — pm, < 0 by Lemma 5.1(2). Hence we
have ay € u, - (A’/my) in any case, and we obtain af’l emn, - (A/my).

If ;7 =0 and a;, # 0, then we prove afrz € 1y - (A/m;) by induction on m; = dt(x|k,) > 1. By
Lemma 5.1(1), we have m] < my, and by Lemma 5.1(2), we have

7’
1,,Pm;

pm, my—n m
! o ag pwry /) g

char(x'|x;) = aywrey/m) ub"? = 1)
and X,|K§ is of type II. If )('|K1r is tamely ramified or of type I, the assertion is true by case (c) or (e),

respectively. If x’|g’ is of type II, we have np(ml_ml)ap € 1y - (A’/u,) by the induction hypothesis. Hence
P Y: : yp 1 1,2 y yp

we have ay 5 € 111 - (A’/u;), and we obtain af}z e my - (A/15). O
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6. F-characteristic cycle

In this section, we define the F-characteristic cycle of a rank 1 sheaf on a regular surface as a cycle on the
FW-cotangent bundle. We prove that the intersection with the 0-section computes the Swan conductor of
cohomology. We give an example of the F-characteristic cycle.

6.1. Refined Swan conductor and characteristic form of a rank 1 sheaf

Let K be a discrete valuation field of characteristic 0 with residue field F of characteristic p > 0. Let X be
a regular flat separated scheme of finite type over the valuation ring Ok of K, and let D be a divisor with
simple normal crossings. Let {D;};c; be the irreducible components of D, and let K; be the local field at the
generic point p; of D;. Let U be the complement of D. Let x be an element of H! (U, Q/Z). We define the
Swan conductor divisor R of x by

R, = ZSW(XlKi)Di
i€l

and denote the support of R, by Z,. We note that Z, is contained in the closed fiber of X. Indeed, if D;
intersects the generic fiber of X, the character x|k, is tamely ramified since the characteristic of K is zero.

By Theorem 3.6, there exists a unique global section

rsw(x) €T (Z,, Q) (log D)(Ry ), )
such that the germ rsw(x),. of rsw(x) is rsw(x|k,) if the character x|x, is wildly ramified. We call rsw(x)
the refined Swan conductor of x.

Definition 6.1 (¢f [Kat94, Definition 4.2]). Let x be a closed point of Z,. For i € I satisfying x € D; C Z
we define ord(x;x, D;) to be the maximal integer n > 0 such that

x>

rsw(X)|p,.x € MyQ% (1og D)(Ry)Ip,
where m, is the maximal ideal of Oy . We say that (X, U, x) is clean at x if the integer ord(x;x, D;) is zero

for every i € I satisfying x € D; C Z,. We say that (X, U, x) is clean if (X, U, x) is clean at every closed
point in Z,.
We define the total dimension divisor R}, by
R;( = Zdt (XlKi)Di'
i€l
By Proposition 2.2 and Theorem 2.5, there exists a unique global section
(6.1) char(x) € T(Z,, FQX (PR} )Iz,)
such that the germ char( )()p], of char(y) is

m m,
I WA

1<i<d 1<I<c
using the notation of Theorem 2.5 if the character x| k; is wildly ramified. We call char(x) the characteristic
form of x.
Definition 6.2. Let x be a closed point of Z,. For i € I satisfying x € D; C Z,, we define n’ to be the
maximal integer #’ > 0 such that
char(x)Ip,.x € m; FOx(PR )b,

where 7, is the maximal ideal of Ox . We define ord’(x;x,D;) by ord’(x;x,D;) = n’/p. We say that
(X, U, x) is non-degenerate at x if ord’(x;x, D;) is zero for every i € I satisfying x € D; C Z,,, and we say
that (X, U, x) is non-degenerate if (X, U, x) is non-degenerate at every point at x € Z, .
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Remark 6.3. By definition, p -ord’(x;x, D;) is an integer, but ord’(x;x, D;) may not be an integer. Assume
that the characteristic of the residue field of K is 2, and put e = ordg 2. We consider the scheme
X =SpecOk[T,(1 +m2¢UT3)71]. Let U be the generic fiber SpecK[T,(1 + 7" UT3)71] and let
x € H'(U,F,) be the Kummer character defined by t*> = 1 + 77>~ T3, Then we have
T4 wT - T3 w2/ ")

d
and ord’(x, x, Xp) = 3/2, where x denotes the closed point defined by (7, T).

Similarly to Remark 2.4, we can expect that ord’(x;x, D;) is an integer if the characteristic of the residue
field of K is not 2.

char(y) =

6.2. F-characteristic cycle

Let K be a complete discrete valuation field of characteristic 0 with perfect residue field F of characteristic
p > 0. Let X be a regular flat separated scheme of finite type over the valuation ring Ok of K, and let D be
a divisor with simple normal crossings. We assume that X is purely of dimension 2. Let D;,...,D,, be the
irreducible components of D, and let K; be the local field at the generic point p; of D;. We put U =X -D
and let j: U — X be the open immersion. Let X and Df be the closed fibers of X and D. We fix a finite
field A of characteristic [ # p. Let F be a locally constant constructible sheaf of A-modules of rank 1 on U,
and let x: T(?b(U) — A* be the corresponding character. We fix an inclusion A* — Q/Z and regard x as
an element of H! (U,Q/Z).

Let Iy, Iw,y, It x, I, be the subsets of I consisting of the i € I such that x|k, is tamely ramified, wildly
ramified, of type I and of type II, respectively. For a closed point x in D, let I, be the subset of I consisting
of i € I such that x € D; and I, ; , be I, ) NIy, where *= W, T,LIL. Let Zy,, be the union Uje, D;.

We define the sub-vector bundle L; , of T*X(log D)|p, for i € Iy , as the image of the multiplication by
the refined Swan conductor of ,

) ord(x;x, Dy)[x]

XGDI'

xrsw(x)lp, : Ox (~Ry ) ®oy Op, — Qx(log D)lp,-

Definition 6.4 (¢f [Kat94, Equation (3.4.4)]). Assume that (X, U, x) is clean. We define the logarithmic
characteristic cycle CC!°8 j, F as a cycle on the logarithmic cotangent bundle T*X(log D)| Dy by

CC8 . F = [TiX(logD)lp, |+ ) sw(xlk)[Lix),

i€ly

where Ty X(log D)|p, denotes the 0-section of T*X(log D)|p,.

In the case dim X = 2, we define the logarithmic characteristic cycle without the assumption on the
cleanness of (X, U, x). By [Kat94, Theorem 4.1], there exist successive blowups f: X’ — X at closed points
such that f~!(U) is isomorphic to U via f and (X', f~}(U), f*x) is clean. Let D’ be the inverse image of D,
and let

pr dfP
T*X(log D)|p, «— T*X(log D)Ip, xp, Dy — T“‘X’(logD’)lDé
be the algebraic correspondence. We define CC!°8 j, F — [TxX(log D)|p,] to be the pushforward by pr of
the pullback of CC!°8 jif*F =[Tx.X'(log D’)|p,] by dfD. This is independent of the choice of blowups by
[Kat94, Remark 5.7]. We define the logarithmic characteristic cycle as

(62) CC*8j.F = [T X(log D)lp, |+ ) sw(xli)[Li|+ ) s TiX(logD),

i€ly . x€Dp

where T; X(log D) denotes the fiber at x.
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Theorem 6.5 (Conductor formula, ¢f. [KSI3, Corollary 7.5.3 and Theorem 8.3.7]). Assume dim X = 2 and X
is proper over Ok. Then we have

(Cclo8 j,F — [ T3 X (log D)Ip, |, Ty X (log D)Ip, ) = —Swi (Xg, jiF )+ Swi (X jiA),

T+X(log D)Ipy
where SW (X, j1F) denotes the alternating sum ), (=1)" Swx H™ (X%, jiF).

Proof. There exist successive blowups f: X’ — X at closed points such that (X', f~1(U), f*x) is clean. Since
both sides do not change after replacing X by X’, we may assume (X, U, x) is clean. The intersection

(CCY8 juF ~ [T X (log D)lp, ], Tx X (0g D)o, ) .y 10c oy
F

equals —degc, with the notation in [KS13, Equation (8.3.0.1)]. Hence the assertion follows by [KSI3,
Corollary 7.5.3 and Theorem 8.3.7]. 0

We define the sub-vector bundle L; L Of FT'X Ip, for i € Iy , as the image of the multiplication by the
characteristic form of y;,

HFQ}('Dl

Zpord'(x;x, D;)[x]

xED,‘

xchar(x)lp,: Ox (—pR;() ®0, Op,

For i € It ;, we define L;’X to be F*(Tp, X|p, ), where F* is the pullback by the Frobenius F: D; p — D; f.

Definition 6.6. Assume dimX = 2. We define the F-characteristic cycle FCCjF as a cycle on the
FW-cotangent bundle FT*X|x, by

’

. 1 * 7 * *
(6.3) FCCiF =~ [FTiXlx, |+ iez[dt(xlm) L]+ x; pty [FTiX]
F
where FTy X|x, denotes the 0-section of FT*X|x, and
(6.4) te=#L,—1+s,+ Z sw()(|Ki)(ord'()(;x,Di) —ord(x;x,D;)) + Z(ord()(;x, D;)+1—#I,).

ZIGIW'X ZIGI]['X

Here, the integer s, is the coefficient of the fiber at x in CC!°8 j, F; see (6.2).

The integrality of the characteristic form (Theorem 2.5) is necessary to define ¢, for all closed points
X e DF-

Lemma 6.7. Let h: W — X be an étale morphism, and let j’: W xx U — W be the base change of j. Then we
have
FCCj/h*F = h"FCC . F.

Proof. Let K/ be the local field at the generic point of h*D;. Then we have sw(xlx,) = sw((h*)()|Kl_f),
dt(xlk,) = dt((h*)()|K7(), h*rsw(x) = rsw(h*x) and h*char(x) = char(h* x). Hence the assertion follows from
Definition 6.6. O

Remark 6.8. The F-characteristic cycle FCC j| F is equal to

_ %[FT)}Xle] =Y B (T, XIo, )]+ Y dttde) [t ]+ Y pr[ETEXY|,

i€] i€]’ xe€Dg
where | denotes the subset of I consisting of the i € I such that D; N X is not empty and ]’ denotes I —].
Then (1/p)[FTxX|x, ]+ Zie][F*(TBixlDi,p)] is a l-cycle, and } ;cp dt(Xle)[Lz/‘,x] + erDFptx[F*T;X] is a
2-cycle. Later, we consider the difference FCC j;F —FCC j;A. This is a 2-cycle, so the intersection number
with the 0-section is defined.
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Remark 6.9. In this remark, we consider the equal-characteristic case. Let X be a smooth scheme over a
perfect field k of characteristic p > 0. For simplicity, we assume p # 2. Let D = U;¢;D; be a divisor with
simple normal crossings, and let j: U = X —D — X be the open immersion. Let F be a locally constant
sheaf of A-modules of rank 1 on U. Then the characteristic cycle CCj,F is defined as a cycle on the
cotangent bundle T*X. If the dimension of X is 2, we have

CCHF =[TX]+ ) _dt(xlk) [ ]+ ) tITeX]

i€l x€Dp

by [Yat20, Theorem 6.1]. Here, L;"X denotes the vector bundle defined by the characteristic form in the sense
of [Yat20], and t, is defined in [Yat20] by the same form as in (6.4).
Let F: X — X be the Frobenius. If we put

. 1 * Ak *1 /) * ok
FCCjiF =—| S [FTix] + Y dt(xlk)[FLY, ]+ ) ptlFTEX)

iel x€Dp

as a cycle on FT*X = F*T*X, then we have
E.FCCj,F =—p-CCjF,
where F, denotes the pushforward by the projection F*T*X — T*X.

The rationality of the characteristic form (Theorem 2.3) implies the integrality of the coefficients of the
fibers in the F-characteristic cycle.

Lemma 6.10. The coefficients pt, of the fibers [F*T; X in the F-characteristic cycle (6.3) are integers. If (X, U, x)
is clean at x € D, we have t,, > 0.

Proof- In the definition (6.4) of t,, the terms other than sw( x| Kl_)ord’( X;x,D;) are integers. By Definition 6.2,
we see that the products p -ord’(x;x, D;) are integers.
If (X, U, x) is clean at x, we have

bo=#L—1+ Z sw(xlx,)-ord'(x;x, D;) + Zu —#I,)
i€ly i€lyy

by (6.4). Since we have ord’(x;x,D;) > 0, we have t, > 0 unless ord’(x;x,D;) = 0 for all i € I}y , and
#I, = #Iy, = 2. If #I, = #Iy, = 2, we have rsw(x), = 0 by Proposition 4.4, and this contradicts the
assumption. U

Remark 6.11. The author conjectures that the terms sw(x|x,)ord’(x;x, D;) are also integers and thus the t,
are integers. We can check that sw(x| K[)ord'( X;x,D;) is an integer in the following cases:

(I) The character x|k, is of type L
(2) The character x|k, is defined by a Kummer equation of degree p.

Indeed, in case (1), ord’(x;x,D;) is an integer. In case (2), if the character Xk, is of type II, the Swan
conductor sw(x|k,) is divisible by p.

The author also conjectures that we have f, > 0 even if (X, U, x) is not clean at x. In the equal-
characteristic case, this follows from the fact that j F[2] is perverse by [Sail6, Proposition 5.14.1].

Let F: X — Xf be the Frobenius. We define
Tp: FQ%( — F*Q;((logD)lxp
as the composition of the maps

FQ} — FQ}/Ox, -w(p) =F'Q) — F'Q(logD)lx,,
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where the middle isomorphism is the map [Sai22b, Equation (4-1)]. The map 7 defines a morphism
tp: FT"X|p, — F'T"X(log D)lp,

of vector bundles over Dp.
Let
1y CHy (FT*X|p,) — CH, (T*X(log D)|p, )

be the Gysin homomorphism for 7p.

Lemma 6.12 (¢f. [Yat20, Lemma 4.3(i)]). Assume dim X = 2. Let i be an element of Iy .. Let F: D; — D; be the
Frobenius.

() We havedimty' (F°L; ) = 2.

(2) We have L; = F'Tp X.

(3) We have
th ([FLix|) = [Li ]+ ) plord’(x, D) —ord(x;x, D) [FTX]+ ) p[FT;X]
XED,‘ XEZI'XQD,'
in Z(tp! (F°L; ;).

Proof- We may assume [ = {1,2} and i = 1. Let x be a closed point of D;, and let (771, 7;) be a local
coordinate at x such that 7, is a local equation of D; for i’ € I,. Then FQ}(,X is a free Ox y-module with
basis (w7ty, wt,). Its dual basis is denoted by (d'/d’11,0’/d'1;). Let Z,Z’, J be the defining ideal sheaves
of Ly, C T*X(logD)|p,, Lz,',x C FT*X|p, and TBl (FL; ) C FT*X|p,, respectively.

First, we consider the case I, = {1}. Then Q}((log D), is a free Ox y-module with basis (dlogm,dmn;).
Its dual basis is denoted by (d/dlogmy, d/dm;). If we put

rsw(x), = (ajdlogmy + aydr,)/n)’,

where ay,a; € Ox , and n; = sw(x|,), then

—ord(x;x,D1)

I, = (nz (apd/dlogmy — a18/8n2))

and

jx — (n;POrd(X;x,Dl) (_alfa/anz)).

Since x|k, is of type I, we have

p ny+1)

char(x), = alwnl/n’f(

by Proposition 4.2, and thus we have ord’(x;x, D;) = ordy, (a;). Hence we have

T = (ngord’(){;x,Dl)—pord()(;x,Dl)a/aTcz),

I,é — (T(;POrd'(X;X,Dﬂ (_alfa//a/nz)) _ (a//a/nz).

The assertion follows.
Second, we consider the case I, = {1,2}. Then Q}((log D), is a free Oy -module with basis
(dlogmy,dlogm,). Its dual basis is denoted by (d/dlogmy,d/dlog ;). If we put

rsw(x), = (a1 dlogmt; + aydlogm,)/m) 1ts?,
where a1, a; € Ox  and n; = sw(x|,), then

7, = (ngord(x;x’Dl) (ap0/dlog | — @y d/dlog 7'12)),
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and
. d( > ,D)
T = (n2por x:%,D (_afnga/anz))-
Since 7 = 1 is an element of Iy ,, we have

_ p._po p(m+1) _p(ny+0)
char(x)Ip, x = a) 10y wm /1 et

by Proposition 4.2, where ¢ is 1 if x|k, is tamely ramified or of type I and 0 if x|, is of type Il. Hence we
have ord’(x;x, D;) = ord,,(a;)+ 6 and

jx _ (Tcgz)ord’()(;x,D] )—pord(x;x,D; )+p(1_6)a/87'(2),

I, = (9'/9'm,).

The assertion follows. O

Lemma 6.13 (¢f. [Yat20, Lemmas 4.4 and 4.5]). Assume dimX = 2. Let i be an element of Iy ,, and let
q;: ’[131 (F*L; ) — D; be the canonical projection. Let F: D; — D; be the Frobenius.

() We have tp!(F*L; ) = FT*X|p,.

(2) We have

o ([FLiy]) = 4" [C1 (F*T*X (log D) Ip, ) N [D;] - ¢1 (Ox (-pRy ) Ip, ) N [Di] - z pord(x;x, D;)[x]

XEDI'

in CHQ(PT*X|D1)
(3) We have

Lic]=a" [cl(FT*XIDi) N[D;] =1 (Ox (PR} )Ip,) N [Di] = ) pord’(x;x, Di)[x]

XED,‘

in CHz(FT*XlD’)
(4) We have

[T, x] =i

c1(Ox (-pRy)lp, ) N [Di] + ZP(Ofd(X}X:Di) —#l + 1)[X]]

XEDi

in CH,(FT*X|p).

Proof. (1) We use the same notation as in the proof of Lemma 6.12. Since x|k, is of type I, the refined Swan
conductor is the image of the characteristic form by Proposition 4.4 and thus a1 = 0. Hence Z’ = 0 and we
have 7' (FL; ) = FT*X|p,.

(2) By applying the excess intersection formula to the cartesian diagram

F'L;

° |

D; — F'T*X(log D)lp,,

D;

we see that

[FLi x| = 47 (e1(F*T*X (log D)Ip,) N [Di] = ¢1 (F°L;, ) N [Di])
in CH,(F*T*X(log D)|p,), where the map g;: F*'T*X(log D)|p, — D; is the canonical projection. Since the
sub-vector bundle L; , of T*X(log D)|p, is defined by the image of the injection

Y ord(x;x, Dy)[x]

XGD,‘

xrsw(X)Ip.: Ox(-Ry) ®o, Op. — Q% (logD)lp,,
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the assertion holds.
(3) By applying the excess intersection formula to the cartesian diagram

D; L;}X
| =
D; — FT*X|p,,
we see that
[L; )=/ (e (FT*XIp, ) n [Di] = e (L, ) N [D3])
in CHy(FT*X|p,). Since the sub-vector bundle L;'X of FT*X|p, is defined by the image of the injection

_)FQ}AD,"

Y pord'(x;x,D;)x]

XED,'

xchar(x)lp,: Ox (—pR;() ®0, Op,

the assertion holds.
(4) By applying the excess intersection formula to the cartesian diagram

D; —FT; X
| - |
D; — FT*X|p,,
we see that
[FTp, X] = /(e (P T*Dy) N [Dy))
in CHy(FT*X|p,) since the sequence
0— F*TBiX — FT*X|p, — FT*D; — 0

is exact by [Sai22a, Equation (2-12)] and FT*D; = F*T*D; by [Sai22a, Equation (2-4)]. Since D; is a scheme
over F, the computation in [Yat20, Lemma 4.5(iii)] implies that we have an equality

ci(T*Dy) N [D;] = ¢

Op, (-(Ry N D;))N[D;] + Z (ord(x;x, D;) — #1, + 1][x]

XEDI'

in CHy(D;). Since F*Qll)l_ = (QlD, )®P, we have

ci(F*T*D;)N[D;] = ¢

OX (_pR)()|D,-) N [Dz] + Zp(ord()(;x'Di)_#Ix + 1][x]

XEDZ'
in CHy(D;). O
Lemma 6.14. Assume D; is contained in the closed fiber Dy. Let F: D; — D; be the Frobenius. Then we have
&1 (F'T'X(log D)lp, ) (D] = e (FT'XIp, ) N [Di]+ ) _e1 (Ox(pD))lp,) N [Di]
jel
in CHo(DF)
Proof. Let D; be the closed subscheme consisting of the closed points x of D; such that #I,, = 2. By the two
exact sequences
0 — F*Np,x — FQxlp, — F'Qp, —0,

F*res

0 — F'Qyp, (log D}) — F*Q¥ (log D)|p, — Op, — 0
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of locally free D;-modules, we have

¢ (F*T*X(log D)lp, ) N [Di] = ¢1 (FT*XIp, ) N [D;] =
1 (FQp, (log D)) N [Di] = 1 (FQp, ) 1 [Di] - 1 (F'Np,x ) N [Di]
Applying [Yat20, Equation (4.10)] to the scheme D;, we obtain

¢ (@, (log D)) N [D;] =1 (Qh ) N[Di] = ) e (Op,(D;n D)) N[Di]
jel
;‘::i
Since we have F*Np /x = F*Ox(-D;)|p., the assertion follows. O

Theorem 6.15. Assume dim X = 2 and X is proper over Og. Then we have

(FCCji1F - FCCjiA, FT; X]x, )pquF =p- (Swk (X jiF ) - Swi (X 1A )

Proof- We do some computations used later. By Lemma 6.12, we have

6.5) T} ZSW(XlKi)[F*Lin] =

ZIEILX
ZSW(Xle) [LE,X]+ Zp(ord'()(;x,Di)—ord()(;x,D,-))[F*T;X]+ Z p[F*T:X]|.
iEILX XED,' XEZ][,XPID{
We note that if i € I ,, we have

4 (c1(Ox(Zuy)lp, ) nIDil)= ) [FTX],

XEZ]['X le

where g/ denotes the canonical projection g;: T]SI(F*Li,)() — D; as in Lemma 6.13.
By Lemma 6.13(2) and (3) and Lemma 6.14, we have

(6.6) T}, st()dKi)[F*Li,X] -

i€ly,
> sw(xd, )| [Li ]+ ) _plord (xx,Dy) —ord(x;x Di) [F T X+ 47 (e1 (Ox (Zu ) I, ) 0 [Di]) |-
i€ly, xeD;

Since we have

st()(IKi)q;*(Cl (OX (pZ]I,X)lD,-) N [Di]) = Z q;*(cl (OX (pRX)lDi) n [Di])’

iel i€ly,,

we have

67) ) sw(xlk )4 (c1 (Ox (pZuy)lp, ) N [Di]) =

i€l

Z ~[F'Ty X] + Zp(ord()(;x, D;) - #I, + 1)[F* T X))

i€ly, xeD;
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by Lemma 6.13(4). The sum of equalities (6.5) and (6.6) gives the equality

(6.8) T}D[ZSW(MKI.)[F*LLX]]:

i€l

_ Z [F*TBiX] + ZSW(XlKi)[[LZ{,X] + Zp(ord'()(;x,Di) —ord(x;x,D;)) [F'T: X]

i€ly, i€l xeD;

+ Z Zp(ord()(;x, D;) - #I, + 1)[F*T:X].

ieII,X XED,‘
We have
(F*Li y, T3 X(log D)|p, )F*T*X(logDNDF = ¢y (F*(T*X(log D)Ip,/Li x )) N [Df]
(6.9) =p-(c1(T*X(log D)Ip,/Li ;) N [Dt])
=p- (Li:X’ T§X(10gD)|DF)

T*X(logD)lp,. *
First, we assume that s, = 0 for every x € Dg. Then it suffices to show that we have
(6.10) FCCj,.F ~FCCjiA = —1p, (F*(CC8 j,F T3 X (log D)Ip, ]))
in CHy(FT*X|p,) by Theorem 6.5 and (6.9). This equality holds by (6.8) and Lemma 6.12(2) and the

definition (6.4) of t,.
Next, we consider the general case. By the definition of the logarithmic characteristic cycle, we have

CC°8j.F - [Tz X(log D)lp, |~ ) _ sc[T;X(logD)] = ) sw(xlx,)[Liy]-

x€Dp i€l

Then the equality (6.8) shows that we have
o [—F* [cclog jiF =[TxX(log D)lp, | - ) _ s, [T;X(logD)]

xeDgp
(6.11) =7 [— Y sw(xl,)F* [Li,x]]

i€l

=FCCjiF ~FCCjiA+ ) ps,[F'T;X]

XEDP

by the definition of f,. By Theorem 6.5, we have

(6.12) CCl8 i, F ~[TxX(log D)lp, | - Z s [T:X(logD)]

.XEDI:

, TxX(log D)|p,

T*X(log D)Ipy.
Swg (Xf,]tf) —Swg (Xf,]u[\) + Z Sx

XGDI:
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since the intersection number (T X (log D), Tx X(log D)|p,) is 1. By (6.9), we have

(613) |-F*|CC8jiF - [Ty X(log D)Ip, |- st[T;X(logD)]

x€Dp

, TxX(log D)|p,

F*T*X(log D)Ip,

Swi (Xg it F) — Swi (Xg juh ) + st].

p .
xeDgp
By (6.11) and (6.13), we have
[FCC]‘!}'—FCC]'!A+ Zpsx[F*Tx*X],PT;(XbF _
x€Dp FT*X'DF

p.[SWK(XK,]'!.F)—SwK(XK,j,A)Jr st].

XEDF

Since the intersection number (F*T; X, FTy X|p,) is 1, the assertion follows. O

6.3. Example

In this subsection, we give an example of the F-characteristic cycle.

Let p > 2 be a prime number, and let C,, be a primitive p™ root of unity. Let K be a complete discrete
valuation field tamely ramified over Q,(C,) with valuation ring Og and with residue field F. Let e = ordg p
be the absolute ramification index, and put ¢’ = pe/(p —1). We fix a uniformizer 7t and write p = u7t® with
some u € O%. Let a,b,c be integers satisfying 0 <a,b <p, (p,c)=1and a+b+c=0. We put X = P}DK. Let
U be the open subscheme Spec K[x*!,(1 —x)7!] of X, and let j: U — X be the open immersion. Let K
be the Kummer sheaf defined by t? = (=1)°x*(1 — x)? on U. For convenience, we change the coordinate to
y =x+a/c. Let D,Ey, E,, E3 be divisors defined by (1t = 0),(y —a/c = 0),(y + b/c = 0), (y = o), respectively.
Then DU E; UE, UEj; is a divisor with simple normal crossings, and U is the complement of this divisor.
Let zj be the closed point {7t =y = 0}, and let z; be the closed point E; N D for i = 1,2,3. Let M be the
local field at the generic point of D.

We compute the F-characteristic cycle FCC K of ;K. Applying Theorem 6.15, we compute the Swan
conductor of Hl(Plf, jiK). This cohomology group realizes the Jacobi sum Hecke character as in [CM88].
Coleman-McCallum [CM88], Miki [Mik94] and Tsushima [TsulO] computed the conductor or, explicitly, the
ramified component of the Jacobi sum Hecke character in more general cases by different methods.

Remark 6.16. We note that the Swan conductor can be calculated more easily by computing the logarithmic
characteristic cycle and applying Kato-Saito’s conductor formula (Theorem 6.5) because we need to compute
the logarithmic characteristic cycle for the computation of the F-characteristic cycle. The subject of this
article is non-logarithmic theory, so we compute the Swan conductor using the F-characteristic cycle.

We write x for the character corresponding to K. We have sw(x/|y) = dt(x|y) = €/, and the character
X|p is of type 1. We have

—cy-dy
6.14 =
(6:14) WA (y—ale)y + b/e)
and
_cPyP.
(6.15) chary = Yy

(1=Cp)P* - (p—a/c)P(y + b/c)P
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on the complement of E3 by [KS13, Corollary 8.2.3]. The character x is not clean and not non-degenerate
only at z(, and we have ord(x;z, D) = ord’(x;z¢, D) = 1.
We prove an elementary lemma used later.

Lemma 6.17. Let d be a rational number satisfying v,(d) > 0. We put r = vp(dp_1 —1). Then there exists an
integer | such that p” divides 1 —dIP. There does not exist any integer | such that p™' divides 1 —dIP.

Proof. Since p” divides dP~! ~1 = (d—1)(dP=2+---+d +1), we see that p" divides d—1 or d(dP~3+---+1)+1.
Therefore, we may take [ = 1 or [ = —(dP~3 +---+ 1) because we have dIP = dPIP =1 mod p".

If there exists an integer [ such that p’*! divides 1 —dIP, then we have vp(dp_1 —1) > r+1, which gives a
contradiction. g

Now we compute the F-characteristic cycle of j;K. We have to divide the computation into two cases.
Case 1. We assume vp((a"bbcc)p_1 -1)=1.

Lemma 6.18. We put Y, = SpecOk[vy, ] for a natural number 1 < n < e/2. Let M,, be the local field at
the generic point of the closed fiber. Let x, be the Kummer character defined around (v, = 0) by the equation
tP = (=1)*(p, " — a/c)*(v, 1" + b/c)b. Then we have the following properties:

(1) We have sw(xplm,)=e€ —2n.

(2) Ifn <e/2, the character x,, is not clean at v, = 0.
(3) If n=e/2, the character x,, is clean.

Proof. By Lemma 6.17, we may take an integer [ such that p divides 1 —a?b’cIP. Then we have

(It)P = (=1)“1P(y, " - a/c)*(y, =" + b/c)’
a—lbb—l

a
— 1P| 2pb € 2. 2n .
IP1a"b’ct + Searvs In™ +

-11,b-1

a® urr o, o,
—ynn +...
26u+b—3

a-11,b-1
LT o o
2ca+b-3 Yn

=l+pm+
=1+mun®+

for some rational number m such that vp(m) = 0, and the omitted part is divisible by 703", Hence, assertion @0
follows. Around the closed point {1t = y,, = 0}, the refined Swan conductor is

—q~1pb-1¢3-a-b (ny,% -dlogm+y, - dyn)
(1-Cp)P - 1721 - (y, 1" — a/c) (y, 7" + b/c)

rsw(x) =

if n<e/2 and
- ((2‘1a“‘1 bo-l3-a=bipy2 4 mu)e -dlogm +a*1pb-1c3-abipy, . dyn)

(1=Cp)P - 2" (p, 1" —a/c) (7" + b/c) IP

rsw(x) =

if n = e/2 by [KS13, Corollary 8.2.3]. Since we assume 1 is prime to p, assertions (2) and (3) follow. g

We now compute the coefficient s, of the fiber in the logarithmic characteristic cycle. We may work
locally around z,. We define the successive blowups as follows.

Let X; — X be the blowup at the closed point {7t = y = 0}. The scheme X; is a union of two open
subschemes U; = SpecOxk|[y, x1]/(yx; — 1) and Y; = SpecOk[y; |, where vyt = y. Then we can check that
the character x is clean on U;. By Lemma 6.18, x is not clean at y; = 0. Let X; — X be the blowup at the
closed point {1t = y; = 0}. Repeating this process, we get the successive blowups X, = - > X; —» Xg =X
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at non-clean closed points. The character x is clean on X,/, by Lemma 6.18. Hence the coefficient s, is
equal to ' =) 1 ;<. 2 = € —e by [Kat94, Remark 5.8]. Hence we have

FCCjiK —FCCjiA = —¢'[L']) + [Ty X|-p(e’ e+ ) [FT5 X |+ p[F T X |+ p [P T2, X+ p [F T2 X],
where L’ is defined by the characteristic form (6.15).
We now compute the intersection number with the 0-section. We have

% ok * _ * 1 1 —
([F TXFX],FTXX|XF)FT*X|XF = (F QP;)H [PE]=-2p.
Since L’ is defined by the image of the injection
xchar x: Ox(-p(e'D + E; + E5 + E3)) ®0, Op(plz0]) — FQxlp,
we have

(IL') FT3 X1y, ) = o1 (FQxlx, ) N [X¢]+ pe'(D,D)x +3p—p

FT*X|y,
= oy (FQ) ) N [Xp]+ ey (F'Nx, X) N [Xp] +2p
=-2p+0+2p=0.

Hence we have

(FCCjik —FCCjiA, FT; X, ) —p(e' —e).

FT*Xly,
Since we have H'(X,j,/C) = 0 for i # 1 and Swk (X%, iA) = 0, the Swan conductor of Hl(Plf,j!IC) is
¢’—e=e/(p—1) by Theorem 6.15.

Case 2. We assume vp((a“I?b(:C)p*l -1 =2
Lemma 6.19. We put Y, = SpecOk|[vy,] for a natural number 1 < n < (e’ —1)/2. Let x,, be the Kummer
character defined around (y,, = 0) by the equations tP = (-1)*(y, =" —a/c)*(y, 7" + b/c)b. Then we have the
Jollowing claims:

(1) We have sw(x,lp,) =€ —2n.
(2) The character x,, is not clean aty, = 0.

Proof- We can prove the assertions in the same way as Lemma 6.18. n

We now compute the coefficient s, of the fiber in the logarithmic characteristic cycle. We may work
locally around zj. Take the successive blowups X(,'_1)/, — -+ = X = X at non-clean closed points in the
same way as in Case 1. Unlike in Case 1, the character x is still not clean on X,/_1)5.

The scheme X(,_1)/, contains the open subscheme Y(,/_1)/, = Spec Ok [y(e'-1)/2]. We put 3" = yr_1)2.
Let W — X(_1)/2 be the blowup at the closed point 77 = 3" = 0. The scheme W is the union of two
open subschemes U = SpecOk [y, w]/(y'w — 1) and V = SpecOk[y”], where p”7t = y’. The character x is
unramified on V. On U, the character x is defined by

o= (_1)u(y/(e’+1)/2w(e’—1)/2 _a/c)ﬂ (y/(e’+1)/2w(e'—1)/2 N b/c)b.
We can check x is not clean at the closed point {y’ = w = 0}. Further, let W’ — W be the blowup at the
closed point {y” = w = 0} and U’ be the open subscheme SpecOk[y’, w,w’]/(y’w’ — w,y’w — 7). Then the
the character x is defined by
P — (_1)a (y/e’w/(e’—l)ﬂ _ a/c)a (y/e’w/(e’—l)/Z + b/C)b,
and the refined Swan conductor of y is
_2—laa—lbb—lc3—a—b(e/ _ 1) .d logw/

(1- Cp)py;—ze’wf—(e’—l) . (y/e’w/(e’—l)/z _ a/c) (yre’wr(e’—l)/z + b/C)

rsw(x) =
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by [KS13, Corollary 8.2.3]. Hence the character x is clean on W’.
We see that the coefficient s, is equal to €’ — (31 <j<(e—1)2 2+ 1) = 0 by [Kat94, Remark 5.8]. Hence we
have

FCCjiK —FCCjiA = —¢'[L']+ [Ty X|-p[F*T; X+ p [FT; X+ p[FT5 X |+ p[F T2 X].
Computing as in Case 1, we obtain
(FCCjiK - FCCjiA, FT5 X|x, )r1-xiy, =0,

and the Swan conductor of Hl(Plf, 71K) is 0 by Theorem 6.15.
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