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A tale of two moduli spaces: Logarithmic
and multi-scale differentials

Dawei Chen, Samuel Grushevsky, David Holmes, Martin Möller, and Johannes Schmitt

Abstract. Multi-scale differentials were constructed by M. Bainbridge, D. Chen, Q. Gendron, S. Grushevsky,
and M. Möller, from the viewpoint of flat and complex geometry, for the purpose of compactifying moduli
spaces of curves together with a differential with prescribed orders of zeros and poles. Logarithmic differentials
were constructed by S. Marcus and J. Wise, as a generalization of stable rubber maps from Gromov–Witten
theory. Modulo the global residue condition that isolates the main components of the compactification, we
show that these two kinds of differentials are equivalent, and establish an isomorphism of their (coarse) moduli
stacks. Moreover, we describe the rubber and multi-scale spaces as an explicit blowup of the moduli space
of stable pointed rational curves in the case of genus zero, and as a global blowup of the incidence variety
compactification for arbitrary genera, which implies their projectivity. We also propose a refined double
ramification cycle formula in the twisted Hodge bundle which interacts with the universal line bundle class.
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1. Introduction

1.1. Background and main results

Let µ = (m1, . . . ,mn) be a tuple of integers with
∑n
i=1mi = 2g−2. The (projectivized) stratum of differentials

of type µ is the moduli space of smooth curves X of genus g with distinct marked points z1, . . . , zn ∈ X such
that

∑n
i=1mizi is a (possibly meromorphic) canonical divisor.

The study of differentials with prescribed zeros and poles is important for at least two reasons. On the
one hand, a (holomorphic) differential induces a flat metric with conical singularities at its zeros, such that
the underlying Riemann surface can be realized as a polygon with edges pairwise identified by translations.
Varying the shape of the polygons by affine transformations of the plane induces an action on the strata of
differentials (called Teichmüller dynamics), whose orbit closures (called affine invariant subvarieties) govern
intrinsic properties of surface dynamics. On the other hand, a differential (up to multiplication by a scalar)
corresponds to a canonical divisor in the underlying complex curve. Hence the union of the moduli spaces
of differentials with all possible configurations of zeros stratifies the Hodge bundle over the moduli space
of curves, thus producing a number of remarkable questions to investigate from the viewpoint of algebraic
geometry, such as compactification, enumerative geometry, and cycle class calculations. The interplay of
these aspects has brought the study of differentials to an exciting new stage (see, e.g., [Zor06, Wri15, Che17]
and the references therein for an introduction to this subject).

As in many other moduli problems, having a geometrically meaningful compactification plays a crucial
role in the study of the strata of differentials. Extending the setup of canonical divisors with prescribed zeros
and poles to (pre-)stable curves, we define an algebraic stack GΞMg,n(µ), the moduli space of generalized

simple multi-scale differentials of type µ. The relative coarse moduli space GMSµ overMg,n of this stack is
defined the same way as the multi-scale differentials in [BCG+19], but dropping the global residue condition.(1)

Compared to the multi-scale space, the key player in [BCG+19], the stack GΞMg,n(µ) has additional
irreducible components whose generic elements parameterize differentials on (strictly) nodal curves. Indeed

(1)Our definition thus solves a task left open in [BCG+19], namely to describe the smooth stack ΞMg,n(µ) dominating the stack

of multi-scale differentialsMSµ without invoking Teichmüller markings.
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GΞMg,n(µ) maps onto the space of twisted canonical divisors constructed by Farkas–Pandharipande [FP18].
A minimal logarithmic structure on the space of twisted canonical divisors was described in [CC19], which
extracts the information of meromorphic differentials from lower levels, but does not specify the full level
structure. The precise definitions on these related objects are recalled in Section 3.

On the logarithmic side, Marcus and Wise [MW20] defined, for any line bundle L on the universal
curve Xg,n overMg,n, a space RubL overMg,n. The fiber of RubL over a curve X is the set of piecewise
linear functions β on the tropicalization of X, together with an isomorphism of line bundles from OX(β)
to L. The natural C∗ quotient, which forgets the data of the isomorphism, is denoted by P(RubL). When
L = OXg,n(

∑
imizi), this space P(RubL) is the space of rubber maps to P

1 with zeros and poles prescribed
by the mi , giving an alternative definition to that of Li, Graber and Vakil [Li01, GV05]. This machinery
gives an extremely clean and functional definition of the double ramification cycle, as well as its logarithmic,
pluricanonical, universal, and iterated variants; see [BHP+23, HS21, MPS23, MR24, HMP+25].

To connect this space with moduli of differentials, we define the line bundle

Lµ =ωXg,n/Mg,n

− n∑
i=1

mizi


on Xg,n, leading to the stack RubLµ , together with its relative coarse moduli space Rubcoarse

Lµ overMg,n.
(2)

The virtual fundamental class of P(Rubcoarse
Lµ ) is the ‘canonical’ double ramification cycle described

in [HS21].
The definitions of the spaces RubLµ and GMSµ look very different. They can be found in Sections 2

and 3, respectively. The main aim of this paper is to show that these definitions are in fact essentially
equivalent. More precisely, we prove the following theorem.

Theorem 1.1. For any tuple of integers µ = (m1, . . . ,mn) with
∑n
i=1mi = 2g − 2, there is an isomorphism of

algebraic stacks overMg,n

F : RubLµ −→ GΞMg,n(µ)

which induces an isomorphism of the corresponding relative coarse moduli spaces overMg,n

F : Rubcoarse
Lµ −→ GMSµ .

Note that the global residue condition described in [BCG+18] can isolate the main component of GMSµ,
called the multi-scale space and denoted byMSµ. In other words, a generalized multi-scale differential not
satisfying the global residue condition is not smoothable while preserving the prescribed zero and pole
orders. (This global residue condition arises from applying Stokes’ theorem to subcurves of the limiting
nodal curve when differentials degenerate from nearby smooth curves, thereby imposing that certain sums of
residues at the nodes vanish. See op. cit. for further details.) Moreover, in [BCG+19] the space of multi-scale
differentialsMSµ was shown to possess nice geometric properties, such as smoothness (as a stack), normal
crossings boundary, and extension of the GL2(R)-action to the boundary (after a real oriented blowup). It
would be interesting to see whether these properties can be obtained directly by using rubber differentials
and logarithmic geometry.

1.2. Applications and related topics

In what follows we address several constructions, results, and conjectures related to the main result above.

(2)See [AOV11] for the definition of relative coarse moduli spaces. Moreover, note that one can replace ω with any power ω⊗k in
the formula for Lµ, extending the theory to k-canonical divisors.
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1.2.1. A blowup description of the space of multi-scale differentials. First, describing a modular
compactification via blowups can be useful in many aspects, e.g., for projectivity and intersection calculations.
There is a natural action of C∗ on generalized multi-scale differentials by simultaneous rescaling of all
differentials, and we denote the quotient, the space of ‘projectivized generalized multi-scale differentials’, by
P(GMSµ); Lemma 1.1 induces an isomorphism P(Rubcoarse

Lµ ) ∼−→ P(GMSµ).
In the case of genus zero, we can identify P(Rubcoarse

Lµ ) with a blowup ofM0,n.

Theorem 1.2 (Lemma 7.5). For g = 0 there exists an explicit sheaf of ideals inM0,n such that the normalization
of its blowup is P(Rubcoarse

Lµ ).

We recall that the projectivized stratum of differentials can be compactified in different ways. Firstly,
one can consider simply its closure in the Deligne–Mumford compactification Mg,n. Secondly, one can

consider the closure of the stratum in the total space of the projectivized Hodge bundle overMg,n (twisted
by the polar parts). This compactification is described completely in [BCG+18], and is called the incidence
variety compactification (IVC). The IVC clearly admits a morphism onto the Deligne–Mumford closure of the
stratum, while P(MSµ) maps onto the IVC, and in general both these morphisms are ‘forgetful’, i.e. contract
some loci in the compactifications. We further write NIVC for the normalization of the IVC.

In [Ngu24] Nguyen showed that, in the case of genus zero, the IVC can be described as an explicit blowup
ofM0,n. From the above theorem, one can also retrieve Nguyen’s result, which we do in Lemma 7.7.

In arbitrary genus, recall that the multi-scale spaceMSµ is the main component of GMSµ, whose generic
element parameterizes differentials with prescribed zero and pole orders on smooth curves.

Theorem 1.3 (Lemma 7.8). For arbitrary genus there exists a global sheaf of ideals on the NIVC such that
the normalization of the blowup of the NIVC along this ideal gives the projectivized multi-scale space P(MSµ).
Consequently, the coarse moduli space of the stack P(MSµ) is a projective variety.

In [BCG+19] a local blowup construction to obtain P(MSµ) from the normalization of the IVC was
described. That construction did not glue to a global sheaf of ideals on IVC, and hence did not yield the
projectivity of P(MSµ). In [CCM24] the projectivity of P(MSµ) was established by constructing an explicit
ample divisor class on it. Thus the above theorem provides a distinct conceptual understanding of the
projectivity result.

1.2.2. A Hodge double ramification cycle. Next we propose a refined version of the double ramification
(DR ) cycle in the twisted Hodge bundle and conjecture a Pixton-style formula for this class, involving
coefficients of higher powers of the regularizing parameter ‘r’. For this purpose, we also generalize our
considerations to k-differentials.

Let A = (a1, . . . , an) ∈Zn, where |A|B
∑n
i=1 ai = k(2g − 2+n) for some k > 0, and denote by

LA Bω⊗k
− n∑

i=1

(ai − k)zi


the associated degree zero line bundle on Xg,n, where π : Xg,n→Mg,n is the universal curve with sections
zi , and ω is the relative canonical bundle.(3) Taking

HBω⊗k

−
∑

i∈{1,...,n}:
ai<0

aizi +
n∑
i=1

kzi


(3)Here we switch to the logarithmic version of indices to match the notation in [JPPZ17]. In other words, as a signature of

k-differentials, each of the zero and pole orders is given by ai − k. In particular, by slight abuse of notation, LA is simply the bundle
we denoted by Lµ in the previous convention.
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to be the relative logarithmic k-canonical bundle twisted by the polar part, we obtain a natural diagram

(1.1)

P

(
RubLA

)
P(π∗H)

Mg,n

F

p
q

(see the discussion leading to (6.3) for more details). Pushing forward the virtual fundamental class of
P(RubLA) gives a lift

D̃R
k
A = F∗

[
P

(
RubLA

)]vir
of the twisted DR cycles to P(π∗H), which we call the twisted Hodge DR cycle.

Let H = c1(O(1)) be the universal line bundle class on P(π∗H), and let η = F∗H be its pullback to

P(RubLA).
(4) By the projective bundle formula associated to the map q, to determine the class of D̃R

k
A in

the Chow ring CH•(P(π∗H)), it suffices to determine the cycle class

(1.2) q∗

(
D̃R

k
A ·Hu

)
= p∗

([
P

(
RubLA

)]vir
· ηu

)
∈ CHg+u

(
Mg,n

)
for every u.

Before proceeding to give a conjectural formula for these cycles, let us make a remark about the case
k = 0. When trying to follow the construction above, we encounter the issue that in general the higher
cohomology of H will not vanish, so that P(π∗H) is not a projective bundle. In Section 6 we explain how
this can be remedied. However, there is also an alternative approach to defining η, which makes clearer
a connection to relative Gromov–Witten theory: there both the space P(RubLA) and its forgetful map p

toMg,n still make sense, and it was proven in [BHP+23, Proposition 50] that there is a natural isomorphism

P

(
RubLA

)
� Mg,A

(
P
1,0,∞

)∼
with the space of stable maps to rubber P1 relative to 0,∞, with contact orders specified by the vector A.
This space of stable maps parameterizes maps from prestable curves to a chain of rational curves, with
marked points 0,∞ at opposite ends of the chain (see [JPPZ17, Section 0.2.4] for details). What is important
for us is that it still carries a natural divisor class η = Ψ∞ defined as the class of the cotangent line bundle at
the marked point ∞ on the chain of rational curves.

Continuing in the general case k ≥ 0, consider the space of twisted r-spin structuresMr,k
g;A constructed in

[Chi08, Jar00]. This is a compactification of the moduli space of smooth marked curves X and line bundles L
on X with an isomorphism L⊗r � ω⊗kX (−

∑
(ai − k)zi). In the compactification, the curve X is allowed to

acquire nodal singularities that are stacky points with some finite stabilizer group, making X a twisted curve

in the sense of [AV02]. The moduli space then carries a universal curve π : X →Mk,r
g;A with a line bundle L

and isomorphism L⊗r � ω⊗kπ (−
∑
(ai − k)zi). Here we follow the notation of [JPPZ17]. Forgetting the line

bundle and the stacky structure on X gives a map ϵ : Mk,r
g;A→Mg,n. Define the following Chiodo’s class as

the first cycle class given in [JPPZ17, Proposition 5]:

Chk,r,dg,A B r2d−2g+1ϵ∗cd (−R∗π∗L) ∈ CHd
(
Mg,n

)
,

where R∗ denotes derived push-forward. It is a polynomial in r (for r sufficiently large). Following computa-
tions of Chiodo [Chi08], the class Chk,r,dg,A can be computed explicitly as a sum over stable graphs, decorated
with polynomials in κ and ψ-classes (see [JPPZ17, Corollary 4]). We propose the following conjecture, giving
a formula for the cycle classes (1.2).

(4)In the literature sometimes ξ denotes the universal line bundle class on the space of k-differentials and η denotes the
tautological line bundle class c1(O(−1)).



Moduli of logarithmic and multi-scale differentials 7Moduli of logarithmic and multi-scale differentials 7

Conjecture 1.4 (Hodge DR). For every g,k,u ≥ 0 and every A ∈Zn satisfying |A| = k(2g −2+n), the following
relation holds:

p∗

([
P

(
RubLA

)]vir
· ηu

)
= [ru]Chk,r,g+ug,A ∈ CHg+u

(
Mg,n

)
,

where [ru] means taking the coefficient of ru .

For u = 0, by definition the left-hand side of this equation is the usual twisted DR cycle DRkA, and
by [JPPZ17, Proposition 5] the right-hand side agrees with Pixton’s formula for this cycle. Therefore, the
conjecture is true for u = 0 by the results of [BHP+23].

For u > 0, the conjecture can be verified computationally in many examples for the special case g = 0.
Indeed, in this case, the space RubLA agrees with the space of multi-scale k-differentials by Lemma 1.1
(since the global residue condition is automatically satisfied in the case g = 0). Then the software package
diffstrata, see [CMZ23], can compute powers of η on this space using relations in its Picard group, and
express the left-hand side of the conjecture in terms of tautological classes. On the other hand, the right-hand
side of the conjecture can be computed in admcycles, see [DSvZ21], using the graph-sum formula from
[JPPZ17]. Using this, the prediction of the conjecture has been verified for several example vectors A, giving
many non-trivial equalities in the Chow group ofM0,n. The calculations in diffstrata for k > 1 rely on
some code in development related to the forthcoming paper [CMS23].

On the other hand, for k = 0, the left-hand side of the conjecture has been computed in [FWY21,
Corollary 4.3]. The formula given there is similar, but not equal, to the one above. However, using properties
of the Chiodo class proven in [GLN23, Theorem 4.1(ii)], a short computation shows that the formula from
[FWY21] can be simplified to the one we give above.(5)

Theorem 1.5. Lemma 1.4 is true for k = 0: for any g,u ≥ 0 and any vector A ∈Zn with sum |A| = 0, we have

p∗

([
P

(
RubLA

)]vir
· ηu

)
= p∗

([
Mg,A

(
P
1,0,∞

)∼]vir
·Ψ u
∞

)
= [ru]Ch0,r,g+ug,A .

1.3. Sketch of the comparison

We hope that this paper will foster more communications between two groups of researchers, those working
in logarithmic geometry for moduli spaces and those working in moduli of differentials for Teichmüller
dynamics. With this in mind, we have written out definitions of objects on both sides of the story in a rather
detailed way, in particular assuming minimal background knowledge about logarithmic structures. We now
give an overview of the comparison in Lemma 1.1.

The definition of generalized multi-scale differentials on a stable curve X is geometrically very concrete
but quite lengthy. The level structure (or full order ) on the vertices of the dual graph Γ of X, corresponding
to the irreducible components of X, encodes the vanishing orders of a differential in a family of differentials
on smooth curves that degenerates to a given multi-scale differential on a nodal curve. One can twist
differentials that vanish identically, on the irreducible components of the same level, by a rescaling parameter
for that level, to obtain twisted differentials that are not identically zero on the components on that level. A
multi-scale differential contains the combinatorial data of the zero and pole orders of twisted differentials
at the nodes. Moreover, the prong-matchings of a multi-scale differential are combinatorial data that arise
from choices of smoothing a nodal differential with matching zero and pole orders at the two branches
at a node, under the flat metric induced by the differential. Lastly, a multi-scale differential stores the
smoothing parameters of the nodes in a way consistent with the level structure, packaged in the notion
of a rescaling ensemble. On all these parameters, a certain level rotation torus acts and induces a notion of
equivalence that forgets the extra information due to various choices being made in the above process, e.g.,
how simultaneously scaling twisted differentials on the same level affects prong-matchings.

(5)Special thanks go to Longting Wu for patiently explaining their formula and to Danilo Lewański for informing us of the above
property of the Chiodo class.
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The definition of an element of RubLµ is very concise; it is simply a piecewise linear function on the
tropicalization subject to certain conditions (see Definitions 2.1 and 2.7). However, it may seem cryptic at a
first reading. In particular, it may not be immediately apparent why the data of a log curve, a piecewise
linear function, and an isomorphism of line bundles should yield up all the above data of an equivalence
class of multi-scale differentials. Some parts of the comparison (such as the enhanced level graph) are
obtained essentially by some bookkeeping, but extracting the level rotation torus and prong-matchings from
the logarithmic data requires significantly more care.

Our first key insight about prong-matchings is Lemma 3.1, giving a new, coordinate-free characterization of
prong-matching via the residue isomorphism. The second key insight exhibits the reason for the equivalence
relation given by the level rotation torus in log language. We define a log splitting of a point in RubLµ(B)

essentially as a section of the quotient map MB → MB, from the sheaf of monoids MB built into the log
structure, to the ghost sheaf MB. The precise statement is given in Lemma 5.1. We show that the set of log
splittings is closely related to the level rotation torus, and in particular changing the choice of log splitting
corresponds to the action of the level rotation torus.

Finally, we remark that an analogue of Lemma 1.1 should also hold for rubber k-differentials and multi-
scale k-differentials. Indeed, on the logarithmic side the generalization is straightforward, as noted earlier.
Moreover, the space of multi-scale k-differentials was described similarly in [CMZ24]. Thus the arguments
in the current paper can be adapted directly to compare the two versions of k-differentials. We leave the
details to the interested reader.

Outline of the paper

In Section 2 we give the basic definitions of logarithmic rubber maps, and in Section 3 we do the same
for generalized multi-scale differentials. In the somewhat technical Section 4, we describe the underlying
algebraic stack that comes from the logarithmic definition in Section 2, which will be essential for what
follows. Section 5 is the technical heart of our comparison theorem, where we show how to construct a
multi-scale differential from a logarithmic one, and vice versa. In Section 6 we discuss several constructions
of the universal line bundle class η that appears in the Hodge DR conjecture and prove the conjecture in
the case of k = 0. In Section 7 we describe some of the moduli spaces concerned via blowup constructions.
Finally, the sign conventions generally adopted in the logarithmic and multi-scale worlds are unfortunately
opposite to one another; in the appendix we explain a small variation on the logarithmic definitions which
makes the signs match.
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2. Logarithmic rubber maps

In the following we recall the relevant notions from logarithmic geometry that are needed to define
logarithmic rubber maps and make the comparison to the space of generalized multi-scale differentials.
Instead of a broader introduction, we focus on the precise parts of the theory that are needed. We refer the
reader to [Kat89b, Ogu18] for a more detailed treatment of the basic notions of log geometry, and mention
more specialized references where appropriate later in the text.
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2.1. Overview of log divisors

A log scheme is a pair

(2.1) (B,α : MB→OB),

where B is a scheme, MB is a sheaf of monoids on B, and α is a map of monoids, where OB is equipped with
the multiplicative monoid structure, and where we assume that α induces an isomorphism α−1(O×B)→O

×
B .

We write MB B MB/α
−1(O×B); this is called the ghost sheaf or characteristic sheaf. We write the monoid

operation on MB as multiplication, and that on MB as addition. Recall that a monoid M is called saturated
if the natural map M→Mgp to its groupification is injective, and if, for every n ∈Z≥1 and g ∈Mgp with
ng ∈M , we have g ∈M . A log structure is called saturated if all its stalks are saturated. We work throughout
only with fine saturated log structures (log structures admitting charts; see [Ogu18, Section III.1.2] by finitely
generated saturated monoids).

If β ∈ Γ (B,Mgp
B ), then the preimage of β in the short exact sequence

(2.2) 1 −→O×B −→Mgp
B −→M

gp
B −→ 1

is a Gm-torsor, which we denote by O×B(β). We write OB(β) for the associated line bundle (see the appendix
for our sign convention here).

Following [Kat00], the formal definition of a log curve is a morphism of log schemes(6) π : X→ B that is
proper, saturated, log smooth, and has geometric fibers which are reduced and of pure dimension 1. This
definition is rarely important to us, so rather than explicating the terms involved, we present a crucial
structure result (to be found in [Kat00, Section 1.8]). If π : X→ B is a log curve, then the underlying map of
schemes is a prestable curve, and if x is a geometric point of X mapping to a geometric point b of B, then
exactly one of the following three cases holds:

(1) x is a smooth point of X, and the natural map MB,b→MX,x is an isomorphism;
(2) x is a smooth point of X, and MX,x �MB,b ⊕N with the natural map MB,b→MX,x corresponding to

the inclusion of the first summand (in this case we say x is a marked point, and we choose a total
ordering on our markings to be compatible with the standard definition of marked prestable curves);

(3) x is not a smooth point of the fiber Xb (i.e. x is a node), and there exist a unique element δx ∈MB,b

and an isomorphism

(2.3) MX,x �
{
(u,v) ∈M2

B,b such that δx divides u − v
}
.

We warn the reader that the ghost sheaf MX does not fully determine the log structure; the units contain
important additional information.

We write M for the fibered category over LogSch whose objects are log curves X/B, with the projection
taking X/B to B. This is representable by an algebraic stack with log structure, see [GS13, Appendix A],
generalizing the construction of [Kat00] in the stable case. As shown in those references, the underlying
algebraic stack of M is naturally isomorphic to the stack of prestable curves. The stack M naturally contains
allMg,n as open substacks, by equipping a stable curve X/B with its basic log structure (see [Kat00, GS13]),
equivalently, with the log structure coming from the boundary divisor.

Given a log scheme, we define

G
trop
m (B) B Γ

(
B,M

gp
B

)
,

which we call the tropical multiplicative group. It can naturally be extended to a presheaf Gtrop
m,B on the

category LogSchB of log schemes over B, and admits a log smooth cover by log schemes (with subdivision
[P1/Gm]); see [MW20, Section 4.1].

(6)The reader concerned about the case g = 1, n = 0 should rather take log algebraic spaces.
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Definition 2.1. We define Rub as the stack in groupoids over M, with objects being tuples(
π : X→ B, β : X→G

trop
m,B

)
with X/B a log curve, satisfying two conditions on each strict geometric fiber:

(1) The image of β is fiberwise totally ordered,(7) with largest element 0.
(2) Writing R for the stack obtained from G

trop
m by subdividing at the image of β, we require that the

fiber product X ×β,Gtrop
m
R is a log curve.

The morphisms are defined by pullback.

Over a given geometric point of B, write N + 1 for the cardinality of the image of β; since the latter
is totally ordered, there is a unique isomorphism τ of totally ordered sets between the image of β and
{0,−1, . . . ,−N }. The composition

(2.4) ℓB τ ◦ β

is then called the normalized level function associated with β.

Remark 2.2. This definition will be unpacked in Section 2.3, but for now we make a couple of remarks on
how it differs from that given in Marcus–Wise [MW20]. Firstly, they declare the image of β to have smallest
element 0; this makes no material difference, and the reason for our choice of conventions is explained in
the appendix.

More significantly, condition (2) is not stated by Marcus and Wise. However, it is assumed, for example
in datum (R1) in Section 5.5 of their paper. Most of their results go through without this condition, but it
is necessary for making a connection to the spaces of rubber maps of Li, Graber–Vakil, etc., and is also
necessary for the comparison results in the present paper.

In fact, dropping condition (2) (and thus passing to the space of Marcus and Wise) is exactly the same
as taking the coarse moduli space of Rub relative to M. We write RubMW for this space. Combining
Theorem 4.3.2 and Proposition 5.1.2 of [MW20] shows that the space RubMW is an algebraic space over
the relative Picard stack over M. However, because the line bundle O(β) is canonically trivial along the
locus where β takes value 0, the map from RubMW to the relative Picard stack factors via the relative Picard
space, so that RubMW is an algebraic space over M. On the other hand, Rub→ RubMW is a root stack
(see the proof of Lemma 2.4 for more details), and so the relative coarse space of Rub is exactly RubMW.

Theorem 2.3 (cf. [MW20]). The category Rub is a log algebraic stack locally of finite presentation.

Marcus and Wise prove this in the absence of condition (2) above, but imposing this condition simply
corresponds to a root stack construction, and does not affect the result. One benefit of imposing condition (2)
is the following theorem, which did not hold for the version of Rub considered by Marcus and Wise.

Theorem 2.4. The algebraic stack Rub is smooth.

The proof of Lemma 2.4 will be given in Section 4.3.
Given β ∈Mgp

X (X), then taking the preimage in the standard exact sequence (2.2) applied to X yields the
line bundle OX(β); in other words, it yields an Abel–Jacobi map

aj : Rub −→ Pic

to the Picard stack of the universal curve over M (the stack of pairs (X/B,F ), where X/B is a log curve
and F is a line bundle on X). One of the main results of [MW20] is that the composite of this Abel–Jacobi
map with the forgetful map Pic→ Pic to the relative Picard space is proper.

(7)Here we mean that for any two elements in the image of β, one of their differences is contained in MB.
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Definition 2.5. Write n for the locally constant function on M giving the number of markings. Then there
is an outgoing slopes map

Rub −→Z
n

sending a point (X/B,β) to the outgoing slopes of β, i.e. the values of β in the groupifications of the stalks
MX/B(zi)BMX(zi)/MB(π(zi)) =N at the markings.

Given a tuple µ = (m1, . . . ,mn) of integers, we define Rubµ to be the open-and-closed substack of Rub
where the log curve has n markings and the outgoing slopes are given by µ.

Note that the forgetful map from Rubµ to the locus in M where the curves carry exactly n markings
is birational (it is an isomorphism over the locus of smooth curves); in particular, if we fix a genus and a
number of markings, then Rubµ is connected.

Writing d B
∑n
i=1mi , the image of Rubµ under the Abel–Jacobi map aj lands in the connected component

Picd of Pic consisting of line bundles of (total) degree d.

Remark 2.6. In fact one can show that the map Rubµ→M is not only birational onto the locus in M with
n markings but also log étale. This is a type of map basically consisting of an iterated blowup of boundary
strata, followed by root constructions(8) on some of these strata, and then followed by taking an étale map.
For the details, we refer the reader e.g. to the paper [HMP+25], where such morphisms are used extensively.
An important point there is that they can be described uniquely by an (incomplete) subdivision of the
tropicalization of M. While again we do not explain the details, one consequence is that one can obtain a
smooth local model of the morphism Rubµ→M by the toric map induced via some explicit subdivision of
a cone.

In Figure 1 we use this to illustrate the importance of condition (2) in Lemma 2.1. For this, consider a
point of M where the curve has genus zero and the stable graph Γ has three vertices and two edges e1, e2 as
illustrated. Assume that each vertex carries one marking and that µ is chosen so that the unique slopes of a
piecewise linear function on the edges are 1,2 for e1, e2 (see Lemma 2.10 for a discussion of piecewise linear
functions).

Then the tropicalization of M contains a cone σΓ =R
2
≥0 parameterizing the ways of putting lengths ℓ1, ℓ2

on the two edges. Depending on which of the quantities ℓ1 or 2ℓ2 is greater, a piecewise linear function
on Γ with the given slopes will take a larger value on either v2 or v1. Then the smooth local picture of
Rubµ→M is given by the map of toric varieties associated to the subdivision of σΓ along the ray spanned
by (ℓ1, ℓ2) = (2,1).

However, there is a subtlety: for the standard integral structure (black dots), the upper cone is simplicial,
but not smooth. Indeed, the primitive generators (0,1), (2,1) of its rays form a rational basis, but
not an integral basis. Hence, the toric variety associated to this cone has a singularity, which would
contradict Lemma 2.4. And indeed, this is precisely what happens for the variant of Rub defined by omitting
condition (2) from Lemma 2.1. Putting this condition forces us to adjoin the element ℓ1/2 to the dual of the
lattice on the upper cone. Correspondingly, on that upper cone we take the sublattice of all points (ℓ1, ℓ2)
with ℓ1 an even integer (depicted by circled dots).(9) Then the new ray generators are (0,1/2), (1,1/2), which
indeed form a basis of the integral structure Z⊕ (1/2)Z, so that Rub is smooth as claimed.

2.2. Logarithmic rubber differentials

The stack Rub is in some sense the universal space of logarithmic rubber maps. In this section we
specialize to the case of logarithmic rubber differentials. For this we fix g , n and write Xg,n/Mg,n for

(8)We cannot assume that the degrees of these roots are invertible in the base ring, so this map should probably not be considered
to be log étale outside of characteristic zero (though conventions in the literature differ).

(9)Note that in contrast to the toric situation, not all cones in the tropicalization of Rub lie in the same ambient vector space
with integral structure, so that it is possible to change this integral structure on different cones of the tropicalization.
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ℓ1

ℓ2

v1
v2

ℓ1
ℓ2

v1
v2

ℓ1 ℓ2

Figure 1. Subdivision associated to the drawn stable graph, with slope 1 at edge e1 (of length ℓ1)
and slope 2 at edge e2 (of length ℓ2).

the universal curve, with markings z = (z1, . . . , zn). Fix a tuple µ = (m1, . . . ,mn) of integers such that
d =

∑n
i=1mi = 2g − 2. We define a line bundle on the universal curve Xg,n overMg,n by the formula

L B Lµ B ωXg,n/Mg,n

− n∑
i=1

mizi

 ,
where ω =ωXg,n/Mg,n

is the relative dualizing sheaf of Xg,n→Mg,n. Then L induces a morphism

ϕL : Mg,n −→ Pic.

Definition 2.7. We define the space of logarithmic rubber differentials to be

(2.5) RubL B Rub0 ×Pic,ϕLMg,n.

Remark 2.8. If we had taken the fiber product over the relative Picard space (instead of the Picard stack), we
would have obtained the projectivized space P(RubL). This is the approach taken in [MW20, BHP+23], as
the space P(RubL) is what is needed for the study of the double ramification cycle.

Remark 2.9. There are two equivalent descriptions of the rubber differential space as

RubL = Rub0 ×Pic,ϕLMg,n = Rubµ ×Pic,ϕωMg,n.

2.3. Local description

In what follows we will make the definition of the space Rub more explicit for log curves over ‘sufficiently
small’ bases, more precisely, for nuclear log curves as defined in [HMOP23]. This is a slight refinement of
asking for the base to be atomic (in the sense of [AW18]), and is needed because a log curve even over a
point does not have a well-defined dual graph unless the residue field is sufficiently large. We omit the details
of the definition of a nuclear log curve, mentioning only the key properties we use:

(1) For any family of log curves X/B with B locally of finite type, there exists a strict(10) étale cover⊔
i∈I Bi → B such that each X ×B Bi → Bi is nuclear.

(2) For X/B a nuclear log curve and for any b ∈ B, the curve Xb has a well-defined dual graph Γb, with
edges labelled by non-zero elements of MB,b; we denote the label (also called length) of e by δe; this
was denoted by δx in (2.3). If δ′e ∈MB(B) is a lift of δe, then α(δ′e) ∈ OB(B) is a smoothing parameter

(10)A map f : X→ Y of log schemes is strict if the log structure on X is the pullback of the log structure on Y . In particular, the
strict étale topology on log schemes reflects very closely the usual étale topology on schemes.
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for e, in the sense that X can be described locally around the corresponding point by an equation
uv = α(δ′e). The stalk of MX at the corresponding node q of the fiber over b ∈ B is given by

(2.6) MX,q =
{
(u,v) ∈MB,b ⊕MB,b such that δe | (u − v)

}
.

(3) For X/B nuclear, the base B has a unique closed stratum,(11) and, for any b in that closed stratum, the
restriction gives an isomorphism Γ (B,MB)

∼−→MB,b.
(4) If X/B is nuclear and b, b′ ∈ B, with b in the closed stratum, there is a natural identification (of

labelled graphs) of Γb′ with the graph obtained from Γb by mapping every label to MB,b′ , and then
contracting all edges that are labelled by 0. We often abuse notation by writing MB BMB,b (for b in
the closed stratum) in place of Γ (B,MB). We often write Γ for the graph over any point in the closed
stratum, which comes with an MB-metric.

If B is the spectrum of a noetherian strictly Henselian local ring with atomic log structure (for example, if B
is the spectrum of a separably closed field), then by [HMOP23, Lemma 3.40] any log curve X/B is nuclear.

Let X/B be a nuclear log curve. Let b ∈ B be a point in the closed stratum, with associated dual graph Γ

with vertex set V = V (Γ ), set of half-edges H =H(Γ ) (including legs), and set of non-leg half-edges H ′ =H ′(Γ ).

Definition 2.10. A piecewise linear (PL ) function on X/B is an element of Γ (X,M
gp
X ).

A combinatorial PL function on X/B consists of the data:

(1) a function β′ : V (Γ )→M
gp
B,b (the values on the vertices), and

(2) a function κ : H ′(Γ )→Z (the slopes on the non-leg(12) half-edges)

such that if h1 and h2 are half-edges forming an edge e, with hi attached to vertex vi , we have

κ(h2)δe = β′(v2)− β′(v1)

(so that in particular κ(h1)+κ(h2) = 0). Edges of Γ with slope zero (that is, where both half-edges have slope
zero) are called horizontal; all the other edges of Γ are called vertical.

We want to show that these two types of PL functions are in natural bijection. First, we construct a
combinatorial PL function from any PL function. At generic points η of Xb, there is a natural isomorphism
MB,b =MX,η , so the section β ∈H0(X,M

gp
X ) determines a function β′ : V →M

gp
B,b. To complete the definition

of κ, we first show the following.

Lemma 2.11. If h1 and h2 are half-edges forming an edge e, with hi attached to vertex vi , then for the function
β′ constructed from β as above, the value β′(v2)− β′(v1) is an integer multiple of δe.

Proof. This follows from (2.6) and the fact that the images of β under the two projections to M
gp
B,b are exactly

given by β′(v1) and β′(v2). □

In the notation of Lemma 2.11, we can then define

(2.7) κ(h2) B
β′(v2)− β′(v1)

δe

(which is unique because MB,b is torsion-free). This accomplishes one direction of the following lemma.

Lemma 2.12. The above construction induces a bijection between the set of PL functions and the set of combinatorial
PL functions.

(11)Every log scheme comes with a decomposition into locally closed subschemes (called strata), where the ghost sheaf is locally
constant.

(12)In this paper we do not include slopes on the legs, as we are interested only in the case where these slopes are equal to 0
(since we work throughout with Rub0). Recall that, as discussed in Lemma 2.9, we have moved the data of the zeros and poles into

the line bundle Lµ.
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Proof. Let β′ be a combinatorial PL function; we build a PL function β giving the inverse image of β′ under
the construction above. If x is a smooth point of Xb, then MX,x =MB,b, and we define the value of β at x
to be β′(v), where v corresponds to the irreducible component of Xb containing x. The presentation (2.6)
makes it clear that there is a unique way to extend this section to all non-smooth points x ∈ Xb. For any
other point b′ ∈ B, the combinatorial PL function can naturally be transferred (using property (4) of the
definition of a nuclear log curve) to the fiber Xb′ , and we repeat the above argument to give a PL function
on Xb′ . These then fit together to define a global PL function on X/B. □

Our concrete local description of Rub is now given by the next proposition.

Proposition 2.13. For X/B nuclear and b ∈ B in the closed stratum, let V be the vertex set of the associated
dual graph of b. Then there is a natural bijection between the set of X/B-points of Rub0 (i.e. the set of maps
B→ Rub0 lying over X/B) and the set of maps

(2.8) β′ : V −→M
gp
B,b

satisfying the following conditions:

(1) The divisibility condition δe | β′(v2)− β′(v1) holds at every edge e in Γb connecting vertices v1,v2 ∈ V .
(2) The image of β′ is a totally ordered subset of M

gp
B,b with largest element being 0.

(3) For every edge e connecting vertices v1 and v2, with slope κe (defined as the absolute value of (2.7)), and
for every y ∈ Image(β′) with β′(v1) < y < β′(v2), the monoid MB,b contains the element

y−β′(v1)
κe

.

Proof. Conditions (1) and (2) are translations of point (1) of Lemma 2.1. Condition (3) corresponds to point (2)
of Lemma 2.1, as explained in [BHP+23, Section 6.2]. □

Remark 2.14. If β′1 and β′2 are combinatorial PL functions with the same slopes κe, then there exists an
element c ∈Mgp

B,b such that β′1 = β
′
2 + c. In the definition of Rub, we restrict to PL functions whose values

are totally ordered and take maximum value 0, and such functions are completely determined by the values
of their slopes κ.

We would like to characterize in a similar spirit when a point of Rub lifts to RubL. More concretely, this
means describing explicitly the line bundle OX(β) associated to a PL function. The next lemma describes
the restriction of OX(β) to the irreducible components of the curve Xb (in the case where β comes from
Rub0, i.e. has vanishing outgoing slopes). To describe the gluing between irreducible components would
require us to get into quite a few more details of log geometry, and is not necessary for what we do in this
paper.

Lemma 2.15 (cf. [RSPW19, Lemma 2.4.1]). Let Y be the normalization of an irreducible component of Xb,
corresponding to a vertex v. For each half-edge h attached to v, write κh for the slope (in the sense of (2.7)) and
zh ∈ Y for the associated preimage of a node of Xb. Then there is a canonical isomorphism

OX(β)|Y = π∗OB(β′(v))⊗OY OY

∑
h

κhzh

 .
In particular, for a point (Xb/b,β) of Rub0 to lie in RubL, it is necessary (though not in general sufficient)

to require that, on the normalization Y of any irreducible component of Xb, there exists an isomorphism

LY � OY

∑
h

κhzh

 ,
where the sum runs over all half-edges h attached to v.
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3. Generalized multi-scale differentials

We recall basic notions from [BCG+19], in order to define the groupoids GΞMg,n(µ) of simple generalized
multi-scale differentials and GMSµ of generalized multi-scale differentials, where µ = (m1, . . . ,mn) is a tuple of
integers with sum 2g − 2. The adjective ‘generalized’ refers to the fact that we do not impose the global
residue condition.

3.1. Enhanced level graphs

The boundary strata of the stack of generalized multi-scale differentials are indexed by enhanced level
graphs. Such an enhanced level graph, typically denoted by Γ , is the dual graph of a stable curve, with legs
corresponding to the marked points, with a level structure (i.e. a weak full order, equality being permitted)
on the set of vertices V (Γ ), and with enhancements κe, which are non-negative integers attached to the
edges. The edges E(Γ ) are grouped into the set of horizontal edges Eh(Γ ) joining vertices at the same level,
and the set of vertical edges Ev(Γ ). The enhancements are required to be zero precisely for horizontal edges.
We thus may consider an enhancement as a function

κ : H(Γ ) −→Z

on the set of half-edges of Γ , assigning κe > 0 to the upper half and −κe < 0 to the lower half of a vertical
edge, assigning zero to both halves of a horizontal edge, and letting κ agree with mi at the legs of the graph.
We normalize the set of levels so that the top level is zero, and let L(Γ ) be the set of levels below zero, usually
given by consecutive negative integers L(Γ ) = {−1, . . . ,−N }, where N B |L(Γ )|, so that we typically use the
normalized level function

(3.1) ℓ : V (Γ ) −↠ {0,−1, . . . ,−N }.

Occasionally, we use L•(Γ ) for the set of all levels including the zero level. In what follows we will only
consider enhancements that are admissible in the sense that the degree equality

(3.2) deg(v) B
∑
j 7→v

mj +
∑

e∈E+(v)

(κe − 1)−
∑

e∈E−(v)
(1 +κe)− h(v) = 2g(v)− 2

holds, where j 7→ v means the leg of order mj is attached to the vertex v; i.e. the first sum goes over all
legs attached to v, where E+(v) (resp. E−(v)) is the set of vertical edges whose upper (resp. lower) end is the
vertex v (we often write e+ = v, resp. e− = v, to express this adjacency), and h(v) is the number of horizontal
half-edges adjacent to v.

Enhanced level graphs come with two kinds of undegeneration maps. First, for any subset I = {i1, . . . , in}
of {−1, . . . ,−N }, there is the vertical undegeneration map δi1,...,in , a map of graphs that contracts all vertical
edges except those that go from the level at or above ik + 1 to a level at or below ik , for some ik ∈ I .
Especially important among those are the two-level undegenerations δi , which contract all vertical edges
except those that cross a level passage above i, i.e. go from a vertex at level i +1 or above to a vertex at
level i or below. Second, for S ⊂ Eh(Γ ) there is the horizontal undegeneration maps δhS that contract all the
horizontal edges except those in S . An undegeneration of a level graph is a composition of a vertical and a
horizontal undegeneration. Undegenerations determine the adjacency of boundary strata of the space of
multi-scale differentials.

3.2. Prong-matchings

Let (X,ω) be a smooth complex curve with a meromorphic 1-form. If a differential ω has a zero of order
m ≥ 0 at q ∈ X, then there exists a local coordinate (and, in fact, there are m + 1 such choices) z on X
centered at q such that locally in this coordinate ω = zmdz; similarly, for a pole of order m ≤ −2 at q ∈ X,
one can find a local coordinate such that ω = (zm + r/z)dz. Given such a local coordinate, a (complex ) prong
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is one of the 2|m+1| vectors in TqX of the form ζj ∂∂z in this local coordinate z, where ζ is a primitive root
of unity of order 2|m+1|; see [BCG+19, Definition 5.4]. In what follows we will mostly care about the set
of P out

q of outgoing prongs at the zeros of a differential, that is, the set of m + 1 prongs there where the

exponent j of ζj is even, and the set P inc
q of incoming prongs at the poles of the differential, that is, those

|m+1| prongs there where the exponent j is odd.
Now let X be a stable curve with a node q corresponding to a vertical edge e ∈ Ev(Γ ) where two

components of X meet, and suppose these components X1 and X2 come with differential forms ω1 and ω2
having a zero and a pole, respectively, at the respective preimages q+ ∈ X1 and q− ∈ X2 of q. A (local )
prong-matching at the node q is a cyclic order-reversing bijection σe : P in

q− → P out
q+ between the incoming

prongs at q− and the outgoing prongs at q+.
Now let (X,z,Γ ,ω) be a pointed stable curve with an enhanced level graph Γ , and let ω = (ω(i))i∈L•(Γ ) be

a twisted differential of type µ compatible with Γ , possibly except for the global residue condition. Following
[BCG+18], this means a collection of meromorphic differentials ωv for each vertex v, vanishing to order mi
at each of the marked points zi , vanishing to order κ(h)− 1 at the preimages of nodes associated to the
half-edges h ∈ H ′(Γ ), and such that the residues at the two sides of a horizontal node add up to zero.
Grouping objects level-wise, we denote by ω(i) the tuple of differentials ωv for all vertices v on level i.

Given a twisted differential, we have defined above local prong-matchings for each vertical edge. Packaging
such a choice for each vertical edge e ∈ Ev(Γ ), we call the collection σ = (σe)e∈Ev(Γ ) a global prong-matching.

There is an alternative viewpoint on prong-matchings, which can be generalized to germs of families
X → B, where a node q corresponding to an edge e in the dual graph of the special fiber persists over the
base. In the normalization of the family, there are two components X± (as the edge is vertical, necessarily
X+ , X−) that admit sections q± that specify the two preimages of the node q. We let

(3.3) N ∨e B (q+)∗ωX+ ⊗ (q−)∗ωX− .

A local prong-matching (see [BCG+19, Definition 5.6]) is then a section σe of N ∨e such that for any pair
(v+,v−) of an incoming and an outgoing horizontal prong, the equation σe(v+ ⊗ v−)κe = 1 holds. To see the
equivalence, given σe, we assign to v− the prong v+ given by the condition σe(v+⊗v−) = 1. Conversely, given
a bijection s : P in

q− → P out
q+ of incoming and outgoing prongs, we define σe ∈ N ∨e by setting σe(p⊗ s(p)) = 1

for any p ∈ P in
q− . The fact that s is order reversing implies that this σe ∈ N ∨e is well defined, which justifies

using the same notation σe for both viewpoints on a prong-matching. A global prong-matching is a collection
of local prong-matchings for each persistent node (as will be defined formally in Section 3.4) in the family.

We give another reformulation that eliminates the dependence on the choice of a preferred (‘horizontal’)
direction. Let U± be neighbourhoods of the points q± in the normalization of X . Suppose the edge e joins
level i to the lower level j . Then ω(i) extends uniquely to a section of ωU+/B(−(κe − 1)q+) and ω(j) to a
section of ωU−/B((κe +1)q−). Restricting these to q+ and q−, respectively, yields canonical elements

τ+ ∈ωU+/B(−(κe − 1)q+)|q+ = T
⊗−κe
q+ and τ− ∈ωU−/B((κe +1)q−)|q− = T

⊗κe
q−

(where we use the residue isomorphism for the equalities). We define

τe B (τ+)−1 ⊗ (τ−) ∈
(
Tq+ ⊗ Tq−

)⊗κe = N ⊗κee .

Lemma 3.1. In the notation of the previous definition, let v+ and v− be some horizontal prongs at e. Then
(v+ ⊗ v−)⊗κe ∈ N ⊗κee is independent of the choice of prongs and of the direction to be called horizontal, and we
have

(3.4) τe = (v+ ⊗ v−)⊗κe .

Proof. For a fixed direction, the different choices of prongs v+ differ by κthe roots of unity, and likewise
for v−. Thus the formula for τe implies that it does not depend on these prong choices. On the other hand,
changing the direction from horizontal to direction θ multiplies v+ by e2πiθ and v− by e−2πiθ , and thus
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preserves v+ ⊗ v−. The equality is obvious, as can be seen by writing it out in any local coordinate that puts
the differentials in normal form. □

This implies that the earlier definitions of prong-matching agree with the following.

Definition 3.2. A local prong-matching is a section σe of N ∨e such that σκee (τe) = 1.

3.3. Level rotation tori

To an enhanced level graph, we associate some groups and algebraic tori. The level rotation group
RΓ �Z

L(Γ ) acts on the set of all global prong-matchings, where the ith factor twists by one (i.e. multiplies σe
by e2πi/κe ) all prong-matchings associated to edges that cross the ith level passage, a horizontal line above
level i and below level i + 1.(13) The (vertical ) twist group is the subgroup TwΓ ⊂ RΓ fixing all the prong-
matchings under the above action. The level rotation group also acts (via its ith component) on the set of
prong-matchings of the two-level undegenerations δi(Γ ). We define the simple twist group Tws

Γ
⊂ TwΓ ⊂ RΓ

to be the subgroup that fixes each of the prong-matchings of each δi(Γ ).
Let CL(Γ )→ (C∗)L(Γ ) be the universal covering of the algebraic torus (C∗)L(Γ ); we identify the level rotation

group RΓ ⊂ C
L(Γ ) as the kernel of this covering. As a subgroup of the level rotation group, the (simple)

twist group acts on C
L(Γ ), and we define the level rotation torus TΓ B C

L(Γ )/TwΓ , together with its simple
counterpart, the simple level rotation torus T s

Γ
B C

L(Γ )/Tws
Γ
. See Section 3.5 for an example when these two

tori differ.
Next we define the data that provide the model for the toroidal embedding of the boundary inside the

space of multi-scale differentials. Since Tws
Γ
= ⊕iTwδi (Γ ) has by definition a direct sum decomposition level

by level, the simple level rotation torus comes with a natural level-wise identification T s
Γ
� (C∗)L(Γ ). The

embedding C
∗ ↪→ C with respect to these coordinates defines an embedding T s

Γ
↪→ T

s
Γ BC

L(Γ ). We let

(3.5) ai B aδi (Γ ) B lcm
e∈δi (Γ )

κe

be the least common multiple of the enhancements of the edges of Γ that persist in the two-level undegener-
ation δi(Γ ). Then Tws

Γ
� ⊕iaiZ ⊂ RΓ . Consequently, T

s
Γ
is a cover of the original torus (C∗)L(Γ ), of degree∏

i ai . Finally, we define the quotient twist group to be

(3.6) KΓ B TwΓ /Tw
s
Γ .

This group acts on T s
Γ
with quotient TΓ . In coordinates the quotient map is given by

(3.7)

(C∗)L(Γ ) −→ (C∗)L(Γ ) × (C∗)E
v(Γ )

(qi) 7−→ ({ri}i∈L(Γ ), {ρe}e∈Ev(Γ )) :=

{qaii }i∈L(Γ ) ,

ℓ(e+)−1∏
i=ℓ(e−)

qai /κei


e∈Ev(Γ )

 ,
where qi , ri ,ρe denote the coordinates on the corresponding tori, and we view TΓ ⊂ (C∗)L(Γ ) × (C∗)Ev(Γ ) as
cut out by the equations

(3.8) rℓ(e−) · · ·rℓ(e+)−1 = ρκee

for each e. The action of KΓ on T s
Γ
extends to an action on the closure T

s
Γ , and we let T

n
Γ B T

s
Γ /KΓ , which

is the normalization of the closure of TΓ ⊂ (C∗)L(Γ ) × (C∗)Ev(Γ ) inside C
L(Γ ) ×CEv(Γ ).

All these tori come with their extended versions, denoted with an extra dot (e.g., T •
Γ
), that have an extra

C
∗-factor. This factor will act on differentials of all levels simultaneously by multiplying all differentials by a

common factor, and lead to the projectivized version of the corresponding quotient functor.

(13)In this paper we index levels and all quantities indexed by them, such as ti , si , δi below, by negative integers, as in [BCG+19],
but contrary to several subsequent papers that use this compactification.
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3.4. Controlled families of generalized multi-scale differentials

We will now use these constructions to define families of generalized multi-scale differentials for families
X → B of curves over ‘small enough’ base schemes. The general case will then be treated by gluing. The
notion of ‘small enough’ that we will use is that of controlled curves from [BH23, Section 2.6]. This deviates
slightly from the corresponding definition in [BCG+19, Section 11], where such families are merely defined as
germs, and allows to a priori say under which morphisms our families can be pulled back without having to
pass to suitable representatives of germs.

We do not recall the definition of controlled curves in full, but recall the key properties that we will
need. If X → B is a controlled curve, then for every p ∈ B, the fiber Xp has a well-defined dual graph Γp.
Moreover, there exists a controlling point b ∈ B together with smoothing parameters fe ∈ OB(B) for every edge
e of Γb, such that fe vanishes exactly on the locus of p ∈ B where the corresponding node persists in Xp, and
such that the family has the local form ueve = fe in a neighbourhood of the corresponding node. The dual
graph of Xp is obtained from that of Xb by contracting exactly those e such that fe(p) , 0. The function fe
is unique up to multiplication by units in OB(B); we write [fe] ∈ OB(B)/O×B(B) for the equivalence class of
the smoothing parameter. Given any family of stable curves X → B, over a locally noetherian base, there
exists an étale cover

⊔
i Bi → B with each X ×B Bi → Bi controlled (see [BH23, Lemma 2.6.9]). Our first

step is to define ‘standard’ open subsets of controlled families of curves where the collection of rescaled
differentials are defined. Let µ = (m1, . . . ,mn) be a tuple of integers with

∑n
i=1mi = 2g − 2. If X is a stable

n-marked curve with enhanced level graph structure on the dual graph, then for any level i, the subcurve
X[i] B X(≤i)\(X(>i)∪z∞) is open in X, where X(≤i) is the subcurve at and below level i, X(>i) is the subcurve
above level i, and z∞ is the union of those markings with mj < 0.

We now fix a stable n-marked controlled curve X → B and a controlling point b ∈ B, and suppose we are
given an enhanced level graph structure on the dual graph of Xb. If p ∈ B is another point, we have an edge
contraction Γb→ Γp, which naturally induces on Γp the structure of an enhanced level graph (see [BCG+19,
Section 5.1] for details). In particular, the set Lb of levels of Γb naturally surjects onto the set Lp of levels
of Γp: we have lp : Lb↠ Lp. The reader may check that the following sets Ui ⊂ X are indeed open.

Definition 3.3. Given a stable n-marked controlled curve X → B and a level i ∈ Lb, we define Ui ⊆ X , the
standard open set at level i, to be the union over all p ∈ B of X

[lp(i)]
p .

We say that a node e is persistent in the family X if fe = 0 ∈ OB. If the dual graph Γb has been provided
with an enhanced level graph structure, we say that a node e is semi-persistent if f κee = 0. The notion of
prong-matchings makes sense for a persistent node q.

For our families of multi-scale differentials, we need to include an explicit choice of smoothing parame-
ters fe into our data. This can be achieved via a section of the partial compactification T

s
Γ of the simple level

rotation torus. Indeed, given the coordinates (ri ,ρe) on the torus closure from (3.8), a morphism Rs : B→ T
s
Γ

determines for each vertical edge e a function fe ∈ OB, and for each level i a function si ∈ OB, defined as
the compositions fe = ρe ◦ P ◦Rs and si = ri ◦ P ◦Rs, where P : T

s
Γ → T

n
Γ is the canonical morphism. If an

edge e joins levels j < i, then by (3.8) these functions satisfy

(3.9) f κee = sj · · ·si−1.

The following definition makes precise the notion that a morphism Rs as above defines a compatible system
of node-smoothing parameters.

Definition 3.4. A simple rescaling ensemble is a morphism Rs : B→ T
s
Γb
such that the parameters fe ∈ OB(B)

for each vertical edge e determined by Rs lie in the equivalence class [fe] determined by the family π : X → B.
A rescaling ensemble is a morphism R : B→ T

n
Γb

which arises as the composition π ◦Rs for some simple
rescaling ensemble Rs.
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The si and fe will be called the rescaling parameters and smoothing parameters determined by R or Rs. The
composition of Rs with the coordinate projections gives functions ti such that si = t

ai
i . We refer to those ti

as the level parameters.
Recall that the adjective ‘generalized’ in the following definition refers to the fact that the global residue

condition has been dropped, compared to [BCG+19]. For an illustration of some elements of the definition,
see Figure 2. The well-definedness of the period in the following definition is checked (in any characteristic),
e.g. in [Boj19, Lemma 1.8].

Definition 3.5. A collection of generalized rescaled differentials of type µ on the stable n-pointed controlled
curve (π : X → B,z) with a controlling point b ∈ B is a collection of sections ω(i) of ωX /B defined on the
standard open subsets Ui of X , indexed by the levels i ∈ L•(Γ ) of the enhanced level graph. The irreducible
components of Xb on a level strictly below i are called vertical zeros, and those on a level strictly above i are
called vertical poles of ω(i). We require the collection to satisfy the following constraints:

(1) There exist sections si ∈H0(B,OB) with si(b) = 0 such that for any levels j < i, the differentials satisfy
ω(i) = sj · · ·si−1ω(j) on Ui ∩Uj .

(2) For any edge e joining levels j < i, for any p ∈ B over which e persists, and for some (equivalently,
any) choice of functions ue,ve on X and fe on B such that the family has local normal form ueve = fe,
there exists a unit λ in the strict Henselization(14) (OB[ue,ve]/(ueve − fe))sh(p,0,0) of the local ring at
(p,ue = 0,ve = 0) such that

(3.10) ω(i) = λuκee
due
ue

and ω(j) = −λv−κee
dve
ve
.

(3) The ω(i) have order mk along the sections Zk of the kth marked point that meet the level i subcurve
of Xb; these are called horizontal zeros and poles (where Z∞ records the horizontal poles). Moreover,
ω(i) is holomorphic and non-zero away from its horizontal and vertical zeros and poles.

If the rescaling and smoothing parameters si , fe for the collection ω(i) agree with those of a rescaling
ensemble Rs or R, we call them compatible. We denote the collection by ω = (ω(i))i∈L•(Γ ).

The unit λ is unique since ω(i) is a generating section of ω after inverting ue and ω(j) is a generating
section of ω after inverting ve. We then apply the following result from commutative algebra.

Lemma 3.6. Let R be a ring, f ∈ R, and A = R[u,v]/(uv − f ). Then h : A→ A[u−1]×A[v−1] is injective.

Proof. Assume h(a) = 0. Any element a ∈ A has a unique normal form

a = e0 + c1u + · · ·+ cnun + d1v + · · ·+ dmvm.

Under the unique isomorphism A[u−1]→ R[u,u−1] sending v to f /u, the element a is mapped to

e0 + c1u + · · ·+ cnun + d1f u−1 + · · ·+ dmf mu−m.

Therefore, the vanishing of the first component of h implies e0 = c1 = · · · = cn = 0, as can be seen just by
reading off the coefficients of the R-basis {ut : t ∈ Z}. Similarly, the vanishing of the second component
implies d1 = · · · = dm = 0. □

Applying this to R = OB, u = ue, v = ve, and f = fe, we first conclude that the map

OB[ue,ve]/(ueve − fe) −→OB[ue,ve,u−1e ]/(ueve − fe)×OB[ue,ve,v−1e ]/(ueve − fe)

is injective. Localization and strict Henselization are flat. Therefore, the above injectivity is preserved.

(14)In the complex analytic category, this would be the germ of a non-vanishing function around the node.
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The reader comparing with the definition in [BCG+19] will realize that there in item (2) it is required that
for any edge e joining levels j < i of Γ , there are functions ue,ve on X and fe on B, such that the family has
local normal form ueve = fe, and in these coordinates

(3.11) ω(i) =
(
uκee + f κee re,(j)

) due
ue

and ω(j) = −
(
v−κee + re,(j)

) dve
ve
,

where κe is the enhancement of Γb at e. The two normal forms are equivalent at least if f κee , 0: Equation (3.11)
implies (3.10) by taking λ = 1+ re,(j)(fe/ue)κe . Conversely, given (3.10) we may change ve to a coordinate that
is in the normal form (3.11) by [BCG+19, Theorem 4.3]. The form (3.10) is the one we can directly associate
with a rubber differential; see Section 5.4.

e

1

Γ

B = Spec(C[[t]])b

z1 z1

γe

U−1 U0

Figure 2. The underlying curve for a family of generalized rescaled differentials of type µ = (4), with
neighbourhoods U0, U−1 (in red, green) and the vanishing cycle γe (in blue).

Remark 3.7. Let ω be a collection of generalized rescaled differentials with a compatible rescaling ensemble Rs

or R. For any non-semi-persistent edge e, denote by Be ⊂ B the vanishing locus of fe. Then there is a natural
induced prong-matching σe over Be, which is determined by the choice of the rescaled differentials ω(i) and
the rescaling ensemble. This prong-matching σe is defined explicitly in local coordinates by writing it as
σe = due⊗dve when restricting to the nodal locus corresponding to e, where ue and ve are as in (3.11) with fe
prescribed by the rescaling ensemble. Any two possible choices of ue and ve are of the form αeue and α

−1
e ve

for some unit αe ∈ O∗B (see [BCG+19, Section 4]), so the induced prong-matching does not depend on this
choice.

We can now package everything into our main notion.

Definition 3.8. Given a controlled family of pointed stable curves (π : X → B,z), a (controlled ) family of
generalized simple multi-scale differentials of type µ over B consists of the following data:

(1) the structure of an enhanced level graph on the dual graph Γb of the fiber Xb;
(2) a simple rescaling ensemble Rs : B→ T

s
Γb
, compatible with

(a) a collection of generalized rescaled differentials ω = (ω(i))i∈L•(Γb) of type µ, and
(b) a collection of prong-matchings σ = (σe)e∈Ev(Γ ), where σe is a section of N ∨e over Be, the

vanishing locus of fe. If e is a non-semi-persistent node, σe is required to agree with the induced
prong-matching defined in Lemma 3.7.
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A section of the simple level rotation torus T s
Γb
(OB), that is, a morphism ξ : B→ T s

Γb
, acts on all of the

above data via
ξ ·

(
ω(i),R

s,σe
)
=

(
ξ ·ω(i),ξ

−1 ·Rs,ξ · σe
)
.

Here, for ξ ∈ T s
Γb
(OB) mapping to ((ri)i∈L(Γb), (ρe)e∈Ev(Γb)) under the quotient map (3.7), the action is defined

by

ξ ·ω(i) =

∏
ℓ≥i

rℓ

ω(i), ξ · σe = ρeσe,

and ξ−1 ·Rs denotes the post-composition of Rs with the multiplication by ξ−1.(15)

An isomorphism between two controlled families of generalized simple multi-scale differentials over the same
base B and with the same controlling point b

(3.12) (π′ : X ′ −→ B,z′ ,Γb, (R
s)′ ,ω′ ,σ ′) −→ (π : X −→ B,z,Γb,R

s,ω,σ )

consists of an isomorphism ϕ : X ′→X and an element ξ ∈ T s
Γb
(OB) such that

i) ϕ defines an isomorphism of families of pointed stable curves,
ii) the induced isomorphism of dual graphs Γ ′b→ Γb is also an isomorphism of enhanced level graphs,
iii) the action of ξ sends ((Rs)′ ,ω′ ,σ ′) to ϕ∗(Rs,ω,σ ).

Pullbacks of families of controlled generalized multi-scale differentials are defined as in [BCG+19, Sec-
tion 11.2]. This step requires some care, since the number of levels, the nodes where the prong-matching is
an induced prong-matching, and the target of the rescaling ensemble map change. With this in hand, we
can define a family of generalized multi-scale differentials over any scheme locally of finite type over C by
sheafifying the notion already defined for controlled families, using that controlled families form a base for
the étale topology in the sense of [BH23, Definition A.3]. This definition is analogous to that in [BCG+19,
Section 11.3], and can be seen as a groupoid-version of the constructions worked out in [BH23, Appendix A].

Definition 3.9. We let GΞMg,n(µ) be the groupoid of families of generalized simple multi-scale differentials.

There are two variants of this definition. First, replacing T s
Γb
(OB,b) with the extended level rotation torus

T •
Γb
(OB,b) in the definition of a morphism, we obtain projectivized generalized simple multi-scale differentials.

Here the additional torus factor acts by scaling the differential on all levels simultaneously, including level 0.
These are relevant to get compact spaces. Here we compare the unprojectivized definitions and will not
elaborate further on this.

Second, there is a ‘non-simple’ variant that we need to compare to the relative coarse moduli space. The
remarks above about pullback and sheafification apply here as well.

Definition 3.10. A family of controlled generalized multi-scale differentials of type µ is defined as
in Lemma 3.8, replacing (2) by a rescaling ensemble R : B→ T

n
Γb
. A morphism of such controlled families

consists of (ϕ,ϕ̃,ξ) as above, except that now we allow ξ ∈ TΓb′ (OB′ ). We let GMSµ be the resulting
groupoid of families of generalized multi-scale differentials.

Modifying Lemma 3.5 by additionally imposing the global residue condition gives a groupoid that
we denote by ΞMg,n(µ) for the simple version (Lemma 3.8) and by MSµ for the non-simple version
(Lemma 3.10). We state the comparison to the objects defined in [BCG+19].

Proposition 3.11. The stack ΞMg,n(µ) is a smooth DM-stack. The stack MSµ is a stack with finite quo-
tient singularities and agrees with the normalization of the orderly blowup of the normalized incidence variety
compactification; see [BCG+19, Section 14].

(15)Most of the checks that this action is well defined are straightforward. To verify part (2) of Lemma 3.8, assume we are given
local coordinates u,v around a node associated to e ∈ Ev(Γb) such that the differentials have the normal form (3.11). Then the
rescaled differential is put in the required normal form using the new coordinates û = (

∏
ℓ≥i rℓ)

1/κeue and v̂ = (
∏
ℓ≥j rℓ)

−1/κeve .



22 D. Chen, S. Grushevsky, D. Holmes, M. Möller, and J. Schmitt22 D. Chen, S. Grushevsky, D. Holmes, M. Möller, and J. Schmitt

The paper [BCG+19, Section 14.2] also defines a smooth stack denoted by ΞMg,n(µ), patched locally from
quotients of stacks with a Teichmüller marking. The full proof that this stack is isomorphic to the stack with
the same symbol defined here would require recalling the lengthy definitions of level-wise real blowup and
Teichmüller marking from [BCG+19, Section 12]. This identification directly implies the second statement of
the proposition. The proof given here provides the main content of the proposition, the smoothness of this
stack, without using the smoothness results from [BCG+19].

Proof. Recall from [BCG+19, Section 8.1 and Theorem 10.1] that a versal deformation space B ofMSµ is

given by a product B = T
n
Γb
× B0, where T

n
Γb

gives a parameterization of possible rescaling ensembles R

(which have values in T
n
Γb
), and where B0 parameterizes the remaining data (deformations of the components

Xv for v ∈ V (Γb) and twisted differentials on these components). In fact, this local structure is given for the
model space in [BCG+19, Section 8.1]. This model space is locally isomorphic to the Dehn space by the
plumbing construction given in [BCG+19, Theorem 10.1], and [BCG+19, Proposition 12.5] shows that every
family can locally be lifted to the Dehn space.

Consider the fiber product

B̂B B×MSµ ΞMg,n(µ) ΞMg,n(µ)

B MSµ.

We claim that B̂ is equal to the stack quotient [T
s
Γ /KΓ ] times the product B0 of the other factors. Then the

maps B̂→ ΞMg,n(µ) provide a smooth cover by spaces which are smooth themselves, which implies the

claimed smoothness of ΞMg,n(µ).
To show that B̂ is equal to [T

s
Γ /KΓ ]×B0, we write down explicitly the maps B̃→ B̂, where B̃ carries a

controlled curve. For this, recall(16) that a morphism to a fiber product as above is given by a triple(
B̃→ ΞMg,n(µ), B̃→ B,G

)
,

where G is a 2-isomorphism between the compositions

B̃ −→ ΞMg,n(µ) −→MSµ and B̃ −→ B −→MSµ.

Inserting the definitions of the moduli stacks, this data above is equivalent to a triple of

• a controlled family (π : X → B̃,z,Γb,Rs : B̃→ T
s
Γb
,ω,σ ) of generalized simple multi-scale differentials,

• morphisms sT : B̃ → T
n
Γb

and s0 : B̃ → B0 (which together can be thought of as a morphism

(sT , s0) : B̃→ T
n
Γb
×B0 = B),

• an isomorphism (X � X ′ , ξ ∈ TΓb(OB̃)) of generalized (non-simple) multi-scale differentials, send-
ing the family (π : X → B̃,z,Γb,R,ω,σ ) to the family (π′ : X ′ → B̃,z′ ,Γb,R′ ,ω′ ,σ ′) induced by
(sT , s0) : B̃→ B.

By identifying the families of curves X � X ′ , we can act on the pair (sT , s0) with the section ξ of the level
rotation torus. Replacing (sT , s0) by this modified pair, we obtain a new, equivalent, triple of data, where the
isomorphism in the last bullet point is taken as the identity. But then we see that such a triple is uniquely
determined by the pair (

Rs : B̃ −→ T
s
Γb
, s0 : B̃ −→ B0

)
,

by taking sT in the second bullet point as the composition B̃→ T
s
Γb
→ T

n
Γb
and taking the data (π,z,Γb,ω,σ )

in the first bullet point that is determined by the non-simple generalized multi-scale differential from
(sT , s0) : B̃→ B.

(16)For a reminder on fiber products of stacks, we recommend the excellent paper [Fan01].
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Above we have found that any morphism B̃→ B̂ can be described by a morphism (Rs, s0) : B̃→ T
s
Γb
×B0.

Two such morphisms are 2-isomorphic if they can be related by compatible isomorphisms for the stacks B
and ΞMg,n(µ) in the fiber product. Since B is a scheme, the only such isomorphisms come from sections

ξ : B̃→ T s
Γb
leaving the underlying non-simple generalized multi-scale differential fixed. These are exactly

identified with sections ξ : B̃→ KΓb
, which act in a natural way on the first morphism Rs : B̃→ T

s
Γb
. Since B̃

is connected, the section ξ is necessarily constant, so that we have identified(17)

Mor
(
B̃, B̂

)
= Mor

(
B̃,T

s
Γb
×B0

)
/KΓ = Mor

(
B̃,
[
T
s
Γb
/KΓ

]
×B0

)
.

This proves the isomorphism B̂ � [T
s
Γb
/KΓ ]×B0. Since both the quotient stack [T

s
Γb
/KΓ ] and B0 are smooth,

this finishes the proof. □

Proof of Lemma 1.1, second part. Assuming the first part of the theorem, the proof of the second part is
completed by showing that the map GΞMg,n(µ)→GMSµ is the relative coarse moduli space overMg,n.

First, we observe that the map GMSµ→Mg,n is representable. Indeed, the stabilizers (ϕ,ϕ̃,ξ) of a family
of generalized multi-scale differentials lying over the identity morphism ϕ = idB, ϕ̃ = idX of the underlying
stable curves are those ξ ∈ TΓb(OB) fixing both the differentials ω and the prong-matchings σ . By the
definition of the level rotation torus, this forces ξ to be trivial, so that indeed the stabilizers of GMSµ inject

to the stabilizers ofMg,n.
By the definition of the relative coarse space, we then have a factorization

GΞMg,n(µ) −→ GΞMg,n(µ)
coarse −→ GMSµ,

and we show that the second map is an isomorphism. For this, let B→GMSµ be associated to a controlled
family of generalized multi-scale differentials. Then we have a commutative diagram, where we define the
diagrams on the right to be cartesian:

[T
s
Γb
/KΓ ] GΞMg,n(µ)B GΞMg,n(µ)

GΞMg,n(µ)
coarse
B GΞMg,n(µ)coarse

T
n
Γb

B GMSµ.R

For the family B→GMSµ given by a tuple (π : X → B,z,Γb,R,ω,σ ) and a map s : B̃→ B, we claim that

after we shrink B̃ in the étale topology, the morphisms B̃→ GΞMg,n(µ)B lying over s are precisely given by
the data of

(3.13) Rs : B̃ −→ T
s
Γb

such that
(
T
s
Γb
→ T

n
Γb

)
◦Rs = R ◦ s

with the automorphisms of this data described by the (necessarily locally constant) sections ξ : B̃→ KΓb
. To

see this, one repeats the analysis of the stacky fiber product from Lemma 3.11 for GΞMg,n(µ)B.(18) From this

description, we see that GΞMg,n(µ)B is also the fiber product of B with the map [T
s
Γb
/KΓ ]→ T

n
Γb
, so that

the dotted arrow on the top left makes the left diagram cartesian.

(17)For the second equality below, we use that for a finite group K acting on a scheme T , the morphisms B̃→ [T /K] can be
identified with the groupoid {B̃→ T }/K , perhaps after replacing B̃ by an étale cover, which is harmless for the argument. This itself
uses the definition of the quotient stack together with the fact that all K-torsors over a scheme B̃ as above are étale-locally trivial.

(18)In that proof we did use the normal form B = T
n
Γb
×B0 to split the map s : B̃→ B as (sT , s0), where sT = R ◦ s. However,

the only place where this was actually used was in observing that the data (s = (sT , s0),Rs) satisfying the condition in (3.13) is
equivalent to (Rs, s0) by setting sT = (T

s
Γb
→ T

n
Γb
) ◦Rs .
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To conclude, we first note that by [AOV11, Proposition 3.4] the space GΞMg,n(µ)
coarse
B , which was

defined as a fiber product, is in fact a relative coarse space for GΞMg,n(µ)B overMg,n. But since the map

GΞMg,n(µ)B→Mg,n factors through the representable map B→Mg,n, the space GΞMg,n(µ)
coarse
B is also

a coarse space of GΞMg,n(µ)B over B, by an application of Lemma 3.12 below to X = GΞMg,n(µ)B, Y ′ = B,
and Y =Mg,n.

On the other hand, since T
n
Γb
is the coarse space of [T

s
Γb
/KΓ ] (over Spec(C)), applying [AOV11, Propo-

sition 3.4] again shows that B itself is the coarse space of GΞMg,n(µ)B. This proves that the map

GΞMg,n(µ)
coarse
B → B is an isomorphism. Since we prove this for any B → GMSµ, we conclude that

GΞMg,n(µ)coarse→GMSµ is an isomorphism, as desired. □

Lemma 3.12. Consider a sequence of morphisms X →Y ′→Y of algebraic stacks, locally of finite presentation,
and assume the relative inertia I(X /Y )→X is finite. Then if Y ′→Y is representable, the relative coarse space
X coarse,Y of X over Y is isomorphic to the relative coarse space X coarse,Y ′ of X over Y ′ .

Proof. Consider the solid diagram of morphisms

X X coarse,Y ′ Y ′

X X coarse,Y Y .

gf

Then by the properties of relative coarse spaces (see [AOV11, Theorem 3.1(2)]), there exists a morphism f
as above, since X coarse,Y is initial among factorizations of X →Y via a representable map. But then the
induced map X coarse,Y →Y ′ via f is representable, so by the same universal property we obtain the map g ,
and one verifies that f ,g are inverse isomorphisms. □

Remark 3.13. In practice it is often relevant to determine the number of projectivized multi-scale differentials
on a given pointed curve with twisted differential (X,z,Γ ,ω). By the definition of the above equivalence
relation, this is the number of prong-matching equivalence classes, i.e. the number of orbits of the set of global
prong-matchings under the action of the level rotation group RΓ . Determining this number is complicated in
general, but, for a two-level graph with prongs κ1, . . . ,κs, there are

∏
κi/ lcm(κi) prong-matching equivalence

classes.

3.5. Quotient twist group and rescaling ensembles in a worked example

Consider the triangle graph Γ with three levels, each containing one vertex, and three edges forming a
triangle, as illustrated in Figure 3 (to which we also refer for the labelling of the edges). For simplicity we

X(0)

X(−1)

X(−2)

κ1
κ3

κ2

X(0)

X(−1)

X(−2)

κ1κ3

κ3 κ2

Figure 3. The triangle graph (the generic fiber X, left) and its subdivision (the special fiber XL, right)
where the extra vertex stands for a semistable rational component.

restrict to the case κ1 = 1 = κ2 and κ3 = n. In this case the simple twist group is Tws
Γ
= nZ⊕nZ. The full
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twist group is generated by the simple twist group and the element (1,−1). In particular, we note that the
quotient twist group is

(3.14) KΓ = TwΓ /Tw
s
Γ = Z/nZ.

To work explicitly with invariants, we specialize to the case n = 3 in what follows.
The simple level rotation torus is isomorphic to (C∗)2, hence T

s
Γ �C

2, and a morphism Rs : B→ T
s
Γ is

given by two functions (t−1, t−2). Consequently,

T
n
Γ = T

s
Γ /KΓ =

{
(s−1, s−2, f1, f2, f3) : f

1
1 = s−1, f

1
2 = s−2, f

3
3 = s−1s−2

}
=

{
(f1, f2, f3) : f

3
3 = f1f2

}
,

where s−1 = f1 = t
3
−1, s−2 = f2 = t

3
−2, and f3 = t−1t−2. In this case the rescaling ensemble R induced by Rs is

given by the composition of Rs with the quotient map T
s
Γ → T

s
Γ /KΓ , and has coordinates

(s−1, s−2, f1, f2, f3) =
(
t3−1, t

3
−2, t

3
−1, t

3
−2, t−1t−2

)
.

Let ω = (ω0,ω−1,ω−2) be a twisted differential on some pointed stable automorphism-free curve (X,z)
compatible with the Γ discussed here. By plumbing (see [BCG+19, Section 12]), we get a family of curves
X → T

n
Γ with an underlying collection of rescaled differentials

ω(0) = ω0, ω(−1) = s−1ω−1, ω(−2) = s−1s−2ω−2

and the rescaling ensemble R.(19)

To summarize: near (X,z,Γ ,ω) as above, GMSµ =MSµ, since there are no global residue conditions; both
functors are representable by an algebraic variety; this algebraic variety is singular with a quotient singularity given
by the group KΓ .

Finally, we remark that as illustrated in Figure 3, a geometric way to think of the [P1/Gm] subdivision is
to modify the definition of level graphs by eliminating all long edges (i.e. edges crossing more than one level
passage), and instead inserting semistable rational vertices at each level crossed by a long edge, with the
same number of prongs. Then the corresponding twist group, level rotation torus, and rescaling ensemble
have only their ‘simple’ versions. To see this concretely, suppose uv = f is the local model of a node
corresponding to a long edge crossing k level passages, where f κ = si−k · · ·si−1 as in (3.9). Introduce new
parameters uj ,vj , fj for i − k ≤ j ≤ i − 1 satisfying ujvj = fj , f

κ
j = sj , vjuj−1 = 1, ui−1 = u, and vi−k = v.

Then vj and uj−1 are coordinates on the inserted semistable rational vertex at each intermediate level j that
can subdivide the long edge into k short edges, where the differential on the semistable rational vertex is
uκj−1(duj−1/uj−1) = −v

−κ
j (dvj /vj ) and the number of prongs at each node in the inserted semistable rational

curves remains equal to κ.
A logarithmic version of this construction (the replacement of an edge crossing k levels by a chain of k−1

projective lines) can be described in terms of the divided tropical lines of [MW20]. We will not use this in
what follows, but we give a brief sketch. The PL function β with maximum value 0 can be seen as a map
from X to the ‘tropical line’ [P1/Gm]. Write P for the subfunctor of HomLogSch(−, [P1/Gm]) consisting of
log maps to [P1/Gm] such that the images of the vertices of X form a totally ordered set in the characteristic
monoid. Then P → [P1/Gm] is a quotient by Gm of a contraction map from a chain of rational curves to a
single rational curve. The fiber product X ×[P1/Gm] P is then the ‘divided’ curve constructed above, all of
whose edges cross at most one level.

(19)In fact, replacing the initial datum ω by the universal equisingular deformation inside the appropriate stratum of differentials
and taking as new base T

n
Γ times the base of the equisingular deformation, we obtain the universal family.
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4. The underlying algebraic stack of Rub

The category Rub is naturally fibered over LogSch. Our goal in this section is to understand its
underlying algebraic stack (a fibered category over Sch). We use the notion of minimal log structures from
[Gil12] and [Wis16, Appendix B]. We describe here the minimal log structures on points of Rub, as a variation
on the description of the minimal log structures on Div given in the proof of [MW20, Theorem 4.2.4].

Throughout this section we work with Rub0 in place of Rub, as it is notationally slightly simpler, and fits
better with what we do in the rest of the paper. The interested reader will check that the results go through
essentially unchanged for Rub.

4.1. Brief recap on minimal log structures

This is taken from [Wis16, Appendix B], based on [Gil12]. The purpose of minimal log structures is to
understand how to pass from a category fibered in groupoids (CFG) X over LogSch to a CFG over Sch.
The wide subcategory of LogSch with morphisms the strict morphisms is a CFG over Sch, so one could
just take the corresponding wide subcategory of X and composite. However, this is the ‘wrong’ way to
extract the underlying CFG of X over Sch. For an elementary example, let X B (pt,N2) be a point with log
structure N2. Then there are very many maps from Y B (pt,N) to X: one can choose both the underlying
monoid map N

2→N and the lift to the log structure giving a C∗ parameter. Hence if we take the CFG over
LogSch associated to X and view it as a CFG over Sch via taking strict morphisms and then the forgetful
functor, we will get a very large and complicated object,(20) when what we really wanted was a point!

However, given a map T → pt of schemes, there exist a unique log structure M on T and a morphism
(T ,M) → X = (pt,N2) such that any other log morphism (T ,M ′) → X factors through (T ,M) → X.
Namely,M is simply the pullback of the log structure N2 on pt under T → pt. Such a log structure is called
minimal, and if we take the full subcategory of log schemes over X given by minimal objects, then view it as
a CFG over Sch via the forgetful functor, we recover exactly what we wanted, namely a point.

In the next two subsections, we will apply the same machinery to the CFG Rub0 over LogSch. An object
(X/B,β) of Rub0 is called minimal if every solid diagram in Rub0

(4.1)

(X ′/B′ ,β′) (X/B,β),

(X ′′/B′′ ,β′′)

with the induced maps B′→ B and B′→ B′′ on underlying schemes being isomorphisms, admits a unique
dashed arrow.

Gillam’s results imply that the full subcategory of Rub0 consisting of minimal objects, together with its
natural forgetful functor to Sch, is (equivalent to) the underlying algebraic stack of Rub0. Thus, objects
are those log points of Rub0 for which the log structure is minimal, and morphisms are simply the usual
morphisms of log objects.

As such, if we want to understand the relative inertia of Rub0 over M, we need to understand not only
the minimal objects and their morphisms, but also all possible ways of equipping a schematic object of Rub0
with minimal log structure.

Remark 4.1. A warning: suppose that one starts with a CFG over LogSch which is equivalent to a category
fibered in setoids (CFS), and which has enough minimal objects. It is then representable by an algebraic stack
with log structure, but this need not be equivalent to a category fibered in setoids over schemes (in other
words, it can still have non-trivial stacky structure). The most elementary example of this is perhaps the

(20)For example, the fiber over pt ∈ Sch is the category of pairs of a log structure M on pt and an associated log morphism
(pt,M)→ X.
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subdivision of Gtrop
m at 0, which is certainly a category fibered in setoids over LogSch, but whose underlying

algebraic stack is [P1/Gm]. This is because a given schematic point can admit two (or more) different
minimal log structures, which can have several isomorphisms between them even if we have a CFS over
LogSch; the fiber over any given log scheme can still have no non-trivial automorphisms.

4.2. Minimal log structures for Rub0

Let (X/B,β) be a point of Rub0 with X/B nuclear, where MB is the sheaf of monoids on B. Recall that
from this family and any b ∈ B, we obtain

• the stable graph Γ describing the shape of Xb;
• the length maps δ : E(Γ )→MB,b, which we extend to a monoid homomorphism

δ : N⟨E(Γ )⟩ −→MB,b;

• the value map β : V (Γ )→M
gp
B,b at vertices, whose image is totally ordered, inducing the level map

ℓ : V (Γ ) −→ {0,−1, . . . ,−N } = {0} ⊔L(Γ );

• the slopes κ : H(Γ )→Z at half-edges, where, given an edge e ∈ E(Γ ) consisting of half-edges h,h′ ,
we set κe = |κ(h)| = | −κ(h′)| and denote by Ev = {e ∈ E(Γ ) : κe > 0} the set of vertical edges and by
Eh = {e ∈ E(Γ ) : κh = 0} the set of horizontal edges.

For i ∈ L(Γ ), we define with (3.5)
ai B lcmeκe,

where the lcm runs over the set of all edges e such that ℓ(e−) ≤ i < ℓ(e+) (we say such an edge e crosses
level i). We let P̃ BN⟨p−1, . . . ,p−N ⟩ be the free monoid on N = |L(Γ )| generators. Then we can define a
map g : Ev → P̃ by

(4.2) g(e)B
ℓ(e+)−1∑
i=ℓ(e−)

ai
κe
pi ,

and extend this map additively to a map g : N⟨Ev⟩ → P̃ . Finally, we let

σi B β(vi)− β(vi−1) ∈MB,b,

where vi is any vertex of level i.

Lemma 4.2. The difference σi is divisible by ai in MB,b.

Proof. Showing that σi is divisible by ai is exactly equivalent to showing that it is divisible by κe for every
edge e crossing level i (since we work with saturated monoids, if an element is divisible by two integers, then
it is also divisible by their least common multiple). But this is exactly condition (3) in Lemma 2.13. □

Set τi B σi/ai ∈MB,b (noting that division in MB,b is unique since MB,b is sharp, integral, and saturated),
and define a monoid homomorphism

(4.3) ψ : P̃ −→MB,b, ψ : pi 7−→ τi .

Lemma 4.3. The triangle

(4.4)

N⟨Ev⟩ P̃

MB,b

g

δ ψ

commutes.
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Proof. We compute

(4.5) ψ(g(e)) = ψ

∑
i

ai
κe
pi

 =
∑
i

ai
κe
τi =

1
κe

∑
i

σi =
1
κe

(β(v+)− β(v−)) = δe,

where the last equality comes from the fact that β is a PL function. □

Definition 4.4. We say (X/B,β) for B nuclear is basic if the natural map

ψ ⊕ δ|Eh : P̃ ⊕N
〈
Eh

〉
−→MB,b

is an isomorphism. In general we say a point of Rub0 is basic if it is so on a nuclear cover.

Our motivation for introducing this definition lies in Lemma 4.6. The intuition behind the definition is
that MB,b is precisely big enough to contain the elements that are necessary to accommodate the images
of the maps δ, the differences of images of β, and roots of these differences whose existence is required by
condition (3) in Lemma 2.13.

Lemma 4.5. Every point of Rub0 comes with a map to a basic object.

Proof. For (X/B,β) a nuclear point of Rub0, we define a sheaf of monoids P on B as the fiber product

(4.6) P B
(
P̃ ⊕N

〈
Eh

〉)
×MB

MB.

This P comes with a map P →OB, namely the composition of the projection to the second factor MB and
the old log structure map MB→OB, making it into a log structure.

This uses that, for any nuclear point (X/B,β), the map ψ ⊕ δ|Eh from the definition above satisfies that
the preimage of 0 ∈MB is 0 ∈ P̃ ⊕N

〈
Eh

〉
. From this it also follows that, at any point b in the closed stratum

of B, the stalk at b of the ghost sheaf P of P is given by

P b = P̃ ⊕N
〈
Eh

〉
.

Now we make (B,P ) into a point of Rub0: we take the underlying family X/B of curves, and equip X with a
log structure making it a log curve over (B,P ) with length map

δ̃ : E(Γ ) −→ P̃ ⊕N
〈
Eh

〉
, e 7−→


(∑ℓ(e+)−1

i=ℓ(e−)
ai
κe
pi ,0

)
for e ∈ Ev ,

(0, e) for e ∈ Eh.

With this we obtain a family of log curves (X̃/(B,P )). Using Lemma 2.13 we then lift to a (B,P )-point of
Rub0 by specifying the combinatorial PL function

(4.7) β : V (Γ ) −→
(
P̃ ⊕N

〈
Eh

〉)gp
, v 7−→ −

−1∑
j=ℓ(v)

ajpj .

The construction gives a map from (X/B,β) to this basic object (B,P )→ Rub0. □

Lemma 4.6. The Rub0-point (X/B,β) is basic if and only if it is minimal.

Proof. Our proof mimics closely that of [MW20, Theorem 4.2.4]. To show that basic objects are minimal,
consider a diagram as in (4.1); the problem comes down to showing there is a unique dashed arrow making
the diagram

(4.8)

MB′ P̃ ⊕N
〈
Eh

〉

MB′′



Moduli of logarithmic and multi-scale differentials 29Moduli of logarithmic and multi-scale differentials 29

commute. The existence of this arrow comes from the fact that we can apply the same formula (4.3) to define
the map, and the arrow is unique since the image of N⟨E⟩ has finite index in P̃ ⊕N

〈
Eh

〉
, and division is

unique in sharp, integral, saturated monoids. Conversely, applying (4.3) shows that every minimal monoid
admits a map from one which is basic (and hence minimal), and the definition of minimality furnishes an
inverse to this map. □

Definition 4.7. Let Rub′0 be the full subcategory of Rub0 whose objects have minimal log structure, viewed
as a fibered category over Sch via forgetting the log structure and the curve.

As explained in Section 4.1, Gillam’s minimality machinery immediately yields the main theorem of this
section, slightly refining the results of [MW20].

Theorem 4.8. The underlying algebraic stack of Rub0 is given by Rub
′
0.

4.3. Smoothness of Rub0

With the preparations above, we can now prove Lemma 2.4, stating that the algebraic stack Rub0 is
smooth.

Proof of Lemma 2.4. We write k for the base ring (which the reader may take to be C, but we are careful to
make this proof work in any characteristic). We equip Spec(k) with trivial log structure.

We write RubMW
0 for the variant of Rub0 considered by Marcus and Wise [MW20]; this is the same as

our space except that they drop condition (2) of the definition. The map RubMW
0 →M is proven in [MW20,

Lemma 4.2.5 and Corollary 5.3.5] to be log étale; hence RubMW
0 is log smooth (over Spec(k) with trivial log

structure).
Let p be a geometric point of Rub0 mapping to a geometric point p′ of RubMW

0 , and write P̄ and Q̄ for

the stalks of the respective characteristic monoids. The map Q̄→ P̄ is injective and has finite cokernel; it
corresponds to taking roots of suitable parameters in order to make condition (2) in the definition of Rub0
be satisfied.

The log smoothness of RubMW
0 implies that there exist a scheme U and smooth strict morphisms

f : U → RubMW
0 and g : U → Spec(k[Q̄]) such that p′ lies in the image of f . Since Rub0 is obtained from

RubMW
0 by taking the roots that transform Q̄ into P̄ , we have a diagram of pullback squares

(4.9)

Rub0 V Spec(k[P̄ ])

RubMW
0 U Spec(k[Q̄]).

Now Lemma 4.4, Lemma 4.6, and Lemma 4.8 together imply that the stalks of the characteristic monoid of
Rub0 are free monoids of finite rank; in other words, Spec(k[P̄ ]) is an affine space over k, in particular is
smooth over k. □

Note that the base-change RubL is not in general smooth, except in genus zero (when the map M→ Pic
is an open immersion, hence smooth). For example, it can have many non-reduced irreducible components;
see [HS21]. In particular, the smoothness of the main component of RubLµ (proven in [BCG+19] granting the

verification that the spaces named ΞMg,n(µ) there and in Lemma 3.11 indeed agree) does not follow directly
from Lemma 2.4 outside of genus zero.

4.4. Relative automorphisms

As a log stack, Rub0 has trivial automorphisms relative to the stack of log curves. But (as discussed
in Lemma 4.1) this does not mean that the underlying algebraic stack of minimal objects has trivial
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automorphisms. Rather, they come from automorphisms of the log structure; the following remark makes
this precise.

Remark 4.9. In general, given a map X → Y of log stacks with underlying stacks X ,Y and a point
x : Spec(C) → X , we can ask: what is the relative inertia of x over y = (X → Y ) ◦ x? For this, let
(Spec(C),Mx)→X and (Spec(C),My)→Y be the minimal log structures lifting x,y. Then by minimality
of My , the composition (Spec(C),Mx)→X →Y must factor through a map

f : (Spec(C),Mx) −→ (Spec(C),My).

Such a map is uniquely described by a monoid map My →Mx over (C,×) = (OSpec(C),×). Then the desired
group of automorphisms is just the group of those automorphisms of Mx that are constant on the image of
My and commute with the map to (C,×).

Returning to our situation, the ‘tropical’ part of the log structure (the ghost sheaf M) has no non-trivial
automorphisms relative to the stack of log curves. Thus the automorphisms all arise from automorphisms of
the log structure M that are trivial on M and trivial on the structure sheaf. So they are really automorphisms
of the extension structure of M.

4.5. The worked example again

Let (X/C,β ∈Mgp
X ) be a point of Rub0 with the underlying enhanced level graph given by Figure 3, still

restricting to the case κ1 = κ2 = 1 and κ3 = n. We would like to understand the relative inertia of this point
of Rub0 over M.

The minimal monoid on C for the curve X/C is just N⟨E⟩ =N⟨e1, e2, e3⟩, and the minimal monoid as a
point in Rub0 is given by P̃ =N⟨p−1,p−2⟩, with one generator pi for each level i (there are no horizontal
edges in this example; otherwise, they should also appear in this minimal monoid). The natural map is then
given by

g : N⟨E⟩ −→ P̃ , e1 7−→ np−1, e2 7−→ np−2, e3 7−→ p−1 + p−2.

To see this, note that a1 = a2 = n, and then apply Formula (4.2). Note that there are no non-trivial
automorphisms of P̃ that act as the identity on the image of g . The map g extends in the obvious manner to
a map on the stalks of the log structures

N⟨E⟩ ⊕C∗ −→ P = P̃ ⊕C∗,

and the relative inertia is then given by the automorphisms of P̃ ⊕C∗ which act as the identity on the image
of N⟨E⟩ ⊕C∗, and which lie over the identity map on P̃ (since any automorphism of P̃ constant on the
image of g must be the identity). Such an automorphism is defined on ((1,0),1) and ((0,1),1) by

((1,0),1) 7−→ ((1,0),u) and ((0,1),1) 7−→ ((0,1),v)

for some u, v ∈C∗ satisfying

(1) un = 1, because n((1,0),1) = ((n,0),1n) lies in the image of N⟨E⟩ ⊕C∗ and is thus fixed;
(2) vn = 1 for the analogous reason;
(3) uv = 1, because ((1,1),1) lies in the image of N⟨E⟩ ⊕C∗ and is thus fixed.

Such a choice of u, v evidently determines such an automorphism. (Or, more precisely, there are two
canonical isomorphisms with the roots of unity, one coming from ‘above’ and the other from ‘below’ on the
graph, and the composite of these isomorphisms is the inversion map on the group of roots of unity).

We conclude that the relative inertia for this triangle graph is equal to the group KΓ computed in (3.14).
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5. From logarithmic to multi-scale

In this section we construct the morphism of functors F : RubLµ →GMSµ whose existence is claimed
in Lemma 1.1, and then prove that theorem. At the end of the section, we include two related results about
describing the multi-scale space as a Zariski closure and describing a morphism from the rubber space to
the Hodge bundle, which can be of independent interest.

Let (X/B,β ∈ Γ (X,Mgp
X ),ϕ : OX(β)

∼−→Lµ) ∈ Rub′Lµ . Recall that the prime on Rub indicates that we are

working with the minimal log structure as described in Section 4, and that we always work with saturated log
structures.

We assume moreover for now, and for most of this section, that X/B is nuclear, and explain at the end
why the functor glues to general families.

5.1. The enhanced level graph

The first item to build the F-image of (X/B,β,ϕ) is an enhanced level graph. As the underlying graph Γ ,
we simply take the dual graph of the curve fiber over the closed stratum of B. The level structure, given
in terms of a normalized level function, comes from β ∈ Mgp

X (X) as explained in (2.4). The definition of
the enhancement κ is given in (2.7), where the divisibility required for this definition has been proven
in Lemma 2.11. The stability condition just comes from the fact that we work with stable curves.

Given a vertex v and the corresponding component Xv of the central fiber, the admissibility of κ comes
down to the equalities

(5.1) 2g(v)− 2+#H ′(v)−
∑
j 7→v

mj = deg
(
Lµ|Xv

)
=

∑
h7→v

κh

(recall that H ′(v) denotes the set of non-leg half-edges attached to a vertex v). The first equality is immediate
from the definition of Lµ, and the second comes from the isomorphism ϕ and a computation of the degree
of OX(β) on the component Xv presented in Lemma 2.15.

The dual graph Γb′ of the fiber over a general b′ (possibly outside the closed stratum) comes with a level
structure obtained from Γ by undegeneration (as defined in Section 3.1), by the Key Property (4) of nuclear
log curves from Section 2.3. Constructing the rest of the data of a generalized multi-scale differential requires
more work, which we now begin.

5.2. Logarithmic splittings and rotations

We write P̃ =N⟨p−1 . . . ,p−N ⟩ as in Section 4.

Definition 5.1. A log splitting is a map

(5.2) ψ̃ : P̃ −→MB

whose composition with the canonical map MB→MB,b is the map ψ : P̃ ↪→MB,b from (4.3) (recall that we
work throughout this section with minimal objects).

The simple log level rotation torus T slog , abbreviated as simple LLRT, is the set of log splittings.

Remark 5.2. Let us unpack the simple log level rotation torus definition a bit. Recall our key exact
sequence (2.2). The presence of the gp is not so important, as we always work with integral monoids
(i.e. monoids which inject into their groupifications). Consequently, a choice of a splitting is essentially a
choice of an invertible function on B (which we think of as a scalar) for every level below 0. Pre-composing ψ̃
with the map g from (4.2) and using Lemma 4.3, we then also obtain a lift of the map δ, i.e. a choice of a
scalar for each edge. These must satisfy appropriate compatibility equations, and the saturation condition
also imposes the existence of certain roots.
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Definition 5.3. The simple log rotation group is the group

Hommon

(
P̃ ,O×B(B)

)
= Homgp

(
P̃ gp,O×B(B)

)
,

where the identification stems from the universal property of the groupification.(21)

We define an action of an element ϕ of the simple log rotation group on the simple log rotation torus by
the formula

(5.3)
(
ϕ · ψ̃

)
(p)B ϕ(p)ψ̃(p) for p ∈ P̃ .

Lemma 5.4. Via the action (5.3), the simple LLRT is either empty, or a torsor for the simple log rotation group.
After possibly shrinking B, we can ensure the existence of a log splitting.

Recall that a pseudo-torsor is a space with a free transitive action, but unlike a torsor, it may be empty
(here, if the base B is too large to support the appropriate sections). Thus Lemma 5.4 says that the simple
LLRT is a pseudo-torsor.

Proof. In the exact sequence

1 −→H0 (B,O×B) −→H0
(
B,Mgp

B

)
−→H0

(
B,M

gp
B

)
︸       ︷︷       ︸

=M
gp
B,b

−→H1(B,O×B) −→ ·· · ,

if all elements ψ(pi) = τi ∈MB,b map to zero in H1(B,O×B), then they have preimages in H0(B,MB); by the
freeness of MB,b, this implies the existence of a log splitting. Any such choices of preimages differ precisely
by elements in H0(B,O×B), which together define an element of the simple log rotation group. Thus the
action of this group is free and transitive.

Finally, if the elements τi ∈MB,b do not map to zero in H1(B,O×B) = Pic(B), we can always find an open
neighbourhood B0 of b ∈ B on which these line bundles are trivial after all. Then on B0, the long exact
sequence and the argument above show the existence of a lift, finishing the proof. □

5.3. Log viewpoint on smoothing and rescaling parameters

In this subsection we construct the rescaling ensemble from the choice of a log splitting, and provide
auxiliary statements about the smoothing and rescaling functions contained in the ensemble.

Let ψ̃ : P̃ → MB be a log splitting. Recall the definitions of the maps g : N⟨Ev⟩ → P̃ from (4.2) and
α : MB→OB from the definition of a log scheme.

Definition 5.5. The smoothing parameter associated to a vertical edge e ∈ Ev(Γ ) by the log splitting ψ̃ is

(5.4) fe B (α ◦ ψ̃ ◦ g)(e).

Fix a level i ∈ L(Γ ). The level parameter and rescaling parameter associated to i by ψ̃ are

(5.5) ti B (α ◦ ψ̃)(pi) and si B (α ◦ ψ̃)(aipi).

The collection of functions t = (ti)i∈L(Γ ) defines a map Rs : B→ T
s
Γ to the closure of the simple level

rotation torus, which is just CN , and a rescaling parameter si = ri ◦π ◦Rs in the notation of Section 3.4.

Lemma 5.6. The morphism Rs : B→ T
s
Γ defined above is a simple rescaling ensemble.

(21)Note that there is also a (non-simple) log rotation group, consisting of the set of compatible choices of elements in O∗B(B) for
all e ∈ Ev and the elements σi = β(vi )− β(vi−1). Since this non-simple group will not be needed in the following, we do not give a
formal definition.
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Proof. By Lemma 3.4 we must verify that the functions fe from (5.4) are indeed smoothing parameters for
their respective nodes, lying in the correct equivalence class in OB/O×B . To see this, consider the following
diagram:

N⟨Ev⟩ P̃

O×B O×B .

MB OB

MB,b OB/O×B

g

δ

ψ̃

α

α

What we must show is that fe = (α ◦ ψ̃ ◦ g)(e) ∈ OB maps to the class of a smoothing parameter in OB/O×B .
Now the commutativity of the upper-left quadrilateral follows from Lemma 4.3 and the assumption that ψ̃
lifts the map ψ : P̃ →MB,b. On the other hand, the map α is just defined to make the lower quadrilateral
commute. Then we have

[fe] = (α ◦ ψ̃ ◦ g)(e) = α(δ(e)) ∈ OB/O×B .

The fact that α maps δ(e) to a smoothing parameter for the node associated to e is then just a basic property
of families of log curves; see Key Property (2) of Section 2.3. □

5.4. The collection of rescaled differentials

By the definition of lying in RubLµ , we are given an isomorphism

(5.6) ϕ : ωX/B

− n∑
k=1

mkzk

 ∼−→OX(β).

On the other hand, it follows from the definition of ψ that the element −
∑−1
j=i ajpj ∈ P̃ gp maps to

β(vi) ∈ M
gp
B,b under ψ, where vi ∈ V (Γ ) is any vertex on level i. Using the log splitting ψ̃, we obtain the

elements

oi B ψ̃

− −1∑
m=i

ampm

 ∈Mgp
B

in the preimage of β(vi). Since this preimage can be identified as the complement of the zero section in
OB(β(vi)), we can see oi as a nowhere-vanishing section of OB(β(vi)).

Adapting the convention from Lemma 3.5 to the family X/B, we define X(>i) ⊆ X to be the closed subset
of components of fibers Xb′ whose closure in X does not intersect any component of the central fiber Xb at
a level less than or equal to i. Then we define Ui = X \ (X(>i)∪Z∞), where Z∞ ⊆ X is the image of sections
associated to marked poles. Then we claim that there is a well-defined map

(5.7) wi : π
∗OB(β(vi))|Ui −→OX(β)|Ui .

Indeed, the left-hand side is the line bundle on Ui associated to the piecewise linear function which is
constant, equal to β(vi). Since we removed X(>i), this function dominates the function β on the right, so we
have a map as desired. Thus wi(π∗oi) gives a section of OX(β) on Ui , and we define

(5.8) ω(i) B ϕ−1wi(π
∗oi) ∈H0

Ui ,ωX/B
− n∑

k=1

mkzk


 .
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We check that ω(i) satisfies the conditions in Lemma 3.5 and that the smoothing and rescaling parameters
fe and si defined in (5.4) and (5.5) (and thus the simple rescaling ensemble Rs) are compatible with these
generalized rescaled differentials.

(1) For any levels j < i < 0, there is a natural map of line bundles OB(β(vi))→OB(β(vj )). On the level
of sections, we then have

oi = ψ̃

− −1∑
m=i

ampm

 = ψ̃

− −1∑
m=j

ampm

 · i−1∏
m=j

ψ̃(ampm) 7−→ oj ·
i−1∏
m=j

ψ̃(ampm).

Via the isomorphism ϕ∗, and using that sm = α(ψ̃(ampm)), this becomes the desired equality
ω(i) =ω(j) ·

∏i−1
m=j sm. The fact that si vanishes at the closed point of B comes from the fact that the

map of line bundles is the zero map when restricted to the fibers over the closed point of B.
(2) Choose local coordinates ue and ve so that X is locally given by ueve = fe. Then the isomorphism ϕ

corresponds near the node to a non-vanishing section of ωX/B(−β). Now ω has a local generating
section which is given after inverting ue by

due
ue

and after inverting ve by −
dve
ve
, and (perhaps after

adjusting the choices of coordinate ue and ve) OX(−β) has a local generating section which is given
after inverting ue by u

κe
e oi and after inverting ve by ojv

−κe
e . By dividing the just-described local

generating section by the one given by the isomorphism ϕ, we obtain a local unit λ such that

(5.9) ω(i) = λu
κe
e
due
ue

and ω(j) = −λv
−κe
e

dve
ve

.

(3) On the normalization Yi of the union of all components of the special fiber Xb sitting at level i, we
have (see Lemma 2.15)

OX(β)|Yi = π∗OB(β(vi))⊗OYi OYi

∑
h

κhh

 ,
where the sum is taken over all non-leg half-edges h attached to the vertices at level i. Pulling back
via ϕ∗, the line bundle on the left becomes

ωXb

− n∑
k=1

mkzk

 |Yi = ωYi

− n∑
k=1

mkzk +
∑
h

h

 .
Tensoring with OYi (−

∑
hκhh) on both sides, we then get

ωYi

− n∑
k=1

mkzk −
∑
h

(κh − 1)h

 � π∗OB(β(vi)).
Seeing ω(i) as a meromorphic section on the left, it then corresponds to the nowhere-vanishing
section π∗oi on the right. Thus it extends to all of Yi on the left-hand side. But then this extension
seen as a meromorphic section of ωYi has the desired order mk at the marked points zk and κh − 1
at the preimage of the node associated to h.

5.5. Prong-matchings

To recall the notion of a prong-matching, consider a vertical edge e ∈ Ev , and let Be ↪→ B be the closed
subscheme of B over which the node e persists, i.e. the vanishing locus of the smoothing parameter fe.

The sections q± of the two preimages of the node identify Be as a subscheme of the blowup of X ×B Be
along the section corresponding to e. Recalling (3.3), we letN ∨e = (q+)∗ωX+

⊗(q−)∗ωX− be the corresponding
line bundle on Be. Then a local prong-matching at e is a section σe of N ∨e such that σκee (τe) = 1 for the
section τe ∈ N

κe
e defined in Lemma 3.1.
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To identify this notion in the logarithmic context, recall that we have the element δ(e) ∈MB,b. Then the
bundle N ∨e has an interpretation as follows.

Lemma 5.7. There are canonical isomorphisms of line bundles

(5.10) OB(δ(e))|Be = N ∨e

for each edge e. Moreover, let f ∈MB be an element mapping to δ(e) ∈MB,b, so that we can see it as a section of
OB(δ(e)). Then the function f = α(f) ∈ OB is a smoothing parameter for the node associated to e. Let u,v be
local coordinates around the node on X such that the Henselized local ring at the node is the Henselization of
OB[u,v]/(uv − f ). Then the isomorphism (5.10) sends the section f|Be ∈ OB(δ(e))|Be to

du ⊗ dv ∈ N ∨e = (q+)∗ωX+
⊗ (q−)∗ωX− .

Proof. Since both sides commute with base-change, it is enough to check this in the universal case, in which
the log structure is divisorial coming from the boundary (and the map α of the log structure is injective, so
there are no non-trivial automorphisms of the log structure). Over a versal deformation R, the local equation
of the node is given by R[u,v]/(uv − f ), where f ∈ R is an element corresponding to δ(e). So OB(δ(e)) is
canonically identified with the ideal sheaf generated by f in R (cf. the appendix). On the other hand, N ∨e is
canonically identified with the conormal bundle in R to the locus f = 0 (see [ACG11, Section XIII.3]) and
thus agrees with OB(δ(e))|Ze . Tracing through the constructions of these canonical identifications yields the
second part of the lemma; alternatively, this can be seen as a very slight generalization of [Edi98, Section 4],
where his c(x) corresponds to the element du ⊗ dv and his πx(e) to the element f . □

Let ψ̃ : P̃ →MB be a log splitting, and let e be a vertical edge. By Lemma 4.3 the element (ψ̃ ◦ g)(e) ∈MB

maps to δ(e) ∈MB,b and hence lies in O×B(δ(e)) ⊆MB (by the definition of this bundle via (2.2)). Applying the
isomorphism of (5.10), we thus obtain a section of N ∨e .

Definition 5.8. We call the section σe = (ψ̃ ◦ g)(e)|Be ∈H
0(Be,N ∨e ) the local prong-matching σe = σe(ψ̃) at e

determined by the log splitting. The collection σ = (σe)e∈Ev(Γ ) of these is called the global prong-matching
determined by the log splitting.

There are two compatibility statements to check for this definition: to get a prong-matching, see the
discussion after (3.3), and to make this part of a multi-scale differential, see Lemma 3.8(2b).

Lemma 5.9. The prong-matching σ determined by any log splitting is indeed a prong-matching in the sense of
Lemma 3.2.

Proof. Assume that the vertical edge e connects levels i > j in Γ . From Lemma 3.2, we need to show that
σκee (τe) = 1, where τe is the section of N κe

e defined as τe = (q+)∗ω−1(i) ⊗ (q
−)∗ω(j).

On the other hand, the differentials w(i) and w(j) are also determined in (5.8) by the formulae

ω(i) = ϕ∗wi

π∗ψ̃
− −1∑

m=i

ampm


 and ω(j) = ϕ∗wj

π∗ψ̃
− −1∑

m=j

ampm


 .

We put this into the formula for τe; the pullbacks (q+)∗, (q−)∗ cancel the pullback π∗. Interpreting τe as a
section of OB(−κeδ(e)) via (5.10), we thus have

τe = ψ̃

 −1∑
m=i

ampm −
−1∑
m=j

ampm

 = ψ̃

− i−1∑
m=j

ampm

 = ψ̃ (−κeg(e)) = σ−κee .

Here in the second to last equality, we used the definition of g from (4.2). This finishes the proof that
σκee (τe) = 1, and thus that σe is a local prong-matching. □
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Lemma 5.10. Let ψ̃ : P̃ →MB be a log splitting and e a non-semi-persistent vertical node (i.e. f
κe
e , 0). Then

the local prong-matching determined by ψ̃ is equal to that induced in Lemma 3.7.

Proof. The local prong-matching σe of Lemma 3.7 is constructed by writing the local equation of the node
as uv = fe and setting

σe B du ⊗ dv ∈ N ∨e = (q+)∗ωX+
⊗ (q−)∗ωX− .

On the other hand, the local prong-matching σ̃e associated to e by ψ̃ is given by applying the isomorphism
in Lemma 5.7 to the element (ψ̃ ◦ g)(e).

Recalling that fe = (α ◦ ψ̃ ◦ g)(e), we see that the desired equality σe = σ̃e is then the second part
of Lemma 5.7. □

5.6. Morphism of functors from rubber to multi-scale

We put the above together to build a morphism of functors after restricting to base schemes which are
locally of finite type over C (this restriction is harmless since RubLµ is representable by a locally finite-type
Deligne–Mumford stack). We first make this construction in a local situation, then globalize. We start with
a family (X/B,β ∈ MX(X),ϕ), which we take to have minimal saturated log structure, and which is both
nuclear and controlled. This immediately gives us the structure of an enhanced level graph. We choose
a log splitting ψ̃ : P̃ → MB (perhaps after shrinking B). This determines a simple rescaling ensemble, a
collection of rescaled differentials, and induces local prong-matchings at each node. Hence we have a simple
multi-scale differential.

We next claim that a different choice of log splitting yields an isomorphic simple multi-scale differential,
together with a choice of isomorphism. Indeed, by Lemma 5.4 any two log splittings differ by the action of
the simple LLRT, and one checks easily that the action of the simple LLRT corresponds to the action of the
simple level rotation torus.

For general B locally of finite type, a family of multi-scale differentials is defined as a family of multi-scale
differentials on a nuclear controlled cover, compatible on overlaps.

It is clear from the constructions that the above map is independent of choices and is compatible with
shrinking the base B; more precisely, given a map B′ → B and a family of log differentials on B, we can
either first apply our map (obtaining a family of multi-scale differentials on B) and then pull back to B′ , or
first pull back and then apply our map; unravelling the definitions yields that the results are canonically
isomorphic. By descent we obtain a global morphism of functors F : RubLµ → GΞMg,n(µ).

5.7. Showing the map of functors induces an isomorphism

The above construction gives a morphism from the logarithmic space to the multi-scale space. In this
section we complete the proof of Lemma 1.1 by showing that this functor induces an isomorphism.

Theorem 5.11. The morphism

(5.11) F : RubLµ −→ GΞMg,n(µ).

is an isomorphism.

Proof. Given a map B→ GΞMg,n(µ) with the implicit stable curve over B being controlled, we show that
there exists a unique map B→ RubLµ making the following diagram commute:

(5.12)

B

RubLµ GΞMg,n(µ).
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The claimed isomorphism in the global situation then follows by descent. Let (π : X→ B,z,Γ ,Rs,ω,σ ) be
the simple multi-scale differential corresponding to B→ GΞMg,n(µ). Given i ∈ L(Γ ), we write ti ∈ OB(B)
for the composition with the appropriate coordinate projections B→ T

s→C.
Let MB be the minimal log structure making X/B into a log curve; in particular, its characteristic monoid

MB,b is canonically identified with the free monoid N⟨E⟩ on the edges of Γ . For each edge e, the local
prong-matching σe at e is by Lemma 5.7 a section of the fiber of the bundle O(δe) over the locus Be where
the node persists, and we choose a section in MB(B) lifting fe and restricting over Be to σe, yielding a
splitting

f : MB,b −→MB.

Denote by P̃ B ⟨p−1, . . . ,p−N ⟩ the free monoid on the levels, as usual, and define

(5.13) t : P̃ −→OB, pi 7−→ ti ,

and

(5.14) t′ : P̃ ⊕N
〈
Eh

〉
−→OB,

acting as t on the first summand and as f on the second.
Then let

(5.15) g ′ : N⟨E⟩ −→ P̃ ⊕N
〈
Eh

〉
be the map given by g on the vertical edges and by the identity on the horizontal edges.

The equalities

(5.16) fe =
ℓ(e+)−1∏
i=ℓ(e−)

t
ai
κe
i ,

which come from (3.7) (where coordinates were denoted by fe = ρe and ti = qi ), imply that the diagram

(5.17)

MB OB

MB P̃ ⊕N
〈
Eh

〉
α

f

g ′

t′

commutes.
Now we define a sheaf of monoids P as the pushout

(5.18)

MB P

MB P̃ ⊕N
〈
Eh

〉
,

f

g ′

which by the commutativity of the previous diagram comes with a map αP : P →OB. One checks easily
that P is in fact a log structure on B, with characteristic sheaf P = P̃ ⊕N

〈
Eh

〉
at a point b ∈ B in the closed

stratum. The map MB→ P gives X/(B,P ) the structure of a log curve, and mapping a vertex v of level i to
the element

(5.19)

− −1∑
j=i

ajpj ,0

 ∈ (P̃ ⊕N〈
Eh

〉)gp
defines a map β : V → P

gp
so that the pair (X/B,β) is a (minimal) point of Rub.
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To lift this point to a point of RubLµ , we need to build an isomorphism of line bundles

(5.20) OX(β)
∼−→ ωX/B

− n∑
i=1

mizi

 .
We first define this map on the smooth locus; let p ∈ B and let x ∈ Xp be a smooth point of Xp, lying in the

component associated to a vertex v ∈ Γ . Then the image of β in M
gp
X,x = P

gp
p is given by β(v). Our splitting

P → P from (5.18) extends to P
gp→ P gp, and thus β(v) maps to a unique section of OB(β(v)) ⊆ P . Then

we define

(5.21) OX(β)x
∼−→ ωX/B,x

to be the unique map sending this section to the differential ω(ℓ(v)). Next we check that this isomorphism
extends over the nodes. We treat only the case of a vertical node e, say passing from a vertex vi of level i
to a vertex vj of level j with j < i; then the map near a horizontal node can be constructed just as in the

smooth case. Write f′ for the natural map P̃ → P , so that

(5.22) β(vi) = f′

− −1∑
m=i

ampm

 and β(vj ) = f′

− −1∑
m=j

ampm

 .
Setting fe B f′(g ′(δe)), we have

(5.23) β(vi) = β(vj ) · f
κe
e ∈ P .

We choose local coordinates u and v near the node, say v vanishes on the upper level component
corresponding to vi . The line bundle ω has a local generating section which is given after inverting u
by du

u and after inverting v by −dvv . The line bundle O(−β) has (perhaps after adjusting the local
coordinates u and v) a local generating section which is given after inverting u by uκeβ(vi)−1 and after
inverting v by f

κe
e v−κeβ(vj )−1. As such, the bundle ω(−β) has a local generating section that is given after

inverting u by uκeβ(vi)−1
du
u and after inverting v by −fκee v−κeβ(vj )−1 dvv . The isomorphism (5.21) then

corresponds to the section of ω(−β) that is given after inverting u by ω(i)β(vi)−1 and after inverting v
by β(vj )−1ω(j) = β(vi)−1fκeω(j). To conclude, we need to show that there exists an invertible function λ

near the node such that after inverting u we have ω(i) = λuκeβ(vi)−1
du
u , and after inverting v we have

fκeω(j) = −λf
κe
e v−κeβ(vi)−1

dv
v . But by condition (2) of Lemma 3.5, we know that there exists an invertible

function λ such that

(5.24) ω(i) = λuκe
du
u

and ω(j) = −λv−κe dv
v
,

and this λ clearly suffices.
Unravelling the constructions earlier in this section verifies that the constructed point of RubLµ indeed

maps to our starting point in GΞMg,n(µ) under F.
To show that we have constructed an isomorphism of fibered categories, we must finally check that the

composites

(5.25) RubLµ(B) −→ GΞMg,n(µ)(B) −→ RubLµ(B)

and

(5.26) GΞMg,n(µ)(B) −→ RubLµ(B) −→ GΞMg,n(µ)(B)

are isomorphic to the respective identities. This can be done by comparing the actions of the simple LLRT
and the simple level rotation torus on the respective spaces; we omit the details. □
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5.8. The multi-scale space as a Zariski closure

Fix g , n, and define Lµ on the universal curve overMg,n as before.

Definition 5.12. We define Rubtrop
Lµ to be the fibered category of LogSchMg,n

whose objects are pairs

(X/B,β), where X/B ∈Mg,n and β is a PL function satisfying condition (1) of Lemma 2.1, and such that the
line bundle Lµ(−β) has multi-degree 0 on each geometric fiber.

This is a slight variant on P(RubLµ). By ignoring the divisibility condition in Lemma 2.1, we are effectively

taking the coarse moduli space relative toMg,n, and we only require that Lµ(−β) has multi-degree 0, rather
than requiring it to be trivial. Since we in particular do not record the data of an isomorphism, we are
effectively also taking a C

∗-quotient.
The map Rubtrop

Lµ →Mg,n is birational and representable, but not in general proper. Using stability

conditions as in [HMP+25], we can construct a compactification

Rubtrop
Lµ −→ P(RubθLµ) −→Mg,n,

where P(RubθLµ)→Mg,n is proper, birational, and representable, and Rubtrop
Lµ → P(RubθLµ) is an open

immersion; but we do not pursue this here as it would require substantial additional notation.
Let P(MS0) ⊆Mg,n be the locus of smooth curves over which Lµ admits a non-zero global section; this

can be seen as the interior of the locus of (projectivized, generalized) multi-scale differentials.

Theorem 5.13. The Zariski closure ofMS0 in Rubtrop
Lµ (or, equivalently, in P(RubθLµ)) is equal to P(MSµ),

the projectivized space of (non-generalized) multi-scale differentials.

Proof. There is a natural closed immersion P(Rubcoarse
Lµ )→ Rubtrop

Lµ , and the main component of the space

P(Rubcoarse
Lµ ) is P(MSµ). □

One can obtain the stacky version ΞMg,n(µ) (of whichMSµ is the relative coarse moduli space) in a

similar fashion, replacing P(RubθLµ) with a stacky modification; we leave the details to the interested reader.

6. The Hodge DR conjecture

In this section we present several equivalent constructions of the universal line bundle introduced
in Section 1.2.2, discuss its various properties, and prove Lemma 1.5.

As explained in Section 1.2.2, the projectivized space of (generalized) multi-scale differentials comes with
a map to the projectivized Hodge bundle, obtained by taking the differential at the top level, and allowing it
to vanish at all lower levels. Pulling back O(1) from the Hodge bundle gives a line bundle on the generalized
multi-scale space. We begin by giving several equivalent versions of this construction.

First we write out explicitly the objects of the fibered category P(Rub):

P(Rub) = {(π : X −→ B,β,F )},

where (X/B,β) is a point of Rub as in Lemma 2.1, and F is a line bundle on B. The Abel–Jacobi map sends
such an object to π∗F (β), giving a proper, see [MW20, Theorem 4.3.2], map P(Rub)→ Pic.

Now fix a line bundle L on Xg,n/Mg,n, which is of total degree 0 on each fiber. Then we can write
explicitly the fibered category of P(RubL) as

P(RubL) = {(X/B,β,F ,ϕ)},

where (X/B,β,F ) is an object of P(Rub) with X/B stable of genus g , and ϕ : π∗F (β)→L is an isomor-
phism.
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Construction 1: Tautological bundle

This is just the bundle F on P(Rub), or its pullback to F on P(RubL) along the tautological map. We
denote the dual of this line bundle by η.

Construction 2: Projective embedding

Let D be an effective divisor on Xg,n such that R1π∗L(D) vanishes, so in particular π∗L(D) is a vector

bundle onMg,n. Such a D can always be found as an element of the linear system of a sufficiently relatively

ample sheaf on Xg,n overMg,n. Then over P(RubL) we have natural maps

(6.1) π∗F ∼−→L(−β) −→L −→L(D),

where the first map is induced by ϕ, the second is induced by the natural map O(−β)→O, and the third by
the natural map O→O(D). Adjunction yields a map

(6.2) F = π∗π
∗F −→ π∗L(D),

which is by definition a map

(6.3) F : P(RubL) −→ P
P(RubL)(π∗L(D)).

Indeed, note that our projectivizations are moduli of subbundles, not quotient bundles, so it is enough
to check that this map is universally injective. But the formation of both sides commutes with arbitrary
base-change, so it is enough to check this over a point, where it is clear.

Lemma 6.1. F∗O(1) = η.

Proof. The equality F∗O(1) = F ∨ is immediate from [Sta25, Example 0FCY]; we obtain F ∨ instead of F
because we define the projectivization to be the moduli of rank 1 subbundles, not rank 1 quotient bundles. □

In particular, we observe that the line bundle F∗O(1) turns out to be independent of the choice of the
sufficiently relatively ample divisor D . In the case considered in the introduction, we take

(6.4) L = ω⊗k
Xg,n/Mg,n

− n∑
i=1

(ai − k)zi


and D =

∑
i:ai>0 aizi .

Construction 3: Pullback from rubber target

For this construction we restrict to the case where L = OX(
∑
i aizi) for k = 0; put another way, we choose

a rational section of L whose locus of zeros and poles is contained in a union of disjoint sections of X→ B.
We write

D =
∑
i:ai>0

aizi and E = −
∑
i:ai<0

aizi .

Since these are effective divisors, we have natural maps

OX −→OX(D) and OX −→OX(E),

and combining with the natural map OX →OX(β) and the isomorphism ϕ : π∗F (β) ∼−→OX(D −E) yields
maps

OX(−E)(−β) −→OX and OX(−E)(−β) −→OX(D −E)(−β)
∼−→ π∗F .

The induced map

OX(−E)(−β) −→OX ⊕π∗F

https://stacks.math.columbia.edu/tag/0FCY
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is universally injective since the first map is injective around the support of D and the second is injective
away from the support of D . This induces a map

X −→ P(OB ⊕F ).

The cotangent line at ∞ to this rubber target is then given by

(6.5) Ψ∞ = F ∨.

We have deduced the following result.

Lemma 6.2. Ψ∞ = η.

Remark 6.3. Above we have constructed a rubber target of length 1 (i.e. with no expansions). This is because
we are only interested in what happens near the infinity section, so we do not need to construct the whole
expanded chain. The reader who is more comfortable with expansions may verify that the length 1 target we
construct here is exactly what is obtained by following through the proof of the expanded target in [BHP+23,
Proposition 50], and then contracting all except the top component.

6.1. Computation of η for k = 0

Here we prove Lemma 1.5, which we restate for the convenience of the reader.

Theorem 6.4. Lemma 1.4 is true for k = 0: for any g,u ≥ 0 and any vector A ∈Zn with sum |A| = 0, we have

p∗

([
P

(
RubLA

)]vir
· ηu

)
= p∗

([
Mg,A

(
P
1,0,∞

)∼]vir
·Ψ u
∞

)
= [ru]Ch0,r,g+ug,A .

Proof. The first equality follows from Lemmas 6.1 and 6.2. For the second equality, we note that the term on
the left has been computed in [FWY21, Corollary 4.3] in terms of a slightly modified Chiodo class. Indeed,
we define an r-shifted version A(r) of A by

A(r)i =

ai for ai ≥ 0,

r + ai for ai < 0.

In other words, for all indices i with ai < 0 (which form a subset I∞ ⊆ {1, . . . ,n}), we shift the vector A by r
in the ith entry. Then the Chiodo class Ch0,r,dg,A(r) is a polynomial in r, for r sufficiently large. Denote by

Ch0,r,•g,A(r) =
∑
d≥0

Ch0,r,dg,A(r)

the associated mixed-degree class. Then in this notation, the formula from [FWY21, Corollary 4.4] reads as
follows:

p∗

([
Mg,A

(
P
1,0,∞

)∼]vir
·Ψ u
∞

)
=

∑
e⃗∈ZI∞

≥0

∏
i∈I∞

(−aiψi)ei ·
[
ru−|⃗e|

]
Ch0,r,u+g−|⃗e|g,A(r)

= [ru]

 ∑
e⃗∈ZI∞

≥0

∏
i∈I∞

(−airψi)ei ·Ch
0,r,•
g,A(r)


codim g+u

= [ru]

∏
i∈I∞

1
1+ airψi

·Ch0,r,•g,A(r)


codim g+u

= [ru]
[
Ch0,r,•g,A

]
codim g+u

.

Here the last step uses [GLN23, Theorem 4.1(ii)]. □
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6.2. (A)symmetry

Above we gave three constructions of the line bundle η = η(L) on P(RubL). We know that the push-
forwards toMg,n of [P(RubL)]vir and [P(RubL∨)]vir agree. However, once we intersect with the class η,
things are a little more subtle. The universal curve over P(Rub) carries a PL function β, totally ordered and
with maximum value 0. The minimum value of β we denote by βmin; this is a PL function on P(Rub). We
set η(βmin) = η ⊗O O(βmin).

Lemma 6.5. We have

(6.6) p∗
(
[P (RubL∨)]

vir · c1(η)u
)
= p∗

(
[P (RubL)]

vir ·
(
−c1

(
η
(
βmin

)))u)
.

Proof. There is a natural isomorphism (compatible with the virtual fundamental classes) overMg,n from
P(RubL) to P(RubL∨), given by

(6.7) (X/B,β,F ,ϕ) 7−→
(
X/B,βmin − β,

(
F
(
βmin

))∨
,ϕ′

)
,

where ϕ′ is the composite

□(6.8) π∗
(
F
(
βmin

))∨ (
βmin − β

)
= π∗F ∨(−β)

(ϕ∨)−1
−−−−−→L∨.

7. Blowup descriptions

In this section we give a description of P(Rubcoarse
L ) as a global blowup.

First, in genus zero, we construct an explicit sheaf of ideals onM0,n, such that blowing upM0,n along
this sheaf gives P(Rubcoarse

L ). In [Ngu24] Nguyen described the incidence variety compactification (IVC) in
the case of genus zero as an explicit blowup ofM0,n. Note that in genus zero there are no global residue
conditions (because any top-level vertex must have a marked pole), and hence in genus zero the rubber space
and the space of generalized multi-scale differentials coincide with the space of multi-scale differentials. Our
blowup description can thus recover Nguyen’s result about the IVC of the strata of meromorphic 1-forms in
genus zero as a blowup ofM0,n. We also provide an example demonstrating the difference between the
rubber space and the IVC in genus zero.

Next, for arbitrary genus, we construct a globally defined sheaf of ideals on the normalization of the
incidence variety compactification (NIVC) whose blowup gives the (projectivized) multi-scale moduli space
(i.e. the main component of Rubcoarse

L ). Consequently, it follows that the (coarse) space of projectivized
(non-generalized) multi-scale differentials is a projective variety for all g . Recall that in [BCG+19, Section 14.1]
the moduli space of multi-scale differentials was described as a local blowup, where the ideals locally defining
the center of the blowup can differ by principal ideals on the overlaps of local charts. In particular, the
description of [BCG+19] did not yield projectivity of the space of multi-scale differentials. By constructing
an explicit ample divisor class, the projectivity of the moduli space of multi-scale differentials was later
established in [CCM24, Section 3]. Our global blowup description thus provides a direct conceptual
understanding of this projectivity result.

Besides projectivity, knowing a blowup description of compactified strata of differentials can be helpful
for obtaining geometric invariants, such as volumes of the strata, by using intersection theory; see [Ngu24].
We also provide a tropical interpretation of our blowup, which sheds further light on the geometry of the
construction.
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7.1. The sheaf of ideals in genus zero

Let Γ be the dual graph of a boundary stratum DΓ ⊂M0,n. For each vertex v ∈ V (Γ ), let d(v) be the
degree of Lµ restricted to v (so

∑
v∈V (Γ )d(v) = 0 by definition). Since Γ is a tree, there exists a unique

‘slope’(22) function κ : H →Z from the set H =H(Γ ) of half-edges of Γ such that

(1) κ agrees with mi at the leg corresponding to a marked point zi ;
(2) κ(h) +κ(h′) = 0 for any h and h′ that are opposite halves of an edge;
(3) for all vertices v, we have

∑
h∈H(v)κ(h) = d(v), where we sum over all half-edges attached to v.

For every pair of vertices v and v′ , let γ be the unique path from v to v′ in the tree Γ . We view this
(directed) path as a sequence of half-edges, where if an edge e = (h,h′) ∈ E(Γ ) appears in γ in the direction
going from h to h′ , meaning that along the path γ in the direction from v to v′ the half-edge h appears first,
followed by h′ , then we put (only) h in our sequence of half-edges. We define an ideal locally around the
boundary stratum DΓ ⊆M0,n by

I(v,v′)B
∏
h∈γ

δ(h)max(κ(h),0),

where we write δ(h) for the ideal associated to the edge containing h (that is, for the defining equation of the
boundary divisor ofM0,n where the corresponding node exists). Define

J(v,v′)B I(v,v′) + I(v′ ,v);

this evidently satisfies J(v,v′) = J(v′ ,v) and J(v,v) = (1). Finally, we set

w(v)B valence(v)− 2,

which is a positive integer by the stability of the curve, and define

J(Γ )B
∏

(v,v′)∈V×V
J(v,v′)w(v)w(v

′).

A concrete example of this ideal is given in Lemma 7.6 below.(23)

Remark 7.1. Note that it is possible to define locally an ideal that is simpler than J and whose blowup
produces the same space. Indeed, taking the product of J and any principal ideal works. Nevertheless, such
local ideals may not always glue to form a global sheaf of ideals. Blowing up a globally defined sheaf of
ideals (from a projective variety) can directly imply the projectivity of the resulting space, while gluing local
blowups together does not. Therefore, the ideal J in the above was designed with some delicate exponents
to make it a globally defined sheaf of ideals, as we will check in the next section. This idea will be used
in Section 7.6 to define a global ideal sheaf on NIVC to conclude the projectivity of the multi-scale space for
arbitrary genus.

7.2. Compatibility under degeneration in genus zero

To show that the ideals J(Γ ) defined in the neighbourhood of each stratum DΓ ⊆M0,n glue to a global
ideal sheaf overM0,n, we need to show that they behave well under degeneration. As any dual graph Γ can
be obtained from any other Γ ′ by a series of operations of inserting and contracting edges, it is enough to
check that the ideals glue under contracting a single edge of the graph.

Lemma 7.2. Let e be an edge of Γ , and let Γ ′ be the graph obtained from Γ by contracting e. Then J(Γ ′) = J(Γ ),
after inverting the ideal δ(e).

(22)The justification for this terminology is given by (5.1), which shows that the slopes of points RubLµ satisfy the same conditions.
(23)If the reader prefers not splitting up the half-edges into ones with increasing and decreasing slopes, alternatively we can define

the fractional ideal J ′(v,v′) =
∏
h∈γ (δ(h)

κ(h),1), and define J ′(Γ ) B
∏

(v,v′)∈V×V J
′(v,v′)w(v)w(v

′). Then J ′ induces a globally

defined fractional ideal whose blowup is the same as that of J (as we will justify for J in the following subsections.)
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Note that inverting δ(e) geometrically corresponds to restricting to the locus where the edge e is contracted,
i.e. where the corresponding node of the curve is smoothed out.

Proof. We denote by c : Γ → Γ ′ the contraction map, let v1 and v2 be the endpoints of e, and let v′ be the
vertex of Γ ′ to which e is contracted, so that d(v′) = d(v1) + d(v2).

If v is any vertex of Γ different from v1 and v2, then clearly w(v) = w(c(v)). Furthermore, the slope
function on Γ clearly restricts to the slope function on Γ ′ . Thus for any two vertices u1 and u2 of Γ distinct
from v1 and v2, we have

JΓ (u1,u2) ∼ JΓ ′ (u1,u2),
where to simplify notation we write I ∼ J if the ideal sheaves I and J become equal after inverting δ(e).
Similarly, JΓ (v1,v2) ∼ (1).

Based on the above analysis, we only need to consider the pairs of vertices in Γ ′ and in Γ that involve v′

and v1 or v2, respectively. It therefore suffices to show that

(7.1)
∏

v∈V (Γ ′)

J(v′ ,v)2w(v
′)w(v) ∼

∏
v∈V (Γ )

J(v1,v)
2w(v)w(v1)J(v2,v)

2w(v)w(v2).

Let V ◦ B V (Γ ) \ {v1,v2} = V (Γ ′) \ {v′}. Then (7.1) reduces to showing∏
v∈V ◦

J(v′ ,v)w(v
′)w(v) ∼

∏
v∈V ◦

J(v1,v)
w(v1)w(v)J(v2,v)

w(v2)w(v).

This follows from w(v′) = w(v1) +w(v2) and the relations

J(v′ ,v) ∼ J(v1,v) ∼ J(v2,v)

for all v ∈ V ′ . □

Definition 7.3. Define J(Lµ) to be the (global) ideal sheaf on M0,n that for any boundary stratum DΓ

restricts to the ideal J(Γ ) on a neighbourhood of DΓ .

The existence of J(L) follows from Lemma 7.2.

7.3. A tropical picture in genus zero

The normalized blowup in the ideal J(Γ ) corresponds tropically to a subdivision of the positive orthant in
the vector space Q⟨E⟩, where E = E(Γ ) is the edge set. This subdivision is built by taking a hyperplane (or
sometimes the whole space) for every pair of vertices in Γ : if γ is the path from v to v′ as above, then the
corresponding hyperplane L(v,v′) is cut out by the equation∑

h∈γ
κ(h)e(h) = 0,

where e(h) is the edge containing the half-edge h, viewed as an element of the group N⟨E⟩ (and we recall
that a half-edge h is said to be contained in a directed path γ if γ goes via h before going through the
complementary half-edge of the same edge).

These local subdivisions glue to a global subdivision of the tropicalization ofM0,n, inducing a proper
birational map M̃0,n→M0,n.

Lemma 7.4. The normalization of the blowup of M0,n in the ideal J(Lµ) is equal to the proper birational map
M̃0,n→M0,n induced by the subdivision above.

Proof. The standard dictionary (see [Kat89a, Section 1.3.3, p. 14]) between toric blowups and subdivisions
implies that the normalized blowup in J(v,v′) is equal to that induced by the subdivision in L(v,v′). Since
w(v) ≥ 1 (by stability), blowing up in J(v,v′) is the same as blowing up in J(v,v′)w(v)w(v

′). Normalized
blowup in a product of ideals corresponds to superimposing their subdivisions. □
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7.4. Comparing blowups and rubber maps in genus zero

We are ready to prove our main statement in genus zero.

Theorem 7.5. The normalization of the blowup M̃0,n of M0,n along the ideal sheaf J(Lµ) is the projectivized
coarse moduli space of rubber differentials P(Rubcoarse

L ).

Proof. Let X/B be a nuclear log curve of genus zero.
Claim: There exists a PL function β on X such that Lµ �O(β), and moreover such a β is unique up to

translation by an element of MB(B)gp.
To prove the claim, we use the fact that the graph is a tree to deduce that there is a unique collection of

admissible slopes κe. We pick a vertex v0 and let β be the unique PL function vanishing on v0 and with
slopes given by the κe. The line bundle Lµ(−β) has multi-degree zero, and is hence trivial since X has genus
zero. This proves the claim.

Now recall that Rubcoarse
L can be obtained by omitting the divisibility condition (2) from Lemma 2.1. In

other words, the point X/B lies in Rubcoarse
L if and only if the values of β on the vertices of Γ form a totally

ordered set. It therefore remains to check that this is equivalent to the map B→M0,n factoring via the
subdivision described in Section 7.3.

If γ is a directed path in Γ , we define

ϕ(γ)B
∑
h∈γ

κhδh.

Since the difference of values of β at the two ends of an edge is the slope κe of that edge (with the appropriate
sign), the values of β at the two ends of a path γ differ by ϕ(γ).

Fix a vertex v0, and write γv for the unique path from v0 to v. Then the set {β(v) : v ∈ V (Γ )} is totally
ordered if and only if the set

{ϕ(γv) : v ∈ V (Γ )}

is totally ordered. This is in turn equivalent to requiring that for every path γ ⊂ Γ (not necessarily a path
from v0), the element ϕ(γ) is comparable to 0, i.e. either ϕ(γ) ∈MS or −ϕ(γ) ∈MS . Imposing this condition
is equivalent to subdividing N⟨E⟩ in the hyperplane L(v,v′) of Section 7.3, where v and v′ are the endpoints
of γ . □

7.5. Comparison to Nguyen’s blowup in genus zero

As mentioned, in genus zero Nguyen [Ngu24] described the IVC as an explicit blowup ofM0,n (also for the
more general case of k-differentials in genus zero). Since the rubber/multi-scale space is the normalization of
a blowup of the normalization of the IVC, our blowup described in Lemma 7.5 must dominate the blowup
defined by Nguyen. In this subsection we recall Nguyen’s construction, provide a viewpoint of his blowup
from our setup, and give an alternative proof for Nguyen’s result that blowing upM0,n in his ideal gives
the IVC.

We begin by recalling Nguyen’s construction of a sheaf of ideals onM0,n. Let X/B be a nuclear log curve
of genus zero with graph Γ , and let κ be the slope function on the edges of Γ , i.e. the PL function constructed
in the proof of Lemma 7.5. For a given vertex v ∈ V (Γ ) and an edge e ∈ E(Γ ), let hv(e) be the half-edge of e
such that the path from the end of hv(e) to v passes through e. For a vertex v ∈ V (Γ ), we define

(7.2) δv B
∏
e∈E(Γ )

δ
κv,e
e ,

where κv,e Bmax(κ(hv(e)),0). Let N (Γ ) be the (local) ideal (in the variables δe, as in our setup) generated
by the set of elements δv for all vertices v ∈ V (Γ ). It was shown in [Ngu24] that these N (Γ ) can be patched



46 D. Chen, S. Grushevsky, D. Holmes, M. Möller, and J. Schmitt46 D. Chen, S. Grushevsky, D. Holmes, M. Möller, and J. Schmitt

v0

v1 v2 v3

κh = −1

κh′ = 1e3e2e1

Figure 4. The graph Γ of a stratum inM0,7; the desired slopes κ can be obtained, e.g., by using the
signature µ = (−16,4) with the six markings associated to simple poles attached to the vertices v1,
v2, and v3.

together to a sheaf of ideals N globally defined onM0,n. This can be seen the same way as Lemma 7.2, and
we will discuss this in more generality in Lemma 7.9 for arbitrary genera.

Before proceeding, we illustrate Nguyen’s ideal and our ideal in the following example.

Example 7.6. Consider a (partially ordered) dual graph Γ as illustrated in Figure 4, with all slopes κ = 1.
Recalling the definition of δv in (7.2) for a vertex v ∈ V (Γ ) and writing δi B δei to lighten notation, we
obtain δv0 = δ1δ2δ3, δv1 = δ2δ3, δv2 = δ1δ3, and δv3 = δ1δ2. In this case Nguyen’s ideal N (Γ ) is given by

N (Γ ) = (δ1δ2,δ1δ3,δ2δ3,δ1δ2δ3) = (δ1δ2,δ1δ3,δ2δ3).

In contrast, our ideal J(Γ ) is given by

J(Γ ) = (δ1,δ2)
2(δ1,δ3)

2(δ2,δ3)
2(δ1)

4(δ2)
4(δ3)

4.

When we blow up J(Γ ), each ideal generated by a pair (δi ,δj ) for 1 ≤ i < j ≤ 3 becomes principal, and so
does the ideal N (Γ ). Therefore, the blowup in J(Γ ) dominates the blowup in N (Γ ).

Nguyen [Ngu24] proved that blowing upM0,n along the globally defined sheaf of ideals N gives the IVC.
Indeed, in the example above we see explicitly that locally around the boundary stratum with the dual
graph Γ , the rubber/multi-scale space obtained by blowing up along J is a further blowup of the IVC.

The situation of this example can also be understood in general, from our viewpoint, which gives an
alternative proof of the result of Nguyen.

Proposition 7.7. The local blowup of M0,n near DΓ along the ideal J(Γ ) makes the ideal N (Γ ) become principal.
Moreover, in genus zero the blowup of M0,n along the ideal sheaf N is the IVC.

Before giving the proof, we first reinterpret N (Γ ) geometrically as follows. If two vertices v and v′ are
joined by an edge e, and if ℓ(v) > ℓ(v′), then δv divides δv′ . Therefore, the ideal N (Γ ) is the same as the
ideal generated only by the elements δv where v ranges over all vertices that are local maxima of Γ (in the
sense that all edges from v go down – recall that this is a partial order on the graph, and the datum of a
multi-scale differential upgrades this to a full order). A vertex v that is a local maximum of Γ , such that
the corresponding δv generates the ideal N (Γ ) after the blowup, becomes a global top-level vertex. On the
other hand, those local maxima v whose δv terms do not generate the principal ideal after blowing up N (Γ )
may not divide each other, and thus remain unordered. This corresponds to the fact that a point in the IVC
records actual differentials merely on top-level vertices where the stable differential is not identically zero,
while on any lower vertex the stable differential is identically zero (though the underlying marked zeros and
poles of the twisted differential are still remembered).

Proof. For the first claim, note that the edge parameter δe appears with the same exponent in the expressions
of δv and δv′ unless e lies in the unique path from v to v′ , in which case the exponents of δe in δv and
δv′ are the same as those in I(v,v′) and I(v′ ,v), respectively. Since blowing up along J(Γ ) makes the ideal
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(I(v,v′), I(v′ ,v)) principal, it follows that each ideal (δv ,δv′ ) becomes principal under that blowup. This is
to say that after blowing up in J(Γ ), one of δv and δv′ must divide the other. Doing this for all v and v′

shows that after the blowup along J(Γ ), there is a set of elements {δv1 , . . . ,δvk } such that for every i and each
v ∈ V (Γ ), δvi divides δv . In particular, such δvi and δvj divide each other and thus differ by multiplication
by a unit, and the ideal N (Γ ), after the blowup along J(Γ ), is generated by any one of these δvi , and hence it
becomes principal.

For the second claim, we will construct the desired morphisms between the blowup and the IVC in both
directions that are inverses of each other. Since the blowup and the IVC both admit natural maps onto
M0,n, these morphisms will be constructed locally over each boundary stratum DΓ ofM0,n.

The upshot underneath the constructions is that δv for v ∈ V (Γ ) is an adjusting parameter in the sense
of [BCG+19, Proposition 11.13], which means that multiplying by δ−1v makes the limiting differential become
not identically zero on the component corresponding to v. To see this, let Dei be the boundary divisor of

M0,n corresponding to a given edge ei of Γ . Contracting all edges of Γ except ei produces a graph with two
vertices connected by the edge ei , and the family of stable differentials over it vanishes on the irreducible
component corresponding to the lower-level vertex, with generic vanishing order |κei |. Given a vertex v
of Γ , if the image of v under this contraction is the lower of the two resulting vertices, then over DΓ the
family of stable differentials vanishes identically on the irreducible component corresponding to v. Applying
this observation to all edges ei in Γ where v becomes lower after the above edge contractions, it follows
that the expression of δv records exactly the total vanishing order over DΓ of the stable differentials on the
irreducible component corresponding to v. Therefore, multiplying by δ−1v makes the limiting differential
become not identically zero on v. By definition, this implies that δv is an adjusting parameter for v.

Now we construct a morphism from the IVC to the blowup of M0,n along N by using the universal
property of the blowup. More precisely, as we blow up (in a neighbourhood of DΓ ) the ideal generated by
all δv , it suffices to check that this ideal becomes principal on the IVC. Recall that the IVC parameterizes
pointed stable differentials (of prescribed type) that are not identically zero, where a stable differential is
a section of the dualizing sheaf over the stable curve, considered up to an overall scaling by a non-zero
constant factor. If a vertex v is not a local maximum of Γ , i.e. if there exists an edge e going up from v,
then the (stable) differential on the irreducible component corresponding to v is identically zero. Thus given
a (not identically zero) stable differential, we can declare a local maximum vertex v of Γ to be a global
maximum if and only if the stable differential on the corresponding irreducible component of the curve is
not identically zero. By the preceding discussion, this is precisely to say that all adjusting parameters δv for
the global maxima vertices v differ by units, and divide all the other δv . Hence the ideal N (Γ ) pulls back a
principal ideal on the IVC, which induces the map (locally) from the IVC to the blowup ofM0,n along N (Γ ).

Next we construct a morphism in the opposite direction, locally near DΓ from the blowup of M0,n

along N (Γ ) to the IVC, by using the universal property of the Hodge bundle overM0,n (twisted by the polar
part of the differentials, and projectivized as always).

Consider the universal family of differentials with prescribed zeros and poles over a punctured neighbour-
hood of DΓ in M0,n. We claim that this family of differentials extends to a family of stable differentials
over the local blowup ofM0,n along N (Γ ). Indeed, for each point in the preimage of DΓ in the blowup,
we know the set of global maxima v1, . . . ,vk of the graph (with k ≥ 1), such that any other δv is divisible
by one of the adjusting parameters δv1 , . . . ,δvk . It follows that the limiting stable differential will be not
identically zero precisely on the irreducible components corresponding to v1, . . . , vk , and thus in particular
not identically zero on the stable curve as a whole. By the universal property of the projectivized Hodge
bundle, the blowup along N (Γ ) carrying a family of (not identically zero) stable differentials admits locally
a morphism to this bundle. Moreover, since, over the locus of smooth curves, this family of differentials
coincides with the family of differentials in a given stratum, it implies that the image of the morphism from
the blowup to the Hodge bundle is the closure of the stratum, i.e. the IVC. By construction, it is clear that
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this map is the inverse of the local morphism in the other direction. As both the blowup ofM0,n along the
global ideal sheaf N and the IVC admit forgetful surjective maps toM0,n, and as we proved that they are
locally isomorphic near every stratum DΓ ⊂M0,n, it follows that they are globally isomorphic. □

7.6. A blowup description for arbitrary genus

Recall that the NIVC denotes the normalization of the incidence variety compactification (i.e. of the
closure of the stratum in the Hodge bundle), and let Γ be a partially ordered level graph of a boundary
stratum in the NIVC. For every vertex v ∈ V (Γ ), by normality an adjusting parameter hv exists by [BCG+19,
Proposition 11.13]. Recall that by definition this means that multiplying by h−1v makes the limiting differential
in a degenerating family not identically zero on the irreducible component of the stable curve corresponding
to v. Define an ideal locally around the boundary stratum of the NIVC corresponding to Γ by

J(Γ )B
∏

(v,v′)∈V (Γ )×V (Γ )

(hv ,hv′ )
w(v)w(v′),

where the product runs over all ordered pairs of vertices (including the case v = v′) and where w(v) B
2g(v)− 2+valence(v). Since the blowup in J(Γ ) makes the adjusting parameters comparable for any two
vertices, the (local) blowup of the NIVC along J(Γ ) is orderly (recall that this means that after the blowup the
divisibility relation induces a full order on the set of adjusting parameters; see [BCG+19, Definition 11.15]).
By the same argument as in the proof of [BCG+19, Theorem 14.8], it follows that the normalization of this
blowup is isomorphic to the moduli space of multi-scale differentials.

Finally, we show that the locally defined ideals J(Γ ) are compatible under degeneration, so that they
glue to form a global sheaf of ideals J on the NIVC. For this, again it is enough to check compatibility
under an edge contraction (recalling that unlike in the genus zero case, the edge can be a loop). First, in
the case of a loop, by the formula for w(v), we see that contracting a loop does not change J(Γ ). Now
suppose that two distinct vertices v1, v2 of Γ connected by an edge e are merged, when e is contracted, to a
vertex v′ in the resulting graph Γ ′ . Note that this contraction makes hv1 ∼ hv2 ∼ hv′ modulo units. Moreover,
w(v′) = w(v1) +w(v2). Then for any vertex u different from v1,v2,v

′ , we have(
hv1 ,hu

)2w(v1)w(u) (
hv2 ,hu

)2w(v2)w(u) ∼ (hv′ ,hu)
2w(v′)w(u) ,(

hv1 ,hv1
)w(v1)2 (

hv2 ,hv2
)w(v2)2 (

hv1 ,hv2
)2w(v1)w(v2) ∼ (hv′ ,hv′ )

w(v′)2 .

It follows that J(Γ ′) specializes to J(Γ ). Therefore, the local ideals J(Γ ) can be glued to a global sheaf of
ideals J . In summary, we have proven the following theorem.

Theorem 7.8. The main component P(MSµ) of P(GMSµ) is the normalization of the blowup of the NIVC in
the ideal sheaf J ; in particular, its coarse moduli space is a projective variety.

Remark 7.9. For arbitrary genera, one can describe the IVC (and then also the rubber and multi-scale spaces)
by blowing up the normalization of the closure of the stratum in the Deligne–Mumford compactificationMg,n,
which we denote by NDM. The argument is similar to the one in the proof of Lemma 7.7. Since the NDM
is normal, for every vertex v of Γ , an adjusting parameter hv for v exists as in [BCG+19, Proposition 11.13].
Then the blowup of the NDM along the (local) ideals (hv1 , . . . ,hvk ), where v1, . . . , vk are local maximum
vertices of Γ , carries a family of stable differentials, and hence it maps to the IVC by the universal property
of the Hodge bundle. The inverse map from the IVC to this blowup is similarly obtained by using the
universal property of the blowup.

To see that these local ideals patch together to form a global sheaf of ideals, suppose that a local maximum
vertex v1 joins a lower vertex v0 via an edge e. Suppose further that e is contracted so that v1 and v0
merge as one vertex v′1, which makes hv1 ∼ hv′1 modulo units. If v′1 remains a local maximum, then we have
(hv1 ,hv2 , . . . ,hvk ) = (hv′1 ,hv2 , . . . ,hvk ) after contracting e, so these ideals match. If v′1 is not a local maximum,
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then there exists another local maximum vertex, say v2, that goes along a path downward to v′1 (in terms of
the partial order of Γ ). It follows that hv2 divides hv1 ∼ hv′1 and hence (hv1 ,hv2 , . . . ,hvk ) = (hv2 , . . . ,hvk ) after
contracting e, so these ideals still match.

Appendix. Sign conventions

The sign conventions adopted in [MW20] and in [BCG+19] are opposite to one another; as this sign plays
a more prominent role in [BCG+19], we follow that sign convention, which we now explain in the logarithmic
language.

Let (X,MX) be a log scheme and β ∈Mgp
X (X). The preimage of β in the exact sequence

1 −→O×X −→Mgp
X −→M

gp
X −→ 1

is a Gm-torsor that we denote by O×X(β), from which we construct a line bundle OX(β) by gluing in the
zero(24) section. In particular,

(1) if X has divisorial log structure and β ∈MX(X), then OX(β) is naturally an ideal sheaf on X;
(2) if (X,x) is a DVR with divisorial log structure at x, then the stalk of MX at x is naturally identified

with N, and the association β 7→ OX(β) sends n to OX(−nx);
(3) if a ≤ b ∈MX(X)gp, then we have a natural map OX(b)→OX(a).

If e : u→ v is a directed edge of a graph Γ of length δe, and β is a function on the vertices of γ with
slope κ along e, then β(v) = β(u) +κ · δe. We identify a half-edge h attached to a vertex e with an outgoing
edge at e.

If (X/B,β) is a nuclear object of Rub, then the image of β is totally ordered with largest element 0. If the
image of β has cardinality N +1, then there is a unique isomorphism of totally ordered sets between Im(β)
and {0,−1, . . . ,−N } (the latter having largest element 0). We denote by ℓ : V → {0,−1, . . . ,−N } the induced
map, in accordance with (3.1).

If e is an edge between vertices u and v, we define ℓ+(e) and ℓ−(e) to be the unique pair of elements of
{0,−1, . . . ,−N } such that ℓ+(e) ≥ ℓ−(e) and {ℓ+(e), ℓ−(e)} = {ℓ(u), ℓ(v)}.
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