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F-characteristic cycle of a rank 1 sheaf
on an arithmetic surface

Ryosuke Ooe

Abstract. We prove the rationality of the characteristic form for a degree 1 character of the Galois
group of an abelian extension of henselian discrete valuation fields. We prove the integrality of the
characteristic form for a rank 1 sheaf on a regular excellent scheme. These properties are shown
by reducing to the corresponding properties of the refined Swan conductor proved by Kato.

We define the F-characteristic cycle of a rank 1 sheaf on an arithmetic surface as a cycle on
the FW-cotangent bundle using the characteristic form on the basis of the computation of the
characteristic cycle in the equal-characteristic case by Yatagawa. The rationality and the integrality
of the characteristic form are necessary for the definition of the F-characteristic cycle. We prove
the intersection of the F-characteristic cycle with the 0-section computes the Swan conductor of
cohomology of the generic fiber.
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1. Introduction

Let K be a henselian discrete valuation field with residue field F of characteristic p > 0, and let L be
a finite abelian extension of K . Kato [Kat89] defined the refined Swan conductor of a character of the
Galois group Gal(L/K) as an injection to the F-vector space Ω1

F(log). Recently, Saito [Sai23] defined the
characteristic form of such a character as a non-logarithmic variant of the refined Swan conductor. The
characteristic form takes value in the F-vector space H1(LF/OK

), where OK denotes the valuation ring of
K and H1(LF/OK

) denotes the first homology group of the cotangent complex. In the equal-characteristic
case, the non-logarithmic theory played an important role in the computation of the characteristic cycle; see
[Sai16, Section 7.3].

In Section 5, we show two properties of the characteristic form for rank 1 sheaves. The first property is
the rationality of the characteristic form.

Theorem 1.1 (Rationality, cf. Theorem 2.3). Let χ : Gal(L/K)→ Q/Z be a character. Let m be the total
dimension of χ. Then the image of the characteristic form charχ : mm

K /m
m+1
K →H1(LF/OK

) = H1(LF1/p/OK
)⊗F F

of χ is contained in H1(LF1/p/OK
).

The second property is the integrality of the characteristic form for rank 1 sheaves. Let D be a divisor with
simple normal crossings on a regular excellent scheme X. Let {Di}i∈I be the set of irreducible components
of D, and let Ki be the local field at the generic point pi of Di . Let Fi be the residue field of Ki . Let U be
the complement of D . Let χ be an element of H1(U,Q/Z). Let Zχ be the union of the Di such that χ|Ki

is
wildly ramified and Rχ =

∑
i∈I dt(χ|Ki

)Di be the total dimension divisor. We put mi = dt(χ|Ki
).

Theorem 1.2 (Integrality, cf. Theorem 2.5 and (6.1)). There exists a unique global section char(χ) in
Γ (Zχ,FΩ

1
X(pRχ)|Zχ

) such that the germ at pi is equal to the following composition of maps:

m
mi
Ki
/mmi+1

Ki

char(χ|Ki )−−−−−−−−→H1(LF1/p
i /OKi

) −→H1(LF1/p
i /OKi

)⊗
F
1/p
i

Fi .

Here, the second map is induced by the pth power map F
1/p
i → Fi .

In the case where the characteristic of K is p, these properties have already been proved by using
Artin–Schreier–Witt theory by Matsuda [Mat97] and Yatagawa [Yat17]. In the case where the characteristic of
K is zero, Artin–Schreier–Witt theory does not work, so we need to use a different method. The strategy of
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the proofs of Theorems 1.1 and 1.2 is to reduce to the corresponding properties of the refined Swan conductor
proved by Kato [Kat89]. To do this, we compare the refined Swan conductor with the characteristic form.

The relation between the refined Swan conductor and the characteristic form is explained as follows.
Let χ : Gal(L/K)→Q/Z be a character. The characters are divided into two types. If χ is of type I (for
example, the residue field extension is separable), the characteristic form of χ is the image of the refined
Swan conductor of χ. On the other hand, if χ is of type II (for example, the ramification index of L/K
is 1 and the residue field extension is inseparable), the refined Swan conductor of χ is the image of the
characteristic form of χ. A large part of the proof of these relations is due to Saito. The author thanks him
for kindly suggesting the author to include the proof in this paper.

For a character of type I, Theorem 1.1 holds since the characteristic form is the image of the refined Swan
conductor and the refined Swan conductor takes value in the F-vector space Ω1

F(log). For a character of
type II, we would like to change the character to a character of type I. The typical case where a character is
of type I is when the residue field F is perfect. Hence we would like to take an extension K ′ of K such that
the residue field of K ′ is perfect. In fact, it suffices to consider the field K ′ with the pth power roots of a
lifting of a p-basis of F, though the residue field of K ′ may not be perfect.

As in the proof of Theorem 1.1, we prove Theorem 1.2 using the integrality of the refined Swan conductor,
but the proof is more complicated.

In Section 6, we consider the theory of the characteristic cycle. The characteristic cycle of an étale
sheaf on a smooth scheme over a perfect field of positive characteristic is defined by Saito [Sai16]. The
characteristic cycle is defined as a cycle on the cotangent bundle. By the index formula, the intersection
with the 0-section computes the Euler characteristic if the scheme is projective. The characteristic cycle was
computed on a closed subset of codimension less than 2 by using the characteristic form. Yatagawa [Yat20]
gave an explicit computation of the characteristic cycle of a rank 1 sheaf on a scheme of dimension 2.

The existence of the cotangent bundle on a scheme of mixed characteristic is not known. Instead,
Saito [Sai22a] defined the FW-cotangent bundle FT ∗X |XF

of a regular noetherian scheme X over a discrete
valuation ring OK of mixed characteristic (0,p) to be the vector bundle of rank dimX on the closed fiber XF

to consider the characteristic cycle of an étale sheaf on a scheme of mixed characteristic. The characteristic
cycle in the mixed characteristic case has not been defined in general.

Let D be a divisor with simple normal crossings on X, and let j : U = X −D→ X be the open immersion.
Let Λ be a finite field of characteristic different from p, and let F be a smooth sheaf of Λ-modules of rank 1.
In the case dimX = 2, we define the F-characteristic cycle FCC j!F of j!F as a cycle on the FW-cotangent
bundle on the basis of the computation in the equal-characteristic case by Yatagawa.

On a closed subset of codimension less than 2, we define the F-characteristic cycle using the characteristic
form. To determine the coefficients of the fibers at closed points, we use both the refined Swan conductor
and the characteristic form. The main reason for using both non-log and log theories is that after successive
blowups, the refined Swan conductor becomes a locally split injection but the characteristic form has no
such properties. The rationality (Theorem 1.1) and the integrality (Theorem 1.2) of the characteristic form are
crucial to determine the coefficients of the fibers.

In analogy with the index formula, we prove that the intersection of the F-characteristic cycle with the
0-section computes the Swan conductor of cohomology of the generic fiber.

Theorem 1.3 (Theorem 6.15). Assume dimX = 2 and X is proper over OK . Then we have(
FCC j!F −FCC j!Λ,FT ∗XX |XF

)
FT ∗X |XF

= p ·
(
SwK

(
XK , j!F

)
− SwK

(
XK , j!Λ

))
.

Abbes [Abe00] found the formula computing the Swan conductor of cohomology of the generic fiber of
an arithmetic surface under the assumption that a coefficient sheaf has no fierce ramification. Our formula
restricts to a coefficient sheaf of rank 1 but needs no assumption on ramification.
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We prove Theorem 1.3 using Kato–Saito’s conductor formula; see [KS13]. We study the relation between
the F-characteristic cycle and the pullback of the logarithmic characteristic cycle defined by Kato [Kat94].
This step is similar to the computation by Yatagawa in the equal-characteristic case.

We give an outline of the paper. In Section 2, we briefly recall the definition of the characteristic form and
state the rationality and the integrality of the characteristic form explained above. In Section 3, we recall the
definition and properties of the refined Swan conductor in parallel with the characteristic form. In Section 4,
we give relations between the refined Swan conductor and the characteristic form. In Section 5, we prove the
rationality and the integrality established in Section 2 using the results in Section 4. In Section 6, we define
the F-characteristic cycle of a rank 1 sheaf on an arithmetic surface. We prove the main theorem, which
gives a formula computing the Swan conductor of cohomology of the generic fiber. We give an example of
the F-characteristic cycle.

Acknowledgments

The author would like to express his sincere gratitude to his advisor Professor Takeshi Saito for suggesting
the problem, giving a lot of helpful advice, and showing his unpublished book on ramification theory, which
contains the contents of Section 3 and the proof of Lemma 4.3 and Proposition 4.4. The author thanks the
anonymous referees for their careful reading and comments.

2. Characteristic form

In this section, we recall the notion of characteristic form and state the integrality of the characteristic
form.

2.1. Cotangent complex and FW-differential

We briefly recall the properties on cotangent complexes from [Sai23].
Let K be a discrete valuation field with valuation ring OK and with residue field F of characteristic p > 0.

Let E be a field containing F. For an element u ∈ OK , we write u for the image of u in F. If there exists a
pth root of u in E, the element d̃u in H1(LE/OK

) is defined in [Sai23, Equation (1.9)]. We write wu for this
element instead of d̃u.

Proposition 2.1. Let π be a uniformizer of K and (vi)i∈I be a p-basis of F. Assume that the field E contains
F1/p. Then, {wπ,wvi}i∈I forms a basis of the E-vector space H1(LE/OK

).

Proof. By [Sai23, Proposition 1.1.3(2)], we have an exact sequence

0 −→mK /m
2
K ⊗F E

w−→H1(LE/OK
) −→Ω1

F ⊗F E −→ 0

of E-vector spaces, where mK denotes the maximal ideal of OK . Then π defines a basis of mK /m
2
K ⊗F E,

and {dvi}i∈I forms a basis of Ω1
F ⊗F E. The assertion follows since the map H1(LE/OK

)→Ω1
F ⊗F E sends

wvi to dvi by [Sai23, Proposition 1.1.4(2)]. □

Let L be a finite separable extension of K with residue field E. The morphism SpecE → SpecOL →
SpecOK of schemes defines the distinguished triangle LOL/OK

⊗LOL
E→ LE/OK

→ LE/OL
→ by [Ill71, Propo-

sition II.2.1.2]. Since we have quasi-isomorphisms LE/OL
� NE/OL

[1] and LOL/OK
� Ω1

OL/OK
[0] by [Sai23,

Lemma 1.2.6(4)], we have an injection

(2.1) TorOL
1 (Ω1

OL/OK
,E) −→H1(LE/OK

)

of E-modules.
The Frobenius–Witt differential was introduced by Saito [Sai22b] to define the cotangent bundle of a

scheme over Z(p). The following relation between the cotangent complex and the FW-differential is known.
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Proposition 2.2 (cf. [Sai22b, Corollary 4.12]). Let A be a local ring with residue field k of characteristic p > 0.

Let Lk/A denote the cotangent complex for the composition Speck
F−→ Speck→ SpecA, where F is the Frobenius.

Then, the canonical morphism FΩ1
A ⊗A k→H1(Lk/A) is an isomorphism.

2.2. Characteristic form

We briefly recall the construction of the characteristic form in [Sai23]. Let K be a henselian discrete
valuation field with residue field F of characteristic p > 0. Let GK be the absolute Galois group of K , and let
(Gr

K )r∈Q>0
be Abbes–Saito’s non-logarithmic upper ramification filtration; see [AS02, Definition 3.4]. For an

element χ ∈H1(GK ,Q/Z), we define the total dimension dtχ to be the smallest rational number r satisfying
χ(Gs

K ) = 0 for all s > r . The total dimension is an integer by [Xia12, Theorem 4.3.5] and [Sai23, Theorem
4.3.1].

We fix some notation. Let L be a finite separable extension of K , and let K ′ be a separable extension of K
of ramification index e. Let E,F′ be the residue fields of L,K ′ , respectively. Let S,S ′ ,T be the spectra of the
valuation rings OK ,OK ′ ,OL, respectively. Take a closed immersion T → P to a smooth scheme over S . For a

rational number r > 0 such that er is an integer, we define the scheme P
[r]
S ′ to be the dilatation P [Dr ·TS′ ] of

PS ′ = P ×S S ′ with respect to the Cartier divisor Dr defined by mer
K ′ and the closed subscheme TS ′ = T ×S S ′ .

(See [Sai23, Definition 3.1.1] for the definition of the dilatation.) Let P
(r)
S ′ be the normalization of P [r]

S ′ . Let

P
[r]
F′ and P

(r)
F′ be the closed fibers of P [r]

S ′ and P
(r)
S ′ , respectively.

For an immersion T → P to a smooth scheme over S , we have an exact sequence

(2.2) 0 −→NT /P −→Ω1
P /S ⊗OP

OT −→Ω1
T /S −→ 0

of OL-modules. We say that an immersion T → P to a smooth scheme over S is minimal if the map

(2.3) TorOL
1 (Ω1

T /S ,E) −→NT /P ⊗OL
E

induced by (2.2) is an isomorphism. There exists a minimal immersion by [Sai23, Lemma 1.2.3(1)].
Let L/K be a finite Galois extension, and let G = Gal(L/K) be the Galois group. Let r > 1 be a rational

number such that Gr+ = ∪s>rGs = 1. By the reduced fiber theorem, see [BLR95], there exists a finite
separable extension K ′ of K of ramification index e such that er is an integer and the geometric closed fiber

P
(r)
S ′ ×S ′ F is reduced, where F denotes an algebraic closure of F′ . We define the scheme Θ

(r)
L/K,F′ to be the

vector bundle HomF(m
er
K ′ /m

er+1
K ′ ,TorOL

1 (Ω1
OL/OK

,E))∨ over Spec(E⊗FF′)red. If we take a minimal immersion

T → P to a smooth scheme over S, the isomorphism (2.3) induces an isomorphism P
[r]
F′ ,red → Θ

(r)
L/K,F′ by

[Sai23, Proposition 3.1.3(2)]. We define the scheme Φ
(r)
L/K,F′ to be P

(r)
F′ . The definition does not depend on the

choice of a minimal immersion T → P , by [Sai23, Lemma 3.3.7].
We fix a morphism i0 : L→ Ks to a separable closure of K . Let T S ′ be the normalization of T ×S S ′ and

T F = T S ′ ×S ′ SpecF. Then the morphism i0 can be regarded as a point of T F =MorK (L,Ks). We have the
cartesian diagram

T F
//

��

TF

��

Φ
(r)
L/K,F

// Θ
(r)
L/K,F

by [Sai23, Lemma 3.3.7].

Let Θ
(r)◦
L/K,F

and Φ
(r)◦
L/K,F

denote the connected component of Θ
(r)
L/K,F

and Φ
(r)
L/K,F

, respectively, containing

the image of the closed point of T F corresponding to i0. Then Φ
(r)◦
L/K,F

is an additive Gr-torsor over Θ
(r)◦
L/K,F
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by [Sai23, Theorem 4.3.3(1)] in the sense of [Sai23, Definition 2.1.4(1)]. By [Sai23, Proposition 2.1.6], there

exists a group scheme structure on Φ
(r)◦
L/K,F

such that

0 −→ Gr −→ Φ
(r)◦
L/K,F

−→Θ
(r)◦
L/K,F

−→ 0

is an extension of smooth group schemes. We define the map

[Φ] : Hom(Gr ,Fp) −→H1(Θ(r)◦
L/K,F

,Fp)

sending a character χ to the image χ∗[Φ
(r)◦
L/K,F

] of [Φ (r)◦
L/K,F

] by χ∗ : H1(Θ(r)◦
L/K,F

,Gr ) → H1(Θ(r)◦
L/K,F

,Fp).
By [Sai23, Proposition 2.1.6], the morphism [Φ] is an injection, and the image of [Φ] is contained in

Ext(Θ(r)◦
L/K,F

,Fp).
Let mr

Ks
be the ideal {x ∈ Ks | ordK x ≥ r}, and let mr+

Ks
be the ideal {x ∈ Ks | ordK x > r} for the extension

of the valuation of K to Ks. If we identify Ext(Θ
(r)◦
L/K,F

,Fp) with (Θ
(r)◦
L/K,F

)∨ = HomF(m
r
Ks
/mr+

Ks
,TorOL

1 (Ω1
T /S ,F))

by the isomorphism [Sai23, Equation (2..1)], we have a commutative diagram

(2.4)

0 // Gr //

χ

��

Φ
(r)◦
L/K,F

//

��

Θ
(r)◦
L/K,F

//

[Φ](χ)
��

0

0 // Fp // Ga
// Ga

// 0

of extensions of smooth group schemes, where the lower extension is the Artin–Schreier extension.
We define the characteristic form to be the composition of injections

char : Hom
(
Gr ,Fp

) [Φ]
−→HomF

(
mr

Ks
/mr+

Ks
,TorOL

1

(
Ω1

T /S ,F
))
−→HomF

(
mr

Ks
/mr+

Ks
,H1

(
LF/OK

))
,

where the second morphism is induced by the injection (2.1). For a character χ : Gr → Fp, we call charχ the
characteristic form of χ.

We now state the rationality of the characteristic form.

Theorem 2.3. Let χ ∈ H1(K,Q/Z) be a character of total dimension m. Then the image of the characteristic
form charχ : mm

K /m
m+1
K →H1(LF/OK

) = H1(LF1/p/OK
)⊗F1/p F of χ is contained in H1(LF1/p/OK

).

We give a proof of Theorem 2.3 in Section 5.

Remark 2.4. We have an example where the image of the characteristic form is not contained in H1(LF/OK
)

when we assume that the characteristic of F is 2. Consider the Kummer character χ defined by t2 =
1 + π2(e−1)u, where π is a uniformizer of K , e = ordK 2 and u ∈ OK is such that

√
u < F. Then, the

computation in [Sai22a, Lemma 3.2.5.3] shows that we have

charχ =
wu −

√
u ·w(2/πe−1)
π2 ∈H1

(
LF1/2/OK

)
⊗F m−2K /m−1K .

When the characteristic of the residue field is not 2, we can expect from the results in equal characteristic,
see [Mat97, Proposition 3.2.3] and [Yat17, Proposition 1.17], that the image of the characteristic form is
contained in H1(LF/OK

), but the author does not know how to prove.

We now state the integrality of the characteristic form. In this article, we define the local field of a ring A
at a prime ideal p as the fraction field of the completion of the localization Ap. We note that the residue
field may not be perfect.

Theorem 2.5. Let A be an excellent regular local ring of dimension d with fraction field K and with residue
field k of characteristic p > 0. We assume c = [k : kp] <∞ and fix a lifting (xl)l=1,...,c of a p-basis of k to A.
Let (πi)i=1,...,d be a regular system of parameters of A, and let Ki be the local field at the prime ideal generated
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by πi . We fix an integer r satisfying 1 ≤ r ≤ d. Let Di be the divisor on X = SpecA defined by πi , and let U
be the complement of D = ∪ri=1Di . Let χ be an element of H1(U,Q/Z), and let χ|Ki

be the pullback of χ by
SpecKi →U . We put mi = dt(χ|Ki

). By Proposition 2.1 and Theorem 2.3, we may write

char
(
χ|Kj

)
=

 ∑
1≤i≤d

αi,jwπi +
∑
1≤l≤c

βl,jwxl

 /πm1
1 · · ·π

mr
r

with αi,j ,βl,j ∈ Frac(A/πj )
1/p for 1 ≤ i ≤ d, 1 ≤ j ≤ r satisfying mj ≥ 2, and 1 ≤ l ≤ c. Then, the following

properties hold:

(1) We have α
p
i,j ,βl,j ∈ A/πj .

(2) For integers j, j ′ satisfying 1 ≤ j, j ′ ≤ r , the images of α
p
i,j and α

p
i,j ′ in A/(πj ) + (πj ′ ) are equal for each i,

and the images of βl,j and βl,j ′ in A/(πj ) + (πj ′ ) are equal for each l.

We give a proof of Theorem 2.5 in Section 5.

3. Refined Swan conductor

In this section, we recall the notion of refined Swan conductor. The refined Swan conductor was defined
by Kato [Kat89] as an injection from the dual of the graded quotients to twisted cotangent spaces with
logarithmic poles. Using Abbes–Saito’s (logarithmic) ramification theory, see [AS02], Saito [Sai12] defined
another injection from the dual of the graded quotients to twisted cotangent spaces with logarithmic poles.
The coincidence of these two notions of refined Swan conductor is verified by Kato and Saito; see [KS19,
Theorem 1.5]. In this paper, we use the definition by Saito, but we slightly change the construction to
compare with the characteristic form. The construction here is also given by Saito.

The content of this section is based on Saito’s unpublished book on ramification theory.

3.1. Some preliminaries

Let K be a discrete valuation field with valuation ring OK and with residue field F of characteristic p.
Let L be an extension of K with valuation ring OL and with residue field E.

Definition 3.1.

(1) We say that a scheme Q locally of finite type over S = SpecOK is log smooth over S if the following
conditions are satisfied:
• The scheme Q is regular and flat over S , and the generic fiber QK is smooth over K .
• The reduced closed fiber D =QF,red is smooth over F.
• For every point x ∈ D where the multiplicity m of D in QF is divisible p, there exist an open
neighborhood U of x and a smooth morphism

U −→ SpecOK [x,u
±1]/(uxm −π)

over S where π denotes a uniformizer of OK .
(2) Let Q be a log smooth scheme over S . We say that an immersion T = SpecOL→Q over S is exact

if the inverse image T ×Q QF,red is equal to SpecE.

Let Q be a log smooth scheme over S . Let D be the reduced closed fiber QF,red. We introduce the
following notation:

Ω1
Q(log) =Ω1

Q(logD),

Ω1
Q/S(log / log) = Coker

(
Ω1

S(log)⊗OS
OQ −→Ω1

Q(log)
)
.
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The OQ-module Ω1
Q(log) is locally free. By checking the case Q = SpecOK [x,u±1]/(uxm −π), we can also

prove that Ω1
S(log)⊗OS

OQ→Ω1
Q(log) is a locally splitting injection and Ω1

Q/S(log / log) is a locally free
OQ-module.

For an exact immersion T = SpecOL→Q to a log smooth scheme over S , we have an exact sequence

(3.1) 0 −→NT /Q −→Ω1
Q/S(log / log)⊗OQ

OL −→Ω1
T /S(log / log) −→ 0

of locally free OL-modules. Here, the first arrow NT /Q→Ω1
Q/S(log / log)⊗OQ

OL is injective since the map

NT /Q ⊗OL
L→Ω1

Q/S(log / log)⊗OQ
L of L-vector spaces is injective.

We say that an exact immersion T →Q to a log smooth scheme over S is minimal if the map

(3.2) TorOL
1

(
Ω1

T /S(log / log),E
)
−→NT /Q ⊗OL

E

induced by (3.1) is an isomorphism.

Lemma 3.2 (cf. [Sai23, Lemma 1.2.3(1)]). There exists a minimal exact immersion T →Q to a log smooth scheme
over S .

Proof. Let π be a uniformizer of K and m be the ramification index of L/K . Take a system of generators
a1, . . . , an ∈ OL over OK , and put uam1 = π with u ∈ O×L . We define an exact closed immersion

T = SpecOL −→Q′ = SpecOK [X1, . . . ,Xn,U
±1]/(UXm

1 −π)

to a log smooth scheme sending X1, . . .Xn,U to a1, . . . , an,u. Let I be the kernel of the map

OK [X1, . . . ,Xn,U
±1]/(UXm

1 −π) −→OL.

Take a lifting f1, . . . , fs ∈ I of a basis of the image of NT /Q′ ⊗OL
E→Ω1

Q′/S(log / log)⊗OQ′ E. Then the closed
subscheme Q of Q′ defined by the ideal (f1, . . . , fs) is log smooth over S on a neighborhood of T . We show
that the immersion T →Q is minimal.

The construction of Q shows that NT /Q ⊗OL
E→Ω1

Q/S(log / log)⊗OQ
E is a zero map. Hence the exact

sequence (3.1) induces the isomorphism TorOL
1 (Ω1

T /S(log / log),E)→NT /Q ⊗OL
E. □

We fix an exact immersion T = SpecOL→ Q to a log smooth scheme over S . We have the following
commutative diagram:

0

��

0

��
TorOL

1

(
Ω1

T /S(log / log),E
)

��

// Ω1
F(log)⊗F E

��
NT /Q ⊗OQ

E
� //

��

NE/D
// Ω1

D ⊗OD
E // Ω1

Q(log)⊗OD
E

��
Ω1

Q/S(log / log)⊗OQ
E Ω1

Q/S(log / log)⊗OQ
E,

where the left vertical sequence is obtained from (3.1). Since the vertical sequences are exact, we get the
morphism

(3.3) TorOL
1

(
Ω1

T /S(log / log),E
)
−→Ω1

F(log)⊗F E.
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Let us prove that this morphism is independent of the choice of exact immersions T →Q. If we take two
exact immersions T →Q, T →Q′ , we may assume there exists a morphism Q→Q′ such that the diagram

T //

��

Q

��
Q′

is commutative by replacing Q by an etale neighborhood of T . Then the independence of the morphism
(3.3) follows from the functoriality of NT /Q, Ω

1
Q(log) with respect to Q.

3.2. Refined Swan conductor

Let K be a henselian discrete valuation field with residue field F of characteristic p > 0. Let GK be the
absolute Galois group of K , and let (Gr

K,log)r∈Q>0
be Abbes–Saito’s logarithmic upper ramification filtration;

see [AS02, Definition 3.12]. For an element χ ∈ H1(GK ,Q/Z), we define the Swan conductor swχ to be
the smallest rational number r satisfying χ(Gs

K,log) = 0 for all s > r . The Swan conductor is an integer
since Kato’s definition, see [Kat89], of the Swan conductor coincides with the definition here by [KS19,
Theorem 1.3] and the Swan conductor is defined as an integer in Kato’s definition.

We use the same notation as in Section 2.2. Take an exact closed immersion T → Q to a log smooth

scheme over S . For a rational number r > 0 such that er is an integer, we define the scheme Q
[r]
S ′ to

be the dilatation Q[Dr ·TS′ ] of QS ′ with respect to the Cartier divisor Dr defined by mer
K ′ and the closed

subscheme TS ′ . (See [Sai23, Definition 3.1.1] for the definition of the dilatation.)

Let Q
(r)
S ′ be the normalization of Q[r]

S ′ . Let Q
[r]
F′ and Q

(r)
F′ be the closed fibers of Q[r]

S ′ and Q
(r)
S ′ , respectively.

Let L/K be a finite Galois extension, and let G = Gal(L/K) be Galois group. Let r > 0 be a ra-
tional number such that Gr+

log = ∪s>rGs
log = 1. By the reduced fiber theorem, see [BLR95], there ex-

ists a finite separable extension K ′ of K of ramification index e such that er is an integer and the

geometric closed fiber Q
(r)
S ′ ×S ′ F is reduced. We define the scheme Θ

(r)
L/K,log,F′ to be the vector bun-

dle HomF(m
er
K ′ /m

er+1
K ′ ,TorOL

1 (Ω1
OL/OK

(log / log),E))∨ over Spec(E ⊗F F′)red. If we take a minimal exact
immersion T → Q to a log smooth scheme over S, the isomorphism (3.2) induces an isomorphism

Q
[r]
F′ ,red → Θ

(r)
L/K,log,F′ by [Sai23, Proposition 3.1.3(2)]. We define the scheme Φ

(r)
L/K,log,F′ to be Q

(r)
F′ . By a

logarithmic variant of [Sai23, Lemma 3.3.7], the definition of Φ
(r)
L/K,log,F′ does not depend on the choice of a

minimal exact immersion T →Q, and for every exact immersion T = SpecOL→Q to a log smooth scheme
Q over S , we have a cartesian diagram

(3.4)

T F
//

""

Q
(r)
F′

//

��

Q
[r]
F′ ,red

��

Φ
(r)
L/K,log,F′

// Θ
(r)
L/K,log,F′ .

□

We fix a morphism i0 : L→ Ks to a separable closure of K . Let Θ
(r)◦
L/K,log,F

and Φ
(r)◦
L/K,log,F

denote the

connected components of Θ
(r)
L/K,log,F

and Φ
(r)
L/K,log,F

, respectively, containing the image of the closed point of

T F corresponding to i0.
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Proposition 3.3 (cf. [Sai23, Theorem 4.3.3]). The Gr
log-torsor Φ

(r)◦
L/K,log,F

over Θ
(r)◦
L/K,log,F

is additive. Hence, there

exists a group scheme structure on Φ
(r)◦
L/K,log,F

such that the sequence

0 −→ Gr
log −→ Φ

(r)◦
L/K,log,F

−→Θ
(r)◦
L/K,log,F

−→ 0

is an extension of smooth group schemes.

Proof (Saito). First, we prove that Φ
(r)◦
L/K,log,F

is a Gr
log-torsor over Θ

(r)◦
L/K,log,F

. We write 0 ∈Θ(r)◦
L/K,log,F

for the

image of the closed point of T F corresponding to i0. Then the fiber Φ
(r)◦
L/K,log,F

×
Θ

(r)◦
L/K,log,F

0 is identified with

Φ
(r)◦
L/K,log,F

∩MorK (L,Ks). The latter is a Gr
log-torsor, so the assertion follows.

Next, we prove the Gr
log-torsor is additive. We reduce the assertion to the case where the ramification

index eL/K is 1. By [KS19, Theorem 3.1], there exists an extension K ′/K such that eL′/K ′ = 1 and the map
Ω1

F(log)→Ω1
F′ (log) is injective, where L′ = LK ′ denotes the composite field and F′ denotes the residue

field of K ′ . From the functoriality of the construction of Φlog→Θlog, we deduce the commutative diagram

Φ
(r)◦
L′/K ′ ,log,F′

//

��

Θ
(r)◦
L′/K ′ ,log,F′

��

Φ
(r)◦
L/K,log,F

// Θ
(r)◦
L/K,log,F

.

Hence, by [Sai23, Corollary 2.1.8(3)], it suffices to show that the G′rlog-torsor Φ
(r)◦
L′/K ′ ,log,F

over Θ
(r)◦
L′/K ′ ,log,F

is

additive, where G′ = Gal(L′/K ′).

If eL/K is 1, then we have Gr = Gr
log and the morphism Φ

(r)◦
L/K,log,F

→Θ
(r)◦
L/K,log,F

is equal to Φ
(r)◦
L/K,F

→Θ
(r)◦
L/K,F

since every immersion T → P to a smooth scheme is an exact immersion to the log smooth scheme P under

the assumption eL/K = 1. Hence the assertion follows from the fact that Φ
(r)◦
L/K,F

is an additive torsor over

Θ
(r)◦
L/K,F

; see [Sai23, Theorem 4.3.3(1)]. □

In the same way as in Section 2.2, we get a morphism

[Φlog] : HomFp

(
Gr
log,Fp

)
−→HomF

(
mr

Ks
/mr+

Ks
,TorOL

1

(
Ω1

T /S(log / log),F
))
.

We define the refined Swan conductor to be the composition of injections

(3.5) rsw: Hom
(
Gr ,Fp

) [Φlog]
−−−−−→HomF

(
mr

Ks
/mr+

Ks
,TorOL

1

(
Ω1

T /S(log / log),F
))

−→HomF

(
mr

Ks
/mr+

Ks
,Ω1

F(log)⊗F F
)
,

where the second morphism is induced by the map (3.3). We call rswχ the refined Swan conductor of χ for
χ : Gr → Fp.

Remark 3.4. The construction of the refined Swan conductor here coincides with the construction in [Sai12].
Indeed, using the notation in [Sai12], we have the diagram

0 // Gr
log

// Q
(r)
F

//

��

P
(r)
F

=Q
[r]
F

//

��

0

0 // Gr
log

// Φ
(r)◦
L/K,log,F

// Θ
(r)◦
L/K,log,F

// 0
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by (3.4), where the right vertical map is induced by the second morphism of (3.5).

Proposition 3.5. Let χ ∈H1(K,Q/Z) be a character of Swan conductor n. Then, the image of the refined Swan
conductor rswχ : mn

K /m
n+1
K →Ω1

F(log)⊗F F is contained in Ω1
F(log).

Proof. The assertion follows from [KS19, Theorem 1.5] since the refined Swan conductor is defined by Kato
as a map to Ω1

F(log). □

We recall the integrality of the refined Swan conductor proved by Kato.

Theorem 3.6 (cf. [Kat89, Theorem 7.1 and Proposition 7.3]). Let A be an excellent regular local ring of
dimension d with fraction field K and with residue field k of characteristic p > 0. We assume c = [k : kp] <∞
and fix a lifting (xl)l=1,...,c of a p-basis of k to A. Let (πi)i=1,...,d be a regular system of parameters of A, and
let Ki be the local field at the prime ideal generated by πi . We fix an integer r satisfying 1 ≤ r ≤ d. Let Di be
the divisor on X = SpecA defined by πi , and let U be the complement of D = ∪ri=1Di . Let χ be an element of
H1(U,Q/Z), and put ni = sw(χ|Ki

). Write

rsw(χ|Kj
) =

 ∑
1≤i≤r

αi,jd logπi +
∑

r+1≤i≤d
αi,jdπi +

∑
1≤l≤c

βl,jdxl

 /πn1
1 · · ·π

nr
r

with αi,j ,βl,j ∈ Frac(A/πj ) for 1 ≤ i ≤ d, 1 ≤ j ≤ r satisfying nj ≥ 1, and 1 ≤ l ≤ c. Then, the following
properties hold:

(1) We have αi,j ,βl,j ∈ A/πj .
(2) For integers j, j ′ satisfying 1 ≤ j, j ′ ≤ r, the images of αi,j and αi,j ′ in A/(πj ) + (πj ′ ) are equal for each i

and the images of βl,j and βl,j ′ in A/(πj ) + (πj ′ ) are equal for each l.

4. Comparison

In this section, we compare the refined Swan conductor with the characteristic form.
Let K be a henselian discrete valuation field with residue field F of characteristic p > 0. Let χ be an

element of H1(K,Q/Z), and let L be a finite abelian Galois extension of K such that χ factors through
G = Gal(L/K). Since we have Gr ⊃ Gr

log ⊃ Gr+1 for a rational number r > 0 by [AS03, Lemma 5.3] and
the Swan conductor and the total dimension are integers (as explained in Sections 2.2 and 3.2), we have
dt(χ) = sw(χ) + 1 or dt(χ) = sw(χ). We say that χ is of type I if dt(χ) = sw(χ) + 1 and χ is of type II if
dt(χ) = sw(χ). If the residue field F of K is perfect, the character χ is of type I by [AS03, Proposition 6.3.1].

Proposition 4.1 (cf. [Sai23, Propositions 1.1.8(b) and 1.1.10]). Let K be a discrete valuation field with residue
field F. There exists an extension K ′ of K with perfect residue field F′ such that

(4.1) H1

(
LF/OK

)
−→H1

(
LF′/OK ′

)
is injective and eK ′/K is equal to 1.

Proposition 4.2. Let K be a henselian discrete valuation field with residue field F. Let L be a finite Galois
extension of K of Galois group G. Let r > 0 be a rational number, and assume Gr+

log = 1 and Gr
log = Gr+1. Then,

there exists a commutative diagram

HomFp

(
Gr
log,Fp

) rsw // HomF

(
mr

Ks
/mr+

Ks
,Ω1

F(log)⊗F F
)

��

HomFp

(
Gr+1,Fp

) char // HomF

(
mr

Ks
/mr+

Ks
,H1

(
LF/OK

)
⊗OK

m−1K
)
,
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where the right vertical map is induced by the composition of the maps

Ω1
F(log)⊗F F

res⊗1−−−−−→ F � F ⊗F mK /m
2
K ⊗OK

m−1K
w−→H1(LF/OK

)⊗OK
m−1K .

We reduce the proof of Proposition 4.2 to the following case, which is proved by Saito.

Lemma 4.3. Proposition 4.2 holds if the residue field E of L is a separable extension of F. (In this case, the
equality Gr

log = Gr+1 holds by [AS03, Proposition 6.3.1]).

Proof (Saito). If L/K is tamely ramified, then we have Gr
log = Gr+1 = 1 and the assertion is trivial. Hence

we may assume that L/K is wildly ramified. Let m = pn be the ramification index of L/K . Since E is a
separable extension of F and thus OL is generated by a single element over OK , we may take a minimal
immersion T = SpecOL→ P to a smooth scheme of relative dimension 1 over S = SpecOK . We prove that
the dilatation P [1] contains an open subscheme Q such that Q is log smooth over S and the immersion
T → Q is a minimal exact immersion. Let x ∈ P the image of the closed point of T . Since the assertion
is local at x, after replacing P by an open neighborhood of x, we may assume P = SpecA is affine and
OL = A/f with f ∈ A. Let π be a uniformizer of K , and let s ∈ A be a lifting of a uniformizer of L. Further
replacing P , we may assume that the canonical morphism P → A1

S = SpecOK [s] is étale. Let mx = (f , s)
be the maximal ideal of A at x. Since π is divisible by sm in OL = A/f and π ∈mx −m2

x, we have f ≡ π
modm2

x and mx = (π,s). We may write f = aπ + bsm with a,b ∈ A. Since f is not in m2
x, we see that

a is not in mx. Hence we may assume a is a unit in A by replacing P . We have aπ + bsm = 0 ∈ OL,
so b is not in mx, and we may also assume b is a unit. Then we have an equality (f ,π) = (π,sm) of
ideals of A. We have P [1] = SpecA[sm/π] = SpecA[v]/(sm − vπ), and P [1] contains an open subscheme
Q = SpecA[u±1]/(usm−π) = P ×A1

S
OK [s,u±1]/(usm−π), which is log smooth over S since P →A1

S is étale.
Since the closed subscheme QF,red of Q is defined by s, the inverse image T ×Q QF,red is E, and T →Q is
an exact immersion. We note that Q→ P induces an isomorphism NT /P ⊗OK

m−1K →NT /Q.

Let K ′ be a finite separable extension of K such that the closed fibers of P
(r)
S ′ and Q

(r)
S ′ are reduced. By

the functoriality of dilatations and normalizations, the middle square of the diagram

(4.2)

Φ
(r+1)
L/K,F′

��

P
(r+1)
F′

�oo // P
[r+1]
F′ ,red

� // Θ
(r+1)
L/K,F′

��

Φ
(r)
L/K,log,F′ Q

(r)
F′

�oo //

�

OO

Q
[r]
F′ ,red

� //

�

OO

Θ
(r)
L/K,log,F′

is commutative, and we have a commutative diagram

0 // Gr+1 // Φ
(r+1)◦
L/K,F

//

��

Θ
(r+1)◦
L/K,F

//

��

0

0 // Gr
log

// Φ
(r)◦
L/K,log,F

// Θ
(r)◦
L/K,log,F

// 0

of extensions of smooth group schemes. Hence we have a commutative diagram

HomFp

(
Gr
log,Fp

) rsw // HomF

(
mr

Ks
/mr+

Ks
,TorOL

1

(
Ω1
OL/OK

(log / log),F
))

��

HomFp

(
Gr+1,Fp

) char // HomF

(
mr

Ks
/mr+

Ks
,TorOL

1

(
Ω1
OL/OK

,F
)
⊗OK

m−1K
)
.
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It suffices to show that the diagram

(4.3)

NT /Q ⊗OL
E //

�
��

Ω1
F(log)⊗F E

��
NT /P ⊗OL

E ⊗OK
m−1K

// H1(LE/OK
)⊗OK

m−1K

is commutative. Since g = f /π = a+ bv defines a basis of NT /Q, we consider the image of this basis. The
left vertical map sends g to f ⊗π−1. The lower horizontal map sends f ⊗π−1 to wf ⊗π−1 = a ·wπ⊗π−1.
The right horizontal map sends g = f /π to da+ vdb + bvd logv. This is equal to da+ vdb + ad logπ in
Ω1

F(log)⊗E since we have md logs − d logv − d logπ = 0 in Ω1
Q(log) and p divides m and g = a+ bv = 0

in OL = A[g]/g . The right vertical map sends da+ vdb + ad logπ to a ·wπ⊗π−1 since a and b are units
in A and da+ vdb ∈Ω1

E . □

Proof of Proposition 4.2. Let K ′ be an extension as in Proposition 4.1, and let L′ = LK ′ be the composition
field and G′ = Gal(L′/K ′) be the Galois group. Then, we have Gr+1 = G′r+1 by [Sai23, Corollary 4.2.6].
Since the residue field F′ of K ′ is perfect, we have G′rlog = G′r+1 by [AS03, Proposition 6.3.1]. Since we

assume Gr
log = Gr+1, we have Gr

log = G′rlog.
By the commutative diagram

Ω1
F(log)⊗F F

��

// Ω1
F′ (log)⊗F′ F′

��

H1

(
LF/OK

)
⊗OK

m−1K
// H1

(
LF′/OK ′

)
⊗OK ′ m

−1
K ′ ,

it suffices to show that the diagram

HomFp

(
Gr
log,Fp

) rsw // HomF

(
mr

Ks
/mr+

Ks
,Ω1

F(log)⊗F F
)

��

HomFp

(
G′rlog,Fp

) rsw // HomF′

(
mr

K ′s
/mr+

K ′s
,Ω1

F′ (log)⊗F′ F′
)

��

HomFp

(
G′r+1,Fp

) char // HomF′

(
mr

K ′s
/mr+

K ′s
,H1

(
LF′/OK′

)
⊗OK′ m

−1
K ′

)

HomFp

(
Gr+1,Fp

) char // HomF

(
mr

Ks
/mr+

Ks
,H1

(
LF/OK

)
⊗OK

m−1K
)(4.1)

OO

is commutative since the map H1(LF/OK
)→ H1(LF′/OK ′

) is injective. The upper and lower squares are
commutative by the functoriality of the refined Swan conductor and of the characteristic form, respectively.
The middle square is commutative by Lemma 4.3 since F′ is perfect. □

The following proposition is proved by Saito.

Proposition 4.4. Let K be a henselian discrete valuation field with residue field F. Let L be a finite Galois
extension of K of Galois group G. Let r > 1 be a rational number, and assume Gr+ = 1. Then, there exists a
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commutative diagram

HomFp

(
Gr ,Fp

) char //

��

HomF

(
mr

Ks
/mr+

Ks
,H1

(
LF/OK

))
��

HomFp

(
Gr
log,Fp

) rsw // HomF

(
mr

Ks
/mr+

Ks
,Ω1

F(log)⊗F F
)
,

where the right vertical map is induced from the composition of the maps

H1(LF/OK
) −→Ω1

F ⊗F F −→Ω1
F(log)⊗F F.

Proof (Saito). We show that there exists a commutative diagram

(4.4)

0 // Gr
log

//

��

Φ
(r)◦
L/K,log,F′

//

��

Θ
(r)◦
L/K,log,F′

��

// 0

0 // Gr // Φ
(r)◦
L/K,F′

// Θ
(r)◦
L/K,F′

// 0

of extensions of smooth group schemes. We may take a minimal immersion T → P to a smooth scheme over
S = SpecOK and a minimal exact immersion T → Q to a log smooth scheme over S . By replacing Q by
an étale neighborhood, we may assume that there exists a morphism Q→ P . Let K ′ be a finite separable

extension of K such that the closed fibers of P
(r)
S ′ and Q

(r)
S ′ are reduced. By the functoriality of dilatations

and normalizations, we have a commutative diagram

(4.5)

Q
(r)
S ′

//

��

Q
[r]
S ′

��

P
(r)
S ′

// P
[r]
S ′ .

Since Q→ P induces a morphism

0 // NT /P
//

��

Ω1
P /S ⊗OP

OL
//

��

Ω1
T /S

//

��

0

0 // NT /Q
// Ω1

Q/S(log / log)⊗OQ
OL

// Ω1
T /S(log / log)

// 0

of free resolutions, we obtain a commutative diagram

(4.6)

TorOL
1

(
Ω1
OL/OK

,E
) � //

��

NT /P ⊗OL
E

��
TorOL

1

(
Ω1
OL/OK

(log / log),E
) � // NT /Q ⊗OL

E,

where the isomorphisms are (3.2) and (2.3). The diagram

(4.7)

Φ
(r)
L/K,log,F′

��

Q
(r)
F′

�oo //

��

Q
[r]
F′ ,red

��

� // Θ
(r)
L/K,log,F′

��

Φ
(r)
L/K,F′ P

(r)
F′

�oo // P
[r]
F′ ,red

� // Θ
(r)
L/K,F′
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is commutative by (4.5), (4.6) and the functoriality of normalizations and dilatations. Hence the diagram (4.4)
is commutative and defines a commutative diagram

HomFp

(
Gr ,Fp

) [Φ]
//

��

HomF

(
mr

Ks
/mr+

Ks
,TorOL

1

(
Ω1
OL/OK

,F
))

��

HomFp

(
Gr
log,Fp

) [Φlog] // HomF

(
mr

Ks
/mr+

Ks

)
,TorOL

1

(
Ω1
OL/OK

(log / log),F
)
.

Hence it suffices to show that the diagram

TorOL
1

(
Ω1
OL/OK

,E
)

//

��

H1

(
LE/OK

)
��

TorOL
1

(
Ω1
OL/OK

(log / log),E
)

// Ω1
F(log)⊗F E

is commutative, where E denotes the residue field of L. We deduce from the injectivity of the map
Ω1

F(log)⊗F E→Ω1
Q(log)⊗OQ

E and the commutative diagrams

TorOL
1

(
Ω1
OL/OK

,E
)

//

��

NT /P ⊗OL
E

��

TorOL
1 (Ω1

OL/OK
(log / log),E) //

��

NT /Q ⊗OL
E

��
H1

(
LE/OK

)
// NE/P , Ω1

F(log)⊗F E // Ω1
Q(log)⊗OQ

E

that it suffices to show that the diagram

TorOL
1

(
Ω1
OL/OK

,E
)

//

��

NT /P ⊗OT
E //

��

NE/P

��

H1

(
LE/OK

)
��

oo

TorOL
1

(
Ω1
OL/OK

(log / log),E
)

// NT /Q ⊗OL
E // NE/Q

// Ω1
Q(log)⊗OQ

E Ω1
F(log)⊗F Eoo

is commutative. The left square is commutative by (4.6). The middle square is commutative by the
functoriality of conormal sheaves. The right square is commutative since the diagram

H1

(
LE/OK

)
//

��

H1 (LE/F) //

��

Ω1
F ⊗F E //

��

Ω1
F(log)⊗F E

��
NE/P

//

��

NE/PF
//

��

Ω1
PF
⊗OPF

E //

��

Ω1
Q(log)⊗F E

NE/Q
// NE/QF,red

// Ω1
QF,red

⊗OQF,red
E

77

is commutative by the functoriality of cotangent complexes. □

5. Proof of the rationality and the integrality

In this section, we prove Theorems 2.3 and 2.5.
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Proof of Theorem 2.3. Let L be a finite abelian extension such that χ factors through G = Gal(L/K). Let π
be a uniformizer, and let (vi)i∈I be a family of elements of OK such that (dvi)i∈I forms a basis of Ω1

F . We
put m = dt(χ). First we consider the case where the character χ is of type I. If we put

rsw(χ) =

αd logπ+
∑
i∈I

βidvi

 /πm−1,

then we have
char(χ) = (αwπ)/πm

by Proposition 4.2, and the assertion follows from Proposition 3.5.
Second we consider the case where the character χ is of type II. If we put

char(χ) =

αwπ+
∑
i∈I

βiwvi

 /πm,

then we have

rsw(χ) =

∑
i∈I

βidvi

 /πm

by Proposition 4.4. We see that the βi are contained in F by Proposition 3.5. We show that α is contained in
F1/p. We define the discrete valuation ring OK ′ by

OK ′ = OK [wi]i∈I /
(
w
p
i − vi

)
i∈I

and let K ′ be the fraction field of OK ′ . Then the residue field F′ of K ′ is F1/p. Let L′ = LK ′ be the composite
field and G′ = Gal(L′/K ′) be the Galois group. The map H1(LF/OK

)→ H1(LF′/OK′
) sends wπ to wπ and

the other basis elements to 0. The diagram

HomFp

(
Gm,Fp

) char //

��

HomF

(
mm

Ks
/mm+

Ks
,H1

(
LF/OK

))
��

HomFp

(
G′m,Fp

)
// HomF′

(
mm

K ′s
/mm+

K ′s
,H1

(
LF′/OK ′

))
is commutative by the functoriality; see [Sai23, Equation (4.17)]. Here, the lower horizontal arrow is char
if G′m , 1 and zero if G′m = 1. If the coefficient of wπ is not zero, then the image of charχ by the right
vertical arrow is not zero. Hence G′m is not trivial, and thus we have dt(χ′) =m. Let χ′ be the image of the
character χ by the left vertical arrow. Then the characteristic form char(χ′) is of the form

char(χ′) = α ·wπ/πm.

If the character χ′ is of type II, then the refined Swan conductor of χ′ is zero and we have a contradiction.
Hence the character χ′ is of type I. By the first case, we have α ∈ F′ = F1/p. □

Next, we prove Theorem 2.5. We prepare the following lemma.

Lemma 5.1. We use the notation of Theorem 2.5 and assume the dimension of A is 2. We define the regular local
ring A′ of dimension 2 by

A′ = A[u2, yl]1≤l≤c/
(
u
p
2 −π2, y

p
l − xl

)
1≤l≤c

.

The maximal ideal of A′ is generated by π1 and u2. Let K
′
1 be the local field of A

′ at the prime ideal generated
by π1, and let K

′
2 be the local field of A

′ at the prime ideal generated by u2. Let Li be a finite abelian extension
of Ki (i = 1,2) such that χ|Ki

factors through Gi = Gal(Li/Ki). Let L′i = LiK
′
i be the composite field, and put

G′i = Gal(L′i/K
′
i ). Let Fi and F

′
i be the residue fields of Ki and K

′
i , respectively. Let U

′ be the pullback of U by
SpecA′→ SpecA, and let χ′ ∈H1(U ′ ,Q/Z) be the pullback of χ. We put m′i = dt(χ′ |K ′i ).
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(1) Assume that χ|K1
is wildly ramified. If the coefficient of wπ1 in char(χ|K1

) is not zero, then we have
m′1 =m1 and the character χ

′ |K ′1 is of type I. If the coefficient of wπ1 in char(χ|K1
) is zero, then we have

m′1 < m1.
(2) Assume that χ|K2

is of type II. If the coefficient of wπ1 in char(χ|K2
) is not zero, then we have m′2 = pm2

and the character χ′ |K ′2 is of type II. If the coefficient of wπ1 is zero, we have sw(χ′ |K ′2) < pm2.

Proof. (1) The map H1(LF1/OK1
)→H1(LF′1/OK ′1

) sends wπ1 to wπ1 and the other basis elements to 0. The

diagram

HomFp

(
Gm1
1 ,Fp

) char //

��

HomF1

(
m

m1
K1,s

/mm1+
K1,s

,H1

(
LF1/OK1

))
��

HomFp

(
G′m1
1 ,Fp

)
// HomF′1

(
m

m1
K ′1,s

/mm1+
K ′1,s

,H1

(
LF′1/OK ′1

))
is commutative by the functoriality, see [Sai23, Equation (4.17)], where the lower horizontal arrow is char
if G′m1

1 , 1 and zero if G′m1
1 = 1. The first assertion follows from the same argument as in the proof of

Proposition 2.3. If the coefficient of wπ1 in char(χ|K1
) is zero, then the image of charχ|K1

by the right
vertical arrow is zero. Hence we have G′m1

1 ⊂ Kerχ′ |K ′1 , and we have m′1 < m1.

(2) The map Ω1
F2
(log)→Ω1

F′2
(log) sends d logπ1 to d logπ1 and the other basis elements to 0. Since

χ|K2
is of type II, we have sw(χ|K2

) =m2. The diagram

HomFp

(
Gm2
2,log,Fp

) rsw //

��

HomF2

(
m

m2
K2,s

/mm2+
K2,s

,Ω1
F2
(log)⊗F2 F2

)
��

HomFp

(
G
′pm2
2,log,Fp

)
// HomF′2

(
m

pm2
K ′2,s

/m
pm2+
K ′2,s

,Ω1
F′2
(log)⊗F′2 F

′
2

)
is commutative by the functoriality, see [KS19, Equation (4.17)], where the lower horizontal arrow is rsw
if G

′pm2
2,log , 1 and zero if G

′pm2
2,log = 1. Since we assume the coefficient of wπ1 is not zero, the coefficient of

d logπ1 is not zero and the image of rswχ|K2
by the right vertical arrow is not zero. Hence G

′pm2
2,log is not

trivial, and thus we have sw(χ′ |K ′2) = pm2. Since the inequality m′2 ≤ pm2 holds, we obtain m′2 = pm2, and
the character χ|K2

is of type II. If the coefficient of wπ1 in char(χ|K2
) is zero, then the image of rswχ|K2

by

the right vertical arrow is zero. Hence we have G
′pm2
2,log ⊂ Kerχ′ |K ′2 , and we have sw(χ′ |K ′2) < pm2. □

Proof of Theorem 2.5. Since A/πj is regular, it suffices to show that α
p
i,j ,βl,j are elements of (A/πj )q for any

prime ideal q of height 1 of A/πj . By replacing A by Aq, we may assume dimA = 2. We use the notation of
Lemma 5.1.

We divide the proof into six cases.

(a) The case where r = 1 and χ|K1
is of type I. In this case, the characteristic form char(χ|K1

) is the image
of the refined Swan conductor rsw(χ|K1

) by Proposition 4.2. If we put

rsw(χ|K1
) =

α1d logπ1 +α2dπ2 +
∑
1≤l≤c

βldxl

 /πm1−1
1 ,

then we have

char(χ|K1
) = α1wπ1/π

m1
1 .

Since α1 is in A/π1 by Theorem 3.6, the assertion follows.
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(b) The case where r = 1 and χ|K1
is of type II. In this case, the refined Swan conductor rsw(χ|K1

) is the
image of the characteristic form char(χ|K1

) by Proposition 4.4. Hence, if we put

char(χ|K1
) =

α1wπ1 +α2wπ2 +
∑
1≤l≤c

βlwxl

 /πm1
1 ,

then we have

rsw(χ|K1
) =

α2dπ2 +
∑
1≤l≤c

βldxl

 /πm1
1 .

This implies α2,βl ∈ A/π1 by Theorem 3.6. It remains to prove α
p
1 ∈ A/π1. If α1 = 0, then the assertion

holds, so we may assume α1 is not 0. Then we have m′1 =m1 and

char(χ′ |K ′1) = α1 ·wπ1/π
m1
1 ,

and χ′ |K ′1 is of type I by Lemma 5.1.1. Hence we have α1 ∈ A′/π1 by case (a) applied to the triple (A′ ,U ′ ,χ′).
Since A/π1 is of characteristic p, we obtain α

p
1 ∈ A/π1.

(c) The case where r = 2 and χ|K1
or χ|K2

is tamely ramified. In this case, we can prove the assertion by a
similar argument to that in cases (a) and (b).

(d) The case where r = 2 and χ|K1
and χ|K2

are both of type I. If we put

rsw(χ|K1
) =

α1,1d logπ1 +α2,1dπ2 +
∑
1≤l≤c

βl,1dxl

 /πm1−1
1 πm2−1

2 ,

rsw(χ|K2
) =

α1,2dπ1 +α2,2d logπ2 +
∑
1≤l≤c

βl,2dxl

 /πm1−1
1 πm2−1

2 ,

then we have
char(χ|K1

) = π2α1,1wπ1/π
m1
1 πm2

2 ,

char(χ|K2
) = π1α2,2wπ2/π

m1
1 πm2

2

by Proposition 4.2. Since α1,1 is in A/π1 and α2,2 is in A/π2 by Theorem 3.6, the assertion follows. We
note that the coefficient of wπ1 in char(χ|K1

) is contained in π2 · (A/π1).
(e) The case where r = 2 and χ|K1

is of type II and χ|K2
is of type I, or χ|K1

is of type I and χ|K2
is of type II. We

only consider the case where χ|K1
is of type II and χ|K2

is of type I. If we put

char(χ|K1
) =

α1,1wπ1 +α2,1wπ2 +
∑
1≤l≤c

βl,1wxl

 /πm1
1 πm2

2 ,

rsw(χ|K2
) =

α1,2d logπ1 +α2,2d logπ2 +
∑
1≤l≤c

βl,2dxl

 /πm1
1 πm2−1

2 ,

then we have

rsw(χ|K1
) =

α2,1d logπ2 +
∑
1≤l≤c

π−12 βl,1dxl

 /πm1
1 πm2−1

2 ,

char(χ|K2
) = α2,2wπ2/π

m1
1 πm2

2

by Propositions 4.2 and 4.4. By Theorem 3.6, we have α2,1,βl,1 ∈ A/π1 and α2,2 ∈ A/π2 and the equalities
α2,1 = α2,2 and βl,1 = 0 in A/(π1) + (π2). Hence it suffices to show that α

p
1,1 ∈ A/π1 and α

p
1,1 = 0 in

A/(π1) + (π2).
If α1,1 = 0, then the assertion holds, so we may assume α1,1 is not 0. Then the characteristic form

char(χ′ |K ′1) is of the form

char(χ′ |K ′1) = α1,1 ·wπ1/π
m1
1 u

pm2
2 = u

m′2−pm2
2 α1,1 ·wπ1/π

m1
1 u

m′2
2 ,
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and χ′ |K ′1 is of type I by Lemma 5.1.1. Since we assume χ|K2
is of type I, we have sw(χ|K2

) =m2 − 1. Since
the ramification index of the extension K ′2/K2 is p, we have sw(χ′ |K ′2) ≤ p(m2−1) by [KS19, Proposition 5.1.1].
Thus we have m′2 − pm2 < 0. Hence we have α1,1 ∈ u2 · (A′/π1) by case (c) applied to the pair (A′ ,U ′ ,χ′) if
χ′ |K ′2 is tamely ramified, by case (d) if χ′ |K ′2 is of type I, and by the first half of the argument in case (e) if

χ′ |K ′2 is of type II. Hence we obtain α
p
1,1 ∈ π2 · (A/π1).

(f) The case where r = 2 and χ|K1
and χ|K2

are both of type II. If we put

char(χ|K1
) =

α1,1wπ1 +α2,1wπ2 +
∑
1≤l≤c

βl,1wxl

 /πm1
1 πm2

2 ,

char(χ|K2
) =

α1,2wπ1 +α2,2wπ2 +
∑
1≤l≤c

βl,2wxl

 /πm1
1 πm2

2 ,

then we have

rsw(χ|K1
) =

π2α2,1d logπ2 +
∑
1≤l≤c

βl,1dxl

 /πm1
1 πm2

2 ,

rsw(χ|K2
) =

π1α1,2d logπ1 +
∑
1≤l≤c

βl,2dxl

 /πm1
1 πm2

2

by Proposition 4.4. By Theorem 3.6, we have βl,1 = βl,2 in A/(π1) + (π2). It suffices to show α
p
1,1 ∈ A/π1,

α
p
1,2 ∈ A/π2 and α

p
1,1 = α

p
1,2 ∈ A/(π1) + (π2) since the assertion corresponding to α2,1 and α2,2 is proved by

switching π1 and π2.
If α1,1 , 0 and α1,2 , 0, then we have dt(χ′ |K ′1) = m1 and dt(χ′ |K ′2) = pm2 by Lemma 5.1. Further,

char(χ′ |K ′1) is of type I and char(χ′ |K ′2) is of type II, and we have

char(χ′ |K ′1) = α1,1wπ1/π
m1
1 u

pm2
2 ,

char(χ′ |K ′2) = α1,2wπ1/π
m1
1 u

pm2
2

by Lemma 5.1. By case (e), we have α1,1 ∈ A′/π1, α1,2 ∈ A′/u2 and α1,1 = α1,2 ∈ A′/(π1) + (u2). Hence we
obtain α

p
1,1 ∈ A/π1,α

p
1,2 ∈ A/π2 and α

p
1,1 = α

p
1,2 ∈ A/(π1) + (π2).

If α1,1 , 0 and α1,2 = 0, then we have

char(χ′ |K ′1) = α1,1wπ1/π
m1
1 u

pm2
2 = u

m′2−pm2
2 α1,1wπ1/π

m1
1 u

m′2
2

and χ′ |K ′1 is of type I by Lemma 5.1(1). If χ′ |K ′2 is tamely ramified, then we have u
m′2−pm2
2 α1,1 ∈ A′/π1 by

case (c) and m′2 − pm2 = 1− pm2 < 0. If χ′ |K ′2 is of type I, then we have u
m′2−pm2
2 α1,1 ∈ u2 · (A′/π1) by the

last note in case (d) and m′2 − pm2 = 1+ sw(χ′ |K ′2)− pm2 ≤ 0 by Lemma 5.1(2). If χ′ |K ′2 is of type II, then

we have u
m′2−pm2
2 α1,1 ∈ A′/π1 by case (e) and m′2 − pm2 = sw(χ′ |K ′2)− pm2 < 0 by Lemma 5.1(2). Hence we

have α1,1 ∈ u2 · (A′/π1) in any case, and we obtain α
p
1,1 ∈ π2 · (A/π1).

If α1,1 = 0 and α1,2 , 0, then we prove α
p
1,2 ∈ π1 · (A/π2) by induction on m1 = dt(χ|K1

) > 1. By
Lemma 5.1(1), we have m′1 < m1, and by Lemma 5.1(2), we have

char(χ′ |K ′2) = α1,2wπ1/π
m1
1 u

pm2
2 = π

m′1−m1
1 α1,2wπ1/π

m′1
1 u

pm2
2 ,

and χ′ |K ′2 is of type II. If χ′ |K ′1 is tamely ramified or of type I, the assertion is true by case (c) or (e),

respectively. If χ′ |K ′1 is of type II, we have π
p(m′1−m1)
1 α

p
1,2 ∈ π1 · (A′/u2) by the induction hypothesis. Hence

we have α1,2 ∈ π1 · (A′/u2), and we obtain α
p
1,2 ∈ π1 · (A/π2). □
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6. F-characteristic cycle

In this section, we define the F-characteristic cycle of a rank 1 sheaf on a regular surface as a cycle on the
FW-cotangent bundle. We prove that the intersection with the 0-section computes the Swan conductor of
cohomology. We give an example of the F-characteristic cycle.

6.1. Refined Swan conductor and characteristic form of a rank 1 sheaf

Let K be a discrete valuation field of characteristic 0 with residue field F of characteristic p > 0. Let X be
a regular flat separated scheme of finite type over the valuation ring OK of K , and let D be a divisor with
simple normal crossings. Let {Di}i∈I be the irreducible components of D , and let Ki be the local field at the
generic point pi of Di . Let U be the complement of D . Let χ be an element of H1(U,Q/Z). We define the
Swan conductor divisor Rχ of χ by

Rχ =
∑
i∈I

sw(χ|Ki
)Di

and denote the support of Rχ by Zχ. We note that Zχ is contained in the closed fiber of X. Indeed, if Di

intersects the generic fiber of X, the character χ|Ki
is tamely ramified since the characteristic of K is zero.

By Theorem 3.6, there exists a unique global section

rsw(χ) ∈ Γ
(
Zχ,Ω

1
X(logD)(Rχ)|Zχ

)
such that the germ rsw(χ)pi of rsw(χ) is rsw(χ|Ki

) if the character χ|Ki
is wildly ramified. We call rsw(χ)

the refined Swan conductor of χ.

Definition 6.1 (cf. [Kat94, Definition 4.2]). Let x be a closed point of Zχ. For i ∈ I satisfying x ∈Di ⊂ Zχ,
we define ord(χ;x,Di) to be the maximal integer n ≥ 0 such that

rsw(χ)|Di ,x ∈m
n
xΩ

1
X(logD)(Rχ)|Di ,x,

where mx is the maximal ideal of OX,x. We say that (X,U,χ) is clean at x if the integer ord(χ;x,Di) is zero
for every i ∈ I satisfying x ∈ Di ⊂ Zχ. We say that (X,U,χ) is clean if (X,U,χ) is clean at every closed
point in Zχ.

We define the total dimension divisor R′χ by

R′χ =
∑
i∈I

dt
(
χ|Ki

)
Di .

By Proposition 2.2 and Theorem 2.5, there exists a unique global section

(6.1) char(χ) ∈ Γ
(
Zχ,FΩ

1
X

(
pR′χ

)
|Zχ

)
such that the germ char(χ)pj of char(χ) is ∑

1≤i≤d
α
p
i,jwπi +

∑
1≤l≤c

β
p
l,jwxl

 /πpm1
1 · · ·πpmr

r

using the notation of Theorem 2.5 if the character χ|Kj
is wildly ramified. We call char(χ) the characteristic

form of χ.

Definition 6.2. Let x be a closed point of Zχ. For i ∈ I satisfying x ∈ Di ⊂ Zχ, we define n′ to be the
maximal integer n′ ≥ 0 such that

char(χ)|Di ,x ∈m
n′
x FΩ

1
X(pR

′
χ)|Di ,x,

where mx is the maximal ideal of OX,x. We define ord′(χ;x,Di) by ord′(χ;x,Di) = n′/p. We say that
(X,U,χ) is non-degenerate at x if ord′(χ;x,Di) is zero for every i ∈ I satisfying x ∈ Di ⊂ Zχ, and we say
that (X,U,χ) is non-degenerate if (X,U,χ) is non-degenerate at every point at x ∈ Zχ.
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Remark 6.3. By definition, p · ord′(χ;x,Di) is an integer, but ord′(χ;x,Di) may not be an integer. Assume
that the characteristic of the residue field of K is 2, and put e = ordK 2. We consider the scheme
X = SpecOK [T , (1 +π2(e−1)T 3)−1]. Let U be the generic fiber SpecK[T , (1 + π2(e−1)T 3)−1], and let
χ ∈H1(U,F2) be the Kummer character defined by t2 = 1+π2(e−1)T 3. Then we have

char(χ) =
T 4 ·wT − T 3 ·w(2/πe−1)

π4

and ord′(χ,x,XF) = 3/2, where x denotes the closed point defined by (π,T ).
Similarly to Remark 2.4, we can expect that ord′(χ;x,Di) is an integer if the characteristic of the residue

field of K is not 2.

6.2. F-characteristic cycle

Let K be a complete discrete valuation field of characteristic 0 with perfect residue field F of characteristic
p > 0. Let X be a regular flat separated scheme of finite type over the valuation ring OK of K , and let D be
a divisor with simple normal crossings. We assume that X is purely of dimension 2. Let D1, . . . ,Dn be the
irreducible components of D, and let Ki be the local field at the generic point pi of Di . We put U = X −D
and let j : U → X be the open immersion. Let XF and DF be the closed fibers of X and D . We fix a finite
field Λ of characteristic l , p. Let F be a locally constant constructible sheaf of Λ-modules of rank 1 on U ,
and let χ : πab

1 (U )→Λ× be the corresponding character. We fix an inclusion Λ×→Q/Z and regard χ as
an element of H1(U,Q/Z).

Let IT ,χ, IW,χ, II,χ, III,χ be the subsets of I consisting of the i ∈ I such that χ|Ki
is tamely ramified, wildly

ramified, of type I and of type II, respectively. For a closed point x in D, let Ix be the subset of I consisting
of i ∈ I such that x ∈Di and I∗,χ,x be I∗,χ ∩ Ix, where ∗ =W,T , I, II. Let ZII,χ be the union ∪i∈III,χDi .

We define the sub–vector bundle Li,χ of T ∗X(logD)|Di
for i ∈ IW,χ as the image of the multiplication by

the refined Swan conductor of χ,

×rsw(χ)|Di
: OX

(
−Rχ

)
⊗OX
ODi

∑
x∈Di

ord(χ;x,Di)[x]

 −→Ω1
X(logD)|Di

.

Definition 6.4 (cf. [Kat94, Equation (3.4.4)]). Assume that (X,U,χ) is clean. We define the logarithmic
characteristic cycle CClog j!F as a cycle on the logarithmic cotangent bundle T ∗X(logD)|DF

by

CClog j!F =
[
T ∗XX(logD)|DF

]
+

∑
i∈IW,χ

sw
(
χ|Ki

) [
Li,χ

]
,

where T ∗XX(logD)|DF
denotes the 0-section of T ∗X(logD)|DF

.

In the case dimX = 2, we define the logarithmic characteristic cycle without the assumption on the
cleanness of (X,U,χ). By [Kat94, Theorem 4.1], there exist successive blowups f : X ′→ X at closed points
such that f −1(U ) is isomorphic to U via f and (X ′ , f −1(U ), f ∗χ) is clean. Let D ′ be the inverse image of D ,
and let

T ∗X(logD)|DF

pr
←−− T ∗X(logD)|DF

×DF
D ′F

df D

−−−→ T ∗X ′(logD ′)|D ′F
be the algebraic correspondence. We define CClog j!F − [T ∗XX(logD)|DF

] to be the pushforward by pr of
the pullback of CClog j ′! f

∗F − [T ∗X ′X
′(logD ′)|D ′F ] by df D . This is independent of the choice of blowups by

[Kat94, Remark 5.7]. We define the logarithmic characteristic cycle as

(6.2) CClog j!F =
[
T ∗XX(logD)|DF

]
+

∑
i∈IW,χ

sw
(
χ|Ki

) [
Li,χ

]
+

∑
x∈DF

sx[T
∗
xX(logD)],

where T ∗xX(logD) denotes the fiber at x.
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Theorem 6.5 (Conductor formula, cf. [KS13, Corollary 7.5.3 and Theorem 8.3.7]). Assume dimX = 2 and X
is proper over OK . Then we have(

CClog j!F −
[
T ∗XX(logD)|DF

]
,T ∗XX(logD)|DF

)
T ∗X(logD)|DF

= −SwK

(
XK , j!F

)
+SwK

(
XK , j!Λ

)
,

where SwK (XK , j!F ) denotes the alternating sum
∑

m≥0(−1)mSwK Hm(XK , j!F ).

Proof. There exist successive blowups f : X ′→ X at closed points such that (X ′ , f −1(U ), f ∗χ) is clean. Since
both sides do not change after replacing X by X ′ , we may assume (X,U,χ) is clean. The intersection(

CClog j!F − [T ∗XX(logD)|DF
],T ∗XX(logD)|DF

)
T ∗X(logD)|DF

equals −degcχ with the notation in [KS13, Equation (8.3.0.1)]. Hence the assertion follows by [KS13,
Corollary 7.5.3 and Theorem 8.3.7]. □

We define the sub–vector bundle L′i,χ of FT ∗X |Di
for i ∈ IW,χ as the image of the multiplication by the

characteristic form of χ,

×char(χ)|Di
: OX

(
−pR′χ

)
⊗OX
ODi

∑
x∈Di

pord′(χ;x,Di)[x]

 −→ FΩ1
X |Di

.

For i ∈ IT ,χ, we define L′i,χ to be F∗(T ∗Di
X |Di,F

), where F∗ is the pullback by the Frobenius F: Di,F →Di,F .

Definition 6.6. Assume dimX = 2. We define the F-characteristic cycle FCC j!F as a cycle on the
FW-cotangent bundle FT ∗X |XF

by

(6.3) FCC j!F = −

1p [
FT ∗XX |XF

]
+
∑
i∈I

dt(χ|Ki
)
[
L′i,χ

]
+

∑
x∈DF

ptx [F
∗T ∗xX]

 ,
where FT ∗XX |XF

denotes the 0-section of FT ∗X |XF
and

(6.4) tx = #Ix − 1+ sx +
∑
i∈IW,x

sw
(
χ|Ki

)
(ord′(χ;x,Di)− ord(χ;x,Di)) +

∑
i∈III,x

(ord(χ;x,Di) + 1−#Ix).

Here, the integer sx is the coefficient of the fiber at x in CClog j!F ; see (6.2).

The integrality of the characteristic form (Theorem 2.5) is necessary to define tx for all closed points
x ∈DF .

Lemma 6.7. Let h : W → X be an étale morphism, and let j ′ : W ×X U →W be the base change of j . Then we
have

FCC j ′!h
∗F = h∗FCC j!F .

Proof. Let K ′i be the local field at the generic point of h∗Di . Then we have sw(χ|Ki
) = sw((h∗χ)|K ′i ),

dt(χ|Ki
) = dt((h∗χ)|K ′i ), h

∗ rsw(χ) = rsw(h∗χ) and h∗ char(χ) = char(h∗χ). Hence the assertion follows from
Definition 6.6. □

Remark 6.8. The F-characteristic cycle FCC j!F is equal to

−

1p [
FT ∗XX |XF

]
+
∑
i∈J

[
F∗

(
T ∗Di

X |Di,F

)]
+
∑
i∈J ′

dt(χ|Ki
)
[
L′i,χ

]
+

∑
x∈DF

ptx [F
∗T ∗xX]

 ,
where J denotes the subset of I consisting of the i ∈ I such that Di ∩XK is not empty and J ′ denotes I − J .
Then (1/p)[FT ∗XX |XF

] +
∑

i∈J [F
∗(T ∗Di

X |Di,F
)] is a 1-cycle, and

∑
i∈J ′ dt(χ|Ki

)[L′i,χ] +
∑

x∈DF
ptx[F∗T ∗xX] is a

2-cycle. Later, we consider the difference FCC j!F −FCC j!Λ. This is a 2-cycle, so the intersection number
with the 0-section is defined.
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Remark 6.9. In this remark, we consider the equal-characteristic case. Let X be a smooth scheme over a
perfect field k of characteristic p > 0. For simplicity, we assume p , 2. Let D = ∪i∈IDi be a divisor with
simple normal crossings, and let j : U = X −D→ X be the open immersion. Let F be a locally constant
sheaf of Λ-modules of rank 1 on U . Then the characteristic cycle CCj!F is defined as a cycle on the
cotangent bundle T ∗X. If the dimension of X is 2, we have

CCj!F =
[
T ∗XX

]
+
∑
i∈I

dt(χ|Ki
)
[
L′′i,χ

]
+

∑
x∈DF

tx[T
∗
xX]

by [Yat20, Theorem 6.1]. Here, L′′i,χ denotes the vector bundle defined by the characteristic form in the sense
of [Yat20], and tx is defined in [Yat20] by the same form as in (6.4).

Let F: X→ X be the Frobenius. If we put

FCC j!F = −

1p [
F∗T ∗XX

]
+
∑
i∈I

dt(χ|Ki
)
[
F∗L′′i,χ

]
+

∑
x∈DF

ptx[F
∗T ∗xX]


as a cycle on FT ∗X � F∗T ∗X, then we have

F∗FCC j!F = −p ·CCj!F ,

where F∗ denotes the pushforward by the projection F∗T ∗X→ T ∗X.

The rationality of the characteristic form (Theorem 2.3) implies the integrality of the coefficients of the
fibers in the F-characteristic cycle.

Lemma 6.10. The coefficients ptx of the fibers [F∗T ∗xX] in the F-characteristic cycle (6.3) are integers. If (X,U,χ)
is clean at x ∈DF , we have tx ≥ 0.

Proof. In the definition (6.4) of tx, the terms other than sw(χ|Ki
)ord′(χ;x,Di) are integers. By Definition 6.2,

we see that the products p · ord′(χ;x,Di) are integers.
If (X,U,χ) is clean at x, we have

tx = #Ix − 1+
∑
i∈IW,x

sw
(
χ|Ki

)
· ord′(χ;x,Di) +

∑
i∈III,x

(1−#Ix)

by (6.4). Since we have ord′(χ;x,Di) ≥ 0, we have tx ≥ 0 unless ord′(χ;x,Di) = 0 for all i ∈ IW,χ and
#Ix = #III,x = 2. If #Ix = #III,x = 2, we have rsw(χ)x = 0 by Proposition 4.4, and this contradicts the
assumption. □

Remark 6.11. The author conjectures that the terms sw(χ|Ki
)ord′(χ;x,Di) are also integers and thus the tx

are integers. We can check that sw(χ|Ki
)ord′(χ;x,Di) is an integer in the following cases:

(1) The character χ|Ki
is of type I.

(2) The character χ|Ki
is defined by a Kummer equation of degree p.

Indeed, in case (1), ord′(χ;x,Di) is an integer. In case (2), if the character χ|Ki
is of type II, the Swan

conductor sw(χ|Ki
) is divisible by p.

The author also conjectures that we have tx ≥ 0 even if (X,U,χ) is not clean at x. In the equal-
characteristic case, this follows from the fact that j!F [2] is perverse by [Sai16, Proposition 5.14.1].

Let F: XF → XF be the Frobenius. We define

τD : FΩ1
X −→ F∗Ω1

X(logD)|XF

as the composition of the maps

FΩ1
X −→ FΩ1

X /OXF
·w(p) � F∗Ω1

XF
−→ F∗Ω1

X(logD)|XF
,
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where the middle isomorphism is the map [Sai22b, Equation (4-1)]. The map τD defines a morphism

τD : FT ∗X |DF
−→ F∗T ∗X(logD)|DF

of vector bundles over DF .
Let

τ !D : CH2

(
FT ∗X |DF

)
−→ CH2

(
T ∗X(logD)|DF

)
be the Gysin homomorphism for τD .

Lemma 6.12 (cf. [Yat20, Lemma 4.3(i)]). Assume dimX = 2. Let i be an element of II,χ. Let F: Di →Di be the
Frobenius.

(1) We have dimτ−1D (F∗Li,χ) = 2.
(2) We have L′i,χ = F∗T ∗Di

X.
(3) We have

τ !D
([
F∗Li,χ

])
=

[
L′i,χ

]
+

∑
x∈Di

p
(
ord′(χ;x,Di)− ord(χ;x,Di)

)
[F∗T ∗xX] +

∑
x∈ZII,χ∩Di

p[F∗T ∗xX]

in Z2(τ
−1
D (F∗Li,χ)).

Proof. We may assume I = {1,2} and i = 1. Let x be a closed point of Di , and let (π1,π2) be a local
coordinate at x such that πi′ is a local equation of Di for i

′ ∈ Ix. Then FΩ1
X,x is a free OX,x-module with

basis (wπ1,wπ2). Its dual basis is denoted by (∂′/∂′π1,∂
′/∂′π2). Let I ,I ′ ,J be the defining ideal sheaves

of L1,χ ⊂ T ∗X(logD)|Di
, L′i,χ ⊂ FT ∗X |Di

and τ−1D (F∗Li,χ) ⊂ FT ∗X |Di
, respectively.

First, we consider the case Ix = {1}. Then Ω1
X(logD)x is a free OX,x-module with basis (d logπ1,dπ2).

Its dual basis is denoted by (∂/∂ logπ1,∂/∂π2). If we put

rsw(χ)x = (α1d logπ1 +α2dπ2)/π
n1
1 ,

where α1,α2 ∈ OX,x and n1 = sw(χ|K1
), then

Ix =
(
π
−ord(χ;x,D1)
2 (α2∂/∂ logπ1 −α1∂/∂π2)

)
and

Jx =
(
π
−pord(χ;x,D1)
2

(
−αp

1∂/∂π2

))
.

Since χ|K1
is of type I, we have

char(χ)x = α
p
1wπ1/π

p(n1+1)
1

by Proposition 4.2, and thus we have ord′(χ;x,Di) = ordπ2
(α1). Hence we have

Jx =
(
π
pord′(χ;x,D1)−pord(χ;x,D1)
2 ∂/∂π2

)
,

I ′x =
(
π
−pord′(χ;x,D1)
2

(
−αp

1∂
′/∂′π2

))
= (∂′/∂′π2).

The assertion follows.
Second, we consider the case Ix = {1,2}. Then Ω1

X(logD)x is a free OX,x-module with basis
(d logπ1,d logπ2). Its dual basis is denoted by (∂/∂ logπ1,∂/∂ logπ2). If we put

rsw(χ)x = (α1d logπ1 +α2d logπ2)/π
n1
1 πn2

2 ,

where α1,α2 ∈ OX,x and ni = sw(χ|Ki
), then

Ix =
(
π
−ord(χ;x,D1)
2 (α2∂/∂ logπ1 −α1∂/∂ logπ2)

)
,
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and
Jx =

(
π
−pord(χ;x,D1)
2

(
−αp

1π
p
2∂/∂π2

))
.

Since i = 1 is an element of II,χ, we have

char(χ)|Di ,x = α
p
1π

pδ
2 wπ1/π

p(n1+1)
1 π

p(n2+δ)
2

by Proposition 4.2, where δ is 1 if χ|K2
is tamely ramified or of type I and 0 if χ|K2

is of type II. Hence we
have ord′(χ;x,Di) = ordπ2

(α1) + δ and

Jx =
(
π
pord′(χ;x,D1)−pord(χ;x,D1)+p(1−δ)
2 ∂/∂π2

)
,

I ′x = (∂′/∂′π2).

The assertion follows. □

Lemma 6.13 (cf. [Yat20, Lemmas 4.4 and 4.5]). Assume dimX = 2. Let i be an element of III,χ, and let
q′i : τ

−1
D (F∗Li,χ)→Di be the canonical projection. Let F: Di →Di be the Frobenius.

(1) We have τ−1D (F∗Li,χ) = FT ∗X |Di
.

(2) We have

τ !D
([
F∗Li,χ

])
= q′i

∗

c1 (F∗T ∗X (logD) |Di

)
∩ [Di]− c1

(
OX

(
−pRχ

)
|Di

)
∩ [Di]−

∑
x∈Di

pord(χ;x,Di)[x]


in CH2(FT ∗X |Di

).
(3) We have[

L′i,χ
]
= q′i

∗

c1(FT ∗X |Di
)∩ [Di]− c1

(
OX

(
−pR′χ

)
|Di

)
∩ [Di]−

∑
x∈Di

pord′(χ;x,Di)[x]


in CH2(FT ∗X |Di

).
(4) We have [

F∗T ∗Di
X
]
= q′i

∗

c1(OX

(
−pRχ)|Di

)
∩ [Di] +

∑
x∈Di

p(ord(χ;x,Di)−#Ix +1)[x]


in CH2(FT ∗X |Di

).

Proof. (1) We use the same notation as in the proof of Lemma 6.12. Since χ|K1
is of type II, the refined Swan

conductor is the image of the characteristic form by Proposition 4.4 and thus α1 = 0. Hence I ′ = 0 and we
have τ−1D (F∗Li,χ) = FT ∗X |Di

.
(2) By applying the excess intersection formula to the cartesian diagram

Di
// F∗Li,χ

��
Di

// F∗T ∗X(logD)|Di
,

□

we see that [
F∗Li,χ

]
= q∗i

(
c1(F

∗T ∗X(logD)|Di
)∩ [Di]− c1

(
F∗Li,χ

)
∩ [Di]

)
in CH2(F∗T ∗X(logD)|Di

), where the map qi : F∗T ∗X(logD)|Di
→Di is the canonical projection. Since the

sub–vector bundle Li,χ of T ∗X(logD)|Di
is defined by the image of the injection

×rsw(χ)|Di
: OX(−Rχ)⊗OX

ODi

∑
x∈Di

ord(χ;x,Di)[x]

 −→Ω1
X(logD)|Di

,
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the assertion holds.
(3) By applying the excess intersection formula to the cartesian diagram

Di
// L′i,χ

��
Di

// FT ∗X |Di
,

□

we see that [
L′i,χ

]
= q′i

∗ (c1 (FT ∗X |Di

)
∩ [Di]− c1

(
L′i,χ

)
∩ [Di]

)
in CH2(FT ∗X |Di

). Since the sub–vector bundle L′i,χ of FT ∗X |Di
is defined by the image of the injection

×char(χ)|Di
: OX

(
−pR′χ

)
⊗OX
ODi

∑
x∈Di

pord′(χ;x,Di)[x]

 −→ FΩ1
X |Di

,

the assertion holds.
(4) By applying the excess intersection formula to the cartesian diagram

Di
// F∗T ∗Di

X

��
Di

// FT ∗X |Di
,

□

we see that [
F∗T ∗Di

X
]
= q′i

∗(c1(F
∗T ∗Di)∩ [Di])

in CH2(FT ∗X |Di
) since the sequence

0 −→ F∗T ∗Di
X −→ FT ∗X |Di

−→ FT ∗Di −→ 0

is exact by [Sai22a, Equation (2-12)] and FT ∗Di � F∗T ∗Di by [Sai22a, Equation (2-4)]. Since Di is a scheme
over F, the computation in [Yat20, Lemma 4.5(iii)] implies that we have an equality

c1(T
∗Di)∩ [Di] = c1

ODi

(
−
(
Rχ ∩Di

))
∩ [Di] +

∑
x∈Di

(ord(χ;x,Di)−#Ix +1

 [x]
in CH0(Di). Since F∗Ω1

Di
= (Ω1

Di
)⊗p, we have

c1(F
∗T ∗Di)∩ [Di] = c1

OX

(
−pRχ

)
|Di

)∩ [Di] +
∑
x∈Di

p (ord(χ;x,Di)−#Ix +1

 [x]
in CH0(Di). □

Lemma 6.14. Assume Di is contained in the closed fiber DF . Let F: Di →Di be the Frobenius. Then we have

c1
(
F∗T ∗X(logD)|Di

)
∩ [Di] = c1

(
FT ∗X |Di

)
∩ [Di] +

∑
j∈I

c1
(
OX(pDj )|Di

)
∩ [Di]

in CH0(DF).

Proof. Let D ′i be the closed subscheme consisting of the closed points x of Di such that #Ix = 2. By the two
exact sequences

0 −→ F∗NDi /X −→ FΩ1
X |Di
−→ F∗Ω1

Di
−→ 0,

0 −→ F∗Ω1
Di
(logD ′i ) −→ F∗Ω1

X(logD)|Di

F∗res−−−−→ODi
−→ 0
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of locally free Di-modules, we have

c1
(
F∗T ∗X(logD)|Di

)
∩ [Di]− c1

(
FT ∗X |DF

)
∩ [Di] =

c1
(
F∗Ω1

Di
(logD ′i )

)
∩ [Di]− c1

(
F∗Ω1

Di

)
∩ [Di]− c1

(
F∗NDi /X

)
∩ [Di].

Applying [Yat20, Equation (4.10)] to the scheme Di , we obtain

c1
(
Ω1

Di
(logD ′i )

)
∩ [Di]− c1

(
Ω1

Di

)
∩ [Di] =

∑
j∈I
j,i

c1
(
ODi

(Dj ∩Di)
)
∩ [Di].

Since we have F∗NDi /X = F∗OX(−Di)|Di
, the assertion follows. □

Theorem 6.15. Assume dimX = 2 and X is proper over OK . Then we have(
FCC j!F −FCC j!Λ,FT ∗XX |XF

)
FT ∗X |XF

= p ·
(
SwK

(
XK , j!F

)
− SwK

(
XK , j!Λ

))
.

Proof. We do some computations used later. By Lemma 6.12, we have

(6.5) τ !D

∑
i∈II,χ

sw(χ|Ki
)
[
F∗Li,χ

] =
∑
i∈II,χ

sw
(
χ|Ki

)[L′i,χ]+ ∑
x∈Di

p(ord′(χ;x,Di)− ord(χ;x,Di))[F
∗T ∗xX] +

∑
x∈ZII,χ∩Di

p[F∗T ∗xX]

 .
We note that if i ∈ II,χ, we have

q′i
∗ (c1 (OX

(
ZII,χ

)
|Di

)
∩ [Di]

)
=

∑
x∈ZII,χ∩Di

[F∗T ∗xX],

where q′i denotes the canonical projection q′i : τ
−1
D (F∗Li,χ)→Di as in Lemma 6.13.

By Lemma 6.13(2) and (3) and Lemma 6.14, we have

(6.6) τ !D

∑
i∈III,χ

sw
(
χ|Ki

) [
F∗Li,χ

] =
∑
i∈III,χ

sw
(
χ|Ki

)[L′i,χ]+ ∑
x∈Di

p
(
ord′(χ;x,Di)− ord(χ;x,Di)

)
[F∗T ∗xX] + q′i

∗ (c1 (OX

(
pZII,χ

)
|Di

)
∩ [Di]

) .
Since we have∑

i∈I
sw

(
χ|Ki

)
q′i
∗ (c1 (OX

(
pZII,χ

)
|Di

)
∩ [Di]

)
=

∑
i∈III,χ

q′i
∗ (c1 (OX

(
pRχ

)
|Di

)
∩ [Di]

)
,

we have

(6.7)
∑
i∈I

sw
(
χ|Ki

)
q′i
∗ (c1 (OX

(
pZII,χ

)
|Di

)
∩ [Di]

)
=

∑
i∈III,χ

−[F∗T ∗Di
X] +

∑
x∈Di

p(ord(χ;x,Di)−#Ix +1)[F∗T ∗xX])


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by Lemma 6.13(4). The sum of equalities (6.5) and (6.6) gives the equality

(6.8) τ !D

∑
i∈I

sw
(
χ|Ki

) [
F∗Li,χ

] =
−

∑
i∈III,χ

[
F∗T ∗Di

X
]
+
∑
i∈I

sw
(
χ|Ki

)[L′i,χ]+ ∑
x∈Di

p
(
ord′(χ;x,Di)− ord(χ;x,Di)

)
[F∗T ∗xX]


+

∑
i∈III,χ

∑
x∈Di

p(ord(χ;x,Di)−#Ix +1)[F∗T ∗xX].

We have (
F∗Li,χ,T

∗
XX(logD)|DF

)
F∗T ∗X(logD)|DF

= c1
(
F∗

(
T ∗X(logD)|DF

/Li,χ
))
∩ [DF]

= p ·
(
c1

(
T ∗X(logD)|DF

/Li,χ
)
∩ [DF]

)
= p ·

(
Li,χ,T

∗
XX(logD)|DF

)
T ∗X(logD)|DF

.

(6.9)

First, we assume that sx = 0 for every x ∈DF . Then it suffices to show that we have

(6.10) FCC j!F −FCC j!Λ = −τ !D
(
F∗

(
CClog j!F −

[
T ∗XX(logD)|DF

]))
in CH2(FT ∗X |DF

) by Theorem 6.5 and (6.9). This equality holds by (6.8) and Lemma 6.12(2) and the
definition (6.4) of tx.

Next, we consider the general case. By the definition of the logarithmic characteristic cycle, we have

CClog j!F −
[
T ∗XX(logD)|DF

]
−

∑
x∈DF

sx [T
∗
xX(logD)] =

∑
i∈I

sw
(
χ|Ki

) [
Li,χ

]
.

Then the equality (6.8) shows that we have

τ !D

−F∗
CClog j!F −

[
T ∗XX(logD)|DF

]
−

∑
x∈DF

sx [T
∗
xX(logD)]




= τ !D

−∑
i∈I

sw
(
χ|Ki

)
F∗

[
Li,χ

]
= FCC j!F −FCC j!Λ+

∑
x∈DF

psx[F
∗T ∗xX]

(6.11)

by the definition of tx. By Theorem 6.5, we have

(6.12)

−
CClog j!F −

[
T ∗XX(logD)|DF

]
−

∑
x∈DF

sx [T
∗
xX(logD)]

 ,T ∗XX(logD)|DF


T ∗X(logD)|DF

=

SwK

(
XK , j!F

)
− SwK

(
XK , j!Λ

)
+

∑
x∈DF

sx
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since the intersection number (T ∗xX(logD),T ∗XX(logD)|DF
) is 1. By (6.9), we have

(6.13)

−F∗
CClog j!F −

[
T ∗XX(logD)|DF

]
−

∑
x∈DF

sx [T
∗
xX(logD)]

 ,T ∗XX(logD)|DF


F∗T ∗X(logD)|DF

=

p ·

SwK

(
XK , j!F

)
− SwK

(
XK , j!Λ

)
+

∑
x∈DF

sx

 .
By (6.11) and (6.13), we haveFCC j!F −FCC j!Λ+

∑
x∈DF

psx[F
∗T ∗xX],FT ∗XX |DF


FT ∗X |DF

=

p ·

SwK

(
XK , j!F

)
− SwK

(
XK , j!Λ

)
+

∑
x∈DF

sx

 .
Since the intersection number (F∗T ∗xX,FT ∗XX |DF

) is 1, the assertion follows. □

6.3. Example

In this subsection, we give an example of the F-characteristic cycle.
Let p > 2 be a prime number, and let ζp be a primitive pth root of unity. Let K be a complete discrete

valuation field tamely ramified over Qp(ζp) with valuation ring OK and with residue field F. Let e = ordK p
be the absolute ramification index, and put e′ = pe/(p − 1). We fix a uniformizer π and write p = uπe with
some u ∈ O×K . Let a,b,c be integers satisfying 0 < a,b < p, (p,c) = 1 and a+ b+ c = 0. We put X = P1

OK
. Let

U be the open subscheme SpecK[x±1, (1− x)−1] of X, and let j : U → X be the open immersion. Let K
be the Kummer sheaf defined by tp = (−1)cxa(1− x)b on U . For convenience, we change the coordinate to
y = x+ a/c. Let D,E1,E2,E3 be divisors defined by (π = 0), (y − a/c = 0), (y + b/c = 0), (y =∞), respectively.
Then D ∪E1 ∪E2 ∪E3 is a divisor with simple normal crossings, and U is the complement of this divisor.
Let z0 be the closed point {π = y = 0}, and let zi be the closed point Ei ∩D for i = 1,2,3. Let M be the
local field at the generic point of D .

We compute the F-characteristic cycle FCC j!K of j!K. Applying Theorem 6.15, we compute the Swan
conductor of H1(P1

K
, j!K). This cohomology group realizes the Jacobi sum Hecke character as in [CM88].

Coleman–McCallum [CM88], Miki [Mik94] and Tsushima [Tsu10] computed the conductor or, explicitly, the
ramified component of the Jacobi sum Hecke character in more general cases by different methods.

Remark 6.16. We note that the Swan conductor can be calculated more easily by computing the logarithmic
characteristic cycle and applying Kato–Saito’s conductor formula (Theorem 6.5) because we need to compute
the logarithmic characteristic cycle for the computation of the F-characteristic cycle. The subject of this
article is non-logarithmic theory, so we compute the Swan conductor using the F-characteristic cycle.

We write χ for the character corresponding to K. We have sw(χ|M ) = dt(χ|M ) = e′ , and the character
χ|M is of type II. We have

(6.14) rswχ =
−cy · dy

(1− ζp)p · (y − a/c)(y + b/c)

and

(6.15) charχ =
−cpyp ·wy

(1− ζp)p
2 · (y − a/c)p(y + b/c)p
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on the complement of E3 by [KS13, Corollary 8.2.3]. The character χ is not clean and not non-degenerate
only at z0, and we have ord(χ;z0,D) = ord′(χ;z0,D) = 1.

We prove an elementary lemma used later.

Lemma 6.17. Let d be a rational number satisfying vp(d) ≥ 0. We put r = vp(dp−1 − 1). Then there exists an
integer l such that pr divides 1− dlp. There does not exist any integer l such that pr+1 divides 1− dlp.

Proof. Since pr divides dp−1−1 = (d−1)(dp−2+ · · ·+d+1), we see that pr divides d−1 or d(dp−3+ · · ·+1)+1.
Therefore, we may take l = 1 or l = −(dp−3 + · · ·+1) because we have dlp ≡ dplp ≡ 1 mod pr .

If there exists an integer l such that pr+1 divides 1−dlp, then we have vp(dp−1 −1) ≥ r +1, which gives a
contradiction. □

Now we compute the F-characteristic cycle of j!K. We have to divide the computation into two cases.

Case 1. We assume vp((aabbcc)p−1 − 1) = 1.

Lemma 6.18. We put Yn = SpecOK [yn] for a natural number 1 ≤ n ≤ e/2. Let Mn be the local field at
the generic point of the closed fiber. Let χn be the Kummer character defined around (yn = 0) by the equation
tp = (−1)a(ynπn − a/c)a(ynπn + b/c)b. Then we have the following properties:

(1) We have sw(χn|Mn
) = e′ − 2n.

(2) If n < e/2, the character χn is not clean at yn = 0.
(3) If n = e/2, the character χn is clean.

Proof. By Lemma 6.17, we may take an integer l such that p divides 1− aabbcclp. Then we have

(lt)p = (−1)alp(ynπn − a/c)a(ynπn + b/c)b

= lp
(
aabbcc +

aa−1bb−1

2ca+b−3
y2nπ

2n + · · ·
)

= 1+ pm+
aa−1bb−1lp

2ca+b−3
y2nπ

2n + · · ·

= 1+muπe +
aa−1bb−1lp

2ca+b−3
y2nπ

2n + · · ·

for some rational number m such that vp(m) = 0, and the omitted part is divisible by π3n. Hence, assertion (1)
follows. Around the closed point {π = yn = 0}, the refined Swan conductor is

rsw(χ) =
−aa−1bb−1c3−a−b

(
ny2n · d logπ+ yn · dyn

)
(1− ζp)p ·π−2n · (ynπn − a/c) (ynπn + b/c)

if n < e/2 and

rsw(χ) =
−
((
2−1aa−1bb−1c3−a−blpy2n +mu

)
e · d logπ+ aa−1bb−1c3−a−blpyn · dyn

)
(1− ζp)p ·π−2n · (ynπn − a/c) (ynπn + b/c) lp

if n = e/2 by [KS13, Corollary 8.2.3]. Since we assume m is prime to p, assertions (2) and (3) follow. □

We now compute the coefficient sz0 of the fiber in the logarithmic characteristic cycle. We may work
locally around z0. We define the successive blowups as follows.

Let X1 → X be the blowup at the closed point {π = y = 0}. The scheme X1 is a union of two open
subschemes U1 = SpecOK [y,x1]/(yx1 −π) and Y1 = SpecOK [y1], where y1π = y. Then we can check that
the character χ is clean on U1. By Lemma 6.18, χ is not clean at y1 = 0. Let X2→ X1 be the blowup at the
closed point {π = y1 = 0}. Repeating this process, we get the successive blowups Xe/2→ ·· · → X1→ X0 = X



F-characteristic cycle of a rank 1 sheaf on an arithmetic surface 31F-characteristic cycle of a rank 1 sheaf on an arithmetic surface 31

at non-clean closed points. The character χ is clean on Xe/2 by Lemma 6.18. Hence the coefficient sz0 is
equal to e′ −

∑
1≤i≤e/22 = e′ − e by [Kat94, Remark 5.8]. Hence we have

FCC j!K−FCC j!Λ = −e′[L′] +
[
F∗T ∗XF

X
]
− p(e′ − e+1)

[
F∗T ∗z0X

]
+ p

[
F∗T ∗z1X

]
+ p

[
F∗T ∗z2X

]
+ p

[
F∗T ∗z3X

]
,

where L′ is defined by the characteristic form (6.15).
We now compute the intersection number with the 0-section. We have([

F∗T ∗XF
X
]
,FT ∗XX |XF

)
FT ∗X |XF

= c1

(
F∗Ω1

P1
F

)
∩

[
P1
F

]
= −2p.

Since L′ is defined by the image of the injection

×charχ : OX(−p(e′D +E1 +E2 +E3))⊗OX
OD(p[z0]) −→ FΩ1

X |D ,

we have (
[L′],FT ∗XX |XF

)
FT ∗X |XF

= c1
(
FΩ1

X |XF

)
∩ [XF] + pe′(D,D)X +3p − p

= c1
(
F∗Ω1

XF

)
∩ [XF] + c1

(
F∗NXF

X
)
∩ [XF] + 2p

= −2p+0+2p = 0.

Hence we have (
FCC j!K−FCC j!Λ,FT ∗XX |XF

)
FT ∗X |XF

= −p(e′ − e).

Since we have Hi(X,j!K) = 0 for i , 1 and SwK (XK , j!Λ) = 0, the Swan conductor of H1(P1
K
, j!K) is

e′ − e = e/(p − 1) by Theorem 6.15.

Case 2. We assume vp((aabbcc)p−1 − 1) ≥ 2.

Lemma 6.19. We put Yn = SpecOK [yn] for a natural number 1 ≤ n ≤ (e′ − 1)/2. Let χn be the Kummer
character defined around (yn = 0) by the equations tp = (−1)a(ynπn − a/c)a(ynπn + b/c)b. Then we have the
following claims:

(1) We have sw(χn|Mn
) = e′ − 2n.

(2) The character χn is not clean at yn = 0.

Proof. We can prove the assertions in the same way as Lemma 6.18. □

We now compute the coefficient sz0 of the fiber in the logarithmic characteristic cycle. We may work
locally around z0. Take the successive blowups X(e′−1)/2→ ·· · → X0 = X at non-clean closed points in the
same way as in Case 1. Unlike in Case 1, the character χ is still not clean on X(e′−1)/2.

The scheme X(e′−1)/2 contains the open subscheme Y(e′−1)/2 = SpecOK [y(e′−1)/2]. We put y′ = y(e′−1)/2.
Let W → X(e′−1)/2 be the blowup at the closed point π = y′ = 0. The scheme W is the union of two
open subschemes U = SpecOK [y′ ,w]/(y′w −π) and V = SpecOK [y′′], where y′′π = y′ . The character χ is
unramified on V . On U , the character χ is defined by

tp = (−1)a
(
y′(e

′+1)/2w(e′−1)/2 − a/c
)a (

y′(e
′+1)/2w(e′−1)/2 + b/c

)b
.

We can check χ is not clean at the closed point {y′ = w = 0}. Further, let W ′ →W be the blowup at the
closed point {y′ = w = 0} and U ′ be the open subscheme SpecOK [y′ ,w,w′]/(y′w′ −w,y′w −π). Then the
the character χ is defined by

tp = (−1)a
(
y′e

′
w′(e

′−1)/2 − a/c
)a (

y′e
′
w′(e

′−1)/2 + b/c
)b
,

and the refined Swan conductor of χ is

rsw(χ) =
−2−1aa−1bb−1c3−a−b(e′ − 1) · d logw′

(1− ζp)py′−2e
′w′−(e′−1) ·

(
y′e′w′(e′−1)/2 − a/c

)(
y′e′w′(e′−1)/2 + b/c

)
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by [KS13, Corollary 8.2.3]. Hence the character χ is clean on W ′ .
We see that the coefficient sz0 is equal to e′ − (

∑
1≤i≤(e′−1)/22+1) = 0 by [Kat94, Remark 5.8]. Hence we

have

FCC j!K−FCC j!Λ = −e′[L′] +
[
F∗T ∗XF

X
]
− p

[
F∗T ∗z0X

]
+ p

[
F∗T ∗z1X

]
+ p

[
F∗T ∗z2X

]
+ p

[
F∗T ∗z3X

]
.

Computing as in Case 1, we obtain

(FCC j!K−FCC j!Λ,FT ∗XX |XF
)FT ∗X |XF = 0,

and the Swan conductor of H1(P1
K
, j!K) is 0 by Theorem 6.15.
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