2212.04704v2 [math.AG] 29 Oct 2025

arxXiv

Epijournal de Géométrie Algébrique ) d

epiga.episciences.org EPIGA

Volume 9 (2025), Article No. 21

A tale of two moduli spaces: Logarithmic
and multi-scale differentials

Dawei Chen, Samuel Grushevsky, David Holmes, Martin Méller, and Johannes Schmitt

Abstract. Multi-scale differentials were constructed by M. Bainbridge, D. Chen, Q. Gendron, S. Grushevsky,
and M. Méller, from the viewpoint of flat and complex geometry, for the purpose of compactifying moduli
spaces of curves together with a differential with prescribed orders of zeros and poles. Logarithmic differentials
were constructed by S. Marcus and J. Wise, as a generalization of stable rubber maps from Gromov-Witten
theory. Modulo the global residue condition that isolates the main components of the compactification, we
show that these two kinds of differentials are equivalent, and establish an isomorphism of their (coarse) moduli
stacks. Moreover, we describe the rubber and multi-scale spaces as an explicit blowup of the moduli space
of stable pointed rational curves in the case of genus zero, and as a global blowup of the incidence variety
compactification for arbitrary genera, which implies their projectivity. We also propose a refined double
ramification cycle formula in the twisted Hodge bundle which interacts with the universal line bundle class.
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1. Introduction

11. Background and main results

Let p = (my,...,m,) be a tuple of integers with ) ?" |, m; = 2g—2. The (projectivized) stratum of differentials
of type p is the moduli space of smooth curves X of genus g with distinct marked points z,...,z, € X such
that ) ', m;z; is a (possibly meromorphic) canonical divisor.

The study of differentials with prescribed zeros and poles is important for at least two reasons. On the
one hand, a (holomorphic) differential induces a flat metric with conical singularities at its zeros, such that
the underlying Riemann surface can be realized as a polygon with edges pairwise identified by translations.
Varying the shape of the polygons by affine transformations of the plane induces an action on the strata of
differentials (called Teichmiiller dynamics), whose orbit closures (called affine invariant subvarieties) govern
intrinsic properties of surface dynamics. On the other hand, a differential (up to multiplication by a scalar)
corresponds to a canonical divisor in the underlying complex curve. Hence the union of the moduli spaces
of differentials with all possible configurations of zeros stratifies the Hodge bundle over the moduli space
of curves, thus producing a number of remarkable questions to investigate from the viewpoint of algebraic
geometry, such as compactification, enumerative geometry, and cycle class calculations. The interplay of
these aspects has brought the study of differentials to an exciting new stage (see, ¢.g., [Zor06, Wril5, Chel7|
and the references therein for an introduction to this subject).

As in many other moduli problems, having a geometrically meaningful compactification plays a crucial
role in the study of the strata of differentials. Extending the setup of canonical divisors with prescribed zeros
and poles to (pre-)stable curves, we define an algebraic stack GEJVg,n(y), the moduli space of generalized
simple multi-scale differentials of type p. The relative coarse moduli space GMS, over ﬂg,n of this stack is
defined the same way as the multi-scale differentials in [BCG*19], but dropping the global residue condition.!)
Compared to the multi-scale space, the key player in [BCG*19], the stack GEﬂg,n( #) has additional

irreducible components whose generic elements parameterize differentials on (strictly) nodal curves. Indeed

WOur definition thus solves a task left open in [BCG*19], namely to describe the smooth stack Eﬂg,n(y) dominating the stack

of multi-scale differentials MS, without invoking Teichmiiller markings.
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GEM&”( #) maps onto the space of twisted canonical divisors constructed by Farkas-Pandharipande [FP18].
A minimal logarithmic structure on the space of twisted canonical divisors was described in [CC19], which
extracts the information of meromorphic differentials from lower levels, but does not specify the full level
structure. The precise definitions on these related objects are recalled in Section 3.

On the logarithmic side, Marcus and Wise [MW20] defined, for any line bundle £ on the universal
curve X, , over ./Vg,n, a space Rub, over ﬂg,n. The fiber of Rub, over a curve X is the set of piecewise
linear functions f on the tropicalization of X, together with an isomorphism of line bundles from Ox/(f)
to L. The natural C* quotient, which forgets the data of the isomorphism, is denoted by IP(Rub,). When
L =0x,, (X;m;z), this space IP(Rub) is the space of rubber maps to IP! with zeros and poles prescribed
by the m;, giving an alternative definition to that of Li, Graber and Vakil [Li0l, GV05]. This machinery
gives an extremely clean and functional definition of the double ramification cycle, as well as its logarithmic,
pluricanonical, universal, and iterated variants; see [BHP*23, HS21, MPS23, MR24, HMP*25].

To connect this space with moduli of differentials, we define the line bundle

n
Ly=wyx /i, [_ Zmizi)
ioT

on X, leading to the stack Rub , together with its relative coarse moduli space Rub°?™¢ over /Vg,n_@)
M

The virtual fundamental class of H’(Rubzc;arse) is the ‘canonical’ double ramification cycle described
in [HS21].

The definitions of the spaces Rub ¢, and GMS, look very different. They can be found in Sections 2
and 3, respectively. The main aim of this paper is to show that these definitions are in fact essentially
equivalent. More precisely, we prove the following theorem.

Theorem 1.1. For any tuple of integers y = (my,...,m,) with Y i, m; = 2¢ — 2, there is an isomorphism of
algebraic stacks over ﬂgm

F:Ruby — GEM,,(p)
which induces an isomorphism of the corresponding relative coarse moduli spaces over Mg,n
F: Rub®®"® — gMS,,.
M

Note that the global residue condition described in [BCG+18] can isolate the main component of GMS o
called the multi-scale space and denoted by MS . In other words, a generalized multi-scale differential not
satisfying the global residue condition is not smoothable while preserving the prescribed zero and pole
orders. (This global residue condition arises from applying Stokes’ theorem to subcurves of the limiting
nodal curve when differentials degenerate from nearby smooth curves, thereby imposing that certain sums of
residues at the nodes vanish. See op. cit. for further details.) Moreover, in [BCG*19] the space of multi-scale
differentials MS, was shown to possess nice geometric properties, such as smoothness (as a stack), normal
crossings boundary, and extension of the GL,(IR)-action to the boundary (after a real oriented blowup). It
would be interesting to see whether these properties can be obtained directly by using rubber differentials
and logarithmic geometry.

1.2. Applications and related topics

In what follows we address several constructions, results, and conjectures related to the main result above.

@see [AOV1]] for the definition of relative coarse moduli spaces. Moreover, note that one can replace w with any power w® in
the formula for £, extending the theory to k-canonical divisors.
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1.2.1. A blowup description of the space of multi-scale differentials.— First, describing a modular
compactification via blowups can be useful in many aspects, e.g., for projectivity and intersection calculations.
There is a natural action of C* on generalized multi-scale differentials by simultaneous rescaling of all
differentials, and we denote the quotient, the space of ‘projectivized generalized multi-scale differentials’, by
P(GMS,); Lemma 11 induces an isomorphism H’(Rub%iarse) — P(GMS).

In the case of genus zero, we can identify H’(Rub%‘;arse) with a blowup of My,,.

Theorem 1.2 (Lemma 7.5). For g = 0 there exists an explicit sheaf of ideals in Mo,n such that the normalization
of its blowup is P(Rub2"¢).
M

We recall that the projectivized stratum of differentials can be compactified in different ways. Firstly,
one can consider simply its closure in the Deligne-Mumford compactification Mg,w Secondly, one can
consider the closure of the stratum in the total space of the projectivized Hodge bundle over Mg'n (twisted
by the polar parts). This compactification is described completely in [BCG*18], and is called the incidence
variety compactification (IVC). The IVC clearly admits a morphism onto the Deligne-Mumford closure of the
stratum, while IP(MS ) maps onto the IVC, and in general both these morphisms are ‘forgetful’, i.e. contract
some loci in the compactifications. We further write NIVC for the normalization of the IVC.

In [Ngu24] Nguyen showed that, in the case of genus zero, the IVC can be described as an explicit blowup
of Mo,n- From the above theorem, one can also retrieve Nguyen’s result, which we do in Lemma 7.7.

In arbitrary genus, recall that the multi-scale space MS, is the main component of GMS ,, whose generic
element parameterizes differentials with prescribed zero and pole orders on smooth curves.

Theorem 1.3 (Lemma 7.8). For arbitrary genus there exists a global sheaf of ideals on the NIVC such that
the normalization of the blowup of the NIVC along this ideal gives the projectivized multi-scale space P(MS ).
Consequently, the coarse moduli space of the stack P(MS ) is a projective variety.

In [BCG'19] a local blowup construction to obtain IP(MS,) from the normalization of the IVC was
described. That construction did not glue to a global sheaf of ideals on IVC, and hence did not yield the
projectivity of IP(MS ). In [CCM24] the projectivity of IP(MS,) was established by constructing an explicit
ample divisor class on it. Thus the above theorem provides a distinct conceptual understanding of the
projectivity result.

1.2.2. A Hodge double ramification cycle.— Next we propose a refined version of the double ramification
(DR) cycle in the twisted Hodge bundle and conjecture a Pixton-style formula for this class, involving
coefficients of higher powers of the regularizing parameter ‘7. For this purpose, we also generalize our
considerations to k-differentials.

Let A= (ay,...,a,) € Z", where |A| := ) ", a; = k(2g — 2+ n) for some k > 0, and denote by

Ly = [— ) (ai- k)zi]

the associated degree zero line bundle on X, ;,,, where 7: X, , — M, , is the universal curve with sections
z;, and w is the relative canonical bundle.(®) Taking

n
H = (1)®k - Z a;z; + Zkzl-
i=1

ie{l,...,n}:
al-<()

(®)Here we switch to the logarithmic version of indices to match the notation in [JPPZ17]. In other words, as a signature of
k-differentials, each of the zero and pole orders is given by a; — k. In particular, by slight abuse of notation, £4 is simply the bundle
we denoted by £, in the previous convention.
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to be the relative logarithmic k-canonical bundle twisted by the polar part, we obtain a natural diagram

P(Rubg, ) —— P(m.H)
(L) \ l

(see the discussion leading to (6.3) for more details). Pushing forward the virtual fundamental class of
P(Rub,) gives a lift

DR, = F.[P(Ruby, )]
of the twisted DR cycles to IP(7t,H), which we call the twisted Hodge DR cycle.
Let H = ¢1(O(1)) be the universal line bundle class on IP(7t,H), and let 7 = F*H be its pullback to

——k
P(Rub, A).(4) By the projective bundle formula associated to the map g, to determine the class of DR in
the Chow ring CH®*(IP(7, H)), it suffices to determine the cycle class

(12) q*(’D‘IiZ-H”) = p*([IP(Rub.cA)]Vir'U”)ECHg+u (Mg,n)

for every u.

Before proceeding to give a conjectural formula for these cycles, let us make a remark about the case
k = 0. When trying to follow the construction above, we encounter the issue that in general the higher
cohomology of H will not vanish, so that IP(7t, ) is not a projective bundle. In Section 6 we explain how
this can be remedied. However, there is also an alternative approach to defining #, which makes clearer
a connection to relative Gromov-Witten theory: there both the space IP(Rub,,) and its forgetful map p

to ﬂg,n still make sense, and it was proven in [BHP*23, Proposition 50] that there is a natural isomorphism
~ A 1 ~
P(Ruby, ) = Mg 4(P',0,0)

with the space of stable maps to rubber P! relative to 0, co, with contact orders specified by the vector A.
This space of stable maps parameterizes maps from prestable curves to a chain of rational curves, with
marked points 0, c0 at opposite ends of the chain (see [JPPZ17, Section 0.2.4] for details). What is important
for us is that it still carries a natural divisor class 17 = W, defined as the class of the cotangent line bundle at
the marked point co on the chain of rational curves.

Continuing in the general case k > 0, consider the space of twisted r-spin structures ﬂ;’; constructed in
[Chi08, Jar00]. This is a compactification of the moduli space of smooth marked curves X and line bundles L
on X with an isomorphism L®" = a)?}k (—X.(a; —k)z;). In the compactification, the curve X is allowed to
acquire nodal singularities that are stacky points with some finite stabilizer group, making X a twisted curve

—k,
in the sense of [AV02]. The moduli space then carries a universal curve 7: X — Mg;;l with a line bundle £
and isomorphism £®" = w® (=Y (a; - k)z;). Here we follow the notation of [JPPZ17]. Forgetting the line

bundle and the stacky structure on X’ gives a map €: ./\/lg;\ - ﬂg,n. Define the following Chiodo’s class as
the first cycle class given in [JPPZ17, Proposition 5J:

Chg,’:'q,d = r2d_2g+1€*cd (_R*T(*ﬁ) S CHd (ﬂg,n);

where R* denotes derived push-forward. It is a polynomial in r (for r sufficiently large). Following computa-
tions of Chiodo [Chi08], the class Chf;;{d can be computed explicitly as a sum over stable graphs, decorated
with polynomials in x and -classes (see [JPPZ17, Corollary 4]). We propose the following conjecture, giving
a formula for the cycle classes (1.2).

(YIn the literature sometimes & denotes the universal line bundle class on the space of k-differentials and 7 denotes the
tautological line bundle class ¢ (O(-1)).
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Conjecture 1.4 (Hodge DR). For every g, k,u > 0 and every A € Z" satisfying |A| = k(2g — 2 + n), the following
relation holds: )
vir _ k,r,g+u v
p*([IP(RubﬁA)] - ;7”) = [PChETE™ € CHS™ (My,,),

where [r"] means taking the coefficient of .

For u = 0, by definition the left-hand side of this equation is the usual twisted DR cycle DR]/“, and
by [JPPZ17, Proposition 5] the right-hand side agrees with Pixton’s formula for this cycle. Therefore, the
conjecture is true for # = 0 by the results of [BHP*23|.

For u > 0, the conjecture can be verified computationally in many examples for the special case g = 0.
Indeed, in this case, the space Rub,, agrees with the space of multi-scale k-differentials by Lemma 1.1
(since the global residue condition is automatically satisfied in the case g = 0). Then the software package
diffstrata, see [CMZ23], can compute powers of 7 on this space using relations in its Picard group, and
express the left-hand side of the conjecture in terms of tautological classes. On the other hand, the right-hand
side of the conjecture can be computed in admcycles, see [DSvZ21], using the graph-sum formula from
[JPPZ17]. Using this, the prediction of the conjecture has been verified for several example vectors A, giving
many non-trivial equalities in the Chow group of Mo,n. The calculations in diffstrata for k > 1 rely on
some code in development related to the forthcoming paper [CMS23].

On the other hand, for k = 0, the left-hand side of the conjecture has been computed in [FWYZ2I,
Corollary 4.3]. The formula given there is similar, but not equal, to the one above. However, using properties
of the Chiodo class proven in [GLN23, Theorem 4.1(ii)], a short computation shows that the formula from
[FWY21] can be simplified to the one we give above.")

Theorem 1.5. Lemma 1.4 is true for k = 0: for any g,u > 0 and any vector A € Z" with sum |A| = 0, we have

p- ([H’(RubcA)]Vir ' ’7“) =P- ([mg’A (P, O’OO)N]

vir

_ 0,r,g+u
\yoo) = [r]ChyE ™.

1.3. Sketch of the comparison

We hope that this paper will foster more communications between two groups of researchers, those working
in logarithmic geometry for moduli spaces and those working in moduli of differentials for Teichmiiller
dynamics. With this in mind, we have written out definitions of objects on both sides of the story in a rather
detailed way, in particular assuming minimal background knowledge about logarithmic structures. We now
give an overview of the comparison in Lemma 1.1.

The definition of generalized multi-scale differentials on a stable curve X is geometrically very concrete
but quite lengthy. The level structure (or full order) on the vertices of the dual graph I' of X, corresponding
to the irreducible components of X, encodes the vanishing orders of a differential in a family of differentials
on smooth curves that degenerates to a given multi-scale differential on a nodal curve. One can twist
differentials that vanish identically, on the irreducible components of the same level, by a rescaling parameter
for that level, to obtain twisted differentials that are not identically zero on the components on that level. A
multi-scale differential contains the combinatorial data of the zero and pole orders of twisted differentials
at the nodes. Moreover, the prong-matchings of a multi-scale differential are combinatorial data that arise
from choices of smoothing a nodal differential with matching zero and pole orders at the two branches
at a node, under the flat metric induced by the differential. Lastly, a multi-scale differential stores the
smoothing parameters of the nodes in a way consistent with the level structure, packaged in the notion
of a rescaling ensemble. On all these parameters, a certain level rotation torus acts and induces a notion of
equivalence that forgets the extra information due to various choices being made in the above process, e.g.,
how simultaneously scaling twisted differentials on the same level affects prong-matchings.

(5)Special thanks go to Longting Wu for patiently explaining their formula and to Danilo Lewanski for informing us of the above
property of the Chiodo class.
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The definition of an element of Rub ¢, is very concise; it is simply a piecewise linear function on the
tropicalization subject to certain conditions (see Definitions 2.1 and 2.7). However, it may seem cryptic at a
first reading. In particular, it may not be immediately apparent why the data of a log curve, a piecewise
linear function, and an isomorphism of line bundles should yield up all the above data of an equivalence
class of multi-scale differentials. Some parts of the comparison (such as the enhanced level graph) are
obtained essentially by some bookkeeping, but extracting the level rotation torus and prong-matchings from
the logarithmic data requires significantly more care.

Our first key insight about prong-matchings is Lemma 3.1, giving a new, coordinate-free characterization of
prong-matching via the residue isomorphism. The second key insight exhibits the reason for the equivalence
relation given by the level rotation torus in log language. We define a log splitting of a point in Rub, (B)

essentially as a section of the quotient map Mg — Mg, from the sheaf of monoids Mg built into the log
structure, to the ghost sheaf Mjp. The precise statement is given in Lemma 5.1. We show that the set of log
splittings is closely related to the level rotation torus, and in particular changing the choice of log splitting
corresponds to the action of the level rotation torus.

Finally, we remark that an analogue of Lemma 1.1 should also hold for rubber k-differentials and multi-
scale k-differentials. Indeed, on the logarithmic side the generalization is straightforward, as noted earlier.
Moreover, the space of multi-scale k-differentials was described similarly in [CMZ24]. Thus the arguments
in the current paper can be adapted directly to compare the two versions of k-differentials. We leave the
details to the interested reader.

Outline of the paper

In Section 2 we give the basic definitions of logarithmic rubber maps, and in Section 3 we do the same
for generalized multi-scale differentials. In the somewhat technical Section 4, we describe the underlying
algebraic stack that comes from the logarithmic definition in Section 2, which will be essential for what
follows. Section 5 is the technical heart of our comparison theorem, where we show how to construct a
multi-scale differential from a logarithmic one, and vice versa. In Section 6 we discuss several constructions
of the universal line bundle class 7 that appears in the Hodge DR conjecture and prove the conjecture in
the case of k = 0. In Section 7 we describe some of the moduli spaces concerned via blowup constructions.
Finally, the sign conventions generally adopted in the logarithmic and multi-scale worlds are unfortunately
opposite to one another; in the appendix we explain a small variation on the logarithmic definitions which
makes the signs match.
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2. Logarithmic rubber maps

In the following we recall the relevant notions from logarithmic geometry that are needed to define
logarithmic rubber maps and make the comparison to the space of generalized multi-scale differentials.
Instead of a broader introduction, we focus on the precise parts of the theory that are needed. We refer the
reader to [Kat89b, Ogul8] for a more detailed treatment of the basic notions of log geometry, and mention
more specialized references where appropriate later in the text.
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2.1. Overview of log divisors

A log scheme is a pair
(2.1) (B,a: Mg — Op),

where B is a scheme, Mg is a sheaf of monoids on B, and « is a map of monoids, where O is equipped with
the multiplicative monoid structure, and where we assume that a induces an isomorphism a‘l(OE) — Oj.
We write Mp := Mp/a~1(O}); this is called the ghost sheaf or characteristic sheaf. We write the monoid
operation on Mp as multiplication, and that on My as addition. Recall that a monoid M is called saturated
if the natural map M — ME8P to its groupification is injective, and if, for every n € Z,; and g € M8P with
ng € M, we have g € M. A log structure is called saturated if all its stalks are saturated. We work throughout
only with fine saturated log structures (log structures admitting charts; see [Ogul8, Section IIL.1.2] by finitely
generated saturated monoids).
If peI'(B, Mgp), then the preimage of 8 in the short exact sequence

(2.2) 1— 05— MP — M — 1

is a G,,-torsor, which we denote by O;(f). We write Op(f) for the associated line bundle (see the appendix
for our sign convention here).

Following [Kat00], the formal definition of a log curve is a morphism of log schemes® 77: X — B that is
proper, saturated, log smooth, and has geometric fibers which are reduced and of pure dimension 1. This
definition is rarely important to us, so rather than explicating the terms involved, we present a crucial
structure result (to be found in [Kat00, Section 1.8]). If 7: X — B is a log curve, then the underlying map of
schemes is a prestable curve, and if x is a geometric point of X mapping to a geometric point b of B, then
exactly one of the following three cases holds:

(1) x is a smooth point of X, and the natural map MB’b — MX,,C is an isomorphism;

(2) x is a smooth point of X, and MX,x x~ mB,b @ IN with the natural map MB,b - Mx,x corresponding to
the inclusion of the first summand (in this case we say x is a marked point, and we choose a total
ordering on our markings to be compatible with the standard definition of marked prestable curves);

(3) x is not a smooth point of the fiber X (i.e. x is a node), and there exist a unique element o, € MB,;,
and an isomorphism

(2.3) My x = {(u,v) € Méb such that 6, divides u — v}.

We warn the reader that the ghost sheaf My does ot fully determine the log structure; the units contain
important additional information.

We write M for the fibered category over LogSch whose objects are log curves X/B, with the projection
taking X/B to B. This is representable by an algebraic stack with log structure, see [GSI3, Appendix A],
generalizing the construction of [Kat00] in the stable case. As shown in those references, the underlying
algebraic stack of 11 is naturally isomorphic to the stack of prestable curves. The stack N1 naturally contains
all ﬂg,n as open substacks, by equipping a stable curve X/B with its basic log structure (see [Kat00, GS13]),
equivalently, with the log structure coming from the boundary divisor.

Given a log scheme, we define

Gy P(B) = T(B,Mg),

which we call the tropical multiplicative group. It can naturally be extended to a presheaf G:;?E on the
category LogSchy of log schemes over B, and admits a log smooth cover by log schemes (with subdivision

[IP'/G,,]); see [MW20, Section 4.1].

(6)The reader concerned about the case g =1, n=0 should rather take log algebraic spaces.
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Definition 2.1. We define Rub as the stack in groupoids over MM, with objects being tuples
(T(: X =B, B: X—>G:fg)
with X/B a log curve, satisfying two conditions on each strict geometric fiber:

(1) The image of f is fiberwise totally ordered,”) with largest element 0.
(2) Writing R for the stack obtained from Gy P by subdividing at the image of §, we require that the
fiber product X x B,GIeP R is a log curve.

The morphisms are defined by pullback.

Over a given geometric point of B, write N + 1 for the cardinality of the image of f; since the latter
is totally ordered, there is a unique isomorphism 7 of totally ordered sets between the image of f and
{0,—1,...,—N}. The composition

(2.4) {:=710p
is then called the normalized level function associated with .

Remark 2.2. This definition will be unpacked in Section 2.3, but for now we make a couple of remarks on
how it differs from that given in Marcus-Wise [MW20]. Firstly, they declare the image of  to have smallest
element 0; this makes no material difference, and the reason for our choice of conventions is explained in
the appendix.

More significantly, condition (2) is not stated by Marcus and Wise. However, it is assumed, for example
in datum (R1) in Section 5.5 of their paper. Most of their results go through without this condition, but it
is necessary for making a connection to the spaces of rubber maps of Li, Graber-Vakil, etc., and is also
necessary for the comparison results in the present paper.

In fact, dropping condition (2) (and thus passing to the space of Marcus and Wise) is exactly the same
as taking the coarse moduli space of Rub relative to M. We write Rub™" for this space. Combining
Theorem 4.3.2 and Proposition 5.1.2 of [MW20] shows that the space RubM" is an algebraic space over
the relative Picard stack over N1. However, because the line bundle O(f) is canonically trivial along the

bMW

locus where f takes value 0, the map from Ru to the relative Picard stack factors via the relative Picard

space, so that RubMW is an algebraic space over . On the other hand, Rub — Rub™" is a root stack

(see the proof of Lemma 2.4 for more details), and so the relative coarse space of Rub is exactly RubM%W.

Theorem 2.3 (¢f [MW20]). The category Rub is a log algebraic stack locally of finite presentation.

Marcus and Wise prove this in the absence of condition (2) above, but imposing this condition simply
corresponds to a root stack construction, and does not affect the result. One benefit of imposing condition (2)
is the following theorem, which did not hold for the version of Rub considered by Marcus and Wise.

Theorem 2.4. The algebraic stack Rub is smooth.

The proof of Lemma 2.4 will be given in Section 4.3.
Given f € Mip(x ), then taking the preimage in the standard exact sequence (2.2) applied to X yields the
line bundle Ox (); in other words, it yields an Abel-Jacobi map
aj: Rub — DPic

to the Picard stack of the universal curve over M (the stack of pairs (X/B,F), where X/B is a log curve
and F is a line bundle on X). One of the main results of [MW20] is that the composite of this Abel-Jacobi
map with the forgetful map Pic — Pic to the relative Picard space is proper.

(7YHere we mean that for any two elements in the image of f, one of their differences is contained in Mp.
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Definition 2.5. Write 7 for the locally constant function on N1 giving the number of markings. Then there
is an outgoing slopes map
Rub — Z"

sending a point (X/B, ) to the outgoing slopes of §, i.e. the values of § in the groupifications of the stalks
MX/B(zi) := My (z;)/Mp(7(z;)) = N at the markings.

Given a tuple p = (my,...,m,) of integers, we define Rub, to be the open-and-closed substack of Rub
where the log curve has n markings and the outgoing slopes are given by .

Note that the forgetful map from Rub, to the locus in N where the curves carry exactly n markings
is birational (it is an isomorphism over the locus of smooth curves); in particular, if we fix a genus and a
number of markings, then Rub, is connected.

Writing d := ) !, m;, the image of Rub u under the Abel-Jacobi map aj lands in the connected component

Pic? of Pic consisting of line bundles of (total) degree d.

Remark 2.6. In fact one can show that the map Rub, — N is not only birational onto the locus in M with
n markings but also log étale. This is a type of map basically consisting of an iterated blowup of boundary

strata, followed by root constructions(®)

on some of these strata, and then followed by taking an étale map.
For the details, we refer the reader e.g. to the paper [HMP*25], where such morphisms are used extensively.
An important point there is that they can be described uniquely by an (incomplete) subdivision of the
tropicalization of 1. While again we do not explain the details, one consequence is that one can obtain a
smooth local model of the morphism Rub,, — M1 by the toric map induced via some explicit subdivision of
a cone.

In Figure 1 we use this to illustrate the importance of condition (2) in Lemma 2.1. For this, consider a
point of 1T where the curve has genus zero and the stable graph I' has three vertices and two edges ej,e; as
illustrated. Assume that each vertex carries one marking and that y is chosen so that the unique slopes of a
piecewise linear function on the edges are 1,2 for eq, e, (see Lemma 2.10 for a discussion of piecewise linear
functions).

Then the tropicalization of M contains a cone o = IRiO parameterizing the ways of putting lengths ¢4, ¢,
on the two edges. Depending on which of the quantitie_s {1 or 2¢, is greater, a piecewise linear function
on I' with the given slopes will take a larger value on either v, or v;. Then the smooth local picture of
Rub, — M is given by the map of toric varieties associated to the subdivision of or along the ray spanned
by (€1,62) =(2,1).

However, there is a subtlety: for the standard integral structure (black dots), the upper cone is simplicial,
but not smooth. Indeed, the primitive generators (0,1), (2,1) of its rays form a rational basis, but
not an integral basis. Hence, the toric variety associated to this cone has a singularity, which would
contradict Lemma 2.4. And indeed, this is precisely what happens for the variant of Rub defined by omitting
condition (2) from Lemma 2.1. Putting this condition forces us to adjoin the element ¢;/2 to the dual of the
lattice on the upper cone. Correspondingly, on that upper cone we take the sublattice of all points (£1,¢;)
with £ an even integer (depicted by circled dots).") Then the new ray generators are (0,1/2), (1,1/2), which
indeed form a basis of the integral structure Z @ (1/2)Z, so that Rub is smooth as claimed.

2.2. Logarithmic rubber differentials

The stack Rub is in some sense the universal space of logarithmic rubber maps. In this section we
specialize to the case of logarithmic rubber differentials. For this we fix g, n and write X, ,/M, , for

(®We cannot assume that the degrees of these roots are invertible in the base ring, so this map should probably not be considered
to be log étale outside of characteristic zero (though conventions in the literature differ).
(")Note that in contrast to the toric situation, not all cones in the tropicalization of Rub lie in the same ambient vector space

with integral structure, so that it is possible to change this integral structure on different cones of the tropicalization.
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Figure 1. Subdivision associated to the drawn stable graph, with slope 1 at edge e; (of length ¢;)
and slope 2 at edge e, (of length ¢5).

the universal curve, with markings z = (zy,...,2,). Fix a tuple y = (my,...,m,) of integers such that
d=7Y 7" ,m; =2¢—2. We define a line bundle on the universal curve Xg,n over M, , by the formula

7

n
L= ,C” = ng,n/Mg,n[_Zmizi
i=1

where w = Wy, /M is the relative dualizing sheaf of X, , — ﬂg,n. Then £ induces a morphism

&n

Qr: ﬂg,n — Pic.
Definition 2.7. We define the space of logarithmic rubber differentials to be
(2.5) Rub  := Rubg Xpic, o, Mg .

Remark 2.8. If we had taken the fiber product over the relative Picard space (instead of the Picard stack), we
would have obtained the projectivized space IP(Rub/). This is the approach taken in [MW20, BHP*23], as
the space IP(Rub) is what is needed for the study of the double ramification cycle.

Remark 2.9. There are two equivalent descriptions of the rubber differential space as

Rllb[ = Rubg XDit,(pg ﬂg,n = Rubﬂ Xpifl(pw mg,n'

2.3. Local description

In what follows we will make the definition of the space Rub more explicit for log curves over ‘sufficiently
small’ bases, more precisely, for nuclear log curves as defined in [HMOP23]. This is a slight refinement of
asking for the base to be atomic (in the sense of [AW18]), and is needed because a log curve even over a
point does not have a well-defined dual graph unless the residue field is sufficiently large. We omit the details
of the definition of a nuclear log curve, mentioning only the key properties we use:

(10) gtale cover

(1) For any family of log curves X/B with B locally of finite type, there exists a strict
| l;c; Bi — B such that each X xg B; — Bj; is nuclear.

(2) For X/B a nuclear log curve and for any b € B, the curve X; has a well-defined dual graph I}, with
edges labelled by non-zero elements of My ;,; we denote the label (also called length) of e by &,; this

was denoted by 0, in (2.3). If 0, € Mg(B) is a lift of 9,, then a(0,) € Og(B) is a smoothing parameter

(10)a map f: X — Y of log schemes is strict if the log structure on X is the pullback of the log structure on Y. In particular, the

strict étale topology on log schemes reflects very closely the usual étale topology on schemes.
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for e, in the sense that X can be described locally around the corresponding point by an equation
uv = a(5)). The stalk of My at the corresponding node g of the fiber over b € B is given by

(2.6) My q = {(4,v) € Mg, ® Mg, such that 5, | (u - v)}.

(3) For X/B nuclear, the base B has a unique closed stratum,!)) and, for any b in that closed stratum, the
restriction gives an isomorphism I'(B, Mp) = MB,;,.

(4) If X/B is nuclear and b, b’ € B, with b in the closed stratum, there is a natural identification (of
labelled graphs) of I}, with the graph obtained from I}, by mapping every label to M ;, and then
contracting all edges that are labelled by 0. We often abuse notation by writing Mg := Mg, (for b in
the closed stratum) in place of I'(B,Mg). We often write T for the graph over any point in the closed

stratum, which comes with an Mg-metric.
If B is the spectrum of a noetherian strictly Henselian local ring with atomic log structure (for example, if B
is the spectrum of a separably closed field), then by [HMOP23, Lemma 3.40] any log curve X/B is nuclear.

Let X/B be a nuclear log curve. Let b € B be a point in the closed stratum, with associated dual graph I
with vertex set V = V(T'), set of half-edges H = H(T') (including legs), and set of non-leg half-edges H' = H'(T').

Definition 2.10. A piecewise linear (PL) function on X/B is an element of r(x,ﬂi").
A combinatorial PL function on X/B consists of the data:
(1) a function B’: V(I') — M%f’b (the values on the vertices), and
(2) a function x: H'(T) — Z (the slopes on the non-leg'?) half-edges)

such that if h; and h, are half-edges forming an edge e, with h; attached to vertex v;, we have

k(hy)0, = B'(v2)—B'(v1)

(so that in particular x(hy)+x(h,) = 0). Edges of I' with slope zero (that is, where both half-edges have slope
zero) are called horizontal; all the other edges of I are called vertical.

We want to show that these two types of PL functions are in natural bijection. First, we construct a
combinatorial PL function from any PL function. At generic points # of X}, there is a natural isomorphism
MB,b = MX,W’ so the section f§ € HO(X, M)g(p) determines a function B’: V — Mlg;,pb' To complete the definition
of x, we first show the following.

Lemma 2.11. If hy and h, are half-edges forming an edge e, with h; attached to vertex v;, then for the function
B’ constructed from B as above, the value p’(v,) — p’(vy) is an integer multiple of O,.

Proof. This follows from (2.6) and the fact that the images of f under the two projections to M%{Db are exactly
given by f’(v1) and B’(v,). O

In the notation of Lemma 2.11, we can then define

2.7) K(hy) = /3'(”2)5—/5'(7/1)

(which is unique because Mg, is torsion-free). This accomplishes one direction of the following lemma.

Lemma 2.12. The above construction induces a bijection between the set of PL functions and the set of combinatorial
PL functions.

(u)Every log scheme comes with a decomposition into locally closed subschemes (called strata), where the ghost sheaf is locally
constant.
(2)1n this paper we do not include slopes on the legs, as we are interested only in the case where these slopes are equal to 0

(since we work throughout with Rubg). Recall that, as discussed in Lemma 2.9, we have moved the data of the zeros and poles into

the line bundle l:l"' N
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Proof. Let f’ be a combinatorial PL function; we build a PL function f giving the inverse image of 8’ under
the construction above. If x is a smooth point of X}, then Mx,x = Mg,b, and we define the value of § at x
to be p’(v), where v corresponds to the irreducible component of X, containing x. The presentation (2.6)
makes it clear that there is a unique way to extend this section to all non-smooth points x € Xj,. For any
other point b’ € B, the combinatorial PL function can naturally be transferred (using property (4) of the
definition of a nuclear log curve) to the fiber X;/, and we repeat the above argument to give a PL function
on X . These then fit together to define a global PL function on X/B. O

Our concrete local description of Rub is now given by the next proposition.

Proposition 2.13. For X/B nuclear and b € B in the closed stratum, let V be the vertex set of the associated
dual graph of b. Then there is a natural bijection between the set of X/B-points of Ruby (i.e. the set of maps
B — Ruby lying over X/B) and the set of maps

(2.8) BV — Mg,

satisfying the following conditions:

(1) The divisibility condition o, | p’(v,) — B’(v1) holds at every edge e in I}, connecting vertices v, v, € V.
(2) The image of B’ is a totally ordered subset of M%{Jb with largest element being 0.

(3) For every edge e connecting vertices vy and v,, with slope x, (defined as the absolute value of (2.7)), and
y=B'(v1)

for every y € Image(p’) with p'(vy) <y < p(vy), the monoid My, contains the element —.

Proof. Conditions (1) and (2) are translations of point (1) of Lemma 2.1. Condition (3) corresponds to point (2)
of Lemma 2.1, as explained in [BHP*23, Section 6.2]. ]

Remark 2.14. If B{ and ) are combinatorial PL functions with the same slopes «,, then there exists an
element c € M%f’b such that /5{ = [5; + ¢. In the definition of Rub, we restrict to PL functions whose values
are totally ordered and take maximum value 0, and such functions are completely determined by the values
of their slopes «.

We would like to characterize in a similar spirit when a point of Rub lifts to Rub,. More concretely, this
means describing explicitly the line bundle Ox(f) associated to a PL function. The next lemma describes
the restriction of Ox(p) to the irreducible components of the curve Xj (in the case where  comes from
Ruby, i.e. has vanishing outgoing slopes). To describe the gluing between irreducible components would
requi;e us to get into quite a few more details of log geometry, and is not necessary for what we do in this

paper.

Lemma 2.15 (¢f [RSPW19, Lemma 2.4.1]). Let Y be the normalization of an irreducible component of X,
corresponding to a vertex v. For each half-edge h attached to v, write k), for the slope (in the sense of (2.7)) and
zp € Y for the associated preimage of a node of Xy,. Then there is a canonical isomorphism

)

h

Ox(B)ly = ©Op(B'(v)) ®0, Oy

In particular, for a point (X;/b, f) of Ruby to lie in Rub, it is necessary (though not in general sufficient)
to require that, on the normalization Y of any irreducible component of X, there exists an isomorphism

zkhzh],

h

Ly = Oy

where the sum runs over all half-edges h attached to v.
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3. Generalized multi-scale differentials

We recall basic notions from [BCG*19], in order to define the groupoids GEmg,n(,u) of simple generalized
multi-scale differentials and GMS, of generalized multi-scale differentials, where p = (my,...,m,) is a tuple of
integers with sum 2¢ — 2. The adjective ‘generalized’ refers to the fact that we do not impose the global
residue condition.

3.1. Enhanced level graphs

The boundary strata of the stack of generalized multi-scale differentials are indexed by enhanced level
graphs. Such an enhanced level graph, typically denoted by T, is the dual graph of a stable curve, with legs
corresponding to the marked points, with a level structure (i.e. a weak full order, equality being permitted)
on the set of vertices V(I'), and with enhancements «,, which are non-negative integers attached to the
edges. The edges E(T) are grouped into the set of horizontal edges E"(T) joining vertices at the same level,
and the set of vertical edges EV(I'). The enhancements are required to be zero precisely for horizontal edges.
We thus may consider an enhancement as a function

k: HT)— Z

on the set of half-edges of I, assigning x, > 0 to the upper half and —«x, < 0 to the lower half of a vertical
edge, assigning zero to both halves of a horizontal edge, and letting x agree with m; at the legs of the graph.
We normalize the set of levels so that the top level is zero, and let L(I') be the set of levels below zero, usually
given by consecutive negative integers L(I') = {-1,...,—N}, where N := |L(I')|, so that we typically use the
normalized level function

(3.) ¢: V(T) —» {0,~1,...,~N).

Occasionally, we use L*(I') for the set of all levels including the zero level. In what follows we will only
consider enhancements that are admissible in the sense that the degree equality

(3.2) deg(v) := ij + Z (k,—1)— Z (1+%,)-h(v) = 2g(v)-2
jev e€E*(v) ecE~(v)
holds, where j — v means the leg of order m; is attached to the vertex v; i.e. the first sum goes over all
legs attached to v, where E*(v) (resp. E™(v)) is the set of vertical edges whose upper (resp. lower) end is the
vertex v (we often write e™ = v, resp. e~ = v, to express this adjacency), and h(v) is the number of horizontal
half-edges adjacent to v.
Enhanced level graphs come with two kinds of undegeneration maps. First, for any subset I = {iy,...,i,}

of {~1,...,—N}, there is the vertical undegeneration map 6, ; ,a map of graphs that contracts all vertical

edges except those that go from the level at or above i; + 1 to a level at or below i, for some iy € I.
Especially important among those are the two-level undegenerations 0;, which contract all vertical edges
except those that cross a level passage above i, i.e. go from a vertex at level i +1 or above to a vertex at
level i or below. Second, for S € E*(T) there is the horizontal undegeneration maps 5;51 that contract all the
horizontal edges except those in S. An undegeneration of a level graph is a composition of a vertical and a
horizontal undegeneration. Undegenerations determine the adjacency of boundary strata of the space of

multi-scale differentials.

3.2. Prong-matchings

Let (X, w) be a smooth complex curve with a meromorphic I-form. If a differential w has a zero of order
m > 0 at q € X, then there exists a local coordinate (and, in fact, there are m + 1 such choices) z on X
centered at g such that locally in this coordinate w = z""dz; similarly, for a pole of order m < -2 at g € X,
one can find a local coordinate such that w = (z" + r/z)dz. Given such a local coordinate, a (complex) prong
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is one of the 2|m + 1| vectors in TqX of the form Cj% in this local coordinate z, where C is a primitive root
of unity of order 2|m + 1|; see [BCG'19, Definition 5.4]. In what follows we will mostly care about the set
of PqOUt of outgoing prongs at the zeros of a differential, that is, the set of m + 1 prongs there where the
exponent j of {/ is even, and the set Pqinc of incoming prongs at the poles of the differential, that is, those
|m + 1| prongs there where the exponent j is odd.

Now let X be a stable curve with a node g corresponding to a vertical edge e € EV(I') where two
components of X meet, and suppose these components X; and X, come with differential forms w; and w,
having a zero and a pole, respectively, at the respective preimages q* € X; and q~ € X; of q. A (local)
prong-matching at the node q is a cyclic order-reversing bijection o,: Pqi9 - qu+ut between the incoming
prongs at ¢~ and the outgoing prongs at q™.

Now let (X, z,I', w) be a pointed stable curve with an enhanced level graph I', and let @ = (w(;));er+(r) be
a twisted differential of type yp compatible with I, possibly except for the global residue condition. Following
[BCG*18], this means a collection of meromorphic differentials w, for each vertex v, vanishing to order m;
at each of the marked points z;, vanishing to order x(h)—1 at the preimages of nodes associated to the
half-edges h € H'(I'), and such that the residues at the two sides of a horizontal node add up to zero.
Grouping objects level-wise, we denote by w;) the tuple of differentials w, for all vertices v on level .

Given a twisted differential, we have defined above local prong-matchings for each vertical edge. Packaging
such a choice for each vertical edge e € E¥(T'), we call the collection o = (0, ).cp»(r) @ global prong-matching.

There is an alternative viewpoint on prong-matchings, which can be generalized to germs of families
X — B, where a node g corresponding to an edge ¢ in the dual graph of the special fiber persists over the
base. In the normalization of the family, there are two components X* (as the edge is vertical, necessarily
X* # X7) that admit sections g* that specify the two preimages of the node q. We let

(3-3) N = (q7) wx ®(q07) wx-.

A local prong-matching (see [BCG'19, Definition 5.6]) is then a section o, of N,” such that for any pair
(v*,v7) of an incoming and an outgoing horizontal prong, the equation ¢,(v* ® v™)* =1 holds. To see the
equivalence, given 0,, we assign to v~ the prong v* given by the condition o,(v*®v~) = 1. Conversely, given
a bijection s: Pqif‘ — P;}lt of incoming and outgoing prongs, we define o, € N,” by setting 0,(p ® s(p)) = 1
for any p € Pqizl. The fact that s is order reversing implies that this o, € N,” is well defined, which justifies
using the same notation o, for both viewpoints on a prong-matching. A global prong-matching is a collection
of local prong-matchings for each persistent node (as will be defined formally in Section 3.4) in the family.
We give another reformulation that eliminates the dependence on the choice of a preferred (‘horizontal’)
direction. Let U* be neighbourhoods of the points g* in the normalization of X'. Suppose the edge e joins
level i to the lower level j. Then wy; extends uniquely to a section of wy+/p(~(k,—1)q") and wy;) to a
section of wy-/5((x, + 1)q7). Restricting these to g™ and g, respectively, yields canonical elements

T e wyyp(—(ke=1)g" )l = To ™ and T € wy (ke +1)g )y = T

(where we use the residue isomorphism for the equalities). We define

®K,
= (T o) e (Tp T, )« = N

Lemma 3.1. In the notation of the previous definition, let v* and v~ be some horizontal prongs at e. Then
(v* @V )®% e N&* is independent of the choice of prongs and of the direction to be called horizontal, and we
have

(3.4) 7, = (viev)®.
Proof. For a fixed direction, the different choices of prongs v* differ by th roots of unity, and likewise

for v~. Thus the formula for 7, implies that it does not depend on these prong choices. On the other hand,
changing the direction from horizontal to direction 6 multiplies v+ by "¢ and v~ by 729 and thus
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preserves v* ® v™. The equality is obvious, as can be seen by writing it out in any local coordinate that puts
the differentials in normal form. O

This implies that the earlier definitions of prong-matching agree with the following.

Definition 3.2. A local prong-matching is a section o, of N,/ such that o, °(7,) = 1.

3.3. Level rotation tori

To an enhanced level graph, we associate some groups and algebraic tori. The level rotation group
R = Z"T) acts on the set of all global prong-matchings, where the ith factor twists by one (i.e. multiplies o,
by ¢?7i/%¢) all prong-matchings associated to edges that cross the i level passage, a horizontal line above
level i and below level i + 1.13) The (vertical) twist group is the subgroup Twr C Rr fixing all the prong-
matchings under the above action. The level rotation group also acts (via its i component) on the set of
prong-matchings of the two-level undegenerations 0;(I'). We define the simple twist group Twy. C Twr C Ry
to be the subgroup that fixes each of the prong-matchings of each 0;(I').

Let CMT) — (C*)UD) be the universal covering of the algebraic torus (C*)X1); we identify the level rotation
group Rp € €MD) as the kernel of this covering. As a subgroup of the level rotation group, the (simple)
() and we define the level rotation torus Ty := CHT)/Twr, together with its simple
counterpart, the simple level rotation torus Ty := CL(F)/TW%. See Section 3.5 for an example when these two
tori differ.

Next we define the data that provide the model for the toroidal embedding of the boundary inside the

twist group acts on CF

space of multi-scale differentials. Since Tw}. = ®;Tw;, ) has by definition a direct sum decomposition level
by level, the simple level rotation torus comes with a natural level-wise identification Tj = (CHT), The
embedding C* < C with respect to these coordinates defines an embedding T < Tsr = CHD), We let
(3.5) a; = as,r) = ei%{(r}) Ke

be the least common multiple of the enhancements of the edges of I that persist in the two-level undegener-
ation 0;(I'). Then Twy. = ®;a,Z C Rr. Consequently, T} is a cover of the original torus (C)ED), of degree
[1; a;. Finally, we define the quotient twist group to be

(36) Kr = TWF/TW%
This group acts on T with quotient Ty. In coordinates the quotient map is given by

(3.7) . AL
(9;) — ({ritiecry APelecer () = {qi1}ieL(F)’ ]_[ g;" " ,
i=l(e”) ecE¥(T)

where g;,7;,p, denote the coordinates on the corresponding tori, and we view T C (CHD) 5 (C*)E' D) as
cut out by the equations

(3.8) Tee)  Teer)-1 = Pe’

for each e. The action of Ky on T extends to an action on the closure Tsr, and we let T? = TSF/KF, which
is the normalization of the closure of Ty C (C*)UD) x (C*)E'(1) inside CHT) x CE'(D),

All these tori come with their extended versions, denoted with an extra dot (e.g,, T7), that have an extra
C*-factor. This factor will act on differentials of all levels simultaneously by multiplying all differentials by a
common factor, and lead to the projectivized version of the corresponding quotient functor.

(3)1n this paper we index levels and all quantities indexed by them, such as t;, s;, 5; below, by negative integers, as in [BCG'19],

but contrary to several subsequent papers that use this compactification.
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3.4. Controlled families of generalized multi-scale differentials

We will now use these constructions to define families of generalized multi-scale differentials for families
X — B of curves over ‘small enough’ base schemes. The general case will then be treated by gluing. The
notion of ‘small enough’ that we will use is that of controlled curves from [BH23, Section 2.6]. This deviates
slightly from the corresponding definition in [BCG*19, Section 11], where such families are merely defined as
germs, and allows to a priori say under which morphisms our families can be pulled back without having to
pass to suitable representatives of germs.

We do not recall the definition of controlled curves in full, but recall the key properties that we will
need. If X — B is a controlled curve, then for every p € B, the fiber X, has a well-defined dual graph I,
Moreover, there exists a controlling point b € B together with smoothing parameters f, € Og(B) for every edge
e of I}, such that f, vanishes exactly on the locus of p € B where the corresponding node persists in X, and
such that the family has the local form u,v, = f, in a neighbourhood of the corresponding node. The dual
graph of X, is obtained from that of X}, by contracting exactly those e such that f,(p) = 0. The function f,
is unique up to multiplication by units in Og(B); we write [f,] € Op(B)/Og(B) for the equivalence class of
the smoothing parameter. Given any family of stable curves X — B, over a locally noetherian base, there
exists an étale cover | |; B; — B with each X’ xg B; — B; controlled (see [BH23, Lemma 2.6.9]). Our first
step is to define ‘standard’ open subsets of controlled families of curves where the collection of rescaled
differentials are defined. Let p = (my,...,m,) be a tuple of integers with ) ', m; = 2g—2. If X is a stable
n-marked curve with enhanced level graph structure on the dual graph, then for any level i, the subcurve
xlil .= X(<i)\(X(5i)Uz®™) is open in X, where X|;) is the subcurve at and below level i, X(5;) is the subcurve
above level 7, and z* is the union of those markings with m; <0.

We now fix a stable n-marked controlled curve & — B and a controlling point b € B, and suppose we are
given an enhanced level graph structure on the dual graph of X;. If p € B is another point, we have an edge
contraction [}, — I, which naturally induces on I}, the structure of an enhanced level graph (see [BCG"19,
Section 5.1 for details). In particular, the set L of levels of I}, naturally surjects onto the set L, of levels
of I';: we have [,: L, » L,. The reader may check that the following sets U; C X’ are indeed open.

Definition 3.3. Given a stable n-marked controlled curve X — B and a level i € L, we define U; C X, the
i
standard open set at level i, to be the union over all p € B of XIE”(I)].
We say that a node e is persistent in the family X if f, = 0 € Op. If the dual graph I}, has been provided
with an enhanced level graph structure, we say that a node e is semi-persistent if f,"* = 0. The notion of
prong-matchings makes sense for a persistent node g.

For our families of multi-scale differentials, we need to include an explicit choice of smoothing parame-
ters f, into our data. This can be achieved via a section of the partial compactification T; of the simple level
rotation torus. Indeed, given the coordinates (r;, p,) on the torus closure from (3.8), a morphism R*: B — Ty
determines for each vertical edge e a function f, € Op, and for each level i a function s; € Op, defined as
the compositions f, = p, o PoR® and s; = 1; o P o R®, where P: Ty — Ty is the canonical morphism. If an
edge e joins levels j < i, then by (3.8) these functions satisfy

(3.9) feKe = S] -..Si_l'

The following definition makes precise the notion that a morphism R® as above defines a compatible system
of node-smoothing parameters.

Definition 3.4. A simple rescaling ensemble is a morphism R°: B — Tsrb such that the parameters f, € Og(B)
for each vertical edge e determined by R° lie in the equivalence class [f,] determined by the family 7t: X — B.
A rescaling ensemble is a morphism R: B — T?b which arises as the composition 7w o R® for some simple
rescaling ensemble R®.
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The s; and f, will be called the rescaling parameters and smoothing parameters determined by R or R®. The
composition of R® with the coordinate projections gives functions ¢; such that s; = tfi. We refer to those t;
as the level parameters.

Recall that the adjective ‘generalized’ in the following definition refers to the fact that the global residue
condition has been dropped, compared to [BCG*19]. For an illustration of some elements of the definition,
see Figure 2. The well-definedness of the period in the following definition is checked (in any characteristic),
e.g. in [Bojl9, Lemma 1.8].

Definition 3.5. A collection of generalized rescaled differentials of type p on the stable n-pointed controlled
curve (10: X — B, z) with a controlling point b € B is a collection of sections w(;) of wy,/p defined on the
standard open subsets U; of X, indexed by the levels i € L*(T') of the enhanced level graph. The irreducible
components of X; on a level strictly below i are called vertical zeros, and those on a level strictly above i are
called vertical poles of w(;). We require the collection to satisfy the following constraints:

(1) There exist sections s; € H%(B,Op) with s;(b) = 0 such that for any levels j < i, the differentials satisfy
W(j) = Sj-++Sj_1W(j) on U;nN U]

(2) For any edge e joining levels j < i, for any p € B over which e persists, and for some (equivalently,
any) choice of functions u,, v, on X" and f, on B such that the family has local normal form u,v, = f,,
there exists a unit A in the strict Henselization) (Og[u,, v,/ (1, v, —fe))Sh

( 0 0) h th (p,0,0) of the local ring at
p:ue: l”[}e: such that

d . d
(310) a)(i) = /\M;{e te and a)(]) = —/\Ve Ke Ve'

U Ve

(3) The wy;) have order m along the sections Z of the k™™ marked point that meet the level i subcurve
of Xj; these are called horizontal zeros and poles (where Z°° records the horizontal poles). Moreover,
w(j) is holomorphic and non-zero away from its horizontal and vertical zeros and poles.

If the rescaling and smoothing parameters s;, f, for the collection w(;) agree with those of a rescaling
ensemble R® or R, we call them compatible. We denote the collection by w = (w())icre(r)-

The unit A is unique since w(;) is a generating section of w after inverting 1, and wy;) is a generating
section of w after inverting v,. We then apply the following result from commutative algebra.

Lemma 3.6. Let R be a ring, f € R, and A = R[u,v]/(uv - f). Then h: A — Alu™']x A[v™'] is injective.
Proof. Assume h(a) = 0. Any element a € A has a unique normal form
a=-ey+ciu+-+cu' +dyv+---+d,v".
Under the unique isomorphism A[u~'] — R[u,u~!] sending v to f/u, the element a is mapped to
eo+ i+t cuu+dy fut+owd, fuT

Therefore, the vanishing of the first component of / implies ey = ¢y =--- = ¢, = 0, as can be seen just by
reading off the coefficients of the R-basis {u’ : t € Z}. Similarly, the vanishing of the second component
implies dy =---=4d,, = 0. 0

Applying this to R =Opg, u = u,, v =v,, and f = f,, we first conclude that the map
OB[uerve]/(ueve - fe) - OB[uerver ue_l ]/(ueve - fe) X OB[uel Ve ve_l ]/(ueve - fe)
is injective. Localization and strict Henselization are flat. Therefore, the above injectivity is preserved.

()1n the complex analytic category, this would be the germ of a non-vanishing function around the node.
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The reader comparing with the definition in [BCG*19] will realize that there in item (2) it is required that
for any edge e joining levels j < i of I, there are functions u,,v, on X and f, on B, such that the family has
local normal form u,v, = f,, and in these coordinates

du - dv
(311) w() = (u§e+ eKerE,(j))u_: and w(j) = —(‘l}e"e—l—re,(]')) v:;

where , is the enhancement of T}, at e. The two normal forms are equivalent at least if f, ¢ # 0: Equation (3.11)
implies (3.10) by taking A =1 + 7, (j(fe/u,)"*. Conversely, given (3.10) we may change v, to a coordinate that
is in the normal form (3.11) by [BCG*19, Theorem 4.3]. The form (3.10) is the one we can directly associate
with a rubber differential; see Section 5.4.

— Ve —

Uy

B = Spec(C[[t]])

Figure 2. The underlying curve for a family of generalized rescaled differentials of type y = (4), with
neighbourhoods Uy, U_; (in red, green) and the vanishing cycle y, (in blue).

Remark 3.7. Let w be a collection of generalized rescaled differentials with a compatible rescaling ensemble R®
or R. For any non-semi-persistent edge e, denote by B, C B the vanishing locus of f,. Then there is a natural
induced prong-matching o, over B, which is determined by the choice of the rescaled differentials w(;) and
the rescaling ensemble. This prong-matching o, is defined explicitly in local coordinates by writing it as
0, = du,®dv, when restricting to the nodal locus corresponding to e, where u, and v, are as in (3.11) with f,
prescribed by the rescaling ensemble. Any two possible choices of 1, and v, are of the form a,u, and a;'v,
for some unit a, € Oy (see [BCG'19, Section 4]), so the induced prong-matching does not depend on this
choice.

We can now package everything into our main notion.

Definition 3.8. Given a controlled family of pointed stable curves (7: X' — B, z), a (controlled) family of
generalized simple multi-scale differentials of type py over B consists of the following data:

(1) the structure of an enhanced level graph on the dual graph I} of the fiber Xj;
(2) a simple rescaling ensemble R*: B — Tsrb, compatible with
(a) a collection of generalized rescaled differentials w = (w(;))ier+(r,) of type y, and
(b) a collection of prong-matchings o = (0,)ccg(r), Where o, is a section of N, over B,, the
vanishing locus of f,. If e is a non-semi-persistent node, o, is required to agree with the induced
prong-matching defined in Lemma 3.7.
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A section of the simple level rotation torus Trsb (Op), that is, a morphism &: B — st , acts on all of the
above data via
< (w(i):Rs:Ue) = (5 ‘(i & RE Ge)-
Here, for £ € Trsb(OB) mapping to ((7;)iecr(r,) (Oe)ecEr(r,)) under the quotient map (3.7), the action is defined

by
& wi) = [I_[ fe)w(i)y £ 0 = Pe0p
>i
and £~ - R® denotes the post-composition of R with the multiplication by &~1.()
An isomorphism between two controlled families of generalized simple multi-scale differentials over the same
base B and with the same controlling point b

(3.12) (n’: X — B,z T}, (R°),w’,0’) — (n: X — B,z,T},,R°, w, 0)
consists of an isomorphism ¢: X’ — X and an element & € Tlfb((’)B) such that
i) ¢ defines an isomorphism of families of pointed stable curves,
ii) the induced isomorphism of dual graphs I}’ — I}, is also an isomorphism of enhanced level graphs,

iii) the action of & sends ((R°), @', 0”) to ¢*(R°, w, 0).

Pullbacks of families of controlled generalized multi-scale differentials are defined as in [BCG'19, Sec-
tion 11.2]. This step requires some care, since the number of levels, the nodes where the prong-matching is
an induced prong-matching, and the target of the rescaling ensemble map change. With this in hand, we
can define a family of generalized multi-scale differentials over any scheme locally of finite type over C by
sheafifying the notion already defined for controlled families, using that controlled families form a base for
the étale topology in the sense of [BH23, Definition A.3]. This definition is analogous to that in [BCG*19,
Section 11.3], and can be seen as a groupoid-version of the constructions worked out in [BH23, Appendix A].

Definition 3.9. We let GEMg,n( 1) be the groupoid of families of generalized simple multi-scale differentials.

There are two variants of this definition. First, replacing Trs,, (Op) with the extended level rotation torus
TF:, (Opp) in the definition of a morphism, we obtain projectivized generalized simple multi-scale differentials.
Here the additional torus factor acts by scaling the differential on all levels simultaneously, including level 0.
These are relevant to get compact spaces. Here we compare the unprojectivized definitions and will not
elaborate further on this.

Second, there is a ‘non-simple’ variant that we need to compare to the relative coarse moduli space. The
remarks above about pullback and sheafification apply here as well.

Definition 3.10. A family of controlled generalized multi-scale differentials of type p is defined as
in Lemma 3.8, replacing (2) by a rescaling ensemble R: B — TE. A morphism of such controlled families
consists of (@, @, &) as above, except that now we allow & € Ty, (Op). We let GMS), be the resulting
groupoid of families of generalized multi-scale differentials.

Modifying Lemma 3.5 by additionally imposing the global residue condition gives a groupoid that
we denote by EM ,(p) for the simple version (Lemma 3.8) and by MS, for the non-simple version
(Lemma 3.10). We state the comparison to the objects defined in [BCG'19].

Proposition 3.11. The stack Emg,n(y) is a smooth DM-stack. The stack MS, is a stack with finite quo-
tient singularities and agrees with the normalization of the orderly blowup of the normalized incidence variety

compactification; see [BCG*19, Section 14].
(5)Most of the checks that this action is well defined are straightforward. To verify part (2) of Lemma 3.8, assume we are given

local coordinates u,v around a node associated to e € EV(I},) such that the differentials have the normal form (3.11). Then the

rescaled differential is put in the required normal form using the new coordinates = ([ ]¢s; re)Y¥eu, and 7= (e rp) "V xey,.
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The paper [BCG'19, Section 14.2] also defines a smooth stack denoted by Eﬂg,n( 1), patched locally from
quotients of stacks with a Teichmiiller marking. The full proof that this stack is isomorphic to the stack with
the same symbol defined here would require recalling the lengthy definitions of level-wise real blowup and
Teichmiiller marking from [BCG*19, Section 12]. This identification directly implies the second statement of
the proposition. The proof given here provides the main content of the proposition, the smoothness of this
stack, without using the smoothness results from [BCG*19].

Proof. Recall from [BCG'19, Section 8.1 and Theorem 10.1] that a versal deformation space B of MS,, is
given by a product B = Tﬁ x By, where TE gives a parameterization of possible rescaling ensembles R
(which have values in TE}), and where B\ parameterizes the remaining data (deformations of the components
A&, for v € V(I}) and twisted differentials on these components). In fact, this local structure is given for the
model space in [BCG*19, Section 8.1]. This model space is locally isomorphic to the Dehn space by the
plumbing construction given in [BCG*19, Theorem 10.1], and [BCG'19, Proposition 12.5] shows that every
family can locally be lifted to the Dehn space.
Consider the fiber product

E:: B XMS[A EMg,n(ﬂ) s EMg,n(V)

| |

B > MS,

We claim that B is equal to the stack quotient [T;/Kr] times the product B of the other factors. Then the
maps B — EM, (i) provide a smooth cover by spaces which are smooth themselves, which implies the
claimed smoothness of Eﬂg,n(‘u).

To show that B is equal to [TSF/KF] x By, we write down explicitly the maps B — B, where B carries a
(16)

controlled curve. For this, recall™ that a morphism to a fiber product as above is given by a triple

(B— EMg,.(n),B— B,G),
where G is a 2-isomorphism between the compositions
B— Eﬂg,n(y) — MS, and B— B—> MS,,.

Inserting the definitions of the moduli stacks, this data above is equivalent to a triple of

e a controlled family (7: X — E, z,1,,R°: B— Tsrb, w, 0) of generalized simple multi-scale differentials,

e morphisms s7: B — TEJ and sy: B — By (which together can be thought of as a morphism
(s7,50): B— TE x By = B),

e an isomorphism (X = X’, & € Ty, (Ofp)) of generalized (non-simple) multi-scale differentials, send-
ing the family (7: X — B,z,I},R,w,0) to the family (': X’ — B,z/,T}, R, w’,0’) induced by
(st,s0): B— B.

By identifying the families of curves X = X”’, we can act on the pair (st,sy) with the section & of the level
rotation torus. Replacing (st,sg) by this modified pair, we obtain a new, equivalent, triple of data, where the
isomorphism in the last bullet point is taken as the identity. But then we see that such a triple is uniquely
determined by the pair

(RS: B— T;b, so: B—> BO),

by taking s7 in the second bullet point as the composition B — Tsfb — TE and taking the data (17,2,1}, w, 0)
in the first bullet point that is determined by the non-simple generalized multi-scale differential from
(sT,809): B— B.

(6)For a reminder on fiber products of stacks, we recommend the excellent paper [Fan01].
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Above we have found that any morphism B — B can be described by a morphism (R®, s9): B — T;b x By.
Two such morphisms are 2-isomorphic if they can be related by compatible isomorphisms for the stacks B
and EM, ,,(p) in the fiber product. Since B is a scheme, the only such isomorphisms come from sections
&:B— Trsb leaving the underlying non-simple generalized multi-scale differential fixed. These are exactly
identified with sections &: B — Kr,, which act in a natural way on the first morphism R®: B— T;b. Since B

is connected, the section & is necessarily constant, so that we have identified”)
Mor (B,B) = Mor(B, Ty, x By)/Kr = Mor (B,[Ty,/Kr]x By).

This proves the isomorphism B = [TE}/KF] x By. Since both the quotient stack [TE}/KF] and By are smooth,
this finishes the proof. U

Proof of Lemma 1.7, second part. Assuming the first part of the theorem, the proof of the second part is
completed by showing that the map GEmg,n( #) = GMS,, is the relative coarse moduli space over Mg,n.
First, we observe that the map GMS, — ﬂg,n is representable. Indeed, the stabilizers (¢, @, &) of a family
of generalized multi-scale differentials lying over the identity morphism ¢ =idg, ¢ =idy of the underlying
stable curves are those & € Ty, (Op) fixing both the differentials w and the prong-matchings o. By the
definition of the level rotation torus, this forces & to be trivial, so that indeed the stabilizers of GMS u inject
to the stabilizers of ﬂg,n.
By the definition of the relative coarse space, we then have a factorization

GEMy (1) — GEMy , (1)°2"° — GMS,,,

and we show that the second map is an isomorphism. For this, let B — GMS u be associated to a controlled
family of generalized multi-scale differentials. Then we have a commutative diagram, where we define the
diagrams on the right to be cartesian:

[be/Kl“] - GEMg,n(P‘)B EE— GEMg,n(,”)
GEMg ()5 —— GEMg ,(p
B

> GMS,

)coarse

—=h
Ty, < R

For the family B — QMSP given by a tuple (: X — B,z,[};,,R,w,0) and a map s: B— B, we claim that

after we shrink B in the étale topology, the morphisms B— GEMg,n( #)p lying over s are precisely given by
the data of

(3.13) R: B—> T;b such that (T;b — TE) oR®’ = Ros

with the automorphisms of this data described by the (necessarily locally constant) sections &: B— Ky,. To

(18)

see this, one repeats the analysis of the stacky fiber product from Lemma 3.11 for GEmg,n( )" From this

description, we see that GEﬂg,n(y)B is also the fiber product of B with the map [TEJ/KF] — Tﬁ, so that

the dotted arrow on the top left makes the left diagram cartesian.

(7)For the second equality below, we use that for a finite group K acting on a scheme T, the morphisms B — [T/K] can be
identified with the groupoid (B— TY/K, perhaps after replacing Eby an étale cover, which is harmless for the argument. This itself
uses the definition of the quotient stack together with the fact that all K-torsors over a scheme B as above are étale-locally trivial.

(8)n that proof we did use the normal form B = T?b x B to split the map s: B — B as (sT,50), where s = Ros. However,
the only place where this was actually used was in observing that the data (s = (sT,sg), R®) satisfying the condition in (3.13) is
equivalent to (R®,sq) by setting sT = (T;b - Tﬁ) o RS,
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To conclude, we first note that by [AOVI1], Proposition 3.4] the space GEﬂgln([/t)%oarse, which was
defined as a fiber product, is in fact a relative coarse space for GEmg,n( M)p over Mg,n. But since the map

GEmg,n( H)p — ﬂg,n factors through the representable map B — M, ,, the space GEM, ,,(1)5>*" is also

g1
a coarse space of GEM, ,(p)p over B, by an application of Lemma 3.12 below to X' = GEM, ,, (1), V' = B,
and ) = ﬂg,n.

On the other hand, since T;b is the coarse space of [T;b/Kr] (over Spec(C)), applying [AOV1], Propo-

sition 3.4] again shows that B itself is the coarse space of GEM, ,(u)p. This proves that the map

GEM, ,(1)5°*"*¢ — B is an isomorphism. Since we prove this for any B — gMS,, we conclude that

GEMy ,(p)02¢ — gMS, is an isomorphism, as desired. O

Lemma 3.12. Consider a sequence of morphisms X — Y’ — Y of algebraic stacks, locally of finite presentation,
and assume the relative inertia I(X/Y) — X is finite. Then if )’ — Y is representable, the relative coarse space
xeoarseY of X oper ) is isomorphic to the relative coarse space Jcoarse, V! of X over))’.

Proof. Consider the solid diagram of morphisms

X s Xcoarse,y’ s y/

| Ak

X s Xcoarse,y ; y

Then by the properties of relative coarse spaces (see [AOVI1], Theorem 3.1(2)]), there exists a morphism f
as above, since X'°°"%®Y is initial among factorizations of X — ) via a representable map. But then the
induced map A°°2¢Y — )’ via f is representable, so by the same universal property we obtain the map g,
and one verifies that f, g are inverse isomorphisms. O

Remark 3.13. In practice it is often relevant to determine the number of projectivized multi-scale differentials
on a given pointed curve with twisted differential (X, z,I', w). By the definition of the above equivalence
relation, this is the number of prong-matching equivalence classes, i.e. the number of orbits of the set of global
prong-matchings under the action of the level rotation group Rr. Determining this number is complicated in
general, but, for a two-level graph with prongs «1,..., ks, there are [ [ x;/lcm(x;) prong-matching equivalence
classes.

3.5. Quotient twist group and rescaling ensembles in a worked example

Consider the triangle graph I' with three levels, each containing one vertex, and three edges forming a
triangle, as illustrated in Figure 3 (to which we also refer for the labelling of the edges). For simplicity we

X0) X0)
K1 K3 K1
K3
X(-1) K3 X(-1)
K2 K2
X(-2) X(-2)

Figure 3. The triangle graph (the generic fiber X, left) and its subdivision (the special fiber X}, right)
where the extra vertex stands for a semistable rational component.

restrict to the case k1 =1 =« and x3 = 7. In this case the simple twist group is Twy. = nZ ® nZ. The full
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twist group is generated by the simple twist group and the element (1,—1). In particular, we note that the
quotient twist group is

(3.14) Ky = Twp/Tw}. = Z/nZ.

To work explicitly with invariants, we specialize to the case n = 3 in what follows.
The simple level rotation torus is isomorphic to (C*)?, hence T? =~ C?, and a morphism R¥: B — T; is
given by two functions (t_;,t_;). Consequently,

{(5—1,5—2xf1;f2;f3)3f11 =s.,fy =sa.f; = 5—15—2}
{(fhfs): F = AR}

Tr = Ty/Kr

where s | = fj =1, 5 ,=f,=t>,,and f3 =t_1t_,. In this case the rescaling ensemble R induced by R® is
=S =S
given by the composition of R® with the quotient map T — T/Kr, and has coordinates

(5—1IS—21f1:f2:f3) = (til; tfz; till tiz, t_q t_z).

Let w = (wg, w_1,w_,) be a twisted differential on some pointed stable automorphism-free curve (X, z)
compatible with the T' discussed here. By plumbing (see [BCG*19, Section 12]), we get a family of curves
X - T? with an underlying collection of rescaled differentials

W) = Wo, W(-1) = S_1W-_1, W2 = S_15W_)

and the rescaling ensemble R.1¥)

To summarize: near (X, z,I', w) as above, QMS” = MSH, since there are no global residue conditions; both
Sunctors are representable by an algebraic variety; this algebraic variety is singular with a quotient singularity given
by the group Kr.

Finally, we remark that as illustrated in Figure 3, a geometric way to think of the [IP!/G,,] subdivision is
to modify the definition of level graphs by eliminating all long edges (i.e. edges crossing more than one level
passage), and instead inserting semistable rational vertices at each level crossed by a long edge, with the
same number of prongs. Then the corresponding twist group, level rotation torus, and rescaling ensemble
have only their ‘simple’ versions. To see this concretely, suppose uv = f is the local model of a node
corresponding to a long edge crossing k level passages, where f* =s; r---5;_1 as in (3.9). Introduce new
parameters u;,vj, f; for i —k < j <i—1 satisfying u;v; = f;, ij =sj, vjuj_1 =1, uj_y = u, and v; = v.
Then v; and u;_; are coordinates on the inserted semistable rational vertex at each intermediate level j that
can subdivide the long edge into k short edges, where the differential on the semistable rational vertex is
u]’-{_l(du]-_l/uj_l) = —v]-_K(dvj/v]-) and the number of prongs at each node in the inserted semistable rational
curves remains equal to k.

A logarithmic version of this construction (the replacement of an edge crossing k levels by a chain of k-1
projective lines) can be described in terms of the divided tropical lines of [MW20]. We will not use this in
what follows, but we give a brief sketch. The PL function f with maximum value O can be seen as a map
from X to the ‘tropical line’ [IP!/G,,]. Write P for the subfunctor of Homy ggscn(— [IP'/G,,]) consisting of
log maps to [IP!/G,,] such that the images of the vertices of X form a totally ordered set in the characteristic
monoid. Then P — [IP!/G,,] is a quotient by G,, of a contraction map from a chain of rational curves to a
single rational curve. The fiber product X x|pi/g, | P is then the ‘divided’ curve constructed above, all of
whose edges cross at most one level.

1 fact, replacing the initial datum w by the universal equisingular deformation inside the appropriate stratum of differentials

and taking as new base T{l times the base of the equisingular deformation, we obtain the universal family.
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4. The underlying algebraic stack of Rub

The category Rub is naturally fibered over LogSch. Our goal in this section is to understand its
underlying algebraic stack (a fibered category over Sch). We use the notion of minimal log structures from
[Gill2] and [Wisl6, Appendix B]. We describe here the minimal log structures on points of Rub, as a variation
on the description of the minimal log structures on Div given in the proof of [MW20, Theorem 4.2.4].

Throughout this section we work with Ruby in place of Rub, as it is notationally slightly simpler, and fits
better with what we do in the rest of the pape;. The interested reader will check that the results go through
essentially unchanged for Rub.

4.1. Brief recap on minimal log structures

This is taken from [Wisl6, Appendix B|, based on [Gill2]. The purpose of minimal log structures is to
understand how to pass from a category fibered in groupoids (CFG) X over LogSch to a CFG over Sch.
The wide subcategory of LogSch with morphisms the strict morphisms is a CFG over Sch, so one could
just take the corresponding wide subcategory of X and composite. However, this is the ‘wrong’ way to
extract the underlying CFG of X over Sch. For an elementary example, let X := (pt,IN?) be a point with log
structure IN2, Then there are very many maps from Y := (pt,IN) to X: one can choose both the underlying
monoid map IN?> — IN and the lift to the log structure giving a C* parameter. Hence if we take the CFG over
LogSch associated to X and view it as a CFG over Sch via taking strict morphisms and then the forgetful

functor, we will get a very large and complicated object,*)

when what we really wanted was a point!
However, given a map T — pt of schemes, there exist a unique log structure M on T and a morphism
(T,M) — X = (pt,IN?) such that any other log morphism (T,M’) — X factors through (T,M) — X.
Namely, M is simply the pullback of the log structure IN> on pt under T — pt. Such a log structure is called
minimal, and if we take the full subcategory of log schemes over X given by minimal objects, then view it as
a CFG over Sch via the forgetful functor, we recover exactly what we wanted, namely a point.
In the next two subsections, we will apply the same machinery to the CFG Rubg over LogSch. An object

(X/B, B) of Ruby is called minimal if every solid diagram in Rubgy
(X"/B’,B') > (X/B,B),

(1) ~_ o

(XI//BN’ ﬁ”)

with the induced maps B’ — B and B’ — B” on underlying schemes being isomorphisms, admits a unique
dashed arrow.

Gillam’s results imply that the full subcategory of Rub consisting of minimal objects, together with its
natural forgetful functor to Sch, is (equivalent to) the unaerlying algebraic stack of Ruby. Thus, objects
are those log points of Rub( for which the log structure is minimal, and morphisms are simply the usual
morphisms of log objects. -

As such, if we want to understand the relative inertia of Rub, over 111, we need to understand not only
the minimal objects and their morphisms, but also all possible ways of equipping a schematic object of Ruby
with minimal log structure. -

Remark 4.1. A warning: suppose that one starts with a CFG over LogSch which is equivalent to a category
fibered in setoids (CFS), and which has enough minimal objects. It is then representable by an algebraic stack
with log structure, but this need not be equivalent to a category fibered in setoids over schemes (in other
words, it can still have non-trivial stacky structure). The most elementary example of this is perhaps the

(20)For example, the fiber over pt € Sch is the category of pairs of a log structure M on pt and an associated log morphism
(pt, M) — X.



Moduli of logarithmic and multi-scale differentials 27

subdivision of Gy, " at 0, which is certainly a category fibered in setoids over LogSch, but whose underlying
algebraic stack is [IP!/G,,]. This is because a given schematic point can admit two (or more) different
minimal log structures, which can have several isomorphisms between them even if we have a CFS over
LogSch; the fiber over any given log scheme can still have no non-trivial automorphisms.

4.2. Minimal log structures for Rub,

Let (X/B, B) be a point of Ruby with X/B nuclear, where Mg is the sheaf of monoids on B. Recall that
from this family and any b € B, we obtain

the stable graph I' describing the shape of Xj;
the length maps 6: E(I') — Mg ;,, which we extend to a monoid homomorphism

6: IN(E(T)) — Mp;

the value map g: V(I') —» M%E)b at vertices, whose image is totally ordered, inducing the level map

: V(I)— {0,-1,...,-N} = {0} L L(T);

the slopes x: H(I') — Z at half-edges, where, given an edge e € E(T') consisting of half-edges h,h’,
we set k, = |x(h)| =|—x(h’)| and denote by EV = {e € E(T) : k, > 0} the set of vertical edges and by
E" ={e € E(T): k), = 0} the set of horizontal edges.

For i € L(T'), we define with (3.5)

a; = lem, x,,

where the lcm runs over the set of all edges e such that £(e7) <i < €(e*) (we say such an edge e crosses
level ). We let P := IN(p_1,...,p_n) be the free monoid on N = |L(T')| generators. Then we can define a
map g: EY — P by

a;
—Di
Kep ’

14
(4.2) gle):= )

(e")-1
i=C(e”)

and extend this map additively to a map g: IN(E?) — P. Finally, we let
0; = B(v;) = B(vi_1) € Mg,

where v; is any vertex of level i.

Lemma 4.2. The difference o; is divisible by a; in MB,;,.

Proof. Showing that o; is divisible by a; is exactly equivalent to showing that it is divisible by «, for every
edge e crossing level i (since we work with saturated monoids, if an element is divisible by two integers, then
it is also divisible by their least common multiple). But this is exactly condition (3) in Lemma 2.13. U

Set T; := 0;/a; € MB,,, (noting that division in MBJ, is unique since MB,b is sharp, integral, and saturated),
and define a monoid homomorphism

(4.3) P P— MB’b, Y:pi— ;.

Lemma 4.3. The triangle

(4.4) X llp

commutes.
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Proof. We compute

(4.5 vigle)) = sb[Z%pi] =Y Ga= =Y o= (B ) = b

where the last equality comes from the fact that § is a PL function. g
Definition 4.4. We say (X/B, p) for B nuclear is basic if the natural map

Y ®O|ph: ?@]N<Eh> —>MB,b
is an isomorphism. In general we say a point of Ruby is basic if it is so on a nuclear cover.

Our motivation for introducing this definition lies in Lemma 4.6. The intuition behind the definition is
that MB,b is precisely big enough to contain the elements that are necessary to accommodate the images
of the maps 0, the differences of images of 5, and roots of these differences whose existence is required by
condition (3) in Lemma 2.13.

Lemma 4.5. Every point of Rubg comes with a map to a basic object.
Proof. For (X/B, B) a nuclear point of Ruby, we define a sheaf of monoids P on B as the fiber product
(4.6) P = (P N(E")) xy, M.

This P comes with a map P — Op, namely the composition of the projection to the second factor Mg and
the old log structure map Mg — Op, making it into a log structure.

This uses that, for any nuclear point (X/B, ), the map 1 @ 9|gn from the definition above satisfies that
the preimage of 0 € Mpis 0 € F®N<Eh>. From this it also follows that, at any point b in the closed stratum

of B, the stalk at b of the ghost sheaf P of P is given by

P, = PoN(E").
Now we make (B, P) into a point of Ruby: we take the underlying family X/B of curves, and equip X with a
log structure making it a log curve over (B, P) with length map

l(et)-1 g ) ;
5 P i - %P0 for e E?,
o: E(r) B P®N<Eh>, e —> (leg(e ) Kepl or
(0,e) for e € EN.

With this we obtain a family of log curves (X/(B, P)). Using Lemma 2.13 we then lift to a (B, P)-point of
Rub by specifying the combinatorial PL function

-1
(4.7) B: V() — (PeN(EM)™, vim- ) ajp;
j=t)
The construction gives a map from (X/B, f) to this basic object (B, P) — Ruby. O

Lemma 4.6. The Rub-point (X/B, p) is basic if and only if it is minimal.

Proof. Our proof mimics closely that of [MW20, Theorem 4.2.4]. To show that basic objects are minimal,
consider a diagram as in (4.1); the problem comes down to showing there is a unique dashed arrow making
the diagram

Mg < PoIN(E")

(4.8) \
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commute. The existence of this arrow comes from the fact that we can apply the same formula (4.3) to define
the map, and the arrow is unique since the image of IN(E) has finite index in P 691N<Eh>, and division is
unique in sharp, integral, saturated monoids. Conversely, applying (4.3) shows that every minimal monoid
admits a map from one which is basic (and hence minimal), and the definition of minimality furnishes an
inverse to this map. il

Definition 4.7. Let Rub'g be the full subcategory of Ruby whose objects have minimal log structure, viewed
as a fibered category over Sch via forgetting the log structure and the curve.

As explained in Section 4.1, Gillam’s minimality machinery immediately yields the main theorem of this
section, slightly refining the results of [MW20].

Theorem 4.8. The underlying algebraic stack of Ruby is given by Rub'g.

4.3. Smoothness of Rubg

With the preparations above, we can now prove Lemma 2.4, stating that the algebraic stack Ruby is
smooth.

Proof of Lemma 2.4. We write k for the base ring (which the reader may take to be C, but we are careful to
make this proof work in any characteristic). We equip Spec(k) with trivial log structure.

We write Rubla/IW for the variant of Rub, considered by Marcus and Wise [MW20]; this is the same as
our space except that they drop condition (2) of the definition. The map Rubg/IW — M is proven in [MW20,
Lemma 4.2.5 and Corollary 5.3.5] to be log étale; hence Rubla/IW is log smooth (over Spec(k) with trivial log
structure). -

Let p be a geometric point of Ruby mapping to a geometric point p” of Rubl(\)/lw, and write P and Q for
the stalks of the respective characteristic monoids. The map Q — P is injectivg and has finite cokernel; it
corresponds to taking roots of suitable parameters in order to make condition (2) in the definition of Rub,
be satisfied. -

The log smoothness of Rub%\)/[W implies that there exist a scheme U and smooth strict morphisms
f: U — Ruby™ and g: U — Spec(k[Q]) such that p’ lies in the image of f. Since Rub, is obtained from

RubB/[W by taking the roots that transform Q into P, we have a diagram of pullback squares

Rub, < 1% > Spec(k[P))

(4.9) l l

Ruby™ «—— U —— Spec(k[Q]).

Now Lemma 4.4, Lemma 4.6, and Lemma 4.8 together imply that the stalks of the characteristic monoid of

Rubj are free monoids of finite rank; in other words, Spec(k[P]) is an affine space over k, in particular is
smooth over k. O

Note that the base-change Rub is not in general smooth, except in genus zero (when the map N1 — Pic
is an open immersion, hence smooth). For example, it can have many non-reduced irreducible components;
see [HS21]. In particular, the smoothness of the main component of Rub z, (proven in [BCG™19] granting the

verification that the spaces named Emg’n(,u) there and in Lemma 3.11 indeed agree) does not follow directly
from Lemma 2.4 outside of genus zero.

4.4. Relative automorphisms

As a log stack, Ruby has trivial automorphisms relative to the stack of log curves. But (as discussed
in Lemma 4.1) this does not mean that the underlying algebraic stack of minimal objects has trivial
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automorphisms. Rather, they come from automorphisms of the log structure; the following remark makes
this precise.

Remark 4.9. In general, given a map X — ) of log stacks with underlying stacks X,) and a point
x: Spec(C) — X, we can ask: what is the relative inertia of x over y = (X — ))o g?_ For this, let
(Spec(C), M) — X and (Spec(C),M,) — ) be the minimal log structures lifting xY. Then by minimality
of My, the composition (Spec(C),M,) > X — ¥ must factor through a map

f: (Spec(C),M,) — (Spec(C),M,).

Such a map is uniquely described by a monoid map My, — M, over (C, X) = (Ospec(c), X). Then the desired
group of automorphisms is just the group of those automorphisms of M, that are constant on the image of
M, and commute with the map to (C, x).

Returning to our situation, the ‘tropical’ part of the log structure (the ghost sheaf M) has no non-trivial
automorphisms relative to the stack of log curves. Thus the automorphisms all arise from automorphisms of
the log structure M that are trivial on M and trivial on the structure sheaf. So they are really automorphisms
of the extension structure of M.

4.5. The worked example again

Let (X/C,B € Mi") be a point of Rub with the underlying enhanced level graph given by Figure 3, still
restricting to the case ¥ =k, =1 and K; = n. We would like to understand the relative inertia of this point
of Rub, over M.

The minimal monoid on C for the curve X/C is just N(E) = IN(ey, ey, e3), and the minimal monoid as a
point in Rub, is given by P= IN(p_1,p_»), with one generator p; for each level i (there are no horizontal
edges in this example; otherwise, they should also appear in this minimal monoid). The natural map is then
given by

g: IN(E) — D, e +—> np_1, ex——np_p, e3+—p_1+p_s.
To see this, note that a; = a, = n, and then apply Formula (4.2). Note that there are no non-trivial

automorphisms of P that act as the identity on the image of g. The map g extends in the obvious manner to
a map on the stalks of the log structures

N(EYoC'— P =PaC",

and the relative inertia is then given by the automorphlsms of P& C* which act as the 1dent1ty on the image
of IN(E)@® C*, and which lie over the identity map on P (since any automorphism of P constant on the
image of ¢ must be the identity). Such an automorphism is defined on ((1,0),1) and ((0,1),1) by

((1,0),1) —((1,0),u) and ((0,1),1)—((0,1),v)

for some u, v € C” satisfying

(1) u™ =1, because n((1,0),1) = ((n,0),1") lies in the image of N(E)® C" and is thus fixed;
(2) v =1 for the analogous reason;
(3) uv =1, because ((1,1),1) lies in the image of IN(E)@® C" and is thus fixed.

Such a choice of u, v evidently determines such an automorphism. (Or, more precisely, there are two
canonical isomorphisms with the roots of unity, one coming from ‘above’ and the other from ‘below’ on the
graph, and the composite of these isomorphisms is the inversion map on the group of roots of unity).

We conclude that the relative inertia for this triangle graph is equal to the group Ky computed in (3.14).
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5. From logarithmic to multi-scale

In this section we construct the morphism of functors F: Rub L, = gMsS u whose existence is claimed
in Lemma L1, and then prove that theorem. At the end of the section, we include two related results about
describing the multi-scale space as a Zariski closure and describing a morphism from the rubber space to
the Hodge bundle, which can be of independent interest.

Let (X/B,p € I'(X,MY), ¢: Ox(B) > L) € Rub'ﬁy. Recall that the prime on Rub indicates that we are
working with the minimal log structure as described in Section 4, and that we always work with saturated log
structures.

We assume moreover for now, and for most of this section, that X/B is nuclear, and explain at the end
why the functor glues to general families.

5.1. The enhanced level graph

The first item to build the F-image of (X/B, B, @) is an enhanced level graph. As the underlying graph T,
we simply take the dual graph of the curve fiber over the closed stratum of B. The level structure, given
in terms of a normalized level function, comes from g € Mip(X ) as explained in (2.4). The definition of
the enhancement « is given in (2.7), where the divisibility required for this definition has been proven
in Lemma 2.11. The stability condition just comes from the fact that we work with stable curves.

Given a vertex v and the corresponding component X,, of the central fiber, the admissibility of ¥ comes
down to the equalities

(5.1) 2g(v)—2+#H’(v)—ij = deg(ﬁﬂlxv) = ZKh

jov h—v
(recall that H’(v) denotes the set of non-leg half-edges attached to a vertex v). The first equality is immediate
from the definition of £, and the second comes from the isomorphism ¢ and a computation of the degree
of Ox(p) on the component X, presented in Lemma 2.15.

The dual graph [}, of the fiber over a general b’ (possibly outside the closed stratum) comes with a level
structure obtained from I' by undegeneration (as defined in Section 3.1), by the Key Property (4) of nuclear
log curves from Section 2.3. Constructing the rest of the data of a generalized multi-scale differential requires
more work, which we now begin.

5.2. Logarithmic splittings and rotations

We write P = IN(p_;...,p_n) as in Section 4.
Definition 5.1. A log splitting is a map
(5.2) P: P— My

whose composition with the canonical map Mg — MB,b is the map : P— MB,b from (4.3) (recall that we
work throughout this section with minimal objects).
The simple log level rotation torus T} ¢ abbreviated as simple LLRT, is the set of log splittings.

Remark 5.2. Let us unpack the simple log level rotation torus definition a bit. Recall our key exact
sequence (2.2). The presence of the gp is not so important, as we always work with integral monoids
(i.e. monoids which inject into their groupifications). Consequently, a choice of a splitting is essentially a
choice of an invertible function on B (which we think of as a scalar) for every level below 0. Pre-composing l;l)v
with the map ¢ from (4.2) and using Lemma 4.3, we then also obtain a lift of the map 0, i.e. a choice of a
scalar for each edge. These must satisfy appropriate compatibility equations, and the saturation condition
also imposes the existence of certain roots.
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Definition 5.3. The simple log rotation group is the group
Hom,op (EOE(B)) = Homgp(ﬁgp,Og(B)),

where the identification stems from the universal property of the groupification.(?!
We define an action of an element ¢ of the simple log rotation group on the simple log rotation torus by
the formula

(53) (¢-9)(p):=@(p)P(p) forpeP.

Lemma 5.4. Via the action (5.3), the simple LLRT is either empty, or a torsor for the simple log rotation group.
After possibly shrinking B, we can ensure the existence of a log splitting.

Recall that a pseudo-torsor is a space with a free transitive action, but unlike a torsor, it may be empty
(here, if the base B is too large to support the appropriate sections). Thus Lemma 5.4 says that the simple
LLRT is a pseudo-torsor.

Proof. In the exact sequence

1 — H(B,05) — H°(B,M§°") — H"(B,M§’) — H'(B,05) — -+,
| ——
_—ep
— ViBb
if all elements ¢(p;) =1, € MB,;, map to zero in H!(B, Op), then they have preimages in HY(B,Mp); by the
freeness of MB,;?, this implies the existence of a log splitting. Any such choices of preimages differ precisely
by elements in H(B, Op), which together define an element of the simple log rotation group. Thus the
action of this group is free and transitive.
Finally, if the elements 7; € MB,b do not map to zero in H'(B, Op) = Pic(B), we can always find an open
neighbourhood By of b € B on which these line bundles are trivial after all. Then on By, the long exact
sequence and the argument above show the existence of a lift, finishing the proof. 0

5.3. Log viewpoint on smoothing and rescaling parameters

In this subsection we construct the rescaling ensemble from the choice of a log splitting, and provide
auxiliary statements about the smoothing and rescaling functions contained in the ensemble.

Let ¢: P — Mjp be a log splitting. Recall the definitions of the maps g: N(E”) — P from (4.2) and
a: Mg — Op from the definition of a log scheme.

Definition 5.5. The smoothing parameter associated to a vertical edge e € E¥(T) by the log splitting 1) is

(5.4) f.:=(aotpog)e).
Fix a level i € L(T'). The level parameter and rescaling parameter associated to i by 1 are
(5-5) ti=(aop)(pi) and s;:=(aoP)a;p;).

The collection of functions t = (¢;);c(r) defines a map R°: B — T; to the closure of the simple level
rotation torus, which is just CV, and a rescaling parameter s; = r; o 77 o R® in the notation of Section 3.4.

=S
Lemma 5.6. The morphism R°: B — T defined above is a simple rescaling ensemble.

(2)Note that there is also a (non-simple) log rotation group, consisting of the set of compatible choices of elements in Op(B) for
all e € E” and the elements 0; = (v;) — f(v;i—1). Since this non-simple group will not be needed in the following, we do not give a
formal definition.
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Proof. By Lemma 3.4 we must verify that the functions f, from (5.4) are indeed smoothing parameters for
their respective nodes, lying in the correct equivalence class in Op/Oj. To see this, consider the following
diagram:

N(Ey —2 3 P

v ;% 0%
o / /

MBL)OB

1~ 7

Mg, —— Op/O}

What we must show is that f, = (@ o 1Fo g)(e) € Op maps to the class of a smoothing parameter in OB/OX.
Now the commutativity of the upper-left quadrilateral follows from Lemma 4.3 and the assumption that n
lifts the map 1: P—>M B,b- On the other hand, the map @ is just defined to make the lower quadrilateral
commute. Then we have

[fel = (a0 og)(e) = @(d(e) € Op/O}.
The fact that @ maps d(e) to a smoothing parameter for the node associated to e is then just a basic property
of families of log curves; see Key Property (2) of Section 2.3. g
5.4. The collection of rescaled differentials

By the definition of lying in Rub r,» We are given an isomorphism

(5.6) P: wx/B [— kazk — Ox(B).

k=1

On the other hand, it follows from the definition of ¢ that the element —Z];lz- ajpj € PEP maps to
Bv;) € M%f’b under ), where v; € V(T) is any vertex on level i. Using the log splitting ), we obtain the

elements
-1
¢[ S

m=i

gp
e Mg

in the preimage of $(v;). Since this preimage can be identified as the complement of the zero section in
Op(B(v;)), we can see 0; as a nowhere-vanishing section of Og(B(v;)).

Adapting the convention from Lemma 3.5 to the family X/B, we define X(-;) C X to be the closed subset
of components of fibers X;» whose closure in X does not intersect any component of the central fiber X, at
a level less than or equal to i. Then we define U; = X \ (X(5j) U Z*), where Z* C X is the image of sections
associated to marked poles. Then we claim that there is a well-defined map

(57) w;: 7 Op(B(vi))lu, — Ox(B)lu;-

Indeed, the left-hand side is the line bundle on U; associated to the piecewise linear function which is
constant, equal to (v;). Since we removed Xs;), this function dominates the function  on the right, so we
have a map as desired. Thus w;(7t*0;) gives a section of Ox(f) on U;, and we define

n
o\ U;, wx/p [— kazk]]-

k=1

(58) W) = (p‘lwi(n*oi) €H
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We check that w;) satisfies the conditions in Lemma 3.5 and that the smoothing and rescaling parameters
fo and s; defined in (5.4) and (5.5) (and thus the simple rescaling ensemble R°) are compatible with these
generalized rescaled differentials.

(1) For any levels j <i <0, there is a natural map of line bundles Op(f(v;)) — Op(B(v;)). On the level
of sections, we then have

-1 -1 i—1 i—1
0j = {l;[_ Zampm] = {D’[_ Zampm] : ]_l‘:l;(ampm) = 0j- ]_[';[;(ampm)-
m=i m=j m=j m=j

Via the isomorphism ¢~, and using that s,, = a(i(a,,p,,)), this becomes the desired equality
w(i) = w(j) ]_[;:1] Sy- The fact that s; vanishes at the closed point of B comes from the fact that the
map of line bundles is the zero map when restricted to the fibers over the closed point of B.

(2) Choose local coordinates u, and v, so that X is locally given by #,v, = f,. Then the isomorphism ¢

corresponds near the node to a non-vanishing section of wy,g(—f). Now w has a local generating
du, dv,
u(’ v(:'
adjusting the choices of coordinate 1, and v,) Ox(—p) has a local generating section which is given

section which is given after inverting u, by and after inverting v, by ——*, and (perhaps after

after inverting 1, by u,°0; and after inverting v, by 0jVe "¢, By dividing the just-described local
generating section by the one given by the isomorphism ¢, we obtain a local unit A such that
d —x, d
(5.9) Wiy = Al and @)y = —Av 2

e vé‘

(3) On the normalization Y; of the union of all components of the special fiber Xj, sitting at level 7, we
have (see Lemma 2.15)

Ox(B)ly, = 7 Op(B(vi) ®0, Oy,

thh],

h

where the sum is taken over all non-leg half-edges h attached to the vertices at level i. Pulling back
via @, the line bundle on the left becomes

n n
o [_kazk]m _ wyi(_ kazk+zh].
k=1 k=1 h

Tensoring with Oy, (- }_j, x,h) on both sides, we then get

=) mze= ) (kn- 1>h] = 7' Op(B(vi))
k=1 h

Seeing w(;) as a meromorphic section on the left, it then corresponds to the nowhere-vanishing

w Y;

section 7t*0; on the right. Thus it extends to all of Y; on the left-hand side. But then this extension
seen as a meromorphic section of wy, has the desired order 1y at the marked points z; and xj, — 1
at the preimage of the node associated to h.

5.5. Prong-matchings

To recall the notion of a prong-matching, consider a vertical edge e € EY, and let B, <> B be the closed
subscheme of B over which the node e persists, i.e. the vanishing locus of the smoothing parameter f,.

The sections g* of the two preimages of the node identify B, as a subscheme of the blowup of X xg B,
along the section corresponding to e. Recalling (3.3), we let N,Y = (q%)*wx, ®(q47) wx_ be the corresponding
line bundle on B,. Then a local prong-matching at e is a section o, of NV,’ such that o,°(7,) = 1 for the
section 7, € NV, defined in Lemma 3.1.
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To identify this notion in the logarithmic context, recall that we have the element d(e) € MB,Z,. Then the
bundle N,” has an interpretation as follows.

Lemma 5.7. There are canonical isomorphisms of line bundles
(5.10) Op(d(e))lp, = N’

for each edge e. Moreover, let E € My be an element mapping to 5(e) € Mg, so that we can see it as a section of
Og(0(e)). Then the function f = a(t) € Op is a smoothing parameter for the node associated to e. Let u,v be
local coordinates around the node on X such that the Henselized local ring at the node is the Henselization of
Oglu,v)/(uv — f). Then the isomorphism (5.10) sends the section £|g, € Op(6(e))|p, to

du®dveN, = (3")wx, ® (97 ) wx .

Proof- Since both sides commute with base-change, it is enough to check this in the universal case, in which
the log structure is divisorial coming from the boundary (and the map «a of the log structure is injective, so
there are no non-trivial automorphisms of the log structure). Over a versal deformation R, the local equation
of the node is given by R[u,v]/(uv — f), where f € R is an element corresponding to 6(e). So Og(d(e)) is
canonically identified with the ideal sheaf generated by f in R (¢f the appendix). On the other hand, N,’ is
canonically identified with the conormal bundle in R to the locus f = 0 (see [ACGII, Section XIII.3]) and
thus agrees with Op(6(e))|z,. Tracing through the constructions of these canonical identifications yields the
second part of the lemma; alternatively, this can be seen as a very slight generalization of [Edi98, Section 4],
where his c(x) corresponds to the element du ® dv and his 75(°) to the element f. O

Let 1: P — Mg be a log splitting, and let e be a vertical edge. By Lemma 4.3 the element (1) o g)(e) € My
maps to o(e) € MB,;, and hence lies in O5(6(e)) € Mg (by the definition of this bundle via (2.2)). Applying the
isomorphism of (5.10), we thus obtain a section of \V,’.

Definition 5.8. We call the section o, = (I;DUO g)(e)lp, € HY(B,, N,’) the local prong-matching o, = ae({[;) ate
determined by the log splitting. The collection o = (0¢).cgv(r) of these is called the global prong-matching
determined by the log splitting.

There are two compatibility statements to check for this definition: to get a prong-matching, see the
discussion after (3.3), and to make this part of a multi-scale differential, see Lemma 3.8(2b).

Lemma 5.9. The prong-matching o determined by any log splitting is indeed a prong-matching in the sense of
Lemma 3.2.

Proof. Assume that the vertical edge e connects levels 7 > j in I. From Lemma 3.2, we need to show that
00¢(t,) = 1, where 7, is the section of N, defined as 7, = (q+)*a)(_i§ ®(97) w(j).-
On the other hand, the differentials w(;) and w;) are also determined in (5.8) by the formulae

-1 -1
W) = (P*wi[n*iﬁ[_zampm]] and Wy = (p*w]’[ﬂ*{p[_zampm]]-

m=i m=j

We put this into the formula for 7,; the pullbacks (9%)* (g7)* cancel the pullback 7t*. Interpreting 7, as a
section of Og(—x,0(e)) via (5.10), we thus have

-1 -1 i—1
T = J(Xampm—iﬂmpm] - fﬁ[—Dmpm] = Flxegle) = 0.
=1 i m:j

Here in the second to last equality, we used the definition of g from (4.2). This finishes the proof that
0. °(T,) = 1, and thus that o, is a local prong-matching. n
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Lemma 5.10. Let (p: P — My be a log splitting and e a non-semi-persistent vertical node (ie. f,* # 0). Then
the local prong-matching determined by 1\ is equal to that induced in Lemma 3.7.

Proof. The local prong-matching o, of Lemma 3.7 is constructed by writing the local equation of the node
as uv = f, and setting

o, =du@dve N, = (¢ wx, ®(q ) wx_.

On the other hand, the local prong-matching &, associated to e by lgbu is given by applying the isomorphism
in Lemma 5.7 to the element (i o g)(e).
Recalling that f, = (@ o ¢ o g)(e), we see that the desired equality 0, = G, is then the second part

of Lemma 5.7. O

5.6. Morphism of functors from rubber to multi-scale

We put the above together to build a morphism of functors after restricting to base schemes which are
locally of finite type over C (this restriction is harmless since Rub c,is representable by a locally finite-type
Deligne-Mumford stack). We first make this construction in a local situation, then globalize. We start with
a family (X/B, € Mx (X), @), which we take to have minimal saturated log structure, and which is both
nuclear and controlled. This immediately gives us the structure of an enhanced level graph. We choose
a log splitting ¢: P — M (perhaps after shrinking B). This determines a simple rescaling ensemble, a
collection of rescaled differentials, and induces local prong-matchings at each node. Hence we have a simple
multi-scale differential.

We next claim that a different choice of log splitting yields an isomorphic simple multi-scale differential,
together with a choice of isomorphism. Indeed, by Lemma 5.4 any two log splittings differ by the action of
the simple LLRT, and one checks easily that the action of the simple LLRT corresponds to the action of the
simple level rotation torus.

For general B locally of finite type, a family of multi-scale differentials is defined as a family of multi-scale
differentials on a nuclear controlled cover, compatible on overlaps.

It is clear from the constructions that the above map is independent of choices and is compatible with
shrinking the base B; more precisely, given a map B’ — B and a family of log differentials on B, we can
either first apply our map (obtaining a family of multi-scale differentials on B) and then pull back to B, or
first pull back and then apply our map; unravelling the definitions yields that the results are canonically
isomorphic. By descent we obtain a global morphism of functors F: Rub L, = GEﬂg,n( H.

5.7. Showing the map of functors induces an isomorphism

The above construction gives a morphism from the logarithmic space to the multi-scale space. In this
section we complete the proof of Lemma 1.1 by showing that this functor induces an isomorphism.

Theorem 5.11. The morphism
(5.11) F: Rubg, — GEMy,, (k).
is an isomorphism.

Proof. Given a map B — GEmg’n(l/L) with the implicit stable curve over B being controlled, we show that
there exists a unique map B — Rub z, making the following diagram commute:

.

B
|
(5.12) !
\‘/ —
Ruby, —— GEM,(p).
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The claimed isomorphism in the global situation then follows by descent. Let (t: X — B,z,[,R*, w, o) be
the simple multi-scale differential corresponding to B — GEmg’n( #). Given i € L(I'), we write t; € Og(B)
for the composition with the appropriate coordinate projections B — T > C.

Let Mg be the minimal log structure making X/B into a log curve; in particular, its characteristic monoid
MB’;, is canonically identified with the free monoid IN(E) on the edges of I'. For each edge e, the local
prong-matching o, at e is by Lemma 5.7 a section of the fiber of the bundle O(0,) over the locus B, where
the node persists, and we choose a section in Mg(B) lifting f, and restricting over B, to o,, yielding a
splitting

£: Mgy — M.

Denote by P:= (p-1,...,p_n) the free monoid on the levels, as usual, and define

(6.13) t:P—> Op, pir—t,
and
(5.14) t': POIN(E") — O,
acting as t on the first summand and as £ on the second.

Then let
(5.15) g': N(E) — P& N(E")

be the map given by g on the vertical edges and by the identity on the horizontal edges.
The equalities

(5.16) fo = £,

which come from (3.7) (where coordinates were denoted by f, = p, and t; = g;), imply that the diagram

Mp —— Op

(517) FT 7

My —5 PoN(E")

commutes.
Now we define a sheaf of monoids P as the pushout

Mg —— P

(5.18) fT T

My —5 s PoIN(E"),

which by the commutativity of the previous diagram comes with a map ap: P — Op. One checks easily
that P is in fact a log structure on B, with characteristic sheaf P = ?@]N<Eh> at a point b € B in the closed
stratum. The map Mg — P gives X/(B, P) the structure of a log curve, and mapping a vertex v of level i to
the element

-1
(5.19) [— Y ap;, 0] e (PoN(E"))™
j=i

defines a map f: V — P 5o that the pair (X/B, B) is a (minimal) point of Rub.
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To lift this point to a point of Rub L, e need to build an isomorphism of line bundles

(5.20) Ox(B) — wx/p [_Zmizi
i1

We first define this map on the smooth locus; let p € B and let x € X, be a smooth point of X, lying in the
component associated to a vertex v € I'. Then the image of § in M?{’x = I_JI%p is given by B(v). Our splitting

P — P from (5.18) extends to P® — PeP_ and thus B(v) maps to a unique section of Og(S(v)) € P. Then
we define

(5:21) Ox(B)x — wx/B,x

to be the unique map sending this section to the differential w(,)). Next we check that this isomorphism
extends over the nodes. We treat only the case of a vertical node e, say passing from a vertex v; of level i
to a vertex v; of level j with j <i; then the map near a horizontal node can be constructed just as in the

smooth case. Write £’ for the natural map P — P, so that
-1 -1

(5.22) B(vi) = E,[_Zampm] and ﬁ(vj) = E’[_Zampm]-
m=i m=j

Setting £, := £'(g’(0,)), we have

(5.23) B(v;) = Blv;)-EX e P.

We choose local coordinates u and v near the node, say v vanishes on the upper level component
corresponding to v;. The line bundle w has a local generating section which is given after inverting u
dv—”. The line bundle O(-p) has (perhaps after adjusting the local
coordinates # and v) a local generating section which is given after inverting u by u*¢f(v;)”

d . .
by 2 and after inverting v by —
! and after
inverting v by Fy¢v " ﬁ(vj)_l. As such, the bundle w(—p) has a local generating section that is given after

_1‘17“ and after inverting v by —f?ev_"ffﬂ(vj)_li—”. The isomorphism (5.21) then

inverting u by u*ef(v;)
corresponds to the section of w(—f) that is given after inverting u by a)(i)/)’(vi)*l and after inverting v
by ﬁ(v]-)_la)(j) = ﬁ(vi)_lf"ﬂw(j). To conclude, we need to show that there exists an invertible function A
near the node such that after inverting u we have w(;) = Au™e ‘B(vi)_ld?”, and after inverting v we have
t*ew) = —Af?“v_Kfﬂ(vi)_l dv_v But by condition (2) of Lemma 3.5, we know that there exists an invertible
function A such that

dv
>

du -
(524) W) = /\MK"7 and W) = —Av "

and this A clearly suffices.
Unravelling the constructions earlier in this section verifies that the constructed point of Rub z, indeed

maps to our starting point in GEmg,n( u) under F.
To show that we have constructed an isomorphism of fibered categories, we must finally check that the

composites

(5.25) Rub (B) — GEMj,(1)(B) — Rub, (B)
and

(5.26) GEM, ,(4)(B) — Rub, (B) — GEMg,,()(B)

are isomorphic to the respective identities. This can be done by comparing the actions of the simple LLRT
and the simple level rotation torus on the respective spaces; we omit the details. 0
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5.8. The multi-scale space as a Zariski closure
Fix g, n, and define ‘CM on the universal curve over ﬂg,n as before.

Definition 5.12. We define Rubg;p to be the fibered category of LogSChﬂg'” whose objects are pairs

(X/B, B), where X/B € ﬂg,n and f is a PL function satisfying condition (1) of Lemma 2.1, and such that the
line bundle £, (—p) has multi-degree 0 on each geometric fiber.

This is a slight variant on IP(Rub LM)' By ignoring the divisibility condition in Lemma 2.1, we are effectively

taking the coarse moduli space relative to ﬂg,n,

than requiring it to be trivial. Since we in particular do not record the data of an isomorphism, we are

and we only require that £,(—f) has multi-degree 0, rather

effectively also taking a C*-quotient.
The map Rubtg:p — My, is birational and representable, but not in general proper. Using stability

conditions as in [HMP*25], we can construct a compactification

Rub® — P(Rub} ) — Mg,

where H’(Rubgy) — Mg,n is proper, birational, and representable, and Rubtﬁr;)p - H’(Rubgy) is an open
immersion; but we do not pursue this here as it would require substantial additional notation.

Let P(MS%) C M, ,, be the locus of smooth curves over which £, admits a non-zero global section; this
can be seen as the interior of the locus of (projectivized, generalized) multi-scale differentials.

Theorem 5.13. The Zariski closure of/\/lSO in RuthrOp (o, equivalently, in I[’(Rub?:; ) is equal to P(MS ),
}l ]

the projectivized space of (non-generalized) multi-scale differentials.

Proof- There is a natural closed immersion P(Rub>#"*¢) — RubZroP, and the main component of the space
u p

P(RubS®'=) is P(MS,,). O
"

One can obtain the stacky version Eﬂg,n(y) (of which MS, is the relative coarse moduli space) in a

similar fashion, replacing IP(Rubg ) with a stacky modification; we leave the details to the interested reader.
l

6. The Hodge DR conjecture

In this section we present several equivalent constructions of the universal line bundle introduced
in Section 1.2.2, discuss its various properties, and prove Lemma 1.5.

As explained in Section 1.2.2, the projectivized space of (generalized) multi-scale differentials comes with
a map to the projectivized Hodge bundle, obtained by taking the differential at the top level, and allowing it
to vanish at all lower levels. Pulling back O(1) from the Hodge bundle gives a line bundle on the generalized
multi-scale space. We begin by giving several equivalent versions of this construction.

First we write out explicitly the objects of the fibered category IP(Rub):

PP(Rub) = {(11: X — B, 8, F)},

where (X/B, ) is a point of Rub as in Lemma 2.1, and F is a line bundle on B. The Abel-Jacobi map sends
such an object to 77" F (), giving a proper, see [MW20, Theorem 4.3.2], map P(Rub) — Pir.
Now fix a line bundle £ on X, ,/M, ,,
explicitly the fibered category of P(Rub/) as
IP(Rub,) = {(X/B,B,F, )},

where (X/B, ,F) is an object of IP(Rub) with X/B stable of genus g, and ¢: w*F () — £ is an isomor-
phism.

which is of total degree 0 on each fiber. Then we can write
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Construction 1: Tautological bundle
This is just the bundle 7 on IP(Rub), or its pullback to 7 on [P(Rub/) along the tautological map. We
denote the dual of this line bundle by 7.

Construction 2: Projective embedding

Let D be an effective divisor on X, , such that R'7t,L£(D) vanishes, so in particular 7t,£(D) is a vector
bundle on Mg,n. Such a D can always be found as an element of the linear system of a sufficiently relatively

ample sheaf on X, ,, over ﬂgm. Then over IP(Rub/) we have natural maps
(6.1) ' F — L(-p) — L — L(D),

where the first map is induced by ¢, the second is induced by the natural map O(—f) — O, and the third by
the natural map O — O(D). Adjunction yields a map

(6.2) F = ' F — 1, L(D),
which is by definition a map
(63) F: IP(RubK) —> IPIP(Rubﬁ)(T(*'C(D))'

Indeed, note that our projectivizations are moduli of subbundles, not quotient bundles, so it is enough
to check that this map is universally injective. But the formation of both sides commutes with arbitrary
base-change, so it is enough to check this over a point, where it is clear.

Lemma 6.1. F*O(1) = 1.

Proof. The equality F*O(1) = F" is immediate from [Sta25, Example 0FCY]; we obtain F " instead of F
because we define the projectivization to be the moduli of rank 1 subbundles, not rank 1 quotient bundles. [J

In particular, we observe that the line bundle F*O(1) turns out to be independent of the choice of the
sufficiently relatively ample divisor D. In the case considered in the introduction, we take

—i(ﬂi —k)Zi]

i=1

_ . ®k
(6.4) L= ng,n My

and D = Zi:a,<>0 a;z;.

Construction 3: Pullback from rubber target

For this construction we restrict to the case where £ = Ox(}_; a;z;) for k = 0; put another way, we choose
a rational section of £ whose locus of zeros and poles is contained in a union of disjoint sections of X — B.

D = Zaizi and E:—Zaizi.

i:a;>0 i:a;<0

We write

Since these are effective divisors, we have natural maps
Ox — Ox(D) and Ox — Ox(E),

and combining with the natural map Ox — Ox/(f) and the isomorphism ¢: 7*F () — Ox (D —E) yields
maps
Ox(=E)(-p) — Ox and Ox(-E)(-p) — Ox(D -E)(-p) — 7' F.
The induced map
Ox(-E)(-p) — Ox &' F


https://stacks.math.columbia.edu/tag/0FCY
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is universally injective since the first map is injective around the support of D and the second is injective
away from the support of D. This induces a map

X — PO F).
The cotangent line at co to this rubber target is then given by
(6.5) v, =F".
We have deduced the following result.

Lemma 6.2. VY, =1.

Remark 6.3. Above we have constructed a rubber target of length 1 (i.e. with no expansions). This is because
we are only interested in what happens near the infinity section, so we do not need to construct the whole
expanded chain. The reader who is more comfortable with expansions may verify that the length 1 target we
construct here is exactly what is obtained by following through the proof of the expanded target in [BHP*23,
Proposition 50], and then contracting all except the top component.

6.1. Computation of 7 for k=0
Here we prove Lemma 1.5, which we restate for the convenience of the reader.

Theorem 6.4. Lemma 1.4 is true for k = 0: for any g,u > 0 and any vector A € Z" with sum |A| = 0, we have
vir —_— ~7vir 0,r,
p*([IP(RubﬂA)] -17“) - p*([Mg,A(IPl,O,oo) ] -\p;;) = [™]ChY ™

Proof- The first equality follows from Lemmas 6.1 and 6.2. For the second equality, we note that the term on
the left has been computed in [FWY21, Corollary 4.3] in terms of a slightly modified Chiodo class. Indeed,
we define an r-shifted version A(r) of A by

Alr) a; for a; > 0,
r); =
l r+a; fora;<0.

In other words, for all indices i with a; < 0 (which form a subset I, C {1,...,n}), we shift the vector A by r
in the i entry. Then the Chiodo class Cho’;"(ir is a polynomial in 7, for r sufficiently large. Denote by

ChOro ZChOrd
d=0

the associated mixed-degree class. Then in this notation, the formula from [FWY21, Corollary 4.4] reads as

Z]—[ agb u|g1]ChOru+g el

follows:

e [Mga (P, 0,00) " iz

eeZI‘” i€l
= [r] Z H —airip;)* - Chyhe
leo j€l
| 723 codim g+u
1 0
u r,e
= |r . Ch g
"] ]_[ 1+a;r; SA(r)
i€l codim
g+u
= [M[chne]
codim g+u

Here the last step uses [GLN23, Theorem 4.1(ii)). g
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6.2. (A)symmetry

Above we gave three constructions of the line bundle 71 = 77(£) on IP(Rub/). We know that the push-
forwards to Mg,n of [P(Rub/)]"'' and [IP(Rub/v)]"' agree. However, once we intersect with the class 1,
things are a little more subtle. The universal curve over IP(Rub) carries a PL function f, totally ordered and
with maximum value 0. The minimum value of § we denote by ﬁmm; this is a PL function on IP(Rub). We

set 1)(B™") = 1 ® O(B™™").
Lemma 6.5. We have
(6.6) - ([IP(Rub,Cv)]Vir : cl(n)”) = P« ([IP(Rubg)]Vir : (—61 (’7 (ﬁmin)))u).

Proof- There is a natural isomorphism (compatible with the virtual fundamental classes) over ﬂg’n from
P(Rub,) to P(Rub/v), given by

(6.7 (X/B. B, Fop) — (X/B,m0 = 5, (7 (5™)) )
where ¢’ is the composite
(6.8) e (F(Bm)) (B0 - B) = 7 FY (=) © e, O

7. Blowup descriptions

In this section we give a description of IP(Rub?*"°) as a global blowup.

First, in genus zero, we construct an explicit sheaf of ideals on Mo,n, such that blowing up ﬂo,n along
this sheaf gives P(Rubz>*"*¢). In [Ngu24] Nguyen described the incidence variety compactification (IVC) in
the case of genus zero as an explicit blowup of ﬂom. Note that in genus zero there are no global residue
conditions (because any top-level vertex must have a marked pole), and hence in genus zero the rubber space
and the space of generalized multi-scale differentials coincide with the space of multi-scale differentials. Our
blowup description can thus recover Nguyen’s result about the IVC of the strata of meromorphic 1-forms in
genus zero as a blowup of ﬂo,n. We also provide an example demonstrating the difference between the
rubber space and the IVC in genus zero.

Next, for arbitrary genus, we construct a globally defined sheaf of ideals on the normalization of the
incidence variety compactification (NIVC) whose blowup gives the (projectivized) multi-scale moduli space
(i.e. the main component of Rub>*"*¢). Consequently, it follows that the (coarse) space of projectivized
(non-generalized) multi-scale differentials is a projective variety for all g. Recall that in [BCG'19, Section 14.]]
the moduli space of multi-scale differentials was described as a local blowup, where the ideals locally defining
the center of the blowup can differ by principal ideals on the overlaps of local charts. In particular, the
description of [BCG*19] did not yield projectivity of the space of multi-scale differentials. By constructing
an explicit ample divisor class, the projectivity of the moduli space of multi-scale differentials was later
established in [CCM24, Section 3]. Our global blowup description thus provides a direct conceptual
understanding of this projectivity result.

Besides projectivity, knowing a blowup description of compactified strata of differentials can be helpful
for obtaining geometric invariants, such as volumes of the strata, by using intersection theory; see [Ngu24].
We also provide a tropical interpretation of our blowup, which sheds further light on the geometry of the
construction.
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7.1. The sheaf of ideals in genus zero

Let I' be the dual graph of a boundary stratum Dr C Mo,n. For each vertex v € V(I'), let d(v) be the
degree of £, restricted to v (so }_,cyr)d(v) = 0 by definition). Since I' is a tree, there exists a unique
‘slope’®? function x: H — Z from the set H = H(T) of half-edges of I such that

(1) x agrees with m; at the leg corresponding to a marked point z;;
(2) x(h)+x(h") =0 for any h and h’ that are opposite halves of an edge;
(3) for all vertices v, we have ) _jcpy(y) K(h) = d(v), where we sum over all half-edges attached to v.

For every pair of vertices v and v’, let 7 be the unique path from v to v’ in the tree I'. We view this
(directed) path as a sequence of half-edges, where if an edge e = (h,h’) € E(I') appears in y in the direction
going from h to h’, meaning that along the path y in the direction from v to v’ the half-edge h appears first,
followed by /', then we put (only) & in our sequence of half-edges. We define an ideal locally around the
boundary stratum Dr C Mo,n by

I(v,v) = | [o(hymaxx0),
where we write 6(h) for the ideal associated to the edge containing & (that is, for the defining equation of the
boundary divisor of My, where the corresponding node exists). Define

J(v,v') =1(v,v")+1(v,v);
this evidently satisfies J(v,v’) = J(v/,v) and J(v,v) = (1). Finally, we set
w(v) := valence(v) — 2,
which is a positive integer by the stability of the curve, and define

=[] sy,
(

v,v')eVxV

A concrete example of this ideal is given in Lemma 7.6 below.??)

Remark 7.1. Note that it is possible to define locally an ideal that is simpler than | and whose blowup
produces the same space. Indeed, taking the product of | and any principal ideal works. Nevertheless, such
local ideals may not always glue to form a global sheaf of ideals. Blowing up a globally defined sheaf of
ideals (from a projective variety) can directly imply the projectivity of the resulting space, while gluing local
blowups together does not. Therefore, the ideal ] in the above was designed with some delicate exponents
to make it a globally defined sheaf of ideals, as we will check in the next section. This idea will be used
in Section 7.6 to define a global ideal sheaf on NIVC to conclude the projectivity of the multi-scale space for
arbitrary genus.

7.2. Compatibility under degeneration in genus zero

To show that the ideals J(I') defined in the neighbourhood of each stratum Dy C ﬂo,n glue to a global
ideal sheaf over Morn, we need to show that they behave well under degeneration. As any dual graph I' can
be obtained from any other I’ by a series of operations of inserting and contracting edges, it is enough to
check that the ideals glue under contracting a single edge of the graph.

Lemma 7.2. Let e be an edge of T, and let T’ be the graph obtained from T by contracting e. Then J(I'") = J(T),
after inverting the ideal 6(e).

(22)The justification for this terminology is given by (5.1), which shows that the slopes of points Rub c, satisfy the same conditions.
(23)If the reader prefers not splitting up the half-edges into ones with increasing and decreasing slopes, alternatively we can define
the fractional ideal ]’ (v,v’) = ]_[hey(é(h)K(h), 1), and define J'(T) := [w,v)evxy J’(v,v")¥@)w("") Then ] induces a globally

defined fractional ideal whose blowup is the same as that of | (as we will justify for | in the following subsections.)
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Note that inverting o(e) geometrically corresponds to restricting to the locus where the edge e is contracted,
i.e. where the corresponding node of the curve is smoothed out.

Proof- We denote by c: I' - I'” the contraction map, let v; and v, be the endpoints of e, and let v’ be the
vertex of I’ to which e is contracted, so that d(v’) = d(vy) + d(v;).

If v is any vertex of I' different from v; and v,, then clearly w(v) = w(c(v)). Furthermore, the slope
function on T’ clearly restricts to the slope function on I"”. Thus for any two vertices #; and u, of I' distinct
from v; and v,, we have

Jr(uy, up) ~ Jro (1, 13),
where to simplify notation we write I ~ | if the ideal sheaves I and | become equal after inverting o(e).
Similarly, Jr(vy,v;) ~ (1).

Based on the above analysis, we only need to consider the pairs of vertices in I'” and in T that involve v’

and vy or v,, respectively. It therefore suffices to show that

(7.1) ]_[ ](v/lv)ZW(v’)w(v) - ](7/1,V)zw(v)w(vl)](vz,v)zw(v)w(VZ),
veV(I") veV(T)
Let V°:= V() \{vy,v2} = V(I) \ {v’}. Then (7.1) reduces to showing
]_[ ](v’,v)w(v’)W(v) ~ ]_[ ](vlyv)w(vl)w(v)](VZ,'I/)w(VZ)w(V),
veVe veve

This follows from w(v’) = w(v;) + w(v,) and the relations
](vllv) ~ ](Vl,V) ~ ](VZJV)
forallve V' O

Definition 7.3. Define J(£,) to be the (global) ideal sheaf on Mg,n that for any boundary stratum Dr
restricts to the ideal J(I') on a neighbourhood of Dr.

The existence of J(£) follows from Lemma 7.2.

7.3. A tropical picture in genus zero

The normalized blowup in the ideal J(I') corresponds tropically to a subdivision of the positive orthant in
the vector space Q(E), where E = E(I') is the edge set. This subdivision is built by taking a hyperplane (or
sometimes the whole space) for every pair of vertices in I': if y is the path from v to v’ as above, then the
corresponding hyperplane L(v,v’) is cut out by the equation

ZK(h)e(h) =0,

hey

where e(h) is the edge containing the half-edge h, viewed as an element of the group IN(E) (and we recall
that a half-edge h is said to be contained in a directed path y if y goes via h before going through the
complementary half-edge of the same edge).

These local subdivisions glue to a global subdivision of the tropicalization of M, inducing a proper
birational map Mo,n - ﬂom.

Lemma 7.4. The normalization of the blowup of ﬂo,n in the ideal ] (L)) is equal to the proper birational map
Mo,n — ﬂo,n induced by the subdivision above.

Proof. The standard dictionary (see [Kat89a, Section 1.3.3, p. 14]) between toric blowups and subdivisions
implies that the normalized blowup in J(v,v’) is equal to that induced by the subdivision in L(v,v’). Since
w(v) > 1 (by stability), blowing up in J(v,v’) is the same as blowing up in J(v,v")*®*®), Normalized
blowup in a product of ideals corresponds to superimposing their subdivisions. 0
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7.4. Comparing blowups and rubber maps in genus zero

We are ready to prove our main statement in genus zero.

Theorem 7.5. The normalization of the blowup Mo,n of My, along the ideal sheaf J(L,) is the projectivized
coarse moduli space of rubber differentials P(Rub;72"¢).

Proof. Let X/B be a nuclear log curve of genus zero.

Claim: There exists a PL function $ on X such that £, = O(B), and moreover such a § is unique up to
translation by an element of Mg(B)&P.

To prove the claim, we use the fact that the graph is a tree to deduce that there is a unique collection of
admissible slopes x,. We pick a vertex vy and let  be the unique PL function vanishing on vy and with
slopes given by the «,. The line bundle £,(—f) has multi-degree zero, and is hence trivial since X has genus
zero. This proves the claim.

Now recall that Rub->*"*® can be obtained by omitting the divisibility condition (2) from Lemma 2.1. In
other words, the point X/B lies in Rub?*"¢ if and only if the values of p on the vertices of I' form a totally
ordered set. It therefore remains to check that this is equivalent to the map B — Mo,n factoring via the
subdivision described in Section 7.3.

If y is a directed path in I', we define

p(y) = Zkhéh-

hey

Since the difference of values of § at the two ends of an edge is the slope «, of that edge (with the appropriate
sign), the values of 8 at the two ends of a path y differ by ¢(y).

Fix a vertex v, and write ), for the unique path from v to v. Then the set {(v):v € V(I')} is totally
ordered if and only if the set

{p(yy):veV(I)

is totally ordered. This is in turn equivalent to requiring that for every path ¥ C I (not necessarily a path
from v), the element () is comparable to 0, i.e. either () € Mg or —(y) € Mg. Imposing this condition
is equivalent to subdividing IN(E) in the hyperplane L(v,v’) of Section 7.3, where v and v are the endpoints
of y. U

7.5. Comparison to Nguyen’s blowup in genus zero

As mentioned, in genus zero Nguyen [Ngu24] described the IVC as an explicit blowup of ﬂo,n (also for the
more general case of k-differentials in genus zero). Since the rubber/multi-scale space is the normalization of
a blowup of the normalization of the IVC, our blowup described in Lemma 7.5 must dominate the blowup
defined by Nguyen. In this subsection we recall Nguyen’s construction, provide a viewpoint of his blowup
from our setup, and give an alternative proof for Nguyen’s result that blowing up mom in his ideal gives
the IVC.

We begin by recalling Nguyen’s construction of a sheaf of ideals on ﬂoln. Let X/B be a nuclear log curve
of genus zero with graph I', and let x be the slope function on the edges of I', i.e. the PL function constructed
in the proof of Lemma 7.5. For a given vertex v € V(I') and an edge e € E(T), let h,(e) be the half-edge of e
such that the path from the end of /,(e) to v passes through e. For a vertex v € V(I'), we define

(7.2) S, = 50,
ecE(T)

where «, , := max(x(h,(e)),0). Let N(I') be the (local) ideal (in the variables 6,, as in our setup) generated
by the set of elements 0, for all vertices v € V(I'). It was shown in [Ngu24] that these N(I') can be patched
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Figure 4. The graph I' of a stratum in ﬂoj; the desired slopes x can be obtained, e.g., by using the
signature p = (—16,4) with the six markings associated to simple poles attached to the vertices v;,
Vo, and V3.

together to a sheaf of ideals N globally defined on M ,,. This can be seen the same way as Lemma 7.2, and
we will discuss this in more generality in Lemma 7.9 for arbitrary genera.
Before proceeding, we illustrate Nguyen’s ideal and our ideal in the following example.

Example 7.6. Consider a (partially ordered) dual graph I as illustrated in Figure 4, with all slopes x = 1.
Recalling the definition of 6, in (7.2) for a vertex v € V(I') and writing 0; = ., to lighten notation, we
obtain 6,, = 910203, 0y, = 0203, O, = 6103, and &,, = 910,. In this case Nguyen’s ideal N(T') is given by

N(T) = (6102,0103,0203,010203) = (01062,0163,0203).
In contrast, our ideal J(I') is given by
J(T) = (81,62)%(81,03)%(02,63)%(81)*(62)*(83)".

When we blow up J(I'), each ideal generated by a pair (6;,6;) for 1 <i < j < 3 becomes principal, and so

does the ideal N(I'). Therefore, the blowup in J(I') dominates the blowup in N(I).

Nguyen [Ngu24| proved that blowing up ﬂo,n along the globally defined sheaf of ideals N gives the IVC.
Indeed, in the example above we see explicitly that locally around the boundary stratum with the dual
graph I', the rubber/multi-scale space obtained by blowing up along J is a further blowup of the IVC.

The situation of this example can also be understood in general, from our viewpoint, which gives an
alternative proof of the result of Nguyen.

Proposition 7.7. The local blowup of Mo,n near Dy along the ideal ] (I') makes the ideal N (I') become principal.
Moreover, in genus zero the blowup of M, ,, along the ideal sheaf N is the IVC.

Before giving the proof, we first reinterpret N (I') geometrically as follows. If two vertices v and v’ are
joined by an edge e, and if £(v) > {(v’), then 0, divides 0,,. Therefore, the ideal N(T') is the same as the
ideal generated only by the elements 6, where v ranges over all vertices that are local maxima of I (in the
sense that all edges from v go down - recall that this is a partial order on the graph, and the datum of a
multi-scale differential upgrades this to a full order). A vertex v that is a local maximum of I', such that
the corresponding O, generates the ideal N(I') after the blowup, becomes a global top-level vertex. On the
other hand, those local maxima v whose 0, terms do not generate the principal ideal after blowing up N(I')
may not divide each other, and thus remain unordered. This corresponds to the fact that a point in the IVC
records actual differentials merely on top-level vertices where the stable differential is not identically zero,
while on any lower vertex the stable differential is identically zero (though the underlying marked zeros and
poles of the twisted differential are still remembered).

Proof. For the first claim, note that the edge parameter 9, appears with the same exponent in the expressions
of 0, and 0,/ unless e lies in the unique path from v to v/, in which case the exponents of 9, in 0, and
0, are the same as those in I(v,v’) and I(v’, v), respectively. Since blowing up along J(I') makes the ideal
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(I(v,v),I(v’,v)) principal, it follows that each ideal (9,,9,’) becomes principal under that blowup. This is
to say that after blowing up in J(I'), one of 6, and ,» must divide the other. Doing this for all v and v’
shows that after the blowup along J(I), there is a set of elements {0,,,...,0,,} such that for every i and each
v e V(I), 9,, divides 9,. In particular, such o, and 61,]_ divide each other and thus differ by multiplication
by a unit, and the ideal N(T'), after the blowup along J(T'), is generated by any one of these 6, , and hence it
becomes principal.

For the second claim, we will construct the desired morphisms between the blowup and the IVC in both
directions that are inverses of each other. Since the blowup and the IVC both admit natural maps onto
ﬂoyn, these morphisms will be constructed locally over each boundary stratum D of ﬂo,n.

The upshot underneath the constructions is that o, for v € V(I') is an adjusting parameter in the sense
of [BCG*19, Proposition 11.13], which means that multiplying by 6;! makes the limiting differential become
not identically zero on the component corresponding to v. To see this, let D, be the boundary divisor of
Mo,n corresponding to a given edge e; of I'. Contracting all edges of I' except e; produces a graph with two
vertices connected by the edge ¢;, and the family of stable differentials over it vanishes on the irreducible
component corresponding to the lower-level vertex, with generic vanishing order |« |. Given a vertex v
of I, if the image of v under this contraction is the lower of the two resulting vertices, then over Dr the
family of stable differentials vanishes identically on the irreducible component corresponding to v. Applying
this observation to all edges ¢; in I' where v becomes lower after the above edge contractions, it follows
that the expression of 9, records exactly the total vanishing order over Dr of the stable differentials on the
irreducible component corresponding to v. Therefore, multiplying by 6,! makes the limiting differential
become not identically zero on v. By definition, this implies that 0, is an adjusting parameter for v.

Now we construct a morphism from the IVC to the blowup of M),n along N by using the universal
property of the blowup. More precisely, as we blow up (in a neighbourhood of Dr) the ideal generated by
all 9,, it suffices to check that this ideal becomes principal on the IVC. Recall that the IVC parameterizes
pointed stable differentials (of prescribed type) that are not identically zero, where a stable differential is
a section of the dualizing sheaf over the stable curve, considered up to an overall scaling by a non-zero
constant factor. If a vertex v is not a local maximum of I, i.e. if there exists an edge e going up from v,
then the (stable) differential on the irreducible component corresponding to v is identically zero. Thus given
a (not identically zero) stable differential, we can declare a local maximum vertex v of I' to be a global
maximum if and only if the stable differential on the corresponding irreducible component of the curve is
not identically zero. By the preceding discussion, this is precisely to say that all adjusting parameters o, for
the global maxima vertices v differ by units, and divide all the other 6,. Hence the ideal N(T') pulls back a
principal ideal on the IVC, which induces the map (locally) from the IVC to the blowup of Mo,n along N(I).

Next we construct a morphism in the opposite direction, locally near Dr from the blowup of ﬂom
along N(I') to the IVC, by using the universal property of the Hodge bundle over ﬂom (twisted by the polar
part of the differentials, and projectivized as always).

Consider the universal family of differentials with prescribed zeros and poles over a punctured neighbour-
hood of Dr in M ,,. We claim that this family of differentials extends to a family of stable differentials
over the local blowup of ﬂo,n along N(I'). Indeed, for each point in the preimage of Dr in the blowup,
we know the set of global maxima vy,..., vy of the graph (with k > 1), such that any other 9, is divisible
by one of the adjusting parameters 0, ,...,0,, . It follows that the limiting stable differential will be not
identically zero precisely on the irreducible components corresponding to vy,..., v, and thus in particular
not identically zero on the stable curve as a whole. By the universal property of the projectivized Hodge
bundle, the blowup along N(I') carrying a family of (not identically zero) stable differentials admits locally
a morphism to this bundle. Moreover, since, over the locus of smooth curves, this family of differentials
coincides with the family of differentials in a given stratum, it implies that the image of the morphism from
the blowup to the Hodge bundle is the closure of the stratum, i.e. the IVC. By construction, it is clear that
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this map is the inverse of the local morphism in the other direction. As both the blowup of ﬂo,n along the
global ideal sheaf N and the IVC admit forgetful surjective maps to Mo,m and as we proved that they are
locally isomorphic near every stratum Dr C M, ,, it follows that they are globally isomorphic. U

7.6. A blowup description for arbitrary genus

Recall that the NIVC denotes the normalization of the incidence variety compactification (i.e. of the
closure of the stratum in the Hodge bundle), and let I' be a partially ordered level graph of a boundary
stratum in the NIVC. For every vertex v € V(I'), by normality an adjusting parameter h, exists by [BCG*19,
Proposition 11.13]. Recall that by definition this means that multiplying by k! makes the limiting differential
in a degenerating family not identically zero on the irreducible component of the stable curve corresponding
to v. Define an ideal locally around the boundary stratum of the NIVC corresponding to I' by

o= [ by,
(v,v)eV(I)xV(T)
where the product runs over all ordered pairs of vertices (including the case v = v’) and where w(v) :=
2¢(v)— 2+ valence(v). Since the blowup in J(I') makes the adjusting parameters comparable for any two
vertices, the (local) blowup of the NIVC along J(I') is orderly (recall that this means that after the blowup the
divisibility relation induces a full order on the set of adjusting parameters; see [BCG*19, Definition 11.15]).
By the same argument as in the proof of [BCG*19, Theorem 14.8], it follows that the normalization of this
blowup is isomorphic to the moduli space of multi-scale differentials.

Finally, we show that the locally defined ideals J(I') are compatible under degeneration, so that they
glue to form a global sheaf of ideals | on the NIVC. For this, again it is enough to check compatibility
under an edge contraction (recalling that unlike in the genus zero case, the edge can be a loop). First, in
the case of a loop, by the formula for w(v), we see that contracting a loop does not change J(I'). Now
suppose that two distinct vertices v1, v, of I' connected by an edge e are merged, when e is contracted, to a
vertex v’ in the resulting graph I'". Note that this contraction makes h,, ~ h,, ~ h,» modulo units. Moreover,
w(v’) = w(vy) + w(v,). Then for any vertex u different from vy, v,,v’, we have

)2w(v1 )ZW v)w(u)

(hV1’h (hvz’h (I’lv/, hu)zww,)ww)r

w(v)? 2w(vy )w(v,) N2
(Truyr b )™ (1) (hvl,hvz) S ()
It follows that J(I'") specializes to J(I'). Therefore, the local ideals J(I') can be glued to a global sheaf of
ideals J. In summary, we have proven the following theorem.

Theorem 7.8. The main component P(MS ) of P(GMS,) is the normalization of the blowup of the NIVC in
the ideal sheaf ] ; in particular, its coarse modulz space is a projective variety.

Remark 7.9. For arbitrary genera, one can describe the IVC (and then also the rubber and multi-scale spaces)
by blowing up the normalization of the closure of the stratum in the Deligne-Mumford compactification ﬂg,n,
which we denote by NDM. The argument is similar to the one in the proof of Lemma 7.7. Since the NDM
is normal, for every vertex v of I', an adjusting parameter h,, for v exists as in [BCG*19, Proposition 11.13].
Then the blowup of the NDM along the (local) ideals (h,,...,h,, ), where vy,..., v} are local maximum
vertices of I, carries a family of stable differentials, and hence it maps to the IVC by the universal property
of the Hodge bundle. The inverse map from the IVC to this blowup is similarly obtained by using the
universal property of the blowup.

To see that these local ideals patch together to form a global sheaf of ideals, suppose that a local maximum
vertex v; joins a lower vertex v, via an edge e. Suppose further that e is contracted so that v; and v
merge as one vertex v{, which makes h, ~ hv{ modulo units. If v| remains a local maximum, then we have
(hy,  hyysoo sy ) = (hyr By, by, ) after contracting e, so these ideals match. If v] is not a local maximum,
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then there exists another local maximum vertex, say v;, that goes along a path downward to v{ (in terms of
the partial order of I'). It follows that h,, divides h, ~ h, and hence (h,, hy,,...,h,) = (hy,,..., hy,) after
contracting e, so these ideals still match.

Appendix. Sign conventions

The sign conventions adopted in [MW20] and in [BCG*19] are opposite to one another; as this sign plays
a more prominent role in [BCG*19], we follow that sign convention, which we now explain in the logarithmic
language.

Let (X,Mx) be a log scheme and g € m%p(X). The preimage of f in the exact sequence

1—>0§—>M§p—>M§p—>1

is a G,,-torsor that we denote by O%(f), from which we construct a line bundle Ox(f) by gluing in the

(24)

zero" section. In particular,

(1) if X has divisorial log structure and f € My (X), then Ox(p) is naturally an ideal sheaf on X;

(2) if (X, x) is a DVR with divisorial log structure at x, then the stalk of My at x is naturally identified
with IN, and the association = Ox(f) sends n to Ox(—nx);

(3) if @ < b € My (X)8P, then we have a natural map Ox(b) — Ox(a).

If e: u — v is a directed edge of a graph I of length 9., and f8 is a function on the vertices of y with
slope « along e, then f(v) = (1) + k - .. We identify a half-edge / attached to a vertex e with an outgoing
edge at e.

If (X/B, B) is a nuclear object of Rub, then the image of f is totally ordered with largest element 0. If the
image of B has cardinality N + 1, then there is a unique isomorphism of totally ordered sets between Im(p)
and {0,—1,...,—N} (the latter having largest element 0). We denote by £: V — {0,—1,...,—N} the induced
map, in accordance with (3.1).

If e is an edge between vertices u and v, we define {*(e) and £~ (e) to be the unique pair of elements of

{0,1,...,—N) such that £*(e) > €~ (e) and {€*(e), €~ (e)} = {£(1), £(v)).
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